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ABSTRACT 
 
Malaria is caused by an intracellular protozoan parasite of the genus Plasmodium.  
The use of chemotherapy, the foremost tool available for the control of the disease, has 
been challenged in the last decades by the development and spread of drug resistance 
among malaria parasites. A clear understanding behind the mechanisms of parasite 
resistance is required for the improvement of treatment efficacy, policy assessment and 
in the development of new drugs. 
 
A common strategy used by parasites in achieving resistance involves decreasing drug 
accumulation inside the cell. This is typically accomplished by increasing the 
availability of transporter proteins that mediate the efflux of the active compound.  
 
The goal of this thesis was to better understand the involvement of drug transporter 
genes in the molecular mechanisms underlying drug susceptibility in Plasmodium 
falciparum malaria. The approaches involved clinical drug trials, clinical isolates and 
extensive studies of laboratory P. falciparum parasites. 
 
The contribution of pfmrp1 polymorphisms in in vivo parasite drug response was 
studied in P. falciparum infected patients from drug efficacy clinical trials. After 
Sulphadoxine-Pyrimethamine treatment, recrudescent infections selected for parasites 
that had a lysine at amino acid position 1466 in pfmrp1, thus providing the first 
indication that this transporter gene may have a role in P. falciparum antifolate drug 
responses in vivo. 
 
We examined the effect of the ACT partner drug, mefloquine, on the intra-erythrocytic 
cell cycle of P. falciparum laboratory parasites having different in vitro drug 
susceptibilities, while in parallel investigating the expression of four pivotal drug 
transporter genes: pfcrt, pfmdr1, pfmrp1 and pfmrp2. This study revealed a delay in the 
cell cycle of the parasite after drug pressure, accompanied by gene induction of the 
transporter genes studied.  
 
The genetic background of the drug transporter genes pfcrt, pfmdr1, pfmrp1 and pfmrp2 
were further studied at length in field isolates collected at the Thai-Myanmar border, a 
historically known epicenter of resistance. The isolates were characterized in vitro for 
their sensitivity against a broad range of ACT relevant antimalarials. Correlation 
analyses revealed novel candidate markers for multidrug resistance against structurally 
unrelated antimalarial drugs used extensively in ACT regimens worldwide.  
 
In conclusion, these studies reinforce the concept of malaria drug resistance as a multi-
factorial and complex phenomenon that may involve not only the parasite’s handling of 
the incoming drug, but also concomitant responses of its basic physiology. 
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“THIS IS MALARIA. A scourge to mankind… a deadly plague that 

scatters misery and suffering among its victims. Deadlier than guns, 

more powerful than bombs, this mysterious killer has been responsible 

for the decline of nations, the lost of wars, the failure of explorations…. 

From earliest times right up to today, malaria has altered the march of 

history: Alexander the Great died from it on the eve of his greatest 

conquests…. It prevented the notorious Cesare Borgia from placing all 

of Italy under his power…. Poets, such as Dante and Lord Byron, 

statesmen like Garibaldi and James I, the famous Lord Nelson – all 

were plagued by this disease which had no respect for fame or 

position…. And in World War II, it proved almost as great an enemy as 

all of the Axis powers.” 

LEON J. WARSHAW (1917-2001) 
 

Malaria, the Biography of a Killer. 
New York and Toronto; Rinehart and Company. 1949 
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1 BACKGROUND 
 
 
1.1 MALARIA FACTS 

 
Malaria is a disease caused by a parasite spread from person to person through the bites 

of infected mosquitoes. Malaria generally occurs in tropical and subtropical areas, 

leaving approximately 40% of the world at risk for the disease. Most lethality from 

malaria infection is focused in the African continent, especially among children under 

five. The most recent WHO World Malaria Report registers a 2009 global impact of 

approximately 225 million new malaria clinical reported infections, associated with 

781,000 deaths (WHO, 2010). 

Malaria is commonly associated with poverty, and represents a major burden to 

economic and social development, costing an estimated sum of greater than US$ 6 

billion for the year 2010 (Sachs & Malaney, 2002, WHO, 2010). 

Early diagnosis and prompt treatment are two basic elements in easing the impact of 

malaria. While progress in these areas has been remarkable, emerging insecticide 

resistant vectors, population movements, environmental disturbances, disintegrative 

health services and wide spread antimalarial drug resistance have constrained this 

mission.  

 

 
1.2 MALARIA INFECTION AND TRANSMISSION 

 
The parasite causing malaria is an intracellular protozoan belonging to the genus 

Plasmodium, which is comprised of approximately one hundred species (Levine, 1988) 

able to infect numerous vertebrate hosts including reptiles, birds and mammals. 

Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae 

and Plasmodium knowlesi are the five species that can infect, cause symptoms and 

eventually death in humans (Cox-Singh et al., 2008, Levine, 1988). P. falciparum is 

responsible for the most severe cases of the disease and mortality, and is the focus of 

this thesis. 

Malaria infection is the result of complex interplay between the host, the parasite and 

the mosquito vector. The dynamics between these three elements is an important factor 

affecting malaria transmission. Many mosquitoes can transmit malaria, but within the 
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species able to do so, only females possess the capacity due to their hematophagic 

(blood feeding) nature. Mosquitoes are a driving force responsible for malaria 

propagation and different characteristics and behaviours of the mosquito population in 

certain settings often determines malaria endemicity (Elliott, 1972). 

 

 

1.3 MALARIA CONTROL  

 
In the last few years, there has been a substantial increase in international funding and 

political commitment toward malaria control and elimination. This has allowed a recent 

expansion of access to valuable public health tools such as long-lasting insecticide 

treated bed nets and indoor residual spraying, as well as early access to diagnosis and 

effective antimalarial drugs including artemisinin combination therapy (ACT). 

Consequently, the toll of the disease has decreased in a number of countries throughout 

the world, with notable decreases in the morbidity and mortality due to malaria (WHO, 

2010).  

Nevertheless, the feasibility of malaria eradication is a complex challenge, as several of 

these central strategies are under threat (Mendis et al., 2009). Malaria vectors in several 

countries display a degree of resistance to pyrethroids (Chandre et al., 1999), while – 

and most importantly – recent reports from South East Asia document decreased 

susceptibility to the latest medications (Noedl et al., 2010, Wongsrichanalai & 

Meshnick, 2008, Price et al., 2004, Price et al., 2006). Furthermore, humans that 

become infected differ in their susceptibility to malaria as a result of genetic factors 

and/or acquired immunity (Mendis et al., 2009). Research and development to develop 

tools of greater potency and effectiveness are needed, especially those which impact 

transmission, as well as replacement drugs for antimalarials that are rendered 

ineffective by increased parasite resistance. 

 

 

1.4 PLASMODIUM FALCIPARUM 
 

1.4.1 The life-cycle 
 

As general features of the life-cycle, two factors are of primary importance in the living 

history of the parasite: (i) the alternation within two hosts (vertebrate and invertebrate) 
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in which three steps occur, two intracellular in the vertebrate and the third extracellular 

in the Anopheles mosquito with asexual and sexual growth and division in the 

vertebrate and invertebrate host respectively; and (ii) chronobiology; the time table of 

events in all stages is highly significant for microscopic clinical diagnosis, for 

taxonomic differentiation of subspecies and as a survival mechanism for the parasite 

(Bray & Garnham, 1982). 

Figure 1 illustrates in detail the complete life cycle of P. falciparum. One may assume 

an arbitrary starting point in the cycle for description purposes: when a female 

Anopheles mosquito penetrates the human skin to obtain a blood meal. Through this 

action the vector injects saliva mixed with an anticoagulant. If the mosquito is infected 

with P. falciparum, it will simultaneously inject elongated sporozoites into the 

bloodstream of the host. The sporozoites travel to the liver where they enter the 

hepatocytes. In this intracellular environment, they rapidly divide asexually, generating 

the next lifecycle stage form, the merozoites. Following the rupture of the hepatocyte, 

merozoites are released into the bloodstream, where they invade erythrocytes and 

develop through the early trophozoite (“ring”) and mature trophozoite stages. After 

these, the parasites undergo a series of asexual divisions to produce a large segmented 

schizont filled with mononucleated merozoites. The erythrocyte then ruptures, releasing 

the merozoites and initiating the well-known peak of fever and chills characteristic of 

malaria. A small proportion of merozoites do not divide, instead developing into sexual 

forms: the male and female gametocytes. These develop zygotes only inside the 

mosquito gut, after a mosquito blood meal. Within the gut, the male and female 

gametes fuse and the resultant diploid zygotes undergo meiosis and further 

development within the mosquito intestinal wall, ultimately differentiating into oocysts. 

After repeated mitotic divisions, these oocysts produce a large number of sporozoites. 

The sporozoites actively migrate to the salivary glands of the mosquito, ready to be 

injected by the mosquito into the bloodstream of a human, thus re-starting the life-cycle 

of the parasite again. 
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Figure 1 - The life-cycle of Plasmodium falciparum. The main phases in the liver and in the red blood 
cells (asexual and sexual erythrocytic stages) of the human host, and in the gut and in the salivary glands 
of the mosquito host are depicted. Reprinted from Trends in Parasitology (Bannister & Mitchell, 2003), 
with permission from Elsevier. 
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1.4.1.1  Replication within the red blood cell 

 
The life-cycle stage receiving the most attention is the intra-erythrocytic developmental 

cycle (IDC), because it is responsible for the immediately visible pathology of the 

disease in humans and is the main target for most available antimalarial drugs. It is also 

the most amenable to study, as it is comparatively easy to obtain biological material 

from blood stage cultures. Nevertheless, the cell cycle division in the erythrocytic cycle 

are poorly understood (Arnot et al., 2011). The IDC has an impact progressively 

amplified by repeated 48 hour cycles of invasion (P. falciparum), intracellular growth, 

multiplication and re-invasion. Due to the focus of this thesis, a brief description of 

these different morphological and replication stages will be given. 

 

The discrete phases of DNA replication and cell division which constitute the life-

cycles of malarial parasites do not appear to follow the general eukaryotic mitotic 

model (Arnot & Gull, 1998). “A cell-cycle can be defined as the period between the 

formation of a cell by the division of its mother cell and the time it itself divides to 

form two daughters, during each period there is a 2-fold increase in DNA content 

followed by equal division of the nucleos” (Mitchison, 1971). A clear correlation 

between the G1, S, G2 and M phases of the typical eukaryotic cell cycle has yet to be 

established in Plasmodium. Attempts to solve such questions using biochemical 

approaches are hampered by the difficulty in obtaining sufficient highly synchronized 

populations and the apparent asynchrony in nuclear divisions in a given schizont (Arnot 

& Gull, 1998, Waters & Janse, 2004). It is generally accepted that merozoites and rings 

are in G1, and S phase is initiated in trophozoites, around 18 hours post invasion 

(Figure 2). 

The malariological terms used to describe P. falciparum IDC stages are based mainly 

in their structural features, observable by optical microscopy:  

(i) Ring and early trophozoites stage associated with a single interphase nucleus. 

This stage is characterized under Giemsa staining blood smears as a thin biconcave 

disc, thicker around its perimeter where the elongated nucleus is present and thinner in 

the middle, giving the appearance of a ring. The ring eventually grows into the more 

rounded trophozoite stage. 

(ii) Later trophozoites (by this stage sequestered on tissue endothelium in clinical 

infections) which initiate preparations for chromosome replication (G1) and the start of 

DNA synthesis (S). Here, the parasite becomes a more rounded shape; it feeds more 
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actively, and forms a large pigment vacuole in which the degradation products resulting 

from haemoglobin digestion (hemozoin crystals-dark pigment) accumulate. 

(iii) The schizonts stage starts when the single trophozoite nucleus begins to 

divide into two daughter nuclear bodies (M phase) (Arnot & Gull, 1998, Arnot et al., 

2011). Approximately 16 nuclei are generated and appear in the merozoite located in 

the periphery. They blossom from the central mass containing the pigment vacuole, 

now full of compacted hemozoin crystals, and eventually egress from the RBC and 

parasite membrane surrounding the merozoites to carry on in invading new RBCs. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 – Description of morphological stages as well as cell cycle replication in P. falciparum IDC. 
Note that the depiction of the cell cycle phases (G1, S, G2 and M) is an estimate. 
 

