Studies on the Regulation of Leukotriene Biosynthesis in Antigen Presenting Cells

Julia Esser

Stockholm, 2011
Die Verletzten sollen die Ärzte sein
Die Letzten sollen die Ersten sein
Die Ersten sehen als Letzte ein:
The geek shall inherit the earth *(Wir sind Helden)*
Summary

Leukotrienes (LTs) are pro-inflammatory lipid mediators with important roles in host defense and inflammatory disease. Leukotriene B₄ (LTB₄) is a potent chemoattractant for neutrophils and contributes to bacterial killing, while the cysteinyl leukotrienes (LTC₄, LTD₄ and LTE₄) elicit increased vascular permeability, bronchoconstriction, eosinophil trafficking and mucus secretion. Due to their potency to trigger inflammatory responses, the biosynthesis of LTs is highly regulated. This regulation aids to proper pathogen clearance and simultaneously prevents the development of chronic inflammation. It was the aim of this thesis to contribute to a better understanding of the regulatory mechanisms that control LT biosynthesis.

5-lipoxygenase (5-LO), the first enzyme of the LT biosynthetic pathway, catalyzes the conversion of arachidonic acid (AA) to the intermediate leukotriene A₄ (LTA₄). Here, we describe a function of coactosin like protein (CLP) as a stabilizing chaperone for 5-LO. We found that the interaction of 5-LO with CLP, which protects the enzyme from inactivation, depends on lysine 131 in CLP and tryptophan 102 in the regulatory domain of 5-LO. Furthermore, we demonstrate co-localization of 5-LO and CLP in the human monocytic cell line Mono Mac 6 (MM6), implying a regulatory role for CLP in cellular LT formation.

The downstream enzymes of LT biosynthesis (LTA₄ hydrolase (LTA₄H) and LTC₄ synthase (LTC₄S)) further metabolize LTA₄ to the LTs B₄ and C₄, respectively. We studied the regulation of these enzymes during the differentiation of MM6 cells, human monocyte derived macrophages (MDMs) and dendritic cells (MDDCs). Interestingly, a prolonged exposure to the fungal cell wall preparation zymosan (48-96 h) potently downregulated the LTC₄S activity in MM6 cells, MDMs and MDDCs. Acetylsalicylic acid (ASA) and protein kinase inhibitors counteracted this downregulation. Further elucidation of the underlying signaling events indicated that the suppressive effect of zymosan involved toll like receptor 2 ligation, induction of PGE₂ synthesis and protein kinase A and C dependent inhibitory phosphorylation of LTC₄S. These mechanisms for control of cysLT biosynthesis may contribute the resolution of an acute inflammatory response. The counteracting effect of ASA on the suppression of cysLT formation might have implications for aspirin induced asthma.

Antigen presenting cells (APCs), such as macrophages and dendritic cells secrete nanosized vesicles (exosomes), which serve as messengers in immunity. Here, we investigated if exosomes from MDMs and MDDCs might contain enzymes for LT biosynthesis. We demonstrate that exosomes from MDMs and MDDCs as well as from human plasma and bronchoalveolar lavage fluid (BALF) contain active LTA₄H and LTC₄S. In addition, we show that exosomes from APCs have the capacity to synthesize a variety of eicosanoids and to induce granulocyte migration. Furthermore, BALF exosomes from asthmatics could increase the release of pro-inflammatory mediators (interleukin-8 and cysLTs) from bronchial epithelial cells. Hence, our data implicate exosomes as novel players in LT biosynthesis with potential roles in inflammatory disorders, such as asthma.
1 List of Publications

This thesis is based on the articles as listed below, which are referred to in the text by their Roman numbers.

* equal contribution
Contents

1 List of Publications 6

2 List of Abbreviations 9

3 Introduction 11
 3.1 Inflammation 11
 3.2 Eicosanoids - biosynthesis and physiology 12
 3.3 Leukotrienes - biosynthesis, metabolism and signaling
 3.3.1 Structural properties of LT biosynthetic enzymes 16
 3.3.2 Regulation of leukotriene biosynthetic enzymes 17
 3.3.3 Leukotriene receptors 20
 3.4 Leukotrienes - roles in immunity and inflammatory disease 21
 3.4.1 Immunological triggers of LT release 21
 3.4.2 Roles of LTs in host defense 23
 3.4.3 Leukotrienes as mediators in asthma 24
 3.4.4 Leukotrienes in cardiovascular disease and cancer 26
 3.5 Endogenous suppressors of LT biosynthesis 26
 3.6 Eicosanoids in antigen presenting cell biology 26
 3.6.1 APCs and pro-resolving lipid mediators 28
 3.7 Exosomes - generation and immunological roles 30

4 Aims 33

5 Materials and methods 34
 5.1 Materials 34
 5.2 Methodology 34

6 Results 35
 6.1 Coactosin like protein functions as a chaperone for 5-LO 35
 6.1.1 Importance of 5-LO-Trp102 and CLP-Lys131 for the CLP-5-LO interaction 35
 6.1.2 CLP translocates together with 5-LO in MM6 cells 35
 6.2 Long-term zymosan stimulation suppresses LTC\textsubscript{4}S activity 36
 6.2.1 LTC\textsubscript{4}S activity is upregulated during differentiation of MM6 cells 36
 6.2.2 Prolonged zymosan exposure triggers inhibitory phosphorylation of LTC\textsubscript{4}S 37
 6.2.3 TLR2 mediates the zymosan induced downregulation of LTC\textsubscript{4}S 37
 6.2.4 Zymosan triggered PGE\textsubscript{2} release leads to inhibition of LTC\textsubscript{4}S 38
 6.3 Exosomes are novel players in LT biosynthesis 40
 6.3.1 Exosomes from macrophages and DCs contain LTA\textsubscript{4}H and LTC\textsubscript{4}S 40
 6.3.2 Exosomes promote granulocyte migration in vitro 40

4
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.3</td>
<td>Exosomes from BALF and plasma carry proteins for LT biosynthesis</td>
<td>41</td>
</tr>
<tr>
<td>6.4</td>
<td>Asthmatics display an altered profile of BALF exosomes capable of LT metabolism and induction of IL-8</td>
<td>41</td>
</tr>
<tr>
<td>6.4.1</td>
<td>BALF exosomes from asthmatics exhibit pro-inflammatory phenotypic characteristics</td>
<td>42</td>
</tr>
<tr>
<td>6.4.2</td>
<td>BALF exosomes increase pro-inflammatory mediator release from BECs</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>Discussion</td>
<td>44</td>
</tr>
<tr>
<td>7.1</td>
<td>Insights into the chaperone function of CLP for 5-LO</td>
<td>44</td>
</tr>
<tr>
<td>7.2</td>
<td>Regulation of LT biosynthesis in human monocytic cells</td>
<td>45</td>
</tr>
<tr>
<td>7.3</td>
<td>PGE₂ mediated control of cysLT biosynthesis - clues for aspirin intolerance</td>
<td>46</td>
</tr>
<tr>
<td>7.4</td>
<td>Exosomal LTs as amplifiers of immunity and inflammation</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>Future Perspectives</td>
<td>50</td>
</tr>
<tr>
<td>8.1</td>
<td>Interaction of CLP and 5-LO - a promising drug target in the treatment of cancer and auto-immunity</td>
<td>50</td>
</tr>
<tr>
<td>8.2</td>
<td>Regulation of cysLT biosynthesis by microbial products - chances for asthma therapy?</td>
<td>50</td>
</tr>
<tr>
<td>8.3</td>
<td>Exosomal eicosanoids - novel tools for immuno-modulation, diagnostics and drug delivery</td>
<td>51</td>
</tr>
<tr>
<td>9</td>
<td>Popular scientific summary</td>
<td>53</td>
</tr>
<tr>
<td>9.1</td>
<td>English popular scientific summary</td>
<td>53</td>
</tr>
<tr>
<td>9.2</td>
<td>Deutsche populärwissenschaftliche Zusammenfassung</td>
<td>54</td>
</tr>
<tr>
<td>9.3</td>
<td>Svensk populärvetenskaplig sammanfattning</td>
<td>55</td>
</tr>
<tr>
<td>10</td>
<td>Acknowledgements</td>
<td>56</td>
</tr>
</tbody>
</table>
2 List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-HETE</td>
<td>12-hydroxy eicosatetraenoic acid</td>
</tr>
<tr>
<td>15-HETE</td>
<td>15-hydroxy eicosatetraenoic acid</td>
</tr>
<tr>
<td>15-LO</td>
<td>15-lipoxygenase</td>
</tr>
<tr>
<td>16HB14o</td>
<td>16 human bronchial 14o epithelial cell line</td>
</tr>
<tr>
<td>5-HETE</td>
<td>5-hydroxy eicosatetraenoic acid</td>
</tr>
<tr>
<td>5-LO</td>
<td>5-lipoxygenase</td>
</tr>
<tr>
<td>AA</td>
<td>arachidonic acid</td>
</tr>
<tr>
<td>AM</td>
<td>alveolar macrophage</td>
</tr>
<tr>
<td>APC</td>
<td>antigen presenting cell</td>
</tr>
<tr>
<td>ASA</td>
<td>acetylsalicylic acid</td>
</tr>
<tr>
<td>BEC</td>
<td>bronchial epithelial cell</td>
</tr>
<tr>
<td>BLT1</td>
<td>leukotriene B\textsubscript{4} receptor 1</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CLP</td>
<td>coactosin like protein</td>
</tr>
<tr>
<td>COX</td>
<td>cyclooxygenase</td>
</tr>
<tr>
<td>cPLA\textsubscript{2}</td>
<td>cytosolic phospholipase A\textsubscript{2}</td>
</tr>
<tr>
<td>CysLT\textsubscript{1}</td>
<td>cysteinyl leukotriene receptor 1</td>
</tr>
<tr>
<td>ERK</td>
<td>extracellular-signal regulated kinase</td>
</tr>
<tr>
<td>FLAP</td>
<td>5-lipoxygenase activating protein</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>granulocyte macrophage colony stimulating factor</td>
</tr>
<tr>
<td>GPCR</td>
<td>guanine nucleotide binding protein coupled receptor</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>H\textsubscript{2}S</td>
<td>hydrogen sulfide</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>LCs</td>
<td>Langerhans cells</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>LTA\textsubscript{4}</td>
<td>leukotriene A\textsubscript{4}</td>
</tr>
<tr>
<td>LXA\textsubscript{4}</td>
<td>lipoxin A\textsubscript{4}</td>
</tr>
<tr>
<td>LTA\textsubscript{4}H</td>
<td>leukotriene A\textsubscript{4} hydrolase</td>
</tr>
<tr>
<td>LTB\textsubscript{4}</td>
<td>leukotriene B\textsubscript{4}</td>
</tr>
<tr>
<td>LTC\textsubscript{4}</td>
<td>leukotriene C\textsubscript{4}</td>
</tr>
<tr>
<td>LTC\textsubscript{4}S</td>
<td>leukotriene C\textsubscript{4} synthase</td>
</tr>
<tr>
<td>MAMP</td>
<td>microbe associated molecular pattern</td>
</tr>
<tr>
<td>MAPEG</td>
<td>membrane-associated proteins in eicosanoid and glutathione metabolism</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen activated protein kinase</td>
</tr>
<tr>
<td>MDDCs</td>
<td>monocyte derived dendritic cells</td>
</tr>
<tr>
<td>MDMs</td>
<td>monocyte derived macrophages</td>
</tr>
<tr>
<td>MM6</td>
<td>mono mac 6 cell line</td>
</tr>
<tr>
<td>MRP-1</td>
<td>multi drug resistance protein-1</td>
</tr>
<tr>
<td>mTOR</td>
<td>mammalian target of rapamycin</td>
</tr>
</tbody>
</table>
NFAT nuclear factor of activated T-cells
NFκB nuclear factor 'kappa-light-chain-enhancer' of activated B-cells
NO nitric oxide
NSAID non-steroidal anti-inflammatory drug
p70S6K 70-kDa ribosomal protein S6 kinase
PAF platelet activating factor
PGE₂ prostaglandin E₂
PKC protein kinase C
PI3K phosphatidylinositol 3-phosphate kinase
PMNL polymorphonuclear leukocytes
RANTES regulated upon activation normal T-cell expressed and secreted
ROS reactive oxygen species
RvE₁ resolvin E₁
Syk spleen tyrosine kinase
TGFβ₁ transforming growth factor beta 1
TNFα₁ tumor necrose factor alpha
TLR toll like receptor
T_H T helper (cell)
Treg regulatory T (cell)
WB Western blot
VD₃ 1α,25-dihydroxyvitamin D₃
3 Introduction

3.1 Inflammation

From birth on, we are exposed to an inconceivable variety of environmental factors. Many of these factors endanger the integrity of our body and threaten our survival. Thus, our body has evolved defense mechanisms to protect itself against physical as well as microbial insults, such as extreme temperatures, viruses or bacteria. "Inflammation" (Latin: *inflammare* = to set on fire) is the essential process that is started, when such an insult harms or penetrates any of our surface body barriers. The long recognized cardinal signs of inflammation are redness (*rubor*), increased heat (*calor*), swelling (*tumor*), pain (*dolor*) and loss of (tissue) function (*functio laesa*). These physiological reactions have as their common goal to ensure pathogen clearance and subsequent restoration of tissue homeostasis (Fig. 3.1).

![Figure 3.1: The inflammatory process: determinants and outcomes](image)

On the molecular level, inflammation is induced, amplified and resolved by a complex and dynamic network of mediators. The major sources of these mediators are white blood cells (leukocytes), which originate from the bone marrow and which can undergo several steps of differentiation, migration and maturation during their life span. The inflammatory pathway thus consists of "inducers" (e.g. infectious agents), "sensors" (tissue resident leukocytes such as macrophages), "mediators" (e.g. cytokines, see table 3.2) and target tissues (Fig. 3.2). To ensure efficient pathogen clearance but avoid persistence...
of inflammation and permanent loss of tissue function, the synthesis and release of pro-
and anti-inflammatory mediators is tightly regulated.

