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ABSTRACT

Escherichia coli employs two separate pathways, driven by NADPH to
reduce protein disulfides: the thioredoxin and glutaredoxin systems. Both systems
function via redox active disulfides and are involved in many cellular functions
including, the synthesis of DNA building blocks (by reducing the essential enzyme
ribonucleotide reductase), the generation of reduced sulfur (via PAPS reductase), and the
repair of oxidative damage to protein (by methionine sulfoxide reductase). This work
aims in a better understanding of the two systems with emphasis on glutaredoxins.
Sensitive ELISAs for the two thioredoxins (Trxl, Trx2) and the three glutaredoxins
(Grx1, Grx2, Grx3) of E. coli were developed, and protein levels measured at different
stages of growth and in different genetic backgrounds. We found that glutaredoxins were
involved in antioxidant defense. Levels of all three glutaredoxins were elevated in
catalase deficient strains, particularly when combined with null mutants for the
thioredoxin or glutaredoxin systems. OxyR did not affect the levels of Grx2 or Grx3, as it
does for Grx1, instead Grx2 levels were elevated in an oxyR null mutant. Grx1 and Grx2
contributed to the defense against protein carbonylation damage caused by hydrogen
peroxide. Measurements of thymidine incorporation in newly synthesized DNA in
relevant null mutants, showed that it is mainly Grxl and to a lesser extent Trx1 that are
involved in the reduction of deoxyribonucleotides. Grx2 was the most abundant
glutaredoxin, with levels increasing at the stationary phase of growth up to one per cent
of total soluble protein. Guanosine-3’,5’-tetraphoshate (ppGpp) and ¢° that regulate the
transcription of genes in the stationary phase of growth, affected dramatically the
expression of Grx2, as did osmotic pressure and cAMP, presumably via 6°. In accordance
with the role of Grx2 as a stationary phase protein, null mutants for grxB were lysing at
the stationary phase of growth and exhibited a distorted morphology. Null mutants for
grxB and all three glutaredoxin genes were viable in rich and minimal media. However, a
combined null mutant for all three glutaredoxins and glutathione reductase (gor grxA
grxB grxC ) was barely growing on minimal media, suggesting the possibility of a mixed
disulfide mechanism for the regulation of the activity of PAPS reductase. In fact, a
glutathionylated species was detected in vivo in poorly growing gor grxA grxB grxC . In
vitro incubation of PAPS reductase with oxidized glutathione lead to the enzyme’s
inactivation with simultaneous formation of a mixed disulfide between glutathione and
the active site Cys239. This species could be reduced and its activity restored by
glutaredoxins. Reversible glutathionylation may thus regulate the activity of PAPS
reductase. A novel highly abundant monothiol glutaredoxin (Grx4) was identified with
maximum levels at the stationary phase of growth (750-2000 ng/mg). Expression of Grx4
is likely to be regulated by ppGpp. but not ¢°.
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LIST OF ABBREVIATIONS

Ahp Alkylhydroperoxide

Ars Arsenate reductase

cAMP Cyclic adenosine monophosphate
CD Circular dichroism

CRP cAMP receptor protein

Dsb Disulfide bond promoting enzyme
DTT Dithiothreitol

ELISA Enzyme immunosorbent assay
FAD flavin adenine dinucleotide

GPX Glutathione peroxidase

GR Glutathione reductase

Grx Glutaredoxin

GSH Reduced glutathione

GSSG Oxidized glutathione

GST Glutathione-S-transferase

HED f-hydroxyethyl disulfide

HIV Human immunodeficiency virus
HP Hydroperoxidase/Catalase

MscL Mechanosensitive channel L (large)
MSR Methionine sulfoxide reductase
NAC N-acetylcysteine

NADPH Nicotinamide adenine dinucleotide phosphate
NF1 Nuclear factor 1

NF-«B Nuclear factor kappa B

NMR Nuclear magnetic resonance
PAPS 3’-phosphoadenylylsulfate

PDI Protein disulfide isomerase
ppGpp Guanosine-3’,5’-tetraphosphate
Prx Peroxiredoxin

RpoS or ¢* rpoS-encoded sigma factor S

RR Ribonucleotide reductase

SH Thiol

SOD Superoxide dismutase

SOR Superoxide reductase

S-S, S, Disulfide bond

Trx Thioredoxin

TrxR Thioredoxin reductase

TSA Thiol-specific antioxidant protein
Wt Wild type
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1 INTRODUCTION

1.1 THE THIOREDOXIN SUPERFAMILY

Reduction and oxidation of disulfide bonds can be mediated by a variety of
thiol-redox enzymes that contain an active site with the sequence motif CXXC. These
proteins may perform fast and reversible thiol-disulfide exchanges between their active
site cysteines and cysteines of their disulfide substrates. The pathways of the
thioredoxin and glutaredoxin systems are responsible for the reduction of intracellular
disulfides in vivo. Thioredoxins and glutaredoxins are ubiquitous proteins with a

number of isoforms in different species, and may regulate many biological functions.

Fig 1. General mechanism of the

thioredoxin system. Thioredoxin | NApPH +H* Trx-(SH), Protein -5,
(Trx) is reduced by thioredoxin TrcR
reductase and NADPH. Reduced

NADP* Trx-S, Protein-(SH),

Trx then reduces disulfides in a
number of proteins, like RR and
PAPS reductase.

Thioredoxin 1 (Trx1) of E. coli was originally discovered in 1964, as a
dithiol cofactor for ribonucleotide reductase (RR), in the synthesis of deoxycytidine
diphosphate from cysteine diphosphate (Laurent, 1964). RR is an essential enzyme for
the DNA synthesis, thus for cell survival. £. coli contains a second thioredoxin (Trx2)
that can also function as a reductant of RR (Miranda-Vizuete et al., 1997).
Thioredoxins reduce their substrates employing a dithiol mechanism provided by an
active site of two redox-active cysteines separated by two other amino acids (CGPC) in
a coupled system with NADPH and thioredoxin reductase (Fig. 1).

Fig 2. General mechanism

of the glutaredoxin system. |NADPH+H* 2 GSH Grx<SH), Protein -S,
In the glutaredoxin system, R

electrons are transferred from

NADPH, to glutathione NADP* GSSG Grx S, Protein-(SH),

reductase, glutathione and
finally to the glutaredoxins.

