Genetic Dissection of Experimental Arthritis in the DA Rat

LISELOTTE BÄCKDAHL

Stockholm 2005
ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting peripheral joints. Persistent inflammation causes cartilage deterioration with severe joint deformations as a consequence. The etiology is largely unknown but complex interactions between genetic and environmental factors contribute to the disease. The disease is also clinically heterogeneous which further hampers etiological investigations.

Analogs of certain disease pathways can be studied in experimental models mimicking RA. A more thorough characterization of such disease pathways may tell us of discrete disease subsets of RA.

Numerous experimental models for RA exists, both spontaneous and induced. The DA rat is remarkably arthritis prone, an intradermal injection of a mineral oil is sufficient to induce arthritis. The difference in arthritogenicity between the arthritis inducers depends on the genetic susceptibility threshold of each rat strain.

The general aim of this thesis was to by a genome – inducer approach identify a suitable experimental system to use for mapping arthritis susceptibility genes in the rat, and through this approach identify genes of equal importance in humans, ultimately to provide new insights for pathway characterization of RA.

I characterized the arthritis susceptibility in a set of recombinant congenic strains overlapping several arthritis regulating regions on rat chromosome 4, in five arthritis models; collagen type II-induced arthritis, pristane-induced arthritis, mycobacteria-induced arthritis, squalene-induced arthritis and oil-induced arthritis. All five induced arthritis-models were regulated by chromosome 4 genes. A 10 cM fragment that harbor the Oia2 locus mediated arthritis down-regulation in collagen type II induced arthritis and squalene-induced arthritis. Oil-induced arthritis was completely prevented. Further fine mapping was continued in oil-induced arthritis. By using 18 Oia2 intra-recombinant congenic strains the arthritis regulating interval was fine-mapped to 1.2Mb.

The arthritis regulating interval was further mapped to 600 kb that only harbor a C-type lectin gene complex denoted Aplec. Comparison of gene sequences identified a nonsense mutation in Dcar1 in the DA strain as the most possible arthritis-regulating rat gene. The human homolog to rat Deir, one of the other genes in the complex, was tested in a patient / control material. One SNP showed significant association to RA. Association was pronounced in RF-negative patients.

The genome – inducer approach was also applied in mapping of the arthritis regulating region, Oia3, on rat chromosome 10 in the F7 generation of an advanced intercross (AIL) between the arthritis susceptible rat strain DA, and the arthritis resistant PVG.1AV1. To chose the most appropriate arthritis model for linkage mapping in the AIL pristane-induced arthritis, squalene-induced arthritis and oil-induced arthritis was induced. Pristane-induced arthritis was the most appropriate for the population. Aplec and the newly identified arthritis regulating gene Ncf1 was also mapped to determine the mapping resolution. Linkage mapping of Oia3 identified two distinct quantitative trait loci (QTL), one at D10Rat13 at 97.2Mb, and an other at D10Got158 at 105.2Mb. The placement for the Ncf1 gene, and the Aplec were both less than 100kb, 200kb surrounding the Oia3 peak marker was considered as the confidence interval. The proximal Oia3 QTL contains the Protein kinase C alpha gene together with a set of calcium channel voltage-dependent gamma subunit genes. The distal Oia3 QTL contain a cluster of dendritic cell derived Ig-like receptors, among them the homolog to the human CMRF35 gene previously associated to psoriasis.
In conclusion the search for appropriate experimental systems to map arthritis susceptibility regions, subsequent congenic mapping in oil induced arthritis, lead to the identification of \textit{Aplec}, a C-type lectin complex, that codes for genes important in a number of immunological processes. The human homolog to rat showed association to RA in a patient / control material.
LIST OF PUBLICATIONS

IV. Bäckdahl, L. Guo, J. P. Jagodic, K. Becanovic, M. Ohlsson, T. and Lorentzen, J.C Advanced intercross lines for high-resolution mapping of three experimental arthritis regulating quantitative trait loci in the rat (*manuscript*).

These authors contributed equally to this work
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIL</td>
<td>Advanced intercross line</td>
</tr>
<tr>
<td>Aplec</td>
<td>APC lectin like receptor gene complex</td>
</tr>
<tr>
<td>Aplr</td>
<td>APC lectin like receptors</td>
</tr>
<tr>
<td>BAC</td>
<td>Bacterial artificial chromosome</td>
</tr>
<tr>
<td>BDCA-2</td>
<td>Blood DC antigen -2</td>
</tr>
<tr>
<td>BN</td>
<td>Brown Norway</td>
</tr>
<tr>
<td>CFA</td>
<td>Complete Freund’s adjuvant t</td>
</tr>
<tr>
<td>CII</td>
<td>Collagen type II</td>
</tr>
<tr>
<td>CIA</td>
<td>Collagen type II-induced arthritis</td>
</tr>
<tr>
<td>CpG</td>
<td>Cytosine Guanocine dinucleotides</td>
</tr>
<tr>
<td>cM</td>
<td>Centimorgan</td>
</tr>
<tr>
<td>CRD</td>
<td>Carbohydrate binding region</td>
</tr>
<tr>
<td>DA</td>
<td>Dark agouti</td>
</tr>
<tr>
<td>DC</td>
<td>Dendritic cell</td>
</tr>
<tr>
<td>DCIR</td>
<td>DC immunoinhibitory receptor</td>
</tr>
<tr>
<td>DCAR</td>
<td>DC immunoactivating receptor</td>
</tr>
<tr>
<td>Dectin-2</td>
<td>DC-associated C-type lectin -2</td>
</tr>
<tr>
<td>GPI</td>
<td>Glycose -6-phosphatase isomerase</td>
</tr>
<tr>
<td>HEV</td>
<td>High endothelial venule</td>
</tr>
<tr>
<td>HLA</td>
<td>Human leukocyte antigen</td>
</tr>
<tr>
<td>IFA</td>
<td>Incomplete Freund’s adjuvant</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>LOD</td>
<td>Logarithm of odds</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccaride</td>
</tr>
<tr>
<td>Mb</td>
<td>Megabase</td>
</tr>
<tr>
<td>MCL</td>
<td>Macrophage C-type lectin</td>
</tr>
<tr>
<td>MDP</td>
<td>Myramyl dipeptide</td>
</tr>
<tr>
<td>MHC</td>
<td>Major histocompatibility complex</td>
</tr>
<tr>
<td>MIA</td>
<td>Mycobacteria-induced arthritis</td>
</tr>
<tr>
<td>Mincle</td>
<td>Macrophage-inducible C-type lectin</td>
</tr>
<tr>
<td>Ncf1</td>
<td>Neutrophil cytosolic factor 1</td>
</tr>
<tr>
<td>OIA</td>
<td>Oil-induced arthritis</td>
</tr>
<tr>
<td>PAC</td>
<td>Plasmid artificial chromosome</td>
</tr>
<tr>
<td>PADI4</td>
<td>Peptidylarginine deiminase type 4</td>
</tr>
<tr>
<td>PD1</td>
<td>Programmed death receptor -1</td>
</tr>
<tr>
<td>PIA</td>
<td>Pristane-induced arthritis</td>
</tr>
<tr>
<td>PVG</td>
<td>Piebald Virol Glaxo</td>
</tr>
<tr>
<td>PTPN22</td>
<td>Protein tyrosine phosphatase nonreceptor 22</td>
</tr>
<tr>
<td>QTL</td>
<td>Quantitative trait Loci</td>
</tr>
<tr>
<td>RA</td>
<td>Rheumatoid arthritis</td>
</tr>
<tr>
<td>RF</td>
<td>Rheumatoid factor</td>
</tr>
<tr>
<td>RNO4</td>
<td>Rattus norvegicus chromosome 4</td>
</tr>
<tr>
<td>SIA</td>
<td>Squalene-induced arthritis</td>
</tr>
<tr>
<td>SLE</td>
<td>Systemic lupus erythematosis</td>
</tr>
<tr>
<td>SNP</td>
<td>Single nucleotide polymorphism</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor necrosis factor</td>
</tr>
<tr>
<td>ZAP70</td>
<td>ζ-associated protein 70</td>
</tr>
</tbody>
</table>
Table of contents

Table of contents ... 7
Preface .. 8
Introduction ... 9
 The immune defense .. 9
 Autoimmunity .. 9
 Rheumatoid Arthritis (RA) .. 11
 Pathology .. 11
Risk factors in RA .. 12
 Clinical heterogeneity of RA .. 13
 Genetic influence of RA .. 13
 Genome-wide scans in RA .. 14
 Association analysis in RA, and other arthritic disease .. 16
Understanding Complex diseases .. 18
 Special challengers in genetic heterogeneity ... 19
Animals can provide etiological clues! .. 20
 Experimental models for RA .. 20
 Spontaneous arthritis ... 20
 Induced Arthritis ... 21
Mapping susceptibility genes in experimental arthritis ... 26
 Genome scans: identifying QTLs .. 26
 Congenic strains: isolating QTLs and fine mapping ... 30
 Alternative strategies in QTL fine-mapping ... 34
 From QTL to gene .. 35
The aim of this thesis: .. 37
Results and discussion ... 38
 Mapping and Functional Characterization of Rat Chromosome 4 Regions that Regulate Arthritis Models and Phenotypes in Congenic Strains (Paper I) ... 38
 High resolution mapping of an arthritis-susceptibility locus on rat chromosome 4, and characterization of regulated phenotypes (Paper II) ... 39
 A gene complex encoding lectin-like receptors influences arthritis in rats and humans (Paper III) ... 40
Identification of Candidate Disease Genes by High-Resolution Linkage Mapping of Arthritis Regulating Rat Chromosomal Intervals in Advanced Intercross Lines (Paper IV) 41
Concluding remarks ... 44
 The Aplr-complex .. 46
Acknowledgements ... 51
References ... 54
Preface

Over the last century, the global health situation has gone through a profound transformation, thanks to the progress of medical science. Many of the pandemics and mysterious life-threatening diseases that used to torment mankind have been explained and either cured or eradicated. There are, however, medical enigmas that still remain unsolved. Millions are suffering from chronic illnesses: diabetes mellitus, multiple sclerosis, rheumatoid arthritis; doctors can only alleviate and ameliorate these diseases; there is no cure. Among these, rheumatoid arthritis is the most prevalent. There are common features among these diseases: They are immunity driven, have a genetic component, and are influenced by environmental factors. Their disease etiology is mostly unknown. They are often referred to as multifactorial diseases, caused by a complex interplay between genetic and environmental risk factors. Epidemiologists and geneticists alike have put great effort into unraveling some of the risk factors, but conclusive identifications of disease genes or environmental factors are limited. Some of the complexities can be alleviated by addressing questions in animal models, where genetic and environmental factors can be controlled and manipulated. This thesis is based on a series of mapping studies of genetic regions in the rat that influence experimental arthritis, where a C-type lectin gene complex was identified, and a gene within this complex, DCIR, was shown to be associated to rheumatoid arthritis in humans.
Introduction

The immune defense

Throughout evolution species have evolved through adaptation to the challenges of their specific environment. The evolving multi-cellular organisms, attacked by invading and aggressive organisms, were forced to develop some kind of defense system. The mammalian immune system consists of both evolutionary “older” and “newer” defending mechanisms working in cooperation. It can defeat effectively most invaders, from viruses to worms. The older innate immunity recognizes “invader typical” structures binding to its surface receptors, and some cells also present foreign structures to the evolutionary “new” adaptive immunity. The adaptive immunity consists of B- and T- lymphocytes, sharing the ability to genetically rearrange highly specific receptors able to target any invader. This adaptive recognition will be saved in the immunological memory and constitutes an advantage in the struggle to cope with the environmental pressure.

Autoimmunity

The most important ability of the immune system is to discriminate between self and non-self molecules. In autoimmune disease, this discrimination has been altered and certain endogenous proteins are mistaken as being foreign. The mechanisms of self-tolerance normally protect from potentially self-reactive lymphocytes. Two separate mechanisms for tolerance exist; central, and peripheral tolerance. Central tolerance occurs within the thymus during a positive and a negative selection process depending on MHC recognition. The peripheral tolerance occurs in the periphery and is mediated through processes such as clonal anergy, deletion or suppression.

Many autoimmune diseases are tissue-specific and usually the result of a response to an antigen expressed only in that organ. Other diseases are systemically manifested as is the case for systemic lupus erythematosis (SLE), with high titers of autoantibodies directed against DNA, histones, and anti-phospholipids that forms immune-complexes.

