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ABSTRACT

Experimental autoimmune neuritis (EAN) and arthritis are CD4" T cell mediated autoimmune
animal models for the study of immunomodulation and immunopathogenesis of human Guillain-
Barré syndrome (GBS) and rheumatoid arthritis (RA). Inflammatory cell infiltration and cytokine
production in the target organs are characteristic features of both diseases, suggesting a role of
cytokine production in the pathogenesis.

A significant reduction in the incidence and severity of EAN and a delayed time of onset of EAN
were found in IL-12 deficient (IL-127), as compared to wild type mice. The clinical symptoms
were associated with a reduced IFN-y and TNF-a, while enhanced IL-4 production in the sciatic
nerve as well as significantly suppressed levels of anti-PO peptide IgG2b antibody in serum
suggested that [L-12 has a major role in the initiation, enhancement and perpetuation of
pathogenic events in EAN by promoting a Thl cell-mediated immune response and suppressing
the Th2 response. These results demonstrate that [L-12 may play a critical role in the
pathogenesis of EAN.

Tumor necrosis factor receptor I (TNFR ) is thought to mediate the majority of TNF activities.
When administered soluble TNFR I (sTNFR I) to mice immunized with PO peptide the severity
and the duration of EAN were decreased. This was accompanied in vitro by a marked reduction
in antigen-specific T cell proliferation and IFN-y synthesis by spleen cells in STNFR I treated
mice. Immunohistochemical analysis revealed a strong decrease in the number of infiltrating
macrophages, CD4" T cells and CD8" T cells in the sciatic nerve. These data directly
demonstrate a pivotal role for TNF in the development of EAN and also suggest that STNFR I
may have a therapeutic potential in human GBS.

CC chemokine receptor 5 deficient (CCR5”") mice showed a significant reduction in the
incidence of collagen-induced arthritis in comparison to wild-type (CCR5™) mice. However, the
severity score once they developed arthritis showed clinical features similar to wild-type mice.
There were significantly lower levels of antibodies against CIl in CCR5™ mice compared to
wild-type mice, especially 1gG2a and IgG2b, and obviously higher levels of IL-10 in CCR5™
mice. There was overproduction of MIP-1p in serum and culture supernatant of spleen cells in
CCRS deficient mice after CII-immunization that might partly have contributed to the severity of
arthritis. Our results indicate that CCRS plays a role in the pathogenesis of arthritis, but its role
can probably be substituted by other factors.

Changes of glia and cytokine expression were found in the spinal cord of adjuvant-induced
arthritic (AIA) rats. Macroglia and MHC class II immunostaining were enhanced, and the
numbers and immunostaining intensity of astrocytes expressing GFAP were increased. Using in
situ hybridization and immunohistochemical methods, both mRNA and protein levels of IL-1p,
[L-6 and TNF-a were significantly increased in the spinal cord of arthritic rats. Higher levels of
cytokine expression were noted in reactive astrocytes and microglia.
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2. ABBREVIATIONS

Ab antibody

AIA adjuvant-induced arthritis

APC antigen presenting cell

AT-EAN adoptive transfer EAN

BNB blood-nerve barrier

BPM bovine peripheral myelin

CCRS5 C-C chemokine receptor 5

CD cluster of differentiation

CFA complete Freund's adjuvant

CIA collagen-induced arthritis

CIl type II collagen

CNS central nervous system

CSF clony stimulation factor

EAE experimental autoimmune encephalomyelitis
EAN experimental autoimmune neuritis
ELISPOT enzyme-linked immunospot
ELLSA enzyme-linked immunosorbent assay
GBS Guillain-Barré syndrome

I[FA incomplete Freund's adjuvant

IFN interferon

IL interleukin

IP-10 interferon-y inducible protein 10
mAb monoclonal antibody

MCP-1 monocyte chemoattactant protein 1
MHC major histocompatibility complex
MIP macrophage inflammatory protein
MNC mononuclear cell

mRNA messenger ribonucleic acid

MS multiple sclerosis

NK natural killer cell

p.i. post immunization

PB phosphate buffered saline

PHA phytohemagglutinin

PNS peripheral nervous system

PT pertussis toxin

RA rheumatoid arthritis

SCID severe combined immunodeficient
SD standard deviation

Th T helper

TNF tumor necrosis factor

TNFR tumor necrosis factor receptor
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3. INTRODUCTION

Autoimmune diseases constitute one of the main unsolved problems in human clinical medicine.
The reason is that their etiology and pathogenesis are still not sufficient towards specify therapy.
Autoimmune diseases are considered to be pathological consequences of immune reactions
directed towards autologous antigens. T lymphocytes would appear to be important for this
immunoregulatory effect. Cytokines seem to have a key role in activated autoreactive T cells by
providing the necessary signals to turn on/off T cell specific reactions to self-antigens. A widely
held belief is that, when the cytokine profile of autoreactive T cells shifts toward an
inflammatory T helper (Th) 1 type, the result is pathogenicity and autoimmune diseases (Liblau
et al., 1995; Tian et al., 1998). The balance of functionally distinct T-cell subsets between Th1
and Th2, separated on the basis of their cytokine expression has a direct relevance to
autoimmune disease. The Thl cells are characterized by secretion of interferon-y (IFN-y), and
they mainly promote cell-mediated immunity able to eliminate intracellular pathogens, and the
synthesis of complement-fixing antibody isotypes. Conversely, the Th2 cells selectively produce
interleukin (IL)-4 and are involved in the development of humoral immunity protecting against
extracellular pathogens. An efficient immune response rests on a balance between the two cell
types. Any alteration of this equilibrium would affect the quality of the immune response (Fig.1).
Some studies suggest that Guillain-Barré syndrome (GBS) and rheumatoid arthritis (RA) are
“Thl-associated’ diseases (Miossec and van den Berg, 1997; Hughes et al., 1999; Kiefer et al.,
2001). Although, the factors that initiate and sustain Th1 responses in both diseases are largely
unknown, it has become increasingly clear that a series of produced cytokines play a central role

in disease progression (Falcone and Sarvetnick, 1999).

3.1. Cytokines and cytokine network

Cytokines are soluble proteins. A variety of cells can secrete cytokines, such as macrophages, T
helper cells, B cells, dendritic cells, endothelial cells, and natural killer (NK) cells, etc.
(Oppenheim and Feldmann, 2000). The cytokines can be classified into five groups that are
either functionally related or are expressed by common cell types. These are the interleukins
(ILs), the interferons (IFNs), the clony stimulation factors (CSFs), the chemokines and the tumor
necrosis factor (TNF) family. Cytokines generally function as intercellular messenger molecules

that evoke particular biological activities after binding to a receptor on a responsive target cell.
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The binding of a cytokine to its receptor induces numerous physiological responses including the
development of cellular and humoral immune responses, induction of the inflammatory response,
regulation of hematopoiesis, control of cellular proliferation and differentiation, and promotion
of wound healing (Oppenheim and Feldmann, 2000).

