Immune Dysregulation in HIV-1 Infected Lymphoid Tissue

Homira Behbahani

Stockholm 2002
ABSTRACT

Lymphoid compartments are major sites for HIV-1 replication. We evaluated cytokines, chemokines and immunological effector function at the single cell level in lymphoid tissues in chronically HIV-1 infected patients. HIV-1 infected lymphoid tissue was characterized by an extensive proinflammatory activation (IL-1α, IL-1β and IL-12) and vigorous Th1 type cytokine expression (IL-2 and IFN-γ) while Th2 cytokines remained low (IL-4 and IL-10). Treatment with highly active anti-retroviral therapy (HAART) resulted in a significant reduction of proinflammatory as well as of Th1 type of cytokine expression in lymphoid tissue. However, the pool of HIV-1 DNA containing cells (1-5%) remained virtually unchanged even after more than one year of HAART while the initial 3-8-fold increase of CD8+ T cells was normalized. We hypothesized that lack of elimination of HIV-1 infected cells was due to impaired cytolytic effector function in activated CD8+ T cells that normally are mediated by either Fas-L/Fas interaction or perforin/granzyme A (grA). CD8+ T cells in HIV-1 infected lymphoid tissue were found to have upregulated Fas-L and grA expression while perforin expression was not concomitantly induced. This was however not true for CD8+ T cells obtained from acutely EBV infected patients, which instead showed upregulation of both perforin and grA expression. Our data indicated a defective cytolytic activity in CD8+ T cells at local sites of HIV-1 replication within lymphoid tissue. To elucidate the molecular mechanism involved in inhibition of perforin expression in HIV-1 infection, we initiated short term in vitro cultures using freshly isolated peripheral blood cells from HIV-1 seronegative donors. Exogenous addition of Nef protein was found to mediate downregulation of perforin in CD8+ T cells. Sequence alignments and molecular modeling of different Nef proteins suggested that the so-called disordered loop corresponding to residues 148-178 was a likely contributor to the observed Nef-mediated downregulation of perforin expression. Macaques infected with a nef-deleted virus displayed high perforin expression within lymphoid tissues in contrast to macaques infected with the wild-type virus, which suggested a role for Nef as perforin modulator in vivo.

Furthermore, cytokine mediated regulation of chemokine receptor expression (CCR5-CXCR4) was studied in placenta tissue from transmitting (TT) and non-transmitting (TNT) HIV-1 infected women. We found upregulation of CCR5 combined with IL-2 expression both at the protein and mRNA level in placenta from TT women. This was associated with an increase in the number of gag-pol mRNA expressing cells. In contrast, the placenta from TNT women was characterised by upregulation of Th2 type (IL-4, IL-10) cytokine expression. We found an association between Th2 type of cytokine (IL-4) expression and Leukemia Inhibitor Factor (LIF) production in placenta from TNT tissue while LIF expression was low in placenta from TT women. Therefore, we investigated whether LIF secretion may play a role in HIV-1 inhibition. LIF inhibited HIV-1 replication in a co-receptor independent manner. This inhibition was dependent upon the expression of LIF-Rβ (gp130) on the surface of HIV-1 susceptible cells. The identification of LIF as an inhibitor of HIV-1 replication may lead to the development of a novel anti-retroviral treatment.

Keywords: HIV-1, HAART, cytokines, chemokines, lymphoid tissue, perforin, Nef, LIF, placenta, chemokine receptor

ISBN 91-7349-193-4
ORIGINAL PAPERS

This thesis is based on the following papers, which will be referred to in the text by their Roman numerals;

III Jan Andersson, Homira Behbahani, Judy Lieberman, Elizabeth Connick, Alan Landay, Bruce Patterson, Anders Sönnerborg, Karin Loré, Stefania Uccini and Thomas E. Fehniger. Perforin is not co-expressed with granzyme A within cytotoxic granules in CD8 T lymphocytes present in lymphoid tissue during chronic HIV infection. AIDS, 13:1295-1303, 1999.

IV Homira Behbahani, Adane Achour, Annelie Tjernlund, Laura Leitner, Donald L. Sodora, Jakob Nilsson, Dong Zhang, Bruce K. Patterson, Judy Lieberman, Jan Andersson and Anna-Lena Spetz. HIV-1 Nef downregulates perforin expression in CD8+ T cells providing a potential mechanism for impaired cytolytic function. Submitted.

CONTENTS

ABSTRACT .. 02
ORIGINAL PAPERS .. 05
ABBREVIATIONS ... 08
INTRODUCTION ... 10
The global epidemic ... 10
The virus ... 11
Natural history of HIV-1 infection ... 12
 Acute phase ... 12
 Chronic phase ... 13
 AIDS phase ... 14
 Treatment ... 14
HIV-1 infected lymphoid tissue ... 15
 Dissemination of HIV-1 virus in lymphoid tissue .. 16
Cytokines and HIV-1 infection ... 17
 Cytokine network ... 17
 Cytokines involved in HIV-1 replication .. 17
 Cytokines involved in the immune response to HIV-1 infection 19
Chemokine receptors and their role in HIV-1 infection 21
Soluble factors inhibiting HIV-1 infection ... 22
HIV-1 specific cytotoxic T cell responses .. 24
 Granule exocytosis pathway .. 26
 Fas and Fas-Ligand pathway .. 28
HIV-1 infection in children ... 28
 Vertical transmission from mother to child ... 28
 Placental tissue .. 29
 The role of co-receptor expression for vertical transmission 30
AIMS OF THE STUDY ... 32
MATERIALS AND METHODS ... 33
Ethical approval of study cohort ... 33
Study participants ... 33
Methods ... 34
 Quantification of HIV-1 DNA in tissue (Paper I and II) 34
 Quantification of HIV-1 RNA in tonsils (Paper I, II and V) 34
 PBMC preparation and fixation (Paper III, IV) .. 34
 HIV-1 infected tissues preparation and fixation (Paper I-III, V-VI) 34
 Cell culture (Paper IV) ... 35
Detection of cell markers, cytokines, chemokines and effector molecules
 in tissue and PBMC by immunohistochemistry (Paper I-VI) 35
Two color staining for co-localization (Paper III) 35
Quantification of cell surface markers, cytokine, chemokine and effector
 molecules expression by in situ imaging (Paper I-VI) 36
Intracellular detection of effector molecule expressing cells by flow cytometry (Paper IV) ... 36
Alignment of amino acid sequences and molecular modeling (Paper IV) 36
Preparation of RNA extraction from tissue (Paper V) 36
Messenger mRNA quantification using real-time RT-PCR (Paper V and VI) ... 37
Immunopenotyping/Fluorescence in situ Hybridization
(I-FISH) (Paper V and VI) .. 37
Real-time quantitative PCR for HIV-1 gag and U5/R DNA (Paper VI) 38
In vitro assays for anti-HIV-1 activity (Paper VI) 38
Cell-proliferation assays (Paper VI) ... 38
Explant placenta organ culture (Paper VI) .. 38
Explant thymus organ culture (Paper VI) ... 39
Ultrasensitive fluorescence in situ hybridization (UFISH) (Paper VI) 39
Statistical analysis .. 39
RESULTS .. 40
HAART normalizes immune activation in lymphoid tissue 40
The effect of HAART on T cell subsets ... 40
HIV-1 infection is associated with a persistent hyperactivation in lymphoid tissue .. 41
Cytolytic effector molecule expression in CD8+ T cells on HIV-1 infected lymphoid tissue .. 42
Potential mechanism for downregulation of perforin expression during HIV-1 infection ... 43
Regulation of HIV-1 replication in the placenta 46
Quantification of cytokines and Leukemia Inhibitory Factor (LIF) in placenta from transmitting and non-transmitting women (Paper VI) 48
DISCUSSION ... 51
The cytokine and chemokine expression profile before and after HAART in HIV-1 infected lymphoid tissue .. 51
Impaired expression of cytolytic effector molecules expressed in CD8+ T cells in HIV-1 infected lymphoid tissue 54
Downregulation of perforin expression in vitro 56
A possible mechanism associated with HIV-1 vertical transmission 59
Characterization of a novel HIV-1 inhibitory factor 60
CONCLUDING REMARKS ... 62
ACKNOWLEDGEMENTS .. 64
REFERENCES .. 66
SELECTED COLOR FIGURES TO PAPERS I, III, V and VI 94
ABBREVIATIONS

AIDS Acquired Immune Deficiency Syndrome
Ab antibody
bp base pairs
BSS Earl’s balanced salt solution
CCR CC chemokine receptor
CD cluster of differentiation
CMV Cytomegalovirus
CTL Cytotoxic T Lymphocyte
CXC CXC chemokine receptor
DC Dendritic cell
DC-SIGN DC-specific ICAM-3 grabbing nonintegrin
DNA deoxyribonucleic acid
env envelope gene
EBV Epstein Barr virus
ER Endoplasmatic reticulum
FAM 5-carboxyfluorescien
Fas-L Fas ligand
FDC Follicular Dendritic cell
FITC fluorescein isothiocyanate
gag group associated gene
GM-CSF Granulocyte macrophage-colony stimulating factor
grA granzyme A
HIV-1 Human immunodeficiency virus type 1
HAART Highly Active Anti-Retroviral Therapy
HLA Human leukocyte antigen
IFN Interferon
Ig Immunoglobulin
IL Interleukin
I-κB Inhibitory kappa B
LC Langerhans cell
LT Lymphoid tissue
LTR Long terminal repeats
mAb monoclonal antibody
M-CFS Macrophage-colony stimulating factor
MDM Monocyte-derived macrophages
MHC Major Histocompatibility Complex
MIP Macrophage inflammatory protein
Nef negative regulatory element
NF-κB nuclear factor kappa B
NK Natural killer cell
PE phycoeryterin
PBMCs peripheral blood mononuclear cells
PBS phosphate buffered saline
PCR polymerase chain reaction
pol polymerase gene
RANTES Regulated on T cell activation, normal T cell expressed and secreted
RT Reverse transcriptase
Rev regulator of virion proteins
RNA ribonucleic acid
SEA Staphylococcal Enterotoxin A
SIV Simian immunodeficiency virus
TGF Transforming growth factor
TNF Tumor necrosis factor
Tat Transactivator
TAMRA 5′-carboxy-tetramethylrodamine
TCR T cell receptor
Vif virion infectivity factor
Vpr viral protein R
Vpu viral protein U
WHO World Health Organizations
INTRODUCTION

Acquired Immune Deficiency Syndrome (AIDS) was first reported in 1981 with the description of *Pneumocystis carinii* pneumonia in five homosexual men in Los Angeles (Gottlieb et al., 1981; Masur et al., 1981; Siegal et al., 1981). Subsequently, Human Immunodeficiency Virus type 1 (HIV-1) was first isolated from an infected individual in Europe at Pasteur Institute in Paris in 1983 (Barre-Sinoussi et al., 1983) and later in USA as the causative agent of AIDS (Gallo et al., 1984). This virus was found to gradually destroy the immune system by depletion of CD4 positive T lymphocytes.

The global epidemic

In the end of 2000 (report, 2000), the Joint United Nation Programme on HIV-1/AIDS (UNAIDS) and the World Health Organization (WHO) estimated that over 36,1 million people were living with HIV-1/AIDS and about 21.8 million people had died from AIDS. The incidence of infection is highest in Sub Sahara Africa and rising in low-income countries. Only 0.1% of patients receive anti-AIDS treatment in these countries (report, 1999). The number of children under 15 who have lived or are living with HIV-1 since the start of the epidemic in the late 1970s has reached approximately 4.8 million and 3.6 million of them have already died. The majority is from Sub-Saharan Africa. Epidemiological estimation revealed that about 600 000 infants became infected with HIV-1 during 2000, and more than 90% were children born to HIV-1 infected mothers. Children younger than 15 years of age showed 50% higher risk of dying of HIV-1 opportunistic infections or other HIV-1 related illnesses such as diarrhea and respiratory tract infections (report, 1999).

Since then, there has been an enormous drive to develop vaccines and therapies to prevent the global spread of HIV-1 infection. An understanding of how HIV-1 causes damage to the immune system and circumvents elimination is necessary for the development of vaccine and new therapeutic strategies. Therefore, the study of lymphoid tissue from HIV-1 infected individuals gives us crucial insight into immune response during disease progression. In this thesis, the cytokines, chemokines and cytolytic effector molecule expression in HIV-1 infected lymphoid tissue were studied. In addition, a novel role for a soluble endogenous factor causing inhibition of HIV-1 replication in placental tissue was reported.
The virus

HIV-1 is classified as a human Lentivirus and belongs to the Retroviridae family. It is an enveloped virus and its cell-derived lipid membrane gives a spherical outer shape (Gelderblom et al., 1987). HIV-1 contains two copies of a positive charged single stranded RNA genome, approximately 9.2 kbp in length. The encoded proteins are divided into three classes; gag, pol, and env, which are flanked on both sides by long terminal repeats (LTRs). The gag encodes for the matrix, capsid and nucleocapsid proteins while pol codes for reverse transcriptase (RT), protease and integrase. The env gene encodes the envelope glycoproteins (gp120 and gp41) which are important for virus binding to the target receptors (Dalladellsh et al., 1984; Klatzmann et al., 1984b). In addition to the three structural genes, the HIV-1 provirus contains six additional open reading frames (ORF) which encode for accessory (vpu, vpr, vif, and nef) and regulatory proteins (tat and rev) (Levy, 1993). The Vpu increases the release of HIV-1 from the surface of an infected cell and degrades CD4 in the endoplasmatic reticulum (ER) (Strebel et al., 1988; Willey et al., 1992). The Vpr plays a role in the nuclear localization of viral nucleic acids contained within the preintegration complex and affects cell differentiation (Zhao et al., 1994). It has been reported that the Vif protein plays an important role for proviral DNA synthesis (von Schwedler et al., 1993). The Nef is a 27-kD myristoylated protein that is the first viral protein to accumulate to detectable levels in a cell following HIV-1 infection (Kim et al., 1989). HIV-1 Nef was found to downregulate CD4 (Garcia and Miller, 1992) and MHC class I molecule expression (Schwartz et al., 1996). Tat is a transcriptional transactivator protein that is essential for HIV-1 replication (Ruben et al., 1989). The Rev protein facilitates transport of unspliced and single spliced mRNA from the nucleus to the cytoplasm (Zapp and Green, 1989).

It is generally believed that the HIV-1 virus originates from Africa. In 1959, the first documented HIV-1 seropositive serum sample was collected in central Africa (Nahmias et al., 1986). The identification of the African monkey viruses, i.e. the simian immunodeficiency viruses (SIVs) provided additional evidence that the HIV-1 may originated from Africa (Kanki et al., 1985; Fultz et al., 1986; Murphey-Corb et al., 1986; Tsujimoto et al., 1988). A previous study suggested that certain species of chimpanzee, the *Pan troglodytes troglodytes* might be the common natural reservoir for HIV-1 (Gao et al., 1999). The simian virus that infects chimpanzees (SIVcpz) shows 80% homology to HIV-1 (Peeters et al., 1989).
Natural history of HIV-1 infection

This infectious disease begins with a meeting between virus particles and an unprimed immune system. Clinically, HIV-1 infection can be divided into three phases; acute, chronic and AIDS.

Acute phase

A decrease of CD4+ T cells occurs during acute initial infection (Lang et al., 1989). The CD4 protein is the first molecule (Dalgleish et al., 1984; Klatzmann et al., 1984b; Maddon et al., 1986) to bind HIV-1 through the viral gp120 envelope protein in combination with a chemokine receptors (Steiner et al., 1991). The HIV-1 virus replicates in cells expressing CD4 antigen on their surface. Aside from T cells, other cells including monocytes, macrophages, dendritic cells (DC) (Cameron et al., 1996; Ayehunie et al., 1997) and Langerhans cells (LC) in the epidermis (Ayehunie et al., 1995) are susceptible to HIV-1 infection. Moreover, non-dividing cells, such as follicular dendritic cells (FDC) and brain microglial cells (He et al., 1997), can be targets for virus entry and infection (Klatzmann et al., 1984a; Gartner et al., 1986; Ho et al., 1986; Salahuddin et al., 1986; Patterson and Knight, 1987). Nevertheless, CD4+ T cells seem to be the major target cells (Haase, 1999). The onset of acute viral infection is accompanied with a rise of free virus and viral antigens in blood caused by the production of up to 10^{10} (billion) viral particles per day (Piatak et al., 1993; Ho et al., 1995). Classical clinical symptoms in infected individuals include a brief illness, fever, night sweats, headache and swollen lymph nodes resembling infectious mononucleosis (Cooper et al., 1985; Ho et al., 1985b; Clark et al., 1991; Daar et al., 1991; Henrard et al., 1995; Quinn, 1997; Schacker et al., 1998). In addition, tonsillar enlargement, and splenomegaly are prominent features observed in HIV-1 infected lymphoid tissue (LT) as the earliest clinical descriptions of acute HIV-1 infection (Cooper et al., 1985).

Within a few weeks, the level of virus in the blood declines. This coincides with the development of an immunological response to HIV-1 (Mellors et al., 1996; Mellors et al., 1997). HIV-1 specific cytolytic T lymphocytes (CTLs) appear (Roos et al., 1992; Borrow et al., 1994; Mackewicz et al., 1994) and increase in frequency in the peripheral blood (Koup et al., 1994; Pantaleo et al., 1994; Schmitz et al., 1999). Neutralizing antibodies (Cooper et al., 1988; Cooper and Lacey, 1988; Cooper and Jeffers, 1988; Ariyoshi et al., 1992; Moore et al., 1995) that have a key role of immune responses to most viral infections, appear after onset of the cellular immune response in primary infection (Koup et al., 1994; Pellegrin et al., 1996). Following initial replication in target cells, the virus disseminates via the blood stream into different organs such as brain, spleen and peripheral lymphoid tissue. At this time replication has reached a plateau (steady state). Generation of primary immune activity results in a significant drop in viral load to a more stable viral set point (Mackewicz et al., 1994; Musey et
The quality of innate and adaptive immune activity at the set point may account for differences in viral virulence and disease progression (Reimann et al., 1994; Deacon et al., 1995; Mellors et al., 1996; Mellors et al., 1997; Rosenberg and Walker, 1998; Phair, 1999; Pitcher et al., 1999; Lyles et al., 2000).