In Rheumatoid Arthritis (RA) immune responses specific for joint antigens have been difficult to demonstrate conclusively1-3, although autoantibodies to non joint antigens have been identified such as IgG, filaggrin and citrullinated proteins4,5. Questions have been posed whether rheumatoid arthritis is in fact autoimmune mediated6. In certain strains of rats it is possible to induce chronic arthritis that well fulfill most of the RA criteria, with a single intradermal injection of a mineral oil, without antigen. It is puzzling although like many of the other unambiguous autoimmune diseases it seem mediated to a great extent by T-cells7-10.
It is observed that RA patients often concur in families with other autoimmune diseases, indicating that the genetic predisposition is important to develop autoimmunity11,12. Different autoimmune diseases share genetic susceptibility predisposition13,14. This is true for certain autoimmunity prone animal strains as well, such as the non obese diabetic NOD mouse strain that is susceptible to a number of other autoimmune diseases15-17 except arthritis, and the autoimmunity prone DA rat used in this thesis.
Rheumatoid Arthritis (RA)

Rheumatoid Arthritis (RA) is a chronic inflammatory disease affecting peripheral joints leading to joint deformation and impaired mobility. The disease is common among the Caucasian population with a prevalence of 0.5 -1%, Asian populations have a lower occurrence, 0.3%, whereas certain native north-American populations have as high prevalence as 7%\(^\text{18}\). The prevalence for females is three times higher than for males. It has a relatively late onset, most often between the ages 50-60\(^\text{19-21}\). The disease most often presents with symmetrical manifestations, and its progression involves destruction of cartilage, bone, and surrounding soft tissue. The etiology of RA is largely unknown, but most likely includes several disease pathways. The RA diagnosis requires the presence of at least four of the following seven criteria, and criterion 1-4 must have been present for at least six weeks\(^\text{22}\).

Table 1. 1987 Revised criteria for the classification of rheumatoid arthritis

<table>
<thead>
<tr>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Morning stiffness</td>
</tr>
<tr>
<td>2. Arthritis of three or more joint areas</td>
</tr>
<tr>
<td>3. Arthritis of hand joints</td>
</tr>
<tr>
<td>4. Symmetric arthritis</td>
</tr>
<tr>
<td>5. Rheumatoid nodules</td>
</tr>
<tr>
<td>6. Serum rheumatoid factor</td>
</tr>
<tr>
<td>7. Radiographic changes</td>
</tr>
</tbody>
</table>

Pathology

The joint synovium is the main disease target, where a rampant synovitis persists, and eventually the inflammation expands, affecting all neighboring tissue. The synovial lining layer first loses its two-cell layer appearance and is thickened. The tissue is infiltrated by macrophages, activated T-cells, B-cells, and dendritic cells\(^\text{23}\). Polymorphonuclear cells mainly neutrophils are found in abundance in the synovial fluid\(^\text{24}\). The massive infiltration of leukocytes is accompanied by proliferation of vessel endothelium, promoting the formation of high endothelial venules (HEVs)\(^\text{25}\), thus further facilitating leucocyte influx from the circulation. Infiltrating leukocytes are memory T-helper cells, CD8+ T-cells, and B-cells. Macrophages are also abundant among the infiltrates. B-cells form germinal centers within the RA synovium, of which a proportion produce rheumatoid factor (RF)\(^\text{26}\). RF is an autoantibody that binds the Fc region of the immunoglobulin G (IgG) molecule\(^\text{5}\), often forming pathogenic immune complexes. Within the RA synovium are also multinucleated giant cells, synoviocytes that grow but not divide. Influx of inflammatory cells to the synovial tissue through HEVs, upregulated proliferation of fibroblast-like synoviocytes, and recruitment of
macrophages from the bone marrow, creates a pannus that expands into the cartilage, and causes cartilage and bone destruction. In the pannus high levels of cytokines (IL-1, IL-6, and IL-15), inflammatory mediators (TNFα, PGE2, and M-CSF), and destructive enzymes like matrix metalloproteinase’s (MMPs) are expressed, and together they have the capacity to irreversibly damage the cartilage and bone.

It is assumed that presence of activated T-cells in the synovium is essential for the RA pathogenesis, however there is little evidence for T-cell autoreactivity. The importance of T-cells in the pathogenesis of RA has been demonstrated in animals where arthritis can be induced by transferring T-cells from diseased rats to a healthy. The exact role of these T-cells in the arthritis etiology is to a large extent unknown. Certain MHC haplotypes are associated to RA which argues for T-cell involvement. The proinflammatory cytokine IL-17 is upregulated in arthritic joints and is involved in cartilage destruction. IL-17 is produced exclusively by T-cells and is significantly down-regulated when regulatory T-cells are added to co cultures, indicating secondary pathogenic activities by T-cells in the joint. There are also studies indicating that arthritis development may be T-cell independent. Studies in mice have shown that rag1 deficient mice still develop arthritis after collagen injection although these mice lack mature B- and T-cells.

Great efforts has been put into understanding the molecular mechanisms for RA development, the findings may however be difficult to interpret since they may represent pathological processes downstream from the triggering event. Important clues of the etiology can be found by identifying risk factors. This could also give valuable insight for development of new treatments, and ultimately for disease prevention.

Risk factors in RA

Manifest RA is the outcome of a complex interaction of environmental and genetic factors, random events, and time. The genetic contribution has been estimated by familial clustering. Epidemiological studies of environmental risk factors, on the other hand, have been contradictory and vague. Levels of certain hormones have been indicated as risk factors, since pregnancy and use of contraceptives lead to disease remission, although this effect has been shown to be associated more with postponement than disease prevention. Weather and psychological stress are the most commonly perceived causes of disease flare among patients, although this is not the scientific consensus. Smoking is the only environmental risk factor that has been verified in epidemiological studies.
Worth mentioning for this thesis are the observations that occupational exposure to certain mineral oils is associated to an elevated risk of developing RA38. In the same aspect, there are case reports of voluntary repeated injection of mineral oil into the skin later developing into multi manifestations of autoimmune disease characteristics39.

Clinical heterogeneity of RA

RA is a heterogenous disease. When comparing two patients the molecular mechanisms contributing to disease could be very different. This feature reflects both the clinical outcome with regards to disease severity and how the patients respond to certain treatments. Anti-TNF treatment is one such example, where the response to therapy varies a lot between different patients with RA40. Identifying molecular markers specific for a subgroup of patients may not only improve disease diagnostics and treatment but also contribute to the understanding of specific pathways with common risk-factors within a subgroup. For example, there is a subgroup of individuals that are smokers, who are positive for rheumatic factor RF, and have at least one shared epitope allele, as explained below. These people are at high risk to develop RA41. There are healthy individuals with RF in the blood, but in the afflicted it can be used as a prognostic marker. RF positive RA patients often have a more severe disease than patients that do not have the RF-factor26.

There are other autoantibodies important in RA. Anti cyclic citrullinated peptide (Anti-CCP) is a very RA specific type of autoantibody directed against citrullinated proteins. Anti-CCP is also associated with more severe disease42. Anti-BiP antibodies are found in sera from 60\% of RA patients43. BiP is a chaperone and a member of the heat-shock protein family. Anti-A2/ anti-RA33 antibodies are directed against ribonuclein A2 involved in mRNA splicing and transport. They are not detected in more than 30\% of RA patients but may be a marker for a cohort of patients with various rheumatic diseases44. Finding molecular markers for properly characterizing subgroups of patients, would also be a good tool to restrict some of the polygeneity of RA (many contributing genes), that hampers identification of genetic risk factors.

Genetic influence of RA

The inherited component of RA can be observed in the difference in concordance rates between monozygotic and heterozygotic twins, for most studies 12-15\% and 2-4\% respectively45,46. There is a recent meta-analysis using both Finnish and British twin data, in which a number of quantitative genetic methods were used to assess disease heritability and suggesting it to be 50-60\%47.

Determining the genetic component of RA has some difficulties, since RA susceptibility does not follow Mendelian laws, due to incomplete penetrance. There are also some practical difficulties in collecting the twin material. There is
an onset bias since RA has a late onset and the other homozygotic twin may not develop RA until many years later, and there is an ascertainment bias since other forms of polyarthritis may be mistaken for RA.

HLA is the only region conclusively linked to disease48,49, and it is estimated to contribute to one third of the total genetic variance50. The association between RA and the HLA locus on chromosome 6p has been known for almost 20 years51. This region is one of the most gene-dense in the genome harboring more than 200 genes on \~3.5 Mb. The most important candidate genes are the human leukocyte antigen (HLA) class II genes. The association is particularly strong for HLA DRB1 alleles that code for a similar amino acid sequence, called the shared epitope31, five peptides at position 70-74 in the third hypervariable region of DRB1 (QRRAA, RRRAA, QKRAA). Certain RA associated DRB1 alleles known to share this sequence; HLA-DRB1*0401 has QKRAA; *0404, *0405 and *0101 has QRRAA; and *1001 has RRRAA. This sequence is in the binding groove where HLA-DR present peptides.

DNA Markers:

- **SSLPs - Simple sequence length polymorphisms:**
 - Mini satellites: larger repetitive segments size \~20Kb - only on telomeres.
 - Micro satellites: dinucleotide repeats size<150 bp \~6.5 \times 10^5 in the Human genome.
- **SNPs - Single nucleotide polymorphisms.**

Genome-wide scans in RA

Genetic linkage can be studied using multi-case families or trios where transmission of a genomic region is traced together with the outcome of a specific phenotype, such as RA. Genomic transmissions can be traced by site-specific polymorphic, short repeat sequences; microsatellites. In a genome-wide linkage analysis the microsatellite markers are evenly distributed in order to scan the entire genome. The region identified is often called a locus (for place) or loci in plural.

Aiming to identify genes involved in RA, four genome wide linkage analyses were performed 1998-2002; one in Japan; UK; US; and France (Table 2)52-61. The only region that showed genome-wide linkage was HLA. Therefore the Lander and Krygliak standard for genome-wide significant linkage (p<0.000025)62, was abandoned for the non-HLA loci. Another approach was taken; nominal linkage (p<0.05), were reported with the intention to confirm with additional scans. A number of loci with linkage (p<0.005) were reported; one locus in the UK scan; three loci in the Japanese scan; 6 loci in the US study; and 4 loci in the French study. As seen in Table 2, many loci overlap between the scans.
Table 2. Genomic regions with linkage to RA

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Author</th>
<th>Year</th>
<th>Country</th>
<th>nr. of families</th>
<th>nr. of markers</th>
<th>p-value for HLA Chromosomal interval*</th>
<th>P<0.005 or P<0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genome scan</td>
<td>Shiozawa et al.52</td>
<td>1998</td>
<td>Japan</td>
<td>41</td>
<td>358</td>
<td>0,008 1p36, 8q22, Xq27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cornélis et al.53</td>
<td>1998</td>
<td>France</td>
<td>97</td>
<td>309</td>
<td>2,5E-05 1p36, 2q33, 13q32, 18q22, <12p13, 16p12, Xq27, 1q25, 2p13, 3q27, 5q32, 6q22, 8p21, 12q21, 14q11, 16q24, 18q12, 20p13, 21q22, 22q11, Xq11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jawaher et al.54</td>
<td>2001</td>
<td>USA</td>
<td>252</td>
<td>379</td>
<td>0,00005 1q43, 4q23, 12p12, 16p12, 17q25 <3p21, 3q21-q26, 5p14, 5q11, 5q13, 5q21, 8p23, 8q11, 8q24, 9q34, 10q22-24, 11q23, 12p11, 14q11, 14q21, 16q21-q23, 17p13, 17q21, 18q21, Xp22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MacKay et al.55</td>
<td>2002</td>
<td>UK</td>
<td>182</td>
<td>365</td>
<td>3E-06 6q16, <1q43, 2q32, 3p25, 4q12, 7p14, 10q24, 14q11, 14q22, 16p13, 21p22, Xq22</td>
<td></td>
</tr>
<tr>
<td>Meta analysis</td>
<td>Fisher et al.56</td>
<td>2003</td>
<td>4 scans</td>
<td>485</td>
<td>1367</td>
<td>2E-05 16p13-q12, <6q15-23, 12p12-11, 1q32-42, 1p36, 16q12-23, 2q34-35, 14q13-24, 8p22, 9q33, 4q13-24, 3q27, Xq11</td>
<td></td>
</tr>
<tr>
<td>Replication scan</td>
<td>Jawaher et al.57</td>
<td>2003</td>
<td>USA</td>
<td>256</td>
<td>379</td>
<td>3E-07 6p12, 9p21, 10q21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>combined</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eyre et al.58</td>
<td>2004</td>
<td>UK</td>
<td>195</td>
<td>20 loci</td>
<td>NS No linkage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Os. y Fortéa et al.59</td>
<td>2004</td>
<td>France</td>
<td>88</td>
<td>1088</td>
<td>6E-05 1p36, 2q33, 13q34, 18q21, 20p13, <1q32, 1q44, 5q21, 4p16, 5q34, 12p13, 12q23, 16p12, 16q12, 18p11, 22q11, Xq26</td>
<td></td>
</tr>
<tr>
<td>Linkage mapping for five homologous rat loci</td>
<td>Barton et al.60</td>
<td>2001</td>
<td>UK</td>
<td>200+100</td>
<td>33</td>
<td>- 17q21-q25 (Oia3) p<0.001(300 families), Oia2, Cia4, Aia2, Pia4 - no linkage.</td>
<td></td>
</tr>
<tr>
<td>Genome scan using SNPs</td>
<td>John et al.61</td>
<td>2004</td>
<td>UK</td>
<td>157</td>
<td>11245</td>
<td>0,00004 <13q21, 21q21, Xp11, 6p11, 6q21</td>
<td></td>
</tr>
</tbody>
</table>

* Region syntenic to rat loci in this thesis

Important to this thesis, syntenic regions 12p12; and 17q25 were identified in the US study. When subgrouping for RF seropositives, 12p12 was close to genome-wide significant linkage (p=0.00004). In the French study 12p13 was identified with nominal linkage (p=0.0077).

