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ABSTRACT 
 
 
Osteoblasts play a fundamental role in determining bone structure and function. 
These cells originate from mesenchymal stem cells (MSCs) and through 
proliferation and differentiation develop into preosteoblasts and then into mature 
cells. Most of these cells undergo apoptosis before reaching their terminal 
differentiated stages of either osteocytes or bone lining cells. These processes, i.e. 
proliferation, differentiation, and apoptosis, are affected by systemic hormones 
and local factors. In addition, there are exogenous regulators, which can either be 
natural substances or synthetic compounds.  
 
This thesis describes investigations of the effects of several selected factors on 
proliferation, differentiation, and apoptosis of osteoblastic cells. The thesis is 
based on four papers: In the first paper, the effects of Sirt1 regulators, resveratrol 
(RSV), nicotinamide (NAM), and isonicotinamide (INM), on the commitment of 
mesenchymal stem cells (MSC) were studied. We found that the Sirt1 activators, 
RSV and INM, inhibited adipocyte formation and enhanced osteoblast 
differentiation, while the inhibitor NAM had the opposite effect. In the second 
paper, osteoblastic cells from different origins, mouse, rat, and human, were 
treated with 1α,25(OH)2D3 and its analogue, 2-methylene-19-nor-(20S)-
1α,25(OH)2D3 (2MD). Species-dependent effects on cell growth and alkaline 
phosphatase (ALP) activity were clearly seen. In the third paper, we found that the 
expression of Interleukin-6 (IL-6) receptor increased during osteoblast 
differentiation. IL-6 acted as a differentiation accelerator in the early stage and an 
apoptosis inducer at late mature stage. In the forth paper, the effects of Sirt1 
activators, RSV and INM, on proliferation and apoptosis of human osteosarcoma 
(OS) cells were studied. We found an inhibitory effect of Sirt1 activators on OS 
cells and showed a synergism between RSV and L-asparaginase (ASNase), which 
is a selective nutritional restrictor. 
 
In summary, the work presented in this thesis provides new information about the 
effects of two osteoblast differentiation regulators, 1α,25(OH)2D3 and IL-6. 
Additionally, certain compounds affecting Sirt1 activity were found to influence 
osteoblast differentiation; RSV and INM which increase Sirt1 activity also had a 
profoundly negative effect on growth of OS cells in vitro. 
 



 

SAMMANFATTNING 
 
 
Osteoblastaktiviteten är avgörande för benvävnaden struktur och funktion.  Dessa 
celler utvecklas från mesenkymala stamceller (MSC). Genom proliferation och  
differentiering utvecklar de sig till omogna osteoblaster och vidare till mogna 
osteoblaster. De flesta av cellerna dör genom programmerad celldöd innan de når 
sin slutliga utvecklingsfas till lining cells eller osteocyter. Dessa processer, 
proliferation, differentiering och celldöd påverkas av hormoner och lokala 
faktorer. Vidare kan de påverkas av olika tillförda naturliga och syntetiska 
kemiska ämnen. 
 
Denna avhandling baseras på studier av vissa utvalda faktorer som påverkar 
proliferation, differentiering och celldöd av osteoblaster. Avhandlingen är baserad 
på fyra artiklar: I den första artikeln beskrivs effekten av ämnen som påverkar 
Sirt1 hos MSC nämligen  resveratrol (RSV), nikotinamid (NAM) och 
isonikotinamid (INM). Vi fann att att Sirt1 aktivatorerna RSV och INM hämmade 
bildningen av fettceller och stimulerade osteoblastmognaden, medan NAM hade 
motsatt effekt. I den andra artikeln studerades behandling med den aktiva vitamin 
D-metaboliten 1α,25(OH)2D3 och dess analog, 2-methylene-19-nor-(20S)-
1α,25(OH)2D3 (2MD) på osteoblaster från olika arter, som mus, råtta och 
människa.  Artspecifika effekter på celltillväxt och alkalisk fosfatasaktivitet var 
uppenbara. I den tredje artikeln fann vi att uttrycket av IL-6 receptorn ökade under 
osteoblastmognaden. IL-6 stimulerade differentieringen i tidigt skede och 
medförde ökad celldöd  bland fullt differentierade osteoblaster. Den fjärde artikeln 
beskriver hur Sirt1- aktivatorerna RSV och INM påverkar celldelning och celldöd 
av humana osteosarcom- celler (OS). Vi fann en hämmande effekt av Sirt1 
aktivatorerna på OS och visade även på en synergi mellan RSV och L-
asparaginas, som är en selektiv näringsbegränsare. 
 
Sammanfattningsvis ger resultaten i denna avhandling ny information om 
effekterna av vissa regulatorer som påverkar osteoblastmognaden nämligen 
1α,25(OH)2D3, 2MD och IL-6. Vidare visar de att ämnen som påverkar Sirt1:s 
aktivitet har betydelse för utvecklingen av osteoblaster liksom att RSV och INM 
som ökar Sirt1-aktivitet även har en klart negativ effekt på celltillväxten av OS 
celler in vitro. 
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1 INTRODUCTION 
 
1.1 GENERAL INTRODUCTION 

 
Bone is a specialized tissue that serves important mechanical, protective and metabolic 
functions in the human body. As in all other connective tissues, the fundamental 
constituents in bone are the cells and the extracellular matrix. The latter contains type I 
collagen and a large number of non-collagenous proteins (e.g. osteocalcin, osteonectin, 
bone sialoprotein and various proteoglycans) which contribute to the unique 
characteristics of bone to become mineralized through deposition of calcium and 
phosphate [1]. Calcified bone undergoes constant remodeling. This process is 
coordinated by the activities of two types of cells, osteoclasts and osteoblasts [2]. The 
osteoclasts are members of the monocyte/macrophage lineage and are formed by 
multiple cellular fusions from their mononuclear precursors. They mediate bone 
resorption through dissolution of bone mineral and degradation of organic matrix by 
secretion of HCl and different protein enzymes [3]. The osteoblasts originate from 
mesenchymal stem cells (MSCs), which through proliferation and differentiation 
develop into preosteoblasts and then into mature osteoblasts, and finally reach the non-
proliferative, terminal differentiatied stage either as osteocytes or as bone lining cells 
[4]. Both preosteoblasts and mature osteoblasts contribute to the production of bone 
matrix. Additionally, in a local paracrine manner, the osteoblasts produce receptor 
activator of nuclear factor-κB ligand (RANKL) as well as the decoy receptor 
osteoprotegerin (OPG), which control the osteoclasts and bone resorption [5]. Thus, 
osteoblasts play a major role in bone metabolism and understanding the mechanisms 
controlling their proliferation, differentiation and apoptosis is one of the fundamental 
areas in bone research. 
 
Many systemic hormones and local factors affect osteoblastogenesis. “New” regulators, 
either as natural substances or synthetic compounds, are continually being found or 
developed. This thesis describes new aspects of two known regulators, 1α,25(OH)2D3 
and IL-6, as well as the synthetic 1α,25(OH)2D3 analogue, 2-methylene-19-nor-(20S)-
1α,25(OH)2D3 (2MD), and the natural phytoalexin resveratrol. In particular, we studied 
proliferation, differentiation and apoptosis during the development of osteoblastic cells. 
Furthuremore, the potential use of resveratrol for the treatment of osteosarcoma is 
discussed. 
 
1.2 THE OSTEOBLAST LINEAGE 

 
1.2.1 The Origin of Osteoblasts 

 
One of the current dogmas of bone biology is that the osteoblasts are differentiated 
from the multipotent precursors present in bone marrow, namely, MSCs. These cells 
are defined as a group of clonogenic cells capable of multilineage differentiation and 
having the capacity for self-renewal [6]. Fredenstein and co-workers were the first to 
describe the existence of MSCs [7-10]. Through a series of classic studies they found 
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that the plastic adherent cells from bone marrow could form fibroblast colony forming 
units, which had the capacity to differentiate towards osteoblasts, chondroblasts, and 
adipocytes under defined in vitro culture conditions [7, 8]. Later on, after seeding in a 
suitable scaffold and transplantation in host animals these cells could give rise to a wide 
range of connective tissues, including bone, cartilage, muscle, fibrous and adipose 
tissues [9, 10]. Beginning from Friedenstein’s pioneering studies much effort has been 
focused on the direct identification of MSC from bone marrow. Dozens of surface 
markers have been studied and some of them, like STRO-1, CD29, CD73, CD90, 
CD105, CD106, CD146, CD166 and CD271 are expressed by MSC while the 
haematopoietic markers, like CD34, CD45 and CD14 are not [11-13]. However, as 
shown in different studies the expression pattern of these markers are not always 
consistent and several studies have shown that MSCs could either gain or lose some of 
the markers without losing their multipotential capacity [14-16]. Therefore these 
markers can not exclusively be used to identify MSCs [13]. On the other hand, MSC-
like cells have also been derived from a number of other adult and fetal tissues, such as 
circulating blood, cord blood, placenta, amniotic fluid, heart, skeletal muscle, adipose 
tissue, synovial tissue and pancreas [17]. Although these non-bone marrow MSCs 
retain the multipotential capacity and express similar patterns of MSC surface markers 
they do demonstrate differences in their differentiation capacity, even if cultured in 
exactly the same microenvironment [18-20]. Therefore, the perception is that the MSCs 
are both phenotypically and functionally heterogenous and today the ability of 
multilineage differentiation is still the “gold standard” to confirm the “stemness” of 
bone marrow derived cells. Also, it is important to mention the minimal criteria to 
define human MSCs outlined by the Mesenchymal and Tissue Stem Cell Committee of 
the International Society for Cellular Therapy in 2006 [11]. These are: (1) adherence to 
plastic in standard culture conditions; (2) expression of CD105, CD73 and CD90 
combined with a lack of expression of CD45, CD34 and CD14 or CD11b and CD79 or 
CD19 and HLA-DR surface molecules; and (3) differentiation into osteoblasts, 
adipocytes and chondroblasts in vitro. 
 
1.2.2 Commitment of Mesenchymal Stem Cells to Osteoprogenitors 

Figure 1 Commitment of MSCs to different cell lineages and the related key transcriptional factors. 
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From the traditional point of view, the stem cells develop into specialized cell types by 
a two-step process, determination and differentiation. Determination results in the 
conversion of multipotent stem cells into lineages of cells with restricted differentiation 
potential, called committed (or determined) cells. The committed cells proliferate and 
then differentiate, activating genes that encode the proteins functionally appropriate to 
that differentiated cell type. In 1984 evidence for the regulatory genes controlling 
MSCs determination was first shown by Konieczny et al. [21]. With clonal and 2D 
protein gel analyses they demonstrated that 5-azacytidine converted C3H/10T1/2 cells 
into three stably determined, but undifferentiated, stem cell lineages, which under 
permissive culture conditions developed into myofibers, chondrocytes, and adipocytes. 
They proposed that these three lineages were specified by separate regulatory loci, and 
5-azacytidine activated these “determination loci” by random hypomethylation. 
However, such “determination loci” have not been identified. Following increased 
understanding of gene regulatory mechanisms, the search for transcription factors 
which could act as “master switch” has been intensified. Today several of these 
transcription factors have been identified (for reviews, see [22-24]). Basic helix-loop-
helix genes of the myoD family are known to specify the commitment of MSCs into 
myoblasts [25] (figure 1). The C/EBP and PPAR family members play central roles in 
the regulation of adipocyte differentiation [26-28], Sox9 is required for the commitment 
to chondrocytes [29], and as described below, Cbfa1/Runx2 and osterix (Osx) are 
indispensable for osteoblast development [30-32]. 
 