Figure 3.2: The inflammatory pathway: inducers, sensors, mediators and target tissues
[192]

3.2 Eicosanoids - biosynthesis and physiology

The accurate course of the inflammatory process depends on the chronological activation
of signaling events, which are initiated by a variety of mediators. According to their
biosynthetic origin, these mediators can be divided into different classes:

<table>
<thead>
<tr>
<th>mediators</th>
<th>chemical class</th>
<th>examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>cytokines</td>
<td>peptides, (glyco-)proteins</td>
<td>TNFα, IL-4, IL-10</td>
</tr>
<tr>
<td>chemokines</td>
<td>peptides, (glyco-)proteins</td>
<td>Eotaxin, RANTES, IL-8</td>
</tr>
<tr>
<td>gases</td>
<td>soluble gases</td>
<td>NO, H2S</td>
</tr>
<tr>
<td>eicosanoids</td>
<td>lipids</td>
<td>PGE2, LTB4, LXA4</td>
</tr>
</tbody>
</table>

Table 3.2: mediators of inflammation

Eicosanoids are lipid mediators, derived from arachidonic acid (AA), a polyunsaturated
omega-6 fatty acid with 20 carbon atoms and four cis double bonds in positions 5, 8,
11 and 14 (C20:4 (ω-6)) (see Fig. 3.3). AA can be metabolized by several enzymatic
cascades into distinct classes of eicosanoids with a broad range of physiological func-
tions (for some examples, see table 3.4) [282]. Thereby, the most well known pathway
is certainly the cyclooxygenase pathway, which gives rise to the prostanoids and which
is inhibited by non-steroidal anti-inflammatory drugs (NSAIDs), such as acetylsalicylic
acid (aspirin) [23], [333]. Prostanoids (prostaglandins, prostacyclins and thromboxanes)
contribute to the induction of essential physiological events such as fever, nociception,
uterine contraction, vasodilation and haemostasis [288]. An alternative enzymatic path-
way for conversion of AA are specialized cytochrome P450 epoxygenases [294], which
metabolize AA to epoxyeicosatrienoic acids (EETs). EETs are important regulators of
the vascular tone. Furthermore, AA can be oxygenated by lipoxygenase pathways, com-
prising 5-lipoxygenase and 12/15-lipoxygenase catalyzed reactions, giving rise to 5-, 12-
and 15- hydro(pero)xy eicosatetraenoic acids (H(P)ETEs) as well as to lipoxins [273].
3.2. EICOSANOIDS - BIOSYNTHESIS AND PHYSIOLOGY

<table>
<thead>
<tr>
<th>Eicosanoid</th>
<th>Physiological Role</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-KETE</td>
<td>Granulocyte activation, eosinophil + basophil recruitment</td>
<td>[232], [211], [212], [203], [297]</td>
</tr>
<tr>
<td>LTB₄</td>
<td>Neutrophil chemotaxis + adherence, stimulation of antimicrobial activity, T cell recruitment</td>
<td>[221], [271], [87], [109]</td>
</tr>
<tr>
<td>LTC₄</td>
<td>Bronchoconstriction, increased vasopermeability, mucus secretion, airway remodeling, DC activation</td>
<td>[262], [67], [191], [261], [341]</td>
</tr>
<tr>
<td>LXA₄</td>
<td>Inhibition of granulocyte trafficking and adhesion, stimulation of nonphlogistic phagocytosis</td>
<td>[38], [16], [107]</td>
</tr>
<tr>
<td>PGE₂</td>
<td>Inhibition of leukocyte activation, modulation of DC maturation + Treg/T<sub>H</sub>17 balance</td>
<td>[39], [127], [290], [158], [54]</td>
</tr>
<tr>
<td>PGD₂</td>
<td>Bronchoconstriction, activation + chemotaxis of eosinophils, neutrophil recruitment</td>
<td>[126], [245], [96], [327]</td>
</tr>
<tr>
<td>PGF₂α</td>
<td>Uterine contraction, PMNL migration, ROS generation</td>
<td>[46], [281], [154]</td>
</tr>
<tr>
<td>TXA₂</td>
<td>Platelet aggregation, vasoconstriction, modulation of APC-T cell interaction</td>
<td>[53], [151]</td>
</tr>
</tbody>
</table>

Table 3.4: Examples of eicosanoids and their physiological and immunological roles
3.2. EICOSANOIDS - BIOSYNTHESIS AND PHYSIOLOGY

Figure 3.3: Biosynthesis of PGs, LTs, HETEs and PAF [282]
3.3 Leukotrienes - biosynthesis, metabolism and signaling

In order for leukotriene (LT) biosynthesis to start, AA has to be cleaved from membrane phospholipids by cytosolic phospholipase A\textsubscript{2} (cPLA\textsubscript{2}), which hydrolyzes the ester bond in the sn2 position, yielding free AA and lysophospholipids. In the first step of LT biosynthesis, 5-lipoxygenase (5-LO) catalyzes the hydrogen abstraction at C-7 of AA and antarafacial incorporation of molecular oxygen into position five, resulting in formation of 5(S)-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid (5-HPETE) (Fig. 3.4). In a second round of the 5-LO reaction cycle, hydrogen is abstracted at C-10 and 5-HPETE is dehydrated, giving rise to the stable epoxide intermediate LTA\textsubscript{4} [262], [204].

Figure 3.4: Catalytic cycle for formation of 5-HPETE by 5-LO [204]

The subsequent metabolism of LTA\textsubscript{4} by the downstream enzymes LTA\textsubscript{4} hydrolase (LTA\textsubscript{4}H) or LTC\textsubscript{4} synthase (LTC\textsubscript{4}S) will then yield the biologically active leukotrienes B\textsubscript{4} (LTB\textsubscript{4}) and C\textsubscript{4} (LTC\textsubscript{4}), respectively. LTA\textsubscript{4}H is an epoxide hydrolase, which catalyzes the activation of the epoxide function of LTA\textsubscript{4} and the stereospecific addition of water in position 12 of the thereby formed carbocation intermediate [120]. The resulting LTB\textsubscript{4} can be metabolized by cytochrome P450 enzymes to 20-hydroxy and 20-carboxy LTB\textsubscript{4} [125]. Alternative to hydrolysis by LTA\textsubscript{4}H, LTA\textsubscript{4} can be conjugated to glutathione (GSH) by LTC\textsubscript{4}S. Based on the structure of LTC\textsubscript{4}S [2], [182], a catalytic mechanism can be envisioned, starting with formation of a thiolate anion (GS−) which then attacks the allylic carbon in position 6 of the epoxide function of LTA\textsubscript{4} [253]. The product of this reaction, 5(S)-hydroxy-6(R)-S-glutathionyl-7,9-trans-11,14-cis-eicosatetraenoic acid (LTC\textsubscript{4}), undergoes consecutive cleavage of its peptide moiety, resulting in generation of the other two cysLTs (LTD\textsubscript{4} and LTE\textsubscript{4}) (Fig. 3.3).

In vivo, LTs have short half lives (sec-min). Both LTB\textsubscript{4} and LTE\textsubscript{4} are metabolized by ω-oxidation, which yields the corresponding 20-carboxy-derivative. Finally, 20-carboxy LTB\textsubscript{4} and 20-carboxy LTE\textsubscript{4} can be degraded by β-oxidation [204].
3.3. LEUKOTRIENES - BIOSYNTHESIS, METABOLISM AND SIGNALING

3.3.1 Structural properties of LT biosynthetic enzymes

![Figure 3.5: Structures of 5-LO, LTA\textsubscript{4}H and LTC\textsubscript{4}S (monomer)]

5-lipoxygenase

5-LO is a 78 kDa enzyme, consisting of two domains: an N-terminal regulatory domain (residues 1-120) and a C-terminal catalytic domain (residues 121-673). These two domains are structurally distinct, with the regulatory domain showing a characteristic C2-like β-sandwich fold and the catalytic domain mainly consisting of α-helices [106]. The C-terminal domain comprises the active site with the prosthetic iron, while the N-terminal domain contains residues for binding of regulatory factors such as Ca$^{2+}$, membrane phospholipids and coactosin like protein (CLP) [244].

LTA\textsubscript{4} hydrolase

The 69 kDa protein LTA\textsubscript{4}H consists of a C-terminal, a catalytic and an N-terminal domain, which are arranged in such a way that a hydrophobic pocket for substrate binding is formed. This hydrophobic cleft contains the active site with the catalytic zinc [324], [120].

LTC\textsubscript{4} synthase

LTC\textsubscript{4}S is a trimeric, integral membrane protein, with a monomer size of 18 kDa [2], [182]. The LTC\textsubscript{4}S monomer comprises four transmembrane α-helices and shares many structural features with FLAP and mPGES-1, two other members of the superfamily of membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG) [143], [86], [146]. As the catalytic site of LTC\textsubscript{4}S is directed towards the lumen of the outer nuclear membrane, the newly synthesized LTC\textsubscript{4} has to be exported into the cytoplasm via its carrier: multi drug resistance protein-1 (MRP-1) [58].
3.3. LEUKOTRIENES - BIOSYNTHESIS, METABOLISM AND SIGNALING

3.3.2 Regulation of leukotriene biosynthetic enzymes

5-lipoxygenase

The activity of 5-LO is controlled on several levels by various regulatory factors [250]. Interestingly, 5-LO shares some of its major regulators with cPLA$_2$ [244]. Both enzymes possess a C2 like domain, which can bind Ca$^{2+}$. Ca$^{2+}$ binding confers association of cPLA$_2$ and 5-LO with the nuclear membrane, which is enriched in AA containing phospholipids [48]. Thus, stimuli increasing the intracellular Ca$^{2+}$ concentration trigger translocation of cPLA$_2$ and 5-LO to the nuclear envelope. This allows for optimal substrate access and efficient LT generation due to the formation of the so-called "LT biosynthetic metabolon" together with FLAP and LTC$_4$S [340], [181], [180].

The 18 kDa integral membrane protein FLAP, which is required for cellular LT synthesis from endogenous substrate [73], binds AA and is believed to transfer it to 5-LO. In this way, FLAP increases AA utilization as well as conversion of 5-HPETE to LTA$_4$ [177], [1].

Another protein that influences the activity of 5-LO, is the 16 kDa F-actin binding protein Coactosin Like Protein (CLP) [246]. CLP has been shown to bind 5-LO [234] and to support 5-LO activity in vitro in two ways (summarized in Fig. 3.6): Firstly, CLP augmented 5-LO product formation in the absence of phosphatidylcholine (PC), which mimics the presence of nuclear membrane phospholipids and is needed for efficient 5-LO product formation in standard in vitro assays. Secondly, in presence of PC, CLP increased the capacity of 5-LO for synthesis of LTA$_4$. In addition, the apparent coordinated translocation of CLP and 5-LO in stimulated leukocytes allows speculations about a role of CLP as a promoting factor in cellular LT synthesis [244].

Figure 3.6: Different activity modes of 5-lipoxygenase [244]

Another crucial determinant of 5-LO activity and localization is the phosphorylation state of the enzyme. Several kinases can phosphorylate 5-LO at distinct sites, which will either up- or downregulate product formation and nuclear localization. Phosphorylation of 5-LO at Ser-663 by ERKs [336] as well as at Ser-271 by p38 kinase-dependent MAPKAP kinases [337] stimulated 5-LO activity and translocation to the nuclear membrane in PMNL and Mono Mac 6 cells [338], [336]. These reports are in line with the
observation that nuclear localization of 5-LO results in efficient LTB\(_4\) synthesis [174]. Interestingly, differential ERK activation patterns in female versus male PMNL conferred differences in 5-LO localization, connected with a higher capacity for stimulated 5-LO product formation in female PMNL [227]. The effect of phosphorylation at Ser-271 appears to depend on the cell type: Nuclear export of 5-LO occurred in HEK293 cells, transiently expressing a 5-LO mutant, in which phosphorylation was mimicked by replacement of Ser-271 by glutamate [124]. However, in transfected NIH 3T3 cells, expressing a 5-LO, which is constitutively phosphorylated at Ser-271, the enzyme was exclusively localized in the nucleus [89]. These latter results are consistent with evidence from HeLa cells, which lack constitutive phosphorylation at Ser-271 and which exhibit no nuclear 5-LO.

In contrast to the stimulatory effects of ERKs and p38 kinase-dependent MAPKAP kinases, PKA mediated phosphorylation of 5-LO at Ser-523 conferred cytoplasmic localization and reduced 5-LO product synthesis [91], [175], [173]. Furthermore, the phosphorylation of 5-LO by PKA was reported to shift in the 5-LO product profile in rat myocardial cells from LTB\(_4\) to 15-epi-LXA\(_4\) [344].

Adhesion induced nuclear import of 5-LO was observed in human neutrophils and eosinophils [41], [40]. In neutrophils, translocation of 5-LO into the nucleus promoted LTB\(_4\) formation [174], indicating that nuclear 5-LO, together with nuclear LTA\(_4\)H yields large amounts of LTB\(_4\). In contrast, adhesion induced nuclear import of 5-LO suppressed LTC\(_4\) generation in eosinophils without inhibiting LTC\(_4\)S activity [40]. These findings suggest that cytoplasmic 5-LO collaborates with LTC\(_4\)S to generate cysLTs, while nuclear 5-LO favors the synthesis of LTB\(_4\) (Fig. 3.7). Thus, not only the enzymatic equipment but also 5-LO localization determines the cellular LT profile, which will then define the triggered effector functions and ultimately shape the nature of the inflammatory response.