A meta-analysis was done from a compilation of all four genome scans. The analysis identified 16p13-q21 (p<0.0005), and 12 nominal loci, and among these the rat chromosome 4 syntenic region 12p12-11. Within the last year three new genome scans have been performed by the same groups from UK, US, and France. The UK repeat scan could not verify linkage to any of the 20 previously reported regions including linkage to HLA, and identified only new loci with nominal linkage. A French repeat scan could confirm 10 previously reported linkages, among these 12p13. The new US scan did not confirm any previously identified loci, but new regions with linkage were identified (p<0.005). One analysis was performed combining the new and old families to a scan with 508 families, which identified 6 loci with linkage (p<0.005).

One interesting initiative was a linkage study on human chromosomal regions that corresponds to five quantitative trait loci (QTLs) in the rat that regulate
experimental arthritis (see Figure 4). The rat QTLs investigated were; oil-induced arthritis 2 (Oia2), oil-induced arthritis 3 (Oia3), pristane-induced arthritis 4 (Pia4), collagen-induced arthritis 2 (Cia4), and adjuvant-induced arthritis 2 (Aia2). 300 families were tested in the complete scan. The human region 17q21-25 syntenic to Oia3 showed linkage (p<0.001). None of the other rat loci showed linkage in the English families.

A recent UK linkage study was performed using more than ten thousand SNPs instead of microsatellites. Despite dense genomic coverage, this scan could only replicate HLA linkage. Four additional new loci were identified at linkage (p<0.05).

Association analysis in RA, and other arthritic disease.

Whole-genome scans have the potential (theoretically at least) to detect all susceptibility linked loci in the genome. However linkage analyses in RA so far have been underpowered. A different strategy is to analyze association to disease in affected cases and unrelated non-affected controls to genetic markers. Single Nucleotid Polymorphisms (SNPs) are polymorphisms very abundant in the genome. The SNPs are present both in non-coding DNA and within exons of genes, where it may or may not alter the amino acid sequence, and consequently the gene product. Much effort has been put into association studies of RA during the last years. Apart from MHC class II, both class I, and class III have been associated to RA\(^{57}\). Many of the gene associations implied have not been reproducible in subsequent association studies. In the last years, several interesting associations have been reported.

The recently identified PTPN22 (p=6.6 x 10\(^{-4}\); replication study p=5.6 x 10\(^{-8}\)) was found through a candidate gene study initiative of loci identified in the US genome wide scans\(^{63}\). The replication study was performed in affected families which strengthen the results further. PTPN22 is an adapter molecule involved in the T-cell signaling pathway. It was suggested that this polymorphism results in dysfunctional down-regulation of T-cell activation.

PADI4 was identified through a candidate gene approach of the chromosomal region 1q36, identified in the Japanese RA genome scan\(^{64}\). PADI4 is involved in citrullination of peptides\(^{65}\). However the strong association (p=0.000008 based on 830 affected and 736 unaffected) could not be repeated in two later associations in UK and Europe\(^{66,67}\).

Recently a RUNX1 binding site in the cationic solute carrier SLC22A4 (p=0.000034, candidate gene approach) was found to be associated to RA\(^{68}\). The RUNX genes are mainly expressed in hematopoetic cells regulating various genes specific for hematopoiesis and myeloid differentiation\(^{69}\). RUNX1 binding sites have been associated with both PD1 alleles in SLE and RA\(^{70-72}\), and SLC9A3R1 in psoriasis\(^{73}\). No repeat studies in RA have been reported as yet.
There are limitations and difficulties for “gene-hunting” in complex diseases in humans. Concerning linkage studies is the problem of lack of power; there are too few cases. It has been suggested that to detect the genetic variance in complex diseases with low relative risk but high prevalence in the population, the minimum affected families should be 5000\(^7\), an almost unfeasibly large family material. Association studies on the other hand, where 5000 cases is a more practical test size, are hampered by most likely several SNP susceptibility variants for each disease locus. The susceptibility variants only mediate moderate effect which would not be possible to detect with linkage disequilibrium as small as that in patient control materials. This phenotype dilution could potentially be prevented by forming haplotype maps.
Understanding Complex diseases

It has proven to be a difficult challenge to identify the genes behind the genetic variance outside of HLA. The complexity of arthritis lies not only in intricate interactions between genes and environment, but also in elaborate genetic phenomena such as gene-gene interactions, epistasis, synergistic effects and epigenetic effects. For a complete understanding of the genetics of complex diseases, these effects clearly have to be delineated (Figure 1 and 2).

One hypothesis regarding the genetic component of RA is that it consists of a series of susceptibility polymorphisms with low penetrance and relatively small effects, that in response to certain environmental triggers, passes the threshold for disease and chronic inflammation in the joint develops75.

Figure 1.

[Diagram showing stochastic events leading to RA onset.]
Special challengers in genetic heterogeneity

There are certain molecular and genetic mechanisms that contribute to the incomplete penetrance that is so closely associated to complex diseases:
“Epistasis” was described by Bateson 100 years ago, as one gene masking the effect of another. The term was redefined by Fisher 1918, as statistical interaction between genes – deviation from additive effects76.
“Locus heterogeneity” is explained by multiple allelic variants at a specific disease locus.
“Synergistic modifiers” are two alleles that in combination contribute to more extreme genetic effects than additive, one plus one77.
“Epigenetic modifications” are when one allele is shut off through chromatin modifications, making one allele transcriptionally silent. Imprinting is one such effect causing only maternal-specific, or paternal-specific allele-expression78,79.

RA is a late-onset disease more or less unaffected by natural selection. RA susceptibility allelic mutations with late-effects occurring randomly in each generation may aggregate within a population, since they do not affect reproductivity80. Trying to understand the human genetic diversity brings up questions regarding the allelic structure of disease. How is the allelic structure of RA - common or rare variants81,82? What argues for many common variants instead of rare is the heritability, which is remarkably low in heterozygotic twins compared to homozygotic, which suggests common alleles acting epistatically80. The most likely scenario is a combination of both, however identifying evolutionary new rare alleles will be very difficult.
Animals can provide etiological clues!

Animal models provide a means to control environmental factors and manipulate the genetic contribution to the susceptibility to inflammatory diseases such as arthritis. By using inbred animal strains the polygenetic heterogeneity can be constrained, and the environmental exposure is controlled. Surgical and immunological manipulations are possible to perform, avoiding many of the ethical issues of human research. One other benefit of using animal models for genetic research is the possibility to selectively modify the genome e.g. produce congenic, knock-out or transgenic strains and linkage mapping.

Experimental models for RA

There exists a spectrum of different animal arthritis models. Since RA is a multifactorial and heterogeneous disease, no animal model could mirror all features of RA, but each model may contribute to new insights into certain pathways leading to arthritis.

Spontaneous arthritis

Some species may develop arthritis spontaneously, for instance dogs. There have been reports on erosive arthritis found on bones of Jurassic dinosaurs. A number of spontaneous arthritis models in mice exist, due to gene techniques.

DBA/1 male mice spontaneously develop a mild arthritis with the incidence 60-90%, under a specific condition: if they share cage with one or more other males (if caged with a female there is no disease development). Arthritis development is hormone dependent, since arthritis does not develop after castration, but arthritis susceptibility can be restored by testosterone treatment.

The K/BxN mouse model originates from a TCR transgene recognizing bovine RNase. To introduce TCRα-chain-null mutation, this TCR transgenic strain was crossed with NOD line. Quite unexpectedly the mice carrying the transgenic TCR start to develop severe arthritis around 3 weeks of age. It was also established that serum from these mice could transfer disease to healthy or B- or T-cell deficient mice. The autoantigen was identified to be the ubiquitously expressed glycose -6-phosphatase isomerase (GPI).

ZAP70 is an important signal transduction molecule in T-cells. Mice carrying a point-mutation in ZAP70 have altered selection of T-cells in the thymus that leads to positive selection of auto-reactive T-cells and as a result spontaneous arthritis develops.

Mice transgenic for human TNFα develop spontaneous arthritis after over-expression of TNFα. This arthritis is both T-cell and B-cell independent.
Induced Arthritis

Arthritis can be provoked in certain arthritis-prone animal strains by an intradermal injection of arthritogenic substance. The disease triggers can be divided into two groups (Table 3), containing either antigen emulsified in adjuvant or the adjuvant component alone. Although the second category of arthritis inducers only activates the immune system nonspecifically (i.e. no immunogenic substance is added), the manifested joint inflammation is very similar to antigen-induced arthritis (Figure 3).

<table>
<thead>
<tr>
<th>Type of Structure</th>
<th>Molecule</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antigen + adjuvant:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peptides</td>
<td>Collagen type II*</td>
<td>Cartilage</td>
</tr>
<tr>
<td>Peptides</td>
<td>Collagen type VI*</td>
<td>Cartilage</td>
</tr>
<tr>
<td>Adjuvants:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peptidoglycans</td>
<td>Myramyl dipeptid (MDP)*</td>
<td>M. Tuberculosis</td>
</tr>
<tr>
<td>Polysaccarides</td>
<td>β-glucan</td>
<td>S. cerevisiae</td>
</tr>
<tr>
<td>Metylated DNA</td>
<td>CpG* (cytosine guanine dinucleotides)</td>
<td>Bacterial</td>
</tr>
<tr>
<td>Glycolipids</td>
<td>Lipopolysaccaride (LPS)*</td>
<td>Gram-negative bacteria</td>
</tr>
<tr>
<td>Lipids:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_{16}H_{34} (hexadecan)</td>
<td>Eucaryotic</td>
</tr>
<tr>
<td></td>
<td>C_{17}H_{36} (heptadecan)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IFA (mineral oils + emulsifier)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_{41}H_{52} N_{2}O_{2} (Avridine)*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_{19}H_{40} (Pristane)</td>
<td>Plants</td>
</tr>
</tbody>
</table>

* Arthritogenic only together with complete or incomplete Freund’s adjuvant (CFA or IFA).

Table Adapted from ref. 96.

Microbial and bacterial molecules are recognized by structure specific receptors on cells from the innate immunity; dendritic cells, macrophages, neutrophils etc. Oils are most likely not recognized by oil specific receptors but may provoke endogenous signals that innate immunity responds to\(^93\). Adjuvant molecules trigger antigen presenting cells in particular, who interpret adjuvants as danger signals\(^94\); thus inducing cytokine production, and upregulated antigen presentation. When administered with antigen the adjuvant serves as a depot, loading antigen to the T- and B-cells for a long time\(^95\). This adjuvant capacity appears to coincide with arthritogenicity. The arthritogenic substances exhibit different arthritis-inducing capacity. The arthritis susceptibility is dependent on the genetic background. This is illustrated in the different susceptibility thresholds displayed by different inbred rat strains (Figure 3)\(^29,30,96-109\).
Figure 3. The arthritis susceptibility threshold.