The transcription factor core binding factor 1 (Cbfa1/Runx2) gene is one of the three 
mammalian genes that encode protein homologues to Drosophila Runt, which are 
crucial for proper embryonic development [33]. Its essential role for osteoblastogenesis 
was discovered by several simultaneous studies in 1997. Through homologuous 
recombination experiments, two groups, Otto et al. and Komori et al., independently 
generated Cbfa1-defient mice [30, 31]. Grossly, the homozygous mutants have entirely 
cartilaginous skeleton and lose all of the intramembranous-formed skeletal elements, 
such as calvarias and clavicles, and without a rigid chest cage these mice die at birth 
due to respiratory failure. Histologically, the skeleton of these mice presents a complete 
lack of bone tissue and osteoblasts. At the molecular level, there is no expression of 
bone extracellular matrix proteins such as osteopontin (OPN), bone sialoprotein (BSP), 
and osteocalcin (OCN) [30, 31]. Additionally, Otto et al. noticed that the viable 
heterozygous Cbfa1 mutants presented hypoplastic clavicles as well as a severe delay 
of the closure of the fontanels [31]. These features are similar to the classic mutant 
mouse strain named Ccd, which is the phenocopy of a well-characterized human 
genetic disease, cleidocranial dysplasia (CCD) [34]. Through human genetic studies it 
was shown that mutations of Cbfa1 causes CCD [35, 36]. Moreover, the expression 
pattern of Cbfa1 during mouse embryo development has been described. In 12.5 days 
post-coitum embryos Cbfa1 is expressed by a cell population with both osteoblastic and 
chondroblastic potential. However, during later embryo development the expression of 
Cbfa1 is restricted to cells of the osteoblast lineage. Further proof for the essential role 
of Cbfa1 for osteoblastogenesis was the identification of binding sites for Cbfa1 in the 
promoters of four osteoblast specific genes, OCN, α 1(1) collagen, BSP and OPN, and 
that overexpression of Cbfa1 can induce the expression of osteoblastic genes in in vitro 
models [37]. 
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Another major breakthrough in understanding of osteoblastogenesis was the 
identification of Osx in 2002. Through screening osteoblast-specific cDNAs 
Nakashima et al. identified this novel zinc finger-containing transcription factor. In Osx 
null mice no bone was formed through either intramembraneous or endochondral 
ossification [32]. Furthermore, unlike the Runx2-defient mice, which presented 
maturational disturbance of chondrocytes [38], absence of a normal bone marrow 
cavity and lack of osteoclasts/chondroclasts [31], the only deficiency of the Osx mull 
mice was the absence of osteoblastic mineralization. Additionally, the osteogenic cells 
in Osx null mice expressed Runx2 at levels comparable to those in wild-type 
osteoblasts while Osx is not expressed in Runx2-defient embryos; thus Osx is a 
downstream gene of Runx2 [32]. This evidence indicates that at least two steps are 
involved in osteoblastogenesis: First, with activation of Runx2, MSCs are committed to 
osteoprogenitors which have the bipotential capacity to form both endochondral and 
membranous skeletal elements. Second, with expression of Osx these osteoprogenitors 
are prevented from choosing the chondrocyte differentiation pathway and start to 
express the characteristic osteoblast marker genes and differentiate into mature 
osteoblasts. 
 
Beside these breakthrough findings, dozens of other transcriptions factors and co-
regulators have been proposed to be involved in osteoblastogenesis, including β-
catenin, ATF4, AP1, homeobox proteins, helix-loop-helix (HLH) proteins. The 
regulation of the osteoblastic transcription factors by systemic hormones, local factors 
and mechanical forces has also been extensively investigated (for recent reviews see 
[22-24, 39, 40]). However, at present a full understanding of the commitment process 
and the exact roles of regulating factors is not at hand. In several studies the complexity 
of the determination process has been shown. For examples, Liu et al. and Geoffroy et 
al. reported that osteopenia and frequent bone fractures are seen in transgenic mice 
overexpressing Runx2 in bone tissue [41, 42]; Yoshida et al. reported that Runx2 and 
Runx3 are essential for chondrocyte maturation, and that Runx2 regulates limb growth 
through induction of Indian hedgehog [43]; Gutierrez et al. and Hata et al. found that 
the C/EBP family proteins, which are known as the key regulators of adipocyte 
commitment, can associate with Runx2 and promote osteoblast differentiation [44, 45]. 
In addition, multiple studies have suggested that a certain degree of plasticity exists 
within the “committed” MSC lineages. For example, myoblasts can be converted to 
adipocytes through expression of PPARγ and C/EBPα [46, 47]. Myoblasts can also be 
converted to mineralizing osteoblasts through expression of Runx2 [48]; bone 
morphogenetic protein (BMP) can induce osteoblastic trans-differentiation from both 
preadipocytes and myoblasts [49, 50] and osteoblasts can be trans-differentiated into 
adipocytes through downregulation of β-catenin under estrogen deficiency [51]. 
Therefore, the “determination” process of MSC is much more complex than presently 
understood. 
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1.2.3 Osteoblast and Adipocyte 

Figure 2 Reciprocal relationship between osteoblast and adipocyte and the putative regulators. 
 
Infiltration of bone marrow by fat is a common feature of osteoporotic bone associated 
with aging, immobility, or following glucocorticoid treatment [52-55]. Whether the 
accumulating fat just occupies the space left by the disappearing bone or results from 
an imbalance in the commitment of MSC between osteoblast and adipocyte is being 
actively investigated (for reviews, see [56-59]). As mentioned above, the program for 
adipogenesis is controlled by two key transcriptional factors, the CCAAT enhancer-
binding proteins (C/EBPs) and peroxisome proliferator-activated receptor γ (PPARγ). 
In a proper environment, the committed MSCs (or adipocyte progenitors) express 
C/EBPβ and C/EBPδ, which in turn induce the expression of C/EBPα and PPARγ. 
C/EBPα and PPARγ together promote maturation of preadipocytes by activating 
adipose-specific gene expression and maintaining each others expression at high levels 
[60]. Accumulating evidence indicates a mutually exclusive relationship between the 
commitment of MSC into osteoblast and adipocyte. For example, PPARγ -/- embryonic 
stem cells (ES) fail to differentiate into adipocytes but spontaneously differentiate into 
osteoblasts, and the PPARγ deficient mice display enhanced bone formation [61, 62]. 
Consistently, the thiazolidinedione antidiabetic drug rosiglitazone, which is a potent 
PPARγ agonist elicits significant bone loss while increasing adipogenesis in both mice 
and humans [63-66]. Moreover, BMP-2-induced increase of Runx2 expression in MSC 
enhances osteoblast commitment at the expense of adipocyte maturation [67] and in 
Runx2 deficient MSC an increase in the expression of adipocyte marker genes is seen 
[68]. These data indicate that a balance between the activity of Runx2 and PPARγ plays 
a key role in specifying the two alternate cell fates. Recently, a possible regulator of 
this balance was described.  Transcriptional coactivator with PDZ-binding motif 
(TAZ), a 14-3-3-binding protein, can bind to the Pro-Pro-X-Tyr motif within the 
activation domains of both Runx2 and PPARγ. While functioning as an endogenous 
coactivator of Runx2 in MSC, TAZ represses the PPARγ-dependent transcriptional 
events. Thus, TAZ promotes osteoblastogenesis while simultaneously impairing 
adipocyte differentiation [69].  
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However, there are also reports that suggest that Runx2 and PPARγ may not be the 
major determinants for cell fate determination. For example, the determination process 
has been suggested to be regulated through the activities of C/EBPs. C/EBPs belong to 
the leuzine zipper family of transcriptional factors, which form homodimer or 
heterodimer complexes among family members. C/EBPβ and δ are important for the 
early stages of adipogenesis [70, 71]. Interestingly, C/EBPβ is also up-regulated during 
osteoblast differentiation, and through interaction with Runx2, C/EBPβ and δ activate 
the expression of osteoblast specific genes such as OCN [44]. The liver-enriched 
inhibitory protein (LIP) is an isoform of C/EBPβ. Due to lack of the transcriptional 
activation domain it usually functions as a transcriptional repressor [72], Although LIP 
inhibits adipogenesis in a dominant-negative fashion it was recently shown that LIP 
functions as a coactivator of Runx2 and stimulates osteoblastic differentiation [45]. 
Therefore, it could be that the ratio of C/EBPβ-LIF is a critical factor for commitment 
of MSC to osteoblast or adipocyte lineages. Another potential regulator for MSC 
commitment is the homeobox gene Msx2, a mammalian homologue of the Drosophila 
muscle segment homeobox. Msx2 is known to be induced by bone morphogenetic 
proteins (BMPs), which play critical roles in bone formation and osteoblast 
differentiation [73]. Msx2 deficient mice develop defects in osteogenesis [74]; while 
transgenic mice overexpressing Msx2 show enhanced growth of calvariae [75]. 
Consistently, gain or loss of Msx2 function by mutations in humans is often associated 
with accelerated or delayed skull ossification [76-79]. The expression Msx2 can be 
induced by BMP2 in Runx2-deficient MSCs. In normal MSCs, besides promoting 
osteoblast differentiation, Msx2 inhibits the transcriptional activity of C/EBPβ and δ, as 
well as C/EBPα and PPARγ, thereby suppressing adipocyte differentiation [80]. Thus, 
Msx2 functions as a determination regulator upstream of C/EBPs and Runx2. In 
summary, the above findings indicate that the commitment of MSC to osteoblast or 
adipocyte may be regulated at multiple levels. However, it is clear that more studies are 
needed in order to better understand the intricate interplay between different regulatory 
commitment factors. 
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1.2.4 Differentiation of Osteoblastic cells 

Figure 3 Transitional stages during osteoblast differentiation and the expression of lineage markers 
Col-1, ALP and osteocalcin. 
 
1.2.4.1 The Transitional Stages during Osteoblast Differentiation 

 
For convenience, the differentiation process of the osteoblast committed MSCs is 
artificially divided into several stages, namely, osteoprogenitors, preosteoblasts, 
osteoblasts, osteocytes and bone lining cells. Most of these definitions are originally 
made by morphological and histochemical criteria, coupled with proliferation analysis. 
 