Chronic phase

In general, a chronic stage or asymptomatic phase will be established between primary infection and the development of clinical immunodeficiency (AIDS). A majority of infected individuals remain asymptomatic after primary infection but eventually develop immunodeficiency 4-12 years after seroconversion (Lifson et al., 1988; Jason et al., 1989; Munoz et al., 1989; Rutherford et al., 1990). This asymptomatic period is associated with two main pathophysiological characteristics; gradual loss of CD4+ T cells and persistent viral replication in the peripheral lymphoid tissues (Pantaleo et al., 1991; Embretson et al., 1993; Pantaleo et al., 1993b; Haase et al., 1996; Cavert et al., 1997; Chun et al., 1997a; Wong et al., 1997b; Finzi et al., 1999; Furtado et al., 1999; Hockett et al., 1999; Zhang et al., 1999). The number of infected cells in the peripheral lymphoid tissue is correlated with plasma viral load (Pantaleo et al., 1991; Embretson et al., 1993; Pantaleo et al., 1993a; Harris et al., 1997; Hockett et al., 1999). Approximately 5% of infected individuals preserve immune function and normal CD4+ T cell levels for more than a decade and are termed long-term non-progressors (LTNP) (Learmont et al., 1992; Sheppard et al., 1993; Buchbinder et al., 1994; Greenough et al., 1994; Keet et al., 1994; Deacon et al., 1995; Schrager and Fauci, 1995).

There are several factors, which can be involved in disease progression. Viral characteristics were shown to have a critical role in long-term non-progressive infection in some individuals. This was first described by Learmont et al. from patients who were infected with attenuated virus and remained immunologically stable despite a decade of infection (Learmont et al., 1992). Animal studies by Kestler et al. showed that monkeys inoculated with SIV with deletions in the nef gene had no signs of disease and maintained low viral burden along with normal CD4+ T cell counts (Kestler et al., 1991). These studies showed that nef-deleted or HIV-1 isolates with mutant nef could be associated with slow progression or long-term non-progression (Lefrere et al., 1997). Recently, it has been reported that CD4+ T cells acutely infected with nef-deleted virus disappear after exposure to CTL in vitro, in contrast to nef-competent HIV-1 infected cells, which are less efficiently cleared (Collins et al., 1998).

Among genetic host factors, a polymorphism in co-receptors correlated with delayed rate of HIV-1 disease progression. For instance, a mutation in the chemokine receptor gene, CCR5Δ32, has been shown to provide strong protection from infection with
HIV-1 (Dean et al., 1996; Huang et al., 1996; de Roda Husman et al., 1997; Michael et al., 1997a; Michael et al., 1997b; Zimmerman et al., 1997; McDermott et al., 1998; Mummidi et al., 1998). This deletion result in the production of a defective, truncated CCR5 protein, which remained in the cytoplasm of the cells. These cells of infected individuals are resistant to R5- using HIV-1 isolates but remain susceptible to RX4-isolates (Berger et al., 1998). This genetic background is associated with significantly lower HIV-1 RNA plasma levels.

AIDS phase
A rapid decline of CD4⁺ T cells (Connor et al., 1993; de Wolf et al., 1997) and HIV-1 specific CD8⁺ T cells (Champagne et al., 2001) combined with an increasing HIV-1 viral load are correlated with the onset of symptoms and progression to AIDS (Mellors et al., 1996; Ferbas, 1998; Ogg et al., 1998). As the CD4 count falls below 200 cells/μl, opportunistic infections begin to occur. AIDS is associated with opportunistic infections such as Candida albicans, Pneumocystis carinii pneumonia and lung disease caused by Mycobacterium tuberculosis (CDC, 1993; CDC, 1994).

Treatment
The AIDS epidemic has been a constant driving force for the discovery of new substances that inhibit HIV-1 replication. The development of safe antiviral treatment has resulted in significant reduction of mortality and morbidity in HIV-1 infected patients to whom treatment is available.

The first anti-retroviral drug to be approved for treatment of HIV-1 infection, was zidovudine (AZT) in 1987. Zidovudine is a nucleoside analogue with reverse transcriptase inhibitory capacity (NRTI) and the AZT mono-therapy became the standard of HIV-1 therapy for several years. Later the addition of another NRTI drug, lamivudine, combined with AZT, resulted in widespread delay in progression to AIDS and death. However, it was not until the introduction of protease inhibitor (PI) and triple-drug regimens in 1996 that a sufficient anti-retroviral effect was achieved (Gulick et al., 1997). The protease inhibitors were shown to inhibit the late step of viral replication when viral protein precursors need to be cleaved by virus specific protease. As, the HIV-1 RT and protease enzymes are essential for complete viral replication, these enzymes became ideal targets for selective drugs. The development of other drug combinations led to the suppression of HIV-1 replication and HIV-1 RNA to undetectable levels. This sustained reduction in viral replication was shown to improve immune function, delay progression of disease and prolong survival (Autran et al., 1997; Finzi et al., 1997; Palella et al., 1998).
However, despite the successful suppression of HIV-1 replication for many months and years, a long-lived reservoir of infected cells persist. This provides the need for continuation of long-term therapy in infected patients (Pomerantz et al., 1990; Finzi et al., 1999; Furtado et al., 1999; Martinez et al., 1999). Estimation of latently infected resting CD4+ T cells suggested that more than 60 years of anti-viral therapy would be required for virus eradication (Siliciano and Siliciano, 2000). Although several studies reported that highly active anti-retroviral therapy (HAART) reduce plasma viral burden to below the level of detection and discontinuation of therapy led to rapid viral rebound in most patients (Chun et al., 1997b; Finzi et al., 1997; Wong et al., 1997b). The development of potent anti-retroviral therapy lead to immune reconstitution and restoration of functional immune responses. Therefore, addition of therapeutic vaccines during effective HAART therapy may be a way to restore HIV-1 immunity. This may allow discontinuation of HAART, which would be an important achievement since a big problem with HAART is the development of severe side effects (Cavert et al., 1997; Perrin and Telenti, 1998).

HIV-1 infected lymphoid tissue

HIV-1 is commonly transmitted through sexual contact and the very early stages of infection establish a persistent infection in LT. Virus is produced and stored at this site and slowly depletes the immune system of CD4+ T cells, setting the stage for AIDS.

In fact, HIV-1 was first isolated from a lymph node (Barre-Sinoussi et al., 1983) and was detected several years later by electron microscopy and immunoperoxidase antigen staining in LTs (Tenner-Racz et al., 1985; Biberfeld et al., 1987). Later, the more sensitive *in situ* hybridization technique for the detection of HIV-1 RNA in tissue provided an important information on the distribution of HIV-1 virus in tissues (Emilie et al., 1990; Fox et al., 1991; Spiegel et al., 1992). The use of quantitative RT-PCR and analysis of viral burden indicated that viral replication was far greater in LT compared to peripheral blood mononuclear cells (PBMC) from the same individual (Pantaleo et al., 1993a).

The predominant route of HIV-1 transmission involves entry across the mucosal associated lymphoid tissue (MALT) or across the genital mucosa during sexual contact (Royce et al., 1997). In 1987, the epidermal LC cells were reported to be first target for HIV-1 infection (Braathen et al., 1987). In addition, studies with rhesus macaques have reported that DCs initially become infected shortly after vaginal inoculation through sexual mucosal transmission of SIV (Spira et al., 1996). These studies showed that the residing DCs or LC cells within epithelial surfaces can be the initial target
cells after mucosal exposure to the virus. These cells express the CD4 molecule on their surfaces, which serve as receptors for viral gp120. Later discoveries revealed that HIV-1 entry into cells also requires chemokine co-receptors (Deng et al., 1996; Dragic et al., 1996; Feng et al., 1996). HIV-1 transmission frequently involves virus strains that use CXCR4 or CCR5, which are the principal coreceptors for the virus. Furthermore, elegant studies (Geijtenbeek et al., 2000a; Geijtenbeek et al., 2000b) have elucidated that the initial events of HIV-1 infection may not require productive infection of the LCs. One recent study showed that a C-type lectin, dendritic cell-specific intracellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN), was abundantly expressed on DCs and suggested to mediate the first contact between HIV-1 and the DCs (Geijtenbeek et al., 2000a; Geijtenbeek et al., 2000b). DC-SIGN may bind the virus particle in the periphery and thereafter carry the virus to regional lymphoid tissues where the fusion of the viral envelope with the CD4+ T helper cell membrane occurs.

Dissemination of HIV-1 virus in lymphoid tissue

Hence HIV-1 may be captured intracellularly by DCs or carried by DC-SIGN to lymph nodes via afferent lymphatics. The fusion of the viral envelope with the T helper cell membrane occurs in regional extrafollicular areas of LTs. There, DCs initiate activation of naïve T cells and promote primary activation (Banchereau and Steinman, 1998). Activated CD4+ T cells are vital for facilitation of the humoral and cellular immune responses against virus infection. The expansion of antigen specific cytokine expressing CD4+ and CD8+ T cells in HIV-1 infection is important for control and elimination of infected cells. During primary infection an extensive HIV-1 replication occurs in HIV-antigen specific CD4+ T cells in gut-associated lymphoid tissue (GALT), which include the tonsils, adenoids and appendix, and other related lymphoid tissue such as lymph nodes and spleen, reaching viral loads 10 to 1000-fold higher than peripheral blood (Pantaleo et al., 1991). More than 90% of CD4+ productively infected T cells are found in lymph nodes during primary infection (Haase, 1999). Later on, a fraction of the productively CD4+ T cells with integrated HIV-1 DNA (Chun et al., 1995) become latently infected memory CD4+ T cells and provide persistent virus in the tissue. However, these latently HIV-1 infected cells may circumvent HIV-1 specific CTL and be a major reservoir for propagation of HIV-1 in tissues (Brodie et al., 2000). In the lymph node, activated CD4+ T cells interact with B cells resulting in proliferation of B cells in follicles. This results in HIV-1 specific antibody responses. Once T cells are activated, they are much more susceptible to HIV-1 infection than resting inactivated T cells (Pantaleo et al., 1993b). *In situ* PCR has shown that the majority of HIV-1 infected cells are CD4+ T cells that contain HIV-1 DNA, found in the follicular mantle of germinal complex (GC) and in the paracortex of lymphoid regions (Embreton et al., 1993). In addition, trapping of viral particles has been detected in FDC in the germinal center of
lymph nodes (Haase et al., 1996). These cells bind immune complexes consisting of virus and HIV-1 specific antibodies, which can explain why high incidences of HIV-1 RNA are usually detected in the germinal center of lymph nodes. In addition, quantitative techniques based on in situ hybridization and in situ image analysis has demonstrated that the majority of viral RNA during acute phase of disease is present on the surfaces of FDCs. These cells may not produce virus but have a remarkable ability to store infectivity of HIV-1 particles as immune complexes with neutralizing antibodies (Heath et al., 1995). Hence the pool of latent FDCs provide another way for virus escape since HAART can not affect this resting reservoir.

Cytokines and HIV-1 infection

Cytokine network

Due to the involvement of several cytokines in the homeostatic regulation of the immune responses and their ability to influence (i.e. induce or suppress) HIV-1 expression, it is of interest to determine the degree and pattern of cytokine expression during disease progression. The mobilization and activation of immune competent cells supported by local cytokine expression may contribute to the propagation of virus replication. Cytokines are small structural proteins or glycoproteins, which have multiple sources, targets and functions. They regulate host defenses against infection and injury in a paracrine and autocrine fashion. Activated T cells and macrophages are major cytokine producers. Based on in vitro and in vivo experimental data, immunoregulatory cytokines can be subdivided into three different groups; Th1 cytokines (IFN-γ, IL-2, TNF-β and IL-15), involved in cellular immune responses and Th2 cytokines (IL-4, IL-5, IL-6, IL-10 and IL-13) responsible for induction of humoral immune responses and the Th0 cytokine (TGF-β). Furthermore, macrophages and DCs are specialized to produce proinflammatory (IL-1α/β, TNF-α, IL-12, IL-18) or anti-inflammatory (IL-1ra, IL-6, IL-10, TGF-β) cytokines. Cytokine produced by Th1 and Th2 phenotypes can regulate the production of each other. It has been shown that the IFN-γ inhibits the production of Th2 type of cytokines (O’Garra and Murphy, 1994) but not of Th1 type. In addition, IL-10 via the effect on antigen-presenting cells, inhibits the production of IL-12, IFN-γ and other cytokines (Fiorentino et al., 1991). Furthermore, the Th1 cytokines inhibit IL-4 effects on B cells. IL-4 is important for antibody maturation (Mosmann et al., 1986) (Figure 1).

Cytokines involved in HIV-1 replication

Cytokines play a major role in enhancement of HIV-1 replication in LT (Chun et al., 1998). The observed increase in cytokine production in HIV-1 infected LT may stimulate viral replication as well as induce adaptive HIV-1 specific immune responses. Expansion
Figure 1. This figure illustrates regulation of Th1 and Th2 type of cytokine mediated immune responses. Activation of antigen presenting cells, such as macrophages result in production of proinflammatory cytokines (TNF-α, IL-1α/β IL-6 and IL-8). In addition, later on these cells produce IL-1ra, IL-10 and TGF-β cytokines which downregulate inflammation. Furthermore, they produce IFN-α that has an inhibitory role on HIV-1 viral replication. IL-12 and IL-18 produced by antigen presenting cells, induce Th1 responses while IL-10, IL-6 and TGF-β induce Th2 type cytokines. The Th1 cytokine producing cells induce macrophage activation and formation of cytotoxic T cells. These cells predominantly eliminate target cells by production and release of perforin, granzymes and Fas-L. In addition, CTLs can inhibit HIV-1 replication by release of soluble factors including chemokines. LIF was recently identified as a novel exogenous inhibitory factor. In contrast to Th1 type of cytokines, the Th2 type of response involves IL-4, IL-5 and IL-13, which regulate B cell activation and immunoglobulin production.
and activation of CD4+ T cells in LTs is dependent on transcription factors, effector molecules, cytokines and co-stimulatory cell surface proteins, including cytokine receptors and adhesion molecules (Crabtree, 1989). Among the cytokines, IL-1α/β, IL-2, IL-3, TNF-α, IL-6 and IL-7 have been shown to stimulate HIV-1 replication in vitro (Rosenberg and Fauci, 1989; Rosenberg and Fauci, 1990; Rosenberg and Fauci, 1991; Biswas et al., 1992; Poli and Fauci, 1992; Chun et al., 1998). In contrast, other cytokines such as IL-4, TGF-β, IFN-γ (Novak et al., 1990; Lazdins et al., 1991; Poli et al., 1991; Rosenberg and Fauci, 1991) may suppress HIV-1 infection.

Among the cytokines, the interferons are a group of proteins and glycoproteins, which have a common property of inhibiting virus replication. IFN-α and IFN-β produced by DCs, lymphocytes and fibroblasts respectively, are able to interfere with viral replication in target cells (Pomerantz and Hirsch, 1987; Ullum et al., 1997; Bot et al., 1998). IFN-α appears at an early stage during virus infection, before the development of cell-mediated and humoral immunity. A loss of IFN-α production has been associated with high HIV-1 RNA levels and AIDS (Ho et al., 1985a; Yamamoto et al., 1986; Koyanagi et al., 1988; Poli et al., 1989; Williams and Colby, 1989; Soumelis et al., 2001). IFN-γ is the hallmark of effector function for the Th1 subsets of T cells that are involved in cell-mediated cytotoxicity (Mosmann and Coffman, 1989). A rise of IFN-γ production was detected in plasma, LTs, PBMCs and cerebrospinal fluid of HIV-1 infected persons (Sonnerborg et al., 1988; Graziosi et al., 1994; Fauci, 1996; Fauci et al., 1996; Appay et al., 2000). However, in more advanced patients, fewer cells produce IFN-γ in response to HIV-1 antigen exposure. The number of antigen specific IFN-γ producing PBMC cells initially increases with HAART therapy (Ullum et al., 1997; Bailar et al., 1999; Huang et al., 2000). The reduced IL-2 production in PBMC has also long been recognized in HIV-1 disease (Fan et al., 1993; Kinter and Fauci, 1996; Klein et al., 1997; Sousa and Victorino, 1998).

Cytokines involved in the immune response to HIV-1 infection

The IL-1α and IL-β are cytokines produced in the early phase of inflammation exerting multiple effect on innate and adaptive immune responses. Over expression of IL1-α and IL-1β contribute to the pathogenesis of many diseases. Both primary HIV-1 infection and the asymptomatic phase are characterised by profound proinflammatory cytokine expression (Andersson et al., 1998; Chun et al., 1998). The increase of proinflammatory cytokines has been detected in PBMC from HIV-1 infected individuals as well as in HIV-1 infected LT (Graziosi et al., 1994; Andersson et al., 1998). Proinflammatory cytokines can initiate signals for maturation and migration of DCs to
the regional lymph nodes and spleen (Barratt-Boyes et al., 1997) and induce HIV-1 replication in latently infected resting CD4⁺ memory T cells (Fauci et al., 1996; Weissman et al., 1996; Moriuchi et al., 2000).

The most crucial cytokine to sway the immune system towards a Th1 profile is IL-12. IL-12 plus IL-18 possess both proinflammatory and immunoregulatory activity. Decreased production of IL-12 has previously been found in PBMCs from HIV-1 infected persons (Chehimi et al., 1994; Benyoucef et al., 1998; Vanham et al., 1999). Moreover, IL-12 and IL-18 facilitate the secretion of IFN-γ which is considered beneficial for its antiviral activity (Miedema et al., 1988; Wu et al., 1993). The observed impairment of HIV-1 antigen specific Th1 responses in PBMC in HIV-1 infection is suggested to be related to a deficient production of IL-12 (Murray et al., 1984; Bailar et al., 1999; Hirsch et al., 1999; Torre et al., 1999). In addition, the suppression of IL-12 production by IL-10 from monocyte-derived macrophages (MDM) in HIV-1-infected patients demonstrates another possibility for impaired induction of Th1 and CTL responses (Chouquet et al., 1996). The interaction between CD40 on DCs and CD40L on CD4⁺ T cells with subsequent induction of IL-12/IFN-γ production is thought to be important in both HIV-1 specific CD8 cytotoxicity and humoral responses (Trinchieri, 1997). Thus, reduced CD40L expression during HIV-1 infection may have a strong impact on T cell dependent IL-12 production, critical for the establishment of a Th1 response (Ma and Montaner, 2000). Another important mediator of the inflammatory response is TNF-α (Beutler, 1995) identified as an important factor in HIV-1 disease pathogenesis. TNF-α can accelerate HIV-1 replication in vitro (Matsuyama et al., 1989) and stimulate the release of other cytokines (Sherry and Cerami, 1988; Lenardo and Baltimore, 1989). A correlation between enhanced TNF-α production and HIV-1 replication has been reported in several studies (Hober et al., 1989; Hober et al., 1992; Kong et al., 1996; Alonso et al., 1997; Lee et al., 1997; Bergamini et al., 1999; Lore et al., 1999). The molecular mechanism of TNF-α influence on HIV-1 replication was identified as activation of the cellular transcription factor NF-κB in both T cells (Osborn et al., 1989) and macrophages (Griffin et al., 1989). Upon activation, NF-κB disassociates from an inhibitory molecule (I-κB) which allows migration of NF-κB to the nucleus. Binding sites for NF-κB also exist within long-term repeat (LTR) of the transcription site region of the HIV-1 genome. This binding triggers or potentiates HIV-1-expression (Siebenlist et al., 1994). Indeed, TNF-α, together with IL-2 and IL-6, were shown to support viral replication in vitro in PBMC of HIV-1 infected individuals and in latently infected CD4⁺ T cells (Chun et al., 1998).