<table>
<thead>
<tr>
<th>Inducer</th>
<th>F344</th>
<th>E3</th>
<th>PVG.1AV1</th>
<th>LEW</th>
<th>LEW.1AV1</th>
<th>DA.1H</th>
<th>DA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDP 0.8</td>
<td>0.8</td>
<td>0.5</td>
<td>6.0</td>
<td>6.5</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Pristane 0</td>
<td>0.8</td>
<td>0.5</td>
<td>6.0</td>
<td>6.5</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>β-glucan 2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>6.0</td>
<td>6.5</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Avridine 0</td>
<td>0.8</td>
<td>0.5</td>
<td>6.0</td>
<td>6.5</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Mycobacteria 0.6-3</td>
<td>0.8</td>
<td>0.5</td>
<td>6.0</td>
<td>6.5</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Bovine collagen type II 6.5</td>
<td>6.5</td>
<td>6.0</td>
<td>6.0</td>
<td>6.5</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Rat collagen type II 0</td>
<td>0.8</td>
<td>0.5</td>
<td>6.0</td>
<td>6.5</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Squalene 0</td>
<td>0.8</td>
<td>0.5</td>
<td>6.0</td>
<td>6.5</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Incomplote Freund's adjuvant 0</td>
<td>0.8</td>
<td>0.5</td>
<td>6.0</td>
<td>6.5</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Olive oil 0</td>
<td>0.8</td>
<td>0.5</td>
<td>6.0</td>
<td>6.5</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Combinations between disease inducers and genomes (inbred rat strains) results in arthritis severity and incidence transformed to a 0-16 susceptibility score scale. The inducers and genomes are tentatively ranked along the Y and X axis, respectively, according to published data. Where there are more publications than one for the specific combination data are median score from different publications, except for Mycobacteria where the range is displayed, references 29, 30, 96-109. The figure illustrates some of the published data showing influences from MHC genes (DA, DA.1H) and non-MHC genes (DA, PVG.1AV1, LEW.1AV1) for some of the arthritogenic substances.

The DA rat

Dark Agouti (DA) rats are susceptible to a number of autoimmune diseases; experimental autoimmune encephalomyelitis110, experimental allergic neuritis111, experimental allergic uveitis112, and experimental autoimmune thyroiditis113. Among the inbred rat strains the DA rat is conspicuously arthritis-prone (Figure 3). It is the only strain susceptible to oil-induced arthritis and other arthritis inducers provoke very severe disease in DA compared to other susceptible strains. This disease susceptibility is mediated by both MHC and non-MHC genes (Figure 3), as is displayed by the milder disease seen in DA.1H, which is a DA strain with different MHC108, and by the more severe disease seen in LEW.1AV1, which has DA alleles in the MHC. PVG.1AV1 is also DA-MHC congenic, but is still resistant or develops extremely mild arthritis in response to most arthritis inducers. The intriguing difference in susceptibility between the MHC identical strains is explained by non-MHC influences that could be either oligogenic or highly polygenic and demands to be uncovered.
Table 4. Characteristics of RA and some selected rat models

<table>
<thead>
<tr>
<th></th>
<th>RA</th>
<th>MIA</th>
<th>OIA</th>
<th>SIA</th>
<th>PIA</th>
<th>rCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone and cartilage erosions</td>
<td>+++</td>
<td>+++</td>
<td>-/+</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Enthesopathy and new bone formation</td>
<td>+/−</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>T-cell infiltration in the joints</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Circulating COMP</td>
<td>+++</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Symmetric involvement of peripheral joints</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Chronicity (sustained or relapsing joint infiltrations and erosions)</td>
<td>+++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Rheumatoid factor</td>
<td>+++</td>
<td>-</td>
<td>nd</td>
<td>nd</td>
<td>++</td>
<td>nd</td>
</tr>
<tr>
<td>MHC association</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Gender preponderance</td>
<td>Females</td>
<td>Females</td>
<td>Females</td>
<td>No/Females</td>
<td>Females</td>
<td>Females</td>
</tr>
</tbody>
</table>

+++ (pronounced) ++ (clearly present) + (barely significant) - (not present) nd = not done
Adapted from reference 121.

Collagen type II-induced arthritis (CIA); Antigen in adjuvant

Collagen type II-induced arthritis is the most common arthritis model, used for both pharmacological, and pathological research. It was first described in 1977 by Trentham. In rats, both heterologous (human, bovine porcine and chicken) and homologous (rat) collagen type II dissolved in either Freund’s complete or incomplete adjuvant is used. Collagen type II induced arthritis, but not type I or III.

CIA is inducible in both mice and rats, although disease-induction in mice requires complete Freund’s adjuvant, heterologous collagen type II, boosting and arthritis develops after 60 days. DA rats, DA-MHC congenic LEW.1AV1, and BN.1AV1 rats develop CIA after injection of rat collagen type II. Bovine and porcine collagen type II are used to induce CIA in other strains. Collagen-induced arthritis develops 10-14 days after injection of collagen type II in incomplete adjuvant in arthritis prone rats. Collagen type II -induced arthritis in both rats and mice displays pronounced bone and cartilage erosions (Table 4), symmetrically distributed, presence of rheumatoid factor, both T-cell and B-cell involvement, and autoantibodies to collagen type II. In fact it is possible to transfer CIA from one mouse to another only by injecting arthritic donor serum indicating that CIA is partly driven by autoreactive B-cells.

Other cartilage derived arthritogenic auto-antigens are cartilage oligomeric matrix protein (COMP), collagen type IV, and collagen type VI. These antigens are also depending on emulsification in adjuvant.
Mycobacteria-induced arthritis (MIA)

The first established experimental RA model120, often designated classical adjuvant arthritis, is induced by an intradermal injection of complete Freund’s adjuvant. Complete Freund’s adjuvant consists of heat-killed mycobacteria in mineral oil. This combination induces arthritis in mice, hamsters121 and rats with many features similar to RA, but probably even more similar to spondyloarthropathies with periostitis, ankylosis, and many other extra-articular manifestations like pervasive inflammatory infiltrates into other organs like spleen, liver, bone marrow, meninges, skin, and eyes122,123. One disadvantage with MIA is the relative irreproducibility, severity and incidence varies greatly between experiments, as seen in Figure 3.

The myramyl dipeptide (MDP) is a mycobacteria derived adjuvant molecule identified in an effort to find the arthritogenic component contributing to mycobacteria induced arthritis124.

Pristane-induced arthritis (PIA)

The plant oil pristane (2,6,10,14-tetramethylpentadecan), present in chlorophyll and therefore omnipresent in the diet, is a potent arthritogenic oil that, though it only activates the immune system nonspecifically, induces an arthritis that clinically resembles RA (Table 4). Pristane–induced arthritis is chronic, joint specific and T-cell regulated30. The disease is manifested 2-3 weeks after injection and persists as active lesions for a long time, sometimes disappearing only to reappear again later. Large pannus formations are evident, with presence of neutrophils and macrophages. There is severe cartilage destruction without bone formation. The disease is most likely driven by auto-reactive T-cells since disease parameters were reduced after treatment with antibodies against αβTCR30. The chronic phase was also altered after T-cell treatment, with lesser pannus formations and other clinical signs.

Pristane–induced arthritis can also be induced in mice, but with some effort. Disease appears after two intraperitoneal injections 50 days apart, requires a triple dose, but it is not joint specific and does not resemble PIA in rats. Pristane injection to BALB/cJ mice induces the production of Lupus-associated auto-antibodies and immune complex mediated glomerulonephritis125,126. This autoantibody production however, is not exclusive to PIA; it has been detected for SIA and OIA as well127. BALB/cAn mice on the other hand have been reported to develop plasmacytomas after pristane injection128.
Squalene-induced arthritis (SIA)

Certain rat strains injected with the cholesterol precursor squalene develops arthritis that fulfills four of the ACR criteria requested for RA diagnosis. Joints are affected symmetrically, and bone and cartilage erosions are noticeable. The squalene-induced arthritis is characterized by T-cell infiltrations in the synovium. Transfer experiments of lymph node cells from a sick to a healthy rat, suggest that squalene-induced arthritis is T-cell dependent. T-cell depletion has been done and disease parameters were reduced after treatment29. The specific time windows where arthritogenic T-cells are generated have been analyzed in transfer experiments and it has been demonstrated that cells from draining lymph nodes could transfer disease at day 8 but not day 5 after squalene injection. Non draining lymph node cells were also shown to be able to transfer SIA just before disease onset at day 1129.

Squalene is one of the constituents of MF59, one of the few adjuvant approved for vaccinations in humans, commonly used in Influenza vaccine, as well as in clinical trials of vaccines against CMV, HIV, herpes simplex virus and hepatitis B. Much controversy in the last years has been raised concerning the safety for human use of this adjuvant. The adjuvant mixture was possibly used by the US military when vaccinating soldiers fighting in the Gulf war, and it has been implicated that squalene injections could have been the cause of the pseudo-rheumatic disease, Gulf War Syndrome130,131.

Oil-induced arthritis (OIA)

Incomplete Freund’s adjuvant (IFA) is used as vehicle in many different immunization protocols to induce experimental inflammatory diseases. IFA consists of 85% mineral oils (Bayol F) and 15% of the emulsifier Arlacel A. The often used adjuvant can induce arthritis in DA rats132. Oil-induced arthritis develops approximately 14 days after an intradermal injection of IFA, a mild monophasic joint inflammation in the hind paw and ankle is manifested, sometimes with progression to front paws. Disease subsides before day 45, with limited erosions, and no ankylosis or other functional disorders. Joints show minimal hyperplasia of the synovia but infiltrations by polymorphonuclear cells in the joint space and subintimal tissues occur. Pannus tissue and marginal erosions are manifested on day 29132. Disease is T-cell dependent since anti-αβTCR antibodies ameliorate disease133, and serum could not transfer disease7. Disease is influenced by both MHC and non MHC genes108.
Mapping susceptibility genes in experimental arthritis

Genetic linkage was first discovered in the beginning of the 20th century by Morgan and colleagues. They observed that certain phenotypes were inherited together but sometimes they were not, a phenomenon called partial linkage. They combined thoughts about partial linkage and the idea of crossing-overs. They assumed that the crossing over was a random event, so that two genes far apart will be separated by a cross-over more often than two genes closer together. By calculating the frequencies by which two “linked” phenotypes were separated they could determine their genetic distance from each other on the chromosome. This in combination with genetic markers instead of visible phenotypes is the basis for genetic linkage mapping.

Genome scans: identifying QTLs

Linkage mapping

The first step in trying to find genes contributing to disease is to isolate genomic regions that are coinherited with the disease phenotype. This is done through linkage mapping. The mapping population is crucial for the linkage analysis. It is produced by intercrossing an arthritis prone inbred rat (most often the DA rat), and a resistant inbred rat, such as F344, E3, LEW.1AV1, PVG.1AV1, BN, or ACI. The progeny from the first intercross is heterozygous state, and is denoted F1. The mapping population is the generation derived from interbreeding within the heterozygous population. This population is denoted F2. A QTL can be mapped in F2 populations using linked genetic markers. The polymorphic marker will be in linkage when one of the two alleles is coinherited with a certain phenotype. Linkage is measured in LOD which is the logarithm of odds:

\[
\text{LOD} = \log_{10} \frac{\text{Likelihood of QTL at position}}{\text{Likelihood of no QTL at position}}
\]

Lander and Krygliak proposed criteria for genome wide linkage LOD 4.3, and suggestive linkage 2.8. Permutation test is an alternative approach to determine significant linkage.
Experimental arthritis genome scans

To investigate the genetic influence in experimental arthritis, 10 original genome scans have been performed, using the DA rat as the susceptible strain while the resistant strains differ (Table 5). The analyses were derived from three research groups. More than 20 arthritis-linked quantitative trait loci (QTLs) have been identified so far. Five different arthritis models have been used; MIA, PIA, SIA, OIA and CIA (either bovine, rat, or porcine Collagen type II). The QTLs often overlap, most likely because the used arthritis models have common susceptibility alleles, and at least to some extent due to common modes of induction, i.e. the use of adjuvant oil in all models. Four overlapping QTL regions; chromosome 4, 10, 12 and 20 (figure 4 and table 5), have been identified by all three research groups.

From the genome scans it is evident that chromosome 4 harbors many arthritis regulating regions in fact of all identified loci in experimental models in the rat 40% harbor on RNO4. A centromeric QTL seem to regulate both MIA susceptibility and PIA onset (Kawahito, Vingsbo table 5). In a second region near 4q31 four models are overlapping Cia5, Pia5, and two suggestive QTLs OiaW, and Pia3. Interestingly these regions also overlap with QTLs identified in rat models of other inflammatory diseases such as; diabetes type I, encephalomyelitis, carrageean exudates, and uveitis. The telomeric region harbors three overlapping arthritis QTLs Oia2, Pia7, and Cia13. The homologous region in human 12p13 harbors susceptibility genes for both RA and multiple sclerosis (MS).