Osteoblasts: The osteoblasts are defined as post-proliferative, cuboidal, strongly 
alkaline phosphatase-positive cells lining bone matrix at sites of active matrix 
production. They have a large nucleus, enlarged Golgi apparatus, and extensive 
endoplasmic reticulum, which are typical features of cells highly active in protein 
production [81]. 
 
Preosteoblasts: The preosteoblasts are considered the immediate precursor of the 
osteoblasts and are identified in part by their localization in the adjacent one or two cell 
layers’ distance from the osteoblasts lining bone formation surfaces. Although 
preosteoblasts resemble osteoblasts histologically and stain for ALP activity, they have 
not yet acquired many of the other characteristics of fully mature cells, and unlike 
osteoblasts, preosteoblasts are thought to possess a limited proliferation potential [81]. 
 
Osteocytes: The osteocytes are non-proliferative, terminally differentiated cells of the 
osteoblast lineage. They are non-migratory cells, locked inside small lacunae in the 
mineralized bone matrix or the newly formed osteoid. Compared with mature 
osteoblasts, the osteocytes are smaller, have decreased ALP activity and cytoplasmic 
organelles. However, there is an emerging consensus that osteocytes play an important 
role in the maintenance of bone structure, i.e. participating in extracellular exchanges 
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between different components and acting as mechanosensory cells and determining the 
place and time of bone remodeling [82-84]. 
 
Bone lining cells: Another type of the terminally differentiated osteoblast is bone lining 
cells, which are flat, thin and elongated cells, covering most if not all the 
nonremodeling bone surfaces. Similar to osteocytes, the bone lining cells are 
considered postproliferative, inactive in matrix production and may take part in 
mechanotransduction and protection of the bone matrix from osteoclastic resorption 
[81, 85]. Another feature of the bone lining cells is their potential to be reactivated to 
cuboidal, active osteoblasts in response to particular stimuli [86]. 
 
Osteoprogenitor cells: In contrast to the other transitional stages, the 
“osteoprogenitor” is mainly functionally defined. As the name indicates, 
osteoprogenitors are able to clonally generate cells of osteoblast lineage but lack self-
renewal capacity [87]. Some authors have reported that these cells are spindle-shaped 
and reside in close proximity to the preosteoblast layer with a distance from bone 
formation surfaces in the periosteal layer of bone [81]. However, accumulating 
evidence indicates that the “osteoprogenitors” can be gained from different sites, 
including calvaria, bone marrow, fat, peripheral blood, and accordingly, demonstrate 
different morphological features [88]. 
 
Although the above “compartmentalization” categorizes and describes the 
characteristics of the osteoblast differentiation process, the boundaries between the 
adjacent transitional stages are not distinct. For example, the difference between 
osteoprogenitor and preosteoblast is not clear; and although the “self-renewal capacity” 
can be used as a conceptual distinction between osteoprogenitor and MSC, it has 
almost no practical use. In my opinion, this drawback of “compartmentalization” is 
unavoidable because these different transitional stages actually exist as a developmental 
continuum rather than as distinct compartments. However, this “compartmentalization” 
is problematic for in vitro studies because the cells change dramatically in morphology 
from their in vivo state. Thus, it is most practical to use molecular markers to evaluate 
the differentiation process. 
 
1.2.4.2 Phenotypic Markers of Osteoblastic Cells 

 
Besides the change of morphological features and proliferation ability, the 
differentiation of osteoblasts is associated with temporal modification in the expression 
of a set of macromolecules. These molecules include membrane-associated enzymes 
(such as ALP), bone matrix proteins (such as Col-1, OPN, BSP and OCN), and 
receptors for systemic hormones and local factors (such as parathyroid hormone 
receptors, estrogen receptors, and different cytokine receptors) [81]. These 
macromocules not only play important roles in regulating cell proliferation and 
function but also provide a panel of markers that reflect the transitional stages in 
osteoblast development. The following phenotypic markers have been frequently used 
in my studies. 
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Type I collagen (COL-1): Col-1 is a primary product of osteoblasts during bone 
matrix formation, constituting approximately 90% of the total organic matrix in mature 
bone [89]. Together with mineral, collagen governs the mechanical property and 
functional integrity of the osseous tissue. From a number of in vitro studies Col-1 has 
been proposed to induce osteoblast differentiation and facilitate mineralization [90]. 
However, as a phenotypic marker, Col-1 is nonspecific; it is synthesized by many cell 
types and distributed in almost all connective tissues (with the exception of hyaline 
cartilage). In osteoblast lineage cells, Col-1 is clearly expressed before the preosteoblast 
stage and it has been documented that up-regulation of Col-1 occurs prior to up-
regulation of any of the other matrix molecules and prior to ALP [91]. 
 
Tissue nonspecific alkaline phosphatase (TNAP): Although not specific for 
osteoblast lineage cells, ALP is the most frequently used phenotypic marker to evaluate 
their activities [92, 93]. The physiologic isoforms of ALP are coded by four gene loci: 
three loci located on chromosome 2 and each encodes one of the three tissue specific 
ALPs, expressed in germ-cells, placenta and intestine respectively. The other locus, 
located in chromosome 1, encodes the bone-liver-kidney isoform, also called the tissue 
nonspecific alkaline phosphatase (TNAP) [94]. Accordingly, the TNAP is the isoform 
that we have referred to as osteoblast marker in our studies. In bone, TNAP presents 
abundantly in the membranes of osteoblasts and matrix vesicles by covalent bounds to 
glycosylphosphatidylinositol (GPI) [95]. The major role of TNAP in bone is to 
facilitate mineralization. Clear evidence for this function is seen in the genetic discorder 
inheritable human hypophosphatasia [96] and in in vivo experimental studies of the 
TNAP gene knockout or mutated mice [97, 98]. In vitro studies indicate that ALP 
facilitates mineralization by generating inorganic phosphate (Pi) from substrates such as 
β-glycerophosphate (β-GP) [99]; while recent in vivo data indicates that mineralization 
is mainly mediated by ALP-mediated hydrolyzation and elimination of the potent 
mineralization inhibitor, pyrophosphate (PPi) [100]. However, TNAP is not only 
restricted to mature osteoblasts, it can also be detected in subpopulations of 
osteoprogenitors and preosteoblasts, well before mineralization and prior to the 
expression of the noncollagenous matrix molecules [87, 101]. Therefore, it has been 
proposed that TNAP could act as a membrane-bound receptor involved in 
osteoprogenitor-osteoblast adhesion, migration, and differentiation [102]. 
 
Osteocalcin (OCN): OCN is a carboxylated bone protein also known as bone Gla 
protein. It is the most abundant non-collagenous protein of bone [103] and has a very 
narrow expression pattern, undetectable in preosteoblasts and expressed only by the 
mature osteoblasts and osteocytes [104, 105]. Thus, OCN is currently considered the 
most specific and the latest expressed osteoblast marker. The function of OCN in bone 
is still unclear. Studies of the in vitro differentiation of rat calvaria osteoblasts showed 
that OCN is localized intracellularly and in all the extracellular compartments, but 
concentrated at the mineralization front, supporting a role in regulating mineralization 
[106]. However, although the OCN-deficient mice develop a phenotype with higher 
bone mass and bones of improved functional quality, the absence of OCN did not affect 
bone mineralization or bone resorption [107]. Interestingly, there are recent reports to 
suggest that OCN can be secreted by osteoblasts as uncarboxylated form and functions 
as a hormone, which affects glucose metabolism and fat mass through regulation of 
pancreatic β cells and adipocyte gene expression [108, 109]. 
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1.2.4.3 Apoptosis of Osteoblastic Cells 

 
Apoptosis, or programmed cell death, is recognized as an important component in 
embryogenesis, organogenesis, and tissue morphogenesis as well as in the maintenance 
of homeostasis in many adult tissues [110]. In bone, mature osteoblasts have one of 
three fates upon completion of the synthetic phase of the remodeling cycle: two of 
which have been previously described, to become osteocytes entrapped within the 
mineralized matrix or to evolve into bone lining cells that protect the bone matrix from 
osteoclasts resorption. However, 60-80% of the osteoblasts that originally assemble at 
the resorption pit cannot be accounted for by either of these two fates, and ample 
evidence has established that the missing osteoblasts die by apoptosis [111, 112]. In 
fact, apoptosis is not restricted to mature osteoblasts: a small percentage of apoptotic 
cells present throughout the in vitro culture of rat calvaria-derived preosteoblasts [113]; 
and apoptotic mesenchymal progenitors are frequently observed in developing long 
bones, calvariae and sites of fracture healing in animal models [114-117]. In addition, 
osteocytes are not immortal and undergo apoptosis by aging or under the influence of 
apoptotic signals such as hormones, pharmaceutical interventions, and mechanical 
stress [118, 119]. These facts indicate that apoptosis occurs throughout the entire life 
span of osteoblast lineage cells, and thus its regulation not only determines the rate of 
bone formation but also helps to maintain a proper functional bone. 
 
As in other tissues, bone cells undergoing apoptosis are recognized by condensation of 
chromatin, the degradation of DNA into oligonucleosome-sized fragments, and the 
formation of plasma and nuclear membrane blebs. Eventually the cell breaks apart to 
form so-called apoptotic bodies [112]. However, except for special locations such as 
fracture callus and developing calvariae sutures [114, 120, 121], apoptotic osteoblasts 
with typical features are rarely seen in vivo [116, 122]. This is likely because apoptosis 
represents only a tiny fraction of the life span of osteoblasts and apoptotic cells vanish 
rapidly without a trace through effective phagocytic clearance [111]. The only 
exception is osteocyte apoptosis, which represents cumulative death because the 
cellular debris is not accessible to phagocytic scavenger cells [123]. 
 
The process of apoptosis is highly regulated and can be triggered by both extrinsic and 
intrinsic signals. The extrinsic signals refer to the cellular binding of proapoptotic 
factors like Fas ligand which subsequently initiates the apoptosis program. The intrinsic 
signals usually lead to disruption of the integrity of mitochondria through which the 
death program is subsequently initiated. The latter represents the most frequent 
apoptotic mechanism in vertebrates [124]. In the mitochondria pathway, the decision to 
live or die is determined at the level of the outer mitochondrial membrane. The 
integrity of this membrane is controlled by the Bcl-2 family proteins, which are made 
up of pro-apoptotic and anti-apoptotic members. When death signals overwhelm 
survival signals, the action of anti-apoptotic Bcl-2 proteins are abrogated. This results 
in the permeabilization of the outer mitochondrial membrane and the release of 
proteins, such as cytochrome c, from the intermitochondrial membrane space into the 
cytoplasm [125]. The released cytochrome c activates caspase-9, a protease that 
normally exists as a latent proenzyme. Once activated, caspase-9 proceeds to activate 
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other caspases, notably caspase-3, which eventually dismantle the internal components 
of the cells [126]. 
 