In 1976, glutaredoxin was identified as a second hydrogen donor system for
RR, in a mutant lacking thioredoxin (Holmgren, 1976). The other two glutaredoxins,
glutaredoxin 2 (Grx2, encoded by grxB) and glutaredoxin 3 (Grx3, 9 kDa, encoded by
grxC) were purified from an E. coli null mutant for Grx1 and Trx1 (Aslund et al.,
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1994). Grx3 has only 5 % of the catalytical activity of Grx1 as a disulfide reductant for
RR, and Grx2 lacks such activity altogether. Glutaredoxins use the dithiol mechanism
and an additional monothiol mechanism with GSH in solution serving as the other thiol
(Fig. 2) (Vlamis-Gardikas and Holmgren, 2002).

Thioredoxins and glutaredoxins have general thiol reductase activity
including the reduction of 3’-phosphoadenylylsulfate (PAPS) reductase (Gonzalez
Porque et al., 1970; Tsang and Schiff, 1978) and methionine sulfoxide reductase. PAPS
reductase is the key enzyme for the reduction of sulfate to sulfite, while methionine
sulfoxide reductase reduces methionine sulfoxide to methionine (Holmgren, 1989).

While the thioredoxin and glutaredoxin systems are responsible for
maintaining a reducing cytosol, the periplasmic space is rather oxidizing and favors
disulfide bond formation (Fig 3). This is upheld via the thiol oxidant DsbA and the
disulfide bond isomerase DsbC, which belong to the thioredoxin structural superfamily
(Bardwell et al., 1991; Missiakas et al., 1994).

Oxidation Isomerization

S5

. _

:s SH

SH

?
‘\,\'J Reduction

GS—s SH SH SH
—_— 4—— S—S
33 .

SH

@: T’SI:\ ’SH o K‘
SsH A st @\SH sH

\slut?thione \ /
™ NADPH g

Fig 3. Schematic overview of thiol redox reactions in Escherichia coli.
Reductions, oxidations and isomerizations of disulfide bonds are mediated through a variety

of thiol-redox enzymes.

The active sites of thioredoxin and glutaredoxin (the CXXC motif), have
been found later in a number of redox active enzymes. These include T4 glutaredoxin
(Sj6berg and Holmgren, 1972), protein disulfide isomerase (PDI) (Edman et al., 1985),
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DsbA (Bardwell et al., 1991) and NrdH (Jordan et al., 1997). The thioredoxin fold was
identified in 1975 (Holmgren et al., 1975), from the crystal structure of E. coli
thioredoxin 1 and is a common structural characteristic of the enzymes mentioned
above. The thioredoxin fold is also present in glutathione S-transferases, and
glutathione peroxidases (Epp et al., 1983; Reinemer et al., 1991).

1.2 THE THIOREDOXIN FOLD

The thioredoxin fold (crystal structure of E. coli Trx1 in 1975 (Holmgren
et al., 1975)) is comprised of a central core of five B-sheets (three parallel and two
anti parallel strands), surrounded by four o-helices. The well-conserved active site
sequence (WCGPC) is located at a protrusion turn between 32 and a2 (residue 29 to
37), and is exposed to the solvent. Although the sequence homology of thioredoxin
among different species can vary to a great extent (27-69 %), the fold is conserved.
Apart from the well-conserved active site sequence, residues Asp26, Ala29, Trp31,
Asp61, Pro76 and Gly92 are important for thioredoxin function and are thus also well
conserved in E. coli Trx1 (Eklund et al., 1991; Martin, 1995).

/\"l DsbA  thioredoxin glutaredoxin

glutathione peroxidase glutathione S-transferase

Fig. 4. Three-dimensional structures of five thioredoxin-fold proteins
(figure from (Martin, 1995)).
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Several other proteins share the common structural fold with thioredoxin,
and thus belong to the thioredoxin superfamily (Fig. 4). The sequence identity within
the superfamily may be low, but they all share the basic thioredoxin fold,
characterised by four to five beta sheets flanked by three to four a-helices. Proteins of
the thioredoxin fold superfamily, include glutaredoxin, protein disulfide isomerase,
DsbA, NrdH, glutathione S-transferase and glutathione peroxidase (Eklund et al.,
1992; Epp et al., 1983; Kemmink et al., 1996; Martin et al., 1993; Reinemer et al.,
1991; Sodano et al., 1991; Stehr et al., 2001). The four first enzymes catalyse thiol
disulfide oxidoreduction and contain the active site CXXC. The enzymatic reaction
takes place at the N-terminal part of the protein. Glutathione S-transferase (GST) and
glutathione peroxidase (GPx) on the other hand, interact with the cysteine containing
substrate GSH in a similar manner as glutaredoxin. Glutaredoxin, GSTs and GPxs
also have a GSH binding site. The only other factor that unites these proteins apart
from the common thioredoxin fold is thus the cysteine chemistry, since all of these
proteins interact with substrates containing a thiol or a disulfide group.