A switch from HIV-1 antigen induced Th1 type of cytokine expression to IL-4 and IL-10 have been shown to be associated with HIV-1 disease progression in some studies
(Zagury et al., 1998) but decreases in others (Graziosi et al., 1994; Maggi et al., 1994). IL-4 and IL-10 together with IL-5 and IL-13 can enhance humoral immunity, inhibit cell-mediated immunity, and result in a protective humoral immunity for pathogens removed in mucosal sites. Progression of HIV-1 infection has been associated with imbalances of cytokine production leading to a switch from a Th1 to a Th2 profile (Clerici et al., 1994; Wang et al., 1994; Shearer and Clerici, 1996; Doherty et al., 1997). In the late stage of disease, HIV-1 infected individuals are characterized by increased HIV-1 antigen induction of Th2 cytokines concomitant loss of IL-2 and IFN-γ production in PBMCs. The decreased expression of in vitro induced IL-2 production, has been linked to the possible reduced renewal capacity of the T cells (Fleury et al., 1998) as well as to the increased susceptibility to apoptosis (Adachi et al., 1996). IL-2 plus IL-15 has an important role for CD8 T cell growth and survival. Support for protective role of cytokines was further demonstrated in murine retrovirus–induced AIDS-like syndrome (Wang et al., 1994; Doherty et al., 1997). The presence of in vitro induced HIV-1 specific Th1 cytokines expression may be correlated to prevention of primary HIV-1 infection in HIV-1 seronegative individuals exposed to HIV-1 (Clerici and Shearer, 1993; Clerici and Shearer, 1994). Thus, both in vivo and in vitro data indicates that the HIV-1 infection is associated with imbalance of inflammatory and immunoregulatory cytokines. In vivo cytokines are mainly produced in the lymphoid compartments. Therefore, the investigation of cytokine dysregulation in LT may shed further insights into the immunopathogenic mechanism operating in HIV-1 infection.

Chemokine receptors and their role in HIV-1 infection

As mentioned before, HIV-1 uses the CD4 molecule as the main receptor for infection of the cells. In addition to CD4, HIV-1 requires a co-receptor for entry into target cells. These co-receptors were shown to belong to the chemokine receptor family. Chemokine receptors are large molecule with seven transmembrane receptors (7-TMR) and are members of the G protein-coupled receptor family.

In 1995, the discovery of an inhibitory effect on some viral strains by the chemokines led to identification of chemokine receptors as co-receptors for HIV-1 (Cocchi et al., 1995). This led to the cloning of a gene that encodes a chemokine receptor-like protein (Feng et al., 1996). This protein when expressed on non-human cell lines together with CD4+ T cells could allow not only the binding of Tropic viruses but also their envelope fusion. This molecule was termed “fusin” and was later renamed CXCR4. This phenotype was originally observed with isolates that had been adapted in the laboratory to replicate in T cell lines and was subsequently observed with some clinical isolates. Viruses that infected activated T cells or transformed T cell lines, were
designated T tropic (syncytium-inducing or X4-using) isolates and have been isolated from AIDS individuals (Schuitemaker et al., 1992; Connor et al., 1997). In general HIV-1 X4-using isolate uses the α-chemokine receptor CXCR4 as the major co-receptor.

The chemokines, RANTES (Schall et al., 1988), macrophage inflammatory protein-1α (MIP-1α) (Sherry et al., 1988), and MIP-1β (Sherry et al., 1988) were, however, shown bind to an additional co-receptor (Samson et al., 1996). The latter co-receptor called CCR5, together with CD4 was identified as a major receptor for macrophage tropic strains (Alkhatib et al., 1996; Choe et al., 1996). The HIV-1 strains that infected primary macrophages more efficiently than T cell lines; were designated M tropic (nonsyncytium-inducing, R5-using). HIV-1 R5-isolates use the β-chemokine receptor CCR5 as their co-receptor. It was determined that R5 viruses predominate in most individuals shortly after infection or during asymptomatic phase (Zhu et al., 1993; van’t Wout et al., 1994).

CCR5 and CXCR4 are both expressed on known cell and tissue targets of HIV-1, consistent with roles in disease transmission and progression. In particular, CCR5 expression has been documented on cells that may be important targets in the establishment of initial infection, including CD4+ T cells (Raport et al., 1996; Bleul et al., 1997; Wu et al., 1997), monocyte/macrophages (Combadiere et al., 1996; Rottman et al., 1997; Zhang et al., 1998), DCs (Granelli-Piperno et al., 1996; Ayehunie et al., 1997; Rubbert et al., 1998), LC cells (Dittmar et al., 1997; Zaitseva et al., 1997), and the mucosa of rectum and colon (Zhang et al., 1998) as well as vagina and cervix (Zaitseva et al., 1997; Patterson et al., 1998; Zhang et al., 1998). CXCR4 is expressed in many of the same cells and tissues as CCR5, however, at lower levels in the genital tract (Granelli-Piperno et al., 1996; Raport et al., 1996; Ayehunie et al., 1997; Bleul et al., 1997; Dittmar et al., 1997; Rottman et al., 1997; Zaitseva et al., 1997; Patterson et al., 1998; Zhang et al., 1998). Several reports suggest an important role for CCR5 during initial viral transmission (van’t Wout et al., 1994) and for CXCR4 and/or possibly other coreceptors in late stages of disease progression.

In addition to CCR5 and CXCR4, other chemokine receptors have been identified to act as viral entry receptors for HIV-1, HIV-2 and SIV (Choe et al., 1996). However, the majority of primary viral strains, from various parts of the world, were shown to use CXCR4 or CCR5 as co-receptors (Alkhatib et al., 1996; Choe et al., 1996; Deng et al., 1996; Dragic et al., 1996; Feng et al., 1996; Oberlin et al., 1996; Simmons et al., 1996; Zhang et al., 1996; Bjorndal et al., 1997; Scarlatti et al., 1997).
Soluble factors inhibiting HIV-1 infection

HIV-1 protection mediated by CD8+ T cells is not only due to their ability to lyse the virally infected cells by the granule exocytosis pathway or by death domain-containing receptors (Henkart, 1994). The importance of soluble molecules released from CD8+ T cells to suppress viral replication has been suggested previously (Walker et al., 1986; Brinchmann et al., 1990; Mackewicz et al., 1991). The secretion of soluble factors including cytokines such as IFN-γ, CD8 derived antiviral factor (CAF), IL-16 (Zhou et al., 1997), chemokines (RANTES, SDF-1 and MIP-1α/β) (Cocchi et al., 1995) were shown to interfere with HIV-1 replication (Levy et al., 1996).

Chemokines, initially called “chemotactic cytokines”, are small soluble proteins (8-14 kDa) and usually containing four conserved cystein residues. They are secreted by activated leukocytes and stromal cells, including endothelial cells upon inflammatory stimuli (Oppenheim, 1993; Baggiolini et al., 1994; Schall and Bacon, 1994; Rollins, 1997). Chemokines are involved in chemotaxis, activation of integrins and adhesion, lymphocytes and DCs trafficking. They play an important role in inflammation and immune responses (Baggiolini, 1998; Luster, 1998; Cyster, 1999; Locati and Murphy, 1999). The CC or β-chemokines represent the largest group and generally attract monocytes, lymphocytes, basophils and eosinphilus but not neutrophils. As mentioned before, RANTES, MIP-1α/β produced by CD8+ T cells suppress HIV-1 replication in PBMCs and inhibit entry of macrophage tropic (R5) but not T cell tropic (X4) HIV-1 infection *in vitro* (Alkhatib et al., 1996; Choe et al., 1996; Dragic et al., 1996; Dolei et al., 1998).

Stromal cell derived factor-1 (SDF-1) was shown to have an important role in B-cell development (Bleul et al., 1996; Nagasawa et al., 1996; Oberlin et al., 1996). The CXC chemokine SDF-1 (Berson et al., 1996; Feng et al., 1996), a ligand for CXCRC4, inhibits HIV-1 infection in cells expressing CXCRC4 and CD4. Previously a novel human CC chemokine, monocyte-derived chemokine (MDC), was identified (Godiska et al., 1997). MDC is produced by macrophages and DCs and is chemotactic for monocytes, monocyte-derived dendritic cells and IL-2 activated NK cells. MDC suppressed infection of CD8-depleted peripheral blood cells by a broad panel of R5- and R-4 using HIV-1 isolates (Pal et al., 1997).

Chemokines were shown to mediate blocking of HIV-1 entry via neutralization of different chemokine receptors (Brandt et al., 2002). The complex of viral gp120 envelope and CD4 (Dalgleish et al., 1984; Klatzmann et al., 1984b) on the host cell surface, binds to co-receptors (Wu et al., 1996), which in turn, expose the N-terminal
fusogenic sequence of gp41. Chemokines disrupt this process by inducing co-receptor internalization into endosomes and prevent the formation of gp120-CD4 complex. However, in contrast to their HIV-1 suppressive activities, certain chemokines have also been shown to exert enhancement of viral replication (Schmidtmaierova et al., 1996; Dolei et al., 1998; Kelly et al., 1998; Kinter et al., 1998; Gordon et al., 1999).

Among the cytokines, IFN-γ, IL-2, IL-4, IL-10, M-CSF and GM-CSF have been reported to modulate CCR5 and CXCR4 expression in primary HIV-1 infected monocytes or MDM (Kutza et al., 1998; Wang et al., 1998). CCR3, CCR8 and CXCR4 are preferentially expressed on Th2 cells while CCR5 is more abundant on the Th1 cell surface of Th1 specific T cells (Sallusto et al., 1997; Bonecchi et al., 1998; Sallusto et al., 1998).

CAF (Mackewicz et al., 1994) is secreted from CD8+ T cells of HIV-1-infected patients. The CAF-associated antiviral activities have been reported to correlate with delayed disease progression in HIV-1 infected patients that control viral replication in a MHC class I unrestricted way (Walker et al., 1991). CAF inhibits HIV-1 RNA transcription (Mackewicz et al., 1995) via STAT1 activation, leading to interferon regulatory-1 (IRF-1) induction and inhibition of gene expression regulated by the HIV-1 LTR (Chang et al., 2002). However, viral entry, reverse transcription and pro-viral integration are unaffected by CAF. Furthermore, it inhibits the replication of HIV-1 strains that use CXCR4 and not CCR5 for entry. IL-16 secreted by activated CD8+ T cells was also shown to inhibit HIV-1 and SIV replication in infected CD4+ T cells, monocytes and eosinophils (Maciaszek et al., 1997). The IL-16-mediated inhibition of HIV-1 was not at the level of viral entry or reverse transcription, but at messenger RNA expression (Zhou et al., 1997).

HIV-1 specific cytotoxic T cell responses

CTLs are major effector cells in most viral infections (Yap et al., 1978; Askonas and Taylor, 1987; Carmichael et al., 1993). Presentation of viral proteins to CD8+ CTL generally requires synthesis of antigens within the cell that results in binding of peptides (8-10 amino acids) (Townsend et al., 1985; Falk et al., 1990) to MHC class I molecule peptide-binding cleft (Zinkernagel and Doherty, 1975; Bjorkman et al., 1987; Townsend and Bodmer, 1989). Most viruses that establish persistent infection have evolved mechanisms to avoid the immune response such as escaping MHC class I restricted CD8+ T cells (McLaughlin-Taylor et al., 1994; Mackewicz et al., 1995; Elliott et al., 1997; Silins et al., 1997). For instance, herpes simplex virus (HSV) establishes resistance to CTL recognition via a cytosolic HSV protein, which inhibits peptide transport from
cytosol into ER. This result in prevention of the peptide loading of MHC class I molecules for presentation to CD8+ T cells (York et al., 1994). Similarly, human cytomegalovirus (HCMV) has evolved strategies to avoid recognition of CTLs. For example, CMV downregulates HLA-A and -B expression on the surface of infected cells (Ploegh, 1998). Furthermore, CMV interferes with MHC class I pathway using genes from the unique short (US) region of CMV such as US6 that prevents peptide loading of the MHC class I molecules by inhibiting TAP-mediated peptide translocation into the ER (Park et al., 2002). In HIV-1 infection, the Nef protein downregulates MHC class A and B, which impairs the HIV-1 specific CD8+ T cells from identification of infected cells (Cohen et al., 1999).

HIV-1 specific CD8+ T cell mediated cytotoxicity is commonly found in high numbers during the asymptomatic phase of infection (Yasutomi et al., 1993; Reimann et al., 1994) and deteriorate during disease progression to AIDS (Hoffenbach et al., 1989; Pantaleo et al., 1990; Carmichael et al., 1993; Klein et al., 1995). Moreover, circulating antiviral CTLs have declined when opportunistic infections begin (Hoffenbach et al., 1989) rendering them incapable of eliminating virus-producing cells (Goulder et al., 1997; Pantaleo et al., 1997; Soudeyns and Pantaleo, 1997). Virus specific CTLs were shown to suppress HIV-1 replication in vitro by direct cytotoxicity (Walker et al., 1987; Cocchi et al., 1995). HIV-1 specific CTL responses have been observed as early as a few days from onset of symptomatic acute phase before neutralizing antibody responses could be detected (Koup et al., 1994; Pellegrin et al., 1996). The appearance of CTLs seems to be concomitant with decreasing viremia in infected patients. Studies have showed that after approximately 4-7 days of infection, CTLs appear and reduce viral infected cells in blood and lymph nodes of SIV-infected rhesus monkeys (Yasutomi et al., 1993; Reimann et al., 1994).

The first HIV-1 specific CTLs were identified by limiting dilution assay which revealed HIV-1 specific memory T cells (Koup et al., 1991; Carmichael et al., 1993; Klein et al., 1995). The use of tetramer staining has indicated a high frequency of circulating CD8+ T cells specific for immunodominant HIV epitopes (Moss et al., 1995; Altman et al., 1996; Sykulev et al., 1996; Borrow et al., 1997; Collins et al., 1998). However, despite high frequencies of HIV-1 specific precursor CTLs and the existence of soluble factors with suppressive function, the question arises as to why these cells cannot provide better elimination of infected cells.

There are several proposal for the escape routes of CTLs. Phenotypic analysis suggests that HIV-1 specific CD8+ T cells have not been fully differentiated into mature effector cells (Andersson et al., 1999; Appay et al., 2000; Champagne et al., 2001). Mice infected with lymphocytic choriomeningitis virus (LCMV) have shown overwhelming virus infection resulting in exhaustion of the antiviral CTL response (Moskophidis et
Similarly, massive antigenic stimulation after HIV-1 infection can also be responsible for HIV-1 specific CTL exhaustion (McMichael and Rowland-Jones, 2001). CD4+ T cells are important to maintain effective antiviral CD8+ CTLs. The loss of HIV-1 specific CD4+ T cell counts may alter CD8+ T cell maturation and function and subsequently reduce HIV-1 specific antiviral CTL responses. The CD4+ T cells secrete either IL-2 or IL-15, important growth factors for CD8 cell survival or express molecules whose ligation is directly or indirectly required for CTL differentiation. For example, ligation of CD40L on CD4 T cells activates DCs to provide signals for development of CD8+ CTLs (Bennett et al., 1998; Borrow et al., 1998; Schoenberger et al., 1998). In addition, MDM from HIV-1 infected individual were shown to produce less IL-12 and more IL-10 (Choungnet et al., 1996). Low IL-12 expression combined with disruption of CD40/CD40L interaction may generate CTL dysfunction. Moreover, the acquisition of escape mutations is another strategy employed by virus to avoid recognition by CTLs (Lieberman et al., 2001; McMichael and Rowland-Jones, 2001). However, despite well-controlled viral replication after HAART (Cavert et al., 1997; Gulick et al., 1997; Hammer et al., 1997; Wong et al., 1997a), antiviral HIV-1 specific CTLs fail to provide lifelong protection in the vast majority of patients (Appay et al., 2002). CTLs use two principle mechanisms for killing of target cells: granule exocytosis and Fas/Fas-L pathway (Figure 2).

Granule exocytosis pathway

One important mechanism is the granule-exocytosis pathway. The secretory lysosomes of CTLs (Henkart, 1994) contain a pore forming molecule, called perforin, and a collection of serine proteases termed granzymes that together cause cell death (Smyth and Trapani, 1995). This granule-exocytosis pathway, critical for the immune defense against most viral infections, is dependent on the presence of perforin (Kagi et al., 1995) and plays a role in both innate (NK-cells) and adaptive defense (CTL) against pathogens (Tschopp and Nabholz, 1990). The Ca2+ dependent perforin-mediated pathway is antigen specific, and therefore only targets cells displaying specific antigen bound to MHC class I (Podack et al., 1985; Hayes et al., 1989; Heusel et al., 1994). Mice genetically deficient in perforin are characterized by increased susceptibility to viral infections such as LCMV. They also display defective allograft rejection (Kagi et al., 1994) and reduced surveillance against tumors (van den Broek et al., 1996) as well as absence of NK cell cytolytic function (Kagi et al., 1994). Perforin deficiency has also been identified in patients characterized by a major immune dysregulation called familial hemophagocytic lymphohistiocytosis (FHL), that invariably leads to premature death (Stepp et al., 1999). The importance of perforin-mediated pathway in the clearance of HIV-1 infected cells has also been reported. This was shown by lysis of HIV-1 infected primary T cells via preforin-dependent granule mediated pathway (Shankar et al., 1998). The synergistic role of perforin and granzymes is essential for
Figure 2. This figure illustrates mechanisms for elimination of HIV-1 infected cells.

