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On the cover is a picture of dopaminergic neurons derived from human fetal ventral 

midbrain cells in the presence of Wnt5a. Dopaminergic neurons express the pan-neuronal 

marker Tuj1 (in green) and tyrosine hydroxylase (in red).  Hoechst staining (in blue) 

labels the cells nuclei. This thesis has focused, amongst other topics, on strategies to 

improve the dopaminergic yield from human fetal mesencephalon tissue for cell-

replacement therapies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“The doubter is a true man of science; he doubts only himself and his interpretations, but 

he believes in science.” 

 

 Claude Bernard





 

 

ABSTRACT 

 

Parkinson’s disease (PD) is a debilitating neurodegenerative disease in which 

dopaminergic (DA) neurons in the substantia nigra are lost. Current treatments such as 

administration of levodopa (L-DOPA) are initially effective but the disease eventually 

progresses, highlighting the need for a treatment that restores and maintains the 

otherwise lost functions. Cell-replacement therapy (CRT), where DA neurons and/or 

precursors are grafted into the striatum in order to restore the lost striatal DA 

transmission, are considered a promising treatment. In order to implement CRT, large 

numbers of correctly specified ventral midbrain (VM) dopaminergic (DA) neurons 

should be obtained. Therefore, a lot of effort has been put into identifying cell sources 

from which high numbers of DA neurons can be generated and also into the study of 

the intrinsic and extrinsic factors that regulate DA neuron development. In our lab, we 

have focused on the Wnt pathway and its extracellular modulators which we believe to 

be of value for CRT as it does not imply genetic modification of the cells. In this thesis, 

we have investigated the role of Wnt pathway components such as Wnt1, Wnt5a, Lrp6 

and Dkk1 in VM DA neuron development and in stem cell DA differentiation. 

The Wnt pathway regulates several important processes such as cell proliferation, fate 

determination, differentiation and patterning. The ligand Wnt1 plays a crucial role in 

DA VM midbrain patterning and specification: in its absence most of the midbrain fails 

to be formed; Wnt1 promotes the specification of the DA progenitor domain and 

differentiation in vivo, and the proliferation of DA precursors in vitro. Prior to this 

thesis, the role of the Wnt receptor Lrp6 in VM DA development and specification had 

not been elucidated. To determine the role of the Wnt/β-catenin pathway in DA 

specification, mouse embryonic stem cells (mESC) lacking the Wnt1 ligand or the Lrp6 

receptor were induced to differentiate towards a VM DA phenotype using established 

protocols. Our results revealed that an impaired Wnt/β-catenin pathway, at the ligand or 

receptor level, improved neurogenesis and DA differentiation from mESC, Moreover, 

addition of Dickkopf 1 (Dkk1), a Wnt inhibitor, mimicked this effect in a mESC line, 

confirming that mESC-derived DA differentiation is improved by impairing the Wnt/β-

catenin pathway and that current protocols to induce DA differentiation can be 

enhanced by addition of soluble factors such as Dkk1. 

We next sought to investigate the role of Lrp6 in VM DA neuron development in vivo. 

Analysis of Lrp6
-/-

 embryos revealed a normal midbrain patterning and a decreased 



 

 

differentiation of DA neurons, which later recovered. Thus, in the absence of Lrp6 

there is a delay in DA neuron differentiation. 

Given the results obtained with mESC, we decided to further assess the role of Dkk1 in 

DA development. Our results revealed that Dkk1 is expressed in the VM just prior to 

the onset of DA neurogenesis. In Dkk1
+/-

 mice we could not detect any changes in the 

number of DA progenitors and neurons at E11.5. However, at E13.5 there was a 

significant reduction in the number of DA neurons. DA progenitors and precursors 

were not affected, there were no differences in cell death and other ventral midbrain 

populations were unchanged, suggesting a DA specific differentiation impairment. At 

later stages, we could still detect a 30% reduction in the number of DA neurons and an 

abnormal distribution in the VM. Analysis of the few surviving Dkk1
-/-

 embryos at 

E17.5 revealed very few or almost absent DA neurons which, when present, were 

abnormally distributed and had a very immature morphology. Together, these results 

suggest a role of Dkk1 in VM DA differentiation and morphogenesis.  

Finally, in order to address some of the limitations of using human fetal VM cells for 

CRT, we have evaluated whether a protocol that allows the generation of large and 

functional numbers of DA neurons from mouse VM cells could be applied to human 

cells. Cells were expanded in the presence of DA-appropriate factors for 2 weeks and 

induced to differentiate to assess their DA potential. Our results show that human fetal 

VM cells can be successfully expanded 2 to 3-fold, retain their VM DA identity during 

expansion and give rise to large and increasing numbers of DA neurons. Moreover, 

addition of Wnt5a, which has been shown to promote DA differentiation in several 

systems, also promoted a significant increase in the numbers of DA neurons after 2 

weeks of expansion.  

 

In sum, the results presented in this thesis describe new functions of the Wnt/ β-catenin 

pathway in DA differentiation from embryonic stem cells and in vivo, a novel regulator 

of DA differentiation and an efficient protocol for expansion and differentiation of 

human fetal VM cells. We believe this knowledge can be successfully applied and 

improve current and future stem cell therapies in PD.  
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1 INTRODUCTION 

 

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by resting 

tremor, rigidity and slowness of movement (hypokinesia). The motor symptoms of PD 

are a result of a progressive loss of dopaminergic (DA) neurons in the substantia nigra 

pars compacta (SNpc), which project to the striatum and are involved in motor control. 

The gold standard for PD treatment is the administration of levodopa (L-DOPA), which 

is converted into dopamine by the remaining DA neurons. Although the initial use of L-

DOPA is effective in symptomatic treatment of PD, its efficacy often declines after 

long-term therapy with additional disabling side-effects such as dyskinesias (Chase et 

al., 1993). Moreover, current treatments such as L-DOPA and deep brain stimulation 

do not halt the progression of the disease, demonstrating the need for treatments which 

are not only able to restore lost functions but also maintain function and provide 

symptomatic relieve. A promising approach is cell-replacement therapy (CRT), where 

DA neurons and/or progenitors are transplanted into the striatum to restore DA 

transmission. In order to be used as a valid therapeutic approach, it is necessary to 

obtain large numbers of correctly specified DA neurons that can elicit a functional 

recovery. Several cell types have been considered as potential sources of DA neurons, 

such as embryonic stem cells (ES) and induced pluripotent stem cell (iPS) due to their 

capacity to generate large numbers of DA neurons and induce behavioral improvement 

in animal models of PD (Kawasaki et al., 2000, Lee et al., 2000, Kim et al., 2002, 

Wernig et al., 2008, Hargus et al., 2010). However, there are a few limitations when 

using these cells as cell-sources for CRT, mainly because the molecular mechanisms 

regulating DA neuron differentiation are still not fully understood and/or have not been 

completely implemented. Thus, a lot of research has been focused on understanding the 

sequence of events and intrinsic and extrinsic factors that regulate DA neuron 

development in vivo. The use of soluble factors has the advantage of no genetic 

manipulation being involved, which is of interest in CRT. One of the most studied 

factors in DA development are the Wnt ligands, which have been shown to be involved 

in several critical steps of DA neuron development (McMahon and Bradley, 1990, 

Thomas and Capecchi, 1990, Castelo-Branco et al., 2003, Andersson et al., 2008, 

Joksimovic et al., 2009, Prakash et al., 2006) and in vitro differentiation (Castelo-

Branco et al., 2003, Parish et al., 2008). 
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 Clinical trials with human fetal ventral midbrain derived from aborted fetuses have 

been performed and support CRT as a valid therapy by providing proof-of-principle 

evidence that these DA neurons can survive and provide significant benefits in some 

patients (Kordower et al., 1995, Piccini et al., 1999, Mendez et al., 2005). However, 

there are a few technical limitations, such as the need for a high number of fetuses per 

patient, which must be addressed before the widespread implementation of CRT for 

PD. 

 

This thesis focuses on the function of modulators of Wnt signaling in DA neuron 

differentiation in vivo and in vitro, and how this knowledge can be used to improve 

CRT strategies for PD using fetal tissue as source of stem/progenitor cell-derived DA 

neurons. 

 

1.1  MIDBRAIN DEVELOPMENT  

 

The development of an adult organism from a single cell is a fascinating event 

comprising complex mechanisms such as patterning, cell division, specification, 

migration and differentiation. The development of the different organs and body 

structures occurs due to an intricate network of conserved transcription factors, secreted 

factors and their signaling pathways. In this chapter, I will describe the ontogeny of 

midbrain DA neurons in the mouse and some of the secreted factors and transcription 

factors involved at each step. 

 

1.1.1 E0-E7.5: From inception to “the most important time of your life” 

 

Upon fusion of the egg and sperm (embryonic day 0, E0), the fertilized murine egg 

initiates a series of divisions. By E2.5, at the 8-cell stage, the first differentiation event 

takes place as in the next round of division cells divide asymmetrically and generate 

cells which are different in size, polarity and in the expression of the transcription 

factors Oct4 (also known as Pou5f1, POU domain class 5 transcription factor 1) and 

Cdx2 (caudal-type homeobox protein 2). These factors are involved in the first cell fate 

decision: cells expressing Oct4 will give rise to inner cell mass (ICM) and cells 

expressing Cdx2 will become trophectoderm (Niwa et al., 2005). By E3.5 the fertilized 

egg is now a blastocyst, a spherical structure with the ICM cells on the inside 

surrounded by a layer of trophectoderm cells. One day later, the ICM further 
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specializes into 2 distinct populations: the epiblast and the primitive endoderm or 

hypoblast (the outermost layer of cells of the ICM). The trophectoderm, epiblast and 

primitive endoderm will give rise to the placenta, embryo proper and the yolk sac, 

respectively.  

 

At E5.5, after implantation, the embryonic axes start to be formed. At the most distal 

part of the embryo, Nodal, a member of the transforming growth factor (TGFβ) family, 

induces hypoblast-derived cells to specialize forming the distal visceral endoderm 

(DVE, (Mesnard et al., 2006). These cells start to express Wnt and bone morphogenetic 

protein (BMP)/Nodal antagonists such as Cerberus-like 1 (Cer1), Dickkopf1, (Dkk1) 

and Lefty1 as part of a negative feedback loop, thus creating a gradient of high 

Nodal/BMP/Wnt signaling in the proximal pole of the embryo and low in the most 

distal part (Yamamoto et al., 2004). At E6.0, the DVE cells start to migrate to the most 

anterior part of the embryo forming the very first organizer, the anterior visceral 

endoderm (AVE, a head organizer). Migration of DVE and formation of the AVE is 

dependent on Nodal signaling on the posterior side of the embryo and repression of 

Wnt signaling at the anterior side of the DVE brought about by Dkk1 (Kimura-Yoshida 

et al., 2005). The position of the AVE dictates the anterior-posterior axis. The secretion 

of the Wnt/Nodal antagonists from the AVE in the most anterior part of the embryo 

will induce neuroectoderm formation; conversely, in the most posterior side of the 

embryo there is activation of these pathways and cells will be instructed to become 

mesoderm and endoderm. 

 

E6.5 is the onset of a very important process (the most important event of our lives, as 

elegantly phrased by Lewis Wolpert): gastrulation. By this point, the already 

molecularly regionalized embryo breaks radial symmetry and epiblast cells on the 

opposite side of the AVE (proximal epiblast) ingress and form the primitive streak. The 

establishment and correct placement of the primitive streak is dependent on a balance 

between Nodal and its antagonists and Wnt signaling (Brennan et al., 2001, Perea-

Gomez et al., 2002, Liu et al., 1999b, Kelly et al., 2004). By E7.5, at the anterior end of 

the primitive streak, another signaling centre is formed, the node. Cell migration 

through the primitive streak involves epithelial-to-mesenchyme transition (EMT) and 

convergent-extension (CE) movements, and is dependent on FGF (fibroblast growth 

factor) signaling (Ciruna and Rossant, 2001, Sun et al., 1999). The cells passing 

through the node will form the prechordal plate and notochord (important signaling 
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centers for the formation of the nervous system), whilst the cells passing through other 

portions of the streak will give rise to mesoderm and endoderm. Cells which do not 

migrate end up anterior to the primitive streak and form the ectoderm. Thus, by the end 

of gastrulation all three germ layers of the embryo are formed: an outside layer of 

ectodermal cells separated from an internal endodermal cell layer by the mesoderm (for 

a more detailed and comprehensive description of early embryogenesis, please see 

reviews from Tam and Loebel, 2007, Rossant and Tam, 2009, Arnold and Robertson, 

2009). 

 

1.1.2 E7.5: Neurulation  

 

During late gastrulation, signals from the underlying notochord and head organizer 

(Wnt and BMP antagonists such as Dkk1 and Noggin, respectively, (Barrantes et al., 

2003) signal dorsal ectodermal cells opposite to the primitive streak to thicken and 

elongate forming the neural plate. Shortly after, the neural plate and the notochord, 

through CE movements, lengthen and become narrower; in addition, the neural plate 

also bends and folds in upon itself. The CE movements and bending induce the neural 

plate to form the neural tube, which closes at the dorsal midline and separates from and 

is covered by the surface ectoderm. As the neural tube closes, a number of vesicles 

form in the most anterior part which will give rise to the forebrain, followed by the 

midbrain, hindbrain and spinal cord thus cementing an anterior-posterior axis. Signals 

produced by the non-neural ectoderm and notochord such as BMP (Lee and Jessell, 

1999) and Sonic Hedgehog (Echelard et al., 1993) are responsible for creating the 

dorsoventral axis. As a result, the future central nervous system (CNS) is patterned as a 

Cartesian coordinate system of positional identities.  

 

1.1.3 E7.5-E9.5: Midbrain induction  

 

DA neurons are born in the ventral part of the midbrain. A crucial event in midbrain 

DA development is the induction of two important signaling centers shortly after 

neurulation: the isthmus organizer and the floor plate. The isthmus forms at the junction 

of the presumptive mid- and hindbrain, and it is both necessary (Nieuwkoop, 1991) and 

sufficient (Martinez et al., 1991, Gardner and Barald, 1991, Martinez et al., 1995, 

Marin and Puelles, 1994) to induce midbrain and hindbrain structures. It is 

characterized by the expression of specific transcription and secreted factors which are 
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able to regulate patterning of the adjacent tissues in a set of complex genetic 

interactions that include positive and negative feedback loops. The floor plate is a 

specialized glial structure which forms in the ventral midline of the developing neural 

tube induced by the notochord (Placzek, 1995, Jessell, 2000).  Floor plate-derived 

signals, such as Shh, are responsible for ventralizing neural progenitors of the neural 

tube (Yamada et al., 1993, Marti et al., 1995, Ericson et al., 1996, Lupo et al., 2006). 

Due to its importance in midbrain DA development (Figure1), I will discuss several of 

the isthmus and floor plate- associated signals and factors in more detail. 