A large body of evidence suggests that growth factors, cytokines, hormones, and drugs 
affect bone development and remodeling, in part by controlling bone cell apoptosis 
[127]. For example, bone morphogenetic proteins (BMPs) induce apoptosis of 
mesenchymal osteoblast progenitors in interdigital tissues during the development of 
hands and feet [128]. TGF-β inhibits apoptosis of cultured osteoblastic cells [111], and 
conversely, mice lacking Smad-3, which mediates TGF-β signaling, exhibit decreased 
bone mass associated with increased osteoblast apoptosis [129]. Estrogen deficiency 
leads to increased bone remodeling and subsequent bone loss due to an excess of 
resorption over formation, suggesting that estrogen promotes osteoclast apoptosis but 
prevents osteoblast apoptosis [130]. In addition, the decrease in osteoblast number and 
bone formation rate in glucocorticoid excess may be explained in part by increased 
osteoblast apoptosis, which has been reported in studies of murine, rabbit and human 
bone [131-133]. In summary, apoptosis is an important cellular event during bone 
development and remodeling and should be considered as critical as the differentiation 
effects when studying the potential development regulators of osteoblast lineage cells. 
 
1.2.5 Osteosarcoma (OS) 

 
Perturbations of cell differentiation can result in abnormal cellular survival, growth, and 
behavior [134]. OS might be regarded as a differentiation disease. First, OS is most 
frequently observed in adolescence, a stage of intensive skeletal growth and locates 
primarily around the regions with most active new bone formation, such as lower femur 
and upper tibia [135]. Paget’s disease of bone, a benign condition characterized by 
accelerated bone formation and resorption, is also associated with an increased risk of 
OS [136]. Together, these observations indicate that tumorogenesis is associated with 
osteogenesis. Second, up to 70% of OS is of osteoblast lineage with the remaining 30% 
showing chondroblastic and fibroblastic (~10% each), or anaplastic and small cell 
phenotype [137]. This kind of lineage distribution represents the mesenchymal origin 
of the tumor. Third, in osteoblastic OS a certain aspect of the differentiation phenotype 
is clearly preserved. For example, the tumor cells express lineage specific transcription 
factors and lay down an aberrant bone matrix [138]. Among these tumor expressed 
components, the early and nonspecific markers of osteoblastic lineage such as Runx2 
and ALP are frequently seen, while the later and more specific markers, such as Osx 
and OCN, are expressed more ralely or not at all [139, 140], which indicates that the 
development to the terminal differentiation stage is interrupted. The resistance to 
mutagens appears to be inversely related to the degree of cell differentiation, as 
evidenced by the fact that both spontaneous and induced mutation frequencies are 
much lower in embryonic stem cells than somatic cells [141-143]. Therefore, it is likely 
that the key tumorogenic events, which result in deregulation of gene expression 
profiles, occur more frequently in the later stages of osteoblastic differentiation, i.e. 
from preosteoblast to mature osteoblasts, than the earlier stages such as 
osteoprogenitors and MSCs.  
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Several genes have been indicated to be involved in the process of osteoblastic 
differentiation and transformation resulting in OS. For example, RB-1, which codes for 
the retinoblastoma protein [144], is mutated in 70% of adolescent OS. Patients carrying 
germline mutations in RB-1 gene have around 500-fold higher incidence of OS than the 
general population [145, 146]. The Rb protein can physically interact with Runx2 and 
participate in the activation of OCN expression [147]. Loss of Rb protein can suppress 
the terminal differentiation in cultured osteoblast cell lines, and conditional deletion in 
mouse embryo results in defects in both endochondral and intramembranous 
ossification [147, 148]. Another studied gene is the tumor suppressor gene p53. 
Mutations of p53 are observed in 20-60% of sporadic OS [149]. Li-Fraumeni patients, 
who often carry germ-line mutations in p53, are predisposed to a variety of tumors, 
12% of which are bone sarcomas [150, 151]. The role of p53 in osteoblastic 
differentiation is mainly evidenced by the following facts: p53-deficienct mice display 
both accelerated osteoblast differentiation and increased bone density [152]; in contrast, 
hyperactivation of p53, via deletion of the p53-inhibitor Mdm2, suppresses osteoblast 
differentiation by inhibiting expression of Runx2 [153]. The coupling of transformation 
and differentiation implies that the tumorogenic events might still be regulated or even 
reversed under the influence of intrinsic or extrinsic differentiation signals. Indeed, 
several known differentiation regulators do demonstrate anti-tumor effects as well. For 
example, transfection of the Osx gene into the mouse OS cells inhibited tumor cell 
growth in vitro and in vivo and significantly reduced tumor incidence, tumor volume, 
and lung metastasis following intratibial injection [140]. In addition, the PPARγ 
agonists, troglitazone and ciglitazone, as well as a RXR ligand all exhibited the ability 
to inhibit cell proliferation and induce apoptosis in OS cell lines [154]. Thus, 
differentiation regulators might also be added to the therapeutic arsenal for the 
treatment of OS. 
 
1.2.6 Factors Affecting Osteoblast Development 

 
The process of initiation, differentiation and apoptosis of osteoblast lineage cells are 
affected by many systemic hormones and local factors, some of which, such as gonadal 
steroids (estrogens and androgens), parathyroid hormone and its related proteins 
(PTH/PTHrP), bone morphogenetic proteins (BMPs), and fibroblast growth factors 
(FGFs), have been extensively investigated and reviewed [22-24, 39, 40]. On the other 
hand, “new” regulators, either as natural substances or as synthetic compounds, are 
continually being found or developed. The following sections give an introduction of 
the differentiation regulators that have been investigated in our studies. 
 
1.2.6.1 Sirtuin-1 (Sirt1) 

 
Figure 4 Molecular structures of three Sirt1 regulators 
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Sirt1: Sirt1 is the mammalian orthologue of the yeast silent information regulator 2 
(sir2) [155], which was originally discovered to influence mating-type control in 
haploid cells by locus-specific transcriptional silencing [156]. The products of sir2 
homologues consist of a protein family known as the nicotinamide adenine dinucleotide 
(NAD)-dependent histone deacetylases [157]. These enzymes are distinguished from 
the other deacetylases mainly for two reasons. First, they are universally conserved 
proteins, with homologues in all three kingdoms of life [155, 158]. Second, their 
deacetylation function absolutely requires the coenzyme, NAD+ [157-160]. The major 
substrates of sir2 are acetylated lysines such as those present in the N termini of 
histones [157]. In each reaction cycle, nicotinamide is liberated from NAD+ and the 
acetyl group of the substrate is transferred to the ADP-ribose moiety, generating the 
metabolite O-acetyl-ADP-ribose [161]. 
 
The unusual enzymatic activity of sir2 suggests a linkage between protein modification 
and cell metabolic activity. The metabolic state is known to affect many important 
aspects in life, with the most striking example being lifespan extension induced by 
calorie restriction (CR) [162]. The mechanism of this process is largely unknown but 
studies in yeast indicate that sir2 plays a key role [162]. First, CR does not extend 
lifespan when sir2 is deleted [163]. Second, the enzymatic activity of sir2 is enhanced 
during CR [164]. Third, the life extension effect can be induced by a non-specific sir2 
activator, resveratrol (as later described) [165]. Fourth, yeast lifespan can be 
dramatically increased with an extra copy of sir2 gene and decreased with Sir2 
dysfunction [166]. In accordance with these findings, studies using C. Elegans and 
Drosophilia have demonstrated similar results [167-170]. 
 
In mammalian genomes, seven sir2 homologues, Sirtuins 1-7 (Sirt1-7), have been 
identified [171]. Unlike their homologues in lower organisms the human Sirts appear to 
have a broader range of substrates and more complicated functions. For example, Sirt2 
is mainly found in cytoplasm and mediates tubulin deacetylation [172]. Sirt3 localizes 
in mitochondria and its function is still unknown [173]. Of these seven Sirts, Sirt1 
shares the highest homology to the yeast sir2 and is thus considered to be its orthologue 
[155]. At the level of chromatin, Sirt1 enzymatic activity preferentially targets histone 
H1 at Lys26, H3 at Lys9 and Lys4, and histone H4 at Lys16. These modifications are 
supposed to promote the formation of facultative heterochromatin with resultant 
silencing [159, 174]. In addition, a wide variety of nonhistone Sirt1 substrates have 
been identified, such as p53 [175, 176], forkhead transcription factor Foxo3 [177, 178], 
and transcriptional coactivator PGC-1α [179, 180], stressing the pivotal function that 
this regulator plays in cellular control and responses. Furthermore, the expression and 
activity of Sirt1 has been recently reported to be regulated in a circadian manner in 
cultured cells and in the animal liver, which indicates that Sirt1 could function as a 
bridge connecting cellular metabolism and the circadian system [181, 182]. 
 
There are several reasons to also connect Sirt1 to differentiation of cells. First, the 
histone deacetylation and gene silencing effects enable Sirt1 to epigenetically modify 
the mammalian genome. Epigenetic modification is now considered to be a 
fundamental process in differentiation [183-185]. Second, many transcriptional factors 
involved in differentiation contain lysine residues, which could be target sites for Sirt1. 
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Sirt1 binds and deacetylates the p53 protein with specificity for its C-terminal lysine 
382 residue. Acetylation of this residue has been shown to be important for the 
transcriptional activity of p53 [175, 176]. Sirt1 has also been shown to bind and 
deacetylate Rb resulting in suppressed Rb activity [186]. Third, Sirt1 has been shown to 
regulate cell differentiation in several cell lineages. Regarding brain cells, activation of 
Sirt1 by mild oxidation suppresses proliferation of neural progenitor cells and directs 
their differentiation towards the astroglial lineage at the expense of the neuronal 
lineage, whereas inhibition of Sirt1 by reducing conditions has the opposite effect 
[187]. Sirt1 also acts as a redox state sensor and differentiation regulator of muscle 
cells. Overexpression of Sirt1 retards muscle differentiation via formation of a complex 
with the acetyltransferase p300/CBP-associated factor (PCAF) and MyoD, whereas in 
cells with reduced Sirt1 activity, muscle gene expression and differentiation are 
enhanced [188]. In adipocyte precursors, Sirt1 represses PPARγ activity via docking 
with two of its corepressors, nuclear receptor corepressor (NcoR) and silencing 
mediator of retinoid and thyroid hormone receptor (SMRT), and hence inhibits 
adipocyte differentiation. Furthermore, in differentiated adipocytes, up-regulation of 
Sirt1 triggers lipolysis and loss of fat [189]. Since skeletal defects, such as craniofacial 
abnormalities and delayed mineralization in digits, has been identified in the Sirt1 
deficient mice [190, 191], it is highly likely that Sirt1 affects osteogenesis as well. In 
our studies the influence of Sirt1 activity on differentiation of MSC to osteoblast has 
been investigated and is described below. 
 
