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Your talents should not exceed your virtue

- Confucius -



ABSTRACT

To understand complex phenotypes, medical research has evolved from the study of
single genes and proteins to approaches that encompass more comprehensive
catalogues of molecules. Among the more widely used are genome-wide expression
and high-throughput genotyping, the latter primarily making use of single nucleotide
polymorphisms (SNPs) in what has been termed genome-wide association studies
(GWAS). Because of the scale of the data sets that are being produced, unique
problems have emerged that necessitate the extensive use of bioinformatics tools. This
thesis has entailed the analysis of several such large data sets in the context of
biological pathways and introduces several bioinformatics solutions. Paper 11, IV, and
V deal with this topic. This thesis is primarily oriented around the study of Alzheimer
disease (AD) and aging. The questions about the etiology of AD are often concurrent
with questions about the biology of aging. This thesis pursues insight on genomic
factors pertaining to both inquiries, acknowledging that both the AD state and aging
itself are complex and multi-factorial. Two constituent papers (I and I11) address aging
and two papers (Il and V) deal with genetic models in the study of AD.

In paper I, we examined the association of age with several genetic markers in the
insulin degrading enzyme (IDE) and explored possible molecular mechanisms. In
contrast to women, both age-at-sampling and age-at-death of the males were
significantly lower in individuals that were heterozygous at genetic loci spanning the
IDE locus. Plasma insulin levels and the expression levels of the gene were found to be
higher in those same heterozygous males.

In paper I, SNPs in 25 genes involved in cholesterol metabolism were tested for
association with AD and dementia. Genetic markers in a large linkage disequilibrium
block spanning SREBF1, TOM1L2, and ATPAF2 were significantly associated with
disease. Gene expression and gene network analyses supported the findings.

In paper 11, we investigated the biological pathway basis of age in human brain and
lymphocytes. Mitochondrial genes were negatively regulated in both tissue samples,
while the protein translation genes appeared to decrease in lymphocytes but increase in
brain. Those observations indicated that there are common themes across tissues, but
also tissue specific changes in gene regulation. We also examined the genomic
architecture of the age-regulated genes, and found that the expression of non-compact
genes tend to decrease with advancing age.

A large number of genome-wide association studies (GWAS) have now been
performed over the past few years. In paper IV, we developed a program that automates
the conversion of SNPs to representative gene lists in order to facilitate the exploration
of biological pathway in the context of GWAS.

In paper V, we employed the software developed in study IV to identify biological
pathways enriched among the genes that were significantly associated from a GWAS of
AD. Genes involved in intracellular protein transmembrane transport were found to be
significantly overrepresented. These results highlighted the possibility that TOMMA40
contributes to AD pathology together with other translocases.



Through this thesis, several biological relationships have been identified linking AD
and aging. Genetic markers in IDE, a gene previously claimed to be associated with
AD, also associate with age. With advancing age, mitochondrial gene expression
deteriorates significantly. TOMMA40 may contribute the AD pathology, together with
other genes that encode proteins of the intracellular transmembrane protein transport
pathway. Methodologically, pathway analyses were conducted successfully with the
program, ProxyGeneLD. This enabled discoveries and discussion of the challenges that
face the exploration of GWAS data sets in a pathway context. In the future, more
sophisticated bioinformatics tools and enhanced gene annotation may lead to the
discovery of the molecular mechanisms that dominate complex diseases and traits.
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1 INTRODUCTION

Alzheimer disease (AD) is the most common cause of the dementia of the elderly, and
is believed to be induced by large number of factors. Disorders such as Alzheimer
disease are often termed “complex”, reflecting the challenge of identifying these
underlying factors. Aging is the single factor that has the largest effect on the onset of
the disease, and is itself controlled by complex biological mechanisms. Over the past
decades, a considerable amount of effort has been exerted to understand the link
between aging and AD.

In epidemiological studies, the various factors that contribute to a disease are generally
divided into two groups, genetic and environmental. The genetic factors comprise all
inherited components that can affect the predisposition of individuals to a disease of
interest. The environmental factors, complementary and in some respects interacting
with the genetic component, represent the events an individual is exposed to during
their lifetime. Examples include both conscious choices like smoking, food preference,
and degree of physical exercise, but also include chance accidents beyond the control of
an individual. In this thesis, the various studies have focused primarily only on the
genetic factors, more specifically single nucleotide polymorphisms (SNPs) that make
up the majority of the genetic differences that can be found between individuals and
between human populations.

These SNPs, also known as genetic variants, in human populations are abundant. They
occur on average at about 1 site per 1000 DNA. Their relatively high frequency confers
statistical power for detecting regions of interest in genetic association studies, which
have been used in several of the papers presented in this thesis. Genetic association
studies typically entail the examination of SNP (or other kinds of variation) frequency
in relation to a disease or other phenotype like height or weight. As the technology for
genotyping (i.e. reading the SNPs in an individual’s genome) has developed
dramatically over the past few years, it has become a reality to examine essentially all
common SNPs in an individual’s genome using arrays on a single chip. These genome-
wide experiments (also called genome-wide association studies; GWAS) have
produced enormous quantities of data. VVarious approaches to understanding this
genetic data have emerged, and include, apart from the strict assessment of SNP allele
frequencies for association, attempts at viewing the data in a broader biological context.
One fundamental approach to investigating the data is to explore for enrichment of
specific biological pathways among the genes associated with target phenotype. This
thesis introduces bioinformatics strategies to deal with this research question and
discusses the issues of such a strategy.



2 THE STRUCTURE OF THE HUMAN GENOME

2.1 SINGLE NUCLEOTIDE POLYMORPHISM (SNP)

The human genome is the hereditary information of our species stored in long stretches
of deoxyribonucleic acid (DNA) molecules. The genome is believed to contain all
information not only for the single cell of a fertilized egg to develop to all of the organs
that make up the human body, but also for the body to survive in its crude environment.
These potent molecules are bound into 23 pairs of bundles called chromosomes. Each
chromosome has a sister chromosome which has ~99.9% identical sequences [7], and
the pair are called homologous chromosomes.

Each individual in a population has a unique genomic sequence that differs from every
other individual [7]. Some of these genetic variants contribute to our physical
appearance and others influence the onset of the various diseases that afflict us.
Variations in the genome are classified according to their size and characteristics, and
include mutation of single bases to large stretches of DNA, to duplications, repeats and
inversions. By far the most common however is the single nucleotide polymorphism
(SNP) for which in excess of 10 million are now known to exist across world
populations [8,9]. SNPs represent the consequence of mutation events that have been
retained in a population, either by chance or by a selective advantage they confer, that
has allowed them to attain high frequency.

The SNP is a single DNA base difference in the genome that consists of two “alleles”
on the two sister chromosomes. Some individuals will be homozygous whichever the
common allele at the SNP site, some individuals will be homozygous for the “rarer”
allele, and some individuals will be heterozygous, having each of the two alleles. From
the various large-scale genotyping projects conducted around the world in different
populations, SNPs can be found at a rate of about once every ~1000 bases on average
when two chromosomes are compared [7-10].

2.2 LINKAGE DISEQUILIBRIUM (LD)

The information in the human genome is transmitted to each next generation beginning
with an elaborate molecular system that copies and delivers the DNA in the process of
meiosis. During this process, the two copies of each chromosome undergo
recombination, in which long segments of DNA cross over from one chromosome to
the corresponding position on its sister chromosome. On an extended time-scale, the
recombination event is rather infrequent, arising on average only once for every stretch
of approximately 1 million base pairs of DNA per 100 generations [11,12]. Thus, a
long DNA sequence including all of the mutations that have occurred in that specific
genomic region (many of them possibly increasing disease risk) tends to be intact while
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it descends through many generations (an example of a single mutation and its fate
through multiple generations is depicted in (Figure 1). Figure 1 represents the
cornerstone of all genetic association studies, which rely on LD to be able to observe
latent effects of un-genotyped genetic sequence variants. Thus, through recombination,
the “alleles” located in the vicinity of a spontaneous mutation event are physically
paired with the allele generated by the mutation, and the correlation is detectable in the
extant chromosomes that are present today [3]. This is one of the possible mechanisms
that creates linkage disequilibrium (LD), which can more formally be defined as non-
random association between two or more proximal genetic variants [13]. There are
diverse other mechanisms that can generate LD, including subpopulation mixing [14]
and inbreeding [15,16]. Another important aspect of LD is that it tends to decay over
time. Thus, once established, LD begins to decay by recombination toward an
equilibrium state, where each subsequent generation has a chance of proximal alleles
becoming physically detached. This decay rate has been estimated to be about 10-8 per
base pair per generation [17,18]. In other words, diminishing LD is a relatively slow
process (proportional to recombination) and so young populations derived from small
founder groups of people, will tend to have more LD than old populations that have
been mating amongst themselves for thousands of years.

One of the commonly used statistics to describe LD between two SNPs is r?, which is
the correlation coefficient of allele frequencies of the two variants. When there are two
bi-allelic (two alleles) SNPs with alleles “A”, “a” at the first position and “B”, “b” at
the second position, the value can be calculated as depicted below [13,19]:

» ___ (pag—paps)*
pa(1 —pa)ps(1 —pp)




Where p,5 is the frequency of observation of both AB, and p, and pg are the
frequencies of A and B allele respectively.