 
 
1.4.2 Genome 

 
The first attempt to sequence the genome of an eukaryotic pathogen was initiated in 

1996 with the P. falciparum genome project (Waters & Janse, 2004). The 

determination of the genome sequence provided not only important information about 

the biology of the parasite, but also changed the way that many Plasmodium focused 

laboratories approach their research. The sequence of the genome facilitated research 

efforts that could potentially lead to the development of novel drugs. The haploid 

genome of P. falciparum clone 3D7 was found to have a size of ≈22.8 megabases with 

approximately 80% A and T nucleotide content, an obstacle in the study of this bug. 
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The nuclear genome consists of 14 chromosomes which encode at least 5400 genes. 

60% of the encoded proteins are of unknown function, and furthermore, have presently 

little or no recognizable homologues in other organisms (Gardner et al., 2002). 

 

 

1.4.2.1 Genetic variation (SNPs and CNV) 

 
Genetic variation, variation in alleles of genes, occurs both within and among 

populations. Its magnitude is vital for providing the “raw material” for natural 

selection. It can appear in several forms, including single nucleotide polymorphisms 

(SNPs), variable numbers of tandem repeats, as well as larger structural rearrangements 

such as gene copy number variation (CNV), deletions, insertions, inversions and 

translocations.  

SNPs are a type of polymorphism involving variation of a single base pair, and 

studying them can reveal their involvement with disease, drug response, or other 

phenotypes. The genome of P. falciparum clones and field isolates have shown a SNP 

density of approximately one every 500-1000bp (Mu et al., 2002, Volkman et al., 

2007). Importantly for the theme of this thesis, variation in genes associated with 

phenotypes of decreased therapeutic drug susceptibility is expected to be subject to 

strong selective pressures. This is reflected as a reduction in SNP diversity found in the 

genomic regions surrounding known resistance loci (e.g. pfcrt and pfdhfr) as a result of 

recent antimalarial drug driven selective sweeps (Nair et al., 2003, Wootton et al., 

2002). 

Current studies have revealed gene CNV as a major source of genomic variability in P. 

falciparum, encompassing at least three times the total nucleotide content of SNPs. 

CNVs can range in size from thousands to millions of DNA base pairs. Since CNVs 

often encompass entire genes, they can influence gene expression levels as well as 

phenotypic variation, thereby revealing important functions both in disease and drug 

response and may also help to better understand genome evolution. In P. falciparum, a 

number of studies have shown examples of gene amplifications and deletions including 

genes associated with knob formation, cytoadherence and multi-drug resistance (e.g. 

pfmdr1) (Carret et al., 2005, Ribacke et al., 2007). 
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1.4.3 Transcriptome 

 
In malaria parasites, the study of gene expression has increased in recent years with the 

release of the annotated sequence of the P .falciparum genome and the development 

and use of reporter gene constructs in transfection experiments. This has led to many 

advances in the field, as well as the ability to genetically modify the parasite. Gene 

transcripts can provide insight into the basic mechanisms of gene regulation and 

function, and may also lend knowledge to the mode of action of antimalarial drugs.  

Comparisons of the gene expression profiles of genetically modified parasites such as 

drug-selected or gene knockout parasites with their parental wild-type parasites will 

allow the identification of other genes that interact with those functionally modified 

genes (Jiang et al., 2008). 

High-throughput transcriptome analysis using microarrays was available soon after the 

completion of the parasite genome (Bozdech et al., 2003, Le Roch et al., 2003), and has 

become a useful tool for investigating the biology of the malaria parasite. The complete 

asexual P. falciparum IDC transcriptome analysis demonstrated that at least 60% of its 

genome is transcriptionaly active in this stage, with the timing of mRNA expression for 

a given gene during the IDC correlating well with the expected function of the resultant 

protein in each specific time point of the cycle. For example, replication of the genome 

occurs in the early-schizont stage and correlates with the peak of expression factors 

involved in DNA replication and DNA synthesis. During the IDC the parasites undergo 

extensive morphological alterations, and these differences are tightly correlated with 

genetic expression clusters (Bozdech et al., 2003). 

Studies analyzing the transcriptional responses to antimalarial drug challenges in P. 

falciparum have examined the drug’s effect in multiple cell stages to identify changes 

in modulation of transporters, inhibition of protein synthesis, and perhaps activation of 

drug responsive protein networks (Ganesan et al., 2008, Gunasekera et al., 2007).  

 

 

1.5 ANTIMALARIAL DRUG RESISTANCE 

 
Chemotherapy, on top of vector control measures, plays a major role in combating 

malaria infection. However, this role is diminished by the paucity of currently available 

antimalarial drugs and by the apparent unstoppable emergence and spread of parasite 

drug resistance. 
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Malaria drug resistance is clinically defined as “the ability of a parasite strain to survive 

and/or to multiply despite the administration and absorption of a drug given in doses 

equal to or higher than those usually recommended but within the limits of tolerance of 

the subject.” Furthermore, “the form of the drug active against the parasite must gain 

access to the parasite or the infected RBC for the duration of time necessary for its 

normal action” (WHO, 1986). 

 

The emergence of resistance is likely the result of a complex intra- and interaction of 

factors between human, parasite, mosquito and the characteristics of the drug used. In 

the host population, it can include incomplete therapeutic treatment of infected patients. 

The lack of compliance, the involuntary use of counterfeit drugs and an immunity 

response can also affect the efficacy of chemotherapy. In the parasite population, it can 

include genetic and metabolic flexibility together with high rates of multiplication and 

dispersal of resistance genes via sexual recombination in the mosquito. 

 

There are several ways to assess the susceptibility of P. falciparum to antimalarial 

drugs, including both in vivo and in vitro methods. Clinical failure following 

appropriate administration of a drug is an important paradigm in identifying drug 

resistance, as it defines the “real world”. Besides a clear defect in drug failure (i.e. the 

non-elimination of the pathogen upon appropriate parasite drug exposure), other 

phenotypes have to be taken in consideration to identify the emergence of drug 

resistance. These include significant increases in parasite clearance time from the 

patient body, the identification of recrudescences and the selection of specific 

subpopulations, particularly when associated with the selection of genetic variants 

known or suspected to be linked to decreased parasite drug susceptibility. The 

identification of the latter are primarily the result of in vitro studies. 

Studies based on in vitro culture of the parasite provide a significant advantage in 

studying the intrinsic parasite susceptibility to a drug without patient related 

confounding effects like immunity or pharmacokinetic factors modulating the 

bioavailability of the drug. These approaches have their own limitations, particularly 

those allowing the full allelic exchange targeted for genes suspected to be related with 

resistance. Therefore, caution must be exercised when drawing conclusions associating 

in vitro results with in vivo phenotypes. As a consequence, inhibition concentration 

values as a threshold of resistance for most antimalarial drugs have yet to be 

established. Also, not all field isolates and not all parasite genotypes present in one 
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isolate will survive adaptation to in vitro culture or even the ex vivo microtest 

performed in the field. Hence, some sub-populations may have an important effect on 

treatment failure, but by not surviving during in vitro experiments they will not 

contribute to the final measured phenotype, biasing the association between in vivo and 

in vitro. Additionally, sequestered parasites, absent from the peripheral circulation may 

be missed when sampling in vitro assays. Overall, it is important to have access to both 

in vivo and in vitro assays for a better understanding of the biological basis of parasite 

drug susceptibility. 

 

 

1.5.1 Mechanisms of drug resistance 

 
In general, development of drug resistance occurs in several discrete steps. When 

organisms or cells are exposed to suboptimal, and thus sublethal, levels of a drug, they 

tend to respond to the stress situation by adaptation involving one or more mechanisms 

of drug resistance. 
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induction of alternative pathway)induction of alternative pathway)

Overproduction of target Overproduction of target (e.g. (e.g. 
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Mechanisms of drug resistanceMechanisms of drug resistance

Drug target unchangedDrug target unchanged Alterations in drug targetAlterations in drug target

Resistance by exclusionResistance by exclusion Resistance by metabolismResistance by metabolism

Loss of drug accumulation Loss of drug accumulation 
mechanismmechanism

(decreased import)(decreased import)

Accumulation of metabolite Accumulation of metabolite 
antagonistic to drug antagonistic to drug (e.g. PABA (e.g. PABA 
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Elimination of target (e.g. Elimination of target (e.g. 
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Overproduction of target Overproduction of target (e.g. (e.g. 
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In addition to single drug resistance, there is recent evidence for the development of 

multiple drug resistance mechanisms that allow the organism to survive not only to the 

exposure to one drug, but also to others with non related structures or mechanisms of 



 

  11 

action. The exposure to sub-optimal drug levels through self medication in the 

management of fever in developing countries is probably one of the most important 

reasons for the presence of (multiple) drug resistant malaria. 

 

 

1.6 ANTIMALARIAL DRUGS: MODES OF ACTION AND RESISTANCE 

 
The effect of the bark of the cinchona tree on malaria was first uncovered by the native 

Indians of South America, while in China sweet worm-wood has been used for the 

treatment of malaria for a very long time (Aydin-Schmidt et al., 2010). Different types 

of antimalarial drugs have had different histories, impact and although some with some 

similarities, they also differ in the molecular mechanism underling parasite drug 

resistance. Table 1 gives a brief overview of P. falciparum proteins with a proven or 

likely role in resistance to clinical antimalarial drugs.  

 

 

1.6.1 Quinolines and related compounds 

 
Introduced during the 17th Century, the use of extracts from the bark of the cinchona 

tree was the first effective chemotherapy available in Europe. Its principle active 

compound, isolated in the 19th Century, was named quinine (QN). Its structure is built 

upon a quinoline ring system. From this basic structure, the group of synthetic 

antimalarials collectively named quinolines was created during the 20th Century, 

including chloroquine (CQ), amodiaquine (AQ), piperaquine (PQ) and mefloquine 

(MQ). Based on more loosely related ring systems are the antimalarials halofantrine 

(HF) and lumefantrine (LUM) (Figure 3). These compounds are all thought to share a 

common target, with the most widely accepted hypothesis, based on studies with CQ, 

proposing the target as being in the parasite heme detoxification systems (Fitch, 2004). 
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QuinineQuinineQuinineQuinine

ChloroquineChloroquine AmodiaquineAmodiaquine PiperaquinePiperaquinePiperaquinePiperaquine

MefloquineMefloquineMefloquineMefloquine HalofantrineHalofantrineHalofantrineHalofantrine LumefantrineLumefantrineLumefantrineLumefantrine

QuinolineQuinoline ringring

 
Figure 3 – Structure of the quinoline ring and antimalarial quinoline related compounds. 
 

CQ, clinically available since 1947, is one of the most successful antimalarial drugs 

ever produced, being a safe and cheap compound that is estimated to have saved 

countless millions of lives (O'Meara et al., 2010). P. falciparum resistance to this drug 

was identified approximately 10 years after its introduction, with the first pilot reports 

coming from the Thai-Cambodian borders in 1957, and the first formal complete 

records in Northeast South America. CQ resistance further expanded to Africa, where it 

first appeared in the late 1970s, further spreading to most sub-Saharan countries by the 

end of the 1980s.  

CQ acts by interfering with the detoxification of the heme group (ferroprotoporphyrin 

IX) produced when haemoglobin is digested. This process occurs inside the 

Plasmodium parasite’s food vacuole (FV), where CQ typically accumulates due to its 

di-protonation by the acidic environment of the FV lumen. There, it binds to the toxic 

heme, preventing the process of biomineralization towards hemozoin. The highly 

reactive free heme ultimately becomes lethal to the parasite. 

Although the long-term accepted view for explaining CQ resistance resides in the 

accumulation of the drug inside the food vacuole, with higher accumulation of CQ in 

sensitive parasites compared with the resistant ones (Krogstad et al., 1987), a direct 
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demonstration of the phenomenon at the molecular level occurred only recently (Martin 

et al., 2009b). The discovery of the precise genetic basis of chloroquine resistance was 

also a long and difficult process, with more then 40 years between its initial clinical 

recognition and the identification of the chloroquine resistance transporter gene (pfcrt) 

(Fidock et al., 2000). This gene, located on chromosome 7, is highly polymorphic with 

at least 20 variable codon positions reported to date (Cooper et al., 2005). A specific 

polymorphism resulting in a lysine to threonine substitution at amino acid 76 (K76T) 

was shown to confer  in vitro (Sidhu et al., 2002, Fidock et al., 2000) and in vivo 

(Djimde et al., 2001) CQ resistance to the extent that it became a molecular marker for 

predictive therapeutic efficacy (WHO, 2002). 