Over 150 cytokines have been identified and cloned (Oppenheim and Feldmann 2000).
Cytokines are never expressed singly by a cell or tissue. Instead, an activated cell produces a
wide spectrum of cytokines. Similarly all cells express receptors for many cytokines. Unlike
hormones that are expressed constitutively, most cytokines are expressed transiently after an
inducing stimulus. One of the most potent signals for inducing cytokines is other cytokines, and
so the concept has arisen of a cytokine network in which cytokines induce or inhibit each other
(Feldmann et al., 1996b). This accounts, in part, for the complexity of cytokine expression found
at some diseased tissue sites such as the rheumatoid synovium. For example, it was found that
anti-TNFa antibody reduced the production of IL-1, IL-6, IL-8 in the rheumatoid synovium,
whereas IL-1 receptor antagonist reduced the production of IL-6, IL-8, but not of TNFa, which
led to the notion of a network or cascade in these tissues. How this complex mixture of
molecules, interacting with multiple cells is currently only partly understood, but it is becoming
evident that deregulation of the cytokine network contributes in a major way to the pathogenesis
and pathology of autoimmune diseases (Feldmann et al., 1996b; Gold et al., 1999; Falcone and
Sarvetnick, 1999)

3.2. The Th1/Th2 dichotomy

Mosmann et al. first introduced this concept in 1986. They found that repeated antigen-specific
stimulation of murine CD (cluster of differentiation) 4 Th cells in vitro resulted in the
development of restricted and stereotyped patterns of cytokine secretion profiles in the generated
T cell populations (Mosmann et al., 1986). Based on their distinctive cytokine secretion pattern
and effector functions, CD4" T cells have been classified into two major types. Thl cells
predominantly secrete IL-2 and IFN-y, and are primarily associated with cellular immunity and
class switching to the IgG2a isotype, whereas Th2 cells produce predominantly IL-4 and IL-5,
and are mainly involved in humoral immunity and class switching to IgG1 and IgE (Mosmann

and Coffman, 1989; Paul and Seder, 1994).
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Th1 cells develop preferentially during infections with intracellular bacteria. Type 1 cytokines,
associated primarily with Thl responses, include IFN-y, IL-2, IL-12, IL-15 and TNF. They
activate macrophages to produce reactive oxygen intermediates and nitric oxide (NO), stimulate
their phagocytic functions and enhance their ability for antigen presentation by up-regulation of
major histocompatibility complex (MHC) class II molecules. Moreover, Th1 cells promote the
induction of complement-fixing, opsonizing antibodies and of antibodies involved in antibody-
dependent cell cytotoxicity, for example, IgG1 in humans and IgG2a in mice. Consequently, Th1

cells are involved in cell mediated immunity (Mosmann et al., 1986; Abbas et al., 1996).

Mast cell/
basophil

Macrophage

Rheumatoid arthritis Allergic diseases
Guillain-Barré syndrome Asthma
Multiple sclerosis

Fig.1. The Th1/Th2 cytokines balance and diseases

Th2 cells predominate after infestations with gastrointestinal nematodes and helminth. Type 2
cytokines, associated mainly with Th2 responses, include IL-5, IL-6, IL-10 and IL-13, in
addition to IL-4 (Mosmann et al., 1986; Del Prete et al., 1991). They provide potent help for B
cell activation and immunoglobulin class switching to IgE and subtypes of IgG that do not fix
complement, for example, IgG2 in humans and IgG1 in the mouse. Th2 cells mediate allergic
immune responses and have been associated with down-regulation of macrophage activation

(Mosmann et al., 1986; Abbas et al., 1996). However, in contrast to the situation in mice, these



Lei Bao

cytokines in humans are not confined to the Th2 subset but can also be produced by Th1 cells

(Abbas et al., 1996).

Several factors, including the dose of antigen, the type of antigen-presenting cell (APC) and
MHC class II haplotype, influence the differentiation of naive CD4" T cell into specific Th
subsets. However, the best characterized factors affecting the development of Th subsets are
cytokines themselves (Paul and Seder, 1994). Importantly, Th1 and Th2 cells antagonize each
other (Fig.2). For instance, the generation of Thl cells can be effectively blocked by high
concentrations of [L-4, even in the presence of [L-12 (Hsieh et al., 1993). At the level of effector
functions, IL-4 antagonizes much of the pro-inflammatory effect of IFN-y and inhibits the
proliferation of Thl cells. Conversely, IFN-y secreted by Thl cells blocks the proliferation of
Th2 cells (Falcone and Sarvetnick, 1999).

IL-2
IFN-y pTH
TNF-B lgG2a Ab
X
\
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Fig.2 Diagram of the prominent regulatory interactions of cytokines between Thl and Th2 cells

3.2.1. Thl cytokines

IFN-y

Production of IFN-y is the hallmark of Th1 cells. IFN-y is produced mainly by activated T cells
and NK cells and has receptors on virtually all cells of the human body. Thus, IFN-y can exert a

multitude of biological functions. The ability of IFN-y to activate endothelial cells and
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macrophages is the basis for defining IFN-y as a proinflammatory cytokine. It increases the
expression of MHC class 11 molecules and thereby enhances the cells’ ability to present foreign
antigens. IFN-y production by T cells can be elicited by various stimuli, such as trauma or
antigen-specific activation during infections or autoimmune diseases. Nevertheless, the potent
pro-inflammatory activities of IFN-y combined with its inhibitory potential for the development
of Th2 cells make IFN-y a central mediator of the signs and symptoms of chronic autoimmune

inflammation (Boehm et al., 1997).

IL-12

IL-12 is a pleiotropic cytokine that is produced mainly by APC, such as dendritic cells,
monocytes/macrophages and B cells in response to bacterial products and immune signal
(Trinchieri, 1995). It enhances NK-mediated cytotoxicity and induces IFN-y production by NK
cells and T lymphocytes (Wolf et al., 1991). IL-12 plays a key role in promoting Th1 immune
responses, as demonstrated both in vitro (Manetti et al., 1993) and in vivo (Sypek et al., 1993).

IL-12 plays an important role in the pathogenesis of some autoimmune diseases that are
associated with aberrant Th1 activity. For example, antibodies against IL-12 have beneficial
effects in experimental autoimmune diseases that are Thl-driven, such as experimental
autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS) in humans (Leonard
et al., 1995) and 2,4,66-trinitrobenzene sulphonic acid-induced chronic intestinal inflammation in
mice, a model for human inflammatory bowel disease (Neurath et al., 1995), murine collagen-
induced arthritis (CIA) (Butler et al., 1999), Lyme arthritis (Anguita et al., 1996). Administration
of IL-12 induced severe arthritis and increased the incidence of CIA (Germann et al., 1995),
accelerated the onset of diabetes in non-obese diabetic mice (Trembleau et al., 1995) and
increased inflammation and demyelination in chronic experimental autoimmune neuritis (EAN)
in Lewis rats (Pelidou et al., 2000a). Thus, IL-12 appears to exert multiple immunoregulatory

activities during the inflammatory and immune response.

TNF and TNF receptors (TNFRs)
TNF was initially characterized to have an antitumor activity and is a pleiotropic
proinflammatory cytokine, mainly produced by activated macrophages and T cells, which

mediates a wide range of biologic functions (Vassalli, 1992; Tracey and Cerami, 1993). TNF has
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been found to play a pivotal role in serious acute or chronic inflammatory conditions and is
thought to be involved in the pathogenesis of autoimmune and inflammatory disease (Tracey and
Cerami, 1993). High levels of these molecules in body fluids and at sites of local inflammation
have been associated with inflammatory processes such as RA, GBS, diabetes, and MS (Vassalli,
1992; Tracey and Cerami, 1993; Ma et al., 1998; Feldmann and maini, 2001).

The biological effects of TNF are mediated by binding to two distinct cell surface receptors. The
receptor molecules are named according to their molecular weight as TNFR I (P55; about
55kDa) and TNF-R II (P75; about 75kDa) (Tartaglia and Goeddel, 1992; Smith et al., 1994).
Both TNFRs are expressed on various cells types especially on the cell surface of activated CD4
and CD8 positive T cell subsets (Ware et al., 1991). After cell activation by TNF, they are
cleaved by metalloproteinases and are found as soluble forms (STNFRs) in serum and body
fluids (Porteu and Nathan, 1990), which often function as TNF antagonists by competing with
membrane-bound TNFR for ligand both in vitro and in vivo (Kohno et al., 1990). These
receptors are thought to protect cells from TNF and to block the activity of this cytokine
following its release into the circulation (Van Zee et al., 1992, Hunger et al., 1997). The results
of some studies showed that STNFRs are potent inhibitors of EAE (Baker et al., 1994; Selmaj et
al., 1995a; b), autoimmune diabetes (Hunger et al., 1997), systemic lupus erythematosus
(Studnicka-Benke et al., 1996), RA (Mori et al., 1996; McComb et al., 1999) and sepsis (Van
Zee et al., 1992). Clinical trials with soluble TNFRs have demonstrated efficacy in human RA
(Moreland et al., 1996; Moreland et al., 1997; Weinblatt et al., 1999; Feldmann and Maini,
2001). However, treatment with Lenercept, a recombinant TNF receptor P55 immunoglobulin
fusion protein (STNFR-IgG P55), failed to show benefit in MS patients, who showed a
worsening of the disease (The Lenercept Multiple Sclerosis Study Group, 1999).