1. The granule exocytosis pathway results in a rapid release of a pore forming protein, perforin and granzymes into the space between the effector and the target cell. The perforin action is calcium dependent and allows perforin to undergo conformational changes. Perforin inserts into the target membrane, oligomerizes and forms pores. Granzymes can thereafter enter directly through the perforin pores. After entrance to the target cells, the granzymes initiate either caspase-dependent or caspase-independent death pathways resulting in DNA fragmentation and cell death. 2. The Fas and Fas-L pathway utilizes trimer form of Fas-L expressed on the surface of the effector cell to crosslink Fas on the target cell. This pathway is also initiated by TCR antigen recognition, which results in Fas-L mRNA expression and *de novo* synthesis of the trimeric Fas-L membrane protein in the endoplasmic reticulum. This protein can be transported to the cell membrane either with the granules, where it can be released via vesicles or with subsequent TCR stimulus to the plasma membrane via vesicles. Trimeric surface Fas-L crosslinks Fas on the target cell, thereby triggering caspase activation via Fas-associated death domain protein (FADD) and caspase-8. The soluble form of Fas-L, a new alternative splicing of Fas-L, can block cell associated Fas-L mediated apoptotic process.
the exocytosis-mediated lysis of the target cells (Shi et al., 1997). Granzymes are structurally, functionally and genetically related to other hematopoietic serine proteinases (Smyth and Trapani, 1995). Granzyme expression is restricted to activated T cells, γδ T cells and Natural killer cells (NK-cells) (Masson and Tschopp, 1985; Garcia-Sanz et al., 1987; Ebnet et al., 1991). Most CD8+ T cells express different types of granzymes that generate similar activation of caspase mediated cell death (Trapani et al., 1999).

Fas and Fas-Ligand pathway

Another pathway for induction of apoptosis involves engagement of death domain-containing receptor Fas (CD95) with the Fas ligand (FasL) on the effector cells (Nagata, 1996). Upon binding Fas multimerizes, resulting in recruitment of Fas-associated death domain protein (FADD) and triggering of the caspase cascade (Medema et al., 1997). This allows the death signal to be transduced to the interior of the target cell (Lowin et al., 1994). During HIV-1 infection there is extensive programmed cell death that probably occurs in both infected and uninfected cells (Gougeon et al., 2000). Much of this apoptosis is mediated by Fas-FasL and cytokine interactions. The HIV-1 protein Tat and gp120 have been shown to induce Fas expression on CD4+ T cells in vitro and an elevation of Fas expression has been reported on CD4+ T cells in HIV-1-infected individuals (Banda et al., 1992; Oyaizu et al., 1994; Katsikis et al., 1995; Westendorp et al., 1995). In addition, the Nef protein is involved in the upregulation of Fas-L on target cells (Xu et al., 1999). Nef disrupts the process of cell death both by protecting the infected cells from apoptosis (Wolf et al., 2001) and by killing of surrounding cells that might seek to destroy by stimulating apoptosis (Geleziunas et al., 2001). Furthermore, the intracellular Nef protein was shown to increase the availability of the anti-apoptotic Bcl-2 protein resulting in host cell survival and increased viral replication (Wolf et al., 2001).

HIV-1 infection in children

The first child with HIV-1 infection was described in early 80-ies. Disease progression differs considerably among HIV-1 infected children (Scott et al., 1989; Tovo et al., 1992). At birth, few children have signs of infection, but by one year 80-90% will manifest some symptoms of infection. Approximately 20% of vertically HIV-1 infected infants develop AIDS within the first months of life; the remainder show slower disease progression (De Rossi et al., 1996). One-third of the children (30%) have no or mild symptoms of disease by the age of 6 years (Tovo et al., 1992). The explanation for differences in disease progression in HIV-1 infected children is still controversial. In 1996, a collaborative study discussed that viral factors, host immune defense, timing
of transmission, viral load and host genetic factors might be involved in transmission and disease progression. A correlation between CD4\(^+\) count and an increased number of HIV-1 specific cytotoxic T cell precursor cells was found in infected infants with slow disease progression (Martin et al., 1996).

Vertical transmission from mother to child

Vertical transmissions of HIV-1 occur in approximately 8 to 39% of pregnancies, in the absence of antiviral treatment (Ryder et al., 1989). The risk of mother- to child transmission has decreased in European countries and US to less than 2%, due to broad usage of anti-retroviral therapy during pregnancy. Transmission rates are still higher in African and low-income countries where this care is not always available. Transmission from mother to child can occur *in utero* (Backe et al., 1992), at the time of delivery (Sprecher et al., 1986) and after birth (Jovaisas et al., 1985). Approximately 10% of all perinatally infected children become infected in early pregnancy (Brossard et al., 1995).

Numerous factors have been proposed to influence maternal–fetal transmission. Factors associated with vertical transmission can be divided into maternal factors such as maternal viral load (Weiser et al., 1994; Garcia et al., 1999; Shaffer et al., 1999), maternal neutralizing antibodies (St Louis et al., 1993; Khouri et al., 1995; Ugen et al., 1997) or maternal HIV-1 specific CTL activity (Jin et al., 1998). Furthermore, maternal placenta interface factors, such as Fas-L (Menu et al., 1989; Hunt et al., 1997; Uckan et al., 1997) or tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 L expression (Phillips et al., 1999), chorionamnionitis (Ladner et al., 1998; Wabwire-Mangen et al., 1999) or HIV-1 suppressive activity (Bourinbaia and Lee-Huang, 1995; Lunardi-Iskandar et al., 1998) all have an important influence on the efficacy of transmission.

Placental tissue

The placenta is a fetal organ with a fetal and a maternal side. The fetal portion consists of chorion, and the maternal portion of the decidua basalis. The chorionic plate divides into primary, secondary and tertiary or chorionic villi. The decidua basal forms a compact layer called the basal plate that is the maternal component of the placenta. This organ is a barrier between maternal and fetal exchanges of products across the placental barrier. The fetal blood arrives through the two branches that supply chorionic villi and then return to the fetus via the umbilical vein. The maternal blood crosses the basal plate permitting exchanges of oxygen and metabolites between maternal and foetal blood. Subsequently, the maternal blood is drained via maternal venous system. Chorionic villi have a simple structure and are arranged as a double layer of trophoblasts.
Figure 3. This illustration shows a schematic view of a cut section of a chorionic villus corresponding to the placental barrier.

The placental macrophages (Hofbauer cells), lymphocytes fibroblasts and fetal capillaries are scattered within layers of trophoblasts. The inner layer is made up of cuboidal cells called cytotrophoblasts, which generate and maintain the outer layer. The outer layer of trophoblastic cells is termed syncytiotrophoblasts and is a continuous multinucleated epithelium. This layer has a direct contact with maternal blood. The placental barrier consist of two layers of trophoblasts, stroma, chorionic villous and epithelium of the fetal villous vessel. The thickness and the total surface area are of great importance in the maternal-fetal exchange (Cunningham et al., 1993) (Figure 3).

The placental size is generally normal in HIV-1 infected pregnant women as observed by microscopic examination (Jauniaux et al., 1988). The only histopathological abnormality has been found in placenta of HIV-1 infected mothers, an acute inflammatory process termed, Chorioamnionitis (Jauniaux et al., 1988; Schwartz et al., 2000). In other viral infections such as cytomegalovirus and rubella virus, the virus reaches to the placenta from the maternal blood (transplacental) and causes inflammation of the placental villi. The structural disruptions in the syncytiotrophoblasts
or other mechanical brakes in the placenta barrier have been proposed for transplacental passage of HIV-1 or other infectious agents (Leach et al., 1996).

The role of co-receptor expression for vertical transmission

It seems that R5-using isolate variants initiate HIV-1 infection after sexual, parenteral and vertical transmission (van’t Wout et al., 1994). Numerous studies comparing maternal HIV-1 isolates to those transmitted to their children reveal transmission of a selected population of HIV-1 isolates (Scarlatti et al., 1993; Briant et al., 1995; Menu et al., 1999). The differences in host cell preference can be attributed to the differing ability of HIV-1 to use alternative co-receptors. Based on several experiments, investigators speculate that a preferential selection of R5-using viruses occurs during viral transmission. Several studies have compared maternal HIV-1 isolates to those transmitted to their children (Scarlatti et al., 1993; Briant et al., 1995; Ugen et al., 1997). However, all studies agree that some form of selection occurs during vertical transmission. In general, HIV-1 virus penetrates the trophoblast layer in placenta and encounters cells expressing HIV-1 co-receptors such as lymphocytes and Hofbaur cells (macrophage-like cells). Placental macrophages support HIV-1 replication of laboratory strains of both R5- and R4-using isolates (Lewis et al., 1990; McGann et al., 1994).

The role of strain selection in vertical transmission of HIV-1 across the placenta during pregnancy is highly relevant for disease progression. Moreover, placental cytokines may drive chemokine receptor expression to protect against transmission by selecting for isolates demonstrated in numerous sequencing studies as less likely to be transmitted. Several studies of cytokine expression in the placenta have revealed production of a variety of type 1, type 2 and proinflammatory cytokines (Choung et al., 1996; Marzi et al., 1996; Reuben et al., 1996; Deneys and De Bruyere, 1997; Lee et al., 1997; Piccini et al., 1998). The cytokine milieu of the placenta and the hormonal-cytokine network at the maternal-fetal interface has a crucial role in preventing fetal allograph rejection and supporting implantation. Thus, the association of cytokine expression in the placental milieu to viral transmission selection may indicate additional factors involved in HIV-1 vertical transmission.
AIMS OF THIS STUDY

The overall purpose of this study was to investigate immunological responses in HIV-1 infected lymphoid tissue. An understanding of how HIV-1 generates damage to the immune system and circumvents elimination is vital for the development of vaccine and new therapeutic strategies. This formed the aims of the current investigation:

To evaluate immune activation within HIV-1 infected lymphoid tissue before and after introduction of highly active anti-retroviral therapy (HAART).

To evaluate the CD8+ T cell-mediated cytolytic effector molecule expression of perforin and granzyme A, in lymphoid tissue and blood in chronically HIV-1 infected patients.

To investigate the molecular mechanism involved in HIV-1-mediated down-regulation of perforin in vitro.

To quantify CCR5 and CXCR4 expression as well as local cytokine production in placenta tissue from HIV-1 transmitting and non-transmitting women.

To characterize a novel HIV-1 suppressive molecule, which may be involved in inhibition of HIV-1 replication in placental tissue.
MATERIALS AND METHODS

Ethical approval of study cohort

All studies have been examined and approved by the Ethic Committee of Karolinska Institutet. The HIV-1 seronegative biopsies were obtained after institutional review board approval from Huddinge University Hospital. The macaque studies were undertaken at the California Regional Primate Research Center in Davis, California. All animals were maintained in accordance with NIH guidelines and appropriate approvals of the local Animal Care and Use Committees were obtained.

Study participants

Paper I and II

Three HIV-1 seropositive asymptomatic anti-retroviral treatment naïve individuals were recruited for this study. The CD4+ blood counts were greater than 400 × 10^6 cells/L blood. Biopsies were obtained prior to and 4, 12 and 56 weeks after therapy with zidovudine, lamivudine (3TC) and indinavir. The mean HIV-1 RNA level in plasma was 11300 copies/ml (mean value) before HAART and reduced to lower detection limit (<50 copies/ml) after therapy (Roche, Nutley, NJ).

Paper III

Cryopreserved lymph nodes and tonsil biopsies were obtained from 16 HIV-1 infected individuals without anti-retroviral treatment. Plasma HIV-1 viremia was measured by branch-DNA assay (Chiron, Emeryville, CA).

Paper IV

Cryopreserved lymph nodes and spleen were obtained from two macaques infected with a nef deleted SIV-EGFPAΔnef (1×10^4.5 TCID50) virus and two macaques were inoculated with wild-type SIVmac251 (1×10^5 TCID50).

Paper V and VI

Twenty-three HIV-1 infected women were enrolled; sixteen samples were collected from non-transmitting women (TNT) and seven from transmitting women (TT). Placenta samples were obtained from women at the time of normal vaginal delivery after consent. Transmitting women were matched with TNT women for maternal CD4 count, maternal viral load, placenta gestational age, and age. All women were off anti-retroviral therapy during pregnancy. Only women with the w/w CCR5 genotype were selected for this study. In addition, term placentae from HIV-1 seronegative women devoid of inflammation or other pathology were used as normal controls.
Methods

Quantification of HIV-1 DNA in tissues (Paper I and II)
HIV-1 gag DNA was detected by fluorescent in situ 5’-nuclease assay (FISNA). The tissues were fixed overnight in molecular biology grade Streck Tissue Fixative (MBF). The PCR was performed in cell suspensions with primers and a fluorescent probe against gag. A special Taq DNA polymerase was used in the PCR reaction to cleave in situ a 5’ reporter dye (FAM) from the hybridised probe. The reporter dye was thereby disassociated from the 3’ quenching dye (TAMRA) which remained within the cells. The signals were evaluated and quantified for the presence of HIV-1 gag DNA by an ACAS 570 laser confocal microscope.

Quantification of HIV-1 RNA in tonsils (Paper I, II and V)
HIV-1 RNA was detected by in situ hybridization in tissues fixed and permeabilized in Permeafix (Ortho Diagnostics). Following washing with PBS and 2× SSC the sections were dehydrated through graded alcohol and air-dried. Thereafter, the tissues were rehydrated with 50 µl hybridization buffer containing a cocktail of 5-carboxyfluorescein-labeled oligonucleotides specific for HIV-1 gag-pol mRNA (MolPATH, Inc. Frankfort, Michigan, USA). The probe was hybridized to the target sequence. Thereafter the tissue sections were washed with 2× SSC, Triton X-100 at 42°C. Multi-parameter analysis of cell surface molecules and HIV-1 gag-pol mRNA was performed on an ACAS laser confocal microscope (Meridian Instruments, Okemos, MI).

PBMC preparation and fixation (Paper III, IV)
PBMC from HIV-1 seronegative healthy blood donors and HIV-1+ individuals were isolated from Heparinized-blood by centrifugation on Ficoll-Hypaque (Pharmacia, Upsala, Sweden) density gradient. Subsequently cells were washed with sterile phosphate buffered saline (PBS) and counted. After indicated periods of stimulation time, the cells were transferred to adhesion slides (Bio-Rad Lab, Munich, Germany) and allowed to adhere to the slides for 10 min. Excess cells were washed away with PBS. The slides were fixed in 2% formaldehyde in PBS at pH 7.4 for 10 min at room temperature. Following three additional washes with PBS, the cells were air dried and stored at –20°C until use.

HIV-1 infected tissues preparation and fixation (Paper I, II, III, V and VI)
Cryopreserved HIV-1 infected biopsies, embedded in OCT-compound (Tissue-TEK, Mites, Elkhart, IN), were cut in 8 µm thick sections and mounted on HTC glass slides (Novakemi, Sweden) and fixed with 2% formaldehyde (Sigma, Sweden) in PBS for 15 minutes at room temperature. Slides were then washed with balanced salt solution (BSS) (Gibco Ltd, Paisley, UK) and stored at –20°C until staining.
Cell culture (Paper IV)

Isolated PBMC were resuspended in culture medium supplemented with 10% heat-inactivated Fetal Calf Serum (FCS), L-glutamine plus penicillin and streptomycin (Gibco, Paisley, UK). Subsequently, the cells were stimulated with purified superantigen SEA, recombinant Nef or Nef peptides. Cultured cells were harvested after indicated periods of stimulation time, transferred to adhesion slides (Bio-Rad Lab, Munich) and fixed in 2% formaldehyde in PBS.

Detection of cell markers, cytokines, chemokines and effector molecules in tissue and PBMC by immunohistochemistry (Paper I, II, III, IV, V and VI)

Prior to immunohistochemical staining, the harvested cells or sectioned tissues were blocked by FCS (1%) to prevent unspecific staining. Sections/cells were permeabilized with 0.1% saponin (Riedelde Haen AG, Seelze, Germany) dissolved in 1x Earl’s balanced salt solution (BSS) (Gibco Ltd, Paisley, UK) during staining procedure. After peroxidase quenching and serum blocking, the sections were incubated with primary antibodies over night or for one hour at 37°C. Biotinylated secondary antibodies were applied followed by incubation with avidin-biotin hors-radish peroxidase complex (Vectastain Elite Kit). A colour reaction was developed by addition of 3’-diaminobezidine tetrahydrochloride (DAB). The sections were counterstained with hematoxylin. The specificity of cytokine staining was ensured by incubation of recombinantly produced cytokines to block specific cytokine staining (at a concentration of 20-50 µg/ml, to its corresponding cytokine-specific antibody 2-5µg/ml at +4°C overnight).

Two colour staining for co-localization (Paper III)

For double labelling experiments, the tissues and cells were first incubated with the cell surface specific mAbs. The cells were thereafter labelled with secondary biotinylated antibodies followed by avidin-biotin alkaline phosphatase APC complex (Vectastain APC Kit, Vector Lab). A blue alkaline phosphatase substrate was used to develop a blue colour reaction. The cells were subsequently stained for effector molecules using the technique described above.

Quantification of cell surface markers, cytokine, chemokine and effector molecules expression by in situ imaging (Paper I, II, III, IV, V and VI)

The immunohistochemically-stained cells and tissue sections were examined in a Leica RXM microscope, equipped with a 3CCD colour camera and analysed by a Quantiment 550 IW image analyser. A PC program directed the image processor with a special software routine, developed for this application (Bjork et al., 1996). The cells were enumerated by the image analysis system by setting the colour and morphology of the
hematoxylin counterstained cells as a standard. The frequency of cytokine, chemokine, cell surface phenotype markers and effector molecule expressing cells was assessed by examination of at least 1 000 cells. In tissue stained sections, the frequency of positively stained cells was expressed as a percentage of total tissue area (Bjork et al., 1996; Andersson et al., 1998). Only lymphoid tissues were included in the analysis, epithelium was excluded from the analysis. For cultured cells, the number of cytokine and effector molecule expressing were instead analyzed by counting the positive cells out of the total number of cells in each digital image manually combined with in situ image analysis for evaluating the total number of cells. Cytokine, surface marker and effector molecule expressing cells were identified by a characteristic staining pattern of protein accumulated in the Golgi-stacks, surface markers and with granule characteristic distributions of the cells.