A large international effort with the goal of pursuing a LD map of the human genome
was initiated in October 2002. The effort was termed the International HapMap project,
and in its first phase successfully genotyped 1.1 million SNPs in 90 human individuals
from 30 families who lived in Utah with Northern and Western European ancestry from
the Centre d’Etude du Polymorphisme Humain collection (abbreviated to CEU)
together with genotypes of Nigerian, Chinese, and Japanese samples during this first
phase of the project [17]. During the second phase, an attempt was made to expand the
number of tested SNPs, this time to include 3.9 million putative polymorphic variants
for which genotyping assays could be developed [12]. Approximately one third of all
these tested markers turned out to be non-polymorphic among the CEU samples. The
remaining confirmed 2.6 million SNPs reflect a distribution across the human genome
and they are estimated to cover 92% of hidden common variants (minor allele
frequency > 5%) at the threshold of >0.8 by pairwise LD.



3 GENETIC ASSOCIATION STUDY

3.1 VOCABULARY IN GENETIC ASSOCIATION STUDIES

A locus (plural form is loci) is the position of a gene or a genetic variant on a specific
chromosome. An allele is defined as each different version on a single chromosome of
a genetic marker of which the variation exists in the population [20]. Since humans
have two sets of chromosomes (homologous or “sister”” chromosomes), each individual
has two alleles at a single locus. The two collectively form the genotype of an
individual for that locus. Between the two, the allele for which the frequency in the
population of interest is larger is commonly known as the major allele and the other is
minor allele. The frequency of the minor allele is often abbreviated to MAF (minor
allele frequency) indicating how rare the allele or the genetic variant is. An individual
having the same alleles at single locus is termed homozygous and an individual having
different alleles is termed heterozygous.

When a genetic marker, usually SNP, is in high LD (often r>>0.8) with another marker,
each is called a “proxy” of the other. Especially, if the correlation coefficient is 1, they
are termed as “perfect proxies”[21]. A Phenotype is defined as specific detectable
characteristics of an organism [22]. Penetrance is defined as the probability that a
particular allele or genotype induces a particular phenotype [20].

Under the assumptions of random mating with evenly distributed fertilities, no selective
influx or efflux such as migration or natural selection, and no mutation in a large
population, the allele and genotype frequencies at a locus will be unchanged through
generations [23,24]. This equilibrium status is called Hardy-Weinberg equilibrium
(HWE) [25], in which the genotype frequency of homozygotes is expected to be the
square of the allele frequency, while the frequency of heterozygotes is simply the
product of both allele frequencies. The test for HWE of a SNP is commonly performed
with an asymptotic x> test or exact texts [26,27].

3.2 GENETIC ASSOCIATION STUDY

Genetic association studies involve the investigation of the potential of a correlation
between allelic or genotypic variation and phenotypic differences [28,29]. When the
frequency of a certain variant is observed, for example, in cases at a significantly higher
level than controls, it can be concluded that there is association between the genetic
marker and the disease status, and that the specific allele at higher frequency may have
a contributory role in the disorder. This significance is most appropriately assessed by
statistical methods, some of which are described in section 7.
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Figure 2. Testing genetic variant for association directly or indirectly.
The reds indicate genotyped markers and the blue is the marker in high
LD with the reds. a. A candidate genotype is directly tested for
association. b. Utilizing LD structure, the proxies of the candidate are

genotyped and the association is imputed.
Reprinted by permission from Macmillan Publishers Ltd: Nature Review
Genetics (J. Hirschorn [6]), copyright (2005)

In contrast with other association studies in general, genetic studies carry the inherent
difficulty of needing to take into account the extensive correlation that can exist
between nearby markers due to LD structure. LD is a two-edged sword in that it aids in
the search for association between genetic marker and phenotype, since genotyping
proxies can be sufficient to observe association instead of specifically examining the
precise functional SNP(s) (Figure 2) [6,30,31]. However, on the other hand, the
association found between a genotype at one locus and phenotype does not denote that
the tested marker is itself functional. Thus, the functional SNP or other form of
variation that contributes to the difference in phenotype variance can be any genetic
variant for which the frequency is highly correlated with the tested marker. This
contributes to one of the greatest difficulties in attributing “marker associations” to
“gene associations” since the region of study can extend across numerous gene targets,
each of which can be a valid biological target in the disease under study. This fact
should be taken into consideration in any genetic association study.



4 GENE EXPRESSION MEASUREMENT

4.1 BIOLOGICAL MATERIAL AND ITS PREPARATION

The molecules that carry out most of cell functions are proteins, which are encoded in
the genome and are under sophisticated control. When a cell requires the creation of a
particular protein, the production is initiated by a process called “transcription”, in
which an enzyme complex reads the DNA code for a gene of the protein and produces
messenger RNA (mMRNA) which will eventually be converted to a functional protein.
Since a single DNA sequence can be used as a template for thousands of protein
molecules, the number of MRNAs is under careful regulatory control, where numerous
factors act both by binding to genomic DNA and to the produced mRNA. In this thesis,
“gene expression” refers to the mRNA expression as widely accepted to reflect the
fundamental mechanism of moving from DNA sequence to the quantity of mRNA.
Another key concept in the regulation of mRNA is splicing, which refers to the way in
which the mRNA is processed after being transcribed from DNA. This involves the
change in the exon structure of an mMRNA, where complete exons may be skipped, new
exons included, or changes induced between exons. This is regarded as a key way in
which nature and evolution have led to a vast increase in molecular diversity, since the
number of splice-forms of an MRNA can be on the order of hundreds.

MRNA as extracted from human tissue samples is chemically too unstable to be used
directly in the experiments to measure its quantity. To avoid degradation, the material
containing these fragile molecules should be frozen immediately after acquisition and
stored in deep freeze (-80°C) [32]. If it is obtained from the tissue that may include
living cells, this is even more important since cells may react to environment changes,
possibly activating mRNA degradation machinery, or even promoting the rapid
production of mMRNA as a defense mechanism [33]. Thus as for samples obtained after
death, for example, brain autopsy samples, the time that has elapsed since death (post
mortem interval; pmi) to sample treatment should be minimized. Often this kind of
variation among samples is interrogated in the analysis and documented and thus can
be used as a covariate in statistics. However, if pmi is less than 48 hours, it affects RNA
less than agonal status (the period with serious illness before death) [34,35]. To be
quantified, RNA is usually reverse-transcribed (opposite process of transcription) to
complementary DNA (cDNA). The most common external cause of mMRNA
degradation is RNAse protein molecules that exist in the environment both from
humans and other organisms. RNAse proteins are abundant and a single drop of human
sweat can contain millions that are all capable of rapidly degrading mRNA. This is one
of the key reasons for converting mRNA rapidly to cDNA for further analysis.



4.2 QUANTITATIVE PCR

The Polymerase Chain Reaction (PCR) is arguably one of the most well known
molecular biology tools, and was invented to facilitate the amplification of a particular
DNA sequence by doubling the number of fragments of the sequence in each cycle. It
has high fidelity and specificity in this amplification reaction, given known flanking
genetic sequences around a target sequence of interest. A particular sequence can be
selectively amplified in the mixture of a tremendous number of heterogeneous
sequences, For example, this might involve all human cDNA sequences in a solution
perhaps including twenty thousand different molecules, each with millions of copies.
Because of these features, PCR frequently serves as a tool to obtain both strong
evidence of the existence of a certain sequence in a DNA sample, as well as to amplify
existing sequences to achieve large enough quantities for subsequent analyses.

Additionally, PCR can be also serve to measure the quantity of selected fragments in
the DNA samples with high specificity by adding special fluorescent dye-attached
probe and detecting emitted signal from it [36,37]. The method is called quantitative
PCR (gPCR) or real-time PCR since it can track how much DNA was amplified in each
cycle. The light intensity from the probe is proportional to the number of amplified
fragments by PCR, and the amplification speed at same cycle is proportional to the
initial quantity of the target DNA fragment. So, the quantity in the sample is postulated
from a surrogate measure, Ct value. The Ct (threshold cycle) is the cycle number at the
point where the signal intensity exceeds a selected threshold. The threshold is often
chosen as the intensity value at the centre in the span of noise and highest level on a log
scale. As an illustration, a signal change graph from a real experiment is shown in

Amplification plot
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Figure 3. gPCR amplification plot. This shows the pattern of the signals from probes. Detected
fluorescent intensities were adjusted by substraction to noise level intensities (ARn), which is
shown in y axis in log scale. The dotted line indicates a selected threshold and the arrow points
Ct value for the sample that had the largest number of target DNA fragments..
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Figure 3.

Two kinds of quantification are usually performed with gPCR, absolute and relative
quatifications. The intermediate steps in both methods are identical. The difference is
that the absolute measure requires samples for which the quantity is known. For the
relative quantification, the samples for which the concentration is high enough for the
use of sequencial dilution is necessary. One of the common methods used to convert
measured Ct to the quantity of cDNA molecules is by comparison with a standard
curve, which is created by conducting identical experiments with known quantities in
absolute or relative values [38]. Since the linear relationship between the log of the
quantity of cDNA and Ct is expected, the observations are plotted in a standard curve.
The linear equation of a trend line is then applied to estimate the quantities of unknown
samples [39].