3.2.2. Th2 cytokines

IL-4

IL-4 is produced by activated T cells, mast cells, basopils, and eosinophils (Nelms et al., 1999).
Its main functions on the immune system are its dominant ability to direct T cell differentiation
into the Th2 subset (Seder et al., 1992; Hsieh et al., 1992) and its role in mediating
immunoglobulin class switching to the IgG1l and IgE isotypes in mice (Vitetta et al., 1985;
Coffman et al., 1986) and to the IgG4 and IgE isotypes in humans (Gascan et al., 1991). IL-4 is
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the signature cytokine of Th2 cells and suppresses Thl development while promoting Th2
generation. Over production of IL-4 has been associated with elevated IgE production and
allergic diseases in vivo. Of importance in regulating immune responses is its ability to down-
regulate the activation and inflammatory functions of monocytes and macrophages.
Consequently, IL-4 has been used in vivo as a treatment of experimental autoimmune diseases. It
is, to date, the most successful means for ameliorating autoimmune disorders that are caused by
activated Th1 cells (Choi and Reiser, 1998; Nelms et al., 1999).

IL-10

IL-10 is produced by activated monocytes, NK cells, B cells and T cells (Kevin et al., 2001), and
was discovered as a potent inhibitor of macrophage effector functions. In mice, IL-10 is clearly a
Th2 cytokine. However, in humans IL-10 can be produced by both the Th1 and Th2 sub-sets
(Del Prete et al., 1993; Beebe et al., 2002). [L-10 inhibits the production of pro-inflammatory
cytokines by macrophages, such as IL-1B, IL-6, IL-8, I[L-12 and TNF-a and up-regulates the
production of IL-1 receptor-a and soluble p55 and p75 TNFRs (De Waal Malefyt et al., 1991a;
Fiorentino et al., 1991a; D'Andrea et al., 1993). IL-10 inhibits also production of IL-2 and IFN-y
from T cells and blocks T cell proliferation (De Waal Malefyt et al., 1991b; Fiorentino et al.,
1991b; De Waal Malefyt et al., 1993). Thus, IL-10 has potent anti-inflammatory functions and
has, consequently, been used in the treatment of experimental autoimmune diseases with great

success (Kevin et al., 1998; 2001).

3.2.3. Chemokine and chemokine receptors

Chemokines (chemotactic cytokines) are low molecular weight (8-10 kDa) proteins which are
classified into four families based on the position of the first two cysteine residues in the amino
terminus: C, CC, CxC and Cx3C (Baggiolini, 1998; Luster, 1998; Locati and Murphy, 1999).
Chemokines are multifunctional and play a major role in the perpetuation of inflammatory
processes. They chemoattract a variety of inflammatory cells to sites of inflammation and injury.
Chemokines also activate cells engaged in host immune responses, modulate hematopoiesis,
promote foetal development, and regulate trafficking and homing of cells to appropriate tissue
sites. In addition to their roles as chemoattractants, chemokines can also regulate T cell
activation and differentiation as well as cytokine production (Rollins 1997; Ward et al., 1998;

Zlotnik and Yoshie, 2000). Chemokines have been implicated in the regulation of normal
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immune response and inflammation as well as certain physiological and pathogenic processes,
including allergy, autoimmune disorders, and infectious diseases (Rollins, 1997; Ward et al.,

1998; Zlotnik and Yoshie, 2000).

Table 1. CC chemokines and their receptors

Chemokine
receptor  Receptor expressing cells Chemokine ligands Major in vivo receptor activities
CCR1 Activated T cells. monos.  MIP-1a. RANTES Antifungal. antibacterial. and antiviral resistance
NK. immature DC. eos HCCI. 2 Mobilization of BM progenitors
MCP-2, 3. 4 Promotes mononuclear cell adhesion
MPI1F-1 Modulates myelopoiesis
CCR2 Activated T cells, monos, MCP-1, 2, 3, 4 Chronic inflammation (THI > TH2)
basophils. immature Resistance to bacterial challenge
DC. mast ceils. eos Promotes mononuclear cell adhesion
Histamine release, atherogenesis
CCR3 Activated TH2 cells, Eotaxin 1, 2 Recruits eos in allergic states
monos, NK. basophils, ~RANTES, MIP-la Histamine release from basophils
€0s MCP-2, 3, 4,
HCC2
CCR4 Activated TH2 cells, NK  TARC. MDC Favors TH2 responses
CCR5 Activated THI > TH2 MIP- la. MIP-18. RANTES, MCP-2  Coreceptor for M-tropic HIV-1
cells, monos, NK, Enhanced antibacterial resistance
immature DC Favors TH2 responses
CCR6 Resting memory T cells,  LARC (MIP-3a) Attracts immature DC peripherally
immature DC. B cells, 8 defensins Activates resting memory T cells
activated neutrophils
CCR7 Resting and activated SLC, ELC (MIP-38) Attracts naive T cells and mature DC to LN perifollicular areas
THI cells, mature DC,
B cells
CCR8 Activated TH2 cells, 1-309, TARC, MIP-18, HCC4 (LEC) Promotes TH2 immune responses and chronic inflammatory
monos, B cells, reactions .
immature DC
CCR9 Fetal thymocytes, monos, TECK T cell development

splenic DC, T cells

(Adapted from Howard et al., 1999)

Chemokines exert their functions through specific receptors. The final composition of leukocytes
present in the inflamed sites is most likely due to both secreted chemokines and the relative
expression of specific chemokine cell surface receptors on different cell types. A single
chemokine can bind more than one receptor, and conversely, a given chemokine receptor can
bind several chemokines (Locati and Murphy, 1999) (Table 1). The chemokine receptors may
play a different role in various inflammatory reactions. For example, CC chemokine receptor 3
(CCR3) is mainly expressed by lymphocytes exhibiting the Th2, but not the Th1, phenotype, as
in allergic lymphocytic infiltrates. By contrast, CC chemokine receptor 5 (CCRS), which is
present on most Th1l but not on Th2-type cells, has been detected in RA synovial fluids and
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tissues. CXCR3 is present on both Thl- and Th2-type cells, and this chemokine receptor is
expressed in both allergic and synovial infiltrates (Qin et al., 1998).

3.3. Guillain-Barré syndrome (GBS)

Guillain-Barré syndrome (GBS) is an inflammatory demyelinating disease of the peripheral
nervous system (PNS) in humans. The clinical features of GBS are progressive weakness and
sensory dysfunction in the limbs, autonomic nerves as well as respiratory weakness. Most
patients recover spontaneously and completely, but some of patients suffer subsequent relapses
(McKhann, 1990). The annual incidence of GBS is between one and four cases per 100,000
throughout the world (Hughes and Rees, 1997). The pathogenesis of GBS remains poorly
understood, but there is evidence that abnormal immune responses involving autoreactive T and

B cells are implicated (Hartung et al., 1995; Giovannoni and Hartung 1996).

3.4. Experimental autoimmune neuritis (EAN)

Experimental autoimmune neuritis (EAN) is an experimental animal model of GBS and caused
by immunization with heterogeneous peripheral nerve tissue, or their myelin proteins P2 or PO or
their peptides (Rostami et al., 1990; Zhu et al., 1998; Gold et al., 1999; Deretzi et al., 1999).
EAN resembles many of the clinical, electrophysiological and immunological aspects of human
GBS, which were first described by Waksman and Adams (Waksman and Adams, 1955). Hence,
it has been widely used as a model to investigate disease mechanisms in inflammatory
demyelinating disease of the PNS. Histologically acute EAN is characterized by infiltration of
the nerve roots and peripheral nerves with macrophages and lymphocytes, and by primary
demyelination associated with some axonal damage. Further autoantigens that have been
identified in EAN models in rats and mice are PO protein (Linington et al., 1992), myelin basic
protein (MBP) (Abromson-Leeman et al., 1995), peripheral myelin protein (PMP) 22 (Gabriel et
al., 1998), and myelin-associated glycoprotein (MAG)(Weerth et al., 1999).