Resistance to quinoline drugs, including the aforementioned CQ, has also been linked 

to other transporter proteins. This includes the long studied P. falciparum multidrug 

resistance 1 (PfMDR1), Na+/h+ exchanger (PfNHE) and multidrug resistance-

associated protein 1 (PfMRP1). A more detailed description of the importance of pfcrt 

and the pfmdr1 and pfmrp1 ABC transporter genes in the development of drug 

resistance will be given in the next chapter. 

 

 

1.6.2 Antifolates 

 
The antifolate class of drugs consists of compounds that bind enzymes necessary for 

parasite folate biosynthesis. The main drugs used against malaria are the combinations 

sulphadoxine-pyrimethamine (SP) and chlorproguanil-dapsone (not as accepted due to 

the high risk of severe anaemia after treatment in patients with G6PD deficiency 

(Fanello et al., 2008)). Pyrimethamine and chlorcycloguanil (the active metabolite of 

chlorproguanil), target the dihydrofolate reductase (DHFR) activity of the parasite’s 

bifunctional DHFR-thymidylate synthase protein, whereas the sulfa drugs, 

sulphadoxine and dapsone, affect dihydropteroate synthase (DHPS). Their inhibition 

leads to decreased production of tetra-hydrofolate, a cofactor necessary for the 

production of a number of folate precursors which ultimately disturbs the biosynthesis 

of nucleotides and subsequent DNA synthesis (Ferone, 1977, Sridaran et al., 2010). 

Resistance emerged rapidly when these drugs were introduced alone as a monotherapy, 

but synergistic combinations like SP (Fansidar™), first introduced in the late 1960s, 

have proved to be of long-term utility, especially as an inexpensive alternative to 

combat CQ-resistant parasites. Treatment with Fansidar™ is taken in a single dose 
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which results in high compliance. However, this has not stopped the spread of 

resistance, as recently witnessed in retrospective studies conducted in Mozambique 

(Raman et al., 2010). 

Nowadays, artemisinin-based combination therapy (ACT) has taken over the first-line 

regimen of choice in many areas of the world. Nevertheless, antifolates still play a key 

role in intermittent preventive treatment (IPT) in areas of high transmission of high risk 

groups (pregnant woman and infants) regardless of their infection status (Warsame et 

al., 2010). 

Mutations in the dhfr and the dhps genes of P. falciparum parasites have been 

associated with decreased parasite sensitivity to the antifolate drugs. A change from 

wild type Ser108 to Asn108 (S108N) in pfdhfr is sufficient to cause low level 

pyrimethamine resistance in vivo and by 100-fold relative to wild type in vitro 

(Cowman et al., 1988, Peterson et al., 1988). The triple pfdhfr mutant genotype 

consisting of N51I, C59R and S108N shows in vitro resistance to pyrimethamine with 

significantly higher inhibitory concentration values than with the single mutation at 

position 108 (Nzila-Mounda et al., 1998) and have demonstrated strong association 

with in vivo SP treatment failure (Kublin et al., 2002, Basco et al., 1998, Happi et al., 

2005). Data from various malaria endemic areas suggest asymmetric selection of 

resistant genotypes starting with mutations in pfdhfr and followed by mutations in the 

pfdhps gene by which A437G and K540E SNPs have been associated with in vivo 

clinical failure (Happi et al., 2005). The quintuple mutant genotype consisting of the 

double pfdhps mutant mentioned above in combination with the pfdhfr triple mutant 

genotype (N51I, C59R, S108N) is a better predictor of clinical failure than either the 

multiple mutant genotype alone (Mugittu et al., 2004, Happi et al., 2005, Kublin et al., 

2002) as also demonstrated in paper I of this thesis. 

Whereas the amino acid alterations mentioned above are to date the key factors 

associated with parasite antifolate resistance, other factors may play a role in the levels 

of clinical failure after SP treatment. Higher serum folate concentrations, as a result of a 

dietary folate supplementation in children and pregnant women have been reported to 

be associated with SP treatment failure (Dzinjalamala et al., 2005, van Eijk et al., 

2008). The raised endogenous folate pools in parasites will compete with antifolate 

drugs at enzyme binding sites. As discussed further in this thesis, one endogenous 

substrate that is transported by MRPs (multidrug resistance-associated protein) are the 

folates (Deeley & Cole, 2006). In paper I we identified the first polymorphism selection 

(R1466K) in the pfmrp1 transporter gene in recrudescent infections after SP treatment. 



 

  15 

1.6.3 Artemisinins 

 
For more than 2000 years, artemisinins have been used in traditional Chinese medicine 

for the treatment of febrile illness. But it was only in 1971 that Chinese scientists 

discovered its specific antimalarial properties extracted from the ubiquitous annual 

wormwood Artemisia annua (White, 2008).  

Also known as qinghaosu, artemisinin (ART) and its derivatives (mainly utilized in 

ACT: artemether, artesunate and dihydroartemisinin (DHA)) are a group of 

sesquiterpene lactone endoperoxides that possess the most rapid action of all current 

drugs used against P. falciparum, being able to reduce the parasite biomass up to 10000 

fold per asexual cycle. They also have a very short elimination half-life in the human 

body (around 1 hour), reducing the opportunity for the parasite to develop resistance. 

Artemisinins are active in nearly all of the asexual stages of parasite development in the 

blood, and also affect the sexual stages of P. falciparum (gametocytes) which are 

essential for transmission. The specific mechanisms of action of the ART derivatives 

are still unsolved. Most studies agree that their activity involves the break of the intra-

molecular endoperoxide bridge, and a recent study suggests that the digestive vacuole 

is an important initial site of endoperoxide antimalarial activity (del Pilar Crespo et al., 

2008). The active endoperoxide compound is assumed to interact with reduced heme 

(ferroprotoporphyrin IX) or iron to form free-radical by-products of both the drug and 

the heme (Jefford, 2001, Paitayatat et al., 1997). The radicals are thought to react with 

susceptible groups within parasite enzymes and lipids; however, the exact sites of 

action are still unresolved. 

 

The first protein to be suggested to be a target for ART was the Plasmodium 

translationally controlled tumor protein (TCTP) homologue (Bhisutthibhan et al., 

1998), a protein that binds heme. One report has shown that there is less incorporation 

of radiolabeled DHA in a resistant murine plasmodial strain in vivo and a 2.5 fold 

overexpression of TCTP in a rodent malaria model (Walker et al., 2000), but no genetic 

alterations have been described regarding ART susceptibility. 

Structural similarities of ART to thapsigargin, also a sesquiterpene lactone, led to the 

identification of another potential target related to the endoplasmic reticulum, PfATP6 

(Eckstein-Ludwig et al., 2003). This represents the only sarco/endoplasmatic reticulum 

calcium-dependent ATPase (SERCA) ortholog in P. falciparum, a central player in the 

crucial Ca2+ homeostasis of the parasite. A mutation in the pfatp6 gene, noted 
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exclusively in isolates from French Guiana, was reported to be associated with 

significantly increased IC50 values for artemether in ex vivo tests (Jambou et al., 2005). 

More recently, in vivo artemisinin resistance has been proposed (Noedl, 2005) and 

identified by the presence of significantly decreased parasite reduction rates, manifested 

clinically by markedly longer parasite clearance times from the body (Dondorp et al., 

2009, Noedl, 2005, Noedl et al., 2008, Noedl et al., 2010). With only a few individual 

cases matching as resistant: “adequate plasma drug absorption, prolonged parasite 

clearance times, increased ARTs IC50s, and reemergence of parasites within 28 days” 

(Noedl et al., 2008, Noedl et al., 2010), the molecular basis for this phenomenon is 

uncertain, based on the fact that most of these observations are not clearly associated 

with altered artemisinin IC50 in vitro. So far only minor determinants with likely roles 

in resistance, such as pfmdr1 amplifications, correlate (Table 1) (Price et al., 2004, 

Imwong et al., 2010).  

 

 

1.6.3.1  ACT- artemisinin based combination therapy 

 
In nearly all countries where malaria is endemic, ACTs are now the recommended first 

line therapy for uncomplicated P. falciparum malaria, a policy endorsed by the WHO 

in order to increase the efficacy of malaria chemotherapy while delaying the emergence 

of drug resistance.  

Combination therapy is well established for the treatment of other diseases such as 

tuberculosis and infection by the human immunodeficiency virus (HIV). The rationale 

for combination therapy is based on the diminutive probability of resistance arising 

after simultaneous use of two or more antimalarials with different modes of action 

which do not share the same resistance mechanisms (White, 1999).  

The commonly used ACTs are: artemether + lumefantrine (AL); artesunate + 

amodiaquine (AS-AQ); artesunate + mefloquine (AS-MQ); artesunate + sulphadoxine 

+ pyrimethamine (AS-SP) and dihydroartemisinin + piperaquine (DHA-PQ).  

These combination therapies work due to the ability of artemisinins to rapidly reduce 

the parasite biomass in the patient (producing a rapid clinical response), leaving the 

partner drug with relatively few parasites to eliminate. The partner drug, with its longer 

plasma half-life, is also responsible for preventing the recurrent parasitaemia associated 

with ART monotherapy. Nevertheless, for drugs with long half-life, blood levels can 

persist for days, a period during which a patient is essentially under antimalarial 



 

  17 

monotherapy. The time interval when the drug concentrations are at sub-therapeutic 

levels but still significantly present has been referred as the “selective window”. This is 

the period of time when the drug level is adequate to suppress the growth of susceptible 

parasites, but too low to prevent replication of less sensitive sub-populations, leading to 

their selection (Stepniewska & White, 2008, Hastings & Ward, 2005).  

So far, the introduction of ACT as first line treatment has been very successful. 

Countries where ACT and other malaria controls activities have been introduced have 

witnessed significant reductions in endemicity (Dondorp et al., 2010). 

 

 

1.6.4 Atovaquone 

 
While the scope of this thesis does not include these types of drugs, they are used as 

antimalarials, and are therefore mentioned briefly. 

Atovaquone, the first antimalarial derived from rational drug design, acts by collapsing 

the mitochondrial membrane potential. Specifically, it inhibits the movement of the 

iron-sulfur protein sub-unit of cytochrome b (CYT b) which is necessary for the 

transfer of electrons in the respiratory chain (Mather et al., 2005).  

Atovaquone is administered as an antimalarial drug in combination with the antifolate 

proguanil (Malarone™) and is one of the few remaining effective drugs without an 

artemisinin derivative component. Its use has been limited to prevention and treatment 

in travellers, not because of a lack of efficacy or safety concerns, but because of its 

prohibitively high price (Dondorp et al., 2010). In addition, resistance to atovaquone 

seems to rise relatively easily through the accumulation of mutations in the cytochrome 

b gene, which appears not to be able to be completely prevented in vivo by the 

combination (Farnert et al., 2003, Fivelman et al., 2002, Korsinczky et al., 2000). The 

limited use has so far minimized the drug selection pressure and prevented the 

appearance of resistance, but a SNP in codon 268 in P. falciparum cytochrome b gene 

has been shown to confer a high level of atovaquone resistance (Gebru et al., 2006). 
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Table 1: Protein and polymorphisms associated or likely to be associated with 
tolerance/resistance to antimalarial drugs 
 
Protein Function Location Principal drugs affected -  

Comments Polymorphisms References 

ATP6  
(SERCA) 

Membrane Ca2+-
transporting ATPase  

endoplasmatic 
reticulum ART putative 

determinant 
S769N (French 
Guiana) 

(Jambou et al., 
2005) 

CQ, AQ major 
determinant 

CRT Transporter food vacuole 
membrane MQ, HF, 

LUM, ART, 
QN, PQ 

minor 
determinant 

C72S, M74I, 
N75E, K76T, 
S163R, N326S/D, 
I356T/L,  

(Djimde et al., 
2001, Fidock et 
al., 2000, Foote et 
al., 1990, Johnson 
et al., 2004, Mu et 
al., 2003, Reed et 
al., 2000, Sidhu et 
al., 2002) 

CYT b electrons transfer - 
respiratory chain  mitochondrion Atovaquone  Y268S/N/C (Gebru et al., 

2006) 