In the extraction step of mMRNA from biological sample, the variation of the real
quantity in various concentrations cannot be avoided. In order to adjust the difference,
MRNA expression measurement of target genes are commonly accompanied with a
reference gene, which is assumed to be expressed constantly in a cell. The candidates
are usually housekeeping genes such as p-actin, 18S rRNA, GAPDH. Among them, the
expression GAPDH showed less deviation across the combined samples of AD patients
and controls [40].

4.3 MICROARRAY FOR GENOME-WIDE EXPRESSION PROFILING

A microarray-based technique to simultaneously measure the expression of the
transcripts of multiple genes was developed about 15 years ago, and was created with
the ultimate goal of being able to measure the complete transcriptome of biological
samples [41-43]. The measurement is performed by capturing labeled cDNA sequences
in the sample by hybridization to complementary oligonucleotide probes aligned in an
array and attached to the solid surface of the microarray (or chip as it is sometimes
called). Signal detection is then carried out usually with fluorescent labels with a
scanning laser. The signal intensity represents the abundance of the corresponding
MRNA in the sample. The technology involves numerous processes from the
fabrication of the chips themselves to reading and interpreting the signal that induces
errors to the final output, and high reproducibility is still a major goal of those involved
in further developing the technology. Thus, appropriate normalization of the data is a
key requirement [44].



5 CANDIDATE GENE OR PATHWAY APPROACH

5.1 CANDIDATE GENE OR PATHWAY ASSOCIATION STUDIES

Candidate gene association studies were very popular before the advent of genome-
wide association studies, essentially representing the only means given technological
restraints of genotyping biological samples. Candidates were typically (and still are)
selected based on the previous findings of other biological studies that implicate a
particular gene in a disease under study. The genetic variant(s) to be genotyped are
usually chosen according to a prioritizing scheme of the individual study. Candidate
gene studies often use the validated assay that were specially designed for the target
marker and could be performed in the researchers own lab or in the laboratories of
close collaborators. For the candidate pathway approach, which represents a middle
ground between single gene association studies and the GWAS and may involve
thousands of SNPs, users tend to turn to genotyping platforms for user selected SNPs
that are commercially available.

5.2 INSULIN DEGRADING ENzZYME (IDE)

Insulin degrading enzyme (IDE) is a zinc metalloprotease which has been shown to
have the capability of degrading a variety of small proteins including insulin, insulin-
like growth factor-2 (IGF-2) and amyloid B [45,46]. The gene has received
considerable attention as a putative candidate in the etiology of Alzheimer disease due
its strong biochemical activity in being able to degrade the hallmark peptide, amyloid j,
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Figure 4. Identified mRNAs of the IDE gene and the conserved exons among placental
mammals displayed by UCSC genome browser [1,2]. The second half of the longest transcript
variant of IDE (NCBI Reference Sequence: NM_004969.3) including the 15" exon is only
shown here. A scale bar, chromosomal position, and a couple of known transcripts in NCBI
RNA reference sequence collection(RefSeq) are displayed above human mRNAs from
GenBank of NIH. Accession numbers of mMRNA are shown on the left. Exons were drawn in
blocks, while lines and arrows represent introns and direction of transcription, respectively. The
browser was accessed on 2010-09-29.
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that is considered to play a causal role in Alzheimer disease. Additional evidence
possibly connecting IDE to AD was obtained from genetic linkage studies showing the
linkage to chromosome 10q [47], more precisely the 10g23-g25 region that includes
IDE. Further studies also obtained evidence of linkage of AP, level in plasma to this
same 10q region [48].

Several splice-form variants of the mRNA sequence of IDE have been identified thus
far (Figure 4). In terms of gene location, this diversity can be observed in the form of
different transcription initiation sites, variable lengths of the 3’UTR, and alternative
versions of the 15th exon, for which numbering is derived by counting along the
longest splice-form that is composed of 25 exons, NM_004969. The alternatively
spliced form of transcript at the 15th exon which had been initially identified only in
testis samples, was also observed in brain (cerebral cortex and cerebellum). The
isoform translated from the transcript including the 15b exon was shown to have less
activity in the degradation of A4 and AB2, again supporting the possible role of IDE
in the development of AD, and providing evidence that splice-form variation might be
a contributing factor [49]. In another study, an alternative initiation site of translation
was observed, which can putatively lead to the protein being trafficked to the
mitochondria by using a specific targeting sequence located in the 5° end of the protein
[50].

5.3 CHOLESTEROL METABOLISM PATHWAY

Cholesterol plays an important role in maintenance of plasticity and function of neurons
[51]. Several studies have shown that high cholesterol level in serum or plasma is
associated with susceptibility to Alzheimer’s disease (AD) [52,53]. An increased in the
degree of influx and efflux of cholesterols over the blood-brain barrier in AD patients
has also observed [52,54]. One of the most important proteins that are involved in
cholesterol transport in the brain is apolipoprotein E (APOE), of which genetic
association with AD is well established [55]. APOE also strongly affects amyloid 3
(AP) deposition in the brain [56], suggesting a connection between AP, the main
component of plaques, and apolipoprotein metabolism. In further support of this,
another prominent phenotypic effect of APOE variation is upon cerebrospinal fluid
(CSF) levels of the 42 amino acid fragment of amyloid B (APa42) [57].
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6 PATHWAY APPROACH USING GENOME-WIDE DATA

6.1 GENOME-WIDE ASSOCIATION STUDY

Until only a few years ago, most genotyping methods were designed to read a single or
perhaps only a handful of SNP markers [58]. The cost of the experiment reagents, time
required for preparation/labour, and the quantity of DNA required for genotyping
multiple SNPs were all proportional to the number of markers that were to be tested.
Limited resources and technologies constrained genetic association studies to be
performed only with a finite number of markers around intriguing regions typically of
single candidate genes, on the basis of previous molecular biological evidence and/or
linkage study results [58,59]. Assisted by this prior knowledge, many genetic markers
around the putative genes were claimed to be associated with diseases of interest by
such approaches [6,60]. But, since this relied on testing a fairly limited hypothesis
(usually one variant in a large gene and usually conducted one gene at a time), many of
the studies that attempted replication simply failed to observe the earlier claimed effects.
Even for the few replicated loci, the general theme was that the discovered variants
simply could not explain substantial fraction of genetic risk of common diseases, such
as diabetes and Alzheimer disease. The explanations the research community proposed
were lack of statistical power and a general sense that perhaps traits, the development
of which result from multiple genetic components interacting together with numerous
environmental factors, were just too complex [6,59].

One proposed solution was to turn to high-throughput strategies to test the entire
genome in the search for genetic association, a natural extension from the earlier
successes from linkage studies, but taken to the level of common genetic variation.
Overcoming this tremendous logistical obstacle, the first study was attempted to test
associations between a complex disease and SNPs across whole human genome
without targeting specific genes using a newly developed high throughput genotyping
technique [61,62]. Thus, with the availability of the microarray technology for SNP
genotyping, it has become commonplace to acquire the genotypes of hundreds of
thousands of SNPs [63,64]. The method has since been perfected and at present
requires relatively short experiment time and small quantities of DNA samples. To date
more than 400 diseases and traits have been tested, the results of which can be readily
surveyed in ‘A Catalog of Published Genome-Wide Association Studies’ available at:
www.genome.gov/gwastudies [65].

All GWAS conducted to date are indebted to the development of bioinformatics
resources related to the human genome project. One such derivative project however
that more than any other has facilitated GWAS is the HapMap program [66]. The goal
of the International HapMap consortium was to achieve dense enough genotyping data
to produce a haplotype map across human genome [67]. The project found that the
genotypes of ~300,000 markers were enough to capture ~800,000 common (MAF =
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0.05) SNPs at the threshold r* = 0.8 across whole genome of European samples that
were proved to be polymorphic in phase | of the project [17]. Based on that study and
following studies, commercial microarray-based technologies have been designed to
capture most of known common SNPs across human genome in a single chip [64,68].

6.2 PATHWAY-BASED APPROACH

Unlike classic genetic association studies with single target genes and presuppositions
about molecular mechanisms, genome-wide association studies (GWAS) often entail
hundreds of thousands of hypothesis tests (often > 500,000) for association between
disease status or other phenotype of interest and numerous markers. A very small
proportion (usually less than 50, ~0.01%) of all the tested markers receives attention
since most of the others simply fail to pass through the filter that controls the multiple
testing problems. In addition, in essentially all cases, identified loci also exhibit small
effect sizes and together only explain a small fraction of the total trait variance [69].
Thus, the “pores” of the selection filter are often extremely small to ensure that refined
test results contain only true positives that can then be replicated in additional samples.
The standard paradigm is thus to conduct an initial GWAS in a small sample and then
attempt replication of a handful of markers in much larger populations. From gene
expression studies, specific gene-oriented questions could be phrased about a disease
under study, but researchers quickly turned to questions about broad biological themes
that could be seen in the transcriptome-based results. Thus, as an alternative approach,
employing prior knowledge about genes with similar functions (pathway) was proposed
to be applied to GWAS, since the data structure has much in common with the earlier
expression-based studies [70].