The clinical signs of EAN in the mouse model (C57BL/6) of the study were weaker than in
Lewis rats (Zhu et al., 1997a; 1998; 1999a). The C57BL/6 mice strain is reputed to be resistant to
induction of EAN by several peripheral nerve myelin antigens, such as bovine peripheral myelin
(BPM), and P2 protein or the P2 protein peptide 57-81. However, Zou (Zou et al., 2000b) found
that the PO peptide 180-199 is a stronger neuritogenic antigen than the P2 peptide 57-81 and that
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intravenously administrated pertussis toxin (PT) had an adjuvant effect that increased the

incidence of PO peptide 180-199-induced EAN.

3.4.1. The role of T cells in EAN

The central role of T cells in the pathogenesis of EAN was shown by adoptive transfer (AT-
EAN) of a T cell line specific for P2 protein capable of inducing EAN in Lewis rats (Linington et
al., 1984; Heininger et al., 1986) and also in Brown-Norway rats which are resistant to active
EAN (Linington et al., 1986). Subsequently T cell lines specific for P2 peptides have been shown
to transfer disease (Olee et al., 1990). The importance of T cells in EAN is further supported by
the inability of T cell deficient animals to develop EAN upon active immunization (Brosnan et
al., 1987; Zhu et al., 1999b) and by the prevention of EAN by treatment with antibodies (Abs) to
the T-cell receptor (Jung et al., 1992). T cell infiltration is the first pathological sign in AT-EAN,
and this infiltration is accompanied by a rapid increase in permeability of the blood-nerve barrier
(BNB) (Harvey et al., 1994; Harvey et al., 1995; Hadden et al., 2001). A recent study indicated
that the severity of clinical signs and histopathological manifestations of EAN in CD4” and
CD8" were significantly lower than those in their wild-type counterparts, suggesting that the
induction and control of murine EAN are dependent of both CD4 (+) and CD8 (+) T cells (Zhu
et al., 2002). Once T cells have traversed the BNB, activated CD4" T cells can recognize a
specific antigen in the context of MHC, and differentiate to secrete cytokines like [L-2, TNF-q,
and IFN-y. The reactivated CD4" T cells amplify the immune response by recruiting further T
cells and macrophages via chemokines and cytokines (Hartung et al., 1996). The resulting
breakdown of the BNB allows the passage of circulating autoantibodies that are thought to
synergize with other cells to produce demyelination (Harvey et al., 1995; Pollard et al., 1995).

3.4.2. The role of B cells in EAN

Antibodies against myelin components have been detected in the serum of EAN (Archelos et al.,
1993; Zhu et al., 1994b). Although it was not possible to induce demyelination by PNS-specific
antibodies, systemic administration of antibodies to galactocerebroside enhances the
demyelination produced by adoptive transfer of neuritogenic T cells (Hahn et al., 1993).
However, no B cell infiltrates were found in target tissue (Fujioka et al., 2000). Passive transfer
of serum alone from an animal with EAN into a healthy animal does not provoke disease (Toyka

and Heininger, 1987). There was no notable difference in clinical symptoms between B cell
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knockout mice and wild-type mice after immunization with PO peptide (Zhu et al., 2002). Thus,

whether B cells are involved in the pathogenesis of EAN remains controversial.

3.4.3. The role of macrophages in EAN

Macrophages are the predominant cell population in the infiltrates of EAN lesions (Hartung et
al., 1988; Hartung and Toyka 1990a; Hartung, 1993; Jung et al., 1993). They also feature
prominently in the lesions of GBS (Ho et al., 1998; Kiefer et al., 1998). Macrophages play a role
as APC and as effector cells that destroy myelin. In EAN the primary MHC class II positive cells
are mainly macrophages (Schmidt et al., 1990). The crucial role of macrophages in immune-
mediated nerve damage were direct phagocytic attack on myelin, and the release of
proinflammatory cytokines including TNF-a, IL-1 and [L-6 and other noxious molecules. If
macrophages are depleted by intraperitoneal injection of sillica dust, animals are protected
against the development of EAN, and the progression of disease is slowed (Craggs et al., 1984).
This was confirmed by the use of dichlormethylene diphosphonate-containing liposomes that are
cytotoxic for macrophages and reduce the severity of active and AT-EAN (Jung et al., 1993).
Macrophages also contribute to recovery by promoting T cell apoptosis and secreting anti-
inflammatory cytokines like [L-10 and TGF-B. Once inflammation has subsided they promote

myelin repair and axonal regeneration (Kiefer et al., 2001).

3.4.4. The role of cytokines in EAN

Abundant evidence suggests that Th1 cytokines including IFN-y, TNF and [L-12 play pivotal
roles in the pathogenesis of EAN (Hartung et al., 1992,1995; Zhu et al., 1998). The levels of
IFN-y, TNF-a, IL-12 producing cells in blood, lymph node and PNS tissue roughly parallel
clinical EAN (Schmidt et al., 1992; Zhu et al., 1994a; c; 1996; 1997a). Administration of IFN-y
(Hartung et al., 1990), TNF-o (Said and Hontebeyrie-Joskowicz, 1992), IL-12 (Pelidou et al.,
1999a; 2000a) markedly worsens EAN. Conversely, treatment with a monoclonal antibody
(mADb) to IFN-y (Strigard et al., 1989; Hartung et al., 1990b; Tsai et al., 1991), TNF-a (Stoll et
al., 1993) ameliorates EAN. Furthermore, recombinant mouse IL-17-treated rats showed
increased infiltration of inflammatory cells into the sciatic nerve, more severe demyelination,
augmented proliferation of regional lymph node cells, and increased serum levels of TNF-a
(Pelidou et al., 2000b). CD28-deficient mutant mice that were clearly resistant to EAN had fewer

IL-12 producing cells in sciatic nerve sections and fewer IFN-gamma secreting splenic cells than
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wild-type mice (Zhu et al., 2001a). The development of EAN was suppressed in IFN-y receptor
deficient mice, which is associated with fewer IL-12-producing but more IL-4-producing cells in
sciatic nerve (Zhu et al., 2001b). Anti-IL-18 mAbs effectively ameliorate the clinical and
pathological signs of EAN, which is associated with increased numbers of [L-4 expressing cells

and decreased numbers of [FN-y and TNF-a expressing cells in the PNS (Yu et al., 2002).

Th2 cytokines such as IL-4 and IL-10 play an important role in disease recovery. Maximal
expression of [L-10 mRNA in lymph node mononuclear cells (MNC) and sciatic nerve sections
was observed after clinical recovery from EAN (Zhu et al., 1997a; 1997b; Pelidou et al., 1999b).
[L-10 mRNA appeared concomitantly with the proinflammatory cytokines at day 11 post
immunization (p.i.), but persisted at high levels into the clinical recovery phase (Gillen et al.,
1998). IL-4 peaked late in the course of EAN in lymph node (Zhu, 1994¢;1997b). Treatment
with IL-4 (Deretzi et al., 1999) and [L-10 (Bai et al., 1997a) amelioreates the inflammatory
responses in EAN. Transfer of myelin-specific cells deviated in vitro towards IL-4 production
ameliorates ongoing EAN (Ekerfelt et al., 2001). Some drugs that suppress EAN, such as
solidum fusidate, Linomide and Rolipram are associated with enhancement of IL-4 and IL-10

(Di Marco et al., 1999; Zhu et al., 1999a; Zou et al., 2000a; Abbas et al., 2000; Zou et al., 2002).