RNO 10 also harbors many overlapping arthritis regulating QTLs. One or possibly two QTLs have been identified in each of OIA, CIA, PIA, and SIA. Uveitis, and encephalomyelitis regulating region overlap. The telomeric part of the region overlaps with the human syntenic region 17q22-q25 that has been associated to many autoimmune diseases such as RA, MS, ankylosing spondylitis, osteoarthritis and psoriasis. Chromosome 12 harbors Pia4/Cia12. Pia4 in a recombinant inbred backcross gave an impressive LOD 53. This QTL was pursued in later mapping in congenic strains.
Experimental arthritis regulating regions are placed to the right of the chromosome107,153-167, described in detailed in Table 5. Other overlapping inflammatory disease regulating loci are viewed to the left of the chromosomes139-141,168-173. Homologous Human RA regulating loci are underlined and are described in Table 2.
<table>
<thead>
<tr>
<th>Gene</th>
<th>Year</th>
<th>Inducer</th>
<th>Studies</th>
<th>Animals</th>
<th>Mutation of OTLs in the rat and genome scans performed</th>
</tr>
</thead>
</table>

Table 3: Experimental analysis of genes regulating OTLs in the rat and genome scans performed.
Congenic strains: isolating QTLs and fine mapping

The next step after a QTL has been identified by linkage analysis, is to fine-map the interval. The linkage identified QTLs and have large confidence intervals often exceeding 20 cM in size, far from the resolution where identifying susceptibility genes are possible. Fine-mapping has often been performed by mapping in congenic strains. The production of a congenic strain is described in figure 5 and is based on marker assisted selection of individuals carrying the desired alleles in the QTL interval (B alleles in Figure 5). Undesired B alleles outside the QTL are removed by consecutive breeding (> 10 generations) onto the desired background (A).

Figure 5. To produce a congenic strain

Intercross between two inbred strains

Generation in heterozygous State backcrossed to one parental strain

Selective breeding using selected genetic markers in identified QTL

Selecting for B alleles in QTL

B background alleles decrease 0.5 for each backcross generation

After ~10 generations two congenic progeny are crossed to produce a Homozygous congenic strain.

Congenic strain established
Parental A genome except in QTL interval = parental B genome

Heterozygous congenic strain
B alleles

Homozzygous congenic strain

Speed congenics is a strategy that more rapidly reduces the undesired background alleles through marker assisted selection of individuals with the least B alleles. This speeds up the background contamination cleanup to 6-7 generations.174
Table 6 is a summary of all congenic studies published in experimental arthritis so far in the rat. Congenic mapping in three different arthritis models identified a 20 cM interval on RNO4 (R3) that mediate protection CIA, OIA, and SIA and down regulate (not significant) PIA (paper II). In another strain combination DA.F344 a larger interval (~60 cM) influenced arthritis OIA, PIA, CIA, and MIA. This region also harbors genes influencing MOG induced encephalomyelitis, where DA alleles in the 20 cM interval enhanced disease severity (R3). Chromosome 10 is an equally interesting region, which possibly harbors two QTLs. Our group produced a set of overlapping congenic strains by backcrossing susceptibility alleles (DA) on to a resistant genome (LEW.1AV1). This identified that the Cia3 region (46 cM) could transfer arthritis with the increased incidence from 25% to 80% in females and from 0% to 60% in males. This susceptibility interval was also further mapped in three recombinants to a 24 cM interval Oia3b where the susceptibility increase 73% was conserved from the 46 cM interval. A third recombinant Oia3c ~15 cM of the telomeric end mediated a susceptibility increase of 59%, which could indicate a second QTL with the effect 73-59% outside of Oia3c. Other studies have produced similar results, identifying arthritis protection from resistant alleles to the telomeric end of chromosome 10 (~22 cM), for both OIA, PIA and the female population in CIA and MIA. A larger interval 80cM, was protective in all four models, also indicating more than one QTL.

Fine-mapping the Pia4 locus on RNO12 has been productive. The QTL had impact on susceptibility in a DA (DA x E3) backcross. A DA.E3 Pia4 congene was tested both in CIA and PIA. The congene had an ameliorating effect in PIA where arthritis was decreased with 90%, and in CIA with 50%. The MHC congenics can have a complete protective effect in CIA and OIA and are significantly protective in MIA and PIA. MHC alleles from E3 in PIA however showed a weaker protection.

Congenic mapping has proven to be a very rewarding technique since it recently has identified the susceptibility genes underlying two arthritis QTLs in the rat; the Ncf1 gene from Pia4 on chromosome 12, and the Aplr complex from Oia2 on chromosome 4 (paper III of this thesis). Here have a series of very small recombinant intervals been used to transfer the phenotype expression. The Ncf1 gene was one out of two genes on a 300 kb fragment that still had the PIA protective phenotype preserved. There was no difference in expression between the two genes but the second gene had no polymorphisms whereas Ncf1 had two. After comparing polymorphisms in more than 20 different strains including wild rats, the conclusion is that the susceptibility was linked to one of these polymorphisms that contribute to lower oxidative burst in DA rats since Ncf1 is a part of the NADPH oxidase complex.
The mapping of \textit{Oia2} and ultimately identifying the C-type lectin like complex \textit{Aplr} as the arthritis regulating gene complex will be discussed more in detail further on in this thesis.
<table>
<thead>
<tr>
<th>RNO</th>
<th>Author</th>
<th>Congene name</th>
<th>Inducer</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Joe et al. 2001</td>
<td>DA.F344Aia2, DA.F344Aia3</td>
<td>MIA</td>
<td>Males protective</td>
</tr>
<tr>
<td></td>
<td>Remmers et al. 2002</td>
<td>DA.F344Cia3, DA.F344Cia3, DA.F344Cia3</td>
<td>b CIA</td>
<td>Females protective</td>
</tr>
<tr>
<td></td>
<td>Bäckdahl et al. 2003</td>
<td>DA.PVG C4, DA.PVG C4, DA.PVG R1</td>
<td>PIA, CIA, CIA</td>
<td>Protective, No effect</td>
</tr>
<tr>
<td></td>
<td>Ribbhammar et al. 2003</td>
<td>18 R3 recombinants OIA</td>
<td>OIA</td>
<td>OIA protection mapped to 0.8 Mb</td>
</tr>
<tr>
<td>6</td>
<td>Olofsson et al. 2003a</td>
<td>DA.E3 Pia7, DA.E3 Pia7</td>
<td>PIA</td>
<td>More amelioration in CIA than PIA</td>
</tr>
<tr>
<td>7</td>
<td>Olofsson et al. 2003a</td>
<td>DA.E3 Pia7</td>
<td>PIA</td>
<td>50% amelioration</td>
</tr>
<tr>
<td></td>
<td>Remmers et al. 2002</td>
<td>DA.F344Cia4, DA.F344Cia4, DA.F344Cia4</td>
<td>b CIA</td>
<td>E3 alleles in pia3 + Pia4 more severe</td>
</tr>
<tr>
<td></td>
<td>Remmers et al. 2002</td>
<td>DA.F344Cia6, DA.F344Cia6</td>
<td>b CIA</td>
<td>No effect</td>
</tr>
<tr>
<td></td>
<td>Remmers et al. 2002</td>
<td>DA.F344Cia6</td>
<td>OIA</td>
<td>Males protective</td>
</tr>
<tr>
<td>10</td>
<td>Holm et al. 2000</td>
<td>LEW.DAOia3, LEW.DAOia3a, LEW.DAOia3b, LEW.DAOia3c</td>
<td>SIA</td>
<td>79% susceptibility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEW.DAOia3c</td>
<td>SIA</td>
<td>30% susceptibility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEW.DAOia3c</td>
<td>SIA</td>
<td>73% susceptibility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LEW.DAOia3c</td>
<td>SIA</td>
<td>59% susceptibility</td>
</tr>
<tr>
<td>12</td>
<td>Joe et al. 2000</td>
<td>DA.F344Cia5, DA.F344Cia5a</td>
<td>b CIA</td>
<td>Large congene p < 0.001</td>
</tr>
<tr>
<td></td>
<td>Remmers et al. 2002</td>
<td>DA.F344Cia5, DA.F344Cia5a, DA.F344Cia5a</td>
<td>b CIA</td>
<td>Short congene p = 0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DA.F344Cia5a</td>
<td>OIA</td>
<td>Protective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DA.F344Cia5a</td>
<td>PIA</td>
<td>Protective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DA.F344Cia5a</td>
<td>b CIA</td>
<td>Females protective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DA.F344Cia5a</td>
<td>PIA</td>
<td>Protective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DA.F344Cia5a</td>
<td>OIA</td>
<td>Protective</td>
</tr>
<tr>
<td>14</td>
<td>Wester et al. 2003</td>
<td>DA.E3Pia6</td>
<td>PIA</td>
<td>Less chronicity p < 0.001</td>
</tr>
<tr>
<td>16</td>
<td>Remmers et al. 2002</td>
<td>DA.F344Cia1, DA.F344Cia1</td>
<td>b CIA</td>
<td>Complete protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DA.F344Cia1</td>
<td>PIA</td>
<td>Protective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DA.F344Cia1</td>
<td>OIA</td>
<td>Complete protection</td>
</tr>
<tr>
<td>17</td>
<td>Joe et al. 2001</td>
<td>DA.F344Aia5</td>
<td>MIA</td>
<td>Protective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DA.F344Aia5a</td>
<td>MIA</td>
<td>No effect</td>
</tr>
<tr>
<td>16</td>
<td>Olofsson et al. 2003c</td>
<td>DA.Pia4</td>
<td>PIA</td>
<td>90% amelioration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DA.Pia4</td>
<td>r CIA</td>
<td>More pronounced amelioration in PIA than CIA (CIA 50%)</td>
</tr>
<tr>
<td>17</td>
<td>Olofsson et al. 2003a</td>
<td>DA.Pia1</td>
<td>PIA</td>
<td>Reduced severity day 12-19 <0.05</td>
</tr>
<tr>
<td>20</td>
<td>Remmers et al. 2002</td>
<td>DA.F344Cia1</td>
<td>b CIA</td>
<td>Complete protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DA.F344Cia1</td>
<td>PIA</td>
<td>Protective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DA.F344Cia1</td>
<td>OIA</td>
<td>Complete protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DA.F344Aia1</td>
<td>MIA</td>
<td>Protective</td>
</tr>
<tr>
<td>16</td>
<td>Olofsson et al. 2003a</td>
<td>DA.Pia1</td>
<td>PIA</td>
<td>Reduced severity day 12-19 <0.05</td>
</tr>
</tbody>
</table>
Alternative strategies in QTL fine-mapping

Like RA, experimental arthritides are complex diseases, affected by multiple susceptibility factors where genetic phenomena such as epistasis and epigenetics are difficult to delineate. Congenic mapping is limited to investigating fixed regions. It does not give the possibility to look for genetic interactions between additional loci, without for that reason producing double or multiple congenics. However there are other mapping methods available.

There are different fine-mapping strategies, where accumulation of recombinations is a central element to reduce the confidence interval (CI). One such strategy is selective genotyping, where only intra-QTL recombinant F2 individuals are selected for phenotyping. Another is to test the QTL recombinant progeny in backcross to add recombinations in the interval. Both methods need large samples sizes. A third strategy to gain aggregated recombinations for each chromosome is to produce an advanced intercrossed line (AIL) (Figure 6a). It is important to maintain a large number of breeding pairs, and that the breeding is random controlled, i.e. brother sister mating is avoided to prevent homozygous chromosomes. The confidence interval of a QTL can then be reduced, theoretically by a factor of t/2, were t is the
number of generations of its advanced population (Figure 6b). AIL may well provide sufficiently good mapping resolution to narrow a QTL to <20 candidate genes.

We initiated analysis in AIL (Paper IV), a densely recombinant experimental population, to enable high-resolution fine-mapping on a genome wide scale. The F7 AIL is the seventh intercross generation, which stems from an initial cross between arthritis susceptible rat strain DA, and the arthritis resistant strain PVG.1AV1 with the DA MHC haplotype184.

\textbf{QTL mapping software}

The two softwares used in this thesis are MAPMAKER and R/qtl. MAPMAKER was the first publicly available mapping-software185. With this program it is possible to perform linkage maps (multipoint analysis), and interval mapping is done by MAPMAKER/QTL (wilcoxon rank-sum test). R/QTL has many more features186,187. It enables single- or two- QTL mapping using Haley-Knott regression, EM-algorithm, Kruskal-wallis for Nonparametic testing, and provides other models such as binary trait and two-parts models. Multiple-QTLs can be tested with multiple imputation. It is also possible to calculate LOD-threshold by permutation tests, and to investigate additive effects and epistatis.