 

1.1.3.1 Isthmus-associated factors 

 

1.1.3.1.1 Otx2/Gbx2 

 

The homeobox-domain-containing transcription factors orthodenticle homologue 2 

(Otx2) and gastrulation brain homeobox 2 (Gbx2) are responsible for the proper 

positioning of the isthmus. Otx2 is first detected in the AVE where it plays a role in 

inducing rostral neural plate (Acampora et al., 1995) and becomes restricted to the 

anterior region of the mouse embryo in all three germ layers during gastrulation 

(Simeone et al., 1992). Gbx2 is expressed in the posterior part of the embryo across all 

germ layers (Wassarman et al., 1997). After neurulation (E7.5), Otx2 and Gbx2 are 

expressed in the anterior and posterior part of the neuroectoderm, respectively. The 

expression domain of Otx2 defines the forebrain and midbrain and the Gbx2 expression 

domain defines the hindbrain and spinal cord, as genetic depletion of these two genes 

leads to a concomitant failure of induction of anterior or posterior head structures 

(Acampora et al., 1995, Ang et al., 1996, Rhinn et al., 1998, Matsuo et al., 1995, 

Wassarman et al., 1997). There is a reciprocal antagonism between Otx2 and Gbx2, and 

the meeting point of these domains gives rise to midbrain-hindbrain border (MHB), 

where the isthmus forms (Simeone, 2000, Wurst and Bally-Cuif, 2001). Elegant 

experiments have shown that Otx2 and Gbx2 are important for the proper positioning 

and maintenance of the isthmus: in mice with only one functional Otx allele (Acampora 

et al., 1997) or in mice where Gbx2 is ectopically expressed in the caudal midbrain the 

isthmus is shifted rostrally and there is replacement of midbrain structures by hindbrain. 

Conversely, upon ectopic expression of Otx2 in rostral hindbrain or deletion of Gbx2 

the isthmus is shifted caudally and there is a transformation of rostral hindbrain to 

midbrain (Broccoli et al., 1999, Katahira et al., 2000, Wassarman et al., 1997). The 
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position of the isthmus is also responsible for specifying the location and size of the 

DA and serotoninergic neurons in the ventral midbrain and hindbrain, respectively: a 

caudal shift of the isthmus leads to ectopic expression of DA neurons in the hindbrain 

at the expense of serotoninergic neurons and a rostral shift leads to reposition of DA 

neurons in the forebrain and an increase in the size of the serotoninergic population 

(Brodski et al., 2003). Otx2 also has a specific role in neurogenesis and the 

specification of ventral midbrain DA progenitors and neurons (Vernay et al., 2005, 

Puelles et al., 2004, Omodei et al., 2008, Prakash et al., 2006). 

 

In spite of their importance, Otx2 and Gbx2 are not required for the isthmus’ initial 

induction and activity as in their absence there is still expression of isthmus-derived 

mid-hindbrain organizer factors (Liu and Joyner, 2001), and a residual MHB is still 

formed in Gbx2-deficient mice (Wassarman et al., 1997). 

 

1.1.3.1.2 Wnt1 

 

At E8.0 the secreted molecule Wnt1 starts being expressed initially in a broad domain 

of the presumptive midbrain and at around E9.0-E9.5 becomes restricted to a ring in the 

caudal midbrain (rostral to the isthmus), a narrow stripe along the dorsal midline and in 

two stripes at both sides of the ventral midbrain (Parr et al., 1993, McMahon et al., 

1992, Wilkinson et al., 1987). Deletion of Wnt1 leads to an early deletion of the 

midbrain and later of the rostral hindbrain as a result of multiple defects (McMahon and 

Bradley, 1990, Thomas and Capecchi, 1990). However, ectopic expression of Wnt1 

does not alter either the positioning or the activity of the isthmus (Panhuysen et al., 

2004, Matsunaga et al., 2002, Lee et al., 1997), indicating that Wnt1 is not required for 

the initial induction and activity of the isthmus but is necessary to maintain the region-

specific pattern of gene expression at the midbrain–hindbrain boundary. Wnt1 

overexpression induces enhanced cell proliferation and an increase in the size of the 

inferior colliculi, a caudal-dorsal midbrain derivative (Panhuysen et al., 2004). Wnt1 is 

expressed at least until E14.5 (Wilkinson et al., 1987) and in addition to its its isthmic 

activity, Wnt1 is also important for DA neuron development: in Wnt1
-/-

 mutants few 

DA neurons are born, and the few that are born are largely lost at later stages (Prakash 

et al., 2006) due to a dual role of Wnt1 in establishing the DA progenitor domain and a 

later activity required for the proper differentiation of DA precursors into mature DA 

neurons (Prakash et al., 2006). 
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1.1.3.1.3 En1/En2 

 

Shortly after Wnt1, Engrailed 1 (En1) starts to be expressed in the prospective midbrain 

and rostral hindbrain. En1 shows a similar pattern of expression as Wnt1 (McMahon et 

al., 1992, Davis and Joyner, 1988, Davidson et al., 1988) and in Wnt1
-/-

 embryos En1 is 

initially expressed but not maintained (McMahon et al., 1992), suggesting that Wnt1 

maintains En1 expression. In agreement with this, En1 is able to rescue the Wnt1
-/-

 

phenotype when expressed under the Wnt1 regulatory element in Wnt1
-/-

 embryos 

(Danielian and McMahon, 1996). En2 expression starts later, but overlaps with the 

expression of Wnt1 and En1 (Davis and Joyner, 1988, Davis et al., 1988). En1
-/-

 mice 

have a deletion of the dorsal and ventral midbrain and rostral hindbrain (Wurst et al., 

1994), En2
-/-

 exhibit minor cerebellar defects (Millen et al., 1994), but in compound 

En1
-/-

;En2
-/-

 mutants there is a complete deletion of the mid/hindbrain region, similar to 

the Wnt1
-/-

 phenotype (Simon et al., 2001, Liu and Joyner, 2001). The expression of the 

En is also maintained by Otx2 (Rhinn et al., 1998).  The En genes are expressed into 

later fetal and post-natal stages (Simon et al., 2001) and also play a role in DA 

differentiation and survival given that in En1
+/-

 and En1
-/-

;En2
-/-

 mutants DA neurons 

are born but are lost soon after (Simon et al., 2001, Sonnier et al., 2007, Sgado et al., 

2006). 

 

1.1.3.1.4 Fgf8 

 

Fibroblast growth factor 8 (Fgf8) is first expressed in the embryo during gastrulation 

(Sun et al., 1999). Between E8.0 and E8.5 it starts to be expressed in the MHB, but also 

at the rostral end of the developing neural plate (Crossley and Martin, 1995). By E9.0 

to E9.5, the Fgf8 expression domain in the MHB is restricted to a sharp, narrow ring on 

the rostral hindbrain (caudal to the isthmus), much like a mirror image of the 

expression of Wnt1 (Crossley and Martin, 1995, Wurst and Bally-Cuif, 2001). Fgf8 is 

considered one of the key isthmic organizer molecules as it can mimic the properties of 

the isthmus and it is required for the development of the prospective midbrain and 

cerebellum. Indeed, Fgf8 hypomorphs exhibit, amongst other defects,  a deletion of 

posterior midbrain and cerebellar tissue  (Meyers et al., 1998) and in Fgf8 conditional 

knockout animals where Fgf8 is specifically removed from the MHB the midbrain, 

isthmus and cerebellum are deleted due to extensive cell death (Chi et al., 2003). 

Deletion of Fgf8 induces loss of expression of isthmus-specific genes such as Wnt1, 
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Gbx2, Fgf17 and Fgf18 prior to the onset of cell death (Chi et al., 2003), indicating that 

Fgf8 is important for the maintenance of the isthmus. Furthermore, gain-of-function 

studies have revealed that Fgf8-soaked beads are able to induce ectopic isthmus, 

midbrain, cerebellum and isthmus-associated genes such as En1/2 in forebrain 

(Martinez et al., 1999, Crossley et al., 1996, Ye et al., 1998. Liu et.al, 1999a). Fgf8 acts 

by repressing Otx2 in the hindbrain and is capable of inducing and is regulated by Gbx2 

(Martinez et al., 1999, Irving and Mason, 1999, Liu et al., 1999a); thus, the increase in 

Otx2 expression detected upon deletion of Gbx2 is at least in part due to decreased Fgf8 

expression.  

There are several Fgf8 isoforms but the two most abundant in the isthmus are Fgf8a 

and Fgf8b (Blunt et al., 1997, Sato et al., 2001) which have distinct properties: Fgf8a 

does not possess any patterning activity since in mice lacking Fgf8a the midbrain and 

hindbrain develop normally, although there is a general growth retardation and 

postnatal lethality (Guo et al., 2010). In transgenic mice where Fgf8a is driven by a 

Wnt1 promoter (Wnt1-Fgf8a) there is an enlargement of the midbrain and caudal 

diencephalon due to overproliferation, but no changes at the level of the MHB are 

detected (Lee et al., 1997). Depletion of Fgf8b induces a near complete deletion of the 

dorsal midbrain and the cerebellum, similar to the phenotype resulted from specific 

deletion of Fgf8 in the isthmus (Guo et al., 2010). Moreover, in Wnt1-Fgf8b mice there 

is a transformation of the midbrain and caudal forebrain into an anterior hindbrain fate 

through expansion of the Gbx2 domain and repression of Otx2 (Liu et al., 1999a). 

These results indicate that Fgf8b is the patterning molecule of the MHB. There seems 

to be an interesting connection between Fgf8 and Wnt1: deletion of Fgf8 induces loss of 

Wnt1 expression (Chi et al., 2003), and explant experiments have shown that Fgf8-

soaked beads can induce Wnt1 expression non cell-autonomously (Liu et al., 1999a, Liu 

and Joyner, 2001). Interestingly, in Wnt1
-/-

 mutants Fgf8 expression in the hindbrain is 

initiated but soon after disappears, indicating that Wnt1 is capable of maintaining Fgf8 

expression (Lee et al., 1997, Danielian and McMahon, 1996). This suggests the 

presence of an integrated regulatory network that controls the maintenance of the 

MHB. Fgf8 expression is detected in the isthmus until at least E12.5 (Crossley and 

Martin, 1995) and persists in the CNS until adult stage (Tanaka et al., 2001). In 

addition to its isthmic organizer activity, Fgf8 activity is necessary for the development 

of midbrain DA neurons: Fgf8 hypomorphs generate a population of midbrain DA 

neurons, but their numbers are dramatically reduced (Ye et al., 1998). Moreover, E9.0 

rat ventral mid/hindbrain explants treated with a high-affinity blocking receptor for 



 

  9 

Fgf8 fail to generate DA neurons, while other ventral midbrain populations are not 

affected (Ye et al., 1998), indicating that DA neurons (which are born adjacent to the 

isthmus) are differentially affected by reduced levels of Fgf8. Together with Shh, Fgf8 

is capable of ectopically inducing DA neurons in caudal forebrain (Ye et al., 1998). 

However, Fgf8-soaked beads are unable to induce ectopic DA neurons in the forebrain 

of Wnt1
-/-

 mutants (Prakash et al., 2006) indicating that Fgf8’s role in DA development 

might be mediated through Wnt1. 

 

1.1.3.1.5 Lmx1b 

 

The LIM homeodomain transcription factor Lmx1b is first detected in the MHB at E7.5 

(Guo et al., 2007, Adams et al., 2000), becoming progressively restricted to the isthmus 

between E9.0 and E10.5 (Guo et al., 2007). Lmx1b has an important role in the activity 

of the isthmic organizer during mid/hindbrain development: it is necessary to initiate 

the expression of Fgf8 (Matsunaga et al., 2002, Guo et al., 2007) and to maintain the 

expression of Wnt1and En1/2 (Guo et al., 2007, Adams et al., 2000), which are 

responsible for the mid/hindbrain-inducing activity of the isthmus. Deletion of Lmx1b 

leads to a loss of Fgf8 expression at the isthmus (Guo et al., 2007, O'Hara et al., 2005) 

and a reduction and subsequent loss of Wnt1 and En1/2 and expression (Guo et al., 

2007). Conversely, misexpression of Lmx1b induces ectopic expression of Wnt1 and 

Fgf8 (Matsunaga et al., 2002, Adams et al., 2000). Lmx1b might act on Fgf8 expression 

by repressing it cell-autonomously but inducing it through Wnt1 in neighboring cells 

(Matsunaga et al., 2002), and Fgf8 is able to maintain the expression of Lmx1b in a 

self-regulation process (Matsunaga et al., 2002, Adams et al., 2000). Lmx1b is 

expressed into later fetal and post-natal stages and has also a later role in proper 

specification of the ventral midbrain DA neurons as DA neurons are formed in Lmx1b
-/-

 

mice but are lost by birth (Smidt et al., 2000). 

 

1.1.3.2 Floor plate-associated factors 

 

1.1.3.2.1 Shh 

 

Sonic hedgehog (Shh) expression is first detected during late gastrulation in the node 

and prechordal plate (Echelard et al., 1993). By E8.5 expression is detected at the 

ventral midline of the prospective midbrain, subsequently expanding rostrally into the 

forebrain and caudally into the hindbrain and spinal cord (Echelard et al., 1993). Shh 
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secretion from the notochord induces cells at the ventral midline to become floor plate 

cells (Jessell et al., 1989, Marti et al., 1995, Jessell, 2000, Chiang et al., 1996, Yamada 

et al., 1993), a group of specialized cells that influence the development of other neural 

cells. The floor plate cells secret Shh which is sufficient and necessary to ventralize 

neural progenitor (Yamada et al., 1993, Hynes et al., 1995a). In Shh-null mice the floor 

plate is absent, the notochord degenerates, ventral markers such as Islet1 are lost, and 

the midbrain is smaller and has an abnormal morphology (Chiang et al., 1996). In these 

animals, the expression of Otx2 in the midbrain is also reduced while the expression of 

En2 remains unaltered. Ectopic dorsal expression of Shh leads to activation of floor 

plate genes (Echelard et al., 1993). Shh expression in the notochord and floor plate lasts 

until E13.5 (Echelard et al., 1993) but it is downregulated in ventral midbrain midline 

cells at E11.5 (Andersson et al., 2006b). Both the floor plate and Shh play a crucial role 

in DA neuron development: when forebrain and midbrain-derived explants in which 

the floor plate was removed are cultured in the presence of exogenous floor plate 

explants (derived from the spinal cord), there is generation of DA neurons (Hynes et 

al., 1995b). Moreover, floor plate explants are able to induce an ectopic supernumerary 

dorsal floor plate in vivo and ectopic dorsal DA neurons (Hynes et al., 1995b), and 

recent studies have demonstrated that the floor plate can not only induce but also 

directly generate DA neurons (Ono et al., 2007, Bonilla et al., 2008, Joksimovic et al., 

2009). Regarding the role of Shh in DA neuron development, timing is crucial: fate 

mapping studies have revealed that DA neurons only respond to Shh from E7.75 to 

E9.0 (Zervas et al., 2004). In agreement with this, in conditional mutants where Shh is 

inactivated by Cre recombinase expression under the En1 promoter (≈E9.0) there is a 

strong reduction in midbrain DA neurons due to a proliferation defect (Perez-Balaguer 

et al., 2009) whereas when Shh is removed by Cre under the Nestin promoter (E10.5) 

DA neurons develop normally (Ferri et al., 2007). Recombinant Shh is sufficient to 

induce DA neurons in midbrain and rostral forebrain explants (Ye et al., 1998) and in 

floor plate-depleted midbrain explants (Hynes et al., 1995a). Moreover, blocking 

endogenous Shh with a neutralizing antibody impairs the DA neuron development in 

midbrain explants, and Shh and Fgf8 are able to cooperate to specify DA neurons in 

ectopic locations (Ye et al., 1998).  