Chemokines might also be involved in EAN (Fujioka et al., 1999a;b; Zou et al., 1999). Monocyte
chemoattactant protein 1 (MCP-1), RANTES, interferon-y inducible protein 10 (IP-10) and MIP-
la have been examined in EAN and it was found that RANTES and MIP-1a have similar
kinetics of induction, correlating with the development of severe clinical signs (Fujioka et al.,
1999a; b; Zou 1999; Kieseier et al., 2000). Administration of an anti-MIP-1a antibody
suppressed the clinical signs of EAN and inhibited inflammation and demeylination in the sciatic
nerves (Zou et al., 1999). The number of intraneural CCR2 positive cells followed the time
course of the disease, peaking at the time of maximum of paralysis (Orlikowski et al., 2003).
Moreover, increased cerebrospinal fluid levels of IP-10 and a consistent expression of several
chemokine receptors have been observed in acute and chronic inflammatory neuropathies
(Kieseier et al., 2002).
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3.5. Rheumatoid arthritis (RA)

Rheumatoid arthritis (RA) is a common autoimmune disease, which is a chronic inflammatory
disease that affects approximately 1% of the population in all parts of the world (Buckley, 1997).
RA is characterized by chronic inflammation of synovial joints and progressive destruction of
articular tissue. To date, the pathogenesis of RA is not fully understood, and treatment options
are still limited to symptomatic and non-specific immunosuppressive therapies. RA is often
regarded as a predominantly T cell-related disorder (Feldmann et al., 1996a; Feldmann, 2001).
Much evidence favours the hypothesis that RA is an autoimmune disease. The clinical features
are mostly due to inflammation and eventual damage to synovial joints of hands, feet, wrists, etc.
In more severe cases, there is extra articular disease, and survival is impaired (Erhardt et al.,
1989; Pincus and Callahan, 1993). The synovitis involves a massive leucocytic infiltrate chiefly
consisting of macrophages, T lymphocytes, and plasma cells, and this is associated with
augmented angiogenesis. The sites of major joint damage are where the synovium abuts the

cartilage and bone.

3.6. Experimental arthritis

Arthritis induced by immunization with complete Freund’s adjuvant (CFA) in rats was the first
arthritic model (Pearson, 1956). Subsequently, several animal models of polyarthritis have been
described which are adjuvant-induced models, cartilage antigen-induced models, spontaneously

developing models and transgenic models.

3.6.1. Adjuvant-induced arthritis

The first reported principle model of experimental arthritis is adjuvant arthritis (AIA) in rats,
described by Pearson (Pearson, 1956). It is induced by heat-killed mycobacteria suspended in
mineral oil. The joint inflammation is characterized by accumulation of polymorphonuclear cells
and MNC, pannus formation and cartilage destruction (Pelegri et al., 1995). Alternative adjuvant
arthritis models are pristine-induced arthritis (Potter et al., 1981; Vingsbo et al., 1996), avridine-
induced arthritis (Chang et al., 1980) and mineral oil-induced arthritis (Kleinau et al., 1991).
These arthritic models are induced with adjuvants without any immunogen included.
Interestingly, in spite of the fact that no immunogen is included, these models are T cell
dependent (Holmdahl et al., 1992; Yoshino and Cleland, 1992; Kleinau et al., 1993; Vingsbo et
al., 1995; Stasiuk et al., 1997).
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3.6.2. Collagen-induced arthritis

Collagen-induced arthritis (CIA) was first reported by Trentham and colleagues who observed
the disease in rats following a single intradermal injection of type II collagen (CII) emulsified in
Freund’s adjuvant (Trentham et al., 1977). Further studies demonstrated that a similar pathology
could be induced in primates (Cathcart et al., 1986) and in susceptible strains of mice (Courtenay
et al., 1980). CIA can be induced using native autologous or heterologous CII, which are specific
to CII, since immunization with types I or III collagen fail to induce disease (Trentham et al.,
1977; Courtenay et al., 1980). CIA shares many similarities with RA, such as the chronicity,
large infiltrations of leukocytes in the joints, thickening of the synovial membrane with pannus

formation and cartilage and bone destruction (Larsson et al., 1990).

3.6.2.1. The role of T cells in experimental arthritis

The induction of CIA is associated with the dominant expression of a Thl cytokine pattern,
suggesting that the specific cellular type involved in disease is CD4" T cells (Mauri et al., 1996).
The recipient mice develop arthritis after adoptive transfer of collagen-specific T cell lines
(Holmdahl et al., 1985a), or CD4" T cells (Gumanovskaya et al., 1999; Plows et al., 1999). CIA
can be attenuated by treatment with mAbs to CD4 and T cell receptor (TCR) (Williams et al.,
1989; Goldschmidt and holmdahl, 1991; Chiocchia et al., 1991). In addition, T cells provide help
to B cells for the production of arthritogenic anti-CII antibodies (Corthay et al., 1999) and T cells
themselves are believed to play a role in joint inflammation through activation of other cells, e,g,
synovial macrophages. However, disease induction has failed to provide a clear indication as to
T cell involvement. CD4-deficient mice develop CIA with unaltered incidence and severity,
whereas CD8-deficient mice showed a decreased incidence but unaltered severity (Tada et al.,
1996).

3.6.2.2. The role of B cells in experimental arthritis

The major role of B cells is production of arthritogenic anti-CII antibodies, which is clearly
shown by the fact that antibodies reactive with CII can bind to cartilage and induce arthritis
(Terato et al., 1992). A strong B cell response is activated in CIA, producing IgG directed
towards ClI-specific structures (Holmdahl et al., 1985b; 1990; Mo et al., 1994). Arthritis can be
induced by transferring either concentrated anti-CII serum (Stuart and Dixon, 1983), purified

anti-CII serum antibodies (Stuart et al., 1982) or anti-CII mAb (Terato et al., 1992) to naive
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recipient mice. B cell-deficient mice are resistant to CIA (Svensson et al., 1998), indicating a
critical role for anti-CII antibodies in CIA. In contrast, some results indicated that levels of anti-
CII autoantibodies in serum do not correlate with CIA development, as high levels of anti-CII

antibodies can be detected in non-diseased mice (Holmdahl et al., 1986a; Reife et al., 1991).

3.6.2.3. The role of a synergy of T and B cells in experimental arthritis

Both B cells and T cells are considered to play a pathogenic role in collagen-induced arthritis
(Terato et al., 1992; Hom et al., 1986; Svensson et al., 1998; Nakajima et al., 2001), but the
question of which cell type acts as the initiator of the arthritic disease process remains
controversial. A potent and long-lasting arthritis occurred after anti-CII antibodies had been
transferred together with anti-CII CD4" T cells to T cell-depleted mice (Seki et al., 1988) or to
severe combined immunodeficient (SCID) mice (Kadowaki et al., 1994), suggesting a synergy
between B cells and CD4" T cells in CIA. Cll-reactive T cells play a crucial role in the
development of ClI-induced arthritis and that anti-CII antibodies enhance the development of
Cll-induced arthritis. This conclusion comes from the finding that depletion of collagen-II
reactive T cells and blocking of B cell activation prevents collagen II-induced arthritis in DBA/1j
mice (Zhang et al., 2002).

3.6.2.4. The role of macrophages in experimental arthritis

Synovial macrophages are activated in the arthritic joints of animal models, and macrophage
numbers correlate with disease severity (Holmdahl et al., 1991). The transfer of CIA into SCID
mice can be blocked by treatment with anti-macrophage-specific mAbs (anti-CD11b) (Taylor et
al., 1996), and a clodronate-mediated depletion of phagocytic synovial macrophages ameliorates

localized inflammation in CIA (Van Lent et al., 1996).