\textbf{From QTL to gene}

A cornerstone in phenotype to genotype research is the presence of genetic markers in the QTL interval, either microsatellites or SNPs. However there are few SNPs identified in the rat, consequently we have had to rely on the occurrence of satellite markers in our regions of interest. The release of the draft BN rat genome sequence has enabled straightforward identification of new markers188. In fact the microsatellites are spaced \sim 100kb through the genome. The rat genome sequencing project has taken experimental genetic research on a giant leap into the 21st century. Procedures that would have taken months or years to accomplish in the lab can now be performed on a coffee-break in silico.
Before the rat genome was sequenced it was more difficult to proceed into positional cloning after a QTL interval had been narrowed to \(\sim 1 \) cM. Genes harboring the interval had to be identified by either chromosome walking or exon trapping. In chromosome walking the QTL flanking markers sequences had to be identified on bacterial artificial chromosomes BACs, or plasmide artificial chromosomes PACs from a rat genome library\(^{189}\). The identified BAC or PAC was then sequenced and a new marker in different placements hopefully in the direction of the second flanking marker was designed. A contig was then produced from overlapping BACs or PACs between by walking along the sequence produced between the two original satellite sequences. In exon trapping BACs or PACs are also used to identify expressed RNA within the genomic fragment harboring the satellite sequence. The identified micro satellite sequence positive BACs or PACs are cut into smaller pieces and cloned into a mammalian expression vector. This will enable mRNA expression from the BACs or PACs in mammalian cells. Expressed exons are harvested and sequenced which will identify expressed genes within the PAC hence within the QTL\(^{190}\).

Identifying the susceptibility gene still demands sequencing however, in order to delineate the causal polymorphism by sequencing both the susceptible and resistant strain. The identified polymorphisms are often determined in a variety of different inbred strains from disease susceptible to resistant as well as outbred strains or wildtype rats. It is also important to verify the functional effect of the polymorphism identified by functional testing of the candidate genes. This could be done by “knock-in” technique or by gene targeting, but this is only feasible in certain species\(^{191}\).
The aim of this thesis:

The overall goal of this thesis was to identify genes that regulate arthritis in the rat, and to determine if the homologous human genes influence rheumatoid arthritis.

Specifically, I aimed:

- to determine combinations between arthritis inducers and rat genomes (strains and crosses) that result in experimental arthritis suitable for genetic mapping.

- to use the experimental arthritis systems for positional mapping of arthritis regulating genes on rat chromosome 4 and 10 regions that were previously linked to arthritis susceptibility.

- to determine if human homologs of the identified arthritis-regulating rat genes associate with rheumatoid arthritis.
Results and discussion

Mapping and Functional Characterization of Rat Chromosome 4 Regions that Regulate Arthritis Models and Phenotypes in Congenic Strains (Paper I)

The distal part of rat chromosome 4 is a region harboring many overlapping QTLs that regulate various inflammatory diseases (136-141,153,155,159,161,162,192), eight of these QTLs regulate arthritis and they constitute 40% of the total number of arthritis regulating QTLs in the rat. The first mapped QTL was Oia2, and our research group had initiated the production of congenic strains for this region. This provided a basis for mapping of one or several QTLs, which was my initial aim. Therefore we aimed to determine the common genetic regulation of chromosome 4 alleles in four different arthritis models using congenic strains.

Figure 7. Rat chromosome 4, congenic strains; C4, R1, R2, R3, and eight arthritis regulating QTLs.

By selective breeding we produced a DA strain that harbors genes from arthritis resistant PVG.1AV1 within a 70 cM interval on chromosome 4 (C4 in Figure 7). In addition, three subcongenic strains were developed, that represent different QTLs within this interval (R1-R3). The congenic strains were tested in four different experimental arthritis induced by either collagen type II (antigen dependent), mycobacteria (bacteria), pristane or squalene (two non immunogenic oils). The 70 cM interval mediated arthritis protection in all 4 RA models i.e. collagen-induced arthritis (CIA), mycobacteria-induced arthritis (MIA), pristane induced arthritis (PIA), and squalene-induced arthritis (SIA). When the interval was divided into three overlapping intervals (R1, R2, and R3 in Figure 7), the 10 cM R3 subcongene representing the QTL Oia2 did downregulate SIA and CIA. Genes in R3 also caused a change in anti-collagen antibody isotype-levels towards a pattern similar to that of...
PVG.1AV1. The subcongenic R2 indicated a gene regulating arthritis in males located in a 20 cM interval overlapping with the QTL Pia5. The QTL Oia2 regulates arthritis induced both by the non-immunogenic immunostimulant squalene, and by cartilage collagen. In CIA, it also skews anti-collagen isotype profiles, suggesting qualitative regulation of autoimmunity. Interestingly the homologous human chromosomal region 12p12-p13 has also been linked to RA, suggesting that genetic and functional dissection of this locus will give clues to disease pathways leading to joint inflammation.

High resolution mapping of an arthritis-susceptibility locus on rat chromosome 4, and characterization of regulated phenotypes (Paper II)

The congenic strains used in paper I, were evaluated also in oil-induced arthritis (OIA), and arthritis development was completely prevented in C4 and R3. Given that the congenic strains displayed complete protection against OIA but only partial downregulation in SIA and CIA, further mapping of this interval was performed in OIA.

In paper II reciprocal transfer of RNO4-intervals establishes that overlapping Oia2 alleles from DA confer arthritis susceptibility, whereas LEW.1AV1 and PVG.1AV1 alleles confer resistance. Oia2 was then fine-mapped using 18 Oia2 Subcongenic strains with PVG.1AV1 alleles introduced on DA genome. We were able to fine-map Oia2 in oil-induced arthritis (OIA) to an interval of approximately 0.8 cM (Figure 8). This interval harbored gene sequences similar to C3AR1, Ribosomal protein L7, a cluster of C-type lectins (Clecsf6, Clecsf8, Clecsf9, and Clecsf10), C1s, C1r and CD163, according the Rat genome assembly from 24 of October 2002.

Alleles in Oia2 regulated arthritis in an additive fashion, and determined arthritis incidence, severity, and day of onset, in both males and females. Besides macroscopic joint-inflammation, Oia2 also regulated other oil-induced phenotypes, including lymphoplasia and plasma levels of the inflammation marker α1-acid glycoprotein. Our results demonstrate transformation of multifactorial arthritis into a disease specifically triggered by adjuvant-oil exposure, which displays dichotomous phenotypes, and maps as a monogenic trait.
A gene complex encoding lectin-like receptors influences arthritis in rats and humans (Paper III)

In paper III we aimed to identify the arthritis regulating gene(s) in Oia2. We first fine-mapped the disease regulating effect in Oia2 to a C-type lectin gene complex designated APLEC (antigen presenting lectin-like receptor complex.) The encoded receptors belong to the group II C-type lectin-like receptor family expressed mainly on antigen presenting cells (APC). A 600kb congenic strain with PVG.1AV1 alleles in Aplec confirmed protection against oil-induced arthritis. Sequence analysis looking for polymorphisms between DA and PVG.1AV1 identified a nonsense mutation in Dcar1. Polymorphisms in Dcir1, and Dcir2 did not effect expression levels. Dcir3
had identical sequences but did differ in expression levels. *Mincle* differed both in sequence and expression levels but results strongly indicate *Dcar1* as the determining gene since the polymorphism leads to an aberrant protein.

The corresponding human gene cluster is located on chromosome 12p13.31 and encodes three genes similar to the mutated rat *APLEC* encoding gene, including dendritic cell immunoreceptor (*DCIR*). Three SNPs in *DCIR* and one in *MINCLE* were tested. Association of *DCIR* with rheumatoid arthritis was established after determination of single nucleotide polymorphisms in patients and matched controls. The SNP rs1133104 is located in the 3' UTR region of *DCIR*. The *DCIR* SNP showed association with RA (p=0.008). After stratification for rheumatoid factor the association for seronegative patients versus all controls was still clear (p=0.006, \(p_{\text{corr}}=0.01 \)). We conclude that the described lectin-like receptor genes influence arthritis in both humans and rats.

Identification of Candidate Disease Genes by High-Resolution Linkage Mapping of Arthritis Regulating Rat Chromosomal Intervals in Advanced Intercross Lines (Paper IV)

The previous genetic mapping studies (paper I-III) in this thesis were based on congenic mapping. In paper IV I employ and evaluate a fine-mapping tool that is complementary to congenic mapping, and initiated analysis in an advanced intercross line (AIL), a densely recombinant experimental populations that facilitates fine-mapping on a genome wide scale.

The chromosomes of each individual in the experimental population are a unique patchwork of short fragments from either of the founder strains. The F7 AIL is the seventh intercross generation that stems from an initial cross between arthritis
susceptible rat strain DA, and the arthritis resistant strain PVG.1AV1 with the DA MHC haplotype. Differentially arthritogenic oils were used to trigger joint inflammation in F7 progeny. A high incidence, 57 %, was recorded in 422 pristane-injected animals.

All 422 rats were subsequently genotyped over three genomic regions that have documented impact on arthritis, a previously identified 20Mb QTL, Oia3, on rat chromosome 10\(^{176}\), and the two newly identified arthritis susceptibility genes/complexes; the Ncf1 gene on chromosome 12\(^{179}\), and the Aplec complex on chromosome 4 (Paper III). The chromosomal region upstream of Aplec was also fine mapped to search for additional susceptibility genes. All three chromosomal regions were analyzed for arthritis susceptibility, arthritis severity, incidence of arthritis, day of arthritis onset, and chronic arthritis. They were also scanned for genetic interactions and additive effects.

![Figure 10. Pristane-induced arthritis in 422 F7(DAxPVG.1AV1) animals](image)

Maximum LOD scores were recorded only 100 kb from Ncf1 on chromosome 12, and only 77 kb from the Aplec. Additional QTLs were identified near Aplec, including one that regulates chronic arthritis in females (Figure 10). Novel QTLs were also defined on the chromosome 10 terminus, including two loci involved in mutual epistatic control of chronicity. All other identified loci showed additive effects with at least one other QTL. Two additive locus on chromosome 10 were identified. Pia29
(Table 7) harbor Prkca, a gene that has been associated to MS146. A second QTL on chromosome 10, Pia30, showed maximum LOD scores 50 kb telomeric of an Ig-like receptor gene cluster that was previously implicated in human psoriatic arthritis, i.e. PSORS2151. Similar to Aplec, this mapped gene cluster encodes multiple activating and inhibiting receptors expressed by key cells of the immune system193. Since SNPs in DCIR, one of the human homologs to one of the genes in Aplec associate with RA, we suggest that the newly identified sets of candidate disease genes represent important etiopathogenetic clues, especially in light of the accompanying information on genetic interactions.