Resveratrol (RSV): The unusual mechanism of sir2-catalyzed deacetylation permits 
opportunities for chemical intervention to enhance or inhibit its enzymatic activity. The 
most studied activator is 3,4,5'-trihydroxystilbene (RSV) [165], a polyphenol found in 
many plant sources, including nuts, berries, and grape skins (and therefore in red wine). 
From a botanical point of view, RSV belongs to a class of defense molecules called 
phytoalexins that protect the plant against infection and environmental harshness [192, 
193]. Indeed, RSV is found to be a major ingredient in many herbal medicines that 
have been used by oriental people for thousands of years [194, 195]. Recent studies 
attribute this natural, old, and simple molecule a broad range of health benefits, 
including tumor prevention, cardio and neuro-protection, improvement of metabolic 
states and lifespan extension [196]. 
 
In 2003, Howitz et al. showed that among the 15 sir2 activators RSV demonstrated the 
most potent deacetylation enhancing effect [165]. Dose-response experiments, using 
p53-acetylated peptide as substrate, showed that RSV increased the rate of Sirt1-
mediated deacetylation. RSV demonstrated no significant effect on the two Vmax 
determinations when either substrate or NAD+ was varied. However, it was shown to 
lower the Michaelis constants (Km) for both acetylated substrates and NAD+, indicating 
that RSV is an allosteric effector that alters the substrate-binding affinity of Sirt1 [165]. 
These findings are consistent with the findings that RSV treatment mimics sir2-
dependent lifespan extension in various species [163, 165, 170, 197, 198]. However, in 
mammalian cells several other enzymes or transcription factors could be modulated by 
RSV. Although it could be that some of these RSV targets are modulated through Sirt1 
deacetylation [199], others, such as cyclooxygenase-1 (COX-1), have been found to be 
affected through direct interaction with RSV [200]. Thus, despite the high potency 
RSV is a nonspecific Sirt1 activator. 
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Nicotinamide (NAM): NAM, also known as niacinamide and nicotinic acid amide, is 
the amide of nicotinic acid (vitamin B3). NAM has demonstrated anti-inflammatory 
actions which may be mediated through suppression of antigen induced-lymphocytic 
transformation and inhibition of 3'-5' cyclic AMP phosphodiesterase [201]. Animal 
studies have shown that nicotinamide may also work in a way similar to 
benzodiazepines so as to exert anti-anxiety  properties [202]. As well, NAM has been 
shown to have chemopreventive effects on cancer and type I diabetes through unclear 
mechanisms [203]. 
 
NAM has been described to non-competitively inhibit sir2-catalyzed deacetylation 
[204, 205]. To date NAM remains among the most potent sir2 inhibitors [206-208] and 
is the only compound that has been reported to inhibit sir2-dependent lifespan 
extension [204]. The mechanism of NAM inhibition has been clarified by studies of 
Sauve et al. [206] and Jackson et al. [207]. Briefly, the enzymatic activity of sir2 can be 
considered as a combination of two reactions, base-exchange and deacetylation. These 
two reactions are competitive processes emerging from a common intermediate, ADP-
ribosyl-enzyme-acetyl peptide. Unlike deacetylation the base-exchange process is 
reversible, and by this reason NAM can also be considered as a base-exchange 
substrate. Therefore, an increase of NAM concentration will favor the base-exchange 
process, regenerating NAD+ from the ADP-ribosyl-enzyme-acetyl peptide intermediate, 
and sacrifice the other process, deacetylation. 
 
Several additional findings contribute to the physiological importance to NAM-
mediated sir2 inhibition. First, the inhibitory effect of NAM is phylum-dependent. For 
bacterial and yeast enzymes, approximately 79 and 35%, respectively, of the maximal 
sir2 deacetylation rates remained following millimolar NAM treatment [206]. 
However, the IC50 of human Sirt1 is less than 50 μM [204], and for the mouse enzyme, 
over 95% inhibition occurred at the presence of 160 μM NAM [206]. Consistent with 
these findings, studies of Sirt1-deficient mice failed to find a global defect in gene 
silencing [190, 209], while in yeast continuous sir2-catalyzed deacetylation is required 
for the maintenance of the heterochromatin [204]. Since levels of NAM in mammalian 
tissues are found to lie in the range of 10-400 μM [210-213] and NAM appears to be 
concentrated mostly in the nucleus, with a limit concentration of 150 μM [214], it is 
highly likely that the deacetylation activity of Sirt1 is largely blocked by NAM in 
mammalian cells. Furthermore, studies in yeast revealed that NAM produced from 
NAD+ cleavage is converted to nicotinic acid, a vitamin B3 form with no inhibitory 
effects on sir2, through deamination catalyzed by Pnc1, a nicotinamidase [215]. 
Interestingly, the expression and enzymatic activity of Pnc1 increased dramatically in 
response to glucose restriction, amino acid restriction, salt and heat stresses, which are 
known stimuli to extend yeast lifespan. In addition, overexpression of Pnc1 extends 
yeast lifespan and suppresses the inhibitory effects of exogenously added NAM on 
sir2-mediated gene silencing and lifespan extension. Neither of the two phenomena can 
be observed in sir2-deficient strains [216, 217]. Similar to sir2, the nicotinamidase is a 
ubiquitous protein and the purified enzyme has been extracted from microbial, plant, 
insect, and mammalian sources [218-221]. Although the physiological function of the 
mammalian Pnc1 has not been clarified, the fact that CR prolongs lifespan in mammals 
strongly indicates that the NAM inhibition of Sirt1 could be reversed under nutritional 
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stresses. Second, the mechanism of NAM-mediated sir2 inhibition suggests that NAM 
analogues capable of inhibiting base-exchange but not deacetylation would cause in 
vivo activation of sir2. Indeed, one such sir2 activator, isonicotinamide (INM), has 
been identified [214]. INM (pyridine-4-carboxamide) is a chemical based on the NAM 
structure, but in which the amide is in the 4-position and not the 3-position. INM 
antagonizes sir2 inhibition by endogenous NAM in yeast cells and causes an increase in 
sir2 deacetylation activity. Furthermore, INM substantially increases transcriptional 
silencing at sir2-regulated loci in both wt strains and strains lacking the Pnc1 
nicotinamidase [214]. Finally, it needs to emphasize that the mechanism used by NAM 
and its analogues for regulating sir2 deacetylation is different from that used by the 
polyphenolic compounds such as RSV. As described previously, polyphenols are 
proposed to increase sir2 deacetylation by changes in the Michaelis constant for both 
substrate and NAD+. In contrast, NAM and INM regulation of sir2 deacetylation 
activity is achieved without affecting substrate or NAD+ binding by altering the 
proportion of intermediate-enzyme complexs proceeding toward the deacetylated 
products. This difference suggests that a combination of the two mechanistically 
distinct pathways may synergistically enhance deacetylase activity of sir2 in vivo. 
 

1.2.6.2 1α,25(OH)2D3 

 
Figure 5 Molecular structures of 1α,25(OH)2D3 and 2MD 

 
1α,25(OH)2D3: The physiologically active form of vitamin D, 1α,25(OH)2D3, is a seco-
steroid hormone. Its effects are mediated primarily via the vitamin D receptor (VDR), 
which is a member of the nuclear receptor superfamily. When bound by its ligands, the 
VDR dimerizes with the retinoic X receptor (RXR) and binds to promoter regions of 
responsive genes to either activate or repress transcription [222, 223].  It is generally 
agreed that 1α,25(OH)2D3 affects bone formation mainly by indirect mechanisms on 
calcium homeostasis [223]. Though direct effects on osteoblasts have been reported, 
the findings have sometimes been contradictory. In vitro experiments show that 
1α,25(OH)2D3 increases the production of OCN and ALP in rat and human osteoblasts 
[224, 225], while in mouse osteoblasts 1α,25(OH)2D3 down-regulated expression of 
Phex, a mature osteoblast marker, and block in vitro mineralization [226, 227]. 
Controversial results have also been reported from in vivo studies. The rat is the most 
commonly used animal for vitamin D studies. Similar to humans, rats respond to the 
treatment of 1α,25(OH)2D3 with increase in intestinal calcium absorption and bone 
calcium mobilization [228]. Rat experiments suggest that 1α,25(OH)2D3 prevents 
experimental osteoporosis in vivo [229-234]. VDR-knockout mice show typical 
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features of vitamin D-dependent rickets type II, such as failure to thrive after weaning, 
appearance of alopoecia, hypocalcaemia and infertility, as well as severely impaired 
bone formation [235]. However, studies from VDR knockout mice show that the 
rickets caused by interruption of 1α,25(OH)2D3 signaling can be totally prevented by 
high calcium diet alone [236]. Furthermore, transplantation of bone from VDR 
knockout mice to wild-type mice revealed a significant increase in bone volume and 
density compared with control (wild-type bone transplanted to wild-type mouse), which 
indicated that 1α,25(OH)2D3 suppress bone formation [237]. Undesirable effects of 
1α,25(OH)2D3 have also been reported in other species, such as in rabbits, in which 
1α,25(OH)2D3 prevented fracture healing and aggravated immobilization or 
prednisolone-induced osteoporosis [238]. The reason for these paradoxes is presumed 
to be the difference in the regulation of calcium metabolism [238]. Still, a clear 
understanding of this issue is not at hand. However, reported data indicate that the 
direct effect of 1α,25(OH)2D3 on osteoblastic cells is species-dependent. 
 
2-methylene-19-nor-(20S)-1α,25(OH)2D3 (2MD): As a synthetic 1α,25(OH)2D3 
analogue, 2-methylene-19-nor-(20S)-1α,25(OH)2D3 (2MD) differs structurally from 
1α,25(OH)2D3 by the absence of the 19-methylene carbon and the addition of a 
methylene group in the 2-position between the 3β-hydroxyl and 1α-hydroxyl. In 
addition, the C-20 configuration is changed to 20S compared with a 20R configuration 
in naturally occurring vitamin D compounds [239]. In rat studies, 2MD stimulated bone 
formation without triggering noticeable hypercalcemia and hypercalciuria. 
Additionally, although 2MD was about 30-100 fold more potent than 1α,25(OH)2D3 in 
bone calcium mobilization it was no more effective in promoting intestinal calcium 
absorption [240]. Further studies in ovariectomized rats showed that low doses of 2MD 
increased total bone mass and promoted the synthesis of both trabecular and cortical 
bone with high quality, whereas much higher doses of 1α,25(OH)2D3 only prevented 
bone loss over the same period [241]. Such bone anabolic effects imply that 2MD 
increases bone formation through a direct action on bone cells. 
 