In addition to these mechanisms for post-translational regulation of 5-LO, several factors modify the expression of the enzyme [250]. For example, 5-LO protein levels can change

![Figure 3.7: Spatial organization of leukotriene biosynthesis in the cell](image-url)
dramatically during the differentiation of myeloid cells [235], [254], [63] often under the influence of cytokines and growth factors, such as TGF\(\beta\)-1, 1\(\alpha\),25-dihydroxyvitamin D\(_3\) and IL-4 [296], [43], [292]. Very recently, splice variants of 5-LO have been identified in PMNL and different leukemia cell lines. Interestingly, co-expression of these 5-LO isoforms with the active full length protein resulted in reduced 5-LO product formation [35]. These novel findings add yet another layer to the complex regulation of 5-LO activity.

\(\text{LTC}_4\) synthase

As described for 5-LO, cellular \(\text{LTC}_4\)S activity is controlled both by transcriptional regulation as well as by posttranslational modification. Activation of protein kinase C by treatment with phorbol esters decreased \(\text{LTC}_4\) synthesis in HL-60 cells and human granulocytes [7], [153], [287]. The pan-kinase inhibitor staurosporine counteracted this PMA induced downregulation of the \(\text{LTC}_4\)S activity, suggesting an inhibitory phosphorylation of \(\text{LTC}_4\)S either by PKC itself or by a downstream kinase. Furthermore, phosphorylation of \(\text{LTC}_4\)S in whole cells could be demonstrated in immunoprecipitation experiments after radioactive ATP labeling [115]. These experiments indicated that the phosphorylation state of \(\text{LTC}_4\)S depends on the cell type as well as the level of cellular differentiation. Moreover, phosphorylation of \(\text{LTC}_4\)S was abrogated by specific PKC inhibitors [115].

Very recently, an alternative mechanism for control of \(\text{LTC}_4\)S activity has been described in mast cells: oxidative stress induced a reversible, covalent dimerization of \(\text{LTC}_4\)S, which suppressed the enzymatic activity to approximately 30% of control [131]. Interestingly, both PGD\(_2\) and PGE\(_2\) inhibited \(\text{LTC}_4\)S activity in this model system. This inhibitory effect of the two PGs was apparently due to the ability of their cyclopentenone metabolites to decrease the intracellular GSH concentration.

Major \(\text{LTC}_4\)S expressing cells include innate immune cells, such as eosinophils, mast cells and monocytes/macrophages. Transcriptional regulation has mostly been studied in the monocytic cell line THP-1, in which \(\text{LTC}_4\)S mRNA was downregulated by TNF\(\alpha\) and LPS [277], [278], while TGF\(\beta\) upregulated \(\text{LTC}_4\)S on both mRNA and protein level [252]. However, also primary human bronchial fibroblasts and bronchial epithelial cells were shown to express \(\text{LTC}_4\)S and TGF\(\beta\)-1 potently increased \(\text{LTC}_4\)S protein levels in these cells [145], [144].

\(\text{LTA}_4\) hydrolase

While expression of 5-LO is mostly confined to leukocytes, \(\text{LTA}_4\)H is expressed by almost all cell types [95]. However, in spite of its wide tissue distribution, cellular \(\text{LTA}_4\)H expression can change considerably in response to a particular cytokine milieu or upon microbial stimulation. In freshly isolated human monocytes, the \(T_H2\) cytokines IL-4 and IL-13 downregulated expression of \(\text{LTA}_4\)H, while the \(T_H1\) cytokine interferon-\(\gamma\) increased \(\text{LTA}_4\)H mRNA and protein levels [198]. These effects, observed on mRNA and protein level, were accompanied by the according trend for \(\text{LTB}_4\) formation. In contrast, in PMNL, IL-4 and IL-13 upregulated \(\text{LTA}_4\)H mRNA, protein and activity [349]. Furthermore, expression of \(\text{LTA}_4\)H was slightly increased in response to LPS, the calcium ionophore A23187 and bradykinin in human bronchial epithelial cells [144].
Compared to 5-LO and LTC\(_4\)S, much less is known about a regulatory role of phosphorylation for LTA\(_4\)H activity. Solely for endothelial cells, an inhibitory effect of LTA\(_4\)H phosphorylation has been demonstrated [258]. A well established principle for control of LTA\(_4\)H activity is suicide inactivation by its substrate LTA\(_4\) [243], [219], [119]. Due to the limitation of LTA\(_4\)H activity in the activated neutrophil, LTA\(_4\) is secreted, allowing for its conversion to either LTB\(_4\) or LTC\(_4\) by 5-LO negative cells such as erythrocytes, epithelial cells, platelets and endothelial cells [189], [30], [220], [83] (Fig. 3.8). The transcellular metabolism of LTs is a powerful strategy for fine tuning of LT synthesis in distinct physiological settings. Recent studies, using LT pathway knock-out mice in \textit{in vivo} models of inflammation, have elegantly shown efficient transcellular LT metabolism during an acute inflammatory response [350], [259].

Hence, on the tissue level, the LT profile depends on the interactions of infiltrating or resident leukocytes with other tissue specific cell types. Together with the importance of the subcellular localization of the LT biosynthetic enzymes [209] transcellular metabolism adds extra complexity to the regulation of LT biosynthesis.

3.3.3 Leukotriene receptors

Once synthesized and released, LTs will bind to their specific G-protein coupled receptors on the target cell. Two receptors have been identified for LTB\(_4\): the high affinity receptor BLT\(_1\) [346] \((K_d=1.1 \text{ nM})\), expressed mainly on leukocytes, and the low affinity receptor BLT\(_2\) \((K_d=23 \text{ nM})\) [347], showing wide tissue distribution [306]. Although at considerably higher concentrations \((>10 \mu\text{M})\), LTB\(_4\) also activates peroxisome proliferator-activated receptor alpha (PPAR-\(\alpha\)) [71]. It has been suggested that in this way, LTB\(_4\) acts as an endogenous intracellular ligand, which can initiate its own degradation in a PPAR-\(\alpha\) dependent manner [207].

For the cysLTs, the situation is more complex and the search for a selective LTE\(_4\) receptor is currently ongoing [14]. However, it is well established that LTC\(_4\) and LTD\(_4\) bind to two major cysLT receptors: CysLT\(_1\) and CysLT\(_2\) [257]. Thereby, LTD\(_4\) has the highest affinity for CysLT\(_1\) \((1-10 \text{ nM})\), which is predominantly expressed on leukocytes, spleen and smooth muscle of the lung and intestine. In contrast, LTC\(_4\) and LTD\(_4\) exhibit equal affinities for CysLT\(_2\) \((K_d\approx 10 \text{ nM})\), which is expressed in leukocytes, spleen, kidney, heart and brain. LTE\(_4\) is only a poor ligand for both of these receptors.

Depending on the cell type, LT receptors can couple to G proteins with different \(\alpha\) subunits, resulting in a variety of downstream effects [282]. One major pathway of LT receptor signaling runs \textit{via} Go\(_q\) proteins, triggering activation of phospholipase C, Ca\(_{2+}\) mobilization and ultimately responses such as MAPK activation and actin reorganization [101], [257]. The second crucial downstream pathway starts with the liberation of Go\(_q\) subunits, which inhibit adenylate cyclase, thereby lowering the cellular cAMP concentration. Since cAMP acts as a break signal for many innate immune cells, a decrease in the concentration of this second messenger will contribute to the activation of microbicidal effector mechanisms such as phagocytosis and ROS generation [272].
3.4 Leukotrienes - roles in immunity and inflammatory disease

As already adumbrated above, leukocytes are the most efficient producers of LTs. Innate immune cells such as neutrophils, eosinophils, basophils, mast cells and macrophages have high capacities for generation of LTB₄ and/or cysLTs (Fig. 3.8) [229]. Moreover, LTs exert potent auto- and paracrine effects on these cells, which are crucial for efficient immune responses against many infectious agents.

![Diagram of Leukotrienes](image)

Figure 3.8: Source and target cells of Leukotrienes

3.4.1 Immunological triggers of LT release

Innate immune cells recognize microbial and viral intruders via pathogen recognition receptors (PRRs), which bind to microbe associated molecular patterns (MAMPs) such as bacterial lipopolysaccharide (LPS), peptidoglycan, lipoteichoic acid, flagellin or viral DNA and double stranded RNA [26], [307]. PRRs comprise the toll like receptors (TLRs), C-type lectin receptors (e.g. Dectin-1), Rig-I-like receptors and the NOD like receptors [138], [308].

Signaling of PRRs triggers the activation of kinases (e.g. ERK1/2, p38 or Syk) and transcription factors (e.g. NFκB or NFAT), which will increase the production of inflammatory mediators [110]. An overview of some PRRs and MAMPs that influence LT biosynthesis is presented in table 3.6.
3.4. LEUKOTRIENES - ROLES IN IMMUNITY AND INFLAMMATORY DISEASE

<table>
<thead>
<tr>
<th>PRR</th>
<th>ligand</th>
<th>effects</th>
<th>references</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLR4</td>
<td>LPS</td>
<td>priming for increased LTB₄ synthesis (neutrophils); cPLA₂ activation (macrophages)</td>
<td>[75], [239]</td>
</tr>
<tr>
<td>TLR2</td>
<td>zymosan, peptidoglycan</td>
<td>cysLT generation (Mast Cells); cPLA₂ activation (monocytes)</td>
<td>[188], [171]</td>
</tr>
<tr>
<td>β-glucan receptor (Dectin-1)</td>
<td>β-glucans, zymosan, C. albicans</td>
<td>AA release (macrophages, Mast Cells); cysLT release (Mast Cells, DCs)</td>
<td>[216], [217], [331], [304]</td>
</tr>
<tr>
<td>Mannose receptor (Dectin-2)</td>
<td>α-mannan, zymosan, C. albicans, A. fumigatus / house dust mite extract</td>
<td>AA release and LT generation (macrophages, PMNL); cysLT production (DCs)</td>
<td>[50], [332], [304], [18]</td>
</tr>
</tbody>
</table>

Table 3.6: Some examples of PRRs and MAMPs with short time effects on LT biosynthesis
3.4. LEUKOTRIENES - ROLES IN IMMUNITY AND INFLAMMATORY DISEASE

As mentioned above, stimuli that increase the intracellular Ca\(^{2+}\) concentration are potential inducers of LT formation. In macrophages and DCs, the TLR ligands LPS and peptidoglycan triggered Ca\(^{2+}\) mobilization via activation of phospholipase C\(\gamma\) [4]. Similar to these innate immune mechanisms, also Fc\(\gamma\) receptor mediated recognition of immune complexes resulted in an increased intracellular Ca\(^{2+}\) concentration as well as LTB\(_4\) release [328], [65].

However, in addition to microbial triggers, also physical stressors such as hyperosmolarity [285], hyperoxia [113] or heat [202] can provoke Ca\(^{2+}\) influx and LT biosynthesis.

3.4.2 Roles of LTs in host defense

![Figure 3.9: Structure and composition of the yeast cell wall [110]](image)

LTs elicit a broad spectrum of effector mechanisms, which crucially contribute to pathogen clearance. Thereby, the cysLTs act mainly by blocking access and stimulating removal of pathogens, particularly in the respiratory tract, where they trigger bronchoconstriction and mucus hypersecretion [262]. Furthermore, by increasing vascular permeability and P-selectin expression on endothelial cells [68], cysLTs facilitate leukocyte infiltration to the site of infection. In addition to these immediate responses, cysLTs promote the expression of genes, which encode other host defense factors such as IL-8 [317], monocyte chemoattractant protein 1 (MCP-1) [141] and immunoglobulins [165].

As mentioned above, fungal cell wall constituents such as \(\alpha\)-mannans and \(\beta\)-glucans (Figure 3.9) are potent inducers of acute cysLT generation in mast cells, macrophages and DCs (table 3.6). This allows speculations about a particular relevance of cysLTs in protective immunity against fungal infections.

The supporting effects of cysLTs on eosinophil differentiation [36], [242] and trafficking [92] suggest their critical involvement in immunity against parasitic infections [201], [136]. Interestingly, eosinophils, basophils and mast cells, which are major cysLT producing cells, play central roles in protective immunity against parasitic helminths [12].

In comparison to cysLTs, even more information exists about immune effector functions of LTB\(_4\), which is involved at all levels of the microbial killing process: LTB\(_4\) promotes leukocyte attraction [313], [284], Fc\(\gamma\)R mediated phagocytosis [47], ROS production [339] and the release of antimicrobial peptides [87], [334], [102]. Like the cysLTs, LTB\(_4\) can induce a variety of host defense genes, resulting in increased expression of immune factors...
3.4. LEUKOTRIENES - ROLES IN IMMUNITY AND INFLAMMATORY DISEASE

such as TNFα, NO, IL-6, IL-8 and C-C chemokine receptor type 7 (CCR7) [309], [37], [233].

Due to these reinforcing effects on antimicrobial defense mechanisms, LTs contribute to protective immunity against infections with a variety of human pathogens. A direct role of cysLTs in immunity against infections was demonstrated in alveolar macrophages, where cysLTs efficiently enhanced phagocytosis of gram-negative bacteria [179]. Mice deficient in LTB₄ generation showed an increased susceptibility to *Klebsiella pneumoniae* and *Leishmania amazonensis* [15], [271]. Moreover, pharmacological inhibition of LT biosynthesis lead to exacerbation of pulmonary histoplasmosis [190] and increased mortality after infection with *Mycobacterium tuberculosis* [225]. The particular importance of LTs in pulmonary immunity is supported by the finding that intrapulmonary administration of LTB₄ improved host defense against pneumococcal pneumonia [178].

Evidence that 5-LO products play protective roles in other parts of the body as well comes from studies on 5-LO⁻/⁻ mice and mice treated with the 5-LO inhibitor Zileuton, which were more susceptible to acute vesicular stomatitis virus (VSV) encephalitis [56]. This suggests that LTs also contribute to protective immunity in the central nervous system.