In contrast to the relatively low homologies among different thioredoxins,
glutaredoxins exhibit rather high amino acid sequence homology particularly in the
area of the active site (Fig. 5). The three-dimensional structures of a number of
glutaredoxins from different species, including bacteriophage T4, vaccinia Grx1, E.
coli Grx1, Grx2, Grx3, pig Grx1, and human Grx1 have been determined (Eklund et
al., 1992; Katti et al., 1995; Kelley and Bushweller, 1998; Nordstrand et al., 1999;
Sodano et al., 1991; Sun et al., 1998; Xia et al., 2001). These studies have revealed
three characteristic regions within these dithiol glutaredoxins. First is the active site
CXXC motif (usually CPYC), second the hydrophobic area and finally a well-defined
binding site for glutathione. The latter involves two intermolecular backbone-
backbone hydrogen bonds forming an antiparallel intermolecular f-bridge between
the protein and glutathione (Bushweller et al., 1994; Nordstrand et al., 1999). In
E. coli Grx3, these interactions involve residue Lys8, Tyr13, Argl6, Arg40, Arg4d9,
Asp66 and Asp67 (Fig. 5). The binding of GSH for E. coli Grx1 and Grx3 is overall
very similar. Three-dimensional structures of the oxidized and reduced form have
been determined and compared for E. coli Grxl, and revealed that the solvent
accessible surface of the conserved hydrophobic area increases upon reduction. This
could perhaps favour interactions with substrate proteins. After reduction of the
substrate, the decrease of the hydrophobic interaction area of the now oxidized
glutaredoxin could facilitate the release of the substrate (Xia et al., 1992).
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E. COLI Grx3 NVEIY‘I&ETC K------ ALLSSKGVS—FQELPIDGNAAKEEEMIKR --------
E. COLI Grxl QTVIFGRSGC K- - DLAEKLSNERDDFQYQYVDIRAEGI TKEDLQQK- -~ - ==~
YEAST Grxl EVFVAAKTYCPYCKATLSTLFQELNVPKSKALVLELDEMSNGSEIQDALEET - - - - - - - -
YEAST Grx2 EIFVASKTYCPYCHAALNTLFEKLKVPRSKVLVLQLNDMKEGADI QAALYET - - - -~ - - -
S.POMBE Grxl DVVVFARSYCPYCHATEKVIADK - - - -KIKAQVYQT DLMNNGDEIQSYLLKK- - - - -~ -
SALMONELLA Grxl FTVIFGRPGCPYCVRIAK- - ELAEKLSKERDDFNYRYIDIHAEGITKADLEKT - - - - - - - -
NEISSERIA Grxl TVIMYTGPFCEYCTMAK -~ - - - - RLLHAAGVGHIDEIRVDASPEAFAEMQQL- -~ -~~~
Page T4 Grxl YGYDSNIHKCVYCDNAK - RLLTVKKQPFEFINIMPEKGVFDDEKIAELLTKLGR- - - - - -
MOUSE Grxl KVVVFIKPTCEYCRKTQ-EILSQLPFKQGLLEFVDI TATNNTSAIQDYLQQL - - - -~ - =~
MOUSE Grx2 CVVIFSKTSCSYCSMAK- - - - KI FHDMNVNYKAVELDMLEYGNQFQDALHKM - - - - - - - -
RAT Grxl KVVVFIKPTCEYCRKTQ-EILSQLPFKRGLLEFVDI TATNNTNATQDYLQQL - - - - - - - -
RABIT Grxl KVVVFIKPTCPYCRKTQ-EILSQLPFKQGLLEFVDITATSDMSEIQDYLQQL - -~ -~ - =~
BOVIN Grxl KVVVFIKPTCRYCRKTQ-ELLSQLPFKQGLLEFVDI TAAGNI SETQDYLQQL - - - -~ - -~
PIG Grxl KVVVFIKPTCPFCRKTQ-ELLSQLPFKEGLLEFVDITATSDTNEIQDYLQQL - -~~~ ==~
CHICKEN  Grxl KVTLFVGSCPYCKNAT -VLLKEFNFLPGCLEVVDI TG - - -MDDIQDYFQKT- - - - - - - -
HUMAN Grxl KVVVFIKPTCPYCRRAQ-EILSQLPIKQGLLEFVDI TATNHTNE IQDYLQQL - - - == - -
HUMAN Grx2 CVVIFSKTSCSYCTMAK- - - - KLFHDMNVNYKVVELDLLEYGNQFQDALYKM- - - =~ - - -
V. VIRUS TG4R VLIIFGRPYCSICENVS - - DAVEELKSEYDILHVDILSFFLKDGDSSMLGDVKRGTLIGN
-

E. COLI Grx3  m-m----- sc%- -TTVPQIFID-AQHIGGOMNLYALDARGGLDPLLK- -~ -~~~ ===~
E. COLI Grxl  m------- AGKPV'EEPQIFVD -QQHI AAWVKENLDA-- =~ ======-=--~-~
YEAST Grxl mmmmme-- SGQ- - KTVPNVYIN-GKHIGGNSDLETLKKNGKLAEILKPVFQ- - - == = = - =
YEAST Grx2  mmmm---- NGQ- - RTVIPNIYIN-GKHIGGNDDILQELRETGELEELLEPILAN - - -~ - - - -
S.POMBE Grxl  mmmmm--- TGQ- - RTVIPN IFIH- QKHVGGNSDFQALFKKGELDSLFNTA- - - = = === = ==
SALMONELLA Grxl -------- VGKPVE[TVIPQ IFVD - QKHI GG TDIFEAWAKENLNLFA- - - == = = == == === =
NEISSERIA Grxl =------- SGQ- -RSVPQIFIG-ETHVGGHIDLYRLQQEGGLDGLLNP - - - = = = === = ==
Page T4 Grzl = mmmm--e- DTQIGLIMPQVFAPDGSHIGGHDQLREYFK- - = == === == == === == === -
MOUSE Grxl  -m-e---- TGA- - RTVIPRVFIG- KDCIGGCSDL I SMQQTGELMTRLKQIGALQL - - - - - -
MOUSE Grx2  mmmmm--- TGE- - RTVIPRIFVN - GRFIGGAADTHRLHKEGKLL PLVHQCYLKKKQEERH -
RAT Grxl — mmmmmee- TGA- - RTVIPRVFIG- KDCIGGCSDLLSMQQNGELTARLKQIGALQL - - - - - -
RABIT Grxl  mmmmmee- TGA- - RTVIPRVFLG - KDCIGGCSDLIAMQEKGELLARLKEMGALRQ- - - - - -
BOVIN Grxl — mmmmmee- TGA- - RTVIPRVFIG-QECI GGHTDLVNMHERGELLTRLKQMGALQ- - - - - - -
PIG Grxl = mmmm-ee- TGA- - RTVIPRVFIG- KECIGGHTDLESMHKRGELLTRLOQIGALK- - - - - - -
CHICKEN Grxl  mmmmme-- TGQ- - RTVIPRVFIG-TKCIGGFSDLOKMEQ - -QLPMMLRQIGALV - - - - - - -
HUMAN Grxl — mmmm-ee- TGA- - RTVIPRVFIG-KDCIGGCSDLVSLQQSGELLTRLKQIGALQ- - - - - - -
HUMAN Grx2  m-mm---- TGE- - RTVIPRIFVN-GTFIGGATDTHRLHKEGKLLPLVHQCYLKKSKRKEFQ
V. VIRUS TG4R FAAHLSNYIVSIFKYNPQTKQMAFVDINKSLIDFTKTDKSLVNLEILKSEIEKANYGVWPP