3.6.2.5. The role of cytokines in experimental arthritis

Previous studies in mice immunized with collagen in CFA have demonstrated that Th1 cytokines
are produced predominantly during the onset of disease, whereas Th2 cytokines (IL-4 and IL-10)
are produced later during disease progression and remission (Mauri et al., 1996). The results are
in line with the proposed concept of a pathogenic role of Thl-type immunity in both

experimental murine arthritis and RA in man (Feldmann et al., 1996b; Feldmann, 2001)
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Opposing effects for [FN-y have been described on CIA, i.e. disease-promoting as well as
disease-limiting. An injection of IFN-y increased the incidence and accelerated the onset of CIA
in mice (Mauritz et al., 1988), whereas another group demonstrated that the systemic
administration of [FN-y reduced the severity of the disease (Nakajima et al., 1990). On the other
hand, the therapeutic efficacy of [FN-y was demonstrated in the experimental disease and in
clinical trials for the treatment of RA (Cannon et al., 1989; 1993). Furthermore, a blockade of
[FN-y using mAb exhibited paradoxical effects on CIA, with early prevention of the disease
followed by late-stage disease exacerbation (Boissier et al., 1995). In another study anti-IFN-y
treatment was associated with more severe arthritic lesions (Williams et al., 1993). Interestingly,
an accelerated CIA develops in DBA1 mice lacking IFN-y receptors (Manoury-Schwartz et al.,
1997; Vermeire et al., 1997), whereas mice lacking interferon regulatory factor develop a less
severe arthritis (Tada et al., 1997) and reduced susceptibility to CIA in mice deficient in [FN-y
receptor (Kageyama et al., 1998).

[L-12-deficient mice have been shown to be less prone to develop severe arthritis (Mclntyre et
al., 1996) and anti-IL-12 antibody can suppress CIA (Butler et al., 1999). Administration of
exogenous IL-12 enhanced the development of CIA in mice immunized with collagen II in IFA
(Germann et al., 1995), suggesting that exogenous IL12 is capable of replacing the
mycobacterium tuberculosis in CFA. The differential regulation of IL-12 in CIA depended on
administration time (Joosten et al., 1997a) and dose (Tsuyoshi et al., 1999) of IL-12. Accelerated
onset and increased severity of arthritis with a low dose of [L-12 (5 ng/day). In contrast,
administration of a high dose of IL-12 (500 ng/day) attenuated arthritic inflammation (Tsuyoshi
et al., 1999). In addition, IL-12 has a stimulatory role in early arthritic development, whereas it
has a suppressive role in the established phase of CIA (Joosten et al., 1997a).

The onset of clinical symptoms and inflammation in collagen type II arthritis is TNF-a
dependent, which is in line with a role of this cytokine also in human RA (Arend and Dayer,
1995). A local TNF expression is documented in the inflamed joints of experimental arthritis
(Mussener et al., 1997; Marinova-mutafchieva et al., 1997) and of patients with RA (Chu et al.,
1991). Studies with neutralizing anti-TNF-o Abs or soluble TNF receptors have revealed a major
suppressive effect on the clinical disease activity, when treatment was started directly after onset

of CIA (Williams et al., 1992; Wooley et al., 1993). Transgenic mice over expressing human
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TNF spontaneously develop an erosive arthritis (Keffer et al., 1991). These results suggest that
TNF is strongly implicated in the pathogenesis of RA. Although TNF-deficient mice had some
reduction in the clinical parameters of CIA, however, in some individuals of TNF" severe
disease still occurred. They concluded that TNF is important, but is not essential for

inflammatory arthritis (Campbell et al., 2001).

IL-10 administration and intra-articular IL-10 gene transfer inhibit the progression of CIA
(Walmsley et al., 1996; Lubberts et al., 2000). IL-10-deficient mice developed more severe CIA
(Cuzzocrea et al., 2001; Johansson et al., 2001). Suppression of arthritis has been achieved using
recombinant [L-4 (Horsfall et al., 1997; Joosten et al., 1999) and local delivery of IL-4 by
adenovirus gene therapy (Lubberts et al., 1999; Tarner et al., 2002). Treatment with anti-IL-
4/anti-IL-10 antibodies shortly before the onset of CIA accelerated disease expression.
Moreover, [L-4/IL-10, treatment of established CIA resulted in clear suppression of the arthritis
and prevented cartilage destruction (Joosten LA, 1997b). However, IL-4-deficient mice
developed less acute but more chronic relapsing CIA (Svensson et al., 2002). This would

implicate that IL-4 could have a role in the regulation of chronicity.

3.7. Immune system and nervous system

It is now clear that both the nervous system and immune system have internal homeostatic
mechanisms that control and regulate the functions of these systems and their responses to
various stimuli. The bidirectional communication between the nervous system and the immune
system is mediated by shared neuropeptides and cytokines (Blalock, 1997; Peter and Ivan, 1998).
Lymphocytes communicate with cells in the nervous system by producing neuroendocrine
mediators and cytokines, and cells in the nervous system communicate with lymphocytes by
producing neuroendocrine mediators and cytokines. The immune system receives a noncognitive
(antigenic) stimulus, responds, and sends signals (cytokines) to the nervous system that in turn
reciprocates with immunoregulatory signals (neuropeptides and cytokines) some of which are the
result of behavioural responses (Blalock, 1997; Peter and Ivan, 1998). Astrocytes and microglial
cells can produce some cytokines such as IL-1p, IL-3, IL-6, TNF-a, and [FN-y (Chung and
Benveniste, 1990). Peripheral stimulation can cause a changed cytokine profile in the CNS.
Peripheral administration of LPS induces increased mRNA for [L-1, TNF-o, and IL-6 in the
central nervous system (Ban et al., 1992; Gatti and Bartfai, 1993; Quan et al., 1998). Acute
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peripheral inflammation induces moderate glial activation and IL-1 expression in spinal cord

(Sweitzer et al., 1999).
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4. AIMS OF THE STUDY

The general aims of this thesis were to improve understanding of the immunopathogenesis and
immunoregulation of cytokines in experimental neuritis and arthritis by analyzing the cytokine
production in the target tissues and in the peripheral lymphoid organs of experimental animals.
The specific aims were:

1) To evaluate the role of [L-12 in development and enhancement of EAN.

2) To elucidate the effect of TNF on the pathogenesis of EAN and to study the efficacy of
SsTNFR I in EAN.

3) To investigate the roles of CCR5 in the development of CIA and analyze effects of CCR5

deficiency on the immune system using CCR5-deficient mice.

4) To characterize the pattern of [L-1p, [L-6, TNF-o and IFN-vy in spinal cord of AIA.
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5. MATERIALS AND METHODS

5.1. Induction of EAN and assessment of clinical signs

[L-12 p40-deficient mice (IL-12'/' mice) (Paper I), and C57BL/6 mice (B6) (Paper I and II) were
purchased from the Jackson Laboratory (Bar Harbor, ME, USA) and bred at the animal-housing
facilities of the Microbiology and Tumor Biology Center, Karolinska Institute. All mice were 6-8
weeks old, weighing 18-20 g and were immunized twice (designated as days 0 and 7) by
subcutaneous injection into the back with 80 pg of PO peptide 180-199 and 0.5 mg
Mycobacterium tuberculosis emulsified in 25 pl saline and 25 ul FCA. All mice received 400 ng,
200 ng and 400 ng pertussis toxin by intravenous injection on days -1, 0, 3, p.i., respectively.
Clinical scores were assessed immediately before immunization (day -1) and thereafter every
other day until day 65 p.i.. Severity of paresis was graded as follows: 0, normal; 1, flaccid tail; 2,

moderate paraparesis; 3, severe paraparesis; 4, tetraparesis; 5, death; 0.5; intermediate clinical

signs.

5.2. Induction of arthritis and assessment of clinical signs

CCR5-deficient (CCR5”") and corresponding wild-type (CCR5"") mice (Paper III) on the
C57BL/6x129/0la background were bred at the animal-housing facility of Huddinge University
Hospital. All mice were 10-12 weeks of age. Arthritis was induced with chick CII, as previously
described (Campbell et al., 2000). An emulsion was freshly prepared by dissolving 3 mg/ml
chick CII (Sigma) overnight at 4 °C in 10 mM acetic acid and combining it with an equal volume
of CFA containing 5 mg/ml of Mycobacterium tuberculosis (Strain H 37 RA; Difco, Detroit,
Mich). Mice were injected twice (days 0 and 21) intradermally at several sites into the base of
the tail with a total of 100 ul emulsion containing 150 ug CII and 250 ug Mycobacterium
tuberculosis. The disease severity was recorded following a scoring system for each limb. Each
paw was inspected and the severity of erythema and swelling was graded 0 (normal appearance),

1 (mild), 2 (moderate), or 3 (severe; maximum score of 12 for each mouse).