The evidence from infection models in mice with genetic ablation of LT biosynthesis might have some relevance for the human situation, where immunodeficiency due to malnutrition or HIV infection is connected to deficient LT generation [51], [318], [61], [187].

Therefore, application of aerosolized LTB₄ or biodegradable LTB₄-loaded microspheres has been suggested as a therapeutic approach for improving host defense against pulmonary infections, particularly in immuno-compromised individuals [210], [178].

3.4.3 Leukotrienes as mediators in asthma

The currently applied therapies in relation to LTs are designed to block rather than to boost the LT pathway in order to treat inflammatory conditions, which are characterized by an overproduction of LTs. The most studied condition with an established pathophysiological role for LTs is bronchial asthma [121]. Patients with diverse forms of asthma consistently show increased levels of LTs in exhaled breath condensate, broncho alveolar lavage fluid (BALF) and urine [335], [49], [98], [195].

The CysLT₁ antagonists montelukast, pranlukast and zafirlukast have been approved for the treatment of asthma and allergic rhinitis and are commonly used in combination therapy with topical glucocorticosteroids [183], [200]. Due to its hepatotoxic effects, the 5-LO inhibitor Zileuton is only applied in the treatment of severe and/or glucocorticosteroid resistant forms of asthma [22].

In asthma, inflammatory cells, such as mast cells and eosinophils, accumulate in the bronchi and bronchioli and release a diverse set of cytokines and lipid mediators, resulting in persistent inflammation (Fig. 3.10) [17].

LTC₄, LTD₄ and LTE₄, previously known as slow-reacting substance of anaphylaxis (SRS-A), have long been recognized as key mediators in asthma because of their potency to cause bronchial smooth muscle contraction, mucosal edema as well as mucus
secretion [67]. In addition, cysLTs contribute to airway remodeling by eliciting eosinophil accumulation and survival [137], [168] and by triggering the release of the remodeling cytokines IL-13 and TGFβ1 [228], [121]. The outstanding importance of cysLTs for the pathology of asthma is further supported by their upregulating effect on T\textsubscript{H}2 cytokine expression [60]. Interestingly, the capacity of the airway epithelium for cysLT biosynthesis is inversely related to the output of PGE\textsubscript{2}, which exerts inhibitory effects on airway remodeling [137]. Furthermore, exogenous PGE\textsubscript{2} inhibited stimulated cysLT release from bronchial biopsy specimens [265]. This anti-inflammatory action of PGE\textsubscript{2} was more prominent for mucosal specimens from normal as compared to from inflamed lungs, indicating an abnormal regulation of cysLT biosynthesis in pulmonary inflammation.

While cysLTs trigger asthma symptoms directly, LTB\textsubscript{4} has mainly been implicated in the pathogenesis of the underlying airway inflammation and hyperresponsiveness. In mouse models of allergic asthma genetic ablation of the LTB\textsubscript{4} receptor BLT\textsubscript{1} protected against the development of airway hyperresponsiveness and T\textsubscript{H}2-type immune responses [312], [196], [197].

In the human situation the LTB\textsubscript{4}/BLT-1 axis might have implications for severe, glucocorticosteroid resistant asthma characterized by a predominance of neutrophilic inflammation [214], [199], [130]. Severe asthma and chronic rhinosinusitis, particularly if accompanied by aspirin intolerance, are associated with pronounced LT overproduction and a simultaneous decrease in the generation of anti-inflammatory lipoxin A\textsubscript{4} [330], [226].

Studies assessing polymorphisms of LT pathway proteins, which predispose to the development of asthma are inconsistent. However, particular polymorphisms in the promoter region of LTC\textsubscript{4}S have repeatedly been linked to overexpression of the enzyme in certain groups of asthmatics [263], [155]. Furthermore, data from several groups suggest a correlation between increased expression of CysLT\textsubscript{1} and particular forms of asthma, e.g. aspirin intolerant asthma (AIA) or mild allergic asthma [159], [76], [352].
3.5. ENDOGENOUS SUPPRESSORS OF LT BIOSYNTHESIS

3.4.4 Leukotrienes in cardiovascular disease and cancer

In addition to its roles in asthma and other chronic inflammatory disorders such as rheumatoid arthritis [69], [55], [105] and colitis [280], [356], [66], the 5-LO pathway has been implicated in cardiovascular disease (CVD) and certain forms of cancer.

Investigations of human cancer tissue as well as murine cancer models suggest crucial roles of 5-LO products in chronic myeloid leukemia [57] and cancers of the prostate [116], colon [193] and pancreas [135].

Furthermore, there is a growing body of evidence describing genetic polymorphisms of the 5-LO pathway, which predispose to CVD [77], [134], [27], [93]. The pathological implication of LTs in atherosclerosis, aortic aneurysm and myocardial infarction has been confirmed in both animal models and tissue samples from patients [354], [240], [147], [104].

These studies imply that LT receptor antagonists or enzyme inhibitors should be explored as therapeutic options in the treatment and prevention of cancer and CVD [249], [21].

3.5 Endogenous suppressors of LT biosynthesis

As already adumbrated above, the biosynthesis by LTs can be controlled by endogenous compounds, such as PGE$_2$, which has long been recognized as a suppressor of leukocyte LT generation [122]. Further endogenous substances that can downregulate LT release are NO [44] as well as the autacoids adenosine and histamine [88], [90], which inhibited LTB$_4$ synthesis in macrophages and neutrophils, respectively. Most of these suppressive actions can be attributed to a receptor mediated elevation of the intracellular cAMP concentration, leading to subsequent activation of PKA. As described under 3.3.2, the activation of PKA results in reduced 5-LO translocation and product formation [91].

By contrast, distinct mechanisms were responsible for the inhibitory effects of sulfatides, endogenous selectin ligands, which prevented the translocation and activation of 5-LO in PMNL by causing rearrangement and redistribution of membrane lipids [301], [114].

Considering the therapeutic benefit of cortisol derivatives in the therapy of asthma, it is not surprising that also hydrocortisone (Cortisol) is an endogenous suppressor of LT biosynthesis [358], [283]. The inhibitory potential of hydrocortisone can most likely be attributed to its counteracting effect on cPLA$_2$ activation in response to various inflammatory stimuli [111].

3.6 Eicosanoids in antigen presenting cell biology

Professional antigen presenting cells (APCs) comprise dendritic cells (DCs), macrophages, B-cells and as recognized more recently and with some limitations also basophils [94], [289]. The common feature of professional APCs is their capacity to present antigens via MHC class II molecules and to activate naïve T-cells. However, full T-cell activation requires antigen presentation in the presence of innate immune activation motives
3.6. EICOSANOIDs IN ANTIGEN PRESENTING CELL BIOLOGY

such as MAMPs (see table 3.6). MAMPs induce APC maturation, expression of co-
stimulatory molecules and cytokine secretion [142]. The specific cytokine profile of the
activated APC results in the initiation of distinct types of adaptive immune responses,
i.e. activation of regulatory T-cells, TH2, TH1 or TH17 cells.

Thus, DCs and macrophages are of particular importance for the connection between
innate and adaptive immunity. As sentinels, they sample their environment for foreign
pathogens, which they phagocytose and process. In the following phases of their life
cycle, APCs downregulate their capacity for antigen uptake, while at the same time up-
regulating co-stimulatory molecules and molecules for antigen presentation [112]. Hence,
proper APC function requires the successive induction of factors that facilitate antigen
capture and processing, migration to lymph nodes, antigen presentation to T-cells and
finally APC apoptosis [112].

This complex life cycle is controlled by cytokines and chemokines such as TNFα, IL-4,
IL-10 and CCL19 [20], [149]). Although often neglected, also eicosanoids can influence
APC maturation, migration, antigen presentation and apoptosis [128]. Thereby, the
prostaglandins E2 and D2 modify cytokine secretion as well as migratory and T-cell
stimulatory properties of DCs [172], [152], [80], [10], [205], [314], [123]. The effects of
PGD2 and PGE2 may differ considerably depending on the prostaglandin receptor sub-
type, which is predominantly engaged [185]. Hence, PGs can shift the balance between
regulatory T-cells, TH2, TH1 or TH17 cells in a tissue specific manner [158], [33]. Com-
pared to the complexity of PG mediated events, the effects of LTs on APC function are
less diverse. Both cysLTs and LTB4 act as stimulatory factors, which can trigger activa-
tion, migration and maturation of DCs [132], [215], [341], [74], [284], [70]. However, the
magnitude of the LT triggered response may depend on the presence of other maturation
stimuli such as TLR ligands, which can differentially modulate LT receptor expression
on APCs [316].

In addition to their role as target cells of PGs and LTs, macrophages and DCs have long
been recognized as potent eicosanoid producing cells, which can synthesize products of
the cyclooxygenase and lipoxygenase pathways [85], [34], [167], [256]. It should be noted
that the quantity and quality of the lipid mediator output of the different macrophage
and DC subtypes is determined by their tissue localization and species origin. For
example, alveolar macrophages (AMs) are considerably more efficient LTB4 producers
as compared to blood monocytes or peritoneal macrophages [29], [167].

Furthermore, LT release in response to diverse stimuli such as GM-CSF or house dust
mite allergens differs clearly between macrophage and DC subsets [42], [18]. Many of
the species and tissue specific factors, which may influence eicosanoid biosynthesis and
signaling in APCs, still remain to be elucidated [186], [103]. Thus, evidence that has
been obtained from studies of certain APC subtypes, cannot simply be extrapolated to
other APCs.

One well established model system for human APCs are monocyte derived macrophages
(MDMs) and dendritic cells (MDDCs), generated by one week culture of CD14+ blood
mononuclear cells in the presence of GM-CSF or GM-CSF plus IL-4, respectively [260]
(Fig. 3.11). MDDCs represent an immature DC subset with high capacities for anti-
gen capture and processing, but with very low endogenous eicosanoid synthesis due
to suppression of cPLA2 by IL-4 [351]. However, both MDDCs and MDMs can convert
3.6. EICOSANOIDs IN ANTIGEN PRESENTING CELL BIOLOGY

Exogenous AA to a variety of eicosanoids, including HETEs, prostanoids and LTs. Characterization of the MDDC lipoxygenase product profile revealed a clear predominance of the 15-LO versus the 5-LO pathway [292]. Interestingly, TGFβ1 treated MDDCs, resembling epidermal Langerhans cells (LCs), exhibited a clearly increased 5-LO activity, which is in accordance with the selective expression of 5-LO in skin LCs [293], [74].

Figure 3.11: Generation of monocyte derived macrophages and dendritic cells

3.6.1 APCs and pro-resolving lipid mediators

APCs do not only participate in the initiation phase of the inflammatory response but also in the subsequent resolution steps, which require lipid mediator class switching from leukotrienes and prostaglandins to lipoxins and anti-inflammatory derivatives of ω-3 fatty acids [275], [176], [295] (Fig. 3.12). The non-phlogistic phagocytosis of apoptotic neutrophils by macrophages is a crucial event of the resolution phase, which could be promoted by lipoxins [107] and was accompanied by PGE2 mediated inhibition of pro-inflammatory cytokine release [81]. As to DC function, lipoxin A4 (LXA4) suppressed IL-12 secretion and LPS induced maturation [8], [353].

Another class of anti-inflammatory lipid mediators with regulatory roles for APC function are the resolvins, which are synthesized from the ω-3 fatty acids eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA). Similar to LXA4, the EPA derived resolvin E1 (RvE1) (Fig. 3.13) inhibited neutrophil infiltration and increased the uptake of apoptotic neutrophils by macrophages [269], [274], [213].

The anti-inflammatory properties of ω-3 fatty acid derivatives provide a biochemical basis for some of the beneficial effects of a high nutritional intake of ω-3 fatty acids, particularly in patients with chronic inflammatory diseases such as rheumatoid arthritis and bronchial asthma [99], [311].
3.6. EICOSANOIDS IN ANTIGEN PRESENTING CELL BIOLOGY

Figure 3.12: Lipid mediator class switching during the course of inflammation [275]

Figure 3.13: Chemical structures of lipoxin B₄ and resolvin D₁ [274]
3.7 Exosomes - generation and immunological roles

As discussed above, APCs are efficient producers of soluble mediators with diverse effects on the immune system. However, in recent years, another form of communication between APCs and their target cells has become increasingly recognized: Like many other cells, APCs secrete small membrane vesicles, so called exosomes, which are 40 to 100 nm in diameter. Exosomes contain a specific set of molecules, many of which are related to immunological functions (Fig. 3.14) [319], [59].

![Typical protein composition of exosomes](image)

The protein and lipid composition of exosomes can be partially distinct from that of the parent cells, which is due to particular sorting events during exosome formation [79], [299]. Exosome biogenesis involves inward budding of late endosomal compartments, resulting in formation of multivesicular bodies (MVBs), which fuse with the plasma membrane to release the contained vesicles into the microenvironment [286], [184] (Fig. 3.15).

Exosomes can be isolated from body fluids or cell culture supernatants by ultra-centrifugation at 100,000 x g, often combined with a sucrose gradient, which yields highly purified exosomes [184]. The isolated vesicles can be visualized by electron microscopy, where they appear as cup-formed structures (Fig. 3.15).

Exosomes are stable in the circulation [310] and can long after their secretion be found at sites distinct from their origin. Moreover, the abundance of exosomes in various body fluids strongly suggests that exosome release is an important phenomenon, which occurs in vivo [52]. The presence of exosomes in body fluids was first described for malignant effusions from melanoma patients [11] and many tumor cells secrete massive amounts of these vesicles [267], [5]. Notwithstanding, exosomes can be secreted by most cell types.
Up to date, it is still controversial if exosome release is mainly constitutive or if specific mechanisms regulate exosome output e.g. in response to danger signals or microbial stimuli. The latter conception is supported by the observation that exosome secretion by DCs or macrophages was increased by cognate T cell-DC interactions or by ATP and infection with *Mycobacterium tuberculosis*, respectively [45], [241], [247]. Intriguingly, exosome levels were clearly elevated in bronchoalveolar lavage fluid (BALF) from patients with the inflammatory lung disease sarcoidosis [236]. These findings suggest that exosome biogenesis and/or release can be induced by pro-inflammatory factors.