 

Thus, in agreement with the model of cell fate patterning in a Cartesian grid, the 

intersection of the secretion of Fgf8 (along the anterior-posterior axis) and Shh (along 

the dorsal-ventral axis) specifies the domain where DA neurons are born. Interestingly, 
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a recent study has demonstrated that Shh inhibits the neurogenic potential of the 

midbrain floor plate and that Wnt1 is able to suppress Shh (Joksimovic et al., 2009), 

suggesting that initially Shh is necessary for the establishment and proliferation of the 

DA neuron precursors but later on it must be inhibited (by Wnt1) to promote DA 

neurogenesis. Moreover, another recent study has also demonstrated a cell-context 

dependent antagonistic interaction between Wnt/β-catenin and Shh
 

during DA 

neurogenesis (Tang et al., 2010). 

 

1.1.3.2.2 Hnf3β/Foxa2 

 

The hepatocyte nuclear factor 3β Hnf3β (or forkhead box a2, Foxa2)  is a member of 

the fork head/Hnf-3 family of DNA-binding transcription factors (Lai et al., 1990) and 

it is first detected during gastrulation in the node, notochord and overlying floor plate 

(Sasaki and Hogan, 1993, Echelard et al., 1993). It precedes and resembles the 

expression of Shh in the notochord, indicating that initial activation of Shh expression is 

regulated by Hnf3β/Foxa2 (Echelard et al., 1993, Jeong and Epstein, 2003, Epstein et 

al., 1999); Shh in turn activates the expression of Hnf3β/Foxa2 in the floor plate (Sasaki 

et al., 1997). The importance of Foxa2 during development is demonstrated by the 

analysis of Foxa2
-/-

 mutants, which die at E9.5 due to gastrulation defects (Ang et al., 

1993) and lack a node and notochord with consequent defects in floor plate 

development and patterning (Ang and Rossant, 1994, Weinstein et al., 1994). When 

ectopically expressed in the dorsal hindbrain, Foxa2 is able to induce an ectopic floor 

plate (Sasaki and Hogan, 1994) indicating a role in the development of the floor plate. 

Foxa2 is expressed into post-natal stages (Kittappa et al., 2007) and is important for 

midbrain DA neuron development: Foxa1 (also expressed in ventral midbrain 

progenitors) and Foxa2 single mutants exhibit an impaired DA differentiation, whereas 

in Foxa1
-/-;

Foxa2
-/-

 double mutants there is a reduction in VM neurogenesis and 

incomplete differentiation of DA neurons (Ferri et al., 2007). Analysis of the 

conditional Foxa1/2-null mutants have shown that they are implicated in maintaining 

Shh expression in the midbrain floor plate, specifying DA progenitors markers such as 

Lmx1a/b and inhibit expression of other ventral midbrain cell fates (Lin et al., 2009). 

Moreover, E8.5 midbrain explants from Foxa2
-/-

 mutants are not able to generate DA 

neurons and overexpression of Foxa2 in midbrain cells and embryonic stem cells-

derived cell line induces an increase in the number of DA neurons (Kittappa et al., 
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2007). In addition, Foxa2
+/-

 mice develop a late-onset condition associated with a 

significant loss of midbrain DA neurons (Kittappa et al., 2007). 

 

 

Figure 1: Expression of isthmus and floor plate-associated genes at E9.5. The arrow indicates the 

isthmus and the blue circle corresponds to the place where DA neurons will be born. 

 

1.1.4 E9.5-E11.5: Ventral midbrain dopaminergic specification 

 

By E9.5 the isthmus becomes a fully morphologically discernible structure, the isthmic 

constriction that separates the midbrain from the hindbrain.  The neural tube is divided 

along the dorsal-ventral axis into the roof plate, alar plate, basal plate and floor plate. 

The ventral midbrain is further subdivided into three layers, the ventricular (VZ), 

intermediate (IZ) and marginal zones (MZ).  Cells in the VZ acquire an epithelial-like 

structure forming the neuroepithelium; these cells are neural stem cells, capable of 

dividing symmetrically to allow self-renewal and asymmetrically to originate neural 

progenitors with limited self-renewal potential. Some of these cells move out of the 

ventricular zone and start migrating ventrally and laterally, exiting the cell cycle and 

differentiating as they migrate. Migration progresses along radial glia, a type of cells 

characterized by long processes extending from the VZ to the pial surface (MZ) that 

serve not only as scaffold but also as neural precursors (Malatesta et al., 2000, Bonilla 

et al., 2008). Cells in the IZ are post-mitotic DA precursors that become fully 

differentiated DA neurons once they reach the MZ (Figure 2). E9.5 to E11.5 is the 

period where the DA domain is specified in the ventral midbrain. In the next 

paragraphs, I will discuss the intrinsic factors involved in more detail. 

 



 

  13 

1.1.4.1 Lmx1a/Msx1 

 

The expression of the LIM homeobox transcription factor 1 Lmx1a is first detected in 

the midbrain at E9 in ventral midline cells (Andersson et al., 2006b) and throughout 

adult life (Zou et al., 2009). The expression of the muscle segment homeobox 1 Msx1 

starts at E9.5 following the same expression pattern as Lmx1a, indicating that Msx1 is 

downstream of Lmx1a (Andersson et al., 2006b, Nakatani et al., 2010). Besides the 

midbrain, these two factors are also detected in the most caudal part of the 

diencephalon (Andersson et al., 2006b). From E9.5 onwards the expression of Lmx1a 

and Msx1 becomes restricted to the DA lineage: Lmx1a is expressed in the DA 

progenitor cells in the ventricular zone and persists later in the post-mitotic precursors 

and the differentiated DA neurons whereas Msx1 expression remains confined to the 

proliferating DA progenitors in the ventricular zone. Thus, Lmx1a labels the whole DA 

lineage (Andersson et al., 2006b, Ono et al., 2007). The expression pattern of these 

genes is similar to Shh expression, as they are expressed early in floor plate-ventral 

midline cells, suggesting that they might be induced by Shh. However, the role of Shh 

in Lmx1a induction is controversial: in basal midbrain explants exposed to Shh there is 

induction of Lmx1a and Msx1 accompanied by a ventralization of progenitor cells 

(Andersson et al., 2006b), but analysis of the En1
KI/Cre/+ 

;Shh
flox/flox

 mutants, where Shh 

expression is lost in basal and floor plate progenitors already at E8.75, revealed that 

Shh is not necessary to maintain Lmx1a expression in the floor plate as there are no 

significant changes in Lmx1a
+
 cells (Lin et al., 2009). Moreover, in embryonic stem 

cell-derived neural progenitors treated with Shh or cyclopamine (a Shh inhibitor) there 

are no significant changes in the Lmx1a mRNA levels, suggesting that Lmx1a is not a 

direct target of Shh (Chung et al., 2009). Interestingly, in an effort to identify 

downstream targets of Wnt1, Chung and colleagues demonstrated that the expression of 

Lmx1a is directly regulated by Wnt1 in VM DA development forming an 

autoregulatory loop (Chung et al., 2009). Furthermore, in Shh/Cre-mediated conditional 

removal of β-catenin (a Wnt1 downstream effector) and in Shh–Cre;Ctnnb1
Lox(Ex3)

 

where β-catenin is constitutively activated upon Shh expression, there is a reduction 

and an increase in the levels of Lmx1a, respectively (Joksimovic et al., 2009), (Tang et 

al., 2010). Gain and loss-of-function experiments have revealed that Lmx1a is 

necessary and required for the generation of DA neurons, as forced expression 

(Andersson et al., 2006b, Nakatani et al., 2010, Lin et al., 2009) or knock-down 

(Andersson et al., 2006b) of Lmx1a induces ectopic generation or a substantial 
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reduction of VM DA neurons, respectively. Msx1, on the other hand, can cooperate 

with Lmx1a in inducing DA neurons but is not sufficient per se; instead, Msx1 

promotes suppression of alternative cell fates and cell-cycle exit by induction of 

Neurogenin 2 (Ngn2/Neurog2/Atoh4), a pro-neural marker (Andersson et al., 2006b, 

Nakatani et al., 2010, Lin et al., 2009). Msx1
–/–

 embryos exhibit a 40% reduction in the 

normal number of DA neurons, probably as a result of the downregulation of Ngn2 

expression (Andersson et al., 2006b). Lmx1a-mediated induction of Msx1 induces VM 

DA neuronal differentiation by suppressing the floor plate characteristics of the ventral 

midline cells (Andersson et al., 2006b), further confirming that Lmx1a
+
 floor plate cells 

give rise to the DA progenitors in the ventral midbrain (Andersson et al., 2006b, Ono et 

al., 2007). However, other factor(s) must be involved given that Lmx1a alone cannot 

induce neurogenesis in caudal floor plate cells (Ono et al., 2007): possible candidates 

include Otx2 (Ono et al., 2007) and Foxa1/2 since a recent report has shown that 

Foxa1/2 can cooperate with Lmx1a/b in floor plate cell differentiation (Nakatani et al., 

2010). Interestingly, it has been shown that Foxa1/2 are able to cooperate with Lmx1a 

in DA neuron fate determination: Lmx1a/b expression initiates but is subsequently lost 

when Foxa1/2 are removed at an early stage suggesting that Foxa1/2  are able to 

maintain the Lmx1a/b expression (Lin et al., 2009). Furthermore, they can induce 

ectopic DA neurons when co-expressed (Lin et al., 2009), but this cooperation seems to 

be dependent on the context of ventral midbrain progenitors (Nakatani et al., 2010). In 

dreher mice, which carry a mutation in the Lmx1a locus, VM DA development  is 

reduced due to a downregulation in proneural gene expression in Lmx1a
+
 progenitor 

cells and a mild reduction in the number of DA neurons (Ono et al., 2007). However, 

progenitor identity is not affected, suggesting more of a proneural gene induction role 

for Lmx1a (Ono et al., 2007). The somewhat discrepant results from Andersson et al 

(done mostly in chick) and Ono et al might be due to a hypomorphic mutation rather 

than a null mutation in dreher mice, species differences, or redundant roles of Lmx1a 

and Lmx1b in mouse development; analysis of the Lmx1a- null mutants or conditional 

Lmx1a/b knockout mice could provide a more clear understanding of the role of Lmx1a 

in VM DA neuron specification. Interestingly, Lmx1a and Lmx1b do seem to be 

redundant in vivo (Nakatani et al., 2010) and in vitro DA differentiation (Chung et al., 

2009). Downstream targets of Lmx1a including Pitx3 and Nurr1 (DA neuron 

differentiation markers) have been shown to be regulated by Wnt1 through the Wnt1-

Lmx1a autoregulatory loop (Chung et al., 2009); these results are in agreement with 

other studies where Pitx3 expression was shown to not be initiated in the absence of 
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Wnt1 (Prakash et al., 2006) and further suggest a Shh/Foxa2-independent role of Lmx1a 

in DA phenotype specification and survival.  

 

1.1.4.2 Nurr1 

 

The nuclear receptor related 1 protein (Nurr1 or NR4A2) is a member of the nuclear 

receptor family of transcription factors and it is able to recognize and bind DNA 

sequences in the absence of a ligand (Wang et al., 2003). Nurr1 is expressed in many 

areas of the CNS (Law et al., 1992) and in the VM it is first detected in post-mitotic 

cells in the IZ and MZ at E10.5 (Zetterstrom et al., 1997) and its expression persists 

into adulthood (Backman et al., 1999). The importance of Nurr1 in DA neuron 

development is demonstrated by the failure of generation or maintenance of midbrain 

specific-DA neurons in Nurr1
-/-

 mice (Zetterstrom et al., 1997, Saucedo-Cardenas et al., 

1998, Le et al., 1999) assessed by the lack of expression of Th (Tyrosine hydoxylase, a 

marker of differentiated DA neurons). In these animals most DA neuron markers are 

absent at birth but some DA markers such as En, Lmx1b and Pitx3 are present at earlier 

stages, although later downregulated (Thuret et al., 2004, Saucedo-Cardenas et al., 

1998, Wallen et al., 1999, Smidt et al., 2000), indicating that Nurr1 is important for the 

differentiation and survival of early developing DA cells and that it is not necessary for 

the induction of all DA genes. In agreement with a role for Nurr1 in the maintenance 

and maturation of the DA neurons, deletion of Nurr1 at late stages of VM DA neuron 

development (E15.5), or in adult mice, leads to decreased levels of Th expression 

(Kadkhodaei et al., 2009). Moreover, in Nurr1-null mice expression of Ret, a co-

receptor for trophic factors such as the glial derived neurotrophic factor (GDNF), is 

also absent (Wallen et al., 2001); GDNF is important for postnatal survival of DA 

neurons (Backman et al., 1999). Thus, this suggests that Nurr1 is able to directly 

activate genes such as Th (Sakurada et al., 1999) and Ret (Galleguillos et al., 2010).  

Nurr1 is important for the acquisition of the neurotransmitter identity as it is required 

for the expression of Vmat2 (vesicular monoamine transporter 2) and Dat (dopamine 

transporter, Smits et al., 2003, Sacchetti et al., 1999, Sacchetti et al., 2001, Kadkhodaei 

et al., 2009). Nurr1 is able to induce cell cycle arrest in vitro (Castro et al., 2001), but 

no changes in cell cycle are observed in Nurr1-null animals (Wallen et al., 1999). 

Disturbances in cell migration, target innervation and cell death are also detected in 

Nurr1-null mice (Wallen et al., 1999, Saucedo-Cardenas et al., 1998). A 

neuroprotective role for Nurr1 by limiting the production of neurotoxic mediators by 
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microglia and astrocytes in the midbrain has also been reported (Saijo et al., 2009). 

Nurr1 expression has been shown to be regulated by Foxa2 (Ferri et al., 2007) and 

Lmx1a (Chung et al., 2009). 