Adjuvant arthritis (Paper IV) was induced in female Lewis rats with body weight 160-180 g by
intradermal injection of a suspension (100 pl) of heat-killed mycobacterium tuberculosis (Difco,
Detroit, MI) in paraffin oil (10 mg/ml) into the base of the tail. Animals used as controls received

100 wl of paraffin oil only.
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5.3. Immunohistochemistry

Briefly cryostat sections were exposed to the antibodies as described in the papers. Sections were
stained using the avidin-biotin technique. Omission of primary antibodies served as negative
control. The tissue areas were measured by image analysis, and the numbers of stained cells were
counted at x 40 magnification in the entire section area. The results were expressed as average

numbers of cells per mm® of tissue section.

5.4. Cell culture and proliferation assay

Spleens from each group were removed under aseptic conditions. Single cell suspensions of
MNC from individual mice were prepared. MNC suspended in 200 pl portions were cultured in
triplicates in round-bottomed 96-well polystyrene microtiter plates at a cell density of 2 x 10°
cells/ml in a humidified atmosphere with 5% CO; at 37°C. After 60 hours of incubation, cells
were pulsed with *H-methylthymidine (1 pCi/well) and cultured for an additional 12 hours. Cells
were harvested onto glass fiber filters. *H-thymidine incorporation was measured in a liquid p-

scintillation counter, and results were expressed as counts per minute (cpm).

5.5. Preparation of peritoneal exudates cells (PEC)

Sterile ice-cold PBS was injected into the peritoneal cavity of mice. After 3 minutes PEC were
eluted using sterile ice-cold PBS, washed and re-suspended to 2 x10° PEC/ml in complete
medium as description in Paper II1. 20 pl/well of PEC were added and cultured with MNC for

the T cell proliferation assay as above.

5.6. Enumeration of IFN-y secreting cells by ELISPOT

A solid-phase enzyme-linked immunospot (ELISPOT) assay was used to detect single cells that
secrete IFN-y upon antigen stimulation. Briefly, nitrocellulose-bottomed plates were coated
overnight at 4°C with 100 pl (15 pg/ml) IFN-y capture antibody. MNC were cultured as
described above. After 48 h of culture, secreted and bound IFN-y was visualized by sequential
application of biotinylated detecting Ab against [FN-y, and ABC. After peroxidase staining, the
red-brown immunospots corresponding to the cells that had secreted IFN-y, were enumerated in a
dissection microscope at low magnification (x 25). Results were expressed as numbers of spots
per 10° spleen MNC.
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5.7. ELISA for measurement of serum antibodies

Serum was obtained from blood samples of test mice and determined by enzyme-linked solid-
phase assay (ELISA). Antigen (PO peptide 180-199 or CII) was coated onto ELISA plates at 10
pg/ml in a volume of 100 pl/well overnight at 4°C. Nonspecific binding was blocked with 1%
normal horse serum for 2 h at room temperature (RT). After three washings of the plates, serum
samples were then placed in plate wells and incubated for 2 h at RT. After another three
washings, plates were incubated for 2 h with biotinylated anti-mouse IgG (Serotec), biotinylated
anti-mouse IgG1l (Serotec), biotinylated anti-mouse IgG2a (PharMingen), biotinylated anti-
mouse IgG2b (PharMingen), respectively, for 1 h and then with alkaline phosphatase-conjugated
AB complex (Vector) for 30 min. Three additional washings followed. The reaction was
visualized with p-nitrophenyl phosphate substrate (Sigma) and read at 405 nm using an ELISA

reader.

5.8. ELISA for measurement of cytokine and chemokine production

Spleen cell supernatants were harvested after 48 h, 72 h, 96 h and 120 h cultures, respectively.
Levels of IFN-y, TNF-a, IL-10 and MIP1-$ in the culture supernatants were measured by
quantitative ELISA as described in the protocol supplied by the manufacturer (PharMingen).

5.9. In situ hybridization

In situ hybridization was performed as described previously (Zhu et al., 1994c). Briefly,
synthetic oligonuleotide probes (Scandinavian Gene Synthesis AB, Koping, Sweden) were
labeled with *’S deoxyadenosine-5'-o~(thio)-triphosphate with terminal deoxynucleotidyl
transferase (Amersham). Cells were hybridized for 16-18 h at 42°C in a humidified chamber
with 10° cpm of a labeled probe per 100 pl of hybridization mixture. After emulsion
autoradiography, development and fixation, the coded slides were examined by dark field
microscopy at x10 magnification for positive cells containing > 15 grains per cell in a star-like
distribution over the cytoplasm. The intracellular distribution of the grains was checked by light

microscopy at x20 and /or x40 magnification.

5.10. Statistical analysis
Differences were tested by parametric one-factor analysis of variance (ANOVA) or Student’s t-

test and non-parametric Mann-Whitney's u-test, respectively. The Chi-square test was used to
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test the difference in incidence. All tests of significance were two-sided. The level of

significance was set to p< 0.05.

5.11. Ethics
The EAN and AIA as well as CIA models in B6 mice, transgenic mice and Lewis rats were

approved by the South Stockholm Research Animal Ethics Committee, Huddinge County Court,
Stockholm, Sweden.
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6. RESULTS AND DISCUSSION

6.1. IL-12 p40 is vital for initiating, enhancing and perpetuating pathogenic events in EAN
(Paper 1)

For the present study, EAN was established in IL-12 p40 deficient mutant (IL-12"") C57BL/6
mice by immunization with PO peptide 180-199, a purified component of peripheral nerve
myelin, and CFA. In these IL-12” mice the onset of clinical disease was delayed, and the
incidence and severity of EAN were significantly reduced compared to that in wild type mice.
The former group's clinical manifestations were associated with less PO-peptide 180-199 induced
secretion of IFN-y by splenocytes in vitro and low production of anti-PO-pepitde 180-199 IgG2b
antibodies in serum. Fewer [FN-y and TNF-a producing cells, but more cells secreting 1L-4,
were found in sciatic nerve sections from IL-12" mice, consistent with impaired Th1 functions

and response.

Mice lacking IL-12 p40 actively immunized with PO peptide 180-199 developed EAN (around
50%) with a lower incidence and milder clinical signs than the wild type. In addition to the
absence of IL-12, these mice were deficient in their ability to generate Thl cells that produced
[FN-y in response to antigen stimulation, suggesting the involvement of IL-12 as an initiator of
Th1 cell mediated immunity in EAN. However, this effect of [L-12 on T cells was not sufficient
to produce EAN, because IL-12"" mice were not completely resistant to EAN induction. Possibly
IL-18 compensated for the lack of IL-12 in IL-127" mice, because IL-18 is known to work
synergistically with IL-12, apparently, shares biological functions with IL-12 (Constantinescu et
al., 1996; Yang et al., 1999). We previously showed that anti-IL-18 antibody treatment
suppressed murine EAN (Yu et al., 2002). IL-127 mice experienced a reduced production of
[FN-y and TNF-a in the sciatic nerves, but had an elevation in IL-4 production. This outcome
suggests that suppression of EAN in IL-12” mice results from an insufficiency of antigen-
specific T cells available to differentiate into Th1 effector cell in the periphery, thereby altering
Th1/Th2 balance in favor of Th2 selection in vivo. Furthermore, Thl cells mediate effector
functions of the immune response and help in the synthesis of IgG subclasses such as IgG2a and
IgG2b that bind complement and can be especially damaging to tissues (Romagnani, 1997;
O’Garra, 1998). In this current study, the significantly reduced amounts of serum anti-PO peptide
180-199 IgG2b antibodies in IL-127" mice may have resulted from impaired Th1 cell help for B
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cells and/or from direct effects of I[L-12 deficiency on the B cells themselves. In either case, the
reduced autoantibody response seen clearly contributed to the suppression of EAN in IL-12"

mice.