1.2.6.3 Interleukin-6 (IL-6) 

 
Interleukin-6 (IL-6): IL-6 is a multifunctional cytokine that can activate target genes 
involved in proliferation, differentiation, survival and apoptosis in a variety of cells 
[242]. Its effects occur after binding to its transmembrane receptor (IL-6R or alpha 
receptor) and the signal transducer gp130 (beta receptor). This heterodimeric receptor-
ligand interaction activates receptor-bound Janus kinase (JAK). JAK phosphorylates 
the tyrosine residues of the cytoplasmic tail of gp130, which leads to recruitment of 
SH2-domain containing proteins, such as members of the signal transducers and 
activators of transcription (STAT). STAT phosphorylation causes the formation of 
STAT-protein dimers that migrate to the nucleus and initiate gene transcription. In bone 
IL-6 can be produced by a variety of cells, such as osteoblasts, mononuclear 
phagocytes, endothelial cells, chondrocytes, fibroblasts and lymphocytes [243, 244]. 
Over-production of IL-6 is seen in postmenopausal osteoporosis, Paget’s disease, 
rheumatoid arthritis and other diseases with accelerated bone turnover [245-247]. 
Additionally, transgenic mice with IL-6 overexpression are associated with severe 
skeletal defects including osteopenia, defective ossification, and growth plate 
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abnormalities [248]. Regarding IL-6 deficient mice, although the evident phenotype is 
normal [249] microstructure abnormalities are found in the cortical bones and delayed 
fracture healing is reported [250, 251]. Furthermore, IL-6 deficient mice are protected 
from bone loss by estrogen depletion, in which case high level of IL-6 are found in the 
wild types [250]. These findings indicate that IL-6 is an important regulator of bone 
remodelling and an adequate amount of this cytokine is crucial for bone homeostasis. 
However, although extensive studies have been done to understand its mechanism of 
action, the direct effects of IL-6 on osteoblasts are still unclear. For example, many 
studies indicate IL-6 as a differentiation inducer [252-254] whereas effects such as 
inhibition of osteocalcin expression [255] and bone nodule formation [256] also have 
been reported. Additionally, although high levels of IL-6 are usually found where 
osteoblast apoptosis rates are high [118, 131, 257] several in vitro studies demonstrate 
that IL-6 is an apoptosis inhibitor [258]. 
 
IL-6 receptors (IL-6R): The action of IL-6 is mediated through two kinds of receptors: 
the cell surface receptor, surface IL-6R (also known as alpha receptor, CD 126 or 
gp80), and the signal transducer gp130 (beta receptor or CD130). In contrast to gp130, 
which is ubiquitously expressed on different cell types and shared by several 
interleukins, the surface IL-6R is expressed in a more restricted pattern [259]. 
Additionally, the cell surface IL-6R can be functionally replaced by a soluble 
counterpart, generated by either shedding or alternative mRNA splicing [260]. It is 
largely unknown which form of IL-6R functions as the major mediator in bone. Many 
in vitro studies suggest that osteoblasts lack surface IL-6R and are inert to IL-6 unless 
soluble receptors are added [252, 261-263]. However, there are also studies indicating 
that surface IL-6R is expressed abundantly in osteoblasts in vivo [247, 264, 265]. 
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2 PRESENT INVESTIGATION 
 
2.1 AIMS OF STUDIES 

 
The aim of the work presented in this thesis was to study the effects of selected factors 
on growth, differentiation and apoptosis of osteoblast lineage cells. 
 
The specific aims were: 
 

1. To study the effects of Sirt1 regulators on the commitment of MSCs to 
osteoblast or adipocyte lineage. 

 
2. To study the direct effects of 1α,25(OH)2D3 and its synthetic analogue, 2MD, 

on osteoblastic cells. 
 

3. To study the effects of IL-6 and specifically the role of IL-6R on osteoblast 
differentiation. 

 
4. To study the effects of Sirt1 regulators on proliferation and apoptosis of OS 

cells. 
 
2.2 COMMENTS ON METHODOLOGY 

 
In the presented studies, cell proliferation was evaluated by cell counting and WST-1 
analysis. The differentiation stages of MSCs and osteoprogenitors were evaluated by 
several methods, including quantitative realtime PCR analysis for mRNA expression of 
osteoblast and adipocyte markers, staining for fat vesicles in adipocytes by oil red O, 
and staining for ALP expression and bone nodule formation in osteoblast cultures by 
using an ALP staining kit or with the Alizarin red and Von kossa methods. Cell 
apoptosis was measured by Annexin V staining followed by flow cytometry analysis or 
by measurement of caspase-3 activity. These are commonly used methods in cellular 
research and have been described in details in the attached papers. The following 
comments on methodology are based on the osteoblast differentiation model used in the 
presented studies. This model is composed of three fundamental components: cells, 
bone inducing medium (BIM), and differentiation regulators. The osteoprogenitors 
used include primary cultured bone marrow stromal cells, C3H/10T1/2 cells and 
MC3T3-E1 cells. The bone inducing medium is made from normal culture medium 
supplemented with L-ascorbic acid (AA), β-glycerophosphate (β-GP), and 
dexamethasone (Dex). 
 
2.2.1 Isolation, Expansion and Differentiation of Bone Marrow Mesenchymal 

Stem Cells (BM-MSCs) 

 
There is no standard protocol for isolation and expansion of BM-MSCs. In our studies, 
cell isolation is based on plastic adherence and neither magnetic cell sorting nor a 
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special culture medium was used (see paper I, II, and IV). However, as shown in many 
studies, the cells harvested by this method were unavoidably contaminated by 
hematopoeitic cells and macrophages [266-268]. Accordingly, although the adherent 
cells tended to be homogeneous as culture prolonged, around 20-30% CD11b+ and 
CD45+ cells remained when tested on passage 3 and the macrophages could not be 
removed effectively even after passage 10, when the cells already started to show 
phenotype changes [269, 270]. In our pilot studies, rat BM-MSCs of passage 4 were 
cultured for 4 days and then stained with tartrate-resistant acid phosphatase (TRACP), a 
marker of the activated macrophages. We found that TRACP+ cells were frequently 
seen in cultures using normal medium; however, in cultures with BIM no TRACP+ 
cells were found, and instead, most of the cells were stained for ALP. This finding 
indicates that the BIM has a potential role for purification of the BM-MSCs and that the 
heterogeneity does not interfere with the differentiation of BM-MSC following 
osteoblast lineage. 
 
Several studies have been performed in order to find suitable protocols for isolation, 
expansion and differentiation of BM-MSC. Schrepfer et al. evaluated the effect of 
different media on proliferation of mouse BM-MSCs. They claimed that cells cultured 
with DMEM/F12 showed the highest proliferation rates and that supplementation with 
human growth factor-1 (40 ng/ml) most effectively accelerated cell proliferation. 
However, without magnetic cell sorting, the cells remained heterogenous after 10 
passages [269]. Harting et al. studied the immunophenotype of in vitro cultured rat 
BM-MSCs. They made use of a special media, namely, multipotent adult progenitor 
cell (MAPC) media, which contains 60% low-glucose DMEM, 40% MCDB-201, 1 x 
insulin-transferrin-selenium, 1 x linoleic acid bovine serum albumin, 10-9 M 
dexamethasone, 10-4 M ascorbic acid 3-phosphate, 100 U penicillin, 1000 U 
streptomycin, 2% fetal bovine serum, 10 ng/mL human platelet-derived growth factor, 
10 ng/mL mouse epidermal growth factor and 1000 U/mL mouse leukemia inhibitory 
factor. With culturing in the MAPC media the CD11b+ and CD45+ cells declined to less 
than 2% by passage 4 and cells expressing CD29, CD49 and CD90 increased to 99%, 
which indicated that the MAPC media was effective for the isolation of a nearly 
homogenous population of BM-MSCs [270]. Tokalov et al. studied the effects of age 
on the presence and differentiation capacity of rat BM-MSCs. They found that the 
number of MSCs in bone marrow significantly reduced with aging. However, no age-
related difference regarding the phenotype and differentiation potential was seen [271]. 
The effects of plating density and culture time on rat BM-MSC characteristics were 
studied by Neuhuber et al. They found that the optimal cell growth appeared at a 
plating density of 200 cells/cm2; however, it was the time in culture, instead of plating 
density, that affected the differentiation capacity [272]. The above studies provide 
valuable information regarding culture media, donor age and plating density for studies 
of murine BM-MSCs, which imply that modifications could be done in order to more 
effectively isolate and expand BM-MSCs in our future studies. 
 
2.2.2 C3H/10T1/2 cells 

 
The murine multipotent mesenchymal cell line C3H10T1/2 (clone 8) was obtained 
from American Type Culture Collection. The cells were cultured in BME medium 
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supplemented with 10% FBS, 1 x L-glutamine, and 100 μg/ml gentamicin. This cell 
line was developed at the McArdle Laboratory for Cancer Research in 1972 from a line 
of C3H mouse embryo cells [273]. The cells are very sensitive to post-confluence 
inhibition of cell division, do not produce tumors in syngeneic mice and have no 
background of spontaneous transformation [274]. On the other hand, the C3H10T1/2 
(clone 8) cells are highly susceptible to transformation by chemical agents, and thus 
was originally used in studies on chemical oncogenesis in vitro [275]. In 1977, 
Constantinides et al. reported the formation of functional striated muscle cells after the 
culture of C3H10T1/2/Cl8 cells treated with 5-azacytidine [276]. Two years later, 
following similar experimental procedure, two other mesenchymal derivatives, i.e. 
biochemically differentiated adipocytes and chondrocytes capable of the biosynthesis 
of cartilage-specific proteins, were identified by a cloning method [277]. Thus, the 
C3H/10T1/2/Cl8 cell line became a frequently used model to study the commitment of 
multipotent stem cells to cells of restricted lineages. The differentiation of 
C3H/10T1/2/Cl8 cells towards osteoblastic lineage was firstly suggested by Karagiri et 
al. in 1990 who found that the recombinant human bone morphogenetic protein-2 
(rhBMP2) and retinoic acid induced ALP activity in C3H/10T1/2/Cl8 cells [278]. Since 
then, this cell line has been used to investigate a range of different factors that may 
regulate the commitment of multipotent stem cells to osteoprogenitors, including BMPs 
[279, 280], sonic hedgehog [281, 282], parathyroid hormone [283], Cbfa1 [284], notch 
[285], β-catenin [286], and Osx [287]. In pilot studies, we found that the majority of 
C3H/10T1/2/Cl8 cells expressed ALP after 7 days of culture in bone inducing medium. 
However, after 14 days of culture 10-20% of the cells showed an adipocyte phenotype, 
e.g. showed cellular lipid droplets. Thus, we considered the C3H/10T1/2/Cl8 cell line a 
suitable model to investigate the factors directing BM-MSCs to osteoblast or adipocyte 
lineage. However, two factors should be taken into account when considering the 
results from C3H/10T1/2/Cl8 cells. First, the C3H/10T1/2/Cl8 cells are not normal 
mouse cells. The modal number of chromosomes has been shown to be 81, which is 
hypertetraploid for mice (2N is 40). A small chromosome has been found in around 
85% of cells [273]. Second, the cells originate from mouse embryo tissues. Thus, 
whether they properly represent the adult BM-MSCs is not firmly established. 
Although we found that these cells were stained positively for ALP and expressed 
several osteoblast markers, as measured by real-time RT-PCR, they did not form bone 
nodules even after growing up to 40 days in bone inducing medium. 
 