6.3 PATHWAY DATABASES

6.3.1 Gene Ontology

The Gene Ontology (GO) project represents a cooperative effort pursuing formalized
vocabularies of gene products stored in separate databases for various organisms [71].
The project was initiated to assist biologists in finding biological roles of unknown
genes of which sequences were conserved in different organisms. Since it was a
daunting obstacle that the terminologies were not equivalent in the databases of
different model organisms, a more standardized dictionary was strongly desired [72].
As research at the genome scale continued to produced volumes of biological data,
typically involving thousands of genes, the standardized descriptions of GO attracted
great attention and concern [73]. At its core, the GO can be used to group multiple
genes by similarities at different levels.
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The GO structure is composed of two parts. One is the ontology terms themselves (GO
ontology). The database includes the relationships between GO terms. The other is the
links between the ontologies and gene products (GO annotation). GO ontology
provides systematically structured species-independent terms (ontologies) in the three
aspects of a gene product, which are “cellular component”, “molecular function”, and
“biological process”. The “cellular component” indicates where a gene product acts in
the cell or around the cell, the “molecular function” explains biochemical activity, and
the “biological process” describes the function of the gene product for the cells, tissues,
organs, and organisms [71]. The ontologies in each category are linked as nodes in a
directed acyclic graph form. An example showing terms and relations from a term
“meiosis” to the root “biological process” are depicted in Figure 5. The logical relation
between nodes is often called a parent-child relationship, in which the node close to
root is parent and the distant node is child.

There are three different kinds of relationships between ontologies, which are “is a”,
“part of”’, and “regulates” relations [71]. Among them, the “is a” and “part of” relations
are transitive. For example, if Aisa B and B isa C, then Aisa C. In those relationship,
the genes annotated to the child node is the subset of the genes of the parent node [73].
As an example in the Figure 5, the genes assigned to “meiosis”, in other words the
genes which encode the proteins acting in meiosis, function in cell cycle phase.

The links in GO annotation database are generated by

curators [71]. GO terms are assigned to genes based on not —
only the experimental but also the computational evidence "process
such as sequence similarity with the genes of another A
organisms of which functions have been identified. In Srocess
reality, quite a large proportion of human genes have been
annotated using information other than raw experimental
evidence. The GO continues to grow in contents [74].
More genes are annotated to more specific function every
day and the number of annotations with experimental
evidence is also increasing. The human data last updated —

24 January 2011 contains 18 216 annotated genes. "eje | [ evete pnase

cell cycle
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The KEGG (Kyoto Encyclopedia of Genes and Genomes) meiotc cel
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designed to complement the information stored in other contemporary databases that
focus on individual genes or molecules [76].

6.4 PATHWAY ANALYSIS TOOLS

All tools described here were originally designed for the analysis and interpretation of
genome-wide expression profile data. Because those were designed around genes, it is
appropriate and trivial to apply them to the study of genes in the context of GWAS.
This is the list of tools that have been used in this thesis, but it should be acknowledged
that numerous other software programs exist that perform similar functions.

6.4.1 Database for Annotation, Visualization and Integrated Discovery (DAVID)

DAVID is one of the most popular pathway analysis tools that was designed by
academics and is freely available. It allows the testing for the overrepresentation of
gene pathways, making use of gene annotation information stored in about 40 different
databases. It allows for the use of a unique function termed “functional annotation
clustering”, which creates a summary of the output that usually includes an extensive
number of redundant terms. Thus, it provides additional evidence that may implicate
pathways that are not clear from the analysis of the individual terms. The significance
of the enrichment is obtained by a slightly modified Fisher’s exact test [77].

6.4.2 Gene Set Enrichment Analysis (GSEA)

GSEA, which has been efficiently implemented in JAVA, scrutinizes whether a
particular pathway is randomly scattered across an input gene list. The gene list is
sorted by the corresponding significance value for each gene, which typically is
represented by the negative log of P value for the gene, and this was the primary
statistic used in this thesis. For each gene in the gene list, it calculates a walking
enrichment score (ES) that increases when the gene is annotated to the pathway and
decrease when it is not. The increment is the assigned value for the gene. The final ES
for the list is the maximum value of walking ES. The statistical significance of ES is
estimated by permutation. Since multiple pathways are tested, the significance shown
in output is FDR corrected for multiple testing [78].

6.4.3 GeneCodis

GeneCodis is a freely available web application that searches for enriched pathways
among a subset of genes from a full contingent of genes. It provides a unique function
to enable to identification of overrepresented combinations of pathways in the separate
databases, for example, GO biological process and GO cellular component [79]. This is
comparable to the function provided in DAVID, and also has the goal of providing
possibly new biological insights that might not be evident from the single term analyses.
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7 STATISTICAL METHODS

7.1 ASSOCIATION TEST

7.1.1 Linear regression

Often two variables can be expected to be correlated in a simple linear equation. One of
the obvious examples is the pair of variable consisting of a) travelled distance and b)
speed in an hour. The relationship can be expressed by a simple linear regression model
as described:

Y=ﬁ0+[)71x1+8

where x; is an explanatory variable (independent variable), Y a response variable
(dependent variable), g, the effect (slope parameter), S, intercept parameter, and &
random error [80]. Under this model, the random error is assumed to follow normal
distribution. Whether there exists a true linear relationship or not is tested by the test of
the hypothesis the effect 8, is equal to 0, in which the test statistic that follows t-
distribution is often used.

In genetics, allelic additive effects can be examined in the linear regression model. As
an independent variable, the number of minor alleles which varies by 0, 1, and 2 is
commonly used (this also reflects the genotypes of an individual for 0 would represent
homozygosity for the common allele, 1 heterozygosity, and 2 homozygosity for the rare
allele).

When some traits in the experiment (e.g. temperature, experiment date) are suspected to
affect the response in a linear manner, variables for the traits can be added to examine
how strongly they influence the general model:

Y = Bo+ Bix1 + Prxy + Bzxs + €

where x, and x5 are the additional covariates.

7.1.2 Analysis of variance (ANOVA)

The test for the question ‘if two or more different groups are same comparing the
observed values’ is often performed by analysis of variance (ANOVA), by converting
the question to ‘if the values observed in two or more groups are randomly sampled
from a single normal distribution’ or ‘the variance between the groups is significantly
larger than the variance within each group’. Practically, it tests the null hypothesis that
the means of each group are identical. Thus, if the number of groups is larger than 2,
rejecting the null means that there was significant inequality of means between any pair
of groups.

16



There are a few assumptions in ANOVA to be considered in its general application.
One is the errors of observations should follow a normal distribution and be
independent from the errors of the other observations. One example that is not under
the latter assumption is the error increase along with the prolonged usage of a single
machine. The other assumption is that the variances in each groups should not differ by
a large margin.

7.1.3 Logistic regression

Logistic regression is often applied to the questions that involve a binary response in
contrast with simple linear regression. The model is expressed:

log( P(Y =1)

m) = Bo + B1x1

where P(Y = 1) is the probability of one state of response and the other variables are
same in 7.1.1. The association is tested with the null hypothesis, 5; = 0. The P-value of
the test is obtained by a Wald test or Likelihood ratio test. The logistic model is one of
the generalized linear models. It can be flexibly adapted to include more traits of
interest by adding the terms for the traits like linear regression.

The estimate for £, in this model especially with binary explanatory variable represents
the log of odds ratio (OR), which is often interpreted as relative risk with the implicit
assumption that the outcome is rare.

7.1.4 Chi-square test (Contingency table)

When two variables of interest are categorical, contingency tables can be created.
Within the table, the association between the variables is tested assuming the
independence between the two. Comparing expected values under the assumption and
observed values in the table, a Pearson’s test statistics is calculated:
(0 - E)?

E

X% =
all cells
where O is observed frequency and E is expected frequency in the table. The X?
follows y*-distribution [81]. This test is not appropriate when the number of samples is
too small. In such cases, Fisher’s exact test should be applied, which is explained in the
section 7.4.1.

7.1.5 Multinomial logistic regression

With a specific application to the study of human longevity, unlike many other methods
used to test genetic association, of which explanatory variables are genotype or allele,
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this model inverted the question (variables) by examining genotype frequency change
as a function of advancing age. The model is expressed:

ln( m; ;i (x) > _ {ai,j + Bijx i=j

T[ij(x) In2 + ai,j + ﬁi‘jx i <]
aAyw =0, Byw =0 i,j=12,.... w

where x is age, w indicates the number of alleles (2 for bi-allelic SNP) and m; ; (x) is the
frequency of genotype i, j at age x [82].

7.2 NORMALITY TEST

7.2.1 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov addressed the question of if the underlying distributions of
observed values in two groups are identical without any parameter in model when the
values are continuous. Selecting normal distribution as a reference, the test can be used
to check how well the observations fit to the normal. Since the formula for the
Kolmogorov-Smirnov statistic takes the maximum distance between two distribution
functions, the test results can be influenced by outliers [83,84].

7.2.2 Shapiro-Wilk W test

The Shapiro-Wilk test checks whether the distribution of a variable is normal [85]. The
W test statistic has typically been shown to have better performance than the
Kolmogorov-Smirnov statistic [86,87].

7.3 MULTIPLE TESTING PROBLEM

7.3.1 Bonferroni correction

This method is based on the Bonferroni inequality (or Booles inequality), which states
that the probability that at least one event is true is equal to or smaller than the
summation of all probabilities that each event is true [88]. Bounded by the inequality, it
is enough to declare the association significant when there were multiple hypothesis
tests and the estimated P-value was not greater than the significance threshold (usually
named o level) divided by the number of tests.