Fig. 5. Sequence alignment of glutaredoxins. Glutaredoxin active sites are printed on a grey
background. Residues involved in the binding of glutathione in . coli Grx1 and Grx3 are marked with a
black box (Nordstrand et al., 1999, Xia et al., 1992), while the predicted corresponding residues from the
other glutaredoxins are marked with a white box.
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1.3 THE ACTIVE SITE

Disulfides may affect protein structure and activity. Generally disulfide
bonds stabilize protein structure (e.g. BSA), while biological activity of proteins may
also be affected (e.g. OxyR). In some oxidoreductases, formation and reduction of
disulfides is essential for enzymatic activity as part of a catalytic mechanism (e.g.
ribonucleotide reductase and PAPS reductase).

TABLE I
The active site of proteins belonging to the
thioredoxin superfamily, catalyzing thiol-disulfide

interchanges.
Protein / protein family Active site sequence
DsbA CPHC
DsbB CVLC
DsbC CGYC
DsbD CVAC
DsbE CPTC
DsbG CPYC
CemH CPKC
Glutaredoxin CPYC
NrdH CcvQC
PDI CGHC
Thioredoxin CGPC
Human Grx2 CSYC
Monothiol glutaredoxins CGFS

The formation, isomerization and reduction of disulfide bonds may be
catalysed by the members of the thioredoxin family, which are pivotal for thiol-
disulfide metabolism. They all have a conserved active site that consists of two cysteine
residues, separated by two intervening amino acids, the CXXC motif (Table I). These
enzymes are capable of both forming and reducing disulfide bonds, according to the
biological need. Oxidation and reduction of the disulfides of the substrate is mediated
by thiol disulfide exchange with the reduced active site cysteines of the enzyme.

To evaluate the reducing capacities of different enzymes it is necessary to
determine their correct redox potential (Table II). Redox potential is a measure of the
reducing capacity of a redox couple and is expressed as units of millivolts (mV). The
standard state redox potential E° for a protein can be calculated from the equilibrium
constant of the redox reaction involving a reference with known redox potential, using
the Nernst equation (AE = RT/(nF)InKeq). £° is the redox potential under standard
conditions, 1M and 25 °C. Considerable experimental and theoretical studies have been
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made based on the effect of the residues (X;X;) between the active site cysteines
(CX;X,C) on their standard state redox potential. The first mutagenesis study made,
demonstrated that redox potential of an enzyme of the thioredoxin structural
superfamily is affected by the residues X, and X,. For example, a thioredoxin mutant
with the active site of protein disulfide isomerase (PDI) is 35 mV more oxidizing
compare to the wild type protein, although is still far from that of wild type PDI
(Krause et al., 1991). A DsbA mutant containing the thioredoxin active site, resulted in
a lowering of the E° with 90 mV, making it a 1000 fold better reductant (30 mV
corresponds to an equilibrium constant of 10 for a two electron thiol-disulfide
interchange reaction), although again far from the value of the native thioredoxin
(Huber-Wunderlich and Glockshuber, 1998). In comparison, a thioredoxin variant with
the DsbA active site becomes a 200 fold better oxidant (Mossner et al., 1998).

TABLE I
Redox potential of the thioredoxin
superfamily of proteins
Protein /substrate Redox potential (E”)

(mV)
DTT -320
Trx1 270
Grx1 233
Grx3 -198
DsbA -122
DsbB 271 and -284
DsbC -130
DsbD o 229
DsbD y 241
DsbG -125
NrdH 248

Other studies have shown that there is a close relationship between the redox
potential and the pKa value of the N-terminal active site cysteine. A low pKa value of
the N-terminal cysteine tends to stabilize the reduced form of the protein relative to the
oxidized form, resulting in an increased redox potential. The thioredoxin family of
proteins displays a lower pKa value for the N-terminal cysteine compared to a typical
thiol (pKa of 8.7). The reactive cysteine for Trx1 for instance is 6.3 and only 3.5 for
DsbA (Kallis and Holmgren, 1980; Nelson and Creighton, 1994). The extremely low
pKa of the nucleophilic cysteine of DsbA stabilizes the reduced state of the protein
making it an excellent disulfide bond donor. It is not only the redox potential that is
affected by the pKa value of the involved thiols, but it is also the rate of thiol-disulfide

interchange.
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1.4 RIBONUCLEOTIDE REDUCTASE

Ribonucleotide reductase is a ubiquitous cytosolic enzyme that catalyses the
de novo synthesis of deoxyribonucleotides required for DNA replication and repair in
all living organisms (For more detailed reviews on the subject see (Eklund et al., 2001;
Jordan and Reichard, 1998; Poole et al., 2002; Reichard, 2002; Sjéberg and Sahlin,
2002)). It is an essential enzyme for the DNA synthesis and thus also for the survival of
all living organisms. The enzyme reduces all four main ribonucleotides to the
corresponding deoxyribonucleotides. The synthesis occurs through the reduction of the
2’-hydroxyl group of the sugar moiety of ribonucleotide to hydrogen. The direction of
the reaction, from ribonucleotides to deoxyribonucleotides is consistent with the
concept of an RNA world preceding today’s DNA based life. The need of DNA as a
life molecule required ribonucleotide reductase.

Ribonucleotide reductase is composed of two units, a radical generator and
a reductase. The radical generator produces and stores a radical, which, as a first step of
the reaction, is used to oxidize the substrate to a radical form. Interestingly, the radical
generator is not the same for all ribonucleotide reductases whereas the reductase
component is fairly similar. A specific feature of ribonucleotide reduction is that a
single protein reduces all four common ribonucleotides and that allosteric effects
regulate substrate specificity (Eklund et al., 2001; Reichard, 2002; Sjéberg, 1997).