DHFR Folate pathway 
enzyme cytoplasm  PYR, PG, 

chlorproguanil 

A16V, C50R, 
N51I, C59R, 
S108N/T, I164L 

(Cowman et al., 
1988, Peterson et 
al., 1988) 

DHPS Folate pathway 
enzyme cytoplasm  SDX, dapsone 

DHPS and 
DHFR targeted 
simultaneously 
in synergistic 
combinations 
of antifolates 

S436A/F,A437GK
540E, A581G, 
A613S/T 

(Happi et al., 
2005) 

MQ, HF, 
LUM, QN 

major 
determinant MDR1 Transporter food vacuole 

membrane 
CQ, AQ, ART minor 

determinant 

N86Y, Y184F, 
S1034C, N1042D, 
D1246Y, CNV 

(Patel et al., 2010, 
Sa et al., 2009) 

MRP1 Transporter cytoplasm 
membrane CQ, QN, LUM possibly also 

antifolates 
H191Y,S436A,I87
6V,R1466K 

(Dahlstrom et al., 
2009, Mu et al., 
2003) 

NHE1 Transporter cytoplasm and 
food vacuole  QN limited in field 

studies to date 
copy number of 
repeat motifs 

(Ferdig et al., 
2004) 

TCTP 
Ortholog of 
human histamine-
releasing factor 

not yet 
established  ART putative 

determinant not yet known (Bhisutthibhan et 
al., 1998) 

 

 

 

1.7 MEMBRANE TRANSPORTER PROTEINS AS MAIN MECHANISMS OF 
RESISTANCE 

 
The malaria parasite infected RBC is a multi-compartment structure with numerous 

discrete membrane systems. The trafficking of solutes into and between these different 

compartments across the delineating membranes is mediated by membrane transport 

proteins: channels, transporters and pumps. Some of these proteins have been 

implicated in the phenomenon of antimalarial drug resistance, as well as being potential 

drug targets in their own right (Staines et al., 2010). To date, well over 100 known and 

putative transporters sequences have been identified in the P. falciparum genome 

(termed the Plasmodium “permeome” (Martin et al., 2005, Martin et al., 2009a). 

However, linking the physiological functions of these proteins to their roles in drug 

resistance is not obvious. A full understanding of the roles of these proteins in infected 

RBCs requires knowledge of their subcellular localization and substrate specificity, as 

well as some knowledge of the effects on the parasite of modifying the sequence and/or 
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expression level of the gene involved. In P. falciparum, this type of information is 

scarce, with studies conducted on only a small number of proteins. 

Among the potential candidate transporters that show altered expression in drug 

resistant and/or drug treated parasites are two key intracellular transporter players – the 

“Plasmodium falciparum chloroquine resistance transporter” (PfCRT) and the “P-

glicoprotein homologue 1” (PfMDR1). The putative glutathione and glutathione 

conjugate transporter PfMRP1 (P. falciparum multidrug resistance-associated protein 

1) was also recently shown to be involved in the modulation of parasite drug 

sensitivity. In the next sections, a more comprehensive overview of the specific 

transporters mentioned above will be presented, including their genetic and 

physiological characteristics. 

 

 

1.7.1 P. falciparum chloroquine resistance transporter – PfCRT  

 
The molecular mechanism of resistance to CQ was resolved through the analysis of a 

genetic cross between a chloroquine sensitive (CQS, HB3) and a chloroquine resistant 

(CQR, Dd2) clone. A locus mapped to chromosome 7 was shown to harbour a pivotal 

gene, pfcrt (Fidock et al., 2000), coding for a 45-kDa protein containing ten predicted 

transmembrane domains. This putative transporter was further localised to the 

membrane of the food vacuole of the parasite (Cooper et al., 2002, Fidock et al., 2000).  

The comparison between the Dd2 and HB3 pfcrt open reading frames revealed eight 

codon differences (Fidock et al., 2000). Among the various mutations, a specific codon 

at position 76 changing lysine to threonine was revealed to be the most reliable 

molecular marker of resistance through the analysis of a number of geographically 

distinct CQR and CQS clones (Bray et al., 2005, Valderramos & Fidock, 2006). CQ 

efficacy trials in the field (Mali) clearly showed a total association between clinical 

failure and the presence of the 76T variant in the context of a strong selection of this 

allele among the recurrent infections compared to the baseline values (Djimde et al., 

2001) (Figure 4).  
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Figure 4 – Predicted protein structure of PfCRT. PfCRT is postulated to possess 10 transmembrane 
helices, with the N- and C-termini extending into the parasite cytoplasm. Black and red filled circles 
indicate the positions of mutations published from full-length pfcrt cDNA sequences identified in CQR 
parasites from field samples. The critical K76T mutation is indicated in red. The green filled circle 
indicates the position of the S163R mutation in amantadine- and halofantrine-resistant parasites, while 
blue circles represent additional mutations in these drug-pressured parasite lines. Reprinted from 
Molecular Microbiology (Bray et al., 2005) with permission from John Willey and Sons. 
 

 

Lastly, from previous preliminarily data using episomal expression systems (Fidock et 

al., 2000), allelic exchange approaches demonstrated the central influence of this SNP 

in the in vitro P. falciparum CQ response (Lakshmanan et al., 2005, Sidhu et al., 2002). 

Nevertheless, it has not been possible to introduce this single mutation into a CQS 

parasite, suggesting this mutation might have a detrimental functional effect that is 

compensated for by other pfcrt mutations.  

Beside CQ, the PfCRT transporter can also influence the parasite’s in vitro 

susceptibility to other antimalarial drugs, mainly quinoline-based but also artemisinin 

(Cooper et al., 2002, Lakshmanan et al., 2005, Sidhu et al., 2002, Sisowath et al., 

2009). 

PfCRT is believed to be an essential protein for cell function, since PfCRT knock-out 

parasites do not survive. This lethality constitutes an obstacle for the precise 

understanding of its natural function and endogenous substrates.  

In trying to clarify the mechanism of drug resistance in the malaria parasite, significant 

debate has been ongoing regarding PfCRT function (Summers & Martin, 2010). Recent 
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studies have revealed PfCRT homologues in plants which are most likely involved in 

glutathione homeostasis and associated with stress responses (Maughan et al., 2010). 

 

 

1.7.2 ABC transporters genes 

 
ATP-binding cassette (ABC) transporters are best known for their role in multi-drug 

resistance. They can actively pump out a wide range of structurally and functionally 

diverse drugs, thereby decreasing intracellular drug accumulation and ultimately 

resulting in drug resistance (Borges-Walmsley et al., 2003). The structure of a typical 

complete ABC transporter consists of two transmembrane domains (TMDs) each 

containing of six transmembrane helices (TM) that form the pathway for the transport 

of substrates, and two cytosolic nucleotide binding domains (NBDs) able to hydrolyse 

ATP to provide energy for this process. Sixteen ABC family members have been 

identified in the P. falciparum genome (Gardner et al., 2002, Kavishe et al., 2009, 

Koenderink et al., 2010, Martin et al., 2005), three of which, PfMDR1, PfMRP1 and 

PfMRP2, will be more extensively described in the next section concerning evidence of 

their role in P. falciparum drug resistance. 

 

 

1.7.2.1  P. falciparum multidrug resistance 1 - PfMDR1 

 
Long before the discovery of PfCRT as the main cause of CQ resistance, attention was 

given to P. falciparum multidrug resistance 1 (PfMDR1; also known as Pgh-1), the 

ortholog of mammalian P-glycoproteins that mediate resistance to multiple drugs in 

mammalian cancer cells. The gene pfmdr1, located on chromosome 5, encodes for a 

162-kDa protein localized predominantly in the parasite’s digestive food vacuole 

membrane (Cowman et al., 1991).  

Due to the similarity of this protein with the human MDR, it was originally 

hypothesized that PfMDR1 could be a major candidate for conferring resistance to 

CQR (Foote et al., 1989, Wilson et al., 1989). Support for this hypothesis came from 

the observation that the calcium channel blocker verapamil was able to reverse 

chloroquine resistance, in the same fashion as observed in MDR cancer cells (Watt et 

al., 1990). Although this hypothesis was not completely accurate, it is now accepted 

that pfmdr1 mutations differentially affect the CQ responses in CQR parasites and their 
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activities depending on the pfcrt haplotype to which they are associated (Patel et al., 

2010, Sa et al., 2009). 

The first polymorphism in pfmdr1 that was correlated with drug resistance were gene 

copy number amplifications (Foote et al., 1989, Triglia et al., 1991, Wilson et al., 

1989). In the last few years, pfmdr1 copy number has proven to be a pivotal molecular 

marker of resistance against MQ in the field, both ex vivo (Price et al., 1999) and in 

vivo, where a comprehensive study performed in Western Thailand revealed a high 

association with treatment failure with MQ and AS-MQ (Price et al., 2004). 

Additionally, an increased risk of failure of short-term AL treatment (4 doses) has been 

documented to be significantly associated with increased pfmdr1 copy number (Price et 

al., 2006). These results confirmed earlier laboratory data showing that in vitro 

development of MQ resistance was strongly associated with increases in copy number 

(Cowman et al., 1994). Consistent with most previous data, knock-down experiments 

involving the genetic disruption of one of the two native pfmdr1 copies present in the 

FCB drug resistance strain also showed increased in vitro susceptibility to MQ, LUM, 

halofantrine, QN and ART (Sidhu et al., 2006), albeit no change in CQ sensitivity.  

A set of five pfmdr1 canonical point mutations were identified soon after the cloning of 

the gene: N86Y, Y184F, S1034C, N1042D and D1246Y (Figure 5). These have been 

linked in variable degrees to altered drug susceptibility both in vitro and in vivo to a 

broad range of drugs. Ongoing data support 5’ located N86Y as being involved in the 

parasite’s in vitro response to the quinolines (Lopes et al., 2002). The in vivo 

importance of this SNP is demonstrated by the clear selection of distinctive alleles upon 

drug administration. Specifically, the 86N allele is selected by AL (Sisowath et al., 

2007, Sisowath et al., 2009, Sisowath et al., 2005), an action believed to be mainly 

driven by the long half life component. Conversely, the 86Y allele has been observed to 

be selected by both CQ (Djimde et al., 2001) and AQ treatments (Holmgren et al., 

2006, Holmgren et al., 2007).  

Allele exchange studies have pointed toward the importance of the 3’ distal S1034C, 

N1042D and D1246Y alleles as particularly important in the response to MQ and QN, 

and contributing for higher levels of CQ resistance in certain genomic environments 

(Reed et al., 2000). A second allelic modification study (Sidhu et al., 2005), found little 

shift of CQ susceptibility with changes in pfmdr1 encoded amino acids (1042D to N or 

introduction of the three residues 1034C, 1042D and 1246Y) in a progeny clone from 

the HB3xDd2 cross consistent with recent observations (Sa et al., 2009). This study 

supports the hypothesis that pfmdr1 3’point mutations can significantly affect parasite 
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susceptibility to a wide range of antimalarials in a strain-specific manner that depends 

on the parasite’s genetic background. 

 

 
Figure 5 – Predicted structure and genetic polymorphisms in PfMDR1. (a) PfMDR1 has two homologous 
halves, each with six predicted transmembrane domains and a nucleotide-binding pocket. The nucleotide-
binding domains (NBD1 and NBD2; orange boxes) are each formed by large cytoplasmic domains. 
Polymorphic amino acids found in the K1 allele (N86Y) and the 7G8 allele (Y184F, S1034C, N1042D 
and D1246Y) are indicated. The D1246Y mutation is located in the predicted NBD2. (b) Representative 
haplotypes, including the one most commonly associated with amplification of pfmdr1 copy number. 
Reprinted from Trends in Pharmacological Sciences (Valderramos & Fidock, 2006) with permission 
from Elsevier. 
 

 

Expression of the pfmdr1 gene has been shown to be induced after treatment with CQ, 

MQ and QN, but not after treatment with pyrimethamine, suggesting that induction of 

pfmdr1 might be a drug specific mechanism of resistance (Myrick et al., 2003). 
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Like PfCRT, the physiological function of PfMDR1 is unknown and we can only 

carefully extrapolate findings from mammalian and plant MDR1 homologues. 

Whatever the function of PfMDR1 may be, it seems to be essential, based on the 

findings that, like pfcrt, this gene is necessary for the survival of the organism. 