If the multiple tests were independent each other, the Bonferroni method is appropriate.
However, in most cases (especially genetic association tests), they are more or less
correlated since LD creates extensive correlation between variables. Thus, the
correction is too stringent, which may result in many false negatives in the studies.
There are thus special requirements to resolve this problem in genome-wide association
studies that typically entail in excess of 500,000 tests.
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7.3.2 False discovery rate

The false discovery rate is the estimated proportion of the truly negatives among the
findings declared positive at a particular threshold. It is a useful method to estimate

how many false associations are included among the declared positives acquired by
large scale multiple tests such as those included in GWAS [89,90].

7.4 ENRICHMENT TEST

7.4.1 Hypergeometric test (Fisher’s exact test)

The hypergeometric probability calculates the probability of observation of a particular
combination of subsets from the full set of objects classified into two or more different
classes. For example, it calculates the probability to observe two black and three white
balls when 5 balls have been picked without replacement from a covered container that
contains 20 black and 10 white balls. Since the question of enrichment is same as that
of the hypergeometric, it is often used to check overrepresentation by calculating a P-
value [91]:

(k)

where (2 ) is the number of possible combination of b different objects when the

P-Value=1—z(i)(K_—i)

X
=0

number a has been picked. In terms of genetics application, there are x genes assigned
to a pathway within the selected group of K genes. In total there are N genes. The
pathway contains M genes.

7.4.2 Mann-Whitney U rank test

The Mann-Whitney U test (or Wilcoxon rank-sum test) is the non-parametric test to
explore for evidence that the values in two groups are drawn from the populations with
different distributions [92-94]. The underlying assumption is that the values are
independent and continuous. It derives the test result by comparing the ranks of the
components in two testing groups.
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8 ALZHEIMER DISEASE AND AGING

8.1 ALZHEIMER DISEASE (AD)

Alzheimer disease (AD) is the most common cause of dementia in the elderly
worldwide. Both dementia and AD are rather common and their prevalences increase
exponentially with advancing age [95-98]. In contrast to broadly defined dementias, the
slope for AD prevalence is somewhat steeper [97,98]. [97,98]. The prevalence of
dementia in the age group of 65-69 is about 1%. It exceeds 5% in the group of 75-79
and continues to increase [99]. A recent study showed that about 40% of individuals of
the age of 90 or more suffer from dementia and of these, approximately 75% of had a
more strict AD diagnosis [98]. As the expected lifespan gets higher around the world,
the number of AD patients is expected to surge [99]. AD sufferers require considerable
care due to the chronic nature of the disorder, which will be even a more serious burden
to the individuals themselves and families in the coming decades [100-102].

Clinically, AD is characterized by a progressive cognitive and functional impairment.
Neuropathologically, it is discriminated by two lesions, “plaques” and “tangles”. The
first is the aggregated amyloid-f (AP) peptide observed in the extracellular matrix of
brain tissue. The second is the neurofibrillary depostion of hyperphosphorylated t (tau)
protein in the intracellular matrix [103]. Genetically, it is classified into two forms,
early-onset familial AD (EOFAD) and late-onset AD (LOAD) by the patient’s age
[104]. The latter is much more common (95% of all cases) and does not show as
obvious familial segregation as EOFAD does.

8.1.1 Amyloid-Bin AD

The amyloid-P peptide is generated by the cleavage of amyloid- precursor protein
(APP) by B-secretase APP-cleaving enzyme (BACE) followed by y-secretase cleavage,
competing with an alternative non-amyloidogenic pathway that begins with cutting
APP by a-secretase activity [105,106]. Consistent with the AP genesis pathway,
mutations in the genes of APP, presenilin 1 (PSEN1) and presenilin 2 (PSEN2) induce
EOFAD with full penetrance [107-109], where the presenilins are highly homologous
genes encoding one of four components of y-secretase complex [110]. In the brain of
healthy individual, the AB of which neurotoxicity is observed [111,112] is degraded by
the insulin-degrading enzyme (IDE), neprilysin, endothelin-converting enzyme (ECE-
1), and angiotensin-converting enzyme (ACE) [113-115]. It is also eliminated by the
efflux mediated by low-density lipoprotein receptor-related protein from the brain
[110,116]. Under the Ap hypothesis, an imbalance that disturbs the equilibrium status
between production and clearance is thought to be a core mechanism that leads to the
development of AD [105,110,117].
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8.1.2 Genetic studies on late-onset AD

The patients that suffer from both LOAD as well as EOFAD forms of AD are usually
clustered in families, even if EOFAD carries “familial” in its definition since it is
transmitted in a strict Mendelian manner. EOFAD is rare, with only about 1% or less of
the AD population having an onset before the age of 65 (the typically threshold used to
define early and late onset forms). About 60-80% of LOAD been shown to be
determined by genetic factors, showing that there is an extensive genetic component,
much of which is still unknown [95]. Towards the discovery of genetic variants that
account for the late-onset form of AD, genetic association studies have over the past
two decades primarily focused on putative candidate genes, defined subjectively by
their possible involvement in biological processes thought to be of relevance to
dementia. For instance, many of the investigated candidates over the years have been
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Figure 6. Manhattan plot of the recent genetic association data on the AlzGene database
(http://www.alzgene.org. accessed on 2010-09-27)[5]. A total of 2033 genetic variants are
shown here. The results from meta-analyses of 4 or more independent data sets are shown in
green dots. The results from single-studies or meta-analyses of less than 4 separate studies are
shown in black or gray dots. Note that the dot for APOE should be much higher in the plot,
since P-value < 1x10°. The dark columns indicate the locations that showed “genome-wide
suggestive” evidence of linkage in a meta-analysis of linkage studies on LOAD. The light
columns are for “genome-wide nominal” evidence. Genes in blue at the bottom are those

associated with EOFAD.
Reprinted from Neuron, 68, L.Bertram, et al., The Genetics of Alzheimer Disease: Back to the Future,
271, Copyright (2010), with permission from Elsevier
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the genes that encode proteins that involved in the metabolism of AB. Despite these
efforts, before the recent era of GWAS, only a single non-synonymous (amino-acid
changing) SNP in Apolipoprotein E (APOE) had been confirmed that was associated
with LOAD, replicated extensively by multiple research groups and in multiple human
populations since it was discovered in 1993 [104,118]. For the large number of other
candidate gene studies that claimed association of their target genes with AD,
essentially all have failed to be replicated in following studies in independent
populations.

Following the technical developments necessary to facilitate genome-scale association
studies, a few GWAS on AD, more precisely LOAD, with large samples from various
world populations have been conducted, and the summary of these is presented in
Table 1. Up until the writing of this these, in total 14 studies have been published, of
which three analyzed relatively large samples derived from more than 2000 cases and
comparable controls in their primary analysis. By such extensive efforts, the
associations of the genes PICALM, CLU, CR1, and BIN1, together with the well-known
APOE, have been reliably replicated in multiple studies. As an overview, the
significances of all the markers in the meta-analyses for AD available from the
AlzGene database [5] are illustrated in Figure 6 [104]. Supporting some of the findings,
the results from genome-wide linkage studies are included in the illustration with gray
columns. Despite the successes, it should be noted that the estimated effects of the
replicated loci excluding APOE were still low (allelic ORs ~1.15 referring to OR ~4 for
APOE ¢4) [104].
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Table 1. Description of overall GWAS in AD on AlzGene database

GWAS

Grupe et al., 2007[119]

Coon et al., 2007[120] &

Li et al., 2008[122]
Poduslo et al., 2009[123]

Abraham et al., 2008[124]
Bertram et al., 2008[125]
Beecham et al., 2009[126]

Carrasquillo et al.,
2009[127]

Lambert et al., 2009[128]
Harold et al., 2009[129]

Heinzen et al., 2009[130]
(CNV)

Potkin et al., 2009[131]

Design

Case-control

Case-control

Case-control

Family-based
&Case-control

Case-control

Family-based

Case-control

Case-control

Case-control

Case-control

Case-control

Case-control

Population

USA & UK

USA,
Netherlands#

Canada & UK
USA

UKt
USA

USA™
USAe

Europet

USA &
Europeet

USA™

USA (ADNI)t

No. SNPs

17,343

502,627

469,438

489,218

561,494
484,522

532,000

313,504

~+540,000

~610,000

n.g.

516,645

No. AD GWAS | No. CTRL GWAS

(Follow-up)”

380 (1428)

446 (415)
753 (418)
9 (199)

1082 (-)
941 (1767)

492 (238)
844 (1547)
2035 (3978)

3941 (2023)

331 ()

172 (-)

23

(Follow-up)®

396 (1666)

290 (260)
736 (249)
10 (225)

1239 (1400)
404 (838)

496 (220)
1255 (1209)
5328 (3297)

7848 (2340)

368 (-)

209 (-)

“Featured” Genes®

APOE, ACAN, BCR, CTSS, EBF3, FAM63A™, GALP,
GWA_14¢32.13, GWA_7p15.2, LMNA, LOC651924, MYH13,
PCK1, PGBD1, TNK1, TRAK2, UBD

APOE, GAB2
APOE, GOLM1, GWA_15g21.2, GWA_9p24.3
TRPC4AP

APOE, LRAT

APOE, ATXN1, CD33, GWA 14qg31

APOE, FAM113B

APOE, PCDH11X

APOE, CLU (APOJ), CR1

APOE, CLU (APQJ), PICALM

APOE, CHRNA7Y

APOE, ARSB, CAND1, EFNA5, MAGI2, PRUNE2



No. AD GWAS | No. CTRL GWAS

H H 1 ” a
GWAS Design Population No. SNPs (FoIIow-up)b (Follow-up)b Featured” Genes
Seshadri et al., 2010[132] | Case-control Eléerfi#& ~.2,540,000 | 3006 (6505) 22604 (13532) APOE, BIN1, CLU (APOJ), EXOC3L2, PICALM
. USA &
Naj et al., 2010[133] Case-control Europet# 483,399 931 (1338) 1104 (2003) APOE, MTHFD1L

The data was achieved from AlzGene database [5] on 2010-09-27. ®the genes affirmed to be associated with AD by the authors for the original study.
The genes in bold font are those that showed study-wide “genome-wide significant” association. ° follow-up study data set. The symbols (e, #,1,")
indicate there are common samples in different studies. Note that the well-known genetic variants in APOE were in many studies acquired by genotyping
the proxy SNPs.