Intracellular detection of effector molecule expressing cells by flow cytometry (Paper IV)

The cultured cells were fixed using the Caltag Laboratories (Burlingame, CA) Fix and Perm Kit according to the manufacturer’s protocol. The staining procedure was performed in the presence of brefeldin A (Sigma-Stockholm, Sweden) at a final concentration of 10µg/ml. The permeabilization of the cell membrane was carried out by the inclusion of saponin in the reagents. The cells were analyzed in a Becton Dickinson FACS Calibur flow cytometer using CellQuest software. The negative control samples were incubated with antibodies and isotype control monoclonal antibodies specific for mouse IgG2b and mouse IgG1.

Alignment of amino acid sequences and molecular modeling (Paper IV)

Sequences of HIV-1 variants from the HIV-1 sequence Database at the Los Alamos National Laboratory (http://HIV-1-web.lanl.gov/) were aligned with the Multalin software package (http://prodes.toulouse.inra.fr/multalin/multalin.html). Co-ordinates of the molecular model of the full length NL4-3 Nef model were kindly provided by Dr Geyer (UCSF Cancer Research Institute, San Francisco, California). The substitutions of interest were introduced using the O program and figures were created using the programs Bobscript.

Preparation of RNA extraction from tissue (Paper V)

Tissue samples were homogenized for RNA extraction, snap-frozen in OCT embedding compound, or fixed in Streck tissue Fixative (Streck Laboratories, Omaha,NE). RNA was extracted from biopsy specimens by homogenizing fresh biopsies with TriReagent using diethyl pyrocarbonate-treated, autoclaved, disposable homogenizes. After homogenization RNA was purified as per the manufacturer’s protocol. RNA pellets were resuspended in 1x transcription buffer (Promega, Madison, WI) with RQ1 RNase-
free DNase. DNA was digested to remove contaminating DNA. The mixture was extracted once with phenol:chloroform:isoamyl:alcohol, and once with chloroform:isoamyl:alcohol. The aqueous layer was removed and the RNA was precipitated in 3 volumes of ethanol and 1/40 volume of 3 mol/L of sodium acetate overnight at -20°C.

Messenger mRNA quantification using real-time RT-PCR (Paper V and VI)

Quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) was performed by preparing a reaction mix containing specific primers, internally-conserved fluorogenic probes, and rTh polymerase. The reaction mix was then added directly to extracted RNA in RNase, DNase-free water (Ambion, Austin, TX). Input RNA was normalized using glyceraldehyde-3-phosphate dehydrogenase mRNA quantification (PE Applied Biosystems). Reverse transcription and thermal amplification were performed using the following linked profile: reverse transcription 30 minutes at 60°C, cDNA denaturation 5 minutes at 95°C, and 40 cycles of denaturation (95°C for 15 seconds) and annealing/extension (60°C for 1 minute) in a 7700 sequence detection system (PE Applied Biosystems). Duplicate standard curves with copy number controls ranging from 10 copies to 10^5 copies were run with each optical 96-well plate (PE Applied Biosystems). In addition, no template controls were included with each plate. Primer and probe sequences have been previously described.

Immunophenotyping/Fluorescence in situ Hybridization (I-FISH) (Paper V and VI)

Tissue frozen in OCT embedding compound (Fisher Scientific, Pittsburgh, PA) was cut at 5 μm thickness and adhered to silanized slides (PE Applied Biosystems) followed by simultaneous immunophenotyping/fluorescence in situ hybridization as previously described (Collins et al., 2000). Briefly, the sections were air-dried, rehydrated in PBS, and labeled with optimized concentrations of phycoerythrin-conjugated antibodies specific for the cell type of interest. HIV-1 mRNA was detected in the tissues using the ViroTect (InViron, Frankfurt, MI). The probe was hybridized to the target sequence, in a GeneAmp 1000 slide cycler (PE Applied Biosystems). The quantification of cell surface receptors and HIV-1 gag-pol mRNA was performed on a laser confocal microscope (Olympus, Melville, NY). Quantification of viral copies was performed using Metamorph software and fluorescent equivalents bead standards (Flow Cytometry Standards, San Juan, PR) and the formula:

\[
\text{Total pixels (HIV-1+ cell-background)} \times \text{FITC equivalents} \times 0.007 \text{ copies*} = \text{HIV-1 copies}
\]

*Based on 142 fluorescein equivalents per HIV-1 copy.
Real-time quantitative PCR for HIV-1 gag and U5/R DNA (Paper VI)
Quantitative, kinetic DNA PCR was performed in suspension with primers (Schmidt-mayerova et al., 1998) and an internally conserved sequence-specific, fluorogenic probe labeled at the 5' end with FAM and at the 3' end with TAMRA to DNA extraction. Thermal amplification was performed as described previously (Collins et al., 2000).

The following primers (Schmidt-mayerova et al., 1998) and probes were used:
LTR U5/R—sense-5'-GGCTAACTAGGAACCCACTG-3'
Antisense-5'-CTGCTAGAGATTTCACACTGAC-3'
Probe 5'-FAM-TGTGTGCGCGTCTGTTGTTG-TAMRA-3';
LTRU3/gag—sense-5'-CAGATATCCACTGACCTTGG-3'
Antisense-5'-GCTTAATACTGACGCTCTCGCA-3',
Probe 5'-FAM-GAGGCTTAAGCAGTGGGTTC-TAMRA-3'.

In vitro assays for anti-HIV-1 activity (Paper VI)
Replication end-point concentration assays were performed using a tissue culture ID50 (TCID50) for different HIV-1 isolates to infect phytohemagglutinin-stimulated (PHA-stimulated) PBMCs as described (McLeod et al., 1992). Varied concentrations of recombinant LIF were used before addition of virus to stimulated PBMC. All strains were tested in quadruplicate wells in three separate experiments. The mean p24 antigen produced in positive control PBMCs (without addition of LIF) averaged 843 ± 412 pg/ml, including all isolates tested.

Cell-proliferation assays (Paper VI)
PBMCs were isolated from heparinized blood and placed in quadruplicate wells in the presence or absence of LIF at 0, 0.1, 1.0, and 10.0 pg/ml. PHA was used at 0.25 μg/ml and 1 μCi [3H] thymidine was added per well after 72 hours of culture. The cultures were harvested and counted 18 hours later.

Explant placenta organ culture (Paper VI)
Fresh placenta tissue was obtained after informed consent was given. The placenta was cut into small pieces, and the fragments were washed extensively in PBS to remove any contaminating blood. Thereafter, the fragments were placed in MEM media with Earle’s salts and antibiotic/antimycotic solution as described previously (Amirhessami-Aghili and Spector, 1991). Placenta fragments were pre-treated with rLIF, IL-4 (R&D Systems), or polyclonal anti-LIF (R&D Systems), and infected with HIV-1 Bal or the HIV-1 primary isolate. After infection, total HIV-1 DNA and RNA were extracted using TriReagent per manufacturer’s instructions. HIV-1 DNA quantification was performed using real-time PCR as described previously.
Explant thymus organ culture (Paper VI)

Fresh pediatric thymus tissue was dissected into pieces containing 3–6 million cells and cultured as described previously (Bonyhadi *et al.*, 1995). The appropriate tissue fragments were treated with 1 pg/ml LIF (BDPharMingen) for 1 hour before infection. The tissue fragments were transferred into sterile tubes containing undiluted virus. Later the fragments were transferred to nucleopore filters atop gel-foam boats saturated in media (YSSL media containing, human serum, streptomycin, penicillin G, 1x MEM vitamin solution (Life Technologies Inc., Rockville, Maryland, USA) in six-well plates with a maximum of 16 pieces per raft. The tissue fragments were cultured fragments at 37°C, for varying periods of time. At appropriate time intervals, tissue fragments were removed and passed through a 37-μm mesh with PBS, pH 7.4. Cells in suspension were used for immuno-phenotyping and dual immunophenotyping/ultrasensitive fluorescence *in situ* hybridization (UFISH).

Ultrasensitive fluorescence *in situ* hybridization (UFISH) (Paper VI)

Tissues were snap-frozen in OCT freezing compound (Fisher Scientific Co, USA). Cryostat-cut tissue sections (5-μm thick) were adhered to silanized slides, air-dried, fixed briefly in cold acetone, and rehydrated in PBS, pH 7.4. UFISH was performed using ViroTect (Invirion, USA) as described previously (Collins *et al.*, 2000). Image analysis was performed on a dual-laser confocal microscope (Olympus America Inc., Melville, New York, USA).

Statistical analysis

Paper III and IV

Correlation between quantitative variables was evaluated by Spearman co-efficient of correlation. A logarithmic transformation of viral plasma RNA values was used in the data analysis. Two-sided Student’s test was used for statistical significance of correlation; a *P* value of less than 0.05 was considered significant. In paper IV, a Wilcoxon signed-rank test and the non-parametric Mann-Whitney was used for comparisons of study parameters. Values of *P*<0.05 were considered to be significant.

Paper V and VI

Comparison between transmitting and non-transmitting placentae was performed using either the Mann-Whitney rank sum test or paired t-test. Comparisons which yielded a two-tailed *P* value of less than 0.05 were considered to be significant.
RESULTS

HAART normalizes immune activation in lymphoid tissue

Effect of HAART on HIV-1 burden in peripheral blood and tonsils (Paper I and II)

HIV-1 infected patients in the asymptomatic phase were selected for evaluation of immune reconstitution in lymphoid tissues following treatment with HAART. In order to study the effects of HAART on HIV-1 RNA, we measured the viral RNA in plasma before and after treatment. HIV-1 RNA quantification showed a marked reduction of HIV-1 RNA (1-3 log₁₀) (<400 copies/ml) in the plasma after 4 weeks of therapy in three patients studied. Furthermore, one year of treatment with HAART resulted in maintained reduction of HIV-1 RNA, to <50 copies/ml, which was below the limit for detection. This result in agreement with previous reports indicated reduced HIV-1 RNA in plasma after one year HAART therapy (Cavert et al., 1997; Finzi et al., 1997).

Furthermore, in order to investigate the effect of HAART on HIV-1 DNA containing cells in tonsillar tissue, we investigated the incidence of HIV-1 DNA containing cells in tonsils by fluorescence *in situ* 5'-nuclease assay (FISNA). The incidence of cellular pro-viral DNA containing cells in the tissues was 6.2% (mean value) before treatment, which was reduced to 4.2% (mean value) after 4 week of HAART in all patients. In addition, the frequency of HIV-1 DNA containing cells in tissues was further reduced in two patients after 56 weeks of therapy. The content of HIV-1 DNA remained high in one patient (paper II). These results revealed a large pool of tonsil cells that remained HIV-1 DNA positive, despite effective therapy.

The effect of HAART on T cell subsets

Decreased number of CD8⁺ T cells after HAART in blood and tonsils

Since a gradual decline in the total number of CD4⁺ T cells is the strongest predictive marker for indication of HIV-1 progression throughout the course of infection, we studied CD4⁺ T cell counts in peripheral blood and tissue from three infected patients prior to and after HAART therapy. The absolute number of CD4⁺ T cells in blood, as determined by flow cytometry, increased after 4 weeks of therapy (paper I). Furthermore, after one year of HAART, the absolute numbers of CD4⁺ T cells remained high or even increased in peripheral blood. We also examined the CD8⁺ counts in blood and the frequencies of CD8⁺ cells in tissue. In contrast to CD4⁺ T cells, the frequency of CD8⁺ T cells in peripheral blood was moderately reduced after four weeks and normalized after one year of treatment. Additionally, we investigated the expression of CD4⁺ and CD8⁺ T cells in tonsillar biopsies of these patients. In comparison to controls, the tonsils of HIV-1 positive subjects showed five to eight
fold higher level of CD8+ T cells, which HAART therapy did not diminish after 4 weeks of treatment (paper I). However, the frequency of CD8+ T cells after 56 weeks of treatment reached normal levels in infected tissue as compared to control tissues. Furthermore, the documented significant decrease in the proportion of CD8+ within T cells led to a progressive increase of the CD4/CD8 ratio at 56 week after start of treatment in both blood and tissue.

HIV-1 infection is associated with a persistent hyperactivation in lymphoid tissue

The effect of HAART on cytokine expression profile in lymphoid tissue

In order to evaluate immune activation prior to and after anti-retroviral therapy, we studied cytokine and chemokine receptor expressing cells in HIV-1 infected LTs. Computerized *in situ* image analysis was used to study local cytokine production, chemokine receptor expression and cellular distribution in tonsil sections and healthy controls. Analysis by *in situ* image demonstrated a 10 to 15-fold elevation of IFN-γ and IL-2 expressing cells prior to HAART as compared to HIV-1 seronegative healthy individuals. After 4 weeks, a reduction in both IFN-γ and IL-2 expression levels was observed. The same HIV-1 infected patients were examined after 12 and 56 weeks of treatment to further study the effects of HAART on immune responses. The frequency of IFN-γ expressing cells, which was reduced at week 4, was comparable to seronegative controls by week 56.

We also assessed the expression of IL-4 and IL-10 in tonsillar sections. Untreated HIV-1 infected patients showed a lower prevalence of IL-4 and IL-10 expressing cells. We observed reduced expression of IL-4 and IL-10 after four weeks of treatment. These levels then remained unchanged at week 12 and 56. In general, a dominance of type 1 cytokines compared to type 2 cytokines was observed in HIV-1 infected tonsils before treatment. Furthermore, HIV-1 infected tonsils were characterized by an extensive pro-inflammatory cytokine expression (IL-1α, IL-β, TNF-α and IL-12) prior to therapy compared with controls. Quantification by *in situ* image analysis showed reduction of proinflammatory cytokines after 4 weeks of therapy. However, the expression of IL-1α remained elevated in one of the three patients at week 56. This patient was the only one with persistent HIV-1 replication.

Overall, this pilot study of cytokine expressing cells in tissue before and after therapy implies that HIV-1 replication may induce proinflammatory and Th1 cytokine synthesis at the local site.
Expression of chemokine receptor reduced after 4 week of therapy

The expression of HIV-1 co-receptors, CCR5 and CXCR4, which initially were elevated four to six times over controls values, were reduced by 40% after 4 weeks of treatment with HAART. The expression of these co-receptors was not studied at week 12 and 56. Thus, the high expression of CCR5 and CXCR4 may be induced by local cytokine expression of the lymphoid site before treatment (Patterson et al., 1998). However, reduced expression of these HIV-1 co-receptors after therapy may diminish ability for viral entry and in turn, reduce the number of newly infected cells.

Myelomonocytic cells activation after HAART

We measured three myeloid antigens, CD68, Mac 328 (L1-antigen) and CD1a as indication of the incidence of activated macrophages and DCs. We found two to three fold higher expression in all HIV-1 positive patients prior to therapy. The frequency of antigen presenting, CD1a⁺ and CD68⁺ cells were also estimated in tonsillar tissues at 12 and 56 weeks of therapy. We found a decreased frequency of CD1a⁺ DCs, which was reduced to control levels at week 56 of therapy. The frequency of CD68⁺ cells declined in two patients but remained high in one patient.

Cytolytic effector molecule expression in CD8⁺ T cells in HIV-1 infected lymphoid tissues

In the first two papers, we showed that HIV-1 infected LT returned to a resting state after potent anti-retroviral therapy. With regard to these finding we addressed the question of why high expression of IFN-γ, IL-2 and IL-12 combined with increased interdigitating DCs (CD1a⁺ cells) before therapy failed to eliminate HIV-1 infected cells. In addition, the persistence of HIV-1 DNA containing cells after therapy indicated an inadequate HIV-1 specific CTL response. Therefore, we hypothesized that a functional block in cytolytic molecule expression in the HIV-1 specific effector CD8⁺ T cells might be one explanation for why expanded CTLs failed to control the infection. We investigated the expression of perforin and granzyme A (grA) at the single cell level in LT and blood from 16 patients infected with HIV-1 (stage A1-C) who were not taking anti-retroviral drugs.

Perforin is expressed in mature effector CD8⁺ T cells and NK-cells in conjunction with grA or granzyme B. In order to identify the phenotype of perforin and grA-expressing cells within LT, we first performed two-colour staining for identification of either NK or CD8⁺ perforin- or grA-producing cells. The quantification by in situ image showed that >80% of the granular perforin- or grA-expressing cells in LT were CD8⁺ T cells. In contrast, a few of the total perforin- or grA-expressing cells were of the CD56⁺CD3⁻ phenotype (2-4%). We next assessed the expression of perforin and
grA in LT from 13 chronically infected patients. Our data showed that these patients, who were not receiving anti-retroviral therapy, lacked perforin-expressing cells (p<0.02%) but had sustained upregulation of grA expressing CD8\(^+\) T cells (paper III). However, much higher levels of perforin- and grA-expressing cells were evident in LT from patients with acute infectious mononucleosis compared with biopsies from HIV-1 infected patients (p<0.001). We demonstrated a significant increase in CD8\(^+\) T cells in HIV-1 infected LT compared to control tissue. Statistical estimations indicated no association between the incidence of perforin expression in LT and CD8\(^+\) T cells in the HIV-1 infected individuals. However, we found a positive correlation between grA as well as perforin expression in LT from infectious mononucleosis and HIV-1 seronegative control tissues within CD8\(^+\) T cells in tissue.

Cytolytic granule expression in blood from HIV-1 patients and controls

We studied also the expression of perforin and grA- expressing cells in PBMC in order to investigate if the deficit in perforin expression seen in tonsil and LT biopsies, may occur in blood. We analysed the PBMC from seven HIV-1 infected patients included in the tissue study plus additional four HIV-1 positive volunteers. Expression of perforin and grA effector molecules was analysed by in situ imaging. We found a significantly higher cellular expression of perforin and grA in PBMC compared with that seen in LT (p<0.001) in HIV-1 infected patients. A relative increase in both grA- and perforin-expressing cells in blood was observed in HIV-1 positive subjects compared with healthy control. However the expression of these effector molecules in PBMC from six primary EBV-infected subjects were significantly higher compared to PBMC from HIV-1 individuals (p<0.01). The maintenance of perforin expression was not related to HIV-1 disease state. No correlation was found between the percentage of perforin expressing cells and CD4\(^+\) cell counts in blood (p<0.05). These analyses did not however reveal if the expression of cytolytic effector molecules was in HIV-1 specific CTLs. A later study showed a significant lower expression in T cells binding to HIV-1 tetramers. Hence, perforin expression appears to be impaired during HIV-1 infection, which may be an important clue to explain why CTLs fail to eradicate HIV-1.