Studies on APC derived exosomes have shown that the surface expression of co-stimulatory molecules and molecules for antigen presentation depends on the phenotype of the parent APC [150]. Antigen-loaded APC derived exosomes can transfer antigens to naive APCs or directly elicit T-cell responses [357], [320], [237], [319] (Fig. 3.16). Furthermore, exosomes, released by macrophages infected with intracellular pathogens, carried MAMPs and triggered pro-inflammatory cytokine secretion in naive bystander macrophages [28], [218].

Information about possible connections between lipid mediators and exosome biology is
very limited. Enrichment of phospholipases (PLs) in reticulocyte exosomes as well as an involvement of PLs and 15-LO in the exosome formation process have been reported [25], [166], [31]. However, only two studies have indicated that exosomes are carriers of bioactive eicosanoids: both exosomes from myeloid-derived suppressor cells (MDSCs) and from the basophil/mast cell line RBL-2H3 were found to contain prostaglandins [342], [298]. The immuno-modulatory potential of exosomes as well as their high content of active PLs and free fatty acids [298] suggest that they might be involved in lipid mediator biosynthesis.

Recent findings have demonstrated that nanovesicles are also carriers of LT receptors and might thus respond to LTs e.g. by releasing their content. Interestingly, cysLTs could trigger the secretion of pro-inflammatory factors from cell-free human eosinophil granules [208]. Taken together, these novel data allow speculations about previously unrecognized immunological settings, which are solely vesicle based.

Figure 3.16: Stimulatory immune functions of APC derived exosomes [319]
4 Aims

The raising incidence of chronic inflammatory disease, seen today, demands a better understanding of how pro- and anti-inflammatory mediator production is regulated. It was the aim of this thesis to contribute some new pieces to the incomplete puzzle of the vast and complex network that controls inflammation.

The key roles of LTs as pro-inflammatory mediators in host defense and chronic inflammation motivated our studies on the regulation of LT biosynthesis on a molecular and cellular level as well as in completely new settings:

The objective of the first study, included in this thesis, was to characterize the role of coactosin like protein (CLP) for 5-LO activity [246] in more detail. Thereby, we focused on the individual impact of three Trp residues in the regulatory domain of 5-LO, which had previously been reported to confer membrane binding [164] as well as interaction with CLP [246]. As purified 5-LO is highly instable and rapidly inactivated upon exposure to oxygen or high temperatures, we also investigated a possible stabilizing effect of CLP.

The main purpose of the second study was to investigate potential long term effects of microbial stimulation on the LT output of macrophages and dendritic cells. Particularly, we aimed at investigating the regulation of the downstream enzymes for LT biosynthesis (LTA₄H and LTC₄S) during prolonged exposure to the fungal cell wall preparation zymosan. The identification of the key receptors and signaling pathways, involved in the observed responses, was another central goal of this study.

As the main objective of the last two studies, we analyzed exosomes from antigen presenting cells, blood plasma and brochoalveolar lavage fluid (BALF) regarding their unknown content of enzymes for LT biosynthesis.

A special focus of the first study on LT biosynthesis in exosomes was the comparison between the exosomal and cellular capacity for conversion of LTA₄ to the LTs B₄ and C₄. Furthermore, we were interested in the impact of TGFβ₁, previously reported to have major effects on lipoxygenase pathways in APCs [292], on the LT output of macrophages, DCs and their exosomes. Finally, we wanted to investigate potential roles of APC derived exosomes in transcellular LT metabolism and granulocyte trafficking.

The main purpose of our second study involving exosomes was the comparison of BALF exosomes from asthmatics and healthy individuals regarding possible differences in their content of pro-inflammatory molecules and in their capacity to trigger mediator release from bronchial epithelial cells. Moreover, we planned to assess potential changes in the characteristics of BALF exosomes from asthmatics before and after allergen challenge.
5 Materials and methods

5.1 Materials

Information about all materials that have been used during the experimental work for this thesis can be found in the "Materials and Methods" sections of the individual papers.

5.2 Methodology

The following methods were used to perform the studies described in this thesis:

1. High performance liquid chromatography (HPLC) (studies I, II, III, IV)
2. Cell isolation from blood and Buffy Coats (monocytes, PMNL) (studies II, III)
3. Cell culture (MM6 cells, MDMs, MDDCs, 16HB14o cells) (studies I, II, III, IV)
4. Exosome isolation from culture supernatants and body fluids (studies III, IV)
5. Flow cytometry (studies III, IV)
6. Cell incubations and solid phase extraction of lipid mediators (studies II, III, IV)
7. SDS polyacrylamide gel electrophoresis and Western blot (studies I, II, III, IV)
8. (Quantitative real time) polymerase chain reaction ((qRT)-PCR) (studies I, III)
9. Enzyme (linked) immuno(sorbent) assay (E(L)I(S)A) (studies II, IV)
10. In vitro chemotaxis assay (study III)
11. Electron microscopy (study III)
12. Expression and purification of recombinant proteins (studies I, II)
13. In vitro phosphorylation assay (study II)

For detailed descriptions of the experimental procedures, please refer to the "Materials and Methods" sections of the individual papers.
6 Results

6.1 Coactosin like protein functions as a chaperone for 5-LO

In the first study, we demonstrate that CLP can prevent the non-turnover related inactivation of 5-LO and protect the enzyme against heat inactivation (Fig. 4, paper I). Further support for the stabilizing influence of CLP on 5-LO comes from the finding that degradation of 5-LO by the protease thermolysin was delayed in the presence of CLP (Fig. 7A, paper I).

6.1.1 Importance of 5-LO-Trp102 and CLP-Lys131 for the CLP-5-LO interaction

Previous studies had suggested a role of three tryptophan residues (Trp13, 75 and 102) in the regulatory domain of 5-LO for the interaction with CLP [246]. By separate mutagenesis of each of these tryptophans (replacement by alanine) we were able to identify 5-LO-Trp102 as the crucial residue for the activating and stabilizing effects of CLP (Figs. 1 and 5, paper I). Furthermore, we show that a lysine residue in CLP (Lys131), previously shown to be necessary for promotion of 5-LO product formation, is also essential for the stabilizing interaction between 5-LO and CLP (Fig. 6, paper I).

GST-pull down assays, performed to analyze the physical interaction of CLP with wt-5-LO, 5-LO-W13A, 5-LO-W75A and 5-LO-W102A, demonstrated that mutation of Trp102 abrogated binding of 5-LO to CLP (Fig. 3, paper I).

Computational docking led to the suggestion of a model for the CLP-5-LO interaction, which is based on the assumption that CLP and 5-LO are arranged in such a way that CLP-Lys131 and 5-LO-Trp102 are directed towards the respective partner protein (Fig. 6.1 or Fig. 9, paper I).

In such a complex, CLP-Lys131 and 5-LO-Trp102 could engage in a network, consisting of hydrogen bonds (black dashed lines) and cation-π interactions (red dashed lines) with 5-LO-Phe14 and 5-LO-Arg165 (Fig. 6.1, right panel).

6.1.2 CLP translocates together with 5-LO in MM6 cells

Upon stimulation of cells of the monocytic cell line MM6 with phorbol esters and the Ca$^{2+}$ ionophore A23187, 5-LO translocates to the nuclear membrane, resulting in an increased capacity for LT biosynthesis [338]. In our study, we observed the same pattern of redistribution for CLP as for 5-LO: In undifferentiated MM6 cells, which are 5-LO negative, as well as in unstimulated differentiated (5-LO positive) cells, the major portion of CLP was found in the cytosolic fraction (Fig. 8, paper I). However, in differentiated
6.2. *LONG-TERM ZYMOsan STIMULATION SUPPRESSES LTC₄S ACTIVITY*

Figure 6.1: *Model complex of the interaction between 5-LO and CLP* (the graphic was prepared by Bettina Hofman, University of Frankfurt)

MM6 cells stimulation with phorbol ester and ionophore triggered the translocation of 5-LO to the nucleus, which was accompanied by increased levels of CLP protein in the nuclear fraction (Fig. 8B, paper I).

In summary, the results from this study support the hypothesis that CLP is a chaperoning scaffold factor for 5-LO, which may promote cellular LT biosynthesis.

6.2 Long-term zymosan stimulation suppresses LTC₄S activity

6.2.1 LTC₄S activity is upregulated during differentiation of MM6 cells

Already in the early nineties, several groups showed that cellular LTC₄S activity can be downregulated by the protein kinase C activator PMA in HL-60 cells, granulocytes and platelets, indicating phosphoregulation of LTC₄S [153], [7], [287], [326]. In a later study, Gupta et al. used [³²P]orthophosphate labeling followed by immunoprecipitation and autoradiography to obtain direct evidence for LTC₄S phosphorylation in whole cells [115]. In the same report, the authors demonstrated that phosphorylation of LTC₄S in response to PMA occurs in the human monocyte cell line THP-1.

In line with these studies, we found that a short pre-treatment with the pan-kinase inhibitor staurosporine upregulated LTC₄S activity in undifferentiated MM6 cells, which otherwise had a very low capacity for conversion of LTA₄ to LTC₄ (Fig. 2A, paper II). This observation provides further support for phosphoregulation of LTC₄S in monocytic cells.

TGFβ1 and VD₃ induced differentiation generated MM6 cells with a high capacity for conversion of LTA₄ to LTC₄ (Fig. 1A, paper II). In these cells, pre-incubation with staurosporine did not further increase the conversion of LTA₄ to LTC₄, suggesting that
6.2. **LONG-TERM ZYMOSAN STIMULATION SUPPRESSES LTC₄S ACTIVITY**

The major part of LTC₄S was un-phosphorylated and fully active after differentiation in the presence of TGFβ1 and VD₃.

Even if less potently than staurosporine, also rapamycin, an inhibitor of the mTOR/p70 ribosomal S6 kinase (p70S6K) pathway, upregulated LTC₄S activity in undifferentiated MM6 cells (Fig. 2A, paper II). Furthermore, as previously shown for HL-60 cells [224], the phosphorylation and thus activity of p70S6K was time dependently decreased during differentiation of MM6 cells with TGFβ1 and VD₃ (Fig. 2B, paper II). By *in vitro* phosphorylation experiments, we demonstrated, that p70S6K can directly phosphorylate purified LTC₄S (Fig. 2C, paper II), thus identifying the mTOR/p70S6K pathway as a novel player in the regulation of LT biosynthesis. Finally, preliminary data from our group indicate that Resolvin E₁, which activates p70S6K [213], can attenuate LTC₄ formation in MM6 cells (unpublished data).

6.2.2 **Prolonged zymosan exposure triggers inhibitory phosphorylation of LTC₄S**

One hallmark of zymosan induced acute peritonitis, a commonly used *in vivo* model of acute inflammation, is the pronounced release of cysLTs, which can mostly be attributed to macrophages [162], [350]. Several groups have studied the receptors and signaling pathways involved in the acute (15-60 min) induction of LT biosynthesis in response to zymosan [217], [216], [331]. By contrast, we were interested in potential long-term effects of zymosan on the LT output of human monocytic cells.

The initial key finding in this study was the potent suppression of the LTC₄S activity after 48-96 hrs differentiation in the presence of zymosan, which coincided with a distinct upregulation of PGE₂ release (Figs. 1A, 1D, 3A, paper II). Interestingly, the pan-kinase inhibitor staurosporine and the PKA inhibitor H-89 partially restored the cellular capacity for LTC₄ biosynthesis (Figs. 1E, 2D, paper II). These results suggest that long term stimulation with zymosan triggers events, which lead to the inhibitory phosphorylation of LTC₄S.

Thereby, it appears that different kinases can contribute to phosphoregulation of LTC₄S in MM6 cells. While, in undifferentiated cells, p70S6K seems to play a role, PKA may mediate an important part of the suppressive zymosan effect in differentiating cells.

6.2.3 **TLR2 mediates the zymosan induced downregulation of LTC₄S**

Zymosan particles are prepared from the yeast cell wall (Fig. 3.9) and thus contain a mixture of α-mannans, β-glucans, glycolipids and lipopeptides. Two major receptors are implicated in the cellular responses to zymosan in macrophages and DCs: TLR2 and the β-glucan receptor (called Dectin-1 in mouse). These two receptors collaboratively trigger various acute inflammatory events [110]. However, the β-glucan receptor is the primary receptor for phagocytosis of zymosan as well as for induction of ROS production and NFAT activation [110]. In contrast, TLR2, which is recruited to zymosan-containing phagosomes [329], mediates activation of NFκB [100].
6.2. **LONG-TERM ZYMOSAN STIMULATION SUPPRESSES LTC₄S ACTIVITY**

To identify the zymosan receptor upstream of the phosphorylation events for suppression of cysLT generation, we differentiated MM6 cells in the presence of a zymosan preparation ("depleted zymosan"), which binds to the β-glucan receptor, but not to TLR2. In both MM6 cells and MDDCs, a prolonged exposure to depleted zymosan did not affect the capacity to convert LTA₄ to LTC₄ (Fig. 4, paper II (data not shown for MDDCs)). In addition, in MM6 cells differentiated in the presence of the selective TLR2 agonist Pam2CSK4 or in the presence of zymosan together with the β-glucan receptor antagonist laminarin, LTC₄S activity was downregulated to a similar extent as observed with zymosan (Fig. 4, paper II). These findings indicate that the reduction of LTC₄ formation in response to zymosan depends on TLR2 rather than on the β-glucan receptor.