 

1.1.4.3 Ngn2 

 

Neurogenin-2 (Ngn2/Neurog2/Atoh4), a proneural gene, is a member of the basic helix-

loop-helix family of transcription factors. It is first expressed in the ventral midline of 

midbrain at E10.75 (Andersson et al., 2006b). At E11.5, the onset of DA neurogenesis, 

Ngn2 expression is confined to the cells within the proliferative VZ and also in Nurr1
+
 

cells in the IZ (Kele et al., 2006, Andersson et al., 2006a). In the absence of Ngn2 there 

is a near complete loss of DA neurons in the midbrain at E11.5, as assessed by the 

reduction in the expression of Th, Pitx3 and Nurr1, with the cells in the ventral 

midbrain midline being the most affected (Kele et al., 2006, Andersson et al., 2006a); 

the phenotype is due to a failure of VZ progenitors to differentiate into post-mitotic DA 

precursors. At later stages of development there is a partial rescue, as some DA neurons 

are born (but still in low numbers when compared to wild type embryos) due to a 

compensation from Mash1, another proneural gene expressed in the VM (Kele et al., 

2006). Thus, Ngn2 is required, but not sufficient, for DA differentiation, as it does not 

promote DA neuron differentiation when ectopically expressed in dorsal and ventral 

midbrain E11.5 primary cultures (Andersson et al., 2006a). Ngn2 seems to be a 

downstream target of Foxa1/2, as its expression is substantially reduced in Foxa1
-/-

;
Foxa2

-/-
 mutants (Ferri et al., 2007), and also is a target of Lmx1a (most likely through 

Msx1) (Ono et al., 2007). 

 

 

Figure 2: Ventral midbrain DA specification.  A coronal cut at the level of the midbrain at E11.5 (left) 

reveals that the neural tube is divided, from dorsal to ventral, into roof plate, alar plate, basal plate and 

floor plate (middle panel).  As DA progenitors move out of the ventricular zone (VZ) they exit the cell 

cycle giving rise to post-mitotic DA precursors in the intermediate zone (IZ) which become fully 

differentiated DA neurons when they reach the marginal zone (MZ, right panel). Throughout this process, 

cells will express a specific set of transcription factors. 
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1.1.5 E11.5-E15.5: Ventral Midbrain Dopaminergic Differentiation 

 

By E11.5 the first DA neurons in the VM are born in the MZ, as assessed by the 

expression of tyrosine hydroxylase (TH), the rate limiting enzyme in dopamine 

synthesis, catalyzing the conversion of tyrosine to L-dihydroxyphenylalanine
 

(L-

DOPA), which is then converted to dopamine by the aromatic amino
 

acid 

decarboxylase (AADC, Nagatsu et al., 1964). TH is first detected in the midbrain at 

E11.5 and persists throughout adulthood and Th-null mutants die peri- or postnatally 

(Kobayashi et al., 1995). 

 

During the subsequent days of embryonic development (and first postnatal weeks), 

neurogenesis and final differentiation proceed as cells start to express markers related 

to neurotransmitter identity and survival and to extend neurites towards their projection 

areas in the forebrain (Kawano et al., 1995). I will address some of the markers 

associated with DA differentiation. 

 

1.1.5.1 Pitx3 

 

The paired-like homeodomain 3 Pitx3 is a transcription factor of the bicoid class of 

homeodomain proteins. It is detected in the midbrain from E11-E11.5 until adulthood 

(Smidt et al., 1997) but it is also expressed transiently in the eye lens and skeletal 

muscle (Smits et al., 2006). In the brain Pitx3 is exclusively associated with VM DA 

neurons with an almost 100% overlap in TH and Pitx3 expression (Maxwell et al., 

2005, Zhao et al., 2004, Smidt et al., 1997). At early stages of development (E12) some 

Pitx3
+
 cells are not TH

+
, but by E14 the vast majority of Pitx3

+
 cells become TH

+
, thus 

suggesting that the expression of Pitx3 precedes and regulates Th expression (Zhao et 

al., 2004, Maxwell et al., 2005). In agreement with this, it has been shown that in vitro 

Pitx3 can activate the Th promoter (Lebel et al., 2001, Messmer et al., 2007).  Analysis 

of the aphakia mice, where there is a double deletion within the Pitx3 gene (Semina et 

al., 2000), revealed that Pitx3 is important for the differentiation and survival of TH
+
 

DA neurons: in these animals DA neurons are initially born but from E12.5 onwards 

the most lateral population is absent (Smidt et al., 2004, Nunes et al., 2003, van den 

Munckhof et al., 2003). In the adult, this phenotype is reflected in an almost complete 

absence of DA neurons in the substantia nigra (SN), and a partial decrease in the 
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ventral tegmental area (VTA) due to neuronal loss (Nunes et al., 2003, Maxwell et al., 

2005). As a result, target innervations and motor behavior are also severely affected 

(Smidt et al., 2004, Nunes et al., 2003, van den Munckhof et al., 2003) The remaining 

DA neurons express most of the DA developmental and neurotransmitter markers, 

indicating they are fully matured DA neurons (Smidt et al., 2004), and the reason why 

SN neurons are more severely affected than VTA neurons is still unclear. Analysis of 

Pitx3
-/-

-GFP mice has revealed that at E12.5 cells that are lost in Pitx3-null mutants are 

GFP
+
/TH

+
, while GFP

+
/TH

-
 cells are not affected indicating that DA neurons, but not 

the progenitors and precursors, are affected by the loss of Pitx3(Maxwell et al., 2005). 

In spite of evidence that Pitx3 is able to activate the Th promoter, the fact that some 

TH
+
 neurons are born in the absence of Pitx3 (Smidt et al., 2000, Maxwell et al., 2005) 

indicates that Pitx3 is important, but not required, for Th expression in DA midbrain 

neurons and/or that its requirement is region-specific. In agreement with this, in Pitx3
-/-

-

GFP mice there is a reduction in the percentage of GFP
+
/TH

+
 cells and an increase in 

the number of GFP
+
/TH

- 
cells in the SN, indicating that Pitx3 is required in the GFP

+
 

cells to induce Th expression specifically in the SN (Maxwell et al., 2005).  Pitx3 has 

also been shown to regulate the expression of Vmat2 and Dat (Hwang et al., 2009), 

suggesting a possible cooperation between Pitx3 and Nurr1 in the DA neuron 

specification; indeed, a recent report has demonstrated that Pitx3 and Nurr1 are able to 

bind to the same regions on promoters of Nurr1 target genes and that Nurr1-regulated 

genes such as Dat and Vmat2 are also affected in Pitx3-null mutants, thus indicating 

that combined actions of Pitx3 and Nurr1 are necessary to induce a DA phenotype in 

vivo (Jacobs et al., 2009). Moreover, the authors showed that Pitx3 decreases the 

interaction of Nurr1 with the nuclear receptor co-repressor 2 (Ncor2), which normally 

represses the Nurr1 activity through histone deacetylases (HDACs), while interference 

with HDAC-mediated repression in Pitx3
-/-

 embryos restores Nurr1 target gene 

expression. Cooperation between Nurr1 and Pitx3 in the midbrain DA phenotype has 

also been demonstrated in human embryonic stem cells (Martinat et al., 2006). 

 

Besides Pitx3, several other factors expressed early on in midbrain development have a 

role in the survival and maturation of DA neurons. Otx2 is one of these factors: when it 

is removed after the isthmus has been formed, there is a reduction in the DA neurons as 

assessed by reduced levels of TH, Nurr1, Pitx3 and Lmx1a/b (Vernay et al., 2005, 

Omodei et al., 2008, Puelles et al., 2004). The DA neuron deficit is due to a decrease in 

neurogenesis, as determined by reduced levels of Ngn2 and Mash1 (Mash1/Ascl1, 
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another pro-neural gene), and a decrease in DA progenitor proliferation. Otx2’s role in 

DA differentiation is thus due to its ability to control the proliferation of DA 

progenitors (Omodei et al., 2008), the expression of proneural genes that mediate their 

transition into post-mitotic cells (Vernay et al., 2005) and also to suppress alternative 

VM fates (Vernay et al., 2005, Prakash et al., 2006). Conversely, in mice where Otx2 is 

overexpressed there is an increase in DA neurons due to an increase in the DA 

progenitor domain (Omodei et al., 2008).  

 

Wnt1 also has a role in DA neuron survival by maintaining Otx2 expression in the 

ventral midbrain (Prakash et al., 2006). Moreover, in the absence of Wnt1 very few TH
+
 

neurons are born and those that are born are not maintained (Prakash et al., 2006). 

These few neurons fail to express Pitx3, indicating that Wnt1 might, directly or 

indirectly, regulate Pitx3 expression. 

 

En1/2 are important for DA neuron survival given that TH
+
 neurons in En1

-/-
/En2

-/-
 

mice are initially born in the VM but are lost by E14 and are undetectable at birth 

(Simon et al., 2001). En1 and En2 are able to compensate for each other: En2
-/-

 mice do 

not have a VM DA phenotype and in En1
-/-

 mice, despite major developmental defects 

(Wurst et al., 1994),  there are TH
+
 neurons in the VM  at levels comparable to wild 

type (Simon et al., 2001). Interestingly, En1
+/-

/En2
-/-

 and En1
+/-

/En2
+-

, which are viable 

and fertile, show a progressive loss of VM DA neurons during their first 3 months, 

which resembles the progressive loss of DA neurons in PD (Sonnier et al., 2007, Sgado 

et al., 2006). 

 

Lmx1b has been shown to regulate DA neuron maintenance: after its initial induction 

in the isthmus, Lxm1b expression in the VM is similar to Lmx1a, albeit in a slightly 

broader domain at early stages that includes basal plate populations (Lin et al., 2009, 

Andersson et al., 2006b).  In Lmx1b
-/-

 embryos, Nurr1
+
 and TH

+
 neurons are born but 

fail to express Pitx3, and by E16 they are lost (Smidt et al., 2000). 

 

1.1.5.2 LXR’s and oxysterols: new players  

 

The liver X receptors α/β (Lxrα and β) are nuclear receptors which, upon binding to 

oxysterols (cholesterol derivatives), are able to bind to DNA and regulate transcription. 

Recently it has been shown that Lxr’s are able to regulate cell division, neurogenesis 
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and DA neuron development in the VM (Sacchetti et al., 2009). Lxrα and Lxrβ 

transcripts are first detected in the midbrain at E9.5 and are upregulated at E10.5 and 

E11.5, and in Lxrαβ
 -/-

 mice there is an impairment in DA neurogenesis as assessed by 

the reduction in the expression of Lmx1b, Wnt1, Ngn2, Nurr1, Pitx3 and a decrease in 

the numbers of Tuj1
+
 (an early neuronal marker) and TH

+
 cells; this phenotype is still 

present at later stages, despite a partial recovery. The DA neurogenesis impairment is 

due to a decrease in cell cycle exit of the floor plate progenitors, leading to their 

accumulation. Moreover, oxysterols are able to specifically increase DA neurogenesis 

during DA differentiation of VM and human embryonic stem cell cultures, further 

confirming the importance of Lxrs in DA development. 

 

1.2 WNT SIGNALING 

 

The Wnt signalling pathway, highly conserved during evolution, has a crucial role 

during embryonic development and adult tissue homeostasis affecting processes such 

as cell proliferation, migration, polarity and fate determination. In 1982, the mouse Int-

1 gene was identified: activation of this gene by a proviral insertion of the mouse 

mammary tumor virus (MMTV) was able to induce breast tumors (Nusse and Varmus, 

1982). Int-1 encodes a secreted protein and it was subsequently shown that Int-1 and 

the Drosophila wingless (wg) gene, which controls segment polarity during larval 

development (Sharma and Chopra, 1976, Nussleinvolhard and Wieschaus, 1980), were 

homologues (Rijsewijk et al., 1987). Thus, the term Wnt was coined to designate this 

new signaling pathway.   

 

The diversity present already at the cell-membrane level indicates that Wnt signaling is 

far from being simple: in mammals there are 19 Wnt ligands, at least 15 receptors (10 

Frizzleds, 2 Lrps, 1 Ryk and 2 Rors), 2 classes of inhibitors (Wnt-binding such as 

soluble Frizzled-related proteins (sFRPs), or receptor-binding such as Dickkopfs) and 2 

classes of agonists (Norrin and R-spondin). Moreover, considering that the intracellular 

signal transduction involves several proteins, phosphorylation events and feedback 

loops, it is easy to see the intricate nature of this pathway. 

 

Initially, functional assays were used to classify Wnt signaling activity: Wnt mRNAs 

which were able to induce axis duplication when injected into Xenopus embryos and 

that were able to transform mouse C57MG mammary epithelial cells were classified as 
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canonical (McMahon and Moon, 1989, Du et al., 1995, Wong et al., 1994). The 

canonical pathway involves the stabilization and subsequent transcriptional activity of 

β-catenin. Wnt ligands which did not induce secondary axis, were able to disturb 

morphogenetic movements and failed to induce transformation in C57MG mammary 

epithelial cells were classified as non-canonical. In the non-canonical pathway other 

downstream effectors are involved, such as RhoA, Rac, protein kinase C (PKC), 

calcium/calmodulin-dependent kinase (CAMKII)  and the c-Jun N-terminal kinase 

(JNK, Smith et al., 2000, Tada and Smith, 2000).  However, increasing evidence has 

demonstrated that a particular Wnt may activate β-catenin and/or non-canonical 

pathways depending on the receptor complement (He et al., 1997, Mikels and Nusse, 

2006, van Amerongen et al., 2008). Moreover, many of the components involved 

during signaling are common to the two branches (Wallingford and Habas, 2005, Bryja 

et al., 2009, Wu et al., 2008, Bryja et al., 2007, Grumolato et al., 2010) suggesting 

extensive cross-talk between them. A more appropriate designation of these pathways 

has emerged: the canonical pathway is now referred to as Wnt/β-catenin pathway; the 

non-canonical is now subdivided into Wnt/PCP and Wnt/Calcium (Ca
2+

) pathways.  

 

1.2.1 Wnt/β-catenin signaling 

 

A crucial event in the Wnt/β-catenin signaling is the stabilization and accumulation of 

β-catenin in the cytosol, which is then able to translocate into the nucleus and regulate 

gene expression.  

 

In the absence of Wnt ligand, free cytosolic β-catenin is constantly target to degradation 

by the actions of the serine/threonine kinases casein kinase 1 (CK1) and glycogen 

synthase kinase 3β (GSK-3β). Together with the scaffolding proteins Axin and 

Adenomatous Polyposis Coli (APC) they form what it is called the destruction 

complex. Axin is the key scaffolding protein, as it interacts with all other components 

and seems to be rate limiting in the complex assembly (Lee et al., 2003). Axin binds to 

and coordinates the sequential phosphorylation of β-catenin at serine 45 by CK1 and at 

threonine 41, serine 37 and serine 33 by GSK-3β (Kimelman and Xu, 2006, 

MacDonald et al., 2009).  CK1 and GSK-3β also phosphorylate Axin and APC, 

increasing their association with β-catenin and enhancing its phosphorylation. 