Reprinted from Neuron, 68, L.Bertram, et al., The Genetics of Alzheimer Disease: Back to the Future, 271, Copyright (2010), with permission from Elsevier
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8.2 AGING

Age is the single most important factor in AD development. Upon neuropathological
examination, normal individuals at advanced age may exhibit evidence of
neurodegeneration, but at a level considerably more mild than AD patients undergo
[134]. As the brain ages, various type of cognitive decline are typically observable,
such as a reduced memory capacity, slowed response to external stimuli [135], and
diminished creativity [136]. However, the knowledge and skills obtained at a younger
age (typically referred to as wisdom) tend to remain intact for a longer time [137].
Microscopically, the number of neocortical neurons decreases by approximately 10%
through 20 to 90 years while the number of glial cells tends to be invariant [138].
Neuronal loss in hippocampus is usually not significant in normal elderly individuals
[139] whereas severe shrinkage of the hippocampus has been observed in AD cases
[140].

The theories that pursue explanations of aging are numerous [141]. The two central
branches of these are the “programmed” and “error” theories. The programmed aging
theories have originated from the serial observations of the limited lifespan of
explanted human cells [142], the shortening of telomeres that occurs with each
successive cell cycle [143,144], and DNA damage response (DDR), of which
accumulation leads cells to apoptosis or senescence [145]. Thus, most cells are destined
to death due to the existence of a molecular clock at the tip of each chromosome. The
programmed theory states that aging is controlled by a pre-programmed biological
clock. The theory is supported by the observations in model organisms, which have
showed that some mutants have increased longevity [146]. Most of the genes that have
been mutated in such long-lived organism have been related to the pathways that
regulate basic cellular functions such as growth, energy metabolism, and reproduction
[147]. The evolutionary existence of programmed aging is explained by two theories of
“antagonistic pleiotropy” and “disposable soma theory”. The latter posits that lifespan
is determined by the balance between growth/reproduction and somatic maintenance
[147]. The former describes that the genes that are deleterious in old age remained in
the genome because those same versions of the genes are beneficial in young age [141].
The “error” theory is that a decrease in vitality with advancing age is due to the
accumulation of environmental attacks such as reactive oxygen species (ROS) in
mitochondria inducing biological damages in cell or organism [148].
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9 PRESENT INVESTIGATIONS

9.1 AIvMs

e To investigate the association of genetic markers in IDE with age and with
molecular levels in intermediate biological processes

e To examine the association of genetic variants of the genes in the cholesterol
metabolism pathway

e To identify the biological pathways that are overrepresented among genes
associated with age

e To develop a bioinformatics tool for pathway enrichment analysis and to
address emergent issues in the analysis

e To identify pathways that are enriched among genes associated with Alzheimer
disease

9.2 PAPERI

9.2.1 Materials and Methods

Human samples are briefly described in Table 2. Detailed descriptions of some of the
samples are available in Ulrika K. Eriksson’s thesis [149] and the original publications
contained therein.

Table 2. Brief descriptions of human samples

Sample Sample Size (M/F)  Origin Description

Sample 1 601 (290/311) Swedish AD-free controls (Harmony)
Sample 2 321 (116/205) Australian PD-free controls

Sample 3 724 (411/313) Swedish Non-diabetic controls

Sample 4 178 (77/101) Swedish AD-free controls

Sample 5 539 (181/358) Swedish Random Population (OCTO)
Sample 6 590 (249/341) Swedish Random Population (SATSA)
Sample 7 2703 (1862/841) Swedish MI case-control

Sample 8 40 (14/26) Swedish Sequencing

Sample 9 178 (83/95) English DNA/RNA Brain

M = male, F = female.
Sample size represents the total sample for which genotyping was performed.
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Genotyping of SNPs was conducted with dynamic allele specific hybridization (DASH)
[150]. The novel spliceform of IDE was identified by PCR with a primer pair targeting
both 15a and 15b-exons. The quantification of three different spliceforms was
performed by gPCR using fluorescent labelled probes and exon-boundary spanning
primers. The reactions were run in duplicate, and Ct values were averaged. Sequencing
for identifying novel polymorphism was performed using a standard capillary
electrophoresis method.

Multinomial logistic models were used to investigate the dependency of genotype on
age [82]. The age difference between genotype group was assessed by ANOVA. Cox
models were applied for the survival analysis of samples 5 and 6. Expression level
analysis was performed using ANOVA with Ct values. HWE was tested with a
statistic. Normality was assessed using a Kolgomorov-Smirnov test.

9.2.2 Results

Among tested markers, the SNPs, rs1887922 and rs2251101 were uniformly associated
with the observed traits in only men across the different populations. Intriguingly,
heterozygotes comparing to homozygotes regardless allele itself had significantly lower
age-at-sampling, shorter life span, higher insulin levels in plasma, and higher mRNA
expression in brain. The association of both markers with age-at-sampling of men from
4 different samples was significant (P=2.2x107 and 5.1x107), contrasting no evidence
of association in women. The survival analyses with two sample groups showed
significantly different mortality across the genotype classes of rs1887922 and
rs2251101 with both the COX model and ANOVA, respectively. The genotype
frequency of rs1887922 between young and old sample groups was significantly
different (P=0.0052), but not for rs2251101 (P=0.17). Increased mortality among
heterozygotes was observed in another sample for both markers (P=0.0064, 0.018).
Genotypes of rs2251101 in men was strongly associated with insulin levels in plasma
that were obtained at a 10 year interval. This marker was significantly associated with
both the 15A and 15B spliceform expression levels (P=0.014, 0.0032)

9.3 PAPERII

9.3.1 Materials and Methods

The samples used in this paper were 1567 Swedish dementia cases and 2003 controls
from four aging twin studies (SATSA, OCTO-Twin, GENDER, HARMONY) and a
non-twin Alzheimer disease case-control study. The descriptions of the samples in
more detail can be obtained in the previous publications for individual studies [95,151-
154] and in Ulrika K. Eriksson’s thesis [149]. For the secondary analyses, the genotype
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data of Swedish males from the CAPS(Cancer Prostate in Sweden) and the expression
data from two previous studies were obtained [155,156].

The 25 genes in cholesterol metabolism pathway were selected by literature search.
Prioritizing the markers with previous finding, functional candidate, and LD, in total
506 SNPs in those genes were chosen and genotyped to investigate the association with
dementia. CSF samples were obtained in Swedish AD case-control study [157].

HWE was tested with Pearson ¥ statistic. Initial association tests between individual
markers and dementia were conducted using logistic regression. Alternating logistic
regression was applied to account for pair dependency of twins [158]. For the network
analysis, FunCoup was employed [159]

9.3.2 Results

Among the observed marker, rs2230805 in ABCA1 showed the most significant
association following the APOE genetic variant. The third markers was located close to
SREBF1 (P=8.5x10®) , which is in a large LD block spanning 7 genes. Applying F-
SNP database tool, we found two potentially functional markers in high LD with the
associated marker near SREBF1. Further investigating the association of gene
expression with proxy SNPs of the SREBF1 marker produced one strong correlation
between genotype of the proxy and ATPAF2 expression trait. In the network analysis,
only TOM1L2 could build a network with well known AD genes among the seven
genes.

9.4 PaPERIII

9.4.1 Materials and Methods

The first sample set consisted of 191 individuals who were free from neurological
disease and whose brain tissues were collected at autopsy after deaths at ages 65-100.
The second samples consisted of 1240 individuals at the ages of 15 to 94 years. The
detailed descriptions of the human samples and the expression measurement protocols
in detail are provided in the original paper [156,160].

After outlier removal by the Sidak’s method, the associations between age-at-death and
log transformed expression levels of brain samples were examined for brain samples by
a linear regression model with global expression as a covariate. For the lymphocyte
samples, similar linear regression model without a global expression term was applied.

For the pathway analyses, DAVID was applied to test the overrepresentation of Gene
Ontology terms or KEGG pathway descriptors among the associated genes with
advancing age [72,76,77].
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9.4.2 Results

For the brain sample, the linear regression of 14 078 individual transcripts produced 54
significantly associated genes with age-at-death adjusted by the Bonferroni method. A
validation of the association was confirmed by comparing the 54 genes with the genes
identified in a previous study [161]. By pathway analysis of the associated genes
(unadjusted P<0.05) with age, ‘mitochondrion’, ‘synaptic transmission’, and several
more terms in GO were observed to be enriched among negatively correlated genes,
and ‘DNA binding’, ‘regulation of transcription, DNA-dependent’, and more term in
GO were identified among positively correlated genes.