Long term exposure to α-mannan, a ligand of the mannose receptor (MR) and a constituent of zymosan (and the fungal cell wall (Fig. 3.9)), resulted in a weak but significant downregulation of the LTC₄S activity (Fig. 4, paper II). This suggests that TLR2- and MR-signaling might cooperate to induce the regulatory mechanisms for control of cysLT biosynthesis.

6.2.4 **Zymosan triggered PGE₂ release leads to inhibition of LTC₄S**

The prominent increase in PGE₂ release after 48-96 hrs of zymosan exposure (Fig. 3A, paper II) and the induction of COX-2 and mPGES-1 expression (Fig. 3B, paper II) correlated with the reduction of LTC₄S activity in the same time frame (Fig. 1A, paper II). Thus, we tested whether the non-selective COX inhibitor acetylsalicylic acid (ASA) or the COX-2 selective inhibitor etoricoxib might have an effect on the cysLT generation in zymosan treated MM6 cells. We also investigated a potential impact of exogenous PGE₂.

Interestingly, ASA counteracted the zymosan induced suppression of LTC₄S activity very efficiently, while etoricoxib had a more moderate effect (Fig. 3C, top panel, paper II). Furthermore, PGE₂ (100 nM, 24 h) significantly reduced LTC₄ generation from LTA₄ (Fig. 3D, paper II). These findings strongly implicate PGE₂ in the regulation of the LTC₄ output in human monocytic cells.

As discussed in paper II, we hypothesize a novel mechanism for control of cysLT biosynthesis during monocyte differentiation and in later phases of microbe triggered inflammatory responses (Fig. 6.2 or Fig. 5, paper II). We propose that this mechanism could constitute a component of the resolution phase and provide a biochemical explanation for the exaggerated cysLT release in conjunction with aspirin hypersensitivity.
6.2. LONG-TERM ZYMOSAN STIMULATION SUPPRESSIONS LTC₄S ACTIVITY

Figure 6.2: Mechanisms for control of LTC₄ biosynthesis in monocytic cells
6.3 Exosomes are novel players in LT biosynthesis

As membrane vesicles with immuno-modulatory functions [321] and a high content of polyunsaturated fatty acids (PUFAs) [298], exosomes appear to be well suited vehicles for lipid mediator synthesis. Hence, we were interested in exosomes as potential platforms for LT biosynthesis.

6.3.1 Exosomes from macrophages and DCs contain LTA$_4$H and LTC$_4$S

Initially, we investigated whether exosomes from human monocyte derived APCs (MDMs and MDDCs) contain proteins of the LT pathway and whether they are capable of converting LTA$_4$ to the bioactive LTs.

By using Western blotting, HPLC based activity assays and immuno-electron microscopy, we demonstrated that APC derived exosomes carry active LTC$_4$S and LTA$_4$H (Figs. 2A, B, 3, 4B, paper III). Thereby, exosomes showed an enrichment of LTC$_4$S protein and activity as compared to their parent cells (Figs. 2A, 4A, B, paper III).

We also studied the influence of TGFβ1, an important modulator of monocyte differentiation, on the LT output of cells and exosomes. Interestingly, TGFβ1 upregulated the cellular capacity for LT biosynthesis, but downregulated exosome secretion, particularly in MDMs (Figs. 4A, E2B, 1C, paper III). In earlier studies, TGFβ1 (together with VD$_3$) was shown to upregulate 5-LO expression in cells of the monocytic lineage [296], [292]. Here, we found that TGFβ1 also increased the expression of LTA$_4$H in monocytic cells (Fig. E1, paper III). In addition, LTA$_4$H protein levels and activities were higher in exosomes from TGFβ1-MDMs and TGFβ1-MDDCs as compared to their "non-TGFβ1" counterparts (Figs. 2A, 4B, paper III).

The high capacity of exosomes for conversion of LTA$_4$ motivated us to perform co-incubations of exosomes with PMNL, which are a rich endogenous source of LTA$_4$. Indeed, in AA and ionophore (A23187) incubations, PMNL that were co-incubated with exosomes, synthesized larger amounts of LTs as compared to PMNL alone (Fig. 4C, paper III). Exosomes alone did not convert exogenous AA to detectable levels of the LTs B$_4$ or C$_4$. However, in an LC-MS/MS analysis of extracts from AA and A23187 incubated MDM exosomes, we were able to detect a variety of AA metabolites, such as 5- and 15-HETE, 5- and 15-KETE as well as 20-carboxy-LTB$_4$ (table 1, paper III).

6.3.2 Exosomes promote granulocyte migration in vitro

Since several of the exosomal AA metabolites have chemotactic potential, we performed an in vitro migration assay with exosomes and PMNL. In this assay, we observed that exosomes could induce migration of PMNL, which was slightly increased in the presence of AA and A23187 (Fig. 5, paper III).

In summary, this study identifies exosomes as novel players in LT biosynthesis and leukocyte trafficking. Hence, exosomes might contribute to eicosanoid generation in inflammatory settings at sites remote from their parent cell.
6.4 Asthmatics display an altered profile of BALF exosomes capable of LT metabolism and induction of IL-8

The presence of LT biosynthetic enzymes in body fluid exosomes from healthy individuals sparked our interest in investigating exosomes from BALF of asthmatics. We obtained BALF samples from a clinical study with mild birch pollen allergic asthmatics, who underwent allergen challenge. Samples from the same patients were analyzed...
6.4. ASTHMATICS DISPLAY AN ALTERED PROFILE OF BALF EXOSOMES CAPABLE OF LT METABOLISM AND INDUCTION OF IL-8

in a previous study, which compared lymphocyte populations and cytokine levels in BALF from healthy controls and asthmatics before and 24 hrs after allergen challenge [323]. In accordance with earlier reports, TH2 cytokine levels were found to be higher in BALF from asthmatics as compared to healthy controls and levels of IL-5, IL-6 and IL-9 further increased after allergen provocation. Moreover, characterization of BALF lymphocyte populations indicated increased numbers of activated T-cells, particularly regulatory T-cells, in BALF from allergen provoked asthmatics [323].

In our study, we assessed innate inflammatory cell populations (eosinophils, macrophages and mast cells) in BALF from healthy controls and asthmatics before and after birch pollen allergen exposure. We observed a significantly elevated eosinophil count after allergen challenge and a tendency towards increased mast cell numbers in asthmatics even at steady-state (Figs. 1A, C, paper IV). Interestingly, allergen provocation also resulted in a higher exosomal protein content in BALF (Fig. 1E).

6.4.1 BALF exosomes from asthmatics exhibit pro-inflammatory phenotypic characteristics

Since nothing was known about the phenotypic characteristics of BALF exosomes from asthmatic patients, we analyzed exosomal surface markers by flow cytometry. The tetraspanins CD63 and CD81 are classical exosome markers as they are enriched in late endosomes and multivesicular bodies, which are the cellular compartments for exosome biogenesis [322]. Characterization of BALF exosome surface marker expression showed increased levels of CD63 and CD81 on exosomes from asthmatics as compared to those from healthy controls (Figs. 2A, B paper IV). CD63 and CD81 are involved in processes like leukocyte activation and adhesion [170], [231] and CD63 is a marker of basophil activation, commonly used in allergy diagnostics [161]. Thus, BALF exosomes from asthmatics appear to carry a molecular signature, which reflects the inflammatory status of the lung.

6.4.2 BALF exosomes increase pro-inflammatory mediator release from BECs

In order to identify potential functional roles of exosomes in the lung, we used bronchial epithelial cells (BECs) as a model system. More specifically, we incubated BECs with BALF exosomes from healthy individuals and asthmatics and analyzed pro-inflammatory cytokine secretion.

Co-incubation of BECs with BALF exosomes from asthmatics resulted in a significantly increased secretion of IL-8 and cysteine leukotrienes as compared to incubation with exosomes from healthy individuals (Figs. 6A, 5B, paper IV). Furthermore, in presence of the CysLT1 receptor antagonist montelukast, BECs secreted less IL-8 (Fig. 7A, paper IV). This difference was particularly distinct for those exosomes from asthmatics, which elicited a clear increase in IL-8 release (Figs. 6A, 7A, paper IV).

Interestingly, the induction of IL-8 and cysteine leukotriene secretion was most pronounced for BALF-exosomes from the patient that suffered the most severe response after allergen provocation (Figs. 5B, 6A, table 1, paper IV). The same patient displayed the highest inflam-
6.4. ASTHMATICS DISPLAY AN ALTERED PROFILE OF BALF EXOSOMES CAPABLE OF LT METABOLISM AND INDUCTION OF IL-8

Inflammatory cell counts as well as exosomal protein content per BALF volume (Fig. 1, paper IV).

In conclusion, our data suggest that in the asthmatic lung, exosomes may promote pro-inflammatory mediator release by epithelial cells, thereby contributing to airway inflammation.

Figure 6.4: Suggested role of exosomes as promoters of pulmonary inflammation; green arrows: synthetic capacity, black arrows: chemotaxis
7 Discussion

The following chapter will discuss some important implications, limitations and open questions related to the studies described in this thesis.

7.1 Insights into the chaperone function of CLP for 5-LO

An attractive explanation for the protective effect of CLP against proteolysis (Fig. 7A, paper I) is that by binding to 5-LO, CLP renders the 5-LO structure more compact, and consequently bulky hydrophobic residues, preferred cleavage sites of thermolysin [133], may become less accessible. In soybean lipoxygenase-1, hydrophobic interactions contribute to association of the two domains [300] and hydrophobic residues are present between the two domains in 5-LO model structures [9]. The importance of 5-LO-W102 suggests that CLP binds at or near the domain interface of 5-LO. Possibly, CLP prevents access of thermolysin to a target site on hydrophobic interdomain areas of 5-LO.

The reliability of our model structure for the interaction between 5-LO and CLP (Fig. 9, paper I) is limited by the lack of an X-ray structure of 5-LO at the time, when our modeling was performed. It should be noted that also other binding modes could be envisioned: an intriguing possibility seems to be the CLP induced formation of a 5-LO dimer, which is more stable than the monomer (suggested by Prof. Elias Arnér, MBB, KI). In this case, Trp102 could be the essential residue for dimerization of 5-LO. This alternative is particularly appealing since dimeric structures have been described for other lipoxygenases [6] and Trp residues are often involved in the stabilizing stacking interactions in dimeric enzymes [13].

Our data suggest that CLP might have regulatory roles for 5-LO, similar to those, described for scaffolding proteins in the regulation of nitric oxide synthases [163]. Potentially, CLP is particularly relevant for 5-LO product formation in the cytosol [338], which occurs remote from the nuclear membrane protein FLAP. FLAP was shown to function as a 5-LO scaffold protein, which associates with 5-LO in IgE stimulated mast cells as well as in primary neutrophils from inflamed joints [180]. A potential interplay of CLP and FLAP in the support of 5-LO activity at the nuclear membrane remains to be elucidated.

Until now, all data that support the function of CLP as a 5-LO activity promoting chaperone have been obtained in vitro. Thus, the in vivo relevance of CLP for 5-LO product formation and stability remains to be shown. Knock-down strategies like genetic ablation of CLP could be applied to address this issue first in cell lines and ultimately in animal models.
7.2 Regulation of LT biosynthesis in human monocytic cells

When using cell lines or in in vitro generated cells, as it was the case in our studies, one should bear in mind that the obtained results might not entirely reflect the in vivo situation. As extensively discussed by Geissmann et al., in vitro generated macrophages and DCs are useful tools for studying APC biology, but do however not recapitulate the heterogeneity of mononuclear phagocytes in vivo [103]. In vivo, immune cells are exposed to a complex environment of differentiation factors, which depends on the state and cellular composition of the host tissue. However, all cells used in our studies were of human origin and share important characteristics with their primary in vivo counterparts [355], [260], [64].

In our studies on the regulation of LT biosynthesis in MM6 cells, MDMs and MDDCs, we focused on the cellular capacities for conversion of exogenous LTA$_4$ into the LTs B$_4$ and C$_4$. Thus, our findings might be particularly relevant in inflammatory settings, which involve large numbers of LTA$_4$ releasing neutrophils.

In contrast to MDDCs and undifferentiated MM6 cells, which are largely 5-LO negative, differentiated MM6 cells and TGF/β-MDMs show high levels of 5-LO protein and product formation [296], (Figs. E1, E2, paper III (online repository)). In Western blots for 5-LO, two bands appeared in samples from MDMs and TGF/β-MDDCs (Fig. E1, paper III), which displayed abundant 5-LO product formation (Fig. E2, paper III). By contrast, in lysates from MDDCs, synthesizing very low amounts of 5-HETE, the lower of the two bands was hardly detectable (Figs. E1, E2A, paper III). It is attractive to speculate that this lower band corresponds to active 5-LO, while the the upper band can be attributed to an inactive 5-LO splice variant. Several inactive isoforms of 5-LO have been identified very recently [35].

The treatment of monocytes with a particular cytokine combination (GM-CSF +/- IL-4 +/- TGF/β1 or TGF/β1 + VD$_3$) for four to eight days had a major impact on the cellular LTA$_4$ metabolism (Figs. 1A, paper II, 4A, paper III). In contrast to 5-LO and LTA$_4$H, LTC$_4$S protein levels were not influenced by the presence of TGF/β1 during differentiation (Figs. 2A, paper III, 1B, paper II). Hence, TGF/β1 should induce the observed increases in LTC$_4$S activity (Figs. 1A, paper II, 4A, paper III) by a post-translational mechanism, which we suggest might be the reduction of inhibitory phosphorylation (compare Fig. 6.2).