Phosphorylated β-catenin is then recognized by β-TrCP (beta-transducin repeat 
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containing protein), a component of the E3 ubiquitin ligase and targeted for 

proteosomal degradation (Aberle et al., 1997).  

 

When Wnt ligands are present, they bind to Frizzled (Fz in Drosphila/Fzd in 

mammals), a seven transmembrane receptor, and to the LDL receptor-related proteins 5 

and 6 (Lrp5/6), forming a Wnt-induced Fzd-Lrp complex. Accordingly to the most 

accepted model of Wnt activation, the Fzd-Lrp6 complex recruits Disheveled (Dvl), a 

cytoplasmic scaffolding protein, to bind to Fzd (Wong et al., 2003, Wallingford and 

Habas, 2005).  Dvl is able to interact and recruit GSK-3β-bound Axin to the membrane 

(Cliffe et al., 2003, Wallingford and Habas, 2005) and GSK-3β induces 

phosphorylation in PPPPSPxS motifs in the Lrp5/6 receptor (P-proline; S-serine or 

threonine; x- variable residue) (Tamai et al., 2004, Zeng et al., 2005, Zeng et al., 2008). 

GSK-3β is responsible for the PPPSP phosphorylation whereas the xS phosphorylation 

is mediated by another kinase, CK1 (Davidson et al., 2005, Zeng et al., 2005). The 

dually phosphorylated PPPSPxS motifs recruit the Axin complex to the membrane 

(Zeng et al., 2005, Mao et al., 2001b, Davidson et al., 2005) in a positive feedback loop 

to ensure that all PPPSPxS motifs are phosphorylated.  It has been suggested that this 

initiation event is further amplified by the Dvl-mediated clustering of individual Wnt-

Lrp-Fzd complexes in the membrane, forming the “signalosomes”(Bilic et al., 2007, 

Figure 3). 

 

The mechanisms by which Wnt activation leads to β-catenin stabilization remain 

uncertain. Removal of Axin from the destruction complex due to its recruitment to 

Lrp6 or Fzd resulting in β-catenin stabilization has been suggested (Cliffe et al., 2003). 

Axin degradation might also be one possible mechanism, as overexpression of 

activated Wnt receptors or recombinant Dvl can lead to Axin degradation (Lee et al., 

2003, Mao et al., 2001b, Tolwinski et al., 2003). In addition, there are two 

serine/threonine phosphatases, PP1 and PP2A, which associate with Axin (Hsu et al., 

1999, Luo et al., 2007) and promote the dephosphorylation of Axin and β-catenin, 

respectively (Luo et al., 2007, Su et al., 2008). However, how the activity of these 

phosphatases is regulated by Wnt signals is not known. Alternatively (or in parallel), it 

has been proposed that phosphorylated Lrp6 is able to directly inhibit GSK-3β 

phosphorylation of β-catenin (Cselenyi et al., 2008, Piao et al., 2008, Wu et al., 2009). 
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Upon stabilization, β-catenin is able to translocate to the nucleus where it binds to the T 

cell factor/lymphoid enhancer factor (TCF/LEF) family of transcription factors. In the 

absence of Wnt ligands, TCF represses gene expression by interacting with the 

repressor Groucho/TLE1. Upon nuclear accumulation β-catenin interacts with 

TCF/LEF, thus displacing Groucho/TLE1 (Daniels and Weis, 2005, Figure 3) and 

recruiting other co-activators for gene activation. TCF/LEF target genes are involved in 

cell proliferation, fate specification, and differentiation (for a more comprehensive 

overview of TCF target genes please see the Wnt homepage: 

http://www.stanford.edu/group/nusselab/cgi-bin/wnt/). Interestingly, Wnt signaling 

components are positively or negatively regulated by TCF/β-catenin (Chamorro et al., 

2005, Kazanskaya et al., 2004, Khan et al., 2007), thus indicating that feedback control 

is a key feature of Wnt signaling regulation.  

 

 

Figure 3: Wnt/β-catenin signaling. In the absence of a Wnt ligand, free cytosolic β-catenin is targeted for 

degradation by the destruction complex. Upon binding of a Wnt ligand to Lrp5/6 and Fzd, β-catenin is 

stabilized in the cytoplasm and can translocate into the nucleus where it displaces repressors such as 

Groucho/TLE1, binds to TCF and promotes gene transcription.   

 

Due to the work described in this thesis, I will focus on some of the membrane-

associated members of the Wnt/β-catenin pathway.   
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1.2.1.1 Membrane-associated members of the Wnt/β-catenin pathway 

 

1.2.1.1.1 The ligand: Wnt1 

 

The Wnt1 mRNA encodes a 370 amino acids/41 kDA protein characterized by a 

strongly hydrophobic amino terminus, a cysteine-rich carboxy terminus, and four 

potential glycosylation sites (Fung et al., 1985). Like other Wnts, Wnt1 is quite 

hydrophobic and poorly soluble due to lipid modifications (Zhai et al., 2004) which are 

essential for its activity, and transform Wnt1 into a membrane-anchored protein 

localized in specialized lipid raft microdomains before secretion (Zhai et al., 2004). As 

a morphogen, Wnt1 is capable of short and long distance signaling, circumventing  its 

insolubility in the aqueous space possibly by the formation of  Wnt1 multimers that 

bury lipid modifications (Katanaev et al., 2008, MacDonald et al., 2009) or Wnt1 

binding to lipoproteins (Panakova et al., 2005, MacDonald et al., 2009). Wnt1 is able to 

bind to the cysteine-rich domain (CRD) at the amino terminus of Fzd (Bhanot et al., 

1996, Dann et al., 2001) and EGF-like domains of Lrp5/6 (Mao et al., 2001a). 

 

As mentioned above, Wnt1 overactivation has been linked with breast tumors (Nusse 

and Varmus, 1982, Li et al., 2000) and enhanced cell proliferation (Panhuysen et al., 

2004). During development Wnt1 has a crucial role in midbrain and cerebellar 

formation (McMahon and Bradley, 1990, Thomas and Capecchi, 1990). Consistent 

with its proliferation-inducing activity, Wnt1 is able to increase the proliferation of 

Nurr1
+ 

DA precursors in vitro (Castelo-Branco et al., 2003). 

 

1.2.1.1.2 The receptor: Lrp5/6 

 

Lrp5/6 are homologues of the Drosophila arrow gene, which has been shown to be 

necessary for Wingless signaling events in Drosophila (Wehrli et al., 2000); similarly 

to arrow, they are able to act as co-receptors and activate Wnt/β-catenin signaling, as 

demonstrated by gain and loss-of-function studies (Tamai et al., 2000, Kelly et al., 

2004, He et al., 2004). Lrp5/6 are part of the LRP subfamily of the LDLR family 

(Brown et al., 1998, Hey et al., 1998). They are type I single-span transmembrane 

proteins with 1615 and 1613 amino acid residues, respectively. Lrp5 and Lrp6 each 

contain an extracellular domain with 4 YWTD (tyrosine, tryptophan, threonine and 

aspartic acid) β-propeller domains, 4 EGF (epidermal growth factor) repeats (E1-E4) 

and LDLR repeats (Brown et al., 1998, Hey et al., 1998, He et al., 2004), followed by a 
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transmembrane region and a cytoplasmic domain with 5 PPP(S/T)P motifs. The 

prevalent view is that EGF repeats E1-E2 are necessary for Wnt binding and the E3-E4 

are necessary for Dickkopf1 binding, a Wnt/β-catenin antagonist (Mao et al., 2001a, 

Liu et al., 2009). However, recent studies have challenged this view suggesting that 

Wnts can bind to the E3-E4 domain and that Dickkopf1 can bind both E1-E2 and E3-

E4 (Binnerts et al., 2009, Bourhis et al., 2010). The intracellular domain is necessary 

for Wnt/β-catenin activation, given that a Lrp6 mutant lacking the intracellular domain 

is defective in Wnt signaling (Tamai et al., 2000); conversely, Lrp5/6 mutants lacking 

the extracellular domain (but anchored on the membrane) are constitutively active 

(Mao et al., 2001a, Mao et al., 2001b). The PPP(S/T)P motifs are phosphorylated by 

GSK-3β and CK1 upon Wnt binding and are required for Axin binding and the 

subsequent activation of the pathway (Tamai et al., 2004). Exogenous expression of the 

free (i.e., not anchored to the membrane) Lrp6 intracellular domain (Lrp6-ICD) is also 

able to induce a constitutively active Wnt/β-catenin pathway (Mi and Johnson, 2005) 

even in the absence of PPP(S/T)P motif phosphorylation (Beagle et al., 2009), 

suggesting that free Lrp6-ICD may act distinctly (and perhaps complementarily) from 

the membrane-anchored form in Wnt/β-catenin activation. In addition to their role in 

the Wnt/β-catenin pathway, Lrp5/6 have been shown to modulate the Wnt/PCP 

pathway, as gain and loss of function of Lrp6 disrupts CE-extension in Xenopus 

embryos (CE movements are normally mediated by the Wnt/PCP pathway) (Tahinci et 

al., 2007); moreover, Lrp5/6 have been shown to interact with Wnt5a, a Wnt/PCP 

ligand (Mikels and Nusse, 2006, Bryja et al., 2009, Andersson et al., 2010). 

 

Lrp5/6 are expressed in several tissues during embryogenesis and in adult tissues (Kim 

et al., 1998, Pinson et al., 2000, Kelly et al., 2004). Lrp5
–/–

 mice have normal 

embryogenesis and are fertile, but show osteoporosis (Kato et al., 2002). Lrp6
–/–

 mice 

die perinatally and exhibit mid/hindbrain defects (dorsocaudal midbrain deletion, less 

defined MHB and a disorganized cerebellum), posterior embryonic truncation and 

abnormal limb patterning, which resemble the defects of mice mutant for Wnt1, Wnt3a 

and Wnt7a (Pinson et al., 2000). The milder phenotype in Lrp5
–/–

 indicates that Lrp6 

has a more influential role than Lrp5. They do seem to be fairly redundant as the Lrp6
–

/–
 mutants have a less severe phenotype than those observed in individual Wnt mutants 

(Pinson et al., 2000), suggesting that Lrp5 is able to substitute, at least partially, for 

Lrp6. Indeed, the Lrp5
–/–

; Lrp6
–/–

 double mutant mice die during gastrulation, as they 

fail to form the primitive streak, similarly to the phenotype observed in the Wnt3 
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mutant (Liu et al., 1999b). Thus, at least during embryogenesis, Lrp6 seems to have a 

more crucial role than Lrp5. In the Lrp6
–/–

 mutants there are also PCP-associated 

defects such as exencephaly and spina bifida due to neural tube closure failure (Pinson 

et al., 2000, Bryja et al., 2009, Andersson et al., 2010), which can be rescued by 

removal of one or both Wnt5a alleles (Bryja et al., 2009), suggesting that the neural 

tube closure defects observed in Lrp6
–/–

 mutants are a result of a gain-of-function of the 

Wnt/PCP pathway and that Lrp6 is able to block this pathway. 

 

1.2.1.1.3 The antagonist: Dickkopf 1 

 

Dickkopf 1 (Dkk1) is a secreted 35-45 kDA glycoprotein belonging to the Dkk family, 

which consists of four members (Dkk-1, -2, -3, -4). Dkk1 has an N-terminal signal 

peptide and contains two conserved cysteine-rich domains (Cys-1 and Cys-2) separated 

by a linker region (Glinka et al., 1998, Krupnik et al., 1999). Both human and murine 

Dkk-1 have one conserved potential N-glycosylation site located close to the C-

terminus of the protein (Krupnik et al., 1999, Fedi et al., 1999), indicating that Dkk1 is 

post-translationally modified. As with other Dkks, Dkk1 contains several potential sites 

of proteolytic cleavage by furin-type proteases (Nakayama, 1997), suggesting that the 

proteins may be subject to post-translational proteolytic processing (Krupnik et al., 

1999). Dkk1 is a potent Wnt/β-catenin pathway inhibitor: it binds to Lrp5/6 with high 

affinity (Mao et al., 2001a, Bafico et al., 2001), blocking the Wnt pathway (Figure 4). 

The exact mechanism regarding the Dkk1-mediated inhibition of Wnt/Lrp6 signaling 

remains to be elucidated: according to the most common model, Dkk1 competes with 

the Wnt protein for Lrp6 binding, disrupting the Wnt-induced Fzd- Lrp6 complex 

formation which is necessary for signal transduction (Semenov et al., 2001). In 

addition, it has been suggested that Dkk1 can also block the Wnt/β-catenin pathway by 

inducing Lrp6 endocytosis in the presence of kringle containing transmembrane 

proteins (Kremens, Mao et al., 2002), single-pass transmembrane, high-affinity 

receptors for Dkk1 (Figure 4). In support of the former model, it has been shown that 

Dkk1 inhibits binding of Lrp6 to Wnt3a but does not disrupt the Wnt3a-Fzd8 CRD 

interaction (Bourhis et al., 2010) and that Dkk1 can antagonize the Wnt/β-catenin 

pathway without Lrp6 degradation/internalization (Semenov et al., 2008). However, 

Dkk1-mediated Lrp6 endocytosis has also been reported (Yamamoto et al., 2008, 

Sakane et al., 2010). Interestingly, in a recent report, Dkk1 has been shown to decrease 
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Lrp6 expression and Wnt/Lrp6 signaling in the presence of Kremen but to stabilize 

Lrp6 in the membrane by blocking Wnt3a-induced Lrp6 turnover (Li et al., 2010). 

 

 

Figure 4: Dkk1 inhibits the Wnt/β-catenin pathway. Dkk1 binds to Lrp5/6 and prevents the formation of 

the with the Lrp-Fzd-Wnt complex. Dkk1 is also able to mediate Lrp6 endocytosis in the presence of 

Kremen proteins (right panel).  

 

During embryonic development dkk1 is first expressed in Xenopus in the Spemann 

organizer of the early gastrula and in mouse in the AVE (Glinka et al., 1998), and then 

later in the anterior mesendoderm (which comprises the prechordal plate and 

notochord) and foregut endoderm. The Spemman organizer (equivalent to the node in 

mouse) and the AVE (in combination with the node) are crucial for head induction 

during development through a dual BMP and Wnt inhibition (Barrantes et al., 2003). 