Potential mechanism for downregulation of perforin expression during HIV-1 infection

Nef-Mediated Downregulation of Perforin In vitro (Paper IV)

As described above, we found an impaired perforin expression in CD8\(^+\) T cells infiltrating HIV-1 infected LT. This indicated defective cytolytic activity in CD8\(^+\) T cells at local sites of HIV-1 replication within LT. Therefore we designed in vitro studies to evaluate the molecular mechanism involved in inhibition of perforin
expression in HIV-1 infection. The effect of HIV-1 Nef protein on perforin and grA expression was examined.

We measured perforin expression in freshly isolated PBMC from healthy donors after four hours incubation with a recombinant Nef protein derived from a HIV-1$_{IIIb}$ strain (rNef$_{IIIb}$) by *in situ* image of immunohistochemically stained cells. PBMCs from HIV-1 seronegative donors were incubated for 4 hours with culture medium only as control. A significant reduction of perforin expressing cells was observed in rNef$_{IIIb}$-treated PBMC compared to cells cultured in medium only (p<0.001). The viability of cells after 4 hours incubation with rNef$_{IIIb}$ was not affected, as assessed by Trypan blue exclusion or flow cytometry of Annexin V and PI-stained cells. Furthermore, the frequency of cells expressing the cytolytic effector molecule grA was also down regulated after 4 hours of incubation with rNef$_{IIIb}$ (p<0.03). The down-regulation of perforin was detected in the presence rNef$_{IIIb}$ while addition of the control protein β-galactosidase did not affect the frequency of perforin expressing cells. Kinetic analyses demonstrated that the observed perforin down-regulation was still detectable after 24 hours of incubation (p<0.05). The addition of the anti-Nef neutralizing monoclonal antibody (mAb) abrogated the observed phenomenon, confirming the specificity of rNef$_{IIIb}$ in the downregulation of perforin.

Perforin Down-regulation following Exposure to HIV-1$_{Ba-L}$ but not HIV-1$_{IIIb}$ with truncated Nef or the Nef-deleted Isolate HXB-2

HIV-1$_{IIIb}$ contains a mixture of viruses, some of which have truncated mutations in the *nef* gene. To characterize further the Nef-mediated downregulation of perforin, we incubated lymphocytes with cell-free virus HIV-1$_{Ba-L}$, HIV-1$_{IIIb}$ (with truncated *nef*) or a *nef*-deleted isolate (ΔNef$_{HXB-2}$) for four hours *in vitro*. The dose of the different HIV-1 strains was standardized in order to generate HIV-1 p24 protein concentration of 0.4pg/ml. *In situ* image analyses revealed a significant down-regulation of perforin and grA expression levels in PBMC exposed to HIV-1$_{Ba-L}$ compared to control cells (P<0.03). In contrast, PBMC exposed to HIV-1$_{IIIb}$ with truncated *nef* or the Nef-deleted isolate did not display any perforin downregulation. Subsequently, we used additional recombinant Nef distinct from rNef$_{IIIb}$ to compare its affect on perforin expression. Moreover, incubation with rNef from the HIV-1$_{ELI}$ isolate, instead upregulated perforin expression. These data implied remarkable differences in the capacity of different Nef proteins to suppress perforin expression depending on the amino acid sequence of Nef.

Sequence alignment and molecular modeling of Nef suggest that the so-called disordered loop (residues 148-178) is the main region of interest for perforin downregulation

Sequence alignments of different Nef protein were used to identify the possible region
of the nef gene involved in perforin down-regulation. The Ba-L and rNefIIIB sequences, which resulted in perforin downmodulation, are very similar in sequence from residues 1-190, while the truncated HIV-1IIIB sequence terminates at residue 123 and the ELI strain nef has numerous non-conservative amino acid substitutions in the region between residues 144-194 (paper IV). These differences suggest that residues 144-190 may be important for perforin downmodulation. In addition, the structural model of the previously published full length Nef (Geyer et al., 2001) was used as a template to identify the regions of potential interest for the downregulation of perforin activity. The substitutions described above are located in three residue clusters; two of which are positioned on the loop consisting of residues 148-178 and the third being localized in the central folded core domain (Arolf and Baur, 2001; Geyer et al., 2001). The first cluster (residues 151, 152, 156, 157, 174 and 179) is positioned in the negatively charged central part of the disordered loop. The second cluster (residues 169 and 170, paper IV) is localized at the tip of the same loop. Finally residues 144, 186, 192 and 194 compose the third cluster located in the Nef core domain. However, detailed mutational analyses will be required to pinpoint which of these regions is important for down-modulating perforin, but the restriction of the effect to only some strains of HIV-1 suggests that it is specific.

Nef-mediated downregulation of perforin expression after Staphylococcal enterotoxin A (SEA) stimulation

We next addressed whether Nef protein inhibits perforin expression after activation with the superantigen SEA that is capable of activating high frequencies of T cells in a Vβ-specific manner. SEA stimulation increased perforin expression and resulted in induction of IFN-γ production. The ability of PBMC to produce perforin and grA upon SEA stimulation in the presence or absence of rNefIIIB was measured. The observed induction of perforin and grA following SEA stimulation was however inhibited in the presence of rNefIIIB (p<0.001) and (p<0.002), respectively.

We further investigated whether the observed downregulation of perforin occurred in CD3+CD8+ T cells and/or CD3+ NK cells using flow cytometry. The cells were stained after incubation with brefeldin A (BfA) to increase the sensitivity of the intracellular effector molecules. Similar to the in situ image analysis results, the percentage of CD3+CD8+ perforin+ T cells after SEA stimulation increased while addition of rNefIIIB reduced induction of CD3+CD8+ perforin+ T cells. The double staining demonstrated that the Nef-mediated reduction of perforin expression occurred in CD3+CD8+ T cells, while we were unable to detect changes in perforin expression in the CD56+ NK cells population. The immune activation of CD8+ T cells by SEA during the short stimulation period thus resulted in activation of memory effector cells and not induction of perforin expression in naïve CD8+ T cells. The latter process has been shown to require 8-12 cell divisions which takes 3-7 days of culture.
To verify whether Nef-mediated downregulation of perforin expression was evident at the mRNA level, *in situ* hybridization analyses were performed. An almost 2-fold increase in perforin mRNA positive cells was demonstrated in SEA-stimulated PBMCs after short-term culture by *in situ* hybridisation in two independent experiments. Addition of rNef_III abrogated the SEA-mediated induction of perforin mRNA, hence consistent with our protein results.

A role for Nef as perforin-modulator in vivo

To investigate the effect of Nef-deletion *in vivo*, paired animals were infected with SIV-EGFP_Δ nef mac239 and SIV mac 239 (wild type). SIV viral replication, measured by plasma viral RNA, was attenuated after infection with SIV_Δ nef- mac239. However, the acute peak viremia, measured by the amount of infectious cell-associated virus, was similar to those obtained after wild-type virus infection (Stahl-Hennig *et al.*, 2002). The highest viral load appeared two weeks post-infection in both animal groups. We then analyzed lymphoid tissues (spleen and lymph nodes) obtained 45 days post-infection for perforin and grA expression at the single cell level. Macaques infected with the wild-type virus displayed low perforin expression (0.2-0.6%) of total cells, while infection with SIV_Δ nef- mac239 resulted in higher perforin expression (2-5%). However, lymphoid tissues from both groups had similar levels of grA\(^+\) expression, in 2 to 8% of lymphocytes (mean 5%). Notably, perforin-dependent grA nuclear translocation in target cells, detected by morphological criteria (Andersson *et al.*, 2002) was more prevalent in tissues from SIV_Δ nef- mac239 infected animals than in tissues derived from SIVmac251 infected macaques (paper IV). We concluded from these studies that certain Nef proteins are able to downregulate perforin expression in CD8\(^+\) T cells.

Regulation of HIV-1 replication in the placenta

Chemokine receptor expression in the placenta (Paper V)

Many studies suggest that some virus selection occur during vertical transmission. Moreover, few studies have identified that placenta could be involved in this selection process. In paper V, we investigated one possible mechanism for HIV-1 selection involved in mother- to child transmission. The CCR5-using isolates are shown to be predominantly transmitted from mother to child. To investigate the role of chemokine receptor expression in maternal-fetal transmission we studied placental tissue from 16 HIV-1 non-transmitting (TNT) and 7 HIV-1 transmitting (TT) women as well as 4 normal controls. In order to quantify chemokine receptor expression, total placenta RNA was extracted from TT and TNT women as well as normal controls. Real time
RT-PCR was used for quantification of chemokine receptors in these tissues. Quantification by real time RT-PCR showed that the number of CCR5 mRNA copies/10^5 cells were increased 2-3-fold (p<0.01) and the number of CXCR4 mRNA copies were reduced by half in the TT placentas compared to TNT and normal controls (paper V). In order to quantify CXCR4 and CCR5 protein expressing cells, CXCR4 and CCR5 protein expression were analyzed by in situ image in sections stained by immunohistochemistry. Furthermore, quantification by in situ image showed that CXCR4 protein expressing cells were present in equivalent numbers in TNT placentas compared to TT placentas. Conversely, CCR5 protein expression was upregulated 3-fold in TT placenta compared to TNT placenta (p<0.02). These results provide evidence for predominant expression of CCR5 mRNA and protein in TT placenta tissue, which is dominantly used by R5-using HIV-1 isolates.

Characterization of the cytokine milieu in placenta

It has previously been reported that Th type 1 and Th type 2 cytokines are involved in the regulation of chemokine receptor expression. To determine if the chemokine receptor expression pattern observed in the placenta was driven by locally produced cytokines, real-time RT-PCR quantification and in situ image were used to quantify cytokines in placenta tissue. In TNT placentas, we found a significant elevation of Th type 2 cytokine (IL-4 and IL-10) mRNA relative to Th type 1 (IL-2) mRNA expression (p<0.02). This cytokine pattern with a dominance of type 2 over type 1 cytokines was observed also in normal controls. The cytokine pattern observed in TT placentas, on the other hand, was reversed with an upregulation of IL-2 and a downregulation of type 2 cytokines compared to TNT placentas or normal control (p<0.01).

Furthermore, to confirm translation of cytokine mRNA into protein, tissue sections were stained by immunohistochemistry and the local intracellular expression of cytokines was measured by in situ imaging. Type 2 cytokine (IL-4 and IL-10) expressing cells were significantly upregulated in TNT placentas compared to TT placentas (p<0.02). Biopsies from TT placentas showed significantly higher frequency of IL-2 expressing cells compared to TNT placentas (p<0.05). Thus our results demonstrated that placenta from TNT women maintained a normal type 2 cytokine milieu as compared to placenta from TT women. Thus, a Th type 2 to Th type 1 cytokine pattern shift may cause upregulation of chemokine receptor, CCR5, in TT placenta and facilitate vertical transmission of R5 using HIV-1 strains.

Chemokine receptor expression of placental cells productively infected by HIV-1

To analyze whether there was any selective utilization of chemokine receptors by HIV-1 in infected placenta tissue we used a sensitive in situ hybridization technique
simultaneously with immunophenotyping. The transmitting placenta had a statistically significant increase in the number of HIV-1 gag and pol expressing cells compared to TNT as determined by quantitative laser confocal microscopy (2.3% vs 0.02%) of total cells. More than 99% of cells expressing HIV-1 gag-pol were CCR5 positive cells in TT placenta samples in contrast to the TNT placentas (<10%). The great majority of productively HIV-1 infected cells in TNT placenta expressed CXCR4 while a minority of productively HIV-1 infected cells expressed CCR5 in the TNT placenta. This study indicated a selective utilization of CCR5 in transmission of HIV-1 cross the placenta.

Quantification of cytokines and Leukemia Inhibitory Factor (LIF) in placenta from transmitting and non-transmitting women (Paper VI)

To identify potential inhibitory factors in low virus load TNT placentae (paper V), we performed RT-PCR against 47 genes expressed in placentae including cytokines, chemokines, and hormones (paper VI). Consistent with data from paper V, higher IL-4 mRNA and protein expressing cells were found in TNT placentae compared to TT (p<0.02). However, levels were not significantly different as compared to expression in normal placentae. Moreover, the Th type 1 cytokine IL-2 mRNA and protein level was upregulated in transmitting placentae compared to both non-transmitting placentae and normal placentae (p<0.05).

We quantified the expression of LIF mRNA and protein in TT and TNT placentae as well as controls. LIF has been described as a secreted glycoprotein belonging to the IL-6 family (Stahl et al., 1990; Metcalf, 1991; Metcalf et al., 1991). LIF is expressed throughout normal pregnancy in the placenta. In humans, LIF can be secreted from the endometrial epithelium (Senturk and Arici, 1998), CD16+CD56+ NK cells (Saito et al., 1993) and Th2 cells (Piccinni et al., 1998). In the presence of upregulated IL-4 (Piccinni et al., 1998), a significant elevation of LIF mRNA and protein expression was found in TNT placentae compared to TT placenta (p<0.001). However, LIF mRNA and protein expression was not significantly different in TNT placenta compared to normal placenta controls. Our results displayed significantly elevated LIF mRNA and protein expression in TNT placentae compared to TT placenta (p<0.001).

Identification of LIF as a potent HIV-1 suppressor

In order to test the effects of LIF on HIV-1 replication, we performed triplicate dose-dependent inhibition experiments in quadruplicate wells with a range of LIF concentrations from 0.05 pg/ml to 10 pg/ml. Our results showed that LIF inhibited the replication of CCR5-using (R5) HIV-1\textsubscript{Ba-L}, the CXCR4-using (X4) HIV-1\textsubscript{Lai}, the dual tropic (R5X4) HIV-1\textsubscript{ME46}, and the primary isolates HIV-1\textsubscript{33074/33015} with an IC\textsubscript{50}.
between 0.3 and 0.7 pg/ml. Thus, the primary isolate HIV-1_{93US151} taken from an infected, newborn child was inhibited by LIF with the lowest IC₅₀ of 0.1 pg/ml. Because significant cell growth inhibition would affect HIV-1 production in culture, we assessed the proliferative response of PBMCs to PHA stimulation in the presence or absence of LIF. LIF concentrations that inhibited HIV-1 production had no inhibitory effect on cell proliferation.

LIF inhibits HIV-1 replication but not HIV-1 infection of target cells in vitro

To elucidate the site of LIF action on HIV-1 replication, we first determined the effects of LIF on expression of CD4 and co-receptors CCR5 and CXCR4. PBMC cultured with or without LIF were stained and analyzed using flow cytometry. We saw no effect of LIF on CD4, CCR5, or CXCR4 expression as compared to untreated controls. These data suggest that LIF neither blocks anti-CD4, -CXCR4, or -CCR5 antibody binding sites nor regulates their cell surface expression, as do other cytokines. To determine if LIF inhibits the HIV-1 life cycle at the reverse transcription stage, we quantified early LTR U5/R and late LTR/gag reverse transcripts (Bukrinsky et al., 1993) in HIV-1 infected PBMCs with or without LIF treatment. Quantification by RT-PCR demonstrated low levels of both early LTR U5/R and late LTR/gag reverse transcripts after infection with different HIV-1 isolates. In addition LIF-untreated controls infected with all different HIV-1 isolates expressed high levels of both early and late reverse transcripts. These data provide insight into the inhibitory pathway and site of action by suggesting that the anti-viral activity of LIF takes place prior to reverse transcription, and so distinguishes it from the CD8 T cell-derived antiviral factor (CAF).

HIV-1 inhibition by LIF required gp130-LIFRβ expression

It has been shown that LIF upregulates Janus kinase (JAK) after binding to the gp130-LIFRβ receptor heterodimer (Davis et al., 1993) and ultimately phosphorylates tyrosine residues on the STAT family of transcription factors (Fujio et al., 1997). To gain insight into the role of gp130-LIFRβ-mediated signal transduction in HIV-1 inhibition, we infected MT-2 cells (gp130-LIFRβ-negative) and PBMCs in the presence and absence of LIF. The MT-2 cells were resistant to the HIV-1 inhibitory effects of LIF. These data indicated that LIF inhibitory affect on HIV-1 infection was dependent upon the expression of gp130-LIFRβ on the surface of HIV-1 susceptible cells.

The effects of LIF in ex vivo cultured placentae and thymus

To test the effects of LIF in an *in vivo* model of HIV-1 infection, we infected tissue fragments of placentae with either a T-tropic isolate, HIV-1_{Ba-L} or a primary isolate (HIV-1_{93US151}) in the presence of LIF or neutralizing, polyclonal anti-LIF antibody as a specificity control. In these experiments, we used concentrations of LIF known to
inhibit HIV-1 in PBMCs and concentrations of anti-LIF antibodies known to neutralize >90% of LIF bioactivity. After infection, total DNA was extracted and HIV-1 DNA quantification was performed using real-time PCR. LIF inhibited infection of placental explant tissue by HIV-1_{Ba-L} in a dose dependent manner. Addition of 5μg/ml of neutralizing polyclonal anti-LIF increased infection of the placenta organ culture relative to the LIF-untreated control. These results may reflect additional neutralization of endogenous LIF produced by the placental tissue. To further corroborate our findings in a second ex vivo model, thymus tissue grown in explant culture was infected by HIV-1_{Lai} in the presence or absence of LIF. HIV-1 productively infected CD4, CD8 double positive T cells while CD4 or CD8 single positive T cells were inhibited by 1pg/ml of LIF, as determined by sensitive simultaneous immunophenotyping/UFISH. Thus, LIF was able to inhibit HIV-1 in a tissue other than placenta indicating that our previous observation were not dependent on placenta specific factors such as β-HCG (De et al., 1997).

Quantification of HIV-1 DNA and mRNA in placentae

To investigate differences in HIV-1 load in placentae from TT and TNT women, we quantified unspliced HIV-1 gag mRNA and DNA in placental tissues. Expression of HIV-1 gag mRNA was found in four of five (80%) TT placentae and only one of six (17%) TNT tissue (paper VI). The average number of HIV-1 gag mRNA copies (510/20,000 GADPH) in the TT placentae were significantly higher than in TNT placentae (p<0.05). In contrast, no significant difference was found in the number of HIV-1 DNA^{+} cells in placenta tissue from TT versus TNT. These data provide further evidence for the lack of HIV-1 RNA production in TNT placentae and support the possibility of LIF-mediated HIV-1 suppressive in vivo activity within these placental tissues.
DISCUSSION

The cytokine and chemokine expression profile before and after HAART in HIV-1 infected lymphoid tissue

When we began these studies the majority of HIV-1 investigations had focused on blood. However, we believed that the direct sampling of productively infected cells from peripheral blood did not reflect what was happening in the HIV-1 infected LT (Andersson et al., 1998; Bucy et al., 1999). T cells in the circulating blood represent only ~1%-2% of the total lymphocyte pool. Thus, the vast majority of potential HIV-1 targets cells are localized in tissues. In 1995, HAART therapy opened a new era in HIV-1 treatment history. Since then, an extensively knowledge has been accumulated with regard to HIV-1 pathogenesis and the relationship between the immune system and HIV-1 within the infected tissue. Studies on the impact of anti-retroviral therapy on the LT may provide important insight into the pathogenesis of HIV-1 infection.