2.2.3 MC3T3-E1 cells 

 
MC3T3-E1 cells are derived from calvaria of newborn mice and thus they are often 
used as a preosteoblast model. The cells we used belong to subclone 14, which has 
been shown to exhibit high levels of osteoblast differentiation capacity. These cells 
express mRNAs for the osteoblast markers, including Runx2, BSP, OCN, and PTH/ 
PTHrP receptor, and when cultured in BIM the cells differentiate along the osteoblast 
lineage and produce a mineralized matrix in less than 2 weeks [288]. We found that 
unlike cells from primary cultures, the growth and differentiation of MC3T3-E1 cells 
did not stop even when the serum concentration was reduced to as low as 1%. This 
property is particularly useful for the study of an individual cytokine because the 
serum-reduced medium can minimize a possible interference from the investigated 
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cytokine or other cytokines and growth factors in the fetal calf serum, which is at least 
10% in common osteoblast cultures. 
 
2.2.4 Bone Inducing Medium (BIM) 

 
Despite the wide use of BIM for in vitro osteoblast differentiation from preosteoblasts 
and MSCs, the exact mechanisms of action for three important components are 
relatively unclear. 
 
L-ascorbic acid (AA): AA, also known as vitamin C, is an essential cofactor for the 
hydroxylation of proline and lysine residues in collagen, the most abundant protein in 
bone [289]. AA is essential for the formation of bone and other connective tissues and 
is necessary for the in vivo and in vitro differentiation of osteoblasts [290, 291]. In vivo 
autoradiographic studies demonstrated that radiolabled vitamin C, when injected 
systemically, accumulates at sites of active bone formation [292]. Later studies found 
that osteoblasts contain a specific Na+-dependent AA transport system that is essential 
for the intracellular accumulation of vitamin C [290, 293]. In primary cultures of 
osteoblast-like cells and MC3T3-E1 cells, AA stimulates procollagen hydroxylation, 
processing, and fibril assembly followed by a dramatic induction of specific genes 
associated with the osteoblast phenotype, including OCN, ALP, and BSP [294-296]. 
The mechanism for AA promoting osteoblast differentiation has been suggested to be 
related to collagen matrix formation [295-298]. However, recent studies using micro-
array assays found that preosteoblast cells respond to AA with up or down regulation of 
genes involved in a broad range of activities, including cell growth, metabolism, 
morphogenesis, communication, and survival [299]. 
 
β-glycerophosphate (β-GP): β-GP is used in BIM mainly for supplementation of 
phosphate, which has been found to be a limiting factor in the initiation of 
mineralization in vitro [300]. In in vitro osteoblast cultures, β-GP is cleaved by ALP 
produced by osteoblasts resulting in release of inorganic phosphate, which is later 
incorporated into the newly formed bone nodules [301]. However, the nodules formed 
in this manner are nonapatitic, and similar mineral particles could form in a cell-free 
system in the presence of ALP and β-GP and deposit into a collagen matrix [301]. 
Thus, instead of promoting osteoblast differentiation, β-GP seems only to facilitate the 
expression of one phenotype of osteoblast, ALP activity. However, although β-GP 
alone does not regulate osteoblast activity, a combination of β-GP and AA has been 
reported to increase the production of metalloproteinases, which could facilitate 
mineralization [302]. 
 
Dexamethasone (Dex): Dex is a synthetic glucocorticoid that exerts a powerful 
promoting effect on the in vitro differentiation of osteoprogenitors. For primary 
cultured bone marrow stromal cells this compound significantly increases the 
expression of osteoblastic markers, such as ALP, OPN, and OCN, and is required for 
initiation of mineralization [303-305]. The mechanism for these effects of Dex is not 
clear. Due to the fact that Dex also promotes adipocyte formation in MSC cultures 
[306, 307] and adipocyte and osteoblast share a common progenitor, it could be 
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assumed that Dex has regulatory functions at the early stage of cell development or 
stimulates MSC into differentiation. 
 
2.3 RESULTS AND DISCUSSION 

 
2.3.1 Paper I: Activation of Sirt1 decreases adipocyte formation during 

osteoblast differentiation of mesenchymal stem cells 

 
This paper describes an investigation of Sirt1 regulators, RSV, NAM and INM on the 
commitment of MSCs to osteoblast or adipocyte lineages. Briefly, the mouse 
C3H10T1/2 cells and rat bone marrow stromal cells were cultured in BIM. We found 
that in both models a variable amount of cells demonstrated adipocyte phenotype as 
identified by oil red O staining and flow cytometry analysis after staining with Nile red. 
Western blot analysis with anti-Sirt1 antibody showed that Sirt1 protein was expressed 
in these cells both at pre- and post-differentiation stages. With C3H10T1/2 cells, we 
found that without addition of Sirt1 regulators around 13% of the cells were adipocytes 
after 2 weeks of culture in BIM. The amount of adipocytes increased significantly with 
the addition of 10 mM NAM to BIM (21%) as well as with the addition of 0.75 μM 
PPARγ agonist, troglitazone (34%). In contrast, addition of 50 μM Sirt1 activator RSV 
totally blocked the adipocyte formation and 25 mM INM attenuated adipocyte 
formation to 2%. As expected, a comparable inhibition effect could be seen with 1 nM 
1α,25(OH)2D3, a known downregulator of PPARγ expression [308]. We next analyzed 
the adipocyte and osteoblast markers using quantitative real-time PCR. We found that 
cells treated with troglitazone and NAM displayed a general downregulated expression 
of the osteoblast markers, ALP, Col-1, OCN, Runx2, IL-6, OPG, and RANKL, while 
an upregulated expression was seen for the adipocyte markers, ap2 and PPARγ. For the 
Sirt1 activators, although both compounds dramatically decreased the adipocyte 
markers ap2 and PPARγ, they demonstrated different expression patterns of 
osteoblastic markers: RSV increased the expression of OPG, IL-6, ALP, and RANKL, 
while INM increased OPG and OCN. To substantiate the findings with C3H10T1/2 
cells, we also studied the effects of Sirt1-activating and -inhibiting compounds on rat 
primary bone marrow stromal cells. We found osteoblast markers ALP and Col-1 
decreased in NAM-exposed cells. With INM, osteoblast markers ALP, Runx2, and 
OCN increased. RSV increased expression of Runx2 and OCN. We also analyzed the 
effects of these compounds on mineralization in cultures of rat primary cells. 
Mineralization was detected by von Kossa and alizarin red staining when cells were 
cultured in BIM. This was prevented with the addition of NAM and troglitazone to 
medium. Mineralization in INM-exposed cells resembled mineralization in bone-
inducing medium, whereas RSV increased mineralization. 
 
To our knowledge, this was the first time the effect of Sirt1 activity and RSV, INM, 
and NAM on differentiation of MSCs had been studied. It is likely that the 
demonstrated decrease in adipocyte differentiation was through inhibition of PPARγ. 
The increase in osteoblast differentiation could either be caused by inhibition of PPARγ 
that results in earlier initiation of the osteoblast differentiation program or that Sirt1, in 
addition to inhibition of PPARγ, also stimulates mechanism(s) regulating osteoblast 
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differentiation. As mentioned in Section 1.2.5 and 1.2.6.1, one possible mechanism 
could be deacetylation of p53, a potential inhibitor for osteogenesis and osteoblast 
differentiation. Sirt1 deacetylates the p53 protein and thus decreases its stability and 
transcriptional activity. However, it is also likely that Sirt1 can deacetylate and regulate 
other key transcriptional regulators in osteoblast development. This remains to be 
investigated. 
 
Sirt1 activation results in prolonged lifespan in several lower organisms. Whether Sirt1 
regulates aging in mammals has not been directly shown, but it is clear that caloric 
restriction prolongs lifespan in mammals. In relation to these findings, it is interesting 
to note that in age-related osteoporosis, adipose cells are increased in bone marrow. It 
remains to be studied if reduced Sirt1 activity could be one explanation for this. The 
results from our study further support the idea, as was suggested earlier [61], that 
inhibition of PPARγ could be considered as a means for treating osteoporosis. One way 
to do this is by using PPARγ antagonists. The finding that RSV and INM markedly 
inhibited adipocyte and promoted osteoblast differentiation is interesting and shows 
that other ways to inhibit PPARγ exist. However, further in vitro and in vivo studies are 
needed to understand the molecular details of the Sirt1 mechanism of action in MSCs. 
Results from this study could also contribute to the evolving field of cell-based tissue 
engineering. By identifying factors that can control osteoblast differentiation in vitro, 
better protocols for growing and differentiating MSCs to be used for bone 
reconstruction will hopefully be developed. 
 
2.3.2 Paper II: Species difference exists in the effects of 1α,25(OH)2D3 and its 

analogue 2-Methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 (2MD) on 

osteoblastic cells 

 
In this study, we evaluated the in vitro effects of 1α,25(OH)2D3 and its analogue, 2MD, 
on osteoblasts from three different species, i.e. bone marrow stromal cells from the 
Sprague-Dawley (SD) rat, from the C57BL/6 mouse, as well as human osteoblast 
NHOst cells and human osteosarcoma derived MG-63 cells. We found that in rat cells, 
both compounds increased cell proliferation, inhibited cell apoptosis and increased 
alkaline phosphatase (ALP) activity. In mouse cells, however, both compounds 
initiated cell apoptosis and inhibited ALP activity. In human cells, although cell 
proliferation was inhibited by both compounds, cell apoptosis was inhibited and ALP 
activity was enhanced. In each species, 2MD was much more potent than 
1α,25(OH)2D3. 
 
First, our results are consistent with in vivo findings in rats and VDR knockout mice. 
Thus, the different effects of 1α,25(OH)2D3 on bone formation among different species 
are probably influenced by its direct effects on osteoblasts. The transcriptional and 
posttranscriptional control of gene expression is mediated by 1α,25(OH)2D3 at multiple 
levels. Therefore, the molecular mechanisms contributing to the species differences are 
likely to be complex. A nucleotide sequence variation between rat and mouse 
osteoblasts has been found in the distal half motif of osteocalcin vitamin D-responsive 
element (VDRE) and contributed significantly to the different response to 
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1α,25(OH)2D3 [309]. Our results indicate that such nucleotide sequence variations in 
VDRE probably exist for many other genes which control cell growth and activity and 
thus determine the different response of the osteoblasts from different species to VDR 
ligands. 
 