 

 

1.7.2.2  P. falciparum multidrug resistance associated proteins – PfMRPs 

 
In pioneering work conducted in 1969 (Srivastava & Beutler, 1969), it was reported 

that elimination of GSSG (oxidised glutathione) from human erythrocytes is a 

unidirectional and energy-dependent process. The discovery of a GS-X pump that 

requires GSH (reduced glutathione) as a cofactor for transporting a group of 

endogenous substrates and exogenous xenobiotics resulted in the cloning of a cDNA 

encoding a protein of 190 kDa, which they named MRP (Cole et al., 1992). The class 

of transporters defined as the multidrug-associated proteins (MRP) have long been 

implicated in multidrug resistance in mammalian cells.  

The MRP proteins define a sub-class of the ABC protein super-family. The canonical 

structure of a complete ABC transporter contains two ATP-binding cassettes in the 

intracellular part and two core membrane-spanning domains, MSD1 and MSD2. MRP 

transporters contain consensus regions named as Walker A, Walker B, and Signature C 

motifs that are required for ATP binding (Toyoda et al., 2008).  

The typical substrates of MRPs are amphiphilic organic anions. These can be 

transported unconjugated or conjugated with glutathione, glucuronate or sulphate 

groups. Some examples of the variety of molecules that MRPs can transport include 

endogenous substrates such as folates, anticancer drugs such as methotrexate, heavy 

metals such as arsenite and antibiotics such as difloxacin (Deeley & Cole, 2006). 

Since CQ and potentially MQ were also reported to be transported by human MRP1 

and 4, it has been speculated that P. falciparum MRP could do the same and thus 

contribute to drug resistance (Vezmar & Georges, 1998, Wu et al., 2005). 

The isolation of MRP coding genes in P. falciparum was reported 11 years ago, using 

the ABC signature targeting degenerate primer approach (Gil et al., 2000). This 

approach revealed two genes, pfmrp1 and pfmrp2, later identified by the P. falciparum 

genome sequencing project as (PFA0590w) and (PFL1410c), respectively. Pfmrp1 is 

localized to chromosome 1 and pfmrp2 to chromosome 12, and both encode for 

proteins localized to the cytoplasmic membrane of the parasite’s asexual stages, while 
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exhibiting differential expression profiles (Kavishe et al., 2009, Bozdech & Ginsburg, 

2004). Pfmrp1 is transcribed mainly during the trophozoite stage and is suggested to 

encode a P. falciparum GSH/GSSG pump. This is supported by the coincident 

transcription of glutathione synthetase and the de novo synthesis of glutathione 

(Bozdech & Ginsburg, 2004, Klokouzas et al., 2004, Bozdech et al., 2003). On the 

other hand, pfmrp2 transcript levels peaks at a very early stage (early rings) and also in 

mature schizonts (Bozdech et al., 2003, Nogueira et al., 2008). 

Single nucleotide polymorphisms present in pfmrp1 (also named G2) and pfmrp2 (also 

named G56) were screened in parasite lab strains (Mu et al., 2003) in search of 

antimalarial susceptibility association. No association was found for any pfmrp2 SNPs, 

but the SNPs H191Y and S437A in pfmrp1 were found to be associated with decreased 

in vitro susceptibility to CQ and QN. A comprehensive biodiversity study performed in 

our lab revealed pfmrp1 to be significantly polymorphic with distinct geographic 

patterns (Dahlstrom et al., 2009) (Figure 6).  

 

 
Figure 6 – Predicted 2-dimensional transmembrane domain organization by the HMMTOP algorithm 
(version 2) and single-nucleotide polymorphism (SNP) distribution in pfMRP1. Reprinted from The 
Journal of Infectious Diseases (Dahlstrom et al., 2009) with permission from Oxford University Press. 
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In Africa, the most prevalent SNPs are I876V and K1466R and from a clinical efficacy 

trial using AL, significant positive selection of 876I was detected in recurrent infections 

(Dahlstrom et al., 2009) (Figure 6). The SNP F1390I was found, in the above 

mentioned biodiversity study, to be of high prevalence in Southeast Asia and with only 

one case (Gambia) in Africa. 

 

Recently, a genetic disruption study demonstrated that the gene encoding PfMRP1 was 

not essential for asexual stage development, although its deficiency did incur a 

significant fitness penalty, as knock-out parasites could not grow to a parasitaemia 

higher than 5%. Furthermore and likely related to this decrease in multiplication 

capacity, this study revealed increased intracellular glutathione accumulation in knock-

out parasites, paralleled by an enhanced susceptibility to several antimalarial drugs, 

including CQ, QN and ART (Raj et al., 2009). 

 

 



 

  27 

2 AIM OF THE THESIS 
 

 

2.1 OVERALL OBJECTIVE 
 

To better understand the involvement of drug transporter genes in the molecular 

mechanisms underlying drug resistance in Plasmodium falciparum malaria.  

 

 

2.2 SPECIFIC AIMS 
 

Paper I: Contribution of identified polymorphisms in pfmrp1 for the parasite response 

against antifolate antimalarials.  

 

Paper II: The determination of the in vitro simultaneous transporter gene expression 

responses after drug challenges of P. falciparum parasites in the intra-erythrocytic cell 

cycle.  

 

Paper III: In vitro antimalarial susceptibility response analysis of P. falciparum 

isolates– correlations with natural SNP diversity of drug transporter genes. 

 

Paper IV: A first comprehensive account of the pfmrp2 genetic variability and its 

association with in vitro P. falciparum antimalarial responses. 
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3 MATERIAL AND METHODS 
 

 

3.1 STUDY SITES  

 
The clinical studies analysed in this thesis have been performed in East Africa and 

Southeast Asia. The SP and AL efficacy trial was performed in Fukayosi, Tanzania 

(study I). Concerning studies III and IV, a set of parasites originated from the Mae Sot 

region, Western Thailand were culture adapted and studied for in vitro drug 

susceptibility. The original Thai infections corresponded to samples collected from 

patients before routine chemotherapy (AS-MQ). 

 

 

3.1.1 Tanzania – Fukayosi village 

 
Malaria is transmitted in Tanzania throughout the year with seasonal peaks during 

rainfalls in March-May and October-December. The main malaria species is P. 

falciparum. The clinical trial, analysed in paper I, was conducted in Fukayosi primary 

health care centre in April to July 2004, located in Bagamoyo district, on mainland 

Tanzania. At the time of the study, SP and AQ were used as first line and second line 

treatment respectively. In 2006 Tanzania adopted AL as first line treatment. 

 

 

3.1.2 Thailand 

 
Malaria is endemic in some regions of Thailand, especially in the forest regions as well 

as its border areas. P. falciparum and P. vivax are the main malaria species. For paper 

III and IV P. falciparum fresh isolates were collected between the year 2002 to 2008 

from patients in Mae Sot, in the Tak Province. The isolates were provided from the 

Shoklo Malaria Research Unit. Thailand Western boarder with Burma/Myanmar, is an 

epicenter of emerging antimalarial drug resistance. To counteract the steep rise in MQ 

resistance, AS-MQ was introduced in Mae Sot in 1995 in areas with high MQ 

resistance (Na-Bangchang & Congpuong, 2007, Wongsrichanalai & Meshnick, 2008). 
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At present in Thailand, AS-MQ is first line treatment for all uncomplicated confirmed 

P. falciparum malaria (Carrara et al., 2009). 

 

 

3.2 ETHICAL CONSIDERATIONS 

 
For paper I, ethical approval was obtained from Muhimbili University College of 

Health Sciences, Tanzania and Karolinska Institutet, Sweden (KID nr 03-684). For 

paper III and IV, the collection protocols were approved by the Ethical Committee of 

the Faculty of Tropical Medicine, Mahidol University, Bangkok and Oxford Tropical 

Research Ethics Committee (OXTREC 027-04) at University of Oxford, UK. The 

attending physician assured provision of written informed consent in the local language 

in both studies.  

 

 

3.3 CLINICAL DRUG EFFICACY TRIALS 

 
In paper I, the clinical trial was included in the assessment of P. falciparum 

polymorphisms and treatment outcome. It was conducted in April-July 2004 in 

Fukayosi and included two arms comparing AL (n=50) and SP (n=56) (Martensson et 

al., 2007). The trial involved children with uncomplicated P. falciparum malaria. The 

inclusion criteria for this study were: age of 6-59 months and bodyweight of ≥6 kg, 

parasitaemia levels of 2000-200 000 asexual parasites/µL of blood and axillary 

temperature of ≥37.5ºC or a history of fever the last 24 hours. Children with severe 

malaria, serious underling disease or known allergy to the drugs used were excluded 

from the study. Enrolled children were assigned to receive a fixed combination of 

20mg/120mg AL (CoartemTM; Novartis) twice daily for three days or 500mg/25mg SP 

(FansidarTM; Roche) as a single dose, according with their body weight. The children 

were followed up and routinely checked for parasitaemia on days 1, 2, 3, 7, 14, 21, 28, 

35, and 42 of the study, or at any day of recurrent illness. Parasitaemia was calculated 

by quantifying the number of parasites per 200 leucocytes by microscopy of Giemsa-

stain thick blood films and multiplied by 40 to obtain the number of parasites/µL. 

Blood samples were collected on filter paper (3MM; Whatman) for molecular analysis. 
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3.4 PARASITE IN VITRO CULTURE STUDIES 

 
P. falciparum in vitro culturing was performed for paper II and III. The laboratory 

clones were acquired from the Malaria Research and Reference Reagent Resource 

Center (MR4, ATCC Massanas Virginia), as well as generously provided by the late 

Prof. D. Walliker (Department of Animal and population genetics, University of 

Edinburgh, UK).  

All parasites studied were cultured in human O+ RBCs and Malaria Culture Medium, 

containing RPMI 1640 culture medium supplemented with 10% L-glutamine, 0.05% 

gentamicine (Gibco® / Invitrogen™) and 10% human AB+ serum. Parasites were 

incubated at 37ºC in air-tight environment achieved either by conventional candle-jar 

technique (Trager & Jensen, 1976) or involving the use of gas (5% O2 and 5% CO2 in 

N2). Parasites were grown in static manner or in suspension on an orbital shaker (50 

revolutions per minute), according to the circumstances. 

Parasite intra-erythrocytic cell cycle synchronization, when applied, was performed by 

the incorporation in the parasite culture of 5% sorbitol for 10 min (Lambros & 

Vanderberg, 1979) or using magnetic columns (MACS®, Miltenyi Biotec). The latest 

consist in passing the parasites in a magnetic column which will split different parasite 

stages, based in the principle that the hemozoin iron atoms present in the parasites will 

be trapped in the column, while the parasite with no hemozoin (ring stage) will pass 

through the column. 

 

 

3.4.1 Drug susceptibility assays 

 
Different antimalarial drugs inhibitory concentrations were determined for the 

laboratory strains, as well as for the fresh isolates, by relative quantification of P. 

falciparum Histidine-Rich Protein 2 (PfHRP2) based on a Double-Site Sandwich 

Enzyme-Linked Immunosorbent Assay (Noedl et al., 2005), followed by nonlinear 

regression analysis (http://malaria.farch.net). 
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3.5 MOLECULAR ANALYSIS 

 
In paper I, molecular analysis was performed from blood samples collected on filter 

paper while in paper II to IV the source for nucleic acids was fresh parasite in vitro 

culture 

 

 

3.5.1 Nucleic acids extraction 
 

3.5.1.1 DNA 

 
The samples were extracted using the ABIPRISM®6100 Nucleic Acid PrepStation 

(Applied Biosystems™, Fresno, CA, USA). When few samples were to be extracted 

QIAamp® DNA Mini Kits (Qiagen, Hilden, DE) was preferred. DNA extraction in 

paper I was performed according to manufacturer’s recommendations with some 

adjustments for blood spotted in filter paper. In these circumstances the filter paper was 

cut in small pieces and soaked in distilled water together with proteinase K and 

respective buffer. This mixture was incubated for 1 hour at 58ºC and laid overnight at 

4ºC before performing the extraction. 

 

 

3.5.1.2 RNA 

 
Extraction of RNA was carried out for gene expression analysis as well as for 

sequencing from cDNA. ABIPRISM®6100 Nucleic Acid PrepStation® (Applied 

Biosystems™, Fresno, CA, USA) together with manufacturer’s recommendation was 

the chosen method. 