The capacity for conversion of LTA$_4$ to LTC$_4$ in differentiated MM6 cells was considerably (about 10fold) higher than in MDMs (Figs. 1A, D, paper II). This might be explained by the generation of MDMs in the presence of GM-CSF, which potently increases the phosphorylation of p70S6K [108]. As we have shown, p70S6K can directly phosphorylate LTC$_4$S (Fig. 2C, paper II). Thus, the activation of p70S6K by GM-CSF can be expected to result in a decreased cysLT output. Interestingly, TGF/β1 and VD$_3$ had a very weak influence on the LTC$_4$S activity in MDMs, suggesting a dominant suppressive effect of GM-CSF on cysLT generation in monocytic cells (unpublished observations).

The long-term effect of zymosan, to downregulate LTC$_4$S by inducing phosphorylation, occurred in connection with differentiation of the monocytic cells. This may resemble the phase of monocyte entry into tissues, where they differentiate under the influence
of the local cytokine milieu and where simultaneous encounter of MAMPs like those contained in zymosan might occur. A growing body of evidence suggests that different PRRs mediate the responses in early and late phases of pathogen recognition. This phenomenon also comprises the induction of eicosanoid production in response to yeast cell wall components: while the β-glucan receptor (Dectin-1) mediates immediate events like AA release and LT synthesis, later events, such as the induction of COX-2 often depend on TLR2 signaling [305], [223], [304]. These studies are in accordance with our results, which suggest that the late suppression of LTC₄S by zymosan is mainly mediated via TLR2 (Fig. 4, paper II).

7.3 PGE₂ mediated control of cysLT biosynthesis - clues for aspirin intolerance

In paper II, we hypothesize that COX product dependent control of cysLT generation in vivo is mediated by some of the kinase pathways that we have identified in monocytic cells in vitro. Furthermore, we suggest that the exaggerated release of cysLTS, observed in aspirin intolerant asthma (AIA) [194], might be explained by a failure of such regulatory mechanisms.

According to the "shunting hypothesis", which has been popular for a long time, the exacerbation of an acute asthma attack after intake of aspirin or other NSAIDs is due to "shunting" of AA from the COX into the 5-LO pathway. However, several studies indicate that the increased LT generation after aspirin intake, particularly in AIA, cannot entirely be explained by shunting [160], [82].

Importantly, in contrast to inhibition by other NSAIDs, which totally block COX activity [248], COX "inhibition" by ASA results in acetylation of the enzyme. Acetylated COX is not inactive, but instead shows an altered product profile: rather than to PGH₂, it converts AA to 15-H(P)ETE and aspirin triggered lipoxins (ATLs) [255], [279]. Thus, we cannot exclude that acetylated-COX products like ATLs play a role in the modulation of the LTC₄S activity by aspirin. Experiments with other NSAIDs (e.g. ibuprofen), which totally abrogate COX activity, could help to clarify this issue.

In contrast to aspirin and the other classical NSAIDs, AIA patients tolerate selective COX-2 inhibitors [270], [19], suggesting that the control of cysLT release in the airways of these patients depends on COX-1 activity [82]. This supports a possible relevance of our postulated control mechanism (Fig. 6.2) in the context of AIA, because ASA counteracted the suppression of LTC₄S activity more efficiently than the COX-2 selective inhibitor etoricoxib (Fig. 3C, top panel, paper II). However, even if etoricoxib showed a lower potency to inhibit PGE₂ release as compared to ASA (Fig. 3C, bottom panel, paper II), this rather small difference might not entirely explain the pronounced difference in the potency of ASA and etoricoxib to restore LTC₄S formation in zymosan treated cells (Fig. 3C, top panel, paper II). This discrepancy might be explained by two reasons: Firstly, ASA could influence LTC₄S activity via additional mechanisms, such as reduced generation of other prostanoids, induction of ATL synthesis (see above) or inhibition NFκB [118]. Secondly, as discussed in paper II, the contribution of COX-1 and COX-2 to PGE₂ synthesis might vary during earlier and later phases of monocyte differentiation in the presence of zymosan.
PGE$_2$ can bind to four different PGE$_2$ receptors (EP1 to EP4) with distinct expression patterns and downstream signaling pathways (Fig. 7.1). Therefore, PGE$_2$ can trigger a diverse set of responses, often in a tissue specific manner [302], [169]. Immune cells of monocytic origin, which were in the focus of our study, express mRNA for EP2, EP3 and EP4 [140]. However, PGE$_2$ exerts most of its immunological functions via EP2 and EP4 [55], [33]. It appears that the suppressive effect of PGE$_2$ on LTC$_4$S activity is mediated via several PGE$_2$ receptors (Fig. 3C, top panel, paper II).

![Figure 7.1: Biosynthesis and signaling of PGE$_2$ [169], modified](image)

The suppression of LTC$_4$S activity by PGE$_2$ is particularly intriguing in the context of transcellular LT metabolism, because PGE$_2$ also inhibits 5-LO product formation in neutrophils [122], [91], the major endogenous source of LTA$_4$. This underlines the importance of PGE$_2$ mediated control of LT generation at the site of inflammation with its complex milieu composed of structural cells and infiltrating leukocytes. Another mode of reduction of LT biosynthesis by PGE$_2$, which was described for mouse DCs, is IL-10 dependent downregulation of FLAP expression [129]. Interestingly, the combination of IL-10 and PGE$_2$ also downregulated expression of the CysLT$_1$ receptor in human MDDCs [315]. Thus, it appears that several components of the LT pathway can be inhibited via overlapping signaling mechanisms in different inflammatory cell types, thereby ensuring efficient "switch-off" of LT generation and effector functions in response to PGE$_2$.

The PGE$_2$ mediated suppression of cysLT biosynthesis is in accordance with clinical findings, describing reduced expression of EP-2 receptor or COX-1 and 2 in nasal mucosa or cultured bronchial epithelial cells from aspirin-intolerant patients, respectively [345], [230]. Furthermore, in comparison to aspirin tolerant asthmatics (ATA), aspirin intol-
7.4. EXOSOMAL LTs AS AMPLIFIERS OF IMMUNITY AND INFLAMMATION

Aspirin intolerant asthmatics (AIA) display increased numbers of CysLT$_1$ expressing inflammatory leukocytes in their nasal mucosa [291]. This suggests that in aspirin intolerant respiratory disease, PGE$_2$ mediated control is lacking at several levels of the cysLT pathway, resulting in a vicious circle of overproduction, hyperresponsiveness and ultimately cysLT driven persistent inflammation. In a very recent study, targeted eicosanoid lipidomics showed a tendency towards lower levels of PGE$_2$ but higher levels of the stable PGE$_2$ metabolite (PGEM) in exhaled breath condensate of AIA versus ATA [264]. Thus, also abnormal degradation of PGE$_2$ might contribute to aspirin hypersensitivity.

7.4 Exosomal LTs as amplifiers of immunity and inflammation

We were the first to describe exosomes as carriers of enzymes for LT biosynthesis. Our studies also imply that exosomes can elicit trafficking of granulocytes (Fig. 5, paper III), a capacity, which might in part be mediated by chemotactic eicosanoids, contained or synthetised in the exosomes. Since this potential function of exosomal lipid mediators is based on in vitro experiments, future studies should assess immunological roles of exosomal eicosanoids in vivo. Moreover, the relative contribution of exosomes to LT biosynthesis in inflammatory settings is currently unknown. In vivo studies, using pharmacological inhibition or genetic ablation of LT biosynthetic enzymes in exosomes could shed light on the roles of exosomal LTs for physiology and immune functions.

Our findings support a role for exosomes in pulmonary host defense, which had previously been hypothesized based on a study on exosomes from human tracheobronchial epithelium (HTBE) [157]. In this study, HTBE exosomes were shown to contain sialic acid moieties, which allowed them to neutralize influenza virus. The presence of exosomal LTA$_4$H and LTC$_4$S might be of particular relevance in a situation, where neutrophils infiltrate the lung, e.g. in response to a microbial invader, and become activated to produce LTA$_4$. In such a context, neutrophil released LTA$_4$ might be converted by exosomal downstream enzymes (compare Fig. 4C, paper III) to LTs, which could contribute to pathogen clearance.

Moreover, it has recently been shown that BALF exosomes from sarcoidosis patients have pro-inflammatory features, suggesting a role for exosomes in the pathology of this inflammatory lung disease [236]. The results described in paper IV support such a pathophysiological role for exosomes in pulmonary inflammation. Interestingly, BALF exosomes from asthmatics and sarcoidosis patients exhibited similar pro-inflammatory characteristics, including increased tetraspanin levels (Fig. 2A, B, paper IV) and a pronounced capacity to induce IL-8 secretion in epithelial cells (Fig. 6A, paper IV) [236]. Our study on BALF exosomes from asthmatics implies exosomal LT generation as another pro-inflammatory pathway, by which exosomes might contribute to chronic inflammatory lung diseases.

The significance of our study has certainly been limited by the small number of subjects and the fact that BALF was only sampled at one time point (24 h) after allergen provocation. It is very likely that this time point represents a snap-shot from a rather late phase of the allergic response [32], when the resolution of inflammation has already started [275]. This is supported by the finding of increased numbers of regulatory T-cells
and induction of IL-10 release at this time point [323]. Possibly, more distinct phenotypic and functional characteristics of BALF-exosomes could have been observed at an earlier time point after allergen provocation.

In addition, it would have been interesting to compare the LT biosynthetic capacities of BALF exosomes from asthmatics to those of BALF exosomes from healthy controls. Unfortunately, the invasiveness of the sampling technique limited the access to patient samples and thus precluded such experiments. Notwithstanding, this cutting-edge study on BALF exosomes from mild allergic asthmatics indicates that it might be worthwhile to analyze LT pathways in BALF exosomes from patients with more severe pulmonary inflammation, such as in chronic obstructive pulmonary disease (COPD) or severe forms of asthma.
8 Future Perspectives

"Science may set limits to knowledge, but should not set limits to imagination." (Bertrand Russell, British author, mathematician and philosopher (1872 - 1970)). As I agree strongly with this statement, I allow myself some speculatory thoughts about implications and applications of the findings described in this thesis:

8.1 Interaction of CLP and 5-LO - a promising drug target in the treatment of cancer and auto-immunity

Overexpression of CLP is associated with an increased susceptibility to develop the autoimmune disorders rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) [148]. Together with the implication of the 5-lipoxygenase pathway in the pathogenesis of these diseases [69], [117], [55], [105], this indicates a potential role for the CLP-5-LO interaction in the inflammatory processes related to autoimmunity.

Furthermore, CLP was identified as a tumor antigen, which is highly expressed in pancreatic cancer [206], a disease, which is also associated with increased expression of 5-LO [72], [135]. The pathological importance of the 5-LO pathway for pancreatic cancer is based on the promotion of pancreatic cancer cell growth by the 5-LO products 5-HETE and LTB₄ [72], [325]. Thus, 5-LO inhibitors are promising therapeutic options for an improved treatment of pancreatic cancer [156].

Due to these pathophysiological implications, future studies should address the role of CLP for LT generation in different cells and in vivo situations. In view of the roles of CLP and 5-LO in cancer, the chaperone function of CLP should be studied with regard to hypoxia or genotoxic stress.

It is our hope that interrupting the interaction between CLP and 5-LO might be a future therapeutic strategy for reduction of 5-LO product formation in diseases such as RA or pancreatic cancer. Interestingly, the natural compound Hyperforin, which inhibits 5-LO, was shown to counteract the association between CLP and 5-LO [84].

8.2 Regulation of cysLT biosynthesis by microbial products - chances for asthma therapy?

Our findings suggest that inhibitory phosphorylation of LTC₄S could be an important event at the turning point of the inflammatory process, when the resolution of inflammation and the return to homeostasis are initiated by a switch in mediator production (depicted in Fig. 3.12).
A malfunctioning of the mechanisms, which normally downregulate cysLT generation in the later phase of an immune response (Fig. 6.2), might contribute to the persistence of inflammation. Thus, in future studies, the phosphorylation state of LTC₄S in macrophages, mast cells and eosinophils from patients with allergies and chronic inflammatory diseases should be assessed. Such an analysis appears particularly indicated in primary leukocytes from the respiratory tract of AIA patients, the patient population with the strongest correlation between disease severity and overproduction of cysLTs [195].

The potent inhibitory effect of zymosan on the LTC₄S activity suggests that zymosan or similar microbial cell wall preparations could be attractive remedies in the treatment of asthma or other chronic inflammatory diseases. Needless to say, such a therapeutic application would require the previous characterization of the full spectrum of cellular responses, in vivo. It is promising though, that further anti-inflammatory and pro-resolving long term effects of zymosan have been described not only in vitro [3], [238], but also in vivo [24], [276].

8.3 Exosomal eicosanoids - novel tools for immuno-modulation, diagnostics and drug delivery

To elucidate the relative contribution of exosomal eicosanoid synthesis in vivo remains an important task of the future. Additionally, the lipid mediator profile of exosomes from different cells and body fluids should be analyzed, in order to identify possible roles of exosome associated eicosanoid release in settings such as host defense, tolerance or chronic inflammation.

Preliminary data from our group indicate the presence of metabolites of both arachidonic and linoleic acid (LA) in exosomes from human MDDCs and murine BMDCs (Lundstrom, Gehrmann, Esser, unpublished data). Thereby, the most abundant compounds, derived from AA, were 15-HETE, 15-oxo-ETE, 5-HETE, 12-oxo-ETE, 12-HETE, 5-oxo-ETE and 11-HETE. Albeit at much lower concentrations, exosomes from both, human and murine DCs also synthesized PGD₂ and PGE₂.

Hence, the amplification of granulocyte chemotaxis by exosomes (Fig. 5, paper III) might be related to their release of 5-oxo-ETE and PGD₂. DC exosomes could exert further immuno-modulatory functions mediated by e.g. PGE₂ (see table 3.4) or 15-HETE, which has suppressive effects on the expression of pro-inflammatory genes in macrophages and on DC maturation [251], [62], [268]. Interestingly, PGE₂ was identified as a major immuno-modulatory agent in tumor derived exosomes, which inhibited DC differentiation [348] and induced myeloid-derived suppressor cells [343].