Second, our results in part explain the potent bone anabolic effects of 2MD. In rat cells 
2MD demonstrated a much stronger anti-apoptotic effect and a higher potency in 
increasing ALP activity than 1α,25(OH)2D3. ALP plays an important role in facilitating 
bone mineralization through mechanisms such as breakdown of the major 
mineralization inhibitor, inorganic pyrophosphate [310]. The combined effects of 
inhibiting apoptosis and enhancing ALP activity in osteoblasts may result in a larger 
amount of osteoblasts which can form more organic bone matrix in a 
microenvironment favorable of bone mineralization. These specific effects on 
osteoblasts, together with its moderate effects in enhancing intestinal calcium 
absorption, could be the explanation for the dramatic bone anabolic effects of 2MD in 
rat. However, despite the higher potency of 2MD compared with 1α,25(OH)2D3 we did 
not find any qualitative difference between the two VDR ligands on osteoblasts. It is 
possible that the effects of 2MD on osteoblasts could be elicited by a higher dose of 
1α,25(OH)2D3 but in vivo this would entail a high risk of hypercalcemia. However, in 
human osteoblastic cells, although 2MD dramatically increased ALP activity the cell 
number was actually reduced. Thus, more human-based experiments are needed in 
order to confirm the potential of 2MD as an agent used for treating osteoporosis. 
 
2.3.3 Paper III: IL-6 receptor expression and IL-6 effects change during 

osteoblast differentiation 

 
In this study, we found that IL-6, without soluble receptor, decreased MC3T3 cell 
proliferation only when the cells were cultured in medium containing ascorbic acid 
(AA) and β-glycerophosphate (β-GP). With this culture condition it has been shown 
that fully differentiated osteoblasts, i.e. cells that form mineralized noduli, can be 
obtained [311, 312]. This finding led us to study the expression pattern of IL-6R during 
osteoblasts differention and to further study the effects of IL-6 on differentiation and 
apoptosis of osteoblasts at different maturing stages. We detected IL-6R expression in 
early differentiated cells and also found that IL-6R expression was increased in 
osteoblasts during the in vitro culture period in bone inducing medium containing AA 
and β-GP or dexamethasone. Interestingly, we also found that IL-6 enhanced 
differentiation at early culture stage and later that it increased apoptosis. 
 
The results of this study have several implications. First, from many in vitro studies it 
has been suggested that IL-6R is either only weakly expressed or absent from 
stromal/osteoblastic cells [252, 261-263], and accordingly the combination of IL-6 and 
soluble IL-6R is extensively used when studying IL-6 effects on bone cells [111]. 
However, as found in our study, with culture conditions known to favor osteoblast 
differentiation this is unnecessary. Furthermore, with this culture condition it is likely 
that for osteoblasts proper intracellular signaling mechanisms are evoked. Thus, data 
using soluble IL-6R on immature osteoblasts may not properly identify the 
physiological role of this cytokine. Second, based on our results, IL-6 strongly 
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increased osteoblast apoptosis in both MC3T3 and rat bone marrow stromal cells, and 
this pro-apoptotic effect was restricted to the late differentiation stage. As discussed in 
section 1.2.4.3 and 1.2.6.3, apoptosis has a substantial role in regulating the amount of 
functional osteoblasts and bone formation, and increase of apoptosis has been observed 
in several osteoporosis conditions associated with high levels of IL-6. 
 
2.3.4 Paper IV: Resveratrol inhibits proliferation and promotes apoptosis of 

osteosarcoma cells 

 
In paper I, we found that Sirt1 could affect the differentiation of osteoblast lineage 
cells. With this in mind we found it interesting to investigate if Sirt1 regulators could 
influence OS cells. This hypothesis also follows the assumption, as discussed in section 
1.2.5, i.e. that differentiation regulators might be effective therapeutic agents in the 
treatment of OS. Another reason for us to investigate Sirt1 as a potential target in OS 
treatment is that the activity of Sirt1 can be affected by small molecules such as RSV 
and NAM, which have been shown to be relative safe when used at large doses in 
clinical settings or animal experiments. 
 
In paper IV, we evaluated the effect of the Sirt1 activators, RSV and INM, on growth 
and apoptosis in four OS cell lines, HOS, Saos-2, U-2 OS and MG-63 and also in one 
normal human osteoblast cell line, NHOst. We found that Sirt1 was expressed at 
roughly similar levels in these cell lines as analyzed by Western blot using a Sirt1 
antibody. Measurement of cell proliferation indicated that RSV dose dependently 
inhibited cell growth in all four OS cell lines, an effect already seen at the lowest tested 
concentration, 5 μM. Furthermore, apoptosis analysis through flow cytometry showed 
that RSV, at all tested concentrations (5-100 μM), elicited significant apoptosis in all 
four osteosarcoma cell lines. However, for the normal human osteoblast cell line 
NHOst, it was only at a concentration of 100 μM that RSV induced significant 
apoptosis. Similar to RSV, INM also dose-dependently increased apoptosis in all four 
OS cell lines. As discussed in section 1.2.6.1, the limitation of Sirt1 deacetylation could 
be relieved under nutritional stresses through induction of Pnc1 and deprivation of 
NAM. Therefore, we found it interesting to investigate if nutritional stress could 
enhance the effect of RSV on OS cells. In comparison with normal tissue, tumor cells 
seem to be deficient of asparagine synthetase and have to rely on external sources of L-
asparagine to keep up with their rapid growth [313, 314]. We first tested different 
concentrations of L-asparaginase (ASNase) on the four OS cell lines and, as a 
comparison, the lymphoblastic cell line Jurkat. No changes for Sirt1 protein expression 
was noticed before and after treatment; however, these cells did show a variable pattern 
of responses to ASNase, i.e. the lymphoblastic leukemia cells Jurkat, HOS and Saos-2 
cells underwent apoptosis in a dose-dependent fashion, while U-2 OS and MG-63 cells 
showed minimal or no response. This differential response to ASNase could be due to 
different metabolic adaptation after ASNase exposure, partly explained by different 
expression of glutamine synthetase in the different tumor cell lines [315]. When OS 
cells were exposed to a combination of ASNase and RSV an apparent synergistic effect 
on apoptosis was found. 
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Our results indicate the Sirt1 activators, RSV and INM, could complement the 
therapeutic arsenal used in the treatment of osteosarcoma. However, whether the anti-
tumor effects of these small molecules are mediated through Sirt1 needs further 
confirmation. Several other mechanisms have been proposed for RSV mediated tumor 
inhibition. The most established mechanism involves p53. It has been reported that 
RSV induces apoptosis only in cells expressing wild-type p53, but not in p53-deficient 
cells [316] and that ERKs, p38 kinase, and JNKs are mediators of RSV-induced p53 
activation and apoptosis [317, 318]. The osteosarcoma cell lines used in our study have 
different p53 status. The wild-type p53 has only been detected in U-2 OS cells [319], 
whereas it has been shown to be mutated in HOS and Saos-2 and totally deleted in MG-
63 cells [320, 321]. However, U-2 OS cells were not more sensitive to RSV compared 
with the OS cells with a p53 mutation, indicating p53 is not the target for RSV in the 
four OS cell lines used in this study. 
 
The relationship between Sirt1 activity and tumor initiation and progression and growth 
of established tumors is at present not fully understood [322]. On one hand, Sirt1 has 
been found to be highly expressed in several types of tumors [323] and may be 
correlated with the development of chemotherapy resistance [324]. On the other hand, 
Sirt1 is an important mediator of CR-associated tumor prevention [325, 326]. Effects 
such as suppressing intestinal tumorigenesis and colon cancer growth has recently been 
reported [327]. Although the fact that both Sirt1 activators in our study induced 
apoptosis is a strong indication that activation of Sirt1 initiated apoptosis in OS cells, 
more studies, in vitro and in vivo, are needed to confirm this and to clarify the 
underling mechanism(s). However, the results of this study suggest that the use of Sirt1 
activators presents an interesting and potential therapeutic strategy for the treatment of 
OS. 
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3 CONCLUDING REMARKS 
 
The aim of this thesis was to study osteoblast lineage cells and the effects of selected 
factors on proliferation, differentiation and apoptosis. Based on the results, the 
following conclusions can be drawn: 
 

1. The commitment of MSCs to osteoblast or adipocyte lineage is affected by 
Sirt1 regulators. Sirt1 activitors, RSV and INM, promote osteoblastogenisis and 
block adipocyte formation, while the inhibitor, NAM, exerts opposite effects. 

 
2. The direct effects of 1α,25(OH)2D3 and 2MD on osteoblastic cells are species-

dependent. In the studied species, 2MD was more potent than 1α,25(OH)2D3. 
 

 
3. IL-6R expression increases during differentiation of osteoblastic cells. IL-6 

accelerates differentiation of preosteoblasts but induces apoptosis of mature 
cells. 

 
4. The Sirt1 activators, RSV and INM, inhibit proliferation and induce apoptosis 

of OS cells. The inhibitory effect of RSV on OS cells can be enhanced by 
selective nutrition restriction using ASNase. 
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4 FUTURE PERSPECTIVES 
 
The number and functions of osteoblasts are regulated by a number of systemic 
hormones and local factors. Our findings provide new aspects on two putative 
regulators, 1α,25(OH)2D3 and IL-6. Additionally, a role for Sirt1 in regulating 
osteoblast differentiation and in the treatment of osteosarcoma is proposed. 
 
The mechanism for the species-dependent effect of 1α,25(OH)2D3 on osteoblasts 
demand further exploration. In addition, since 1α,25(OH)2D3 is a pluripotent systemic 
hormone with target cells in several organs and exerting a broad range of physiological 
effects, it is of interest to investigate if similar species-dependent effects exist in other 
target cells.  
 
Our study of IL-6 demonstrates that, besides the earlier known function to activate 
osteoclastic bone resorption, this cytokine affects both differentiation and apopotosis of 
osteoblasts. The association of IL-6 and bone diseases, such as rheumatoid arthritis and 
postmenopausal osteoporosis, has initiated development of IL-6 antagonist for future 
use in treatment of these diseases. However, further studies are needed in order to fully 
understand the role IL-6 plays in bone physiology. 
 
The findings about Sirt1 are exciting. Sirt1 has been found to be related to cellular 
stress, metabolic state and aging. Sirt1 affecting MSC commitment indicates a potential 
role of this protein in age-related osteoporosis, which is usually associated with an 
increase of bone marrow fat. Additionally, effects of Sirt1 on tumor cells suggest the 
potential application of its activators in the treatment of osteosarcoma. Furthermore, the 
mechanism(s) underling these interesting effects are needed to be clarified, for 
example, Sirt1 activity is mostly inhibited by NAM, which can be degraded by 
nicotinamidase. Studies about the expression and activity of nicotinamidase during 
aging and metabolic disturbance should be performed. 
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