Three classes of ribonucleotide reductases have been described with great
differences in their primary and quaternary structures. They all have a highly similar
allosteric regulation of their substrate specificity (Brown and Reichard, 1969; Sj6berg,
1997). The classification is based on the radical generating mechanism and on the
structural differences (Table III). It is further believed that all classes aroused and
evolved from a common origin, a primitive “ur-reductase” (Reichard, 1997; Reichard,
1993).

Class I enzymes are strictly aerobic and can be subdivided into two further
subclasses (Ia and Ib). The enzyme consists of two subunits (o and 3), both in dimeric
form. The first, large subunit contains a substrate binding site, two allosteric control
sites and a sulfhydryl group. The second, smaller subunit participates in the catalysis of
the reaction by generating a free radical in each of its chains. The radical (in this case
the tyrosyl radical), is stable for many days (Fontecave et al., 1992). E. coli contains the
genetic information for two different class I RRases. One of them, RR1a (or NrdAB,
encoded by the nrdAB operon), is essential for growth in the presence of oxygen,
whereas the other one, RR1b (or NrdEF, encoded by the separate nrdEF operon), is
normally not fully functional (Jordan et al., 1996). NrdAB and NrdEF have limited
sequence similarity and differ in their allosteric regulation (Eliasson et al., 1996; Jordan
et al., 1994). Trx1 and Trx2 are hydrogen donors for NrdAB but not for NrdEF (Jordan
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et al., 1994; Miranda-Vizuete et al., 1997). NrdH is more specific for NrdEF rather than
for NrdAB, whereas in the case for Grx1 it is the opposite (Jordan et al., 1997). The
expression of nrdAB genes is cell cycle-regulated and increases when DNA synthesis is
inhibited.

Although no class II enzymes have been found in E. coli, they are common
among aerobic and anaerobic eubacteria (Panagou et al., 1972; Tsai and Hogenkamp,
1980). The enzyme consists of a single protein, which may form monomers or dimers,
depending on the organism. From a functional point of view, class Il enzymes are
functionally equivalent to the large protein (o) of Class I. They thus lack the small
subunit and contain no stable radical. The radical in these enzymes, is of a transient
type and is generated by adenosylcobalamin during catalysis (Licht et al., 1996).

Class III enzymes are strictly anaerobic and become inactivated by oxygen.
They are homodimers (encoded by nrdD), with a stable oxygen sensitive glycyl radical.
A small protein, termed activase (encoded by nrdG) is closely linked to the first
homodimer unit, and contains an Fe/S cluster that together with S-adenosyl-
L.methionine (AdoMet) can generate the stable glycyl radical (Ollagnier et al., 1996;
Sun et al., 1996; Tamarit et al., 1999).

TABLE III
Summary of the three classes of ribonucleotide reductase

Class Ia Class Ib Class I Class III
Distribution Bacteria Bacteria Bacteria Bacteria

Eukaryotes
Operation Aerobic Aerobic Aerobic & Anaerobic  Anaerobic
Structure (o762 P o OF Oy O+ B
Genes nrdAB nrdEF (nrdJ) nrdDG
Metal-center Fe-O-Fe Fe-O-Fe Co 4Fe-4S

Mn-O-Mn

Stable Radical Tyrosyl Tyrosyl None Glycyl
Catalytic Radical ~ Thiyl Thiyl Thiyl Thiyl
Reductant Thioredoxin ~ NrdH Thioredoxin Formate

Glutaredoxin ~ Glutaredoxin

1.5 3-PHOSPHOADENYLYLSULFATE (PAPS) REDUCTASE

Sulfur is an essential element in all living organisms with many different
functions. The reduced form is found in amino acids, lipoic acid and iron-sulfur
clusters, while the oxidized form is a constituent of polysaccharides and lipids.

Protrophic bacteria or fungi mainly use inorganic sulfate as the only supply of sulfur for
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the biosynthesis of their amino acids and essential cofactors. Most of the sulfur in living
organisms is present in the form of thiols.

Inorganic sulfate is reduced and incorporated into bioorganic compounds in
a pathway named assimilatory sulfate reduction. This occurs in five enzymatic steps.
First, sulfate is activated to adenylylsulfate (APS) and 3’-phosphoadenylylsulfate
(PAPS) by ATP sulfurylase and APS kinase. The activated sulfate, PAPS, is then
reduced to sulfite by PAPS reductase and sulfite is reduced to sulfide by sulfite
reductase. Finally, sulfide is incorporated into an active amino acid receptor, O-
acetylserine (OAS), O-acetylhomoserine or O-succunylhomoserine, to form cysteine or
homocysteine. PAPS reductase catalyzes the first reductive step in the assimilatory
sulfate pathway, which is present in plants, fungi, yeast and a wide range of eubacteria.

PAPS reductase is a homodimer, with each subunit having a molecular
mass of 28 kDa, and a single cysteine involved in the catalysis of the substrate. The
active site, a highly conserved ECGLH-motif is located near the C-terminus (Berendt et
al., 1995). PAPS reductase is reduced by thioredoxin or glutaredoxin. In 1970 Gonzalez
Porque” et al. (Gonzalez Porque et al., 1970) identified thioredoxin as the reductant of
PAPS reductase while investigating methionine sulfoxide and sulfate reduction in
yeast. Tsang and Schiff later found glutaredoxin as an alternative reductant in a
thioredoxin null mutant for E. coli (Tsang and Schiff, 1978). In bacteria and fungi, a
single glutaredoxin or thioredoxin is essential for sulfate reduction and thus for the
viability of the organism. In E. coli, it is Trx1 or Grx1 that is essential for the sulfate
reduction (Lillig et al., 1999). Kinetic data, together with the three-dimensional
structure, suggest a ping-pong mechanism for the reduction PAPS reductase (Berendt et
al., 1995; Krone et al., 1991; Savage et al., 1997). The oxidized form is reduced by
thioredoxin or glutaredoxin to a stable reduced isoform via a disulfide mechanism,
which cannot be replaced by a monothiol counterpart as GSH or the dithiol DTT. The
reduced form is reoxidized by PAPS to give free sulfite and 3°-5"-bis-phosphate (PAP).