Table 7. Candidate disease genes in mapped QTLs on RNO10

<table>
<thead>
<tr>
<th>QTL</th>
<th>Position (Mb)</th>
<th>Marker</th>
<th>LOD</th>
<th>Gene</th>
<th>Gene Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pia29</td>
<td>96.7</td>
<td>D10Rat15</td>
<td>2.39</td>
<td>LOC360649</td>
<td>s.t. Ac2-2-10 (Putative ribosomal protein L22)</td>
</tr>
<tr>
<td></td>
<td>96.81</td>
<td>LOC363689</td>
<td>2.33</td>
<td>LOC360649</td>
<td>s.t. ribosomal protein S23</td>
</tr>
<tr>
<td></td>
<td>96.9</td>
<td>LOC287772</td>
<td>2.33</td>
<td>LOC360649</td>
<td>s.t. proteasome 26S non-ATPase subunit 12</td>
</tr>
<tr>
<td></td>
<td>97.00</td>
<td>LOC287773</td>
<td>2.33</td>
<td>LOC360649</td>
<td>s.t. mouse belte (Helicase with zinkfinger)</td>
</tr>
<tr>
<td></td>
<td>97.11</td>
<td>Caen1</td>
<td>2.33</td>
<td>LOC360649</td>
<td>calcium channel, voltage-dependent, gamma subunit 1</td>
</tr>
<tr>
<td></td>
<td>96.89</td>
<td>LOC363689</td>
<td>2.33</td>
<td>LOC360649</td>
<td>voltage-dependent calcium channel gamma-4 subunit</td>
</tr>
<tr>
<td></td>
<td>96.9</td>
<td>LOC287777</td>
<td>2.33</td>
<td>LOC360649</td>
<td>voltage-dependent calcium channel gamma-4 subunit</td>
</tr>
<tr>
<td></td>
<td>97.15</td>
<td>Caen4</td>
<td>2.33</td>
<td>LOC360649</td>
<td>voltage-dependent calcium channel gamma-4 subunit</td>
</tr>
<tr>
<td></td>
<td>97.2</td>
<td>D10Rat13</td>
<td>3.49</td>
<td>LOC360649</td>
<td>voltage-dependent calcium channel gamma-5 subunit</td>
</tr>
<tr>
<td></td>
<td>97.31</td>
<td>Caen5</td>
<td>3.49</td>
<td>LOC360649</td>
<td>voltage-dependent calcium channel gamma-5 subunit</td>
</tr>
<tr>
<td></td>
<td>97.31</td>
<td>LOC287777</td>
<td>3.49</td>
<td>LOC360649</td>
<td>s.t. beta-2-glycoprotein I (ApoH)</td>
</tr>
<tr>
<td></td>
<td>98.14</td>
<td>LOC36369</td>
<td>3.49</td>
<td>LOC360649</td>
<td>s.t. MGC33887 (hypothetical chromosomal segregation ATPase)</td>
</tr>
<tr>
<td></td>
<td>98.3</td>
<td>LOC36369</td>
<td>3.49</td>
<td>LOC360649</td>
<td>s.t. 1700001M19Rik protein (putative exonuclease)</td>
</tr>
<tr>
<td></td>
<td>98.4</td>
<td>D10Mco15</td>
<td>2.48</td>
<td>LOC360649</td>
<td>axin2</td>
</tr>
<tr>
<td>Pia30</td>
<td>104.6</td>
<td>D150F</td>
<td>2.33</td>
<td>LOC360649</td>
<td>s.t. tweety homolog 2</td>
</tr>
<tr>
<td></td>
<td>104.75</td>
<td>LOC287805</td>
<td>2.33</td>
<td>LOC360649</td>
<td>s.t. retinoic acid inducible protein 3</td>
</tr>
<tr>
<td></td>
<td>104.79</td>
<td>LOC303664</td>
<td>2.33</td>
<td>LOC360649</td>
<td>s.t. triggering receptor expressed on myeloid cells 5</td>
</tr>
<tr>
<td></td>
<td>104.87</td>
<td>LOC363701</td>
<td>2.33</td>
<td>LOC360649</td>
<td>s.t. dendritic cell-derived Ig-like receptor 1</td>
</tr>
<tr>
<td></td>
<td>104.95</td>
<td>LOC287809</td>
<td>2.33</td>
<td>LOC360649</td>
<td>s.t. leukocyte mono-Ig-like receptor 2</td>
</tr>
<tr>
<td></td>
<td>105.01</td>
<td>LOC363702</td>
<td>2.33</td>
<td>LOC360649</td>
<td>s.t. Slc25a5</td>
</tr>
<tr>
<td></td>
<td>105.02</td>
<td>LOC287813</td>
<td>2.33</td>
<td>LOC360649</td>
<td>s.t. Igf7 protein</td>
</tr>
<tr>
<td></td>
<td>105.09</td>
<td>LOC363666</td>
<td>2.33</td>
<td>LOC360649</td>
<td>s.t. dendritic cell-derived Ig-like receptor 1</td>
</tr>
<tr>
<td></td>
<td>105.1</td>
<td>LOC287811</td>
<td>2.33</td>
<td>LOC360649</td>
<td>s.t. Adenine nucleotide translocator 2 (ANT 2)</td>
</tr>
<tr>
<td></td>
<td>105.11</td>
<td>LOC360655</td>
<td>2.33</td>
<td>LOC360649</td>
<td>s.t. dendritic cell-derived Ig-like receptor 1</td>
</tr>
<tr>
<td></td>
<td>105.14</td>
<td>LOC363703</td>
<td>2.33</td>
<td>LOC360649</td>
<td>Ribosomal protein L6</td>
</tr>
<tr>
<td></td>
<td>105.15</td>
<td>D10Got155</td>
<td>2.32</td>
<td>LOC360649</td>
<td>s.t. DC-derived Ig-like receptor 2</td>
</tr>
<tr>
<td></td>
<td>105.24</td>
<td>LOC363704</td>
<td>2.32</td>
<td>LOC360649</td>
<td>s.t. GTPase Rab37</td>
</tr>
<tr>
<td></td>
<td>105.25</td>
<td>LOC59114</td>
<td>2.32</td>
<td>LOC360649</td>
<td>ERM-binding phosphoprotein s.t. mouse slc9a3r1</td>
</tr>
<tr>
<td></td>
<td>105.27</td>
<td>LOC303669</td>
<td>2.32</td>
<td>LOC360649</td>
<td>s.t. RIKEN cDNA 1110028N05 (Putative acetyltransferase)</td>
</tr>
<tr>
<td></td>
<td>105.28</td>
<td>LOC303670</td>
<td>2.32</td>
<td>LOC360649</td>
<td>s.t. FLJ00021 protein (putative aminocitrattransporter)</td>
</tr>
<tr>
<td></td>
<td>105.34</td>
<td>LOC287915</td>
<td>2.32</td>
<td>LOC360649</td>
<td>s.t. mouse grin2c</td>
</tr>
<tr>
<td></td>
<td>105.36</td>
<td>Fdxr</td>
<td>2.32</td>
<td>LOC360649</td>
<td>adenodoxin reductase</td>
</tr>
<tr>
<td></td>
<td>105.37</td>
<td>D10Got157</td>
<td>3.11</td>
<td>LOC360649</td>
<td>s.t. human delta 5 fatty acid desaturase</td>
</tr>
<tr>
<td></td>
<td>105.41</td>
<td>LOC287819</td>
<td>3.11</td>
<td>LOC360649</td>
<td>s.t. Jackson shaker</td>
</tr>
<tr>
<td></td>
<td>105.42</td>
<td>LOC287820</td>
<td>3.11</td>
<td>LOC360649</td>
<td>s.t. mouse otop2 otoperin</td>
</tr>
<tr>
<td></td>
<td>105.43</td>
<td>LOC287821</td>
<td>3.11</td>
<td>LOC360649</td>
<td>s.t. mouse otop3 otoperin</td>
</tr>
<tr>
<td></td>
<td>105.44</td>
<td>LOC287822</td>
<td>3.11</td>
<td>LOC360649</td>
<td>s.t. CG8841-PA</td>
</tr>
<tr>
<td></td>
<td>105.46</td>
<td>LOC360656</td>
<td>3.11</td>
<td>LOC360649</td>
<td>s.t. paraneoplastic antigen</td>
</tr>
<tr>
<td></td>
<td>105.49</td>
<td>LOC303673</td>
<td>3.11</td>
<td>LOC360649</td>
<td>s.t. Icrl1 protein</td>
</tr>
</tbody>
</table>

Genes and positions were retrieved from NCBI rat genome assembly 2 at http://www.ncbi.org.
Concluding remarks

The primary focus of this thesis has been to fine-map the Oia2 locus. This QTL was previously identified in a F2 (DA x LEW.1AV1) intercross159. The Oia2 locus harbored the natural killer cell gene complex (NKC). DA rats are deficient in eliminating allogeneic target cells, and the deficiency in alloreactivity had previously been mapped to the NKC194 in a DA x PVG intercross. Our group formulated the hypothesis that NKC genes could be the arthritis-regulating gene(s) in Oia2. In this hypothesis, DA would carry the allele that leads to arthritis susceptibility, and to aberrant NK cell mediated natural cytotoxicity. In contrast, LEW and PVG would carry alleles that lead to arthritis resistance, and to normal NK cell mediated natural cytotoxicity. However, PVG alleles had not been evaluated in arthritis and the hypothesis could be rejected if the alleles were found not to down-regulate arthritis. To challenge the hypothesis, our group therefore tested if Oia2 could be confirmed in a DA (DA x PVG.1AV1) backcross160. Indeed Oia2 was confirmed in the DA x PVG.1AV1 strain combination. Thus, the hypothesis was still valid when my studies were initiated. In addition to Oia2 eight other arthritis linked QTLs have been assigned to rat chromosome 4 (Figure 4). Since the QTLs identified by genome wide linkage analysis usually cover a large chromosome region and do not constitute an exact position, it was essential to establish experimental systems that allow a closer definition of the chromosomal regions, and of the phenotypes they regulate. The first two studies were concurrently performed (Paper I and II).

Reciprocal strains for Oia2 determined the Oia2 effect in DA, LEW.1AV1 and PVG.1AV1 C4 alleles /genome combinations. The congenic strain C4 and R3 (Figure 7), were then tested in additional experimental arthritis models to determine the most suitable model for genetic mapping. OIA was the most appropriate, since arthritis was completely prevented in the congenic strains. In addition R1 and R2, two recombinants that overlap arthritis linked QTLs centromeric of Oia2, were also tested but showed no significant regulation. OIA was selected for recombinant-mapping. We were intrigued to find that NKC could be discarded as being Oia2 since NKC-harboring recombinants showed no protection. Finally, Oia2 was mapped to 0.8 cM using 18 overlapping recombinant strains. This mapping was later refined to Aplr (paper III). One human homolog of a gene in this complex did present significant association to RA in a patients/control material. Speculating that there may be additional susceptibility QTLs close to Aplr, we performed more mapping in PIA (paper IV). The presence of additional QTLs was confirmed and novel QTLs in the
Oia3 interval on chromosome 10 was identified. In addition linkage to Ncf1/Pia4 was reproduced.

Two QTLs were identified on chromosome 10. The QTL Pia29 harbors 11 genes (Table 7) among which the most interesting are coding for Ca++-channel subunits, and the protein kinase C α-subunit (Prkca) gene. Could this mean that Aplr and Pia29 are involved in the same pathway since Aplr code for Ca++-dependent receptors? Are certain arthritogenic pathways Ca++-dependent? It is known that Ca++-levels promote phagocytosis, an important mechanism in both degradation and antigen-uptake. Although the direct connection is rather questionable since Ca++ is involved in a majority of processes. Nevertheless Prkca is involved in Ca++- induced regulation mainly activated by antigen receptors in T cells, B cells and mast cells. Protein kinase C together with diacylglycerol regulate a wide range of gene transcription programs as well as responses to chemokine and antigen receptors, thereby regulating lymphocyte adhesion, migration, differentiation and proliferation.

The QTL Pia30 (Table 7) harbors a gene complex encoding immunoregulatory leukocyte receptors, just like the Aplec. However the Pia30 gene cluster encodes receptors belonging to the immunoglobulin superfamily (IgSF). These genes have not been characterized in the rat, but the human homologs are Single V-like Ig domains. One representative molecule within the complex is CMRF-38A expressed on monocytes, macrophages granulocytes and subpopulations of B- and T-cells. Its expression on lymphocytes is altered after mitogen exposure. Some have immunoreceptor tyrosine based inhibitory motifs (ITIMs) in their intracellular domains. Others have positively charged amino acids (aa) in the transmembrane regions (TM), which can associate with adaptor molecules that have immunoreceptor tyrosine-based activating motifs (ITAMs). Thus, the receptors in the complex can transduce opposing signals, as have previously been suggested for C-type lectin-like leukocyte receptors encoded from APLEC and from the natural killer cell complex (NKC). The human homolog to the rat Aplr complex represents one of the first complex disease regulating genes originally identified in an experimental model also to be associated to the corresponding human disease homolog. A number of genes have been identified in mice or rats by genetic mapping. Apart from the previously mentioned Ncf1, other genes in other complex diseases have been cloned and identified in animals but have not yet been associated with the corresponding human disease; lyp phenotype loci gene in type 1 diabetes prone BBDP rats has been identified as Immune-Nucleotide (IAN)-related gene. The
bphs locus for pertussis response in mice was identified as the histamine receptor 1 (H1)\(^{199}\).

Some human disease genes have been conclusively identified; CTLA-4 a multi autoimmunity disease causing gene\(^{200}\), ADAM33 in asthma\(^{201}\), CARD15 in inflammatory bowel disease\(^{202}\), CDPD1 in systemic lupus erythrematosi\(^{70}\), and PTPN22 in aRA\(^{63}\).

The Aplr-complex

In this thesis *Oia2* is mapped to a newly discovered gene complex\(^{203}\). The genes encode receptors collectively referred to as APC lectin like receptors (*Aplr*) to indicate their preferential although not exclusive expression on APCs, i.e. B cells, neutrophils, Mφ and DC\(^{204}\). So far, there is limited information on the functional roles of *Aplr*. Carbohydrates are plausible *Aplr* ligands since the receptor extracellular structure forms a carbohydrate binding region (CRD) with preserved amino acids required for carbohydrate binding in a calcium dependent manner. Challenge with exogenous adjuvants may lead to APC activation by endogenous signals. Such signals related to cellular stress, endoviral infection or necrosis have been referred to as natural adjuvants\(^{93}\). It appears likely, however, that *Aplr* may influence the largely undetermined interplay between APC and T cells in arthritis development\(^{205}\).