Indeed, injection of dkk1 mRNA into Xenopus embryos leads to anteriorized embryos 

with big heads and enlarged cement glands. Together with a dominant-negative mutant 

of the BMP2/4 receptor, dkk1 mRNA is also able to induce secondary axes with 

complete heads (Glinka et al., 1998). The importance of Dkk1 in development is 

demonstrated by loss-of-function studies: Xenopus embryos injected with an anti-Dkk1 

antibody (Glinka et al., 1998) and Dkk1 knockout mice (Mukhopadhyay et al., 2001) 

lack anterior head structures. The head-inducing activity of Dkk1 is mediated through 

the inhibition of the Wnt/β-catenin posteriorizing activity in early gastrula embryos 
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(Kazanskaya et al., 2000). In addition, Dkk1 is involved in limb formation (Grotewold 

et al., 1999, Adamska et al., 2004), vertebral development (MacDonald et al., 2004), 

bone formation (Li et al., 2006, Morvan et al., 2006) and bilateral eye induction 

(Kazanskaya et al., 2000). Dkk1 has also been described to regulate cell proliferation 

and programmed cell death (Mukhopadhyay et al., 2001, Gregory et al., 2003, Wang et 

al., 2000), and to have a role in diseases such as cancer (Tian et al., 2003) and 

Alzheimer’s disease (Caricasole et al., 2004). Consistent with its role in vivo, Dkk1 is 

able to induce neural differentiation from embryonic stem cells (Watanabe et al., 2005, 

Verani et al., 2007, Kong and Zhang, 2009). 

 

A possible role of Dkk1 in the establishment of the floor plate has been suggested. A 

recent study has demonstrated that in human embryonic stem cells (hESC) induced to 

differentiate into floor plate cells treatment with Shh induces a decrease in Dkk1 in 

both mRNA and protein levels. Furthermore, Dkk1 expression inhibits Foxa2 

expression (Fasano et al., 2010), and Foxa2 knockout embryos show increased 

expression of Dkk1 in the ectoderm at E7.5 (Kimura-Yoshida et al., 2007). 

 

 The majority of the Dkk1 effects are a result of a direct inhibition of the Wnt/β-catenin 

pathway. However, other roles for Dkk1 have been suggested. In vitro, Dkk1 has been 

shown to antagonize Wnt signaling independent of β-catenin and possibly through the 

Wnt/JNK pathway (Lee et al., 2004). Moreover, in vivo evidence has also implicated 

Dkk1 both positively and negatively in the Wnt/PCP pathway: Caneparo et al. have 

shown that gain and loss of Dkk1 function can modulate CE-associated gastrulation 

movements (Caneparo et al., 2007); this effect was independent of Wnt/β-catenin 

pathway since up-regulation of the β-catenin pathway did not induce the gastrulation 

movement defects observed in Dkk1 morphants. Moreover, it was also shown that 

Dkk1 is able to cooperate with glypican4/6 member Knypek, a receptor which is 

required for Wnt/PCP activity (Topczewski et al., 2001). On the other hand, another 

study has revealed that Dkk1 antagonizes both canonical and non-canonical signaling 

to regulate the dorsal/ventral patterning of the early pre-gastrulation Xenopus (Cha et 

al., 2008). These results suggest that the differential regulation of the Wnt signaling by 

Dkk1 might be dependent on the developmental context.   

 

A β-catenin-independent action of the Dkk1 amino terminal has also been demonstrated 

(Korol et al., 2008). Previous studies have suggested that the N terminal of Dkk1 is 
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responsible for its inhibitory activity (Brott and Sokol, 2002), and it would be 

interesting to further characterize the influence of the full length protein versus N 

terminal peptide in the disruption of Wnt signaling. 

 

Dkk1 and Lrp5/6 have also been shown to interact in vivo: the extra digit number and 

anterior head truncation phenotypes resulting from hypomorphic expression of Dkk1 

can be corrected by genetically reducing the amount of Lrp6  (MacDonald et al., 2004), 

and limb abnormalities in these mutants can be corrected by reduced Lrp5 levels. 

Conversely, removal of Dkk1 improves survival, limb and axial development in Lrp6
-/-

 

animals (MacDonald et al., 2004), demonstrating the importance of correctly balancing 

positive and negative regulation of Wnt signaling during mammalian development.  

 

1.2.2 “Non-canonical” signaling: the Wnt/PCP and Wnt/Ca2+ pathways 

 

In the “non-canonical” pathway, Wnts are still able to bind to Fzd and activate Dvl 

(Gonzalez-Sancho et al., 2004) but the downstream targets do not promote β-catenin 

stabilization. These pathways are involved in CE movements (medio-lateral cell 

movements that promote narrowing along one axis and elongation along a 

perpendicular axis) and planar cell polarity (PCP, refers to the uniform orientation of a 

population of cells within a single epithelial plane).  The Wnt ligands associated with 

the “non-canonical” pathway do not induce axis duplication and lead to defective 

gastrulation when injected in Xenopus embryos (Du et al., 1995, Moon et al., 1993). In 

the Wnt/Ca
2+

 pathway, binding of Wnt to Fzd leads to the activation of Dvl and to an 

increase in intracellular Ca
2+

 levels and activation of PKC and CamKII, which will then 

mediate several intracellular responses.  In the Wnt/PCP pathway, activated Dvl signals 

through small GTPases such as Rho, Rac, Cdc42 (Habas et al., 2001, Habas et al., 

2003, Choi and Han, 2002) and also through JNK (Boutros et al., 1998, Yamanaka et 

al., 2002), leading to cytoskeletal modifications. Even though they are grouped 

collectively as a Wnt/PCP pathway, signaling through small GTPases have distinct 

intracellular targets and are considered by some as separate. Moreover, it is possible 

that the Wnt/PCP and Wnt/Ca
2+

 are not mechanistically distinct as overexpression of 

“non-canonical” Wnt ligands leads to  E defects as well as increases in intracellular 

Ca
2+

 levels (Du et al., 1995, Moon et al., 1993). Another interesting observation is that 

gain and loss-of-function on the Wnt/PCP pathway can produce similar phenotypes 

(Schambony and Wedlich, 2007). 
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Figure 5: The Wnt/Ca
2+

 and Wnt/PCP and pathways. In Wnt/Ca
2+

 pathway, Wnt binding to Fzd 

promotes an increase in intracellular Ca
2+

 levels and activation of PKC and CamIIK. In the Wnt/PCP 

pathway, activated Dvl signals through small GTPases such as Rho and Rac and JNK.     
 

1.2.2.1 Wnt5a 

 

Wnt5a is a 46 kDa protein and one of the prototypical ligands of the “non-canonical” 

pathway. Injection of Wnt5a mRNA in Xenopus induces defective morphogenetic 

movements (Moon et al., 1993, Du et al., 1995) and no axis duplication, as well as 

stimulating intracellular Ca
2+ 

(Slusarski et al., 1997). Like other Wnts, Wnt5a can 

signal through Fzd receptors but roles for Ror1/2 and Ryk, an orphan tyrosine kinase 

and a tyrosine-related receptor, respectively, have been described in Wnt5a signaling 

(Angers and Moon, 2009, Green et al., 2008, Hikasa et al., 2002, Schambony and 

Wedlich, 2007, Oishi et al., 2003, Grumolato et al., 2010).  

 

Wnt5a has  been shown to inhibit the Wnt/β-catenin pathway: coexpression of XWnt5a 

with XWnt8 (a Wnt/β-catenin ligand) in Xenopus embryos impairs the ability of XWnt8 

to induce a secondary axis (Torres et al., 1996) and Wnt5a
-/-

 knockout mice show 

increased β-catenin signaling in the distal limb, indicating that Wnt5a may inhibit β-

catenin stabilization (Yamaguchi et al., 1999). However, the exact mechanism by 

which Wnt5a is able to inhibit the Wnt/β-catenin pathway remains elusive: a GSK- 3β -

independent β-catenin degradation has been suggested (Topol et al., 2003), but Wnt5a-
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mediated inhibition of canonical Wnt signaling at the level of TCF transcription (with 

no changes in the  protein levels of β-catenin, Mikels and Nusse, 2006) as well as a 

reciprocal pathway inhibition of “canonical” and “non canonical” Wnts at the cell 

surface by competition for Fzd binding (Grumolato et al., 2010) have been reported. To 

add even further complexity, Wnt5a has been shown to activate TCF when co-

expressed with Fzd4 and Lrp5 (Mikels and Nusse, 2006), to activate β-catenin when 

fused to the Lrp5/6-binding domain of Dkk2 (Liu et al., 2005) and to induce axis 

duplication in the presence of Fzd5 (He et al., 1997) indicating that Wnt5a-mediated 

inhibition or activation of the β-catenin pathway might be dependent on the receptor 

context. 

 

Wnt5a is firstly expressed during gastrulation in several tissues and Wnt5a
-/-

 mice 

display anterior-posterior extension defects (Yamaguchi et al., 1999). Wnt5a is 

expressed in the midbrain as early as E8.75 (Yamaguchi et al., 1999) and its expression 

continues throughout DA neuron development (Castelo-Branco et al., 2003, Andersson 

et al., 2008). Wnt5a promotes DA differentiation of Nurr1
+
 precursors in a DA cell line 

(Schulte et al., 2005, Bryja et al., 2007), VM-derived neurospheres (Parish et al., 2008) 

and primary mesencephalic cultures (Castelo-Branco et al., 2003, Andersson et al., 

2008) through activation of Dvl (Schulte et al., 2005, Bryja et al., 2007) and Rac 

(Andersson et al., 2008). In Wnt5a
-/-

 mice there is a transient increase in the number of 

proliferating progenitors and Nurr1
+
 precursors and an impairment in the DA 

differentiation at E12.5, as assessed by the TH
+
/Nurr1

+
 ratio (Andersson et al., 2008), 

which is later recovered. In these mice VM morphology and DA population distribution 

are altered in a typical CE phenotype, indicating that Wnt5a mediates several functions 

in the VM and DA neuron development.  

 

1.3 CELL REPLACEMENT THERAPY IN PARKINSON’S DISEASE 

 

One of the most promising therapeutic approaches in PD is cell-replacement therapy 

(CRT), in which DA neurons and/or precursors are grafted into the striatum in order to 

restore the lost striatal DA transmission. Several cell types have been considered as 

potential sources of DA neurons; the work presented in this thesis focuses on 

embryonic stem cells and human fetal ventral midbrain cells. 
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1.3.1 Embryonic Stem Cells (ESC) 

 

Embryonic stem cells are derived from the ICM of a blastocyst. The first mouse ESC 

lines were generated in 1981 (Evans and Kaufman, 1981, Martin, 1981) and in 1998 the 

first human ESC were derived (Thomson et al., 1998). ESCs are able to self-renew and 

are pluripotent (they can give rise to all cells from all three germ layers). These 

properties mean that ESCs can be expanded indefinitely in vitro and that they can 

generate large numbers of DA neurons.  The majority of the protocols used to induce 

DA differentiation from ESC make use of basic concepts of Developmental Biology: 

induction of a neuroectoderm-like population by modulation of BMP and/or Wnt 

signaling (Gerrard et al., 2005, Watanabe et al., 2005, Kong and Zhang, 2009, Sonntag 

et al., 2007), followed by patterning events to promote DA neuron specification. The 

most common approaches to induce DA differentiation are based on (a) the generation 

of embryoid bodies, from which neural progenitors are derived (Lee et al., 2000) (b) 

co-culturing of the ESCs on feeder layers (Kawasaki et al., 2000, Barberi et al., 2003, 

Yue et al., 2006, Roy et al., 2006) or (c) adherent monolayer cultures (Ying et al., 

2003). The patterning events are achieved through addition (or secretion by the feeder 

cells) of soluble factors involved in midbrain patterning and DA specification such as 

Shh and Fgf8 (Lee et al., 2000, Barberi et al., 2003) or by genetic modification of ESCs 

by overexpression of midbrain-specific transcription factors. Indeed, in ESC engineered 

to express Nurr1 (Kim et al., 2002, Martinat et al., 2006), Pitx3 (Chung et al., 2005, 

Hedlund et al., 2008), Lmx1a (Andersson et al., 2006b, Friling et al., 2009) and Foxa2 

(Kittappa et al., 2007), DA differentiation is robustly increased. It seems, though, that 

the most efficient DA induction is through a combination of soluble factors and gene 

overexpression (Kim et al., 2006, Andersson et al., 2006b). Moreover, mESC-derived 

DA neurons have been able to induce behavioral improvement in animal models of PD 

(Kawasaki et al., 2000, Kim et al., 2002, Lee et al., 2000). In spite of its promising 

potential, the clinical application of ESC-derived DA neurons has been hindered by 

some ESC specific characteristics: the purity of the cultures (ESC cultures develop 

asynchronously and heterogeneously) and the risk of excessive proliferation and 

teratoma formation due to incomplete differentiation and their genetic instability 

(Morizane et al., 2008). Furthermore, important differences between mouse and human 

ES cells have been detected in terms of the factors their require for their maintenance 

and differentiation (Sato et al., 2003, Xu et al., 2005, Levenstein et al., 2006, Ying et.al, 

Sonntag et al., 2007) and human ES cell–derived DA cells have been found to survive 
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poorly after transplantation in animal models (Roy et al., 2006, Sonntag et al., 2007). 

Thus, further work is required in order to develop hESC as tools for CRT.   

 

1.3.2 Human Fetal Ventral Midbrain Cells 

 

Human ventral mesencephalons from aborted fetuses have been considered to be an 

excellent cell source for CRT: due to their origin, these cells are correctly specified 

towards a midbrain DA fate. Moreover, even though mesencephalic tissue contains 

proliferating progenitors they are less prone to form tumors after transplantation and 

appear to be genomically more stable than ESC. More importantly, human fetal ventral 

midbrain cells have been used in clinical trials and provided proof-of-principle 

evidence that DA neurons obtained from fetal human ventral midbrain cells can survive 

and provide significant benefits in some patients (Kordower et al., 1995, Piccini et al., 

1999, Mendez et al., 2005). The first open label clinical trials with human fetal 

mesencephalic cells were performed in the late 80’s (Lindvall et al., 1988, Lindvall et 

al., 1989) and since then several similar trials have followed, with reported clinical 

benefits associated with graft survival (Lindvall et al., 1990, Hagell et al., 1999, 

Brundin et al., 2000, Kordower et al., 1998) and motor function improvement (Piccini 

et al., 1999). However, the follow up double-blind, sham surgery-controlled studies 

were not as successful with modest or poor clinical outcomes (Freed et al., 2001, 

Olanow et al., 2003). These different results are probably a reflection of the high 

experimental variability between these studies regarding patient selection, tissue 

preparation/composition and immune suppression (Lindvall et al., 2004, Winkler et al., 

2005). Moreover, one of the major limiting factors in the widespread use of human fetal 

mesencephalic tissue is the need for high numbers of fetuses per patient (6 to 8)  in 

order to obtain the necessary numbers of DA neurons that can elicit a positive outcome 

(100,000 TH
+
 cells, (Kordower et al., 1995)).  