 

 

3.5.2 Genetic fingerprinting  
- pfmsp1 and pfmsp2 genes for PCR adjusted drug efficacy clinical trial 

analysis 

 
Numerous genes in P. falciparum have been shown to comprise extensive genetic 

polymorphism, which can be used for genetic finger printing. Their polymorphisms are 

found dissimilar in different geographical locations in malaria endemic areas. An 
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example of it is the merozoite surface protein 1(pfmsp1) and merozoite surface protein 

2 (pfmsp2) (Mugittu et al., 2006, Snounou et al., 1999). 

Several studies have reported that pfmsp1 allelic variants fall under three major types—

MAD20, K1 and RO333 and their frequency varies in different geographical areas, 

even in neighbouring villages. pfmsp2 alleles, which differ in number and sequence of 

intragenic repeats, can be grouped into two allelic families, FC27 and 3D7/IC, 

according to the central dimorphic domain as first observed over a decade ago.  

Therefore, these loci have been widely used to characterize P. falciparum field isolates, 

evidencing the multiplicity of infection (number of parasite clones per sample) as well 

as in many trials to distinguish recrudescence from new infections (Kiwanuka, 2009).  

Accordingly, in paper I recrudescences and reinfections were defined based on the step-

wise genotype of pfmsp1 and pfmsp2. Only samples classified as recrudescences 

according to pfmsp2 genotyping were analysed for pfmsp1. A recurrent infection was 

classified as recrudescence if there was at least one allelic band matching with the 

corresponding baseline sample in both genetic markers, or as a reinfection if there were 

no matching allelic band in at least one genetic marker (Martensson et al., 2007). 

 

 

3.5.3 Restriction Fragment Length Polymorphism (RFLP) 

 
Although now less used, RFLP analysis was the first DNA profiling technique 

inexpensive enough to see widespread application. In this thesis this method was used 

for allelic discrimination, more specifically to analyse SNPs. This technique, equipment 

wise, is characterized to be a simple method with no demands of particularly costly 

equipment. Hence being generally favoured for field use. RFLP analysis involves 

cutting a particular region of DNA with known variability with restriction enzymes, 

then separating the DNA fragments. The methodology herein used to separate the DNA 

fragments was by agarose gel electrophoresis with ethidium bromide incorporated and 

visualized by UV transiluminator in a BioRad GelDoc 2000. 

In paper I this technique was used to analyse the quintuple mutant haplotype associated 

with SP resistance namely the pfdhfr N51I, C59R, N108S/T and pfdhps A437G, K540E 

SNPs. The genotype of pfdhfr SNPs was made in a multiplex PCR as described 

previously (Veiga et al., 2006). For the pfdhps A437G and K540E SNPs a previously 

published PCR-RLFP method was used (Duraisingh et al., 1998). 
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3.5.4 Pyrosequencing 

 
Pyrosequencing is a method of DNA sequencing based on a "sequencing by synthesis" 

principle. It relies on the detection of pyrophosphate release upon nucleotide 

incorporation, rather than chain termination with dideoxynucleotides used in the 

conventional sequencing (www.pyrosequencing.com). The technique was developed at 

the Royal Institute of Technology in Stockholm in 1996 (Ronaghi et al., 1996). 

This technique is ideal for SNP analysis where short fragments of DNA are sequenced 

directly from a PCR amplified product. Also, due to the multiplicity of infection found 

in performed clinical trials and taken in consideration that the malaria parasite is a 

haploid organism when lodged in the host, different allele proportions can be found in 

the same analyzed sample, favouring this technique to be used in molecular malaria 

research (Zhou et al., 2006). In paper I, the analysis of pfmrp1 I876V and K1466R 

SNPs was performed with pyrosequencing. Results for I876V were adjusted against a 

standard curve derived from different proportions of mixed reference laboratory strains, 

3D7 and Dd2. When this adjustment is made, pyrosequencing allele quantification can 

successfully be performed. The results from the SNP analysis of K1466R were not 

adjusted against a standard curve because of the lack of allele variance among the 

reference laboratory strains. The threshold for the identification of a mixed infection 

was set as a pyrosequencing result between 10% and 90% for each allele. 

In paper III, this technique was also the preferred choice for the determination of the 

Thai isolates pfmdr1 F1226Y and pfmrp1 F1390I polymorphisms. 

 

 

3.5.5 DNA Sequencing  

- Sanger method – outsourced 
 
DNA sequencing is the standard technique for unveil new mutations, having been 

herein used with that main objective. It can cover large DNA fragments and is also 

convenient to use for analysis of adjacent positioned SNPs (ex. pfcrt amino acid 

positions 72 to 76). Due to these characteristics, sequencing technique was the 

preferred method and extensively used in paper II-IV. The Open Reading Frames of the 

pfmdr1, pfcrt, pfmrp1 and pfmrp2 genes were fully sequenced to determine their 

genetic variability in laboratory strains in paper II and for addressing the studied sample 

of Thai field isolates referred in paper III and IV. Amplicon fragments were sequenced 
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by Macrogen Inc. (Seoul, Korea). Analyses of the chromatogram sequences are 

described in this section under bioinformatics chapter. 

It is to note that the sensitivity of sequencing is limited in detecting allele carried by 

minority parasite populations in mixed infections (Zhou et al., 2006). It is therefore 

possible that mixed genotypes might be misjudged as a single genotype. 

 

 

3.5.6 Real-time PCR 

 
In molecular biology, real-time PCR, also called quantitative real time PCR (qPCR) is a 

laboratory technique based on the PCR, which is used to amplify and simultaneously 

quantify a targeted DNA molecule. It has been proven to be a reference method for 

accurate quantification of nucleic acids since its introduction. 

This technique was used in the studies of this thesis to determine gene copy number 

variations in the parasite genome, as well as for analysis of transcript levels. All the 

analyses were carried out with TaqMan® probe based real-time PCR, using 

ABIPRISM® 7700 or 7000 Sequence Detection Systems (Applied Biosystems™, 

Fresno, CA, USA)). 

Newly designed gene specific primers and probes, were created using the Primer 

Express® 3.0 software. The homology specificity of the designed primers was 

confirmed in silico through BLAST (Basic Local Alignment Search Tool), and 

experimentally through the performance of dissociation curves of the amplified 

products, using a serially diluted DNA as reference template. Amplification efficiencies 

were evaluated using the same dilution series. Reaction specific troubleshoot 

optimization steps were sporadically performed. 

 

 

3.5.6.1 Relative gene copy number variation 

 
Determination of gene copy number variation was performed using specific primers 

and probes for the gene of interest and an endogenous control gene tubulin beta chain 

(PF10_0084). Analysis of pfmdr1 gene copy number was analysed as previously 

described (Price et al., 2004). For pfmrp1, new primers and probe (labelled with 6-

FAM as reporter dye at the 5’-end, MGBNFQ as the quencher at the 3’-end) were 

designed (Applied Biosystems™, Fresno, CA, USA) to be performed as a multiplex 
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using the same endogenous control gene primers and probe employed in pfmdr1 

analysis. P. falciparum DNA from 3D7, K1 and FCB laboratory clones were used as 

calibrators and positive controls (known copy number variation for pfmdr1 gene) 

throughout the works of this thesis. Multiplex amplification reactions were done in 

triplicate in 96 well plates with TaqMan® Gene Expression Mastermix (Applied 

Biosystems™, Fresno, CA, USA), 300nM of each forward and reverse primer, 100nM 

of TaqMan® probe from both target and housekeeping gene and approximately 2ng of 

template. The thermal cycle profile was 50˚C 2min, 95˚C 10min and forty-five cycles 

of 95˚C 15 s and 60˚C 1 min. The detection threshold was set above the mean baseline 

value for the first 6–15 cycles. Relative gene copy number were computed according to 

the 2-ΔΔCt method (Livak & Schmittgen, 2001). This technique was used in the works 

described in paper II and III. 

 

 

3.5.6.2 Relative gene transcription level 

 
The determination of relative gene transcription levels was in-depth performed in paper 

II. The design was similar as for the analysis of gene copy number, now with the use of 

reverse transcribed RNA as template and an alternative endogenous control gene, seryl-

tRNA synthetase gene (PF07_0073). This gene was considered a better choice as 

compared with the previously mentioned tubulin beta chain (PF10_0084), as it is 

known to display stable (unaltered) levels of transcription throughout the entire intra-

erythrocytic cycle. The levels of pfmdr1, pfcrt, pfmrp1 and pfmrp2 transcripts were 

compared to this endogenous control. 

The amplification efficiency estimated for each gene was used as a correction factor. 

All experimental threshold cycle values (Ct) were first transformed to adjust the RNA 

concentration adding to the Ct value to the log2 RNA concentration of each sample. 

Relative gene expression was calculated as the ratio between the transformed Ct values 

of the target gene and the endogenous control (PF07_0073), taking in account the 

amplification efficiency for each gene (Stahlberg et al., 2003). 
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3.6 BIOINFORMATICS 

 
Amino acid sequence retrievals, BLAST searches and transcription data were accessed 

via: PlasmoDB (www.plasmoDB.org); P. falciparum Database, the Broad Institute of 

MIT and Harvard (http://www.broad.mit.edu); P. falciparum Blast Server, the 

Wellcome Trust Sanger Institute (http://www.sanger.ac.uk); NCBI Entrez database 

(http://www.ncbi.nlm.nih.gov). 

 

In paper II and III, the Sequencher™ software versions 4.6 (Gene Codes Corporation, 

Ann Arbor, MI, USA) was used to analyze the sequence output with the 3D7 gDNA as 

reference. 

Chromatogram files from the sequenced sequences from the pfmrp2 gene (paper IV) 

were analyzed with a different program due to the presence of micro-indels throughout 

the gene. Analysis were performed by base-call using phred version 0.020425.c 

(http://phrap.org) (Ewing et al., 1998) and aligned to the P. falciparum 3D7 genome 

sequence (PFL1410c) using the alignment program ssaha2 version 2.5.1 (Ning et al., 

2001). A position was called polymorphic if either the position had more than one read 

to support the nucleotide difference, or if the quality score of this position was 20 or 

higher. The Tablet program was used to visualize alignments (Milne et al., 2010). 

The PfMRP2 structure described in paper IV, was derived from hydropathy plots 

generated with the HMMTOP algorithm (version 2). 

Crystallography data enables structural studies in silico or by computational homology. 

In P. falciparum many genes are specific of the parasite, but a fraction of the ORFs is 

homologous to well studied proteins in prokaryotes, as well in other eukaryotes 

organisms. In paper III these strategy was used to unveil the importance of PfMRP1 

F1390I based in the bacterial homologous Msba ABC transporter crystal 3B60 using 

HHpred (Homology detection & structure prediction by HMM-HMM comparison 

server), Modeller software to generate a model and Yasara software for 3D 

visualization (Krieger et al., 2002). 

 

 

3.7 DATA DEPOSITION 

 
Nucleotide sequence of the ORF of the pfcrt, pfmdr1, pfmrp1 and pfmrp2 genes from 

the laboratory strains W2 and FCB are available in the National Center for 
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Biotechnology Information (http://www.ncbi.nlm.nih.gov) database with GenBank 

accession numbers: GU797309, GU797310, GU797311, GU797312, GU797313, 

GU797314, GU797315, GU797316. 

 

 

3.8 STATISTICS 

 
To statistically evaluate the difference in SNPs prevalence between baseline and 

recurrent infections in paper I, Fisher’s exact two-tailed test was used with statistical 

significance threshold defined as P < 0.05.  

 

The statistical analysis of association between the Thai isolates genotype and their 

correspondent in vitro drug susceptibility in paper III and IV were performed with t-test 

or Mann-Whitney Rank Sum Test when normality of the data failed, and adjusted for 

Bonferroni significance. Pearson correlation was used to check significant positive or 

negative correlation of the in vitro antimalarial drug susceptibility using rational 

numbers.  

 

In paper II, statistical significance of specific disturbance in the intra-erythrocytic cell 

cycle progression time due to drug exposure was performed with Fisher’s exact test. 

Only time-points between the drug exposed and non-exposed parasites with the same 

stage proportion (above the described Fisher’s test with P > 0.05) were considered to 

the next analysis of determining the gene expression induction effect due to the drug 

exposure. This time-point gene expression fold differences significance was determined 

using the t-test. A wave function applied to the number of total parasites ring stage 

count as well as to the gene expression data throughout all time-points for each clone 

was formulated to perform a non-linear regression analysis. The calculated fold 

difference significance was achieved by the use of t-test. 