6.2. Exogenous sTNFR I ameliorates EAN (Paper II)

Our data from two different therapeutic regimens indicate that the administration of STNFR 1
effectively ameliorated the clinical and pathological signs of EAN, i.e., decreased its severity,
shortened its duration and reduced inflammatory cell infiltration into the PNS. The suppression
of clinical EAN was accompanied in vitro by a marked reduction in antigen-specific T cell
proliferation and [FN-y synthesis by spleen cells from sSTNFR I-treated mice, as compared to

control mice treated with PBS.

Systemic administration of STNFR 1 decreased the severity and the duration of clinical EAN.
This ability of STNFR T to protect from the development of EAN likely involves blocking the
effects of TNF on activation and recruitment of inflammatory cells into the PNS, thereby
inhibiting the downstream effects of this cytokine. It has been indicated that TNFR1 can induce
T cell apoptosis and lymphocyte clearance (Bachmann et al., 1999), and TNFR1 signaling
pathway plays a critical role in the control of central nervous system (CNS) demyelination and
inflammation (Probert et al., 2000), which may also contribute to ameliorate EAN. Our findings
consistent with previous reports by others that the administration of STNFR [ can prevent the
adverse pathologic sequelae of exaggerated TNF production as observed in lethal sepsis (Van
Zee et al., 1992), EAE (Baker et al., 1994; Selmaj and Raine, 1995b), autoimmune diabetes
(Hunger et al., 1997) and CIA (Wooley et al., 1993; Mori et al., 1996). Recent clinical trials also
showed that subcutaneous administration of STNFR I substantially decreased the symptoms of
RA (Moreland et al., 1997; Weinblatt et al., 1999). However, both sTNFR I treatment schedules,
i.e., 2 days before and 14 days after PO peptide 180-199 immunization, suppressed the effects of
EAN, but neither protocol totally prevented the disease, suggesting that other pro-inflammatory
cytokines, such as IL-12 and IL-18, also participate in the pathogenesis of EAN (Bao et al.,
2002; Yu et al., 2002); Furthermore, STNFR I used at dose of 3 mg/kg every other day, as in the

present study, may not completely neutralize TNF activity.
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6.3. Reduced incidence of CIA in CCRS deficient mice (Paper I1I)

CCR5™" mice showed a significant reduction in the incidence of CIA after CII-immunization as
compared to wild-type mice. However the severity score, once arthritis had developed, was
similar in the both groups. The reduced incidence seen in CCR5” mice was associated with these
animals having significantly lower IgG levels, especially 1gG2a and IgG2b antibodies against
CII, as well as an obviously augmented IL-10 production, as compared to wild-type mice. Higher

level of MIP-1p was found in CCRS deficient mice after CII-immunization.

Arthritis is dependent on both cellular and humoral immune responses (Ranges et al., 1985; Seki
et al., 1988). Collagen-reactive antibodies, particularly of the complement-fixing IgG2a and
IgG2b isotypes, have been implicated in the pathogenesis of CIA (Wooley et al., 1981;
Holmdahl et al., 1986b; Durie et al., 1993). Our results show that levels of IgG2a and IgG2b
against CII were obviously lower in CCR5 mutant mice when compared with wild type mice
after CII-immunization. The decreased antigen-specific antibody responses of CCR5”" mice may
act to diminish their CIA since CCRS deficiency may affect the primary T-dependent antibody
responses. In general, RA and CIA are thought to be a typical Th1 mediated disease, whereby
Th2 cytokines play a preventive role in different models of arthritis (Mauri et al., 1996; Joosten
et al., 1997). CCRS is primarily expressed on Th-1 cells (Loetscher et al., 1998). In the present
study, higher levels of the Th2 cytokine, IL-10 were seen in spleen cells of CCR5™ mice as
compared to their wild-type counterparts. Additionally, the alteration of antibody isotypes in
CCR5” mice after CII immunization shift from Th1 predominance (Thl associated IgG2a and
IgG2b antibodies) to Th2 predominance (IgG1 antibodies), which further play a protective role
in CCR5™ mice with CIA (Finkelman et al., 1990). In this study, one of the CCRS5 ligands, MIP-
1P was strongly up-regulated in serum and in supernatants of spleen cells from CCR5 deficient
mice after CIl immunization. This finding may partially contribute to the development of
arthritis in CCR5”" mice. Thus, the lack of CCR5 could be compensated for by an increased
expression of MIP-1 that acts through a combination of other chemokine receptors due to the

higher degree of redundancy in this chemokine subfamily.
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6.4. IL-10, IL-6 and TNF-« are up-regulated in the spinal cord of AIA rats (Paper IV)

Macroglia and MHC class II immunostaining were enhanced, astrocytes expressing glial
fibrillary acidic protein (GFAP) were increased in number and immunostaining intensity in the
spinal cord of AIA rats. Using in situ hybridization and immunohistochemical methods, both
mRNA and protein levels of IL-1p, IL-6 and TNF-o were significantly increased in the spinal
cord of arthritic rats. Increased cytokine expression was presented in the reactive astrocytes and

microglia.

We speculate that there are at least four possible mechanisms behind the enhanced cytokine
expression in the spinal cord following AIA: (1) In response to peripheral inflammation,
cytokines are directly produced within the CNS by activated endogenous microglia and
astrocytes. (2) The upregulation of these cytokines in the CNS of arthritic rats may be intimately
involved in hyperalgesic mechanisms. (3) Cytokines produced in the periphery by macrophages
may be transported retrogradely via axonal or nonaxonal mechanisms (Streit, 1993). (4)
Interaction between neuropeptides and cytokines: There is data showing the occurrence of
bidirectional interactions between the nervous and immune systems (Blalock, 1997). The
nervous system responds to and also helps to regulate the immune responses. Such interaction
occurs between neuropeptides and cytokines. Neuropeptides may induce the secretion of various
cytokines, including IL-1, TNF-a and IL-6 (Lotz et al., 1988; Turnbull et al., 1997). The data
demonstrated that the levels of neuropeptides were increased in the spinal cord of rats with AIA
(Amann et al., 1996; Calza et al., 1998; Elhassan et al., 2000). However, cytokines can also
induce the secretion of neuropeptides (Heijnen et al., 1991). Neuropeptides may participate in the
peripheral events of inflammation and further exacerbate inflammation, pain and hyparalgesia in
AIA, at the same time, the increase of neuropeptides levels in dorsal root ganglia can be related
to the structural damage of nerve fibres in arthritic rats (Calza et al., 1998). It might, therefore,
be possible that the changes of cytokines in the spinal cord may also be involved in the

pathogenesis of AIA via regulating the levels of neuropeptides in the spinal cord.
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7. CONCLUSIONS

30

1

2)

3)

4

IL-12 has a major role in the initiation, enhancement and perpetuation of pathogenic
events in EAN by promoting a Thl cell-mediated immune response and suppressing the
Th2 response. This information augments consideration of IL-12 as a therapeutic target in

GBS and other T cell-mediated autoimmune diseases.

STNFR I can inhibit the development of EAN, indicating beneficial effects of STNFRs in
the treatment of EAN. STNFR [ may have therapeutic potential for alleviating GBS in

humans.

CCRS may participate in the pathogenesis of arthritis. There was a diminished CII-
specific antibody, especially IgG2a and IgG2b, response and an enhanced production of
IL-10 in CCR5” mice after CII-immunization. The overproduction of MIP-1p in the
serum and spleen cells of CCR5” mice may partly contribute to the development of

arthritis.

Both mRNA and protein expression of I[L-1f, IL-6 and TNF-a are up-regulated in the
spinal cord of arthritic rats.
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