Applying same strategy to additional samples of lymphocytes, the linear regression on
each of 19 648 individual transcripts versus age produced a gene list of 1080 (612
negative, 468 positive) significantly associated transcripts. Dividing this list into
positive and negative groups of genes as was done in the brain study, pathway analysis
was performed with the top genes (unadjusted P<0.01). The terms‘mitochondrion’,
‘nucleic acid binding’, and several others were enriched among the negatively
expressed genes and ‘plasma membrane’, ‘signal transduction’ and several additional
weaker terms were overrepresented among the positively regulated genes. In the gene
architecture comparison study, the negatively associated genes had significantly smaller
intron to exon length ratio.

9.5 PAPERIV

9.5.1 ProxyGeneLD.pl

The program was designed to automate the processes of assigning each tested SNP
marker to genes and to subsequently compute and assign gene-wide P-values.
Considering the correlation structure among the SNPs (Linkage disequilibrium; LD),
markers have the potential to be assigned to genes which are located far from them in
terms of genomic distance. This is an important characteristic of the program in that it
reflects the fact that a single marker can be assigned to multiple genes, each of which
could contribute to a disease. The software was specifically designed to also take into
consideration the inflation of significance due to multiple single marker tests in the
calculation of P-value for each gene.

The process begins with investigating the LD structures using analogous populations
with denser genotyping data. In this thesis, all analyses employing this program
adopted HapMap CEU data. The software then continues to read the genetic marker
lists derived from a genome-wide association study, with the core input being the P-
values (usually generated from a simple allele test between cases and controls). All the
tested markers are assigned to the genes based on genomic position. The markers
within a region of a 1kbp upstream from 5’end in the direction of transcription but not
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including any sequence downstream of 3’end of the longest known splice variant of a
gene are assigned to the gene in this thesis. This parameter is readily adjustable by a
series of command line options. On the grounds that the SNPs that are not genotyped
but are strongly correlated with typed SNP (proxies) can be inferred from the observed
markers [21], the typed markers are assigned to the genes of their proxies. In order to
adjust P-value to account for the length of the gene and marker density spanning each
gene region, the program counts the effective number of markers which can be
regarded as independent genetic variations assigned to same gene. The numbers are
then multiplied by the lowest P-values of the markers assigned to the genes. An
example to illustrate the processes is shown in Figure 7.

The Perl programming environment was chosen as the language to build this program.
Perl has excellent functions dealing with text-related manipulation compared with other
popular programming languages such as JAVA, C++. Importantly, a single run of
ProxyGeneLD per GWAS was generally regarded as sufficient, since the only
parameters that change the output are the boundaries that define gene regions and LD
cut-off thresholds, both of which were standardized. So, running time, the greatest
limitation of Perl is not a serious obstacle. A standard run of the software on a GWAS
with perhaps 500,000 SNPs might take on the order of 15 minutes on a standard PC.

In order to find the best gene identifier for the following analysis after running this
program, several gene identifiers in different databases were tested. We compared how

romoter
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Figure 7. The illustration of how the program calculates gene-wide P-values with an artificial
example. There are two genes and 8 SNPs of which six are genotyped in this study and two are
proxies. Four SNPs on the left of the figure are in high LD and so are the three on the right. P-
value for each genes are computed by the following formulas.

P-value for Genel = min(0.02, 0.01, 0.02) x 1 (the effective number) = 0.01

P-value for Gene2 = min(0.02, 0.25, min(0.1, 0.09)) x 3 =0.06

30



many genes could be recognized by DAVID. Among the tested identifiers, GenelD of
NCBI Entrez performed best and was selected as the standard identifier in the processes
and output of ProxyGeneLD.

9.5.2 Pathway analysis

Three different applications were employed to find overrepresented pathways among a
subset of a gene lists against full set. One of them was gene set enrichment analysis
(GSEA) [78]. It (GSEA v2.0) was applied with slight modification of the output of
ProxyGeneLD, since it requires a weight for each gene instead of a P-value, which was
calculated by negative log of adjusted gene-wide P-value on the basis of 10. When
negative weights appeared due to the gene-based adjustments, entire weights were
adjusted by shifting to all positives and single zero. The application ran with 5000
permutations.

Another application was the database for annotation, visualization and integrated
discovery (DAVID). The analyses in paper IV were performed with a March 2008 GO
annotation update. The other was the Ingenuity pathway analysis (IPA; Ingenuity
Systems), which is a commercial web-delivered application with its own annotation
database.

9.5.3 Materials and methods

The resultant data from genome-wide association studies was obtained from the four
different previous studies of Willer et al., 2008 [162], Zeggini et al., 2008 [163], Barrett
et al., [164] and Aulchenko et al., 2009 [165]. The analysis of gene ranks was
performed with the Mann-Whitney U test.

9.5.4 Results

To investigate the bias introduced by gene length, pathway analysis of one GWAS
dataset was performed using ProxyGeneLLD and DAVID. The overrepresented terms
among the genes with high unadjusted P-value were similar to the enriched terms
among the longest genes. To observe local clustering of functionally similar genes,
taking equally distributed blocks along every chromosome, enrichment statistics were
recorded. The observation revealed that there exists such clustering, which should be
taken into account in any pathway analysis. To examine if study results can be
influence by imputation, we compared the pathway analysis results that were
performed with imputed marker data and non-imputed marker data. Most genes
retained similar rank regardless of imputation, but a few outliers were observed. By the
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pathway analyses with several real GWAS data, several GO term enrichment was
observed.

9.6 PAPERV

9.6.1 Materials and Methods

We obtained the marker-based results data of the genome-wide association study on
Alzheimer disease performed with 2032 AD cases and 5328 controls from a French
population [128]. Applying ProxyGeneLD program, the single marker test results for
every the SNPs were converted into a list of 16 503 gene-wide P-values. The genes that
had an adjusted P-value of 0.05 or less were tested for enrichment of GO terms against
the full set of the converted genes using DAVID [166] and Genecodis [79].

Examining the genomic locations of the top genes, we found that four genes of the top
five are clustered in a large LD block. Applying FunCoup [159], each of the four genes
(APOE, TOMM40, PVRL2 and BCL3) was tested for connections in a network with the
genes annotated to the overrepresented GO term found in the pathway analysis.

9.6.2 Results

By the pathway analysis, ‘intracellular transmembrane protein transport’ term in GO
was found to be overrepresented among genes that were highly associated with AD
(P<0.05). Since the most significantly associated gene, TOMMA40 is located in an LD
block spanning TOMMA40, PVRL, BCL3, APOE, the latter being the most well-known
AD predisposing gene, a network analysis was performed. Among the four genes, only
TOMMA40 could build a network with the top genes with the identified enriched term.
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10 DISCUSSIONS

10.1 METHODOLOGICAL ASPECTS

This thesis is represented by five studies that have applied three different molecular and
statistical approaches on different scales; candidate gene, target pathway, and genome-
wide pathway approaches. This change in scale of my studies partially reflects the
history of genetic association studies in the genetic epidemiology community. There is
one missing piece to fit the complete history, which is a genome-wide association study
in our own Swedish samples. Thus, two papers in this thesis deal specifically with
GWAS data, but we were unable to complete a GWAS in sufficient time to be included
here.

The candidate gene study in this thesis identified association of several SNPs spanning
IDE with age-at-sampling and age-at-death, together indicating the specific genotypes
of IDE confer increased mortality that can be seen in the population. The study
proceeded to examine this finding at the molecular level, targeting IDE mMRNA
expression and insulin levels, which are the direct product of the gene and perhaps the
most important substrate of the protein (IDE), respectively. This represents a fairly
unique strategy since it is uncommon for genetic association findings to be followed up
at the molecular level at all. Thus, most researchers tend to only present the nominal
genetic association statistics with their target disease phenotype. There exist a few
studies that examine the association of a genetic marker with a “molecular phenotype”
representing the putative intermediate biological process that leads from genotype to
disease, in order to support the epidemiological finding [167-169]. However, the
concept of examining intermediate phenotypes was proposed long ago [170] and
interestingly, the method is particularly popular in psychiatry studies [171]. The
strategy at its core is based upon the assumption that the possible mechanism leading
from genetic variant to molecular phenotype is simpler than the mechanism to explain
the association at the far end of the scale, the clinically defined disease state [167]. In
the study on IDE, the association with the various molecular phenotypes provided
strong support for initial observation at two levels. In the first, obtaining association
with a molecular phenotype enhances the evidence that gene under study does in fact
contain functional variation, and is especially meaningful if it is the same genetic
markers. For the second, the kind of association can lead to insight about the potential
mechanism, where a genotype that confers increased risk for disease, can be linked to
either increased or decreased expression, and this in turn tied to how it affects an
intermediate trait (in our case plasma insulin level). The study on IDE was also
particularly powerful since we were able to replicate the findings in a number of
additional samples.