Isolation and propagation of human ventral midbrain-derived cells has been reported by 

several groups (Storch et al., 2001, Sanchez-Pernaute et al., 2001, Wang et al., 2004, 

Jin et al., 2005, Milosevic et al., 2006, Maciaczyk et al., 2008, Hovakimyan et al., 

2006). In these studies, cells have been expanded for as long as 8 months (Storch et al., 

2001) but in general there is a decrease in the numbers of neurons after multiple 

passages and limited numbers of TH
+
 neurons upon differentiation. So far, the best 

differentiation protocol yielded 21% of TH
+
 neurons after 7 days of proliferation when 

cells were differentiated in the presence of dibutyryl adenosine monophosphate 
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(dcAMP, Sanchez-Pernaute et al., 2001) In a recent report, in long-term expanded 

midbrain-derived cultures (≈ 1 year) it was possible to detect 50% of neuronal cells and 

of those approximately 15% were immunopositive for TH (Maciaczyk et al., 2008) 

when cells were differentiated for longer periods and in the presence of brain derived 

neurotrophic factor (BDNF). Cells are typically cultured in the presence of epidermal 

growth factor (EGF) and basic fibroblast growth factor (bFGF/FGF2) during 

proliferation (Storch et al., 2001, Sanchez-Pernaute et al., 2001, Hovakimyan et al., 

2006) and differentiation is achieved by removal of these mitogens and enhanced by 

the addition of neurotrophins such as BDNF (Maciaczyk et al., 2008)  and GDNF 

(Storch et al., 2001, Jin et al., 2005), ascorbic acid, cyclic adenosine monophosphate 

(cAMP, Sanchez-Pernaute et al., 2001) or cytokines (Storch et al., 2001, Jin et al., 

2005). Immortalized human mesencephalic cell lines have also been established 

(Donato et al., 2007, Villa et al., 2009, Lotharius et al., 2002). Notably, overexpression 

of Bcl-XL, an anti-apoptotic marker, enhances the maintenance of the neuronal and DA 

competence in long term expanded cultures and protects the cells from apoptotic cell 

death during differentiation (Courtois et al., 2010). These Bcl-XL-overexpressing cell 

lines are also able to survive transplantation and generate mature DA neurons in a rat 

model of PD, thus enhancing functional recovery of Parkinsonian rats. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  35 

2 AIMS OF THE STUDY 

 

Understanding how DA neurons develop in the midbrain is crucial for the 

successful establishment of CRT. The Wnt pathway is involved in several 

important processes in development and adult tissue homeostasis, and has been 

implicated in ventral midbrain DA neuron development. The main goal of this 

thesis was to further investigate the role of different components of the Wnt 

signaling pathway in DA neuron development and to determine their potential use 

in CRT: 

 To evaluate the impact of impaired Wnt/β-catenin signaling on mouse 

ESC-derived DA differentiation (Paper I) 

 

 To determine the role of two Wnt signaling components, Lrp6 (Paper II) 

and Dkk1 (Paper III), on midbrain DA development in vivo 

 

 To improve protocols to obtain significant amounts of DA neurons from 

human fetal ventral midbrain tissue (Paper IV) 
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3 RESULTS & DISCUSSION 

 

3.1 PAPER I 

 

3.1.1 Absence of Wnt1 promotes neuronal differentiation and an 

increase in the number of DA neurons in mESC cultures 

 

In the Wnt1
-/-

 mutants there is a substantial loss of midbrain structures and only 10% of 

the normal numbers of DA neurons are born (McMahon and Bradley, 1990, Thomas 

and Capecchi, 1990, Prakash et al., 2006). Furthermore, we have previously shown that 

Wnt1 promotes proliferation of DA neurons precursors in mouse VM primary cultures 

(Castelo-Branco et al., 2003). In order to further investigate the role of Wnt1 in VM 

DA neuron development we induced DA differentiation in Wnt1
-/-

 mESC (Bryja et al., 

2006) using an established protocol based on co-culture of ESCs on PA6 cells and 

addition of soluble factors such as Shh, Fgf8 and Fgf2 (Barberi et al., 2003). After 14 

days of differentiation we could detect an increase in the proportion of Tuj1 positive 

colonies (Tuj1/βIII tubulin, an early neuronal marker) in Wnt1
-/-

 cells. Surprisingly, we 

detected an increase in the number of TH
+
 colonies and cells in the Wnt1

-/
 mESC when 

compared wild type cells. Furthermore, analysis of other DA markers such as Nurr1 

confirmed this increase in DA yield.  To test that the absence of Wnt1 was impairing 

the Wnt/β-catenin pathway, we differentiated Wnt1
-/-

 mESC until day 4 and 5 of the 

protocol, given that Wnt1 expressed at very low levels in undifferentiated ES cells and 

it is up-regulated during day 4-5 of mESC differentiation. We then examined the 

expression of Axin and Brachyury, two well known downstream targets of the Wnt/β-

catenin pathway and found lower levels in Wnt1
-/-

 mESC compared to wild type cells, 

thus confirming that the absence of Wnt1 impairs the Wnt/β-catenin pathway. 

 

3.1.2 Impairment of the Wnt/β-catenin at the receptor level increases 

DA differentiation  

 

To further confirm that disturbing Wnt/β-catenin signaling promotes DA differentiation 

in mESC, we differentiated Lrp6
-/-

 mESC (Bryja et al., 2006) towards a DA phenotype 

using the same protocol as for Wnt1 cells. After 14 days of differentiation, we could 

detect an increase in TH
+
 colonies, but not Tuj1, in the Lrp6

-/- 
cultures when compared 

to wild type. This specific increase in DA differentiation was further verified by the 
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increased protein levels of TH (but not Tuj1) in our cultures and by the increase of 

other DA markers such as Foxa2, Lmx1a, Nurr1, Pitx3, Dat (dopamine transporter). 

The inability of Lrp6
-/- 

to respond to Wnt ligands, as assessed by Western Blot analysis 

and luciferase assays, confirmed that indeed in these cells the Wnt/β-catenin signaling 

was impaired. 

 

3.1.3 Increases in neuronal and DA differentiation in Wnt1-/- and Lrp6-/- 

mESC are not due to factors secreted from the feeder cells 

 

PA6 cells are known to secrete factors which are involved in DA specification 

(Swistowska et al., 2010, Catherine Schwartz, manuscript). To investigate the 

contribution of PA6-derived factor(s) to the observed phenotype, we used a feeder-free 

protocol to differentiate the Wnt1
-/- 

mESC. When cells were differentiated for 8 days in 

these conditions, we could still detect an increase in the number of Tuj1
+
 and TH

+
 

colonies and in the number of TH
+
 cells within the colonies in Wnt1

-/- 
mESC 

comparative to wild type mESC. Moreover, mRNA levels of DA markers such as 

Foxa2, Lmx1a, Nurr1, and Pitx3 were increased in Wnt1
-/-

 cells, indicating that the 

increases in neuronal and DA differentiation were a direct effect of Wnt1 deletion. 

Interestingly, the DA differentiation was further increased when Wnt1
-/-

 cells were 

cultured in the presence of the patterning factors Shh, Fgf8 and Fgf2 in the feeder-free 

protocol and expression of Dat was only detected after exposure to patterning factors 

and increased by deletion of Wnt1. Together, these data suggest that the observed 

increase in neuronal and DA differentiation in Wnt1
-/-

 mESC is cell-intrinsic (not due to 

factors secreted by the feeder cells) and can be enhanced by soluble factors involved in 

DA neuron specification.  

 

3.1.4 Neuronal and DA differentiation are accelerated in the absence of 

Wnt1 and Lrp6 

 

To determine at which time the deletion of Wnt1 and Lrp6 were exerting their effect 

in neuronal and DA differentiation, we examined Wnt1
-/-

 and Lrp6
-/-

 mESC at earlier 

times during differentiation on PA6 cells. Already at day 7, when very few Tuj1
+
 and 

TH
+
 cells were present in wild type ESC, we could detect mature Tuj1-expressing 

cells and some TH
+
 neurons in Wnt1

-/-
 cells and an increase in the proportion of Tuj1

+
 

and TH
+
 colonies. In the Lrp6

-/-
 cells analyzed at day 5 of differentiation, we could 
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detect neural rosettes, seldom seen in differentiating mESC, and by day 6 mature 

Tuj1
+
 and (occasionally) TH

+
 cells were found. Moreover, at day 6 of differentiation 

almost all the colonies were Tuj1
+
 and TH

+
 colonies where present in Lrp6

-/-
 mESC, 

whereas in control wild type mESC only half of the colonies were positive for Tuj1 

and very few TH
+ 

colonies were present. These results indicate that neuronal and DA 

specification occurs earlier in differentiating mESC cultures in the absence of Wnt1 

or of Lrp6. 

 

3.1.5 Dkk1 treatment promotes DA neurogenesis in mESC 

 

Given the observed phenotype in Wnt1 and Lrp6 mutant mESC, we asked ourselves 

whether the effect of the deletion could be mimicked in wild type cells by treatment 

with Dkk1, a known Wnt/β-catenin inhibitor. R1 mESC were induced to differentiate 

in a feeder-free protocol and treated with Dkk1 from day1 to 5 or during the whole 

differentiation protocol (12 days). Although treatment from day1 to 5 promoted only 

a small increase in Th and Tuj expression, addition of Dkk1 during the whole protocol 

increased the proportion and numbers of TH
+
 colonies and cells (even in the presence 

of patterning factors), albeit to a lesser extent than the absence of Wnt1 or Lrp6. 

Western Blot analyses revealed that Dkk1 treatment in mESC was able to decrease 

the Wnt3a-induced activation of the Wnt/β-catenin, and Dkk1’s effects were 

competed against by Wnt3a in a dose-dependent manner. 

 

3.1.6 What is the contribution of the Wnt/β-catenin pathway in 

neurogenesis and DA differentiation in mESC? 

 

From our work we can conclude that impairment of the Wnt/β-catenin pathway in 

mESC promotes neuroectodermal and DA differentiation. While the former can be 

explained by basic Developmental Biology concepts and both alterations can be 

attributed to the differences between in vitro and in vivo data, the latter observation was 

a surprising one. Indeed, the protocols used to induce mESC differentiation try to 

recapitulate the events that occur during development; a crucial point is the induction of 

a neuroectoderm which is mediated by Wnt and BMP antagonists. Thus, in order to 

induce head formation there must be an inhibition of the Wnt/β-catenin pathway shortly 

after gastrulation. This is further confirmed by the analysis of the Dkk1 mutants which 

fail to generate most of the anterior head structures (Mukhopadhyay et al., 2001) and in 
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vitro studies where overexpression of sFrp2 (which can act as a Wnt inhibitor) was 

shown to stimulate the production of Sox1
+
 neural progenitors, while forced expression 

of Wnt1 and treatment with lithium chloride (which activates the Wnt/β-catenin 

pathway by inhibiting the activity of GSK-3β) inhibit neural differentiation (Aubert et 

al., 2002). Thus, increased and accelerated neuralization in Wnt1
-/-

 and Lrp6
-/-

 mESC is 

most likely due to an early inhibition of the Wnt/β-catenin pathway. However, both 

positive (Otero et al., 2004) and negative (Aubert et al., 2002, Haegele et al., 2003) 

roles of the Wnt/β-catenin pathway in neural differentiation from mESC have been 

described, and activation of the Wnt/β-catenin pathway has been implicated in 

promoting the neuronal differentiation from neural precursors (Hirabayashi et al., 2004, 

Muroyama et al., 2004), suggesting a time-dependent dual role of this pathway in 

neurogenesis. Given the importance of Wnt1 for midbrain and DA neuron 

development, the observation that midbrain DA differentiation was enhanced by the 

absence of Wnt1 or Lrp6 was unexpected. While at earlier stages the increase in TH
+
 

neurons and colonies might be due to an overall increase in neurogenesis, the fact that 

in Lrp6
-/-

 mESC there is a recovery in Tuj1 expression but not TH at later stages 

suggests a more specific effect. Moreover, Dkk1’s effect was more pronounced when 

added during the whole protocol in comparison with its presence only during the first 5 

days of differentiation, and in Dkk1 deficient mice there is a DA differentiation 

impairment (Paper III). Together, these data suggest that inhibition of the Wnt/β-

catenin pathway is involved in the differentiation of mESC into correctly specified DA 

neurons. Given the asynchrony and heterogeneity of mESC cultures, inappropriate 

secretion from different cell types and/or at different time points might provide an 

explanation for the Wnt1
-/-

 cultures. Moreover, disturbance of the Wnt/β-catenin might 

also affect other signaling pathways which might also be responsible for the observed 

phenotype. One could speculate that, as “canonical” and “non-canonical” Wnt 

signaling are known to negatively regulate each other, increased DA differentiation in 

our cultures might be due to an increase in Wnt5a-induced or non-canonical signaling. 

Another important conclusion form our work is that current protocols to induce DA 

differentiation can be enhanced by modulation of the Wnt/β-catenin pathway with 

soluble factors such as Dkk1, which is of importance for CRT.  

 

3.2 PAPER II 
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3.2.1 Deletion of Lrp6 does not alter VM patterning, cell survival or 

proliferation 

 

In light of previous studies, we decided to investigate whether Lrp6 is required for 

midbrain or DA neuron development by analyzing Lrp6
-/-

 mice. In situ hybridization 

and quantitative PCR (qPCR) confirmed that Lrp5 and Lrp6 are ubiquitously expressed 

in the brain at E11.5. As previously described (Pinson et al., 2000) we could detect a 

less well-defined isthmus at a dorsal level at E9.5 and E10.5 in Lrp6
-/-

 mice, and a 

deletion of dorsal mid/hindbrain tissue at E12.5, but analysis of the ventral expression 

of several patterning factors such as Otx2, En1, Lmx1b, Shh and Wnt5a revealed no 

differences in Lrp6
-/-

 embryos in comparison to wild type embryos; in fact, a normal 

patterning of the VM was also present even in Lrp6
-/-

 exencephalic embryos. Moreover, 

we did not detect any changes in proliferation, as assessed by analysis of phospho-

histone-3
+
 cells and the 5-ethynyl-2´-deoxyuridine (EdU) and 5-bromo-2-deoxyuridine 

(BrdU) incorporation. Cell survival was not affected as determined by the similar 

numbers of Caspase-3
+
 cells in wild type and Lrp6 mutants and progenitor markers 

such as Nestin and Aldehyde dehydrogenase 2 (Ahd2) were also unaffected in Lrp6
-/-

 

embryos.    

 

3.2.2 Lrp6-/- mice display a delayed DA differentiation and an altered VM 

morphology 

 

To investigate if DA development was affected by the absence of Lrp6, we examined 

the number of TH
+
 cells at E11.5 and found a 50% reduction, as assessed by 

immunohistochemistry, qPCR and in situ hybridization, with no apparent change in the 

number of total neurons (as determined by Tuj1 expression). Moreover, we could also 

detect a 40% reduction in the number of Nurr1
+
 cells, a 60% reduction in Nurr1 mRNA 

levels at E11.5, as well as a decrease in the levels of Pitx3 mRNA at E12.5 in Lrp6
-/-

 

embryos, indicating that there was a differentiation impairment. However, by E13.5 

there was a recovery in these defects, as we found no differences in Nurr1 expression 

between wild type and Lrp6
-/-

 embryos, and only a 25% reduction in the number of TH
+
 

cells in Lrp6 mutants which was restored to wild type levels at later stages. Lrp6
-/-

 mice 

also displayed a narrower V-shaped VM VZ.  
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3.2.3 What is the contribution of Lrp6 to VM DA development? 