 

38 

4 RESULTS AND SPECIFIC DISCUSSION 
 

 

4.1 PAPER I 

 
“Clinical evidence for a possible role of PfMRP1 contribution to antifolate 

resistance” 

 

The antifolate drug combination SP targets the DHFR and DHPS enzymes, acting as 

competitive inhibitors of their natural substrates, thereby disturbing endogenous 

parasite folate biosynthesis. Point mutations in the genes coding for these enzymes 

have long been known to be the main mechanism of P. falciparum resistance against 

SP, as discussed in the introduction of this thesis. Nevertheless, it has recently become 

more apparent that other factors may play a role in the levels of clinical failure after SP 

treatment. Common to all antifolate drugs are folate or folate-component analogues and 

therefore it is not startling to find that higher serum folate concentrations (for example, 

as a result of dietary folate supplementation) are significantly associated with SP 

failure, as has been reported in children and pregnant women (Dzinjalamala et al., 

2005, van Eijk et al., 2008). Knowing that the MRPs transport folate, we hypothesized 

that the PfMRP1 may contribute to P. falciparum resistance to SP in vivo. 

 

To test this hypothesis in vivo, a SP vs. artemether-lumefantrine drug efficacy clinical 

trial conducted in Fukayosi, Tanzania was analysed. The prevalence of pfmrp1 I876V 

and K1466R SNPs (previously identified as the most frequent pfmrp1 polymorphisms 

in Africa (Dahlstrom et al., 2009)), between baseline infections and recurrent infections 

was determined, searching for SP-driven SNP selection. The well known quintuple 

mutation, associated with SP treatment failure (N51I, C59R and S108N from pfdhfr 

and the A437G and K540E from pfdhps), was also analysed. 

 

There was a statistically significant selection (P=0.02) of the pure pfmrp1 K1466 allele 

among the recrudescences (12/14, 85.7%) compared to baseline (52/101, 51.1%), 

whereas no significant changes in the frequency of pfmrp1 I876V SNP were noted. As 

expected, we detected significant selection of the established molecular marker for SP 

resistance, the pfdhfr/pfdhps quintuple haplotype, in recrudescences (P = 0.001) and in 
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reinfections (P = 0.002). Interestingly, no linkage between pfmrp1 K1466 and the 

quintuple mutation was found, suggesting independent selections. 

 

It is unclear why pfmrp1 K1466R is selected under SP treatment. One potential 

explanation is that SP drugs are transported out of the cell by PfMRP1 once SP acts in 

the cytoplasm, and that PfMRP1 is an efflux pump located in the cytoplasm membrane 

of the parasite. However this is unlikely since these drugs are not organic anions, the 

typical MRP substrates. Alternatively, as MRPs have been shown to transport folates 

(Stark et al., 2003), selection of pfmrp1 K1466R may occur if it affects the MRP 

mediated efflux of folates out of the cell. A reduction in the MRP mediated transport of 

folates results in an increased endogenous folate pool, which can compete with 

antifolate drugs at the enzyme binding sites. This PfMRP1 haplotype probably is less 

active in acting as a folate efflux mediator, thereby decreasing SP susceptibility in the 

parasite, and contributing to the treatment failure. 

Complementary to these results, PfMRP1 represents the first known protein that can 

putatively influence levels of resistance to both quinolines and the antifolates, as well 

as to ACTs (Dahlstrom et al., 2009, Mu et al., 2003, Raj et al., 2009). 

 

 

4.2 PAPER II 

 
“Parasites exposed to mefloquine have their cell cycle progression delayed and 

drug transporters gene expression affected” 

 

Prior to this work, only a few studies had demonstrated that antimalarials could 

interfere with the cell cycle progression of the parasite (Nakazawa et al., 1995, 

Nakazawa et al., 2002, Thapar et al., 2005) including a very recent study with CQ 

(Valderramos et al., 2010). Using MQ as a relevant and convenient ACT antimalarial 

reference, we focused on monitoring changes in the cell cycle progression rate of P. 

falciparum lab strains with different MQ susceptibilities. In parallel, we analyzed the 

variation in the abundance of the transcripts encoding the transporter proteins PfCRT, 

PfMDR1, PfMRP1 and PfMRP2 throughout the cycle upon MQ exposure. It is 

expected that enhanced transcriptional activity for these transporter genes could 

influence the drug susceptibility of the parasite. 
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For this study we chose 3 P. falciparum lab strains: one sensitive (W2) and two with 

decreased sensitivity (3D7 and FCB) to mefloquine. Re-sequencing the aforementioned 

transporter genes showed two main pfmdr1 polymorphisms (N86Y and gene CNV), 

and numerous SNPs differences in the three remaining genes (Table 2 - data deposit in 

the GenBank). 

 
Table 2: Haplotype of pfcrt, pfmdr1, pfmrp1 and pfmrp2 of 3D7, W2 and FCB strains. 
Gene Strain Amino acid position and single-letter code 

MAL7P1.27 (pfcrt) 
   74 75 76 220 271 326 356 371             
  3D7 M N K A Q N I R             
  W2 I E T S E S T I             
  FCB I E T S E S I I             

PFE1150w (pfmdr1) 
   86 659                         
  3D7 N N                         
  W2 Y ins N                         
  FCB Y del 3N                         

PFA0590w (pfmrp1) 
   37 191 202 437 876 1390                 
  3D7 P H K S I F                 
  W2 P Y K A V I                 
  FCB S Y E A V I                 

PFL1410c (pfmrp2) 
   199 262 593 630 634 646 714 963 964 970 1184 1527 1531 1745 
  3D7 L D N D D N K S N D D S L N 
  W2 V insa N insb N D I del D N N T I N 
  FCB V D D insb D D I S N D N T I - 
a: insertion of 7a.a. (DENDQND); b: insertion of 25 a.a. (DGYVDDYVDDYVNDYVDDYVNDYVD) 

 

 

In vitro MQ IC50 and IC99 concentrations were chosen to study the parasites behaviour 

regarding cell cycle development and gene transcripts. The assays were performed for 

the three laboratory strains for 48 hours with sample collection at 6 hour intervals from 

both MQ exposure (IC50 and IC99) and non exposed parasites (control). Morphological 

analysis was performed by Giemsa-stained smears for examination of parasite stages. 

RNA was collected at the same time points. 

The examination of the parasite stages by light microscopy revealed a MQ-induced 

delay in the cell cycle progression of the three tested parasites. The degree of delay was 
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drug dose and strain dependent. The more arrested parasites corresponded to the least 

susceptible to MQ.  

Plotting the number of parasites that were in early ring stage vs. time we fitted a curve 

with an equation of a wave. This nonlinear regression approach allowed us to measure 

significant differences in the degree of cell cycle delay induced by MQ. 

Considering that each gene has its own expression profile strictly correlated with stage 

morphology (Bozdech et al., 2003), the MQ induced cell morphology delay was also 

detectable through the analysis of the transcript accumulation patterns.  

Copy number change is commonly reported in response to in vitro drug exposure 

(Chavchich et al., 2010, Wilson et al., 1989). Comparing relative transcript abundance 

between the strains at the initial experimental time point (0h) we showed that the 

expression of pfmdr1 gene in the FCB strain, which harbours 2 copies of pfmdr1 in the 

genome, was the highest compared with the other analysed strains. 

 

The delay in parasite stage development by MQ exposure made it difficult to 

discriminate changes to gene transcription levels due to cell morphology differences 

from those due to the direct action of MQ on the transcript accumulation. 

MQ gene induction could be directly determined by comparing the time-points with the 

same proportion of the different stages. In this way, we removed the stage-confounding 

factor with gene expression modulation ranging from 0.6-5.8 fold. However, this type 

of analysis gave rise to very few analysable points. To complement these results, 

another approach based on non-linear regression analysis of gene expression over time 

was conducted for the MQ IC50 assays. Curve fitting the gene expression data (in the 

same manner we used for the morphology curves) we were able to calculate the general 

drug transporter gene induction by MQ at IC50 concentration exposure. The calculated 

fold difference confirmed that the drug pressure was generally associated with mild but 

significant changes in the expression of the genes. Similar low induction levels have 

been observed in the transcriptome after exposure to chloroquine (Gunasekera et al., 

2007) as well as to an experimental antifolate compound (Ganesan et al., 2008).  

 

Taken as a whole, this work shows that the standard antimalarial MQ induces a delay in 

parasitic cell cycle development, while simultaneously influencing the transcription of 

four transporter genes coding for drug efflux pumps. These observations prompt the 

discussion that the overall basis of P. falciparum drug resistance is a complex multi-

factorial phenomenon that extends beyond the usually proposed subjacent mechanisms 



 

42 

of target modification or drug transport. The cell cycle delay upon MQ exposure, in 

addition to expanding our view of the parasite’s capability, raises caution regarding the 

interpretation of previous in vitro findings concerning parasite gene expression under 

drug pressure which have not taken into account the possible parasitic un-phasing stage 

at a certain time points. 

The work expands our knowledge of the range of P. falciparum strategies used to evade 

antimalarial drugs, with clinical implications. 

 

 

4.3 PAPER III 

 
“Novel potential molecular markers of in vitro drug resistance located in pfmdr1 

and pfmrp1 genes” 

 

Southeast Asia is a historical epicenter of emerging P. falciparum antimalarial drug 

resistance. This status has been recently reinforced by local evidence of decreased 

parasite drug susceptibility to the artemisinins, the core component of presently 

recommended antimalarial combination therapies (ACTs). These recent events underlie 

the urgency for understand the molecular basis of drug resistance, particularly those 

leading to broad range multidrug resistance phenotypes. Alterations in the parasitic 

membrane proteins PfCRT, PfMDR1, and PfMRP1 are believed to be major 

contributors to resistance through drug efflux mechanisms and have been previously 

associated with decreased parasite drug responses in vivo and in vitro. 

In this context, our study aimed to investigate the association of in vitro phenotypes of 

drug susceptibility (ICs) with the complete genotype of the aforementioned transporter 

genes in a set of Southeast Asian adapted parasites from the Thai-Burma border. For 

that purpose, we sequenced the full ORF of pfcrt, pfmdr1 and pfmrp1 from 46 parasite 

field isolates, while testing for in vitro drug susceptibility for the central ACT 

antimalarials ART, DHA, as well as the partner drugs MQ and LUM. 

 

A relatively large range of in vitro IC50 and IC90 values was observed for the 

antimalarial drugs tested. Interestingly, Pearson correlation applied between the ICs 

values of the drugs revealed (P<0.05) a cross response within all drugs tested even 

though some of these drugs are not structurally similar. 
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ORF sequencing of pfcrt, pfmdr1 and pfmrp1 revealed previously published, as well as 

newly described SNPs (pfmdr1 A750T). From the 7 SNPs found in pfmdr1, F1226Y 

showed to be associated with higher ICs for ART, MQ and LUM. Among the 11 SNPs 

found in pfmrp1, F1390I showed also significant associations with ART, MQ and 

LUM. This SNP in pfmrp1 is expected to be localized in transmembrane domain 11, 

which has been proposed to be part of a substrate pocket in several ABC transporters 

including PfMDR1. Even though pfmdr1 F1226Y and pfmrp1 F1390I alleles haves 

similar association profiles, they are not linked (P>0.05), suggesting that the actions of 

the respective proteins are not coordinated at the sub-cellular level. Copy number 

variation of pfmdr1 and pfmrp1 was also analyzed. No pfmrp1 CNV was detected, 

while pfmdr1 CNV was shown to be present in more that 50% of the isolates. This 

polymorphism was associated with a significant decreased in vitro susceptibility to 

ART, MQ and LUM. 

All 46 field isolates carried the same pfcrt haplotype (Dd2-like), thereby preventing any 

associative analyses with the in vitro phenotype, and leading to the preliminary 

conclusion that this gene is not involved in modulating the parasite responses to drugs 

in this study. 

By grouping the different pfmrp1 F1390I, pfmdr1 F1226Y and pfmdr1 CNV 

haplotypes present in the Thai field isolates, we observe a progressive increase in the 

IC50 of the tested antimalarial drugs. In particular, we observed that the pfmdr1 CNV is 

associated with an abrupt leap in MQ IC50 values, and showed a less dramatic but still 

significant effect with ART and LUM, confirming previous findings (Cowman, 1995, 

Price et al., 1999, Price et al., 2004, Price et al., 2006, Sidhu et al., 2005). 