In order to examine the effect of HIV-1 infection on the immune system in LTs we investigated the expression of cytokines, chemokines, anti-viral effector molecules and chemokine receptors in biopsies obtained from infected patients. We developed a method for quantifying intracellular cytokine and chemokine protein expression at the single cell level based on immunohistochemistry followed by computerized in situ image analysis (Bjork et al., 1996). There are several different methods for measuring production of cytokines; e.g. Northern blot, semiquantitative reverse transcription PCR (RT-PCR) and in situ hybridization. However, the disadvantage of studying cytokines by these methods is that most cytokines are modified at both post-transcriptional and post-translational levels and cytokines carry out their functions mainly after secretion of the protein. Therefore, detection of cytokine mRNA prior to secretion of corresponding protein might not be a reliable marker for biological effect of the released effector molecule. Further, the Northern blotting and in situ hybridization methods are qualitative measurements of mRNA. Regarding other techniques that measure cytokines at the protein level both the ELISPOT and intracellular staining by flow cytometry require disruption of tissues and in vitro restimulation prior to analysis. This provides information on the potential rather than actual expression of cytokines. The advantage with immunohistochemistry is preservation of morphology and distribution of cytokine expressing cells as well as the possibility to quantify extracellular secretion of cytokines in tissues. Flow cytometry on the other hand has the advantage of allowing multi-colour analysis in a shorter time. The optimal settings would be combine direct in situ image with flow cytometric analysis.
Effect of HAART on HIV-1 burden in peripheral blood and tonsils

It is believed that most HIV-1 viral production takes place in LT (Embretson et al., 1993; Pantaleo et al., 1993a). HAART dramatically reduces the plasma viral load of HIV-1 infected individuals to undetectable levels (Cavert et al., 1997; Finzi et al., 1997). However even prolonged treatment with HAART for >5 years fails to eradicate HIV-1. Studies have showed that the amount of virus detectable in lymph nodes is 1 to 4 logs higher than that in plasma, raising the question of whether decreasing virus in plasma correlates with HIV-eradication in lymphoid compartments (Hammer et al., 1996; Schacker et al., 1998).

In order to evaluate the effect of HAART on immune reconstitution within HIV-1 infected LT, we examined cellular responses in situ in three HIV-1 infected patients in asymptomatic stage. It could be seen that HAART therapy resulted in a significant reduction in plasma HIV-1 RNA (less than 50 copies/ml) and numbers of HIV-1 mRNA+ cells in the lymphoid samples during the year studied. By sensitive in situ PCR combined with a fluorescent probe, we detected HIV-1 gag DNA in tissues after one year of therapy. However, we could not identify the phenotype of HIV-1 DNA containing cells in tonsil sections from these patients. The prevailing of HIV-1 DNA containing cells may provide a source for viral replication in the lymphoid system tissue despite effective viral suppression by potent anti-retroviral therapy (Cavert et al., 1997; Chun et al., 1997a; Chun et al., 1997b; Wong et al., 1997b; Finzi et al., 1999; Furtado et al., 1999).

Effect of HAART on cytokines involved in the adaptive immune response

Replication of HIV-1 in lymphoid compartments results in increased cytokine production and cellular activation (Graziosi et al., 1996). The observed increase in cytokine production in HIV-1 infected lymphoid tissue may in turn enhance ongoing viral replication. As cellular immunity at the local site of infection is critical for immune control of HIV-1 infection, we therefore quantified the effect of HAART on cytokine expression at the local site of infection.

A varying cytokine profile has been reported in HIV-1 infection from in vitro studies (Poli and Fauci, 1992). It should however noted that many different methods have been used to investigate cytokine expression in HIV-1 infection. Furthermore, most studies analyzed expression of cytokines in blood following in vitro re-stimulation. Analyses of cytokine expression in LTs has not been extensively performed. We analyzed the expression of IL-2 and IFN-γ in tonsil sections from three HIV-1 infected patients and seronegative controls. Strong evidence for HIV-1 associated immune activation was found by the high expression of IL-2 and IFN-γ observed in different
regions within the tonsillar biopsies. In addition, extensive expression of IL-12 was found in the tonsils prior to therapy. *In situ* image analysis revealed that IL-2 and IFN-γ decreased to normal levels after one year of therapy suggesting that the level of cellular activation diminished following initiation of potent anti-retroviral therapy. The low frequency of IL-2 detected after therapy might be beneficial considering that IL-2, along with other cytokines, can support viral replication (Chun et al., 1997b) and increase expression of HIV-1 chemokine co-receptors (Patterson et al., 1998). Using the immunostaining technique, we found that the high expression of IL-12 seen prior to therapy was reduced shortly after start of treatment. In line with our results others have reported failure to restore HIV-1 antigen specific production of IL-12 in PBMC after anti-retroviral therapy which may limit efficient priming of naïve CD4+ T cells against HIV-1 infection (Grassi et al., 1999).

High frequency of IL-4 and IL-10-expressing cells have been reported in *in vitro* HIV-antigen stimulated peripheral blood mononuclear cells in the AIDS stage (Clerici and Shearer, 1993). We could not detect many IL-4 and IL-10 cytokine expressing cells in tonsil sections obtained from HIV-1 infected patients in the chronic asymptomatic phase (Graziosi et al., 1996).

Effects of HAART on proinflammatory cytokines

Both primary HIV-1 infection and the asymptomatic phase are characterized by profound proinflammatory cytokine activation. Proinflammatory cytokines such as IL-6, and TNF-α together with IL-2, were shown to support viral replication in PBMC of HIV-1 infected individuals and in latently infected CD4+ T cells (Chun et al., 1998). The observed increase in cytokine production (IL-1, IL-6, IL-2) in HIV-1 infected LT may enhance ongoing viral replication. Macrophages, DCs and B cells are potent producers of IL-1α/IL-1β, which are involved in the primary activation of naïve T cells. It has been suggested that exposure of DCs to HIV-1 may create an important and persistent source of immune activation. Such cytokine production may generate signals to induce HIV-1 replication in latently infected resting CD4 memory T cells. We found that both IL-1α and IL-1β expression was increased in HIV-1 infected tonsils prior to therapy. The expression of IL-1β was normalized after initiation of HAART. IL-1α expression, however, was continuously elevated in the patient who showed high HIV-1 DNA contents in LT. Additional reports demonstrated a reduction of inflammatory cytokines TNF-α and IL-6 following HAART therapy (Lederman et al., 1998; Sloand et al., 1999). The persistence of pro-viral DNA containing cells, despite effective therapy has been documented in earlier reports (Zhang et al., 1999). The persistent high incidence of IL-1α in lymphoid tissue may represent an ongoing inflammatory response or cytokine dysregulation that may contribute to rapid viral
rebound in CD4+ T cells containing pro-viral DNA upon HAART discontinuation.

Interdigitating Dendritic cells in lymphoid tissue

Furthermore, by microscopic examination we found that CD1a+ expressing cells were localized in the extrafollicular area in tonsils where the DC-T cell interaction occurs. There, DCs form clusters with antigen-specific T cells, creating a microenvironment in which immunity can develop (Ingulli et al., 1997). Our results showed that the initial significant increased incidence of CD1a+ DCs was highly reduced after one year of HAART therapy. This may indicate that the treatment resulted in reduced influx of DCs with capacity to phagocytose and present newly formed HIV-1 antigens to naive T cells. DCs have an important role in HIV-1 pathogenesis, delivering the virus to lymphoid sites and efficiently transmitting the virus to neighboring CD4+ T cells. Consistent with our data (prior to therapy) high incidence of DCs was recently found in HIV-1 infected tissues. This study demonstrated a distinct block in co-stimulatory molecule expression (CD80/CD86) on DCs in lymph nodes of patients both in acute and chronic phase of HIV-1 infection (Lore et al., 2002). The lack of adequate co-stimulation has been suggested to lead to a decreased ability to produce IL-2 from CD4+ T cells. Subsequently limited CD8+ T cell maturation (Barker et al., 1999). Thus, incomplete maturation or reduction in frequencies of DCs as a consequence of treatment may reduce this recruitment to LT and limit their capacity to generate HIV-1 specific CD4+ T cell responses.

Taken together, this study was evaluated the direct effects imposed by local HIV-1 replication on the immune system. Our findings indicated a predominant proinflammatory and Th1 cytokine expression profile in HIV-1 infected lymphoid compartments, which returned to a more resting state after HAART treatment. However, these results are obtained from a very limited number of biopsies of asymptomatic HIV-1 infected patients. Further studies with more patients are needed to examine cellular immune responses in HIV-1 infected tissues in more detail.

Impaired expression of cytolytic effector molecules expressed in CD8+ T cells in HIV-1 infected lymphoid tissue

In order to investigate why the immune response fails to prevent progressive immunodeficiency despite the high frequency of HIV-1 specific CD8+ T cells, we analyzed the expression of cytolytic effector molecules in the HIV-1 infected LTs. We hypothesized that a defect in the production or expression of cytolytic effector molecules in T cells and NK cells could result in persistence of HIV-1 replicating cells. We evaluated expression of perforin and grA in LT and peripheral blood isolated from patients with chronic HIV-1 infection. Expression of these cytolytic effector molecules was also measured in LT during acute EBV infection in order to compare their expression in the setting of a viral infection in which cellular immune reactions leads
We demonstrated the lack of perforin expression in LT from patients with chronic HIV-1 infection. In contrast, much higher levels of perforin- and grA-expressing cells were evident in LT from patients with acute infectious mononucleosis. A significant increase in CD8⁺ T cells was evident in the LT from HIV-1 infected patients. However, follicular destruction and CD8⁺ T cell depletion was evident in patients at the later stage of disease. Furthermore, two-color staining for perforin or grA revealed that >80% of perforin and grA granule expressing cells belonged to the CD8⁺ T cell lineage. It could be argued that the low perforin expression observed in the cohort study was due to impairment of CTL maturation. Phenotypic analysis of tetramer stained HIV-1 specific CD8⁺ T cells indicates that circulating viral-specific CD8⁺ T cells have been previously activated and belong to the memory phenotype (Altman et al., 1996; Ogg et al., 1998; Appay et al., 2000; Shankar et al., 2000; Chen et al., 2001). Differentiation to effector CTLs, which identify naïve CTLs versus effector CTLs, was shown to be associated with down-modulation of CD27 and CD28. The recently activated HIV-1 specific CD8⁺ T cells no longer expressed CD28, CD27, CD62L and CD45RA (Altman et al., 1996; Ogg et al., 1998; Appay et al., 2000; Shankar et al., 2000; Chen et al., 2001). Furthermore, HIV-1 tetramer⁺ cells were shown to be CD28 negative and CD27⁺ in most donors (Trimble and Lieberman, 1998; Appay et al., 2000; Shankar et al., 2000). These HIV-1 specific CD8⁺ cells did not express high level of perforin in blood from HIV-1 infected patients (Appay et al., 2000). Recent studies have shown that the HIV-1 specific cell pool consists of pre-terminally differentiated CD45RA⁻CCR7⁻ cells, which indicates a skewed maturation of HIV-1 specific memory CD8⁺ T cells (Champagne et al., 2001). HIV-1 specific CTLs have been observed as early as a few days following the onset of acute symptoms, in general before neutralizing antibody responses (Koup et al., 1994; Pellegrin et al., 1996). CTLs were shown to some degree to be responsible for the initial control of HIV-1 replication (Rowland-Jones and McMichael, 1995). Maturation into competent cytotoxic T cells may be blocked during the initial encounter with antigen because of defects or lack of co-stimulatory molecules in antigen presenting cells (Lieberman et al., 2001).

Moreover, degranulation of CD8⁺ T cells may be another explanation for low perforin content in our cohort study. This is unlikely since perforin and grA are co-localized to the same granules in the effector cytotoxic T cells and we demonstrated high frequency of grA-expressing cells in the same CD8⁺ cells, which were lacking perforin-expression. Consistent with this data, lack of perforin expression in HIV-1 specific CD8⁺ T cells was recently shown in LT from early stage (acute) of HIV-1 infection (Andersson et al., 2002). A relative reduction in the number of CD8⁺ T cells expressing perforin mRNA in LT in primary HIV-1 infected patients further suggest that low perforin in
granules may be due to maturation arrest and not degranulation (Andersson et al., 2002). We also found that CD8+ T cells expressing perforin mRNA was raised in HIV-1 infected LT after one year of therapy (unpublished observation). However, the cells expressing perforin were still few and constituted less than <0.05% of total cell pool. Altogether, these data revealed that CD8+ T cells in both early and chronic HIV-1 infection displayed low perforin expression, which might explain their inability to efficiently perform their task of killing HIV-1 infected cells.

The induction of the apoptotic process is dependent upon the presence of perforin in conjunction with grA and granzyme B (Tenner-Racz et al., 1993; Bochan et al., 1994; Rukavina et al., 1998). The quantification by in situ image analysis revealed significantly higher expression of grA-positive cells in all stage of HIV-1 infection compared to perforin-positive cells in LTs. Our study indicated that at sites of HIV-1 replication a significant upregulation of grA expression occurs within single CD8+ T cells but these cells showed limited expression of perforin. Could this dissociation between grA and perforin expression contribute to impaired cytotoxic T cell activity at sites of viral replication? Further experiments need to be carried out regarding the dissociation between grA and perforin expression in HIV-1 specific CD8+ T cells.

We hypothesized that the local release of HIV-1 proteins could be involved in CD8+ T cells failing to control HIV-1 replication. Extracellular accumulation of HIV-1 proteins such as Tat and Nef, in the absence of neutralizing antibodies, has been shown to upregulate the production of CC-chemokines, IL-1, TNF-α and IL-6 which can in turn induce macrophage-DC and naïve T-cell activation (Lafrenie et al., 1997; Nath et al., 1999; Swingler et al., 1999). Furthermore, Tat can downregulate HLA class II at the surface of HIV-1 infected cells (Kanazawa et al., 2000). On the other hand, Nef downregulates expression of HLA-A and B molecules, but not HLA-C or HLA-E that may impair the recognition of HIV-1 infected cells by CD8+ T cells (Cohen et al., 1999). Analyses using genetically modified cytotoxic T cell clones that do not require MHC class I-presented antigen showed that diminished antigen-presentation might be a mechanism for impaired cytotoxic activity (Yang et al., 2002).

Downregulation of perforin expression in vitro

It is difficult to explain why impaired perforin production occurs in an environment of upregulated Th1 cytokines (IL-2, IFN-γ, IL-12) and β-chemokines (Andersson et al., 1998; Behbahani et al., 2000). As mentioned above, CD8+ T cells have emerged as important players in the control and protection of HIV-1 infection by direct killing of infected cells. However, why CD8+ T cells fail to clear HIV-1 and what mechanisms HIV-1 has evolved to escape from this defense are not fully understood (Lieberman et al., 2001). We hypothesized that extracellular HIV-1 proteins may suppress perforin
expression by CTL. We demonstrated that Nef, an early multifunctional regulatory HIV-1 and SIV protein, might be involved in the downregulation of perforin in CD8+ T cells. Incubation of PBMCs from HIV-1 seronegative donors for 4 hours with recombinant rNef_{IIIb} showed a significant reduction of perforin expressing cells as measured at the single cell level by in situ imaging. Furthermore, consistent inhibition of SEA-stimulated perforin expression occurred in the presence of Nef. These findings suggest that exogenous Nef may impair the induction of the cytolytic machinery in activated CD8+ T cells.

It was previously demonstrated by using CD4+ T cells acutely infected with nef-deleted or nef -competent virus that Nef plays a role in the impairment of cytotoxic T cell activity (Collins et al., 1998). Cells infected with the nef-deleted virus were eliminated after exposure to cytotoxic T cells, in contrast to nef-competent HIV-1 infected cells, which were cleared less efficiently (Collins et al., 1998). In the present report, reduced effector molecule expression was induced in freshly isolated cells after short exposure to exogenous Nef. Because T cell clones and cell lines grown in high concentrations of IL-2 have artificially elevated levels of perforin expression compared to CD8+ T cells directly analysed ex vivo, the effect of Nef on CD8+ T cell perforin may have been overlooked in the past studies with T cell clones and cell lines.

We also studied if Nef-mediated perforin downregulation was a common attribute to several HIV-1 isolates. Four different Nef isolates displayed remarkable differences in their ability to affect perforin expression. Recently, it has been reported that variations in amino acid sequences isolated from patients ranged up to 30% even within the same type of HIV-1 strain (Kang et al., 1998).

The most fascinating aspect of the Nef protein structure is its flexible region, which can mediate many functions (Geyer et al., 2001). In order to identify the structural modification in HIV-1 isolates and recombinant Nef used in our study, sequence alignments of the different proteins were used. The alignment of the Ba-L and rNef_{IIIb} sequences, which result in perforin downmodulation, display a similar sequence from residues 1-190, while the truncated HIV-1_{IIIb} sequence terminates at residue 123 and the ELI strain nef has numerous non-conservative amino acid substitutions in the region between residues 144-194. The alignment of the sequences of Nef molecules used in our study revealed the importance of the C-terminal region in the downregulation of perforin expression. Using a model of full-length Nef (Geyer et al., 2001), formed by the assembly of various Nef portions that have been already structurally determined, we found three main regions differ between perforin downregulating and non-downregulating (Grzesiek et al., 1996; Lee et al., 1996; Arolf and Baur, 2001; Geyer et al., 2001). Two of these were located on the so-called disordered 148-178 loop and
the third is localized in the core domain of Nef. The disordered loop (residues 148-178) plays an important role in Nef internalization (Geyer et al., 2001).