 

Despite the pronounced effects of Lrp6 in mESC-derived DA differentiation, our in 

vivo studies revealed a transient decrease in DA neurogenesis and differentiation, which 

was recovered at later stages. An imbalance between “canonical” and “non-canonical” 

signaling in the VM might account for the phenotype (given the established role of 

Wnt5a in promoting DA differentiation, more Wnt5a-mediated “non-canonical” 

signaling could rescue differentiation); an imbalance between these 2 branches of Wnt 

signaling is further suggested by an alteration in VM morphology. On the other hand, 

the compensation of the phenotype of the Lrp6
-/- 

at later stages and the lack of and early 

phenotype could be explained by a compensation by Lrp5, the other member of the 

LRP family that signals through canonical Wnt signalling. Indeed, Lrp5 is expressed in 

the developing VM, and between E11.5 and E15.5, Lrp5 expression was up-regulated 

in Lrp6 homozygote mutant embryos (Gonçalo Castelo-Branco, unpublished data).  

 

3.3 PAPER III 

 

3.3.1 Dkk1 is expressed in the VM  

 

The results obtained with Dkk1 in mESC-derived DA differentiation led us to 

investigate whether Dkk1 had a role in midbrain DA development. In situ hybridization 

revealed that Dkk1 was expressed in the ventral midbrain at E9.5 and E10.5, after 

which its expression was no longer detected. At E9.5, Dkk1 was expressed in a salt-

and-pepper pattern in the medial and lateral floor plate, overlapping with and in 

between the two Wnt1 stripes. Dkk1 was more highly expressed rostrally and less 

caudally.  At E10.5, expression of Dkk1 was detected in all the three layers of the 

developing VM but restricted to the medial part of the floor plate in Lmx1a
+
 cells 

adjacent to the midline. 

 

3.3.2 Initial neurogenesis is not affected but differentiation is impaired 

in Dkk1 mutants 

 

To assess the contribution of Dkk1 to midbrain development we analyzed Dkk1
+/-

 

animals, given the severity of the phenotype of Dkk1-null mice. At E11.5, the onset of 

DA neurogenesis, we did not detect any changes in the number of TH
+
 neurons or in 

the expression of Tuj1. Moreover, analysis of the number of Lmx1a
+
 cells revealed no 
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differences between wild type and Dkk1
+/-

 embryos. However, at E13.5 we detected a 

40% reduction in the number of TH
+
 neurons in Dkk1

+/-
 mice. While the number of 

precursors was not affected, as determined by the expression of Nurr1, there was a 

reduction in the number of Pitx3
+
 cells, suggesting a differentiation impairment. 

Proliferation, neurogenesis and cell death were not affected in Dkk1
+/-

 embryos as 

assessed by the expression of Ki67, Tuj1 and Caspase-3, respectively. Moreover, other 

ventral midbrain populations such as the Islet1
+
 oculomotor neurons and the Brn3a

+
 red 

nucleus cells were not affected indicating that the observed phenotype was specific to 

DA neurons. In E17.5 Dkk1
+/-

 animals we could still detect a 30% reduction in the 

numbers of TH
+
 neurons, indicating that the differentiation impairment persists at later 

stages.  

 

3.3.3 In addition to a differentiation impairment, VM cell distribution 

and morphogenesis is also affected in Dkk1 mutants  

 

Besides the DA differentiation deficit, in E17.5 Dkk1
+/-

 animals we detected an 

abnormal distribution of TH
+ 

DA neurons at different anterior-posterior levels in the 

VM. To further characterize the role of Dkk1 in VM DA neuron development, we 

decided to analyze the few Dkk1
-/-

 embryos obtained at E17.5. As expected, these 

embryos had a deletion of most anterior head structures, with different levels of 

midbrain deletion. In these animals, we could detect a severe reduction or an almost 

complete absence of DA neurons which, when present, were very abnormally 

distributed forming clusters and exhibited few or no processes. Some of these TH
+
 

neurons were also positive for Pitx3, indicating that despite the severe VM and DA 

defects, some midbrain tissue was still formed in the absence of Dkk1. However, given 

the lack of forebrain structures and the early role of Dkk1 in development, we cannot 

exclude the possibility of an indirect mechanism. Thus, these data suggest that Dkk1 is 

required for DA differentiation and midbrain morphogenesis.  

 

3.3.4 Dkk1: a novel regulator of VM DA development and 

morphogenesis? 

 

Our finding that Dkk1 is expressed in the VM at early stages suggests a role for Dkk1 

in midbrain DA development. In Dkk1 mutants, we could detect a DA differentiation 

deficit most likely due to modifications in the Wnt/β-catenin pathway. Indeed, a 
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balanced Wnt/ β-catenin pathway is of utmost importance during development, and 

Dkk1 and Wnt ligands are quite often expressed in adjacent domains and are known to 

genetically interact (Lewis et al., 2008). Defects in Dkk1-null mice (where one can 

expect an increase in Wnt/ β-catenin signaling) can be ameliorated by removing one 

allele of Lrp6 (MacDonald et al., 2004, Lewis et al., 2008) or of Wnt3a (Lewis et al., 

2008). Several lines of evidence implicate a balance between positive and negative 

regulators of Wnt/-catenin signaling in DA neuron development: (a) Wnt1 and Dkk1 

show a similar temporal expression pattern in the VM as both are highly expressed at 

E9.5 in a complementary anterior-posterior and ventro-lateral gradient (b) Dkk1 

expression peaks at E10.5 and β-catenin expression and transcriptional activity, as 

assessed in the TOPGAL reporter mice, has been found to follow a similar spatial-

temporal expression pattern (Castelo-Branco et al., 2003) (c) We have reported that, as 

in other systems, Dkk1 is most likely a direct transcriptional target of β-catenin in the 

VM as part of a negative feedback loop. Indeed, we found that treatment of primary 

E10.5 VM cultures with Wnt3a, a known activator of Wnt/-catenin signaling in this 

culture (Castelo-Branco et al., 2003), acutely upregulates the expression of Dkk1 (Paper 

III).  

 

Given the Dkk1 expression in the floor plate and ventral midline, it is tempting to 

speculate that Dkk1 might be co-expressed in Shh-expressing cells. Recent evidence for 

a Shh and Wnt1 antagonism has been demonstrated (Joksimovic et al., 2009), and in 

early VM development Shh and Wnt1 expression are complementary to each other (Shh 

is more highly expressed in the medial floor plate and lower in the lateral floor plate, 

whereas Wnt1 is more abundant in the lateral floor plate). As demonstrated by 

Joksimovic and colleagues, after an initial role in establishing the DA progenitor 

domain, a Wnt1-mediated antagonism of Shh is necessary to induce DA neurogenesis 

(Joksimovic et al., 2009). One possible explanation would be that a Dkk1-mediated 

Wnt/-catenin inhibition in the medial floor plate prevents a premature downregulation 

of Shh in the floor plate, allowing thus the initial DA induction. Between E10.5-E11.5 

Shh expression is downregulated in the ventral midline (Joksimovic et al., 2009), 

coinciding with a decrease in Dkk1 in the same region; the latter event would possibly 

explain the former by creating a permissive region for Wnt1. However, in the Dkk1 

mutants we did not detect any defect at the level of DA progenitors nor in neurogenesis, 

indicating that early events in DA development are not affected. One possible 
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explanation for the differentiation deficit would be an excessive and/or premature 

activation Wnt/-catenin signaling in these animals: indeed, in animals where -catenin 

is constitutively expressed early in VM development, there is an accumulation of DA 

progenitors, impaired DA differentiation and reduced number of midbrain DA neurons 

(Tang et al., 2010). It is thus possible that the loss of Dkk1 results in an excess of 

Wnt/β-catenin signaling in the VM niche and affect the process of differentiation.  The 

role of the Wnt/-catenin pathway in midbrain DA neuron development is thus quite 

complex and has not been fully elucidated given the multiple roles of the Wnt/β-catenin 

pathway in regulating proliferation, cell-cycle exit and differentiation (Tang et al., 

2009, Tang et al., 2010). Moreover, a recent study has indicated that the role of the 

Wnt/β-catenin pathway in the midbrain seems to be cell context-dependent (Tang et al., 

2010): while constitutive activation of Wnt/β-catenin using
 
Shh–Cre perturbs cell cycle

 

progression and antagonizes the expression
 
of Shh, contributing to a

 
reduction of the 

number of DA neurons, a cell-type-specific
 
activation of Wnt/β-catenin in the midline 

progenitors
 
using Th–IRES–Cre leads to a increase in DA neuron numbers. The 

importance of timing and dosage of Shh adds a further level of complexity to an 

already intricate mechanism of Wnt1-Shh antagonism. 

 

Another observation from our studies was the altered cell distribution in Dkk1 mutants. 

An alteration of the DA population distribution in the midbrain has also been reported 

in Wnt5a
-/-

 mice (Andersson et al., 2008). Interestingly, 20% of the Dkk1
+/-

 embryos at 

E13.5 had exencephaly (failure of neural tube closure at the dorsal midbrain line), 

similarly to Lrp6-null embryos and to some Wnt5a
-/-

 embryos (Qian et al., 2007). Both 

processes have been linked with the Wnt/PCP pathway and since Dkk1 has been shown 

to modulate gastrulation movements through the activation of this pathway, it is 

possible that the observed morphological defects in Dkk1 mutants are due to a 

dysregulation in Wnt/PCP signaling. If so, these results suggest, and are in agreement 

with, the notion that a decrease in the Wnt/PCP pathway might be due to a more active 

Wnt/β-catenin signaling and with the concept that gain and loss-of-function of the 

Wnt/PCP pathway produce similar phenotypes.      

 

3.4 PAPER IV 
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3.4.1 Human fetal VM cells can be expanded in vitro while retaining 

their VM DA identity 

 

We have previously shown that mouse VM neural stem cells can be propagated as 

spheres in the presence of key factors involved in VM DA neuron development, and 

give rise to a large number of functional DA neurons that were able to survive, 

integrate and induce functional recovery after transplantation in animal models (Parish 

et al., 2008). In order to address some of the limitations of using fetal human tissue in 

CRT, we examined whether this protocol could be applied to human VM neural stem 

cells. VM tissue obtained from 6-11 weeks aborted fetuses was dissociated and cells 

were grown as neurospheres for 14 days with passaging every 7 days in the presence of 

the DA-appropriate factors Shh, Fgf8, Fgf2 and BDNF. One of our first observations 

was that initial cell numbers may be important for optimal expansion, given that 

preparations with initial cell counts lower than 500,000 cells could be expanded 2 to 3-

fold after two weeks in proliferation whereas initial preparations with high cell numbers 

were not expanded successfully. As embryos from approximately the same age gave 

rise to both low and high initial cell numbers, this observation might reflect accuracy 

and/or stringency of dissection. After one week in proliferation we could detect a 

decrease in cell numbers, more obvious in cultures with medium and higher initial 

counts, whereas preparations with low initial cell numbers were able to recover; this 

event might reflect cell death in our cultures due to damage after tissue dissociation. 

Further characterization of the spheres in proliferation revealed the expression of neural 

stem cells markers such as Sox2 and Nestin, the latter being upregulated after 14 days 

of expansion when compared with VM primary tissue. Moreover, we could also detect 

Lmx1b, a marker of DA progenitors, and Nurr1 which were present in higher levels 

when compared with primary tissue. Interestingly, we could also detect expression of 

high levels of Tuj1 and Th, indicating that some differentiation is ongoing in 

proliferating spheres. Thus, we conclude that cells from human fetal VM expanded 2 to 

3-fold retain their VM DA identity. 

 

3.4.2 Human fetal VM cells retain their differentiation potential with 

passaging 

 

To determine their DA potential, cells were induced to differentiate after tissue 

dissociation, and after 7 and 14 days of expansion. Cells were induced to differentiate 
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in the presence of factors known to regulate maturation and/or survival of DA neurons 

and the effects of Wnt5a were examined. Primary VM tissue-derived cells in 

differentiation were primarily neurons (65%) and 6% of total numbers of cells were 

TH
+
 with a mature morphology. Addition of Wnt5a increased the numbers of TH

+
 cells 

to 8%, as well as the number of TH
+
 cells counted per field. After 7 days in 

proliferation, we could still detect high expression of Tuj1 and TH, albeit a less clear 

effect of Wnt5a. In cells expanded for 14 days we could still detect a high number of 

TH
+
 cells with long processes, and addition of Wnt5 promoted a 40% increase in the 

number of TH
+
 cells per field when compared with control. Upon differentiation, cells 

in proliferation conditions for 21 days still expressed appropriate VM markers and were 

able to differentiate efficiently, with Wnt5a promoting again an increase in Th levels. 

Thus, expanded cells retain their DA differentiation potential even after 21 days. 

However, at this stage the number of TH
+
 cells in the culture declined. This result 

indicated that the optimal expansion time is 14 days in order to achieve abundant 

numbers of midbrain DA neurons 

 

3.4.3 Increase in human DA neurons by combined passaging and 

differentiation: a new light in CRT? 

 

In contrast with our observation with human VM cells, rodent VM neuorsphere cultures 

showed a reduction in the number of TH
+
 cells with passaging, and after 2 weeks of 

expansion, very few TH
+
 cells were present (Parish et al., 2008). In our human 

preparations, however, when comparing the direct differentiation of the VM tissue with 

cells cultivated for 14 days that were passaged 2 times and differentiated in the 

presence of Wnt5a there was significant four-fold increase in the number of TH
+
 

cells/field. Thus, our results show that the expansion and subsequent differentiation of 

primary human VM progenitors gives rise to an increase in human midbrain DA 

neurons. These results suggest that it may be possible to reduce the number of embryos 

necessary for CRT in PD patients. The next logical step will be to determine if these 

cells are able to survive and induce functional recovery in an animal model of PD.  
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4 CONCLUSIONS 

 

From the work presented in this thesis, we can conclude: 

 

1. Impairing the Wnt/β-catenin promotes neurogenesis and DA differentiation in 

mESC 

2. Addition of Wnt/β-catenin inhibitors such as Dkk1 can be used to promote 

DA differentiation in mESC 

3. The Lrp6 receptor is important for the timely onset of DA differentiation in 

vivo 

4. The Wnt/β-catenin inhibitor Dkk1 regulates VM DA differentiation and 

morphogenesis 

5. Human fetal VM cells can be expanded 2-3 fold in vitro and retain their DA 

differentiation potential; the latter is increased by addition of Wnt5a 

In sum, the work herein presented reveals important functions of the Wnt signaling in 

DA differentiation and provides useful and important knowledge to improve cell-

replacement therapy in Parkinson’s disease.  
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