1.6 THE THIOREDOXIN SYSTEM OF ESCHERICHIA COLI

The thioredoxin system of E. coli consists of NADPH, thioredoxin
reductase (TrxR, encoded by #7xB) and thioredoxins 1 and 2 (Trx1 and Trx2, encoded
by trxA and trxC, respectively). Thioredoxins are kept in a reduced state by thioredoxin
reductase, which in turn is constantly being supplied with electrons from NADPH. The
thioredoxin system plays a central role in the response to oxidative stress, and is
involved among other things in the regulation of DNA synthesis, gene transcription,
cell growth and apoptosis (reviewed by (Arner and Holmgren, 2000; Williams et al.,
2000)).
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1.6.1 Thioredoxin reductase

Thioredoxin reductase (TrxR) was first discovered in E. coli as the enzyme that allowed
NADPH to act as hydrogen donor for ribonucleotide reductase in the presence of
E. coli thioredoxin (Moore et al., 1964; Thelander, 1967). TrxR is present in all living
cells and belongs to the pyridine nucleotide-disulfide oxidoreductase family of
flavoenzymes. Two types of TrxR have been characterized, and both function as
homodimers. Each monomer possesses a FAD-binding domain, a NADPH-binding site
and an active site comprising a redox active disulfide. However, the amino acid
sequences and catalytic mechanisms of the two types differ greatly with 20 % sequence
identity. The first type is present in prokaryotes, arachea and some lower eukaryotes,
with each subunit having a molecular mass of 35 kDa. The second type is found in
higher eukaryotes, is much larger, with a subunit of 55 kDa and is homologous to
glutathione reductase (GR), lipoamide dehydrogenase (LipD), mercuric reductase
(MerR) and trypanothione reductase (TryR). The “low M, TrxRs” of the first type, are
more related to alkyl hydroperoxide reductase (AhpF). The “high M,, TrxRs” have a
redox active center in the FAD binding domain and an elongated C-terminal domain
(the interface domain), which are both absent in the low M,, TrxRs. The interface
domain is involved in dimerization and catalysis and contains a conserved redox active
center, in mammals characterized by Gly-Cys-SeCys-Gly, where SeCys is
selenosysteine (Arscott et al., 1997; Gladyshev et al., 1996; Zhong et al., 1998).
Selenium is essential for the activity of the mammalian TrxR, where a mutation from
SeCys to Cys leads to a 100-fold lower ket (Zhong et al., 1998; Zhong and Holmgren,
2000). Structural analysis of the E. coli TrxR revealed a mechanism of transferring
electrons that differs greatly from that of the TrxR of higher eukaryotes and is unique
for the microbial TrxRs. The mechanism involves significant conformational changes
in order to transfer the reducing equivalents from the NADPH-binding domain to the
disulfide-containing domain. Once the protein bound FAD is reduced, the pyridine
nucleotide-containing moiety has to rotate approximately 67° before the electrons can
be transferred to the domain containing the redox active disulfide (Lennon et al., 1999;
Lennon et al., 2000). This might be the reason why the E. coli TrxR has been shown to
have very narrow substrate specificity, and only reduces thioredoxins, in contrast to the
mammalian TrxRs, which has a much broader range of substrates (Armer and
Holmgren, 2000; Williams et al., 2000). Recently a novel protein, thioredoxin
glutathione reductase (TGR), was identified that consists of TrxR fused with a
glutaredoxin domain in the N-terminus (Sun et al., 2001). In mammals the glutaredoxin
domain consists of a monothiol active site, while in other organisms it has a dithiol
active site (Agorio et al., 2003). These proteins can reduce Trx, GSSG, and a GSH-
linked disulfide in vitro.
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Null mutants in E. coli of trxB show a high increase in disulfide bond
formation, and are not viable when combined with genes encoding for either
glutathione reductase (gor) or glutathione synthetase (gs/4) unless supplemented with
a reducing agent like dithiothreitol (DTT) (Prinz et al., 1997). This shows that the
presence of the thioredoxin or glutaredoxin systems is essential for the survival of the
cell. The highly oxidizing environment of the ##xB null mutant may be reversed when
combined with additional null mutants for either of the two thioredoxins. This is due to
the reversal role of the thioredoxins in the absence of TrxR. In cells lacking TrxR,
oxidized thioredoxin accumulates in the cytoplasm and acts as an oxidant, catalyzing
the formation of disulfide bonds (Stewart et al., 1998). Furthermore, the oxidizing
properties of thioredoxins are dependent on the redox potential of the active site of the
enzyme. Overexpression of Trx1 mutants, differing in the sequence of the dipeptide
within their active sites, showed remarkable differences of the cytosolic redox state. For
example overexpression of a more oxidizing form, like the one with the glutaredoxin
active site, had higher content of disulfide bond forming proteins in the cytosol
compared with overexpression of the wt Trx1 (Bessette et al., 1999). Null mutants for
trxB have also been used to study the bacterial type I secretion pathway, which does not
require a periplasmic intermediate of the secreted protein. A disulfide bond containing
single-chain Fv (scFv) antibody fragment was used for this end, and it was found that
the #xB null mutant inhibited the secretion of this protein fragment. It was thus
suggested that premature cytoplasmic oxidation of proteins may interfere with the

secretion process (Fernandez and de Lorenzo, 2001).

1.6.2 Thioredoxins

Thioredoxins are small redox active proteins present in all living organisms.
They have been isolated and characterized from a wide variety of prokaryotic and
eukaryotic cells. Thioredoxins reduce their substrates employing a dithiol mechanism
provided by two redox-active cysteines separated by two other amino acids, usually
CGPC.
1.6.2.1 Thioredoxin 1