In the rat, seven *Aplr* encoding genes are contained within a 472 kb chromosomal region and designated the APC lectin like receptor gene complex (*APLEC*). Similar to the *NKC* encoded killer cell lectin-like receptors the *APLEC* have structural features indicating that they regulate leukocyte reactivity by opposing signaling functions\(^{206,207}\). Thus, rat *Dcir1* and *Dcir2* carry immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in their cytoplasmic domains, predicting inhibitory function through recruitment of protein tyrosine phosphatases to phosphorylated ITIMs following receptor ligation\(^{208}\). Functional studies of mouse *Dcir1* did indeed demonstrate ITIM-dependent inhibition of B-cell receptor mediated Ca\(^{2+}\) mobilization and protein tyrosine phosphorylation. Conversely, *Minele* has a positively charged amino acid in the transmembrane domain, suggesting activating function through association with adapter molecules carrying immunoreceptor tyrosine-based activating motifs (ITAMs). Some of the APLR carry neither ITIMs nor charged transmembrane (TM) residues suggesting roles other than signaling. However, human *BDCA-2* and mouse *Dear* have been shown to activate calcium mobilization and protein tyrosine phosphorylation, although they lack a positively charged amino acid in the TM domain, indicating as yet unidentified signaling motifs,
or signaling through heterodimer formation. Altogether, the evidence for inhibitory and activating signaling functions indicate that Aplr may function by fine-tuning leukocyte responses through the computation of multiple opposing signals.\(^{209}\)

The following section explains some of the findings concerning the homologous genes in the Aplr complex, either from mouse or humans:

DC immunoinhibitory receptor (Dcir): Inhibitory receptor expressed on CD14+ derived DC, neutrophils, B-cells and monocytes/ΜΦ. Dcir is co-expressed with MHC class II, indicating it to be expressed on APC. DCIR expression decrease after LPS or CD40L stimulation, hence expression is down-regulated upon maturation. This down-regulation is also observed in blood neutrophils after stimulation with pro-inflammatory cytokines such as TNF, IL-1α, Il-4, and GM-CSF\(^{210-213}\).

DC immunoactivating receptor (Dcar): Dcir and Dcar are highly homologous in their CRD domains. These receptors are identified structurally and functionally capable as paired C-type lectin receptors expressed on APC, although their function is not known. DCAR is expressed in DC, and to a lower extent on in Monocytes, and ΜΦ\(^{214}\).

DC-associated C-type lectin (Dectin)-2: Expressed in Monocytes, DC and ΜΦ. Dectin-2 is indicted to be involved in UV irradiation-induced tolerance, and may interact with ligands on T-cells\(^{215,216}\).

Blood DC antigen (BDCA)-2: BDCA-2 has not been identified in the rat, but is located close to the human APLEC. In human it is expressed mainly on CD11c\(^{-}\)CD123\(^{\text{bright}}\) plasmacytoid DC. Expression is down-regulated by IL-3. Interestingly, ligation of BDCA-2 suppress INF α/β production\(^{217}\).

Macrophage C-type lectin (MCL): There is some evidence that MCL, one of the genes in Aplec, is engaged in antigen capture through receptor mediated endocytosis leading to antigen presentation and induction of T cell responses\(^{218}\).

Macrophage-inducible C-type lectin (Mincle): It is expressed mainly on ΜΦ. Expression is induced by proinflammatory cytokines, INF-γ TNF-α, and IL-6. It has been suggested that a transcriptional target of IL-6 regulate Mincle expression\(^{219}\).

On the background that APLR may influence APC in several ways, many of the APLEC genes can now be arthritis regulating, and none of the investigated receptors can be excluded from potential disease regulation, either alone or in concert. However, the rat Dcar1 gene does stand out as a strong candidate, with the early nonsense mutation rendering it non-functional in the DA strain, and with the low mRNA expression levels probably reflecting nonsense mediated decay\(^{220}\).
Through analyses of big case-control material we established association of a *DCIR* SNP with seronegative but not with seropositive RA. However this result does not prove that *DCIR* has functionally important variations, neither does it exclude that other *DCIR* alleles, or other APLR, may influence arthritis. But is does provide a strong suggestive indication that sequences in this gene cluster influence human RA.

The search for experimental systems to map arthritis susceptibility regions and subsequent genetic dissection of experimental arthritis in the rat has led to the identification of *Aplec*, a complex of immunologically important receptors. Additional functional studies of the *Aplec* encoding receptors is of importance, as well as producing single-gene congenics harboring each *Aplr* gene, to investigate the arthritis protective phenotype of each of these gene. Further association studies of the human homologs to rat *Aplr* genes in RA and possibly other complex diseases is also an important assignment in the future.
POPULÄRVETENSKAPLIG SAMMANFATTNING

Reumatoid artrit (RA) är en kronisk inflammatorisk sjukdom som främst drabbar perifera leder och leder till allvarlig nedsättning av rörelseförmåga och lidande. Sjukdomsuppkomsten är till största delen okänd, men en komplex inblandning av gener och miljöfaktorer anses bidra till dess uppkomst. Att identifiera sådana faktorer försvåras av att sjukdomen även är kliniskt heterogen, det vill säga två människors RA kan vara mycket olika, både med avseende på svårighetsgrad, svar på behandling och systemiska manifestationer.

Denna avhandling innehåller en serie studier av kongenä råttstammar där man genom selektiv avel har flyttat en kromosomal region från en artritresistent råttstam till en artritkänslig råtta, och undersökt hurvida denna region kan nedreglera eller förhindra artrituppkomst eller ej. Den nya råttstammen kommer att ha DA gener i hela genomet utom i det avsedda intervallet där det (i detta fallet) finns PVG versioner av generna. Fem olika artritogen substanser undersöckes; kollagen, squalen, olja, mycobacterie, samt pristan. Modellen för olje-inducerad artrit befanns mest lämpad för vidare finmappning av den kromosomala regionen. Det kromosomala intervallet minskades genom att testa 18 olika rekombinanta kongener, med olika versioner av kortare PVG intervall än den ursprungliga kongenen. Från artritstudier i dessa stammar kunde ett kort intervall (endast 0.8cM) indentifieras, och efter vidare analys av dessa stammar kunde ett komplex av gener kallat Aplec identifieras. Genom att analysera polymorfismer i DCIR (en human homolog till Dcir i rätta och vidare en av generna i Aplec) i ett patientmaterial med RA patienter och friska kontroller så kunde det påvisas att DCIR är kopplad till RA. Detta är den första gången en tidigare
identifierad rätt-artritgen uppvisat koppling mellan den mänskliga versionen av samma gen och RA.
Acknowledgements

Life is a journey; you never know where you are going to end up. I wish someone had told me science was this much fun, and I would have started sooner. This thesis work has not been a one-man's journey however. There are so many people to thank:

My main supervisor, Johnny C. Lorentzen for introducing me to the field of experimental genetics, and his willingness to lead me into the science turf. I especially appreciate the freedom he dared to give me to test myself and develop ideas. I have learned so much, I just wish I could be as clear and centered. Thanks for the great projects I have had. They certainly made it worth the effort.

My co-supervisor, Lars Klareskog for providing us with the best of Laboratory at the center of molecular medicine, making an inspiring environment with great people connected to it. Thank you for always taking time to talk to students, and for encouraging support. Thanks also for critically reading the frame.

Ulrica Ribbhammar my closest colleague and a dear friend especially thanks for all the fun we had in Oslo. We have shared many ups and downs but always landed on our feet. You are a brave girl, I hope you win your Paris-Dakar one day.
Jian-Ping Guo for outstanding genotyping of the AIL and your sweet personality, thanks to former colleagues and important predecessors of my thesis work; Hong wei Xu, Lena Svelander, Barbro Holm, and Åsa Jansson.

The people at Anatomisk institutt especially Sighjörn Fossum for letting Ulrica and me come to Oslo, making all the practical arrangements and teaching us molecular immunology and about the fascinating NK-receptors with such great enthusiasm! Erik Dissen for teaching exon trapping and trying to give us “genome vision”. Line Flornes and Stine Granum for your hospitality and friendship, and all others members in the lab.
My co-authors, Ulrica Ribbhammar, Kristina Becanović, Maja Jagodić, Jian-Ping Guo Line Flornes, Carina Eklöw, Tomas Olsson, Sighjörn Fossum, Lars Alfredsson, Antony Brooks, Erik Dissen, and Holger Lutman.

Leonid Paduykov thanks for reading the frame, giving me good advice, and sharing your scientific knowledge, especially trying to teach me about HLA nomenclature! Holger Lutman for critically reading the AIL manuscript and all other scientific input. Vivi Malmström, and Tina Trollmo thank you both for encouragements in proceeding.
future plans, and sharing your own experiences. Ingrid Lundberg, Marie Wahren-
Herlenius, Anki Ulfgren, Per Larsson and Helen Erlandsson-Harris for scientific
discussions and friendly advice.
Therese Wallerskog my confidant, you have became a really good friend to me, and I
don’t know what I would have done without you these last weeks (or years?). Thanks
for proof reading. Linn Horvath you’re such a generous personality and I appreciate
you a lot! Therese and Linn I can not thank you enough for letting me crash in your
room in New York last spring, it ended up being such a wonderful stay!

Thank you all rheuma-colleagues, each and everyone contributing to the friendly
atmosphere and sharing so many fun times both in the lab, on parties, and away on
conferances: Sevim Barbasso my office room-mate, sorry for my bad temper at times
but I think you are the sweetest. My fellow strugglers up on thesis-deck, Duoija Cao
and Karin Lundberg, Lasse Ottosson, always the helpfull super-computer-wizard,
Cecilia Grundman (Whale-spotter nr.1!) and Carina Eklöw (Säl-spotter nr.1!) for
traveling-companionship in a mini-Yaris around Iceland, Stina Salomonsson, Marie
Westman, Ewa Westman, Alex Espinosa, Robert Klauninger, Marina Smolnikova,
Marina Korotkova, Anca Catrina, Marcus Ronninger, Eva Jemseby, Lotta Aveberger,
Eva Lindroos, Andreas Fasth, Mona Wide, Monika Hermansson, Marianne
Engström, Gabriella Dombos, Åse Elfving, Heidi Wähämaa, Monika Ek, Therese
Östberg, Dung Dang Thi Ngoc, Jun Su, Adla Bakri Hassan, Erik Sundberg, Riikka
Kokkola, Anna Cederholm, Johan Frostegård, Erik af Klint, Ronald van vollenhoven,
Guzong Fei, Lena Svelander, Pernilla Englund, Lars Mattsson, Ingela Andersson and
all project workers and others.

The people in the neuro group sharing our facilities and festivities: Kristina
Becanović my X-project partner, Maja Jagodić thank you for helping me with
linkage analyses and discussions, Monica Marta, Anna Lobell, Rita Nohra, Johan
Öckinger, Erik Wallström, Bob Harris, Maria Swanberg, Karin Harnesk Olle
Lidman, Mimmi Vernman, Pernilla Strid-Igo, Sander Gielen, Marguarita Diaz, Britt
Dahlgren, Mohsen Kahdemi, Rux Covacu, Aleksandr Danilov, Sofia Frelend, Fredrik
Piel, Lou brundin, Mainie Blomstedt, Åsa Andersson, Maja Wällberg, Judit Wefer,
Ami Björkholm, former neuroperson Ingrid Dahlman for instructing me how to
genotype, and others.

Everyone in the team at the animal department, especially magnus, kicki and Cecilia.

“Slit-vargarna” in the rheuma-office always in a good mood: Susanne Karlfeldt, and
Gunnel Bemerfeld.
......and to my friends:
The crab-crew: Hannah thank you so for your big hart and always listening. Åsa
thank you for your friendship, and the current of e-mails. They have often been a
channel for “släppa på locket”……. and were did Sophie go? I still feel bad about
throwing Djävulen in to the wall, even though he did deserve it. For bravery and
curiosity.

My ancient-darling-friends, Susanne (nu får du äntligen?! mina artiklar), Mats, Jens,
Yvonne, Lasse, Petter, and Bea for believing in me when I didn’t. You mean so much
to me. Sara, thanks for those long study–nights at the library. You trigged me to go
on.

My brother Joakim for all his help with linguistics in the thesis, you have made a
difference.

Min fantastiska familj. Ni gör det värt det! Mamma, och pappa, Camilla, Joakim,
Andreas, och Carl-Oscar, tack för att ni dem ni är!!!.

“Writing is good, thinking is better. Being smart is good, being patient is better”

From Siddhartha
By Hermann Hesse

177. Joe, B. et al. Genetic dissection of collagen-induced arthritis in Chromosome 10 quantitative trait locus speed congenic rats: evidence for more than one regulatory

208. Kanazawa, N., Tashiro, K., Inaba, K. & Miyachi, Y. Dendritic cell immunoactivating receptor, a novel C-type lectin immunoreceptor, acts as an