A systematic analysis of the exosomal lipid (mediator) content might result in the application as a novel biomarker for disease states, e.g. in chronic inflammation. In this context, it would be intriguing to study potential changes in the exosomal eicosanoid profile after exposure to certain drugs, allergens or pathogens.

As exosomes can improve the selective delivery and efficacy of anti-inflammatory compounds, they have been suggested as novel drug delivery vehicles [303]. Hence, it appears possible that exosomes with the desired properties for a specific therapeutic application
8.3. EXOSOMAL EICOSANOIDS - NOVEL TOOLS FOR IMMUNO-MODULATION, DIAGNOSTICS AND DRUG DELIVERY

will be engineered in the future. A tailored lipid composition could be an integral part of such therapeutic vesicles: For application in the treatment of inflammatory disease, exosomes could be loaded with anti-inflammatory lipids such as ω-3 fatty acids and their derivatives. In contrast, the potency of exosomes as vaccine delivery vehicles \[139\], \[266\] might be improved by the incorporation of immuno-stimulatory oxylipins such as LTB\(_4\), as adjuvants. In view of the short half-lives of most eicosanoids, equipping exosomes with cyclooxygenase or lipoxygenase enzymes might however be a more efficient way to exploit exosomal eicosanoids in therapeutic applications.

In summary, there are many open questions to be answered and new options to be explored regarding the biosynthesis of leukotrienes and their implications in exosome biology. So, to close this chapter I avail myself of another quote (by George Bernard Shaw):” Science never solves a problem without creating ten more.”
9 Popular scientific summary

9.1 English popular scientific summary

The constant exposure of our body to an environment full of threats like pathogenic microbes or extreme climate conditions requires a complex network of various mechanisms of defense and protection. If for example a bacterium penetrates into the tissue through our outer protection barrier (skin), it is recognized by specialized immune cells, which then initiate an inflammatory response. Thereby, the typical symptoms like redness, swelling and pain emerge. The major triggers of such responses are inflammatory mediators, which are produced by the immune cells. These mediators increase e.g. the permeability of small blood vessels (capillaries), so that additional immune cells can infiltrate into the tissue to combat the microbial intruder. Furthermore, these inflammatory mediators trigger the recruitment of further immune cells, an increased mucus production as well as a contraction of the bronchial musculature. Thus, it is easily conceivable that the very same mediators, which are essential for efficient defense against bacteria are also involved in the development of chronic inflammatory disease as e.g. asthma.

To improve the therapy of such increasingly frequent diseases, a detailed understanding of the molecular mechanisms, which control inflammatory mediator production is indispensable. It was the aim of this thesis to make a small contribution to this improved understanding. In the studies described, I focused on the regulation of leukotriene production in specialized immune cells (phagocytes, antigen presenting cells). Leukotrienes are extremely potent mediators, which play a decisive role in the development of asthma.

Leukotrienes are generated in several steps from the polyunsaturated fatty acid arachidonic acid. Each of these steps is performed by a particular protein (enzyme), the activity of which can be influenced by various factors. In the first study, we describe the stabilization of 5-lipoxygenase (the first enzyme of leukotriene synthesis) by its "protection protein" CLP. In the second study, we demonstrate that zymosan, a preparation from the yeast cell wall, inhibits leukotriene production in phagocytes, if these are stimulated for several days. Thereby, a particularly interesting finding is that aspirin can reverse this inhibition, which leads to an increased leukotriene production. We speculate that the molecular mechanisms, which we have unraveled in this study, are important for the downregulation of the leukotriene production following an acute inflammatory response. In the third study we show for the first time that small membrane vesicles (so called exosomes), which are released by cells, contain proteins for leukotriene production. Moreover, exosomes isolated from lung lavage fluid from asthmatics have an increased capacity to trigger the production of leukotrienes and other inflammatory mediators by lung epithelial cells. Our findings thus point to a role of exosomes as producers of leukotrienes and suggest that exosomes are involved in inflammatory processes.
9.2 Deutsche populärwissenschaftliche Zusammenfassung

9.3 Svensk populärvetenskaplig sammanfattning

Det här är bara ett försök - ursäkta min dålig Svenska!

10 Acknowledgements

At the beginning, I would like to thank my main supervisor Associate Professor Olof Rådmark for his guidance and support during my time as a PhD student. I have highly appreciated the possibility to approach you at any time with questions, ideas and results. Thanks for letting me work independently and try out my own ideas! You have not only supported my development as a scientist, but also been very understanding with regard to “work-life-balance”. It was fun to have a supervisor, who shares the freakiness of biking to work regardless of weather conditions and eating ”havregrynsgröt” every day.

I would like to express my gratitude to Professor Bengt Samuelsson for establishing an exciting field of research. I felt honored to have your support as my co-supervisor.

I thank Professor Oliver Werz for his support as my co-supervisor back in Germany and for a lot of research paving the way for a better understanding of how cells control LT production.

Particular thanks also to Professor Jesper Haeggström. I have appreciated you as a group leader with a very natural and friendly way to exert authority.

I thank Professor Annika Scheynius for all her support and encouragement. Your enthusiasm for science and gender equality have been very inspiring! I am very grateful for the way I was welcomed in your group and for all the new things that I have learned during my work at "the hospital site”.

Special thanks to Associate Professor Susanne Gabrielsson for your support and the interesting and enthusiastic discussions about exosomes. Thanks also for showing me that it is possible to be successful as a scientist, group leader and mum and still be a very kind and laid-back person!

Very special thanks to Ulf Gehrmann - for sharing some important parts of the long and sometimes stressful way to a PhD at KI! I have enjoyed our extensive discussions about immunity, eicosanoids and exosomes during all the less exciting work, which the "office people” (no offense intended) tend to forget about... Danke auch für die vielen abwechslungsreichen nicht-wissenschaftlichen Gespräche!

To Alan Sabirsh, my former colleague, friend and external mentor: Thanks for knocking at our window in Bergshamra and sharing lots of nice weekend activities with us! Thanks as well for your scientific advice, lively interest in my research and career counseling!

Thanks to Patricia Torregrosa-Paredes for the fruitful collaboration in the BALF exosome project and for always being so friendly, open and helpful!

I also would like to express special thanks to some colleagues of mine, who have contributed particularly to my great time at Chemistry 2:
To Dolores Salvado Duro - thanks for all the lively discussions about "PGEEEE2-stuff" and your expert help in all related issues! Lunches would have been so much less entertaining without you - although without the training by my beloved sister, who talks ALMOST as much as you do - I would sometimes have felt a little dizzy... Also, I would like to add that I am still sorry for making you run from Karlaplan to Berwaldhallen in your fancy shoes...

To Anders Wetterholm for all the technical help with our ancient HPLC systems and antibodies; for your endless patience and incomparable helpfulness!!! And of course for the best green asparagus ever!

To Marija Rakonjac - thanks for the many entertaining conversations about life and science and all the good time we had together when sharing the office, lab or hotel rooms in Sandhamn, Aigen, Obergurgl and Kyoto!

To Antonio Di Gennaro - thanks for openly sharing my disgust for boring enzyme-structure-function studies, dried fish, crab meat and other weird stuff that could sometimes be found on the "Chemistry 2 table"!

To Min Wan - thanks for a lot of interesting and funny discussions about everything from innate immunity to questions about raising children, household remedies and sex morals in our home countries!

I would also like to thank all the other members of Chemistry 2 for their help and for creating a friendly environment in the group!

Some special thanks also go to my former colleagues Ulrike Haas (for nice cozy dinners and a lot of technical help, particularly at the beginning of my PhD studies), Vildan Dincbas-Renqvist, Yilmaz Mashid, Alicia Hidalgo and Hiromi Hanaka.

I also thank all collaborators and co-authors for their help, particularly Bettina Hofmann and Professor Dieter Steinhilber: Bettina for the good running company in Aigen and Dieter for organizing the nice Winter- and Summerschools in Austria.

Furthermore, I thank Professor Per-Johan Jakobsson and his group members for all help with prostaglandin-related issues and nice company during winter schools and conferences.

I would like to thank Professor Mats Hamberg for his helpfulness and willingness to share his great expertise regarding lipid chemistry.

I thank our secretaries Anneli Svarén and Victoria Balabanova for all their help regarding administrative issues.

Thanks also to my research supervisors during my undergraduate studies at the Technical University of Munich: Matthias Feige and Professor Johannes Buchner - the experimental skills and scientific way of thinking, which you have taught me, have been extremely valuable for my time as a PhD student!

Now, I would like to acknowledge the people that have - even if often unconsciously - also had a huge share in the way to writing this thesis... Since most of them prefer German to English, I recommend dict.leo.org (a site that I also would like to acknowledge at this point) to everyone else...
Nicola, Ea und Christoph - danke für die viele schöne Zeit, die wir zusammen verbracht haben! Christoph - dir danke ich besonders für die Idee, gleich nach dem Bachelor meinen PhD am KI zu machen und natürlich für deine ständige Ermutigung, den steinigen Weg der akademischen Karriere einzuschlagen...

Meiner Familie (einschließlich Heidi, Wilfried, Carsten und David) danke ich für all den Rückhalt, die Geborgenheit und Großzügigkeit, die sie mir entgegengebracht hat.

Bis zum Ende habe ich mir den Dank an die wichtigsten Menschen in meinem Leben aufgehoben, bei denen es mir schwerfällt, meine Liebe und Dankbarkeit in angemessene Worte zu fassen. Einen Versuch wage ich dennoch...

Christiane - Danke für all den Quatsch, den wir uns zusammen ausgedacht haben (vom gemeinsamen Einkaufen bei "Lügers" bis zu unseren berühmten "Talk Shows"); für die unzähligen Male, die wir so lange gequatscht haben, bis eine von uns eingeschlafen ist und dafür, dass wir so verschieden und doch irgendwie genau gleich sind!

Arndt - ein intelligenter Bekannter von uns (...) hat mal gesagt: "If one of you eventually gets awarded his or her PhD, the other one gets awarded to." - dem bleibt nicht viel hinzuzufügen. Mit dir ist einfach alles viel schöner -♡!
Bibliography

Bibliography

Bibliography

peritoneal macrophages and mast cells: crucial involvement of macrophage-derived

nitric oxide synthases: controlling the right time, the right place, and the right

[164] S Kulkarni, S Das, CD Funk, D Murray, and W Cho. Molecular basis of the
specific subcellular localization of the c2-like domain of 5-lipoxygenase. *J Biol

[165] Josée Lamoureux, Jana Stankova, and Marek Rola-Pleszczynski. Leukotriene d4
enhances immunoglobulin production in cd40-activated human b lymphocytes. *J

[166] Karine Laulagnier, David Grand, Arnaud Dujardin, Safouane Hamdi, Hélène
Vincent-Schneider, Danielle Lankar, Jean-Pierre Salles, Christian Bonnerot,
Bertrand Perret, and Michel Record. Pld2 is enriched on exosomes and its activity
is correlated to the release of exosomes. *FEBS Lett*, 572(1-3):11–14, Aug
2004.

quet, and P. Borgeat. Metabolism of arachidonic acid through the 5-lipoxygenase
pathway in normal human peritoneal macrophages. *J Immunol*, 141(6):2104–9,

and synthesis inhibitors reverse survival in eosinophils of asthmatic individuals. *Am

at new glance: novel insights in functional diversity offer therapeutic chances. *Int

signal transduction and cell adhesion in the immune system. *Annu Rev Immunol*,

augment cpla2alpha activity and lead to enhanced leukotriene release in human

[172] T. Luft, M. Jefford, P. Luetjens, T. Toy, H. Hochrein, K. A. Masterman, C. Mal-
iszewski, K. Shortman, J. Cebon, and E. Maraskovsky. Functionally distinct den-
dritic cell (dc) populations induced by physiologic stimuli: prostaglandin e(2) reg-

T. G. Brock. Phosphorylation by protein kinase a inhibits nuclear import of 5-

5-lipoxygenase as a determinant of leukotriene b4 synthetic capacity. *Proc Natl

Bibliography

Bibliography

Bibliography

[352] J. Zhang, P. D. Pare, and A. J. Sandford. Recent advances in asthma genetics.

[353] L. Zhang, P. Wu, S. W. Jin, P. Yuan, J. Y. Wan, X. Y. Zhou, W. Xiong, F. Fang,
and D. Y. Ye. Lipoxin a4 negatively regulates lipopolysaccharide-induced differ-
etiation of raw264.7 murine macrophages into dendritic-like cells. *Chin Med J

[354] Lei Zhao, Michael P W Moos, Rolf Gräbner, Frédérique Pédrono, Jinjin Fan,
Brigitte Kaiser, Nicole John, Sandra Schmidt, Rainer Spanbroek, Katharina
Lötzer, Li Huang, Jisong Cui, Daniel J Rader, Jilly F Evans, Andreas J R
Habenicht, and Colin D Funk. The 5-lipoxygenase pathway promotes pathogenesis

[355] HW Ziegler-Heitbrock, E Thiel, A Fütterer, V Herzog, A Wirtz, and G Rieth-
müller. Establishment of a human cell line (mono mac 6) with characteristics of

zileuton, a new 5-lipoxygenase inhibitor, in experimentally induced colitis in rats.

[357] L. Zitvogel, A. Regnault, A. Lozier, J. Wolfers, C. Flament, D. Tenza, P. Ricciardi-
Castagnoli, G. Raposo, and S. Amigorena. Eradication of established murine tu-
mors using a novel cell-free vaccine: dendritic cell-derived exosomes. *Nat Med*,

drocortisone inhibits antigen-induced rise in intracellular free calcium concentra-
tion and abolishes leukotriene c4 production in leukemic basophils. *Prostaglandins*,