Trx1 is a small 12-kDa heat stable protein that displays many different
functions mainly via redox-mediated processes. It has a well-described structure
(thioredoxin fold) and conserved redox active sequence (WCGPC). Trx1 was initially
discovered as a potent reductant of ribonucleotide reductase, the essential enzyme for
the reduction of ribonucleotides to deoxyribonucleotides during E. coli aerobic growth
(Laurent, 1964). The sequence, including the active site motif, for Trx1 was determined
four years later (Holmgren, 1968). Trx1 can also reduce 3’-phosphoadenylsulfate
(PAPS) reductase and methionine sulfoxide reductase (Gonzalez Porque et al., 1970;
Tsang and Schiff, 1976). PAPS reductase is the key enzyme for the reduction of sulfate
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to sulfite, while methionine sulfoxide reductase reduces methionine sulfoxide to
methionine (Holmgren, 1989). In addition, Trx1 can act as an efficient antioxidant to
protect cells against oxidative stress (Holmgren, 2000). Trx1 has been shown in vitro to
regulate the activity of the transcription factor OxyR. OxyR is active in its oxidized
form. By reducing OxyR, Trx1 thus deactivates OxyR. Further studies showed that
E. coli Grx1 is likely to be the preferred reductant of OxyR in vivo, since a trxA null
mutant showed an identical profile as the wild type strain in the response to hydrogen
peroxide, and did not affect the OxyR activity (Zheng et al., 1998). The levels of Trx1
increase at early stationary phase (Lunn et al., 1984). It was later shown that the
expression is induced in the stationary phase of growth by ppGpp in an RpoS
independent manner (Lim et al., 2000).

As mentioned above, Trx1 is found in its oxidized form in null mutants for
trxB. It was also suggested that this oxidized form might promote disulfide bond
formation in vivo. Attaching a signal sequence to Trx1 resulted in transferring of Trx1
to the periplasm. Trx1 was able to promote disulfide bonds in the periplasm and could
partially complement a dsb4 minus strain, which is defective in disulfide bond
formation. It was thus concluded that the redox function of Trx1 is dependent on the
redox environment in which it is localized (Debarbieux and Beckwith, 1998). While
wild type Trx1 could only partially complement DsbA, more oxidizing variants, could
completely replace DsbA deficiency (Jonda et al., 1999). One such variant of Trx1 is
the one containing the DsbA active site, which exhibited kinetics indistinguishable
from those of DsbA itself. DsbB performs the reoxidation of the thioredoxin variants. A
complex between DsbB and Trx1 has also been isolated confirming the finding that
DsbB is responsible for the reoxidation of Trx1 in the periplasm (Debarbieux and
Beckwith, 2000). Levels of E. coli Trx1 are elevated upon osmotic upshock (Scharf et
al., 1998). In a shift back to low osmolarity conditions, Trx1 is secreted via the
mechanosensitive channel (MscL) to the periplasm (Ajouz et al., 1998).

Apart from being a general disulfide reductant, Trx1 performs other
functions. It is for instant essential for the life cycle of the bacteriophages T7, M13 and
fl (Chamberlin, 1974; Lim et al., 1985; Russel and Model, 1985). Trx1 is essential for
the assembly of the filamentous phages in fl and M13. The phage T7 incorporates
E. coli thioredoxin as an essential subunit of its DNA polymerase. T7 DNA polymerase
is a stable noncovalent 1:1 complex between thioredoxin and the T7 gene 5 protein.
Bound reduced thioredoxin enhances the activity of the polymerase more than 100-fold
by increasing processivity. For Trx1 to be active in this role, it is required in its reduced
form (Holmgren et al., 1978).
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1.6.2.2 Thioredoxin 2

More recently a novel thioredoxin (Trx2) was cloned with 139 amino acid
residues and with a calculated molecular mass of 15.5 kDa (Miranda-Vizuete et al.,
1997). Trx1 and Trx2 show 38 % sequence identity, with the greatest difference being
an extension of Trx2 in the amino terminus of 32 amino acids. The elongated N-
terminal includes a CXXCX;;CXXC motif. Trx2 is less heat stable than Trx1, probably
due to the elongated N-terminal part of Trx2. The activity of Trx1 and a truncated form
of Trx2 was not affected after 5 min incubation at 85 °C, wile the full-length Trx2 lost
40 % of the insulin-reducing activity after 5 min at 85 °C. On the other hand, the two
thioredoxins have similar steady state kinetic properties with TrxR. Trx2 can also
reduce RR1a and PAPS reductase in vitro (Lillig et al., 1999; Miranda-Vizuete et al.,
1997), but not as efficiently as Trx1. It is unlikely though, that Trx2 is an in vivo
reductant of PAPS reductase as combined null mutants for #7x4 and grx4 cannot grow
on minimal media containing sulfate (Russel and Holmgren, 1988). Trx2 is able though
to support growth under aerobic conditions in a triple mutant lacking Trx1, Grx1 and
Grx3 the three known electron donors for RR1a (NrdAB), confirming the in vivo
function of Trx2 as a reductant for RR1a. Similar to Trx1, Trx2 was not a hydrogen
donor for RR1b (NrdEF). By overexpressing Trx2 to similar levels as Trx1, Trx2 could
complement growth defects caused in the #7x4 mutant and could function as a hydrogen
donor for PAPS reductase in vivo, and reduce the periplasmic disulfide isomerase
DsbC. Contrary to Trx1, Trx2 can not act as an electron donor for methionine sulfoxide
reductase and cannot restore a functional T7 phage infection cycle (Ritz et al., 2000). It
has been suggested that cysteine residues other than those of the active site of Trx2 may
regulate its activity. This was postulated from the finding that the activity of Trx2 was
increased after preincubation with DTT. A truncated form lacking the N-terminal part
of the protein containing the extra cysteines was further found to be insensitive to DTT
treatment, all pointing to a regulatory function of the extra cysteines. Immunoblotting
analysis showed that Trx2 is a cytosolic protein, mainly localized in the peripheral part
of the cytosol at the inner surface of the cytoplasmic membrane. In contrast to Trx1, the
transcriptional regulator OxyR that regulates major responses to oxidative stress
positively affects the transcription of #xC (Ritz et al., 2000). OxyR binds to the #rxC
promoter region located immediately upstream of the —35 sequence, which corresponds
to a consensus sequence for OxyR binding. Levels of Trx2 are also 20-fold upregulated
after treatment with hydrogen peroxide in an OxyR dependent manner. The N-terminal
cysteines of Trx2 are not oxidized in vivo, even when the cytosol is very oxidizing.
Moreover, Trx2 may be induced under oxidative conditions, because in contrast to
Trx1, which becomes fully oxidized, Trx2 remains active as a thiol reductant even
under conditions of severe oxidative stress (Ritz and Beckwith, 2001).