Though Thailand is characterized for low multiplicity of infections, recent studies have 

shown that the standard detection methods often underestimate the phenomenon, 

leading to misclassification (Juliano et al., 2010). After the in vitro analysis in the 

laboratory for drug susceptibility, DNA was extracted from all isolates to check for 

variance and/or selection in the culture adapting procedures. The re-check was 

performed solely for polymorphisms with significant association with the in vitro 

phenotype (pfmrp1 F1390I, pfmdr1 F1226Y and pfmdr1 CNV). Genotype variance was 

detected in the three examined polymorphisms. Two isolates lost copies in pfmdr1 gene 

during the procedure, changing from 2 copies to 1 copy; a mixed infection in position 

1226 and 2 mixed infections in position 1390 were also found. Although this highlights 

the importance of caution in interpreting in vitro data (especially when relating the 

results to the subjacent field reality of the original infections), it is of note that the 
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observed changes did not change any of the previously determined statistically 

significant genotype-phenotype association and associated conclusions. 

 

In conclusion, this work unveiled new candidate molecular markers for drug resistance, 

particularly important for two of the most central ACTs used worldwide: AL and AS-

MQ. The precise mechanistic contribution for decreased drug susceptibility of these 

mutations remains an open question. Structural analysis performed for polymorphism 

F1390I in PfMRP1 show it is localized within transmembrane 11, which corresponds to 

TM16 in human MRP1 that has been proposed to be part of a substrate pocket (Deeley 

& Cole, 2006). In this context, it is conceivable that the F1390I SNP located in TM11 

is changing the specificity of interactions between the PfMRP1 and the antimalarials 

MQ, LUM and ART. Although we could not perform structural analysis for amino acid 

1226 in PfMDR1, it is found at the 3’ end of the protein in the same region as three of 

the mutations previously found to contribute to enhanced MQ and ART sensitivity 

(S1034C, D1042N and D1246Y) (Sidhu et al., 2005, Reed et al., 2000), emphasizing its 

involvement in antimalarial susceptibility. 

The exploration of clinical drug efficacy trials is being planned to search for 

confirmatory selection events upon drug exposure, particularly in the context of AL and 

AS-MQ combination therapies. 

 

 

4.4 PAPER IV 

 
“Full sequence of the pfmrp2 ORF unveiled a relatively complex gene, with 

multiple SNPs and micro-indel regions” 

 

Transporter proteins belonging to the ATP-binding cassette (ABC) super-family are 

well known to be involved in drug extrusion and associated with resistance in a large 

variety of phylogenetically different biological systems. P. falciparum PfMRP2 is an 

ABC transporter protein located in the cytoplasm membrane that has not been well 

studied and deserves to be explored in relation to drug resistance. 

 

This study is the first comprehensive analysis of pfmrp2 gene diversity. The pfmrp2 

ORF was sequenced in the aforementioned (paper III) 46 P. falciparum field isolates 

originating from Thailand. This isolates were previously phenotyped (paper III) which 
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allowed us to directly test potential associations of the polymorphisms found with 

altered in vitro drug susceptibility. 

Pfmrp2 was observed to harbour significant biodiversity with the identification of 21 

non-synonymous SNPs, 7 synonymous and 5 micro-indel regions. The frequency of 

SNPs varied from the presence of a single event (1/46) to all mutated (46/46), 

compared to the 3D7 reference sequence (www.plasmodb.org).  

Secondary structure analysis by HMMTOPv2 software predicted that PfMRP2 consists 

of 12 transmembrane helices distributed in two transmembrane domains (TMDs), each 

followed by a nucleotide binding domain (NBD) typically found in short MRPs, 

confirming previous secondary structure predictions (Kavishe et al., 2009). Several of 

the identified SNPs are positioned near the regions encoding the transmembrane 

domains, NBDs and ABC signatures, which are functionally important for control of 

substrate specificity, ATP binding and hydrolysis (Deeley & Cole, 2006) (Figure 7).  
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Figure 7 – Predicted structure of PfMRP2 with the approximate localization of the several types of 
polymorphisms. The numbering of a.a. follows the 3D7 reference genomic data, independently of the 
observed variable number of micro-indels. The dimensions of the protein are not exact, the representation 
solely serving the function of giving an overall view of the distribution of variable positions and regions 
in the primary structure. 
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Although unusual among P. falciparum ABC transporters, a significant number of 

micro-indels were identified in 5 distinct regions of the gene compared with the 3D7 

reference. Two micro-indels were driven by insertions, two by deletions, while one 

micro-indel region included both insertions and deletions. The size polymorphisms lead 

to a notable length variation of the total protein in the analyzed field isolates (2088-

2125 a.a.). The micro-indel regions were all localized outside of the TMDs. Their 

exclusion from such protein regions is probably related to the inability of the TMDs to 

accommodate this type of polymorphism, as they most likely alter the intra-membrane 

alpha-helix structure leading to functionally unacceptable distortions in the tertiary 

structure of the protein.  

Since the isolates were previously characterized for in vitro susceptibility to ART, 

DHA, MQ and LUM (paper III) we also aimed to performed associative analyses with 

the pfmrp2 genotype. Unfortunately, further association analysis was not possible due 

to the reduced sample size compared with the available degree of sequence diversity. 

The excluded polymorphisms were: polymorphisms with low frequency (<5 isolates), 

non-synonymous SNPs and SNPs found in the micro-indel regions (due to their 

variable presence depending on the indel size). In total only 3 SNPs (N622D, D631G 

and N646D) could be analyzed plus the 5 micro-indels sites, where no significant 

phenotype/polymorphism associations were detected. However, this lack of association 

might reflect solely the limitations on the power of sample study. 

 

Conceptually, the localization of PfMRP2 in the plasma membrane suggests this ABC 

transporter is of potential relevance in the efflux of xenobiotics from the parasite 

cytoplasm, as previously reported for the structurally related PfMRP1 (Raj et al., 2009). 

The fact that pfmrp1 and pfmrp2 have essentially opposite transcriptional patterns 

throughout the P. falciparum IDC (as described in the study of paper II), so that each 

protein is expressed during different stages, suggests a complementary action that 

might also be reflected in the complex phenotypes of drug response. The large diversity 

found raises the hypothesis of the existence of PfMRP2 natural variants with variable 

transporting capacities, warranting further investigation in the context of drug 

resistance. 
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5 CONCLUDING REMARKS AND FUTURE 
PERSPECTIVES 

 

Drug resistance mechanisms in P. falciparum are turning out to be more complex than 

perhaps originally foreseen. The field has been dominated by the concept of a direct 

casual effect between the presence of specific mutations and the development of 

resistance phenotypes. This view had been supported by the particular case of 

resistance against chloroquine, since the CQR phenotype has been explained by the 

presence of one SNP. However, this is likely the result of decades of heavy selection 

through the long use of a declining drug. 

 

Identification of relevant genes and mutations has been a key aspect of molecular 

analysis of drug resistance. Their usefulness in predicting the efficacy of different drugs 

in different regions has been evaluated and validated by comprehensive meta-analysis 

of the numerous studies into associations between clinical outcome and molecular 

markers. In accordance, in Paper I, we have observed a significant selection of the 

pfdhfr/pfdhps quintuple mutant haplotype after SP treatment in recurrent infections, and 

an association at baseline of this in vivo marker with subsequent treatment failure. 

Additionally, in this study we describe a mutation in a cytoplasm membrane efflux 

transporter gene (pfmrp1 K1466R) that was selected for after SP treatment, 

demonstrating the likelihood of SP resistance involving other factors beyond the well 

known target genes. These results highlight the complexity of drug resistance 

mechanisms and the adaptability of efflux transporter genes. 

Efflux transporters are long recognized players in the emergence and dissemination of 

resistant pathogens, and in the acquisition of additional mechanisms of drug resistance, 

mostly through decreased intracellular drug concentrations. In vitro expression of P. 

falciparum transporter genes may be a powerful approach for molecular 

characterization of substrate specificity, transport mechanism, influence of 

polymorphisms and drug cell-cycle stage specificity. Paper II shed some light on the 

complexity of this approach, demonstrating that confounding factors like the delay in 

parasite cell cycle development after drug exposure makes the comparison of 

transporter transcripts even more difficult to evaluate. We have documented a dose 

dependent delay of the parasite cell cycle after MQ exposure, particularly among the 

less sensitive P. falciparum strains. A delay in cell cycle progression could potentially 
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lead to a dormant stage with decreased parasite metabolic activity, thereby reducing the 

availability of the drug target, a mechanism known to exist in cancer cells (Roninson, 

2003, Varna et al., 2009). The existence of this phenomenon once more emphasizes the 

difficulty in understanding the molecular mechanisms that lead to drug resistance. 

Through the search for drug resistance molecular markers in paper III and IV, we 

identified two SNPs associated with decreased drug susceptibility to ART, MQ and 

LUM, and reinforced the importance of pfmdr1 copy number as a central factor in the 

response of P. falciparum to drugs of different structures. Considering the large 

diversity of polymorphisms detected in pfmrp2, the lack of association with the tested 

in vitro drugs might solely reflect the limitations of the power of the study. In Paper II, 

we found that pfmrp2 had higher gene expression differences between sensitive and 

less susceptible strains when the parasites were exposed to MQ. The fact that pfmrp1 

and pfmrp2 have essentially opposite transcriptional patterns throughout the IDC, so 

that each protein covers a different period, suggests complementary action between the 

two and warrants further investigation of the role of PfMRP2 in parasite drug 

resistance. 

 

A thorough understanding of the complex interactions among antimalarial transport 

proteins, how these interactions influence parasite response to antimalarial drugs and 

the dynamics of antimalarial influx/ efflux is of extreme importance for improved and 

rationalized drug policies. 

The fact that P. falciparum is an intracellular parasite makes its survival to antimalarial 

drugs a result of concerted complex events. PfMRPs, efflux transporters located in the 

cytoplasm of the parasite, expel substrates into the cytoplasm of the hosting RBC, 

which may perturb host cell integrity. Therefore, a balance between vacuolar 

accumulation and export of substances to the RBC cytoplasm may be vital for the 

parasite’s survival. Since the parasite and its host exist essentially as one entity, the 

function of PfMRPs are far more complicated compared to MRPs of other organisms, 

and could be a reason why PfMRPs have not found to be major determinants of 

antimalarial resistance. 

PfMRP1 and PfMRP2 potentially contribute to drug resistance in concert with the 

extensively studied PfMDR1 and PfCRT transporters located in the food vacuole 

membrane. The four transporters studied here encompass a broad spectrum of 

substrates enabling us to draw general mechanisms for antimalarial flux in P. 

falciparum, partly extending from previous findings (Figure 8). 
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Figure 8 – Proposed physiological model for antimalarial transport in P. falciparum. The central 
assumption is that ART, LUM and MQ drugs have their main pharmacological targets located in the 
cytoplasm compartment. While PfMRPs located in the plasma membrane, pumps them out of the cell, 
PfMDR1 an importer inserted in the FV membrane, would contribute to further drug expulsion from the 
cytoplasm by transporting these drugs towards the lumen of the FV. Wildtype SNPs and copy number 
amplification of pfmdr1 are associated with decreased susceptibility to these drugs conversely to 
aminoquinolines (CQ and AQ/DEAQ) which is believed to have their target inside the FV. CQ resistance 
is primarily determined by PfCRT, an exporter in the FV membrane. A threonine at position 76 in PfCRT 
is thought to have better transport capacities than the wildtype. This will decrease the susceptibility to CQ 
and AQ while increasing the susceptibility to MQ and LUM. 
 

 

The studies described in this thesis were focused on the parasitic response to different 

antimalarials with the intention of contributing to our basic knowledge of antimalarial 

selection and resistance. 

Unfortunately, the emergence of parasites that are clinically resistant to therapeutic 

drugs, specifically with respect to the currently used artemisinin and ACT, is inevitable. 

Combining different drugs, old and new, will help conserve the efficacy of these 

valuable antimalarials. One approach will be to combine drugs that target the same 

molecule, but which would independently select for mutually incompatible 

combinations of mutations. The ability to choose the right drug combinations will 

ultimately require the study of presently known and continually emerging resistance 

mechanisms. 
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