Candidate gene studies have their own particular advantages. The probes and assays
designed for a specific gene and markers typically are highly validated. Because cost is
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usually low and the hypothesis specific, redundant probes can be added to search for
genotyping errors as well as to consider possibly different LD patterns from the
population that has been employed for the original design that used either custom
genotyping technology or a commercial genotyping chip. Put another way, to search for
a paragraph in a book, we don’t have to search every book in a library, if we know what
book may have the paragraph. In retrospect however, the majority of genetic
association studies that have targeted specific candidate genes have failed to be
replicated by independent research groups using either further candidate gene studies or
GWAS [172-174]. One emerging theme from the thriving GWAS community suggests
the phenotypes that we are typically interested in are associated with multiple variants
with small effect sizes [69,175-177]. In other words, small phrases of the paragraph
have been scattered into many books. Thus candidate gene studies have evolved to be
applied in the validation step of GWAS as shown in Table 1 as “follow-up study’
[6,104]. If an association of a genetic marker has been confirmed, zooming-out of the
nearby region from that marker, a candidate gene study can be a fruitful avenue to
genotype the region at much higher marker density using more probes for rarer SNPs. It
can also be an important guide for sequencing or measuring potential intermediate
molecular phenotypes [169].

The candidate pathway approach is to some extent analogous to the candidate gene
approach. It has similar pros and cons, especially in comparison with GWAS. One
application of the method that has to my knowledge not been tested yet is as a
secondary validating study focusing on the overrepresented pathways found by a
pathway analysis. Thus, establishing lists of genes from pathway analysis of GWAS to
perform dense genotyping may be a fruitful avenue to pursue.

GWAS has been remarkably successful in the identification of predisposing genetic
variants to a variety of human diseases and traits. However, the effect sizes of the
associated variants as estimated are typically too small to explain a large fraction of
heritability of the disease [69,175]. Numerous approaches have been developed to
resolve this emerging problem [178]. Some of these involve testing a “set” of SNP
markers [179,180], integrating with linkage studies to enhance evidence [181], and
analyzing overrepresented pathways [70], the latter being upon which this thesis
focuses. The putative signals in the multiple marker tests often are confounded by the
surrounding noise, thus watering down the statistical significance if the investigated
regions are large. The method also doesn’t employ any additional information. Studies
that attempt to incorporate association findings with linkage results require that samples
are collected under special conditions. In contrast, the pathway approach takes
advantage of biological knowledge as an additional source of information and is
applicable to the vast and growing amount of GWAS data directly.

Pathway-based analyses has been most widely used in genome-wide (transcriptome-
wide) expression profiling studies [182]. As the history of the use of expression
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microarrays [41] is longer than for the high-throughput genotyping approaches, the
various tools that have been created have had longer development time and
consequently been tested extensively [77,78,183,184]. It has only relatively recently
become possible to test the potential of the strategy to analyze GWAS data [70]. This
lack of proper tools to handle SNP data for pathway analysis motivated study 1V in this
thesis. The availability of an extensive array of free applications available to explore for
overrepresented pathways from significant gene lists, enabled the development of our
tool for the process converting SNP to gene data.

Paper 1V describes in detail how ProxyGenelLD was developed and reflects our general
satisfaction with the program. We extended the use of the program to another study in
the paper V specifically targeting Alzheimer disease. In terms of discoveries using the
software, one of the most important is related to apparent (and false) enrichment of
longer genes, which has been ignored by some of published papers that included
pathway analysis strategies. The program also assists in the mapping genotyped SNPs
to “proxy” genes, which is an area that is still neglected in most association studies
[178]. One core premise in ProxyGeneLD that may be questioned is that the LD
structure of a study population is comparable to that of the analogous cohort that has
denser genotyping data such as HapMap CEU. Thus, the HapMap cohort may not
reflect the LD pattern of the population under investigation, but it remains the best
available and is a sufficiently valid surrogate of which data have been considered in the
design of the commercial genotyping chips [185]. Numerous programs for assisting
with pathway analysis of GWAS are available at present [178]. One that has recently
been developed and stands out from the rest is VEGAS [186]. VEGAS adjusts gene-
wide P-values considering LD using a relatively advanced statistical algorithm
involving permutation, which can be implemented in our program by replacing the step
of classifying “proxy cluster” with an ad-hoc threshold for high LD (r>>0.8) [186].

The pathway approach as applied to gene expression results in this thesis demonstrated
that such data can produce new insight into general biological themes in the transition
youth to advanced age. There were numerous novel findings including evidence that
gene structure may influence gene regulation with advancing age, as well as both up-
regulated and down-regulated biological pathways that have not previously been
observed. One observation, the down-regulation of mitochondrial genes was not novel,
having been seen on two other occasions [187,188]. However, the successful
replication of an initial finding providing vastly stronger evidence is an important
indication of the potential of the approach in paper 111 that be applied for novel findings
in future studies.

The pathway analyses in this thesis were conducted primarily with gene annotation data
using the GO database. However, it should be noted that the annotation process in GO
is still incomplete. The number of annotated gene is still growing. Additionally genes
that have been annotated by the sequence similarity to the genes with known function
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will be annotated more precisely based on biochemical study results in the near future.
As GO accumulates more and more annotations, it will likely provide a greater
opportunity to observe more meaningful pathway discoveries, especially if applied to
rapidly expanding GWAS data in various human populations.

10.2 BIOLOGICAL ASPECTS

Each study in this thesis is a distinct entity and together may appear as unrelated
biological findings. One contributing factor to this is that three out of five studies didn’t
have specific hypothesis, involving instead very general concepts such as the study of
aging or AD. With no specific hypothesis and thousands of tests, the produced findings
are thus difficult to inter-linked and seen in a unifying context. Thus, many of the
biological discussions that are related primarily to the individual study are addressed in
the discussion section of each constituent paper of this thesis.

The initial biological question of this thesis was “What causes Alzheimer disease in the
elderly?” Because of the strong correlation between AD and age, the question was
expanded to include another related scientific question “What is aging?” As a metaphor,
these concepts can be partially related to the idea from hypothetical analogous research
on other object, the automobile. If AD corresponds to engine failure, the first question
will be “What causes engine failure?”” As we are generally well aware, it can break
down for numerous reasons. For example, failure in a shaft, piston, valves, and so on.
But, a more fundamental cause is simply aging. The broken down components were
aged chemically or mechanically. For the car, to avoid engine failure, we should
understand aging first and maintain our cars to lower the speed of the aging. Likewise,
it is natural that the study of AD should be accompanied by the study of aging itself.

There are two transcript variants of IDE registered in the NCBI RNA reference
sequence collection. One is relatively long with ~120kbp of pre-mRNA (the average
was ~60kbp in paper I11). The other is shorter with a ~46kbp long pre-mRNA. The first
has large ratio of intron to exon length (the ratio is ~32, average was ~21 in paper IlI).
The second has a smaller intron to exon ratio of ~10. Taking into consideration that
premature aging leads to a shorter life span, the observation in Paper 111 that the
positively associated genes were compact is consistent with the expression difference in
the study of IDE assuming the shorter IDE transcript variant was predominantly
measured. Since the ages of the samples for the IDE expression study were rather old
(~80 years) and uniform, it can be a possible mechanism that the brain cells of
heterozygotes, who were not nominally more aged but biologically more aged,
expressed higher levels of the shorter IDE transcript.

36



11 CONCLUSIONS

Pathway analysis applied to genome-wide association studies has the potential
to produce new biological insights

Pathway analysis in genome-wide expression studies is a useful method to
address general biological questions related to aging.

ProxyGeneLD we developed is a useful tool for pathway analysis, especially in
its ability assign SNP to “proxy” gene with high fidelity.

Genetic variants in IDE are associated with age in a manner that may reflect
changes in MRNA expression and plasma insulin levels

Genetic association of an LD block including SREBF1 with dementia.

Genes that play a role in mitochondrial function were overrepresented among
genes that have lower expression levels at advanced age.

Negatively associated genes with increasing age tend to be non-compact,
indicating that gene structure plays a role in the age-dependent regulation of
transcription.

From pathway and network analyses, TOMM40 may play a role in Alzheimer
disease development.
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12 FUTURE PERSPECTIVES

The current version of ProxyGeneLD requires an additional tool such as DAVID to test
overrepresentation of pathways by retrieving data in the GO or KEGG pathway
databases. Due to the lack of such a function specifically designed in ProxyGeneLD,
when genes with similar function are clustered in nearby chromosomal positions,
enrichment statistics for pathways may indicate spurious findings. The solution
introduced in paper IV has involved manual exclusion of such genes from the gene lists,
which is often a tedious process. If the program has a function of directly accessing the
GO database to enable the calculation of enrichment statistics by itself, then such a
problem can be resolved by simple modification at the counting step where the number
of genes is assigned to a pathway. Thus, regardless of how many genes are really
assigned, the number of the clustered genes, even if SNPs in the genes are in high LD,
iIs forced to be counted as 1.

As shown in Paper I, the investigation of molecular targets for genetic association
produces evidence that can represent an important corroboration of the epidemiological
findings. Applying a similar strategy at the genome-wide scale has a great deal of
potential. Observing association of intermediate molecules in a biological metabolic
pathway from DNA to RNA, to protein, and eventually to metabolites and disease, can
provide evidence of the exact molecular mechanism that leads to disease. Investigating
the association of genetic variants with metabolites (via “metabolomics™) is an ongoing
project, in which LC-MS and GC-MS were employed to measure thousands of
metabolites simultaneously. It will hopefully also lead to new biological insights that
can link known genetic associations to the underlying mechanisms.
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