However, this study did not provide a mechanism for the inhibition of perforin expression by Nef. The effect of Nef may be indirect. One intriguing possibility is that Nef induces secretion of soluble factors involved in regulation of perforin expression (Smyth et al., 1991; Federico et al., 2001) or at least is dependent upon the presence of antigen presenting cells. This was suggested by our finding (unpublished data) that monocyte-depleted PBMCs failed to show any modulation of perforin while monocytes pre-treated with rNef could confer perforin downregulation in CD8+ T cells. In vitro experiments have revealed Nef internalization in human monocytes (Alessandrini et al., 2000) which in turn was proposed to alter the pattern of soluble factors released by monocytes and macrophages (Federico et al., 2001). Extracellular Nef may affect monocytes that consequently induce production of other factors involved in reduction of perforin expression in CD8+ T cells. Studies have shown that perforin reduction by the Nef HIV-1 protein may be a consequence of increasing TGF-β synthesis (Smyth et al., 1991; Simmons et al., 2001) or IL-10 (Brigino et al., 1997). Expression of other soluble factors, particularly TGF-β needs to be further studied. Previously, the role of extracellular Nef and its interaction in calcium and calmodulin pathway has been reported (Brigino et al., 1997). This may lead to change of calcium levels in the cells and modify perforin release from the granules of CD8+ T cells. Furthermore, we showed that macaques infected with nef-deleted SIVmac239 had high perforin expression in lymphoid tissues compared to macaques infected with wild type SIV. Although SIVΔ nef-mac239 replication is attenuated in vivo, it has a similar replicative capacity to wild-type SIV in T cells that were co-cultured with mature DCs (Messmer et al., 2000). The observed high perforin expression in nef-deleted SIVmac239 was in agreement with a recent study analysing lymphoid tissue (Stahl-Hennig et al., 2002). The relatively low perforin expression in macaques infected with wild-type virus was however not supported (Stahl-Hennig et al., 2002) but it is in agreement with our previous studies analysing lymphoid tissue from HIV-1 infected individuals (Andersson et al., 1999; Andersson et al., 2002). Sequence analyses of the viral sub-clones used may aid to resolve this apparent discrepancy.

The ability of Nef to down-regulate perforin and grA expression, may be one piece in the puzzle of explaining why CD8+ T cells fail to control HIV-1 replication. Not only does Nef interfere with antigen presentation on infected cells, it may also interfere with the ability of the immunoreactive cells to deliver the lethal hit. Targeting the 148-178 loop of Nef may be useful in developing new therapies to augment the cellular immune response to the virus.
A possible mechanism associated with HIV-1 vertical transmission

It is apparent that HIV-1 can be transmitted from mother to child throughout pregnancy. To examine transmission from mother to child we investigated the role of placenta. The placenta provides a barrier between the maternal and fetal circulation, but limited attentions has been given to its role in the transmission of HIV-1. The protective role of the placenta during gestation was suggested by the finding that caesarian sections reduce the risk of transmission of human HIV-1 virus from mother to child (Kind et al., 1998). Characteristics of virus itself may also influence maternal transmission of HIV-1. Recent evidence points to the importance of chemokine receptors on the surface of lymphocytes (Carrington et al., 1999; Kostrakis et al., 1999). In addition, selective pressure in the placenta during HIV-1 infection could be potentially involved in virus selection from mother to child. The CCR5 chemokine receptor is required for R5-using HIV-1 strains to infect target cells and these are supposed to be predominantly transmitted from mother to infant (van’t Wout et al., 1994). Previously, Patterson BK et al have shown that chemokine receptor expression on immune cells is regulated by Th1 and Th2 cytokines (Patterson et al., 1998; Patterson et al., 1999). Several studies support the hypothesis that production of IL-4 and IL-10 may permit allograph tolerance (Piccinni et al., 1998) and maintenance of pregnancy (Chaouat et al., 1996; Deeyes and De Bruyere, 1997). However, HIV-1 infection may create a milieu that supports increased risk of spontaneous abortion in HIV-1 infected women (Langston et al., 1995). Our data showed that placenta from TNT women maintained a normal Th2 cytokine milieu whereas TT women expressed Th1 cytokines. The mechanism underlying the shift from a Th2 cytokine dominance to a Th1 in TT placentae is not clear. However, the TT placental tissues studied in our cohorts were associated with chorioamnionitis or villitis, which is regularly found in placentae of HIV-1 infected women. Because the Th2 cytokine in TT placentae did not result in spontaneous abortion, a shift in cytokine expression from Th2 to Th1 may likely to be a late event in the transmitting women.

Quantification by in situ imaging in placenta tissues indicated that Th2 expressing cytokines milieu in TNT women drove the expression of CXCR4 and resulted in a normally low CCR5: CXCR4 ratio in placental tissue (paper V). Moreover, the CCR5: CXCR4 ratio was significantly increased in the TT placenta along with increased number of IL-2 mRNA and protein expression. For the first time we described the role of CCR5 expression levels and its linkage to cytokine expression in placenta sections which could be involved in selection for vertical transmission. It is noteworthy that observed up-regulation of CXCR4 could also be mediated by progesterone
(Patterson et al., 1998). Morphological examination revealed that CCR5 and CXCR4 were expressed on placental macrophages and lymphocytes but not in trophoblasts.

To confirm selective utilization of chemokine receptors by HIV-1 in infected tissues we performed a sensitive in situ hybridization along with immunophenotyping of these receptors. Simultaneous immunofluorescence/ultrasensitive in situ hybridization for HIV-1 gag-pol mRNA revealed that HIV-1 almost exclusively infects HIV-1 CCR5-expressing cells in placentae from TT, whereas HIV-1 infects predominantly CXCR4-expressing cells in TNT placentae. A statistically significant increase in the total number of productively infected cells and in the number of viral particles produced per cell was demonstrated in TT (214 copies/cell) placentae compared to TNT (78 copies/cell). These data suggested that the Th2 cytokine milieu and concomitant low CCR5: CXCR4 ratio may prevent HIV-1 replication in the placenta.

Characterization of a novel HIV-1 inhibitory factor

A second hypothesis we favored was based on findings from previous work; up-regulation of IL-4 in low viral load TNT that concerns the possibility of prevention of HIV-1 replication in the placenta. Previous reports have shown that progesterone promotes the development of T-helper cells that produce IL-4 and IL-10 cytokines (Piccinni et al., 1995). Studies in HIV-1 transgenic mice have demonstrated that pregnancy-related hormone human chorionic gonadotropin (β-hCG) exert a HIV-1 inhibitory effect (De et al., 1997). However, subsequent studies proposed that an unidentified factor associated with β-hCG inhibited HIV-1 replication (Lunardi-Iskandar et al., 1998). LIF is well characterized for its role in blastocyst implantation (Stewart et al., 1992) and maintenance of pregnancy (Piccinni et al., 1998). However, LIF is constitutively expressed throughout normal pregnancy in the placenta, but not in the peripheral blood of pregnant women. LIF knockout mice were unable to implant blastocysts resulting in infertility (Stewart et al., 1992). The receptor for LIF (LIF-βR) is thought to play a role in trophoblast growth and differentiation in the human placenta. In human placenta, cells of the trophoblast lineage express LIF-βR and the major site of LIF mRNA expression in leukocytes is the maternal decidua (Sharkey et al., 1999). Moreover, IL-4 production up-regulates the production of LIF by T cells.

We demonstrated a significant elevation of IL-4 and IL-10 mRNA and protein relative to IL-2 mRNA and protein expression (p<0.02) in TNT placentas. These data were further supported in paper VI with findings of upregulation of Th2 cytokines, particularly IL-4 (mRNA and protein) and its linkage to LIF production (mRNA and protein) in TNT placentae as quantified by in situ image analysis. We found upregulation
of LIF mRNA and protein expression which were significantly elevated in TNT placenta compared with TT placenta. In humans, LIF is secreted from the endometrial epithelium (Senturk and Arici, 1998), CD16·CD56 †NK cells (Saito et al., 1993) and Th2 T cells (Piccinni et al., 1998). However, microscopic examinations in our study demonstrated that LIF was expressed in placental lymphocytes, decidua and endothelial cells. Further investigation is needed to identify the phenotypes of LIF-expressing cells in placental tissue.

The following experiments were performed to address the question of whether LIF production in TNT placenta could inhibit HIV-1 DNA or mRNA expression. Quantitative real time RT-PCR analyses showed a decrease in HIV-1 mRNA and DNA in placenta tissue from TNT women compared with placenta tissue from TT women. These findings supported the possibility of LIF of HIV-1 suppressive activity within the placenta. Using quantitative real-time RT-PCR to detect early (LTR-U5/R) and late (LTR-U3/gag) reverse transcripts for unspliced gag–pol, we determined the possible site of inhibitory activity of LIF in vitro. Based on this analysis of specific HIV-1 gene products, LIF-induced HIV-1 suppression was shown to take place before reverse transcription. This inhibitory site was distinct from CAFs anti-viral activity produced from CD8+ T cells. As has been demonstrated (Mackiewicz et al., 1995), CAF inhibits HIV-1 replication at the level of transcriptions whereas viral entry and reverse transcription are unaffected. After binding to gp130-LIFRβ receptor heterodimer (Davis et al., 1993), LIF upregulates Janus kinase (JAK), which ultimately phosphorylates tyrosine residues on the STAT family of transcription factors (Fujio et al., 1997). We could also demonstrate that inhibition of HIV-1 replication was dependent on expression of gp130-LIFRβ on the surface of HIV-1 susceptible cells without involving co-receptors. Further studies are necessary to elucidate the exact mechanism of the LIF-mediated inhibition in HIV-1 infected cells. Moreover, inhibitory experiments demonstrated that LIF could inhibit HIV-1 replication with at least 1000-fold less concentration than β-chemokines in PBMCs and explant cultures (RANTES and MIP1α/β) (Cocchi et al., 1995). The identification of LIF as an inhibitor of HIV-1 replication may lead to the development of new anti-HIV-1 treatment.
CONCLUDING REMARKS

Lymphoid compartments are major sites of HIV-1 replication. However, despite potent activation of both cellular and humoral immune responses, viral replication persists. Our data demonstrated an extensive proinflammatory activation and vigorous Th1 type cytokine but low Th2 cytokine expression in chronically HIV-1 infected tonsil and lymph nodes. In addition, we studied the effects of HAART on immune activation within LTs. HAART treatment resulted in a significant reduction of proinflammatory as well as Th1 cytokine expression in the LT. However, the pool of HIV-1 DNA containing cells remained virtually unchanged more than one year of HAART therapy. Moreover, the initial increased numbers of CD8$^+$ T cells were normalized by HAART treatment. The normalized immune activation in LT after HAART may be beneficial for the restoration of functional immune response and may also facilitate immune reconstitution by reducing the virus-driven immune activation. The combination of anti-retroviral therapy and immunological interventions such as performing immunizations with HIV-1 candidate vaccines may be feasible to augment HIV-1 specific immune responses strong enough to control viral replication even in the absence of HAART (Autran and Carcelain, 2000). Based on these findings, we hypothesized that the lack of elimination of HIV-1 infected cells was due to impaired cytolytic effector function in activated CD8$^+$ T cells. Killing of infected target cells can be mediated by either Fas-L/Fas interaction or perforin/grA mediated events. CD8$^+$ T cells in HIV-1 infected LT were characterized by significant upregulation of Fas-L (unpublished observation) and grA expression, while perforin expression was not concomitantly induced. This was in contrast to CD8$^+$ T cells obtained from acutely EBV infected patients, which revealed upregulation of both perforin and grA. Our data indicated a defective cytolytic activity in CD8$^+$ T cells at local sites of HIV-1 replication within LT. To elucidate the molecular mechanism involved in inhibition of perforin expression in HIV-1 infection, we set up short term in vitro cultures using freshly isolated peripheral blood cells from HIV-1 seronegative donors. Exogenous addition of Nef protein was found to mediate downregulation of perforin in CD8$^+$ T cells. Sequence alignments and molecular modeling of different Nef proteins suggest that the so-called disordered loop corresponding to residues 148-178 is a likely contributor to the observed Nef-mediated downregulation of perforin expression. However, this study did not provide a mechanism for the inhibition of perforin expression by Nef. The effect of Nef may be indirect. One intriguing possibility is that Nef induces secretion of soluble factors involved in regulation of perforin expression or at least is dependent upon the presence of antigen presenting cells. Future studies will be aimed to elucidate the molecular mechanism behind Nef-mediated downregulation of perforin.
Furthermore, the immunoregulatory role of cytokines on chemokine receptors involved in vertical transmission of HIV-1 was investigated in placental tissues. Our study indicated that expression of CCR5 and CXCR4 in placental tissues was associated with differing cytokine milieu in TNT and TT women. The chemokine receptor repertoire was consistent with an upregulation of IL-4 and IL-10 expression on TNT placenta compared to TT. We concluded that upregulation of CCR5 and Th1 cytokine in TT placenta was associated with HIV-1 vertical transmission. Furthermore, we found an association between Th2 type of cytokine expression and LIF production in placenta from TNT tissue. LIF is an important factor for blastocyst implantation and maintenance of pregnancy. LIF was shown to inhibit HIV-1 replication in a tropic independent manner. This inhibition was dependent upon the expression of LIF-Rβ (gp130) on the surface of HIV-1 susceptible cells. LIF upregulation in placenta from TNT HIV-1 infected women support our hypothesis that LIF might be a potent HIV-1 suppressive molecule and may lead to the development of new anti-HIV-1 treatment.
ACKNOWLEDGEMENTS

I would like to express my gratitude and appreciation to all of you who in one way or another have contributed to this work, especially to:

My warmest thanks to my supervisor Anna-Lena Spetz, for your support and belief in me, for sharing both your scientific knowledge and never ending enthusiasm for research, for your hard criticism which was important for me and for always helping to make the best of things, both scientifically and otherwise.

To my co-supervisor Jan Andersson for bringing me to the Lab, introducing me to the field of Immunology (especially cytokines and chemokines) and for your support.

To Carl-Eric Nord, head of the Division of Clinical Bacteriology, F-82, for the enjoyable and fruitful years I have had at the division.

To Thomas E Fehniger, my former co-supervisor, for his interest and knowledge in science and for his kindness in sharing his expertise of microscopy with me.

To all my co-authors especially, Bruce Patterson, Children’s Memorial Hospital, Chicago for the wonderful collaboration in the vertical transmission field.

Alan Landay & Anders Sönnerborg for invaluable assistance in recruiting patients and providing tissue samples. All patients for their biopsies and blood donation, without which this work could never have been carried out.

To my collaborators and friends in the CIM, Annelie T for her constant care (you are special!), Karin L, Karin Å, Anna S, Ahmed A, Maha H, Pontus T, Nahla I, Jessica D, Ulrika J, Máire Q, Gail M, Héran Q (for flow cytometry expertise and help), Jenny, Jakob and Ulrika R (former members of the group), Lilian JW (new member), Lena and Annette (for always being in the Lab and keeping it in order). Your care and friendship made the science more enjoyable and fun. What we have is unique and I hope it will continue.

To Anna Norby for her support.
To Laura for always being helpful. I miss our discussions about my favorite protein, perforin.

To Marianne G, for assistance and advice regarding my economical issues and her graphic expertise. Also to Jans secretaries Gunilla T and Gunille B.

The staff and Ph.D. students (including my roommates, Margareta, Herin), Oonogh, Axana, Anna, Nagwa, and others at the division of Clinical Bacteriology for all the nice lunchtimes together.

To Ulla, at the Division of Clinical Virology for help and guidance in the safety lab during the years.

To my beloved father and in memory of my mother who always encouraged me with their warm generous support and love. To know you and have you as parents was the best inspiration in my life. Words cannot express my feelings for you. To my fathers’ wife Azar, who has taken care of my father and for her warm and friendly hospitality, which makes our times enjoyable when we are there.

To my sisters and my beloved nephews, whom I cherish very much and for providing a warm and loving atmosphere during my time in Iran.

Finally, to my beloved husband whom without whose I could not have come so far. You always believed in me and supported me during *almost eight years* as a student. Thank you! My son, Sorena (kriagar), who has being patient with me when I had so much to do.

This study was supported by grants from the Swedish Medical Research Council (K2001-0X-10850), The Swedish Cancer Society (2490-B00), National Institute of Health (U01 AI41536), Swedish Physicians against AIDS Research Found, Bert von Kantzow Foundation and Axel Johnson Foundation.
REFERENCES

transmembrane domain receptor involved in fusion and entry of T-cell-tropic human

Med 43, 227-35.

Biberfeld, P., Ost, A., Porwit, A., Sandstedt, B., Pallesen, G., Bottiger, B., Morfeld-Mansson, L. and

Biswas, P., Poli, G., Kinter, A.L., Justement, J.S., Stanley, S.K., Maury, W.J., Bressler, P., Orenstein,
immunodeficiency virus in persistently infected promonocytic cells (U1) and redirects
the production of virions to intracytoplasmic vacuoles in phorbol myristate acetate-differentiated

production of multiple human cytokines at the single-cell level using image analysis. J Leukoc
Biol 59, 287-95.

Bjornadal, A., Deng, H., Jansson, M., Fiore, J.R., Colognesi, C., Karlsson, A., Albert, J., Scarlatti,

Bleul, C.C., Farzan, M., Choe, H., Parolin, C., Clark-Lewis, I., Sodroski, J. and Springer, T.A.
(1996) The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1

CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc

Bochan, M., Hommel-Berrey, G and Brahmi, Z. (1994) Target cell-directed degradation of perforin
mRNA in CTL: lack of correlation with loss of protein and lytic ability. Mol Immunol 31, 401-
10.

Bonecchi, R., Bianchi, G, Bordignon, P.P., D’Ambrosio, D., Lang, R., Borsatti, A., Sozzani, S.,
chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s.

human thymic organ culture model for the study of HIV pathogenesis. AIDS Res Hum
Retroviruses 11, 1073-80.

cytotoxic T-lymphocyte activity associated with control of viremia in primary human
immunodeficiency virus type 1 infection. J Virol 68, 6103-10.

cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of

M.B. (1998) CD40 ligand-mediated interactions are involved in the generation of memory
CD8(+) cytotoxic T lymphocytes (CTL) but are not required for the maintenance of CTL memory

Centers for Disease Control, CDC. (1993) http://wonder.cdc.gov/wonder/prevduide/m0018871/entire.htm 1. In:

Kanazawa, S., Okamoto, T. and Peterlin, B.M. (2000) Tat competes with CHTA for the binding to P-TEFb and blocks the expression of MHC class II genes in HIV infection. Immunity 12, 61-70.

84