24



Aristi Potamitou

1.6.3 NrdH

NrdH belongs to a “new” class of small redox proteins (glutaredoxin-like
proteins) and has been found in several organisms including E. coli. NrdH proteins
have especially been found in organisms lacking glutathione. Although NrdH has a
glutaredoxin-like amino acid sequence, it behaves functionally like a thioredoxin, since
it lacks activity with GSH but is a substrate for TrxR. Furthermore, it has a low redox
potential and it is active in the insulin assay, both characteristic features of
thioredoxins. NrdH differs in its intervening residues from the glutaredoxins (typically
CPYC) and the thioredoxins (typically CGPC), having valine and glutamine (CVQC)
instead. The in vivo function of NrdH is not completely clear. It can act as the
functional electron donor for class Ib ribonucleotide reductase (RR1b)(NrdEF) and is
part of an nrdHIEF operon (Jordan et al., 1997; Jordan et al., 1996; Torrents et al.,
2000). As Trx1, NrdH can function as a subunit for bacteriophage T7 polymerase, thus
supporting growth of the bacteriphage in a #xA null mutant (Ritz and Beckwith, 2001).
Recently, E. coli nrdhHIEF mRNA levels were found over 20-fold increased, in cells
treated with an oxidant (Monje-Casas et al., 2001). Transcription of the aerobic
ribonucleotide reductase 1b from the nrdHIEF operon is also increased over 100-fold
in strains lacking both Trx1 and Grx1. The regulatory mechanism for the transcription
of nrdHIEF is unknown, but it has been shown not to be through a global regulator like,
RpoS, cAMP, Fis, OxyR, SoxRS or RecA (Monje-Casas et al., 2001).

The crystal structure of recombinant E. coli NrdH has been determined
(Stehr et al., 2001). The protein belongs to the thioredoxin superfamily and is
structurally most similar to £. coli Grx3 and phage T4 glutaredoxin. The GSH binding
sites present in glutaredoxins are generally not conserved in NrdH, and no glutathione—
binding cleft is identified. NrdH contains instead a wide hydrophobic pocket at the
surface, similar to that of thioredoxins (Stehr et al., 2001).

1.7 THE GLUTAREDOXIN SYSTEM OF ESCHERICHIA COLI

The glutaredoxin system was first discovered in 1976 in a null mutant for
thioredoxin 1 in E. coli. In the glutaredoxin system, electrons are transferred from
NADPH, to glutathione reductase (GR), glutathione (GSH) and finally to the three
glutaredoxins (Grx1, Grx2 and Grx3) (Aslund et al., 1994; Holmgren, 1976).

1.7.1 Glutathione

As early as 1888, the French scientist de Rey-Pahlade, described a “sulfur-
loving” compound called philothion. The English scientist Fredrick Gowland Hopkins
later renamed this compound to glutathione in 1921. Glutathione (L-gammaglutamyl-
L-cysteinylglycine) is a tri-peptide of the amino acids glutamic acid, cysteine, and
glycine. The primary biological function of glutathione is to act as a non-enzymatic
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reducing agent to reduce cysteine thiols on the surface of proteins. Glutathione may
prevent oxidative stress in most cells and helps in the trapping of free radicals that can
damage DNA, RNA and proteins (for a detailed review se (Penninckx and Elskens,
1993)).

Glutathione synthesis occurs in two closely linked and enzymatically
controlled reactions that both utilize ATP and draw on non-essential amino acids as
substrates (Meister, 1995). First, cysteine and glutamate are combined (by the enzyme
y-glutamylcysteinyl synthetase), with availability of cysteine usually being the rate-
limiting factor. Cysteine is generated from the essential amino acid methionine, from
the degradation or turnover of proteins. The buildup of GSH may inhibit the enzyme’s
activity, thereby helping to ensure homeostatic control over GSH synthesis. The second
GSH synthesis reaction combines y-glutamylcysteine with glycine to generate GSH
(catalyzed by glutathione synthetase) (Apontoweil and Berends, 1975).

Glutathione exists in two forms: The "reduced glutathione" tripeptide is
conventionally called glutathione and abbreviated GSH; the oxidized form is a sulfur-
sulfur linked compound, known as glutathione disulfide or GSSG. Glutathione is
present inside cells mainly in its reduced GSH form. Oxidized glutathione can be
reduced by glutathione reductase. Glutathione often attains millimolar levels inside
cells (up to 10 mM), which makes it one of the most highly concentrated intracellular
antioxidants. The GSSG/GSH ratio may also be a sensitive indicator of oxidative stress,
as well as for cell growth, development and signaling (Schafer and Buettner, 2001). A
change in redox equilibrium has been shown to favor the formation of protein
disulfides and glutathione mixed disulfides with proteins (Cotgreave et al., 2002).
Formation of protein disulfides or GSH mixed disulfides may protect irreversible
damage of cysteine residues. In addition, it may be an important mechanism in
regulating an enzyme’s activity.

The first E. coli mutants found to be defective in the synthesis of
glutathione, were simultaneously isolated and characterized by two different groups
(Apontoweil and Berends, 1975; Fuchs and Warner, 1975). The isolated mutant was
the gene encoding for glutathione synthase, gshB. The gshB mutant contained no
detectable glutathione, but contained an increased pool of y-glutamylcysteine. The gshB
cells were very sensitive to diamide (Hibberd et al., 1978). At the same time, the gsh4
mutant was isolated, and was found to have increased sensitivity to a large number of
chemical agents (Apontoweil and Berends, 1975). A gshA deficient strain is also more
sensitive to osmosis. A gsh4 null mutant is not able to grow above 1.4 osM, and it
grows more slowly at moderate osmolarities, and has a longer lag phase during osmotic
upshock (McLaggan et al., 1990). It was therefore suggested that this mutant might
have altered membrane permeability. The effect of GSH on the superoxide-sensitive
[4Fe-4S]-containing aconitase has also been investigated. It was found that the
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aconitase activity was approximately 25 % lower in the gshA strain compared to the
parental strain growing on either glucose or succinate (Gardner and Fridovich, 1993).

Even though GSH can reduce hydrogen peroxide and organic peroxides to
form water and alcohol, respectively, mutations in the gsh4 gene show normal
resistance to X-irradiation and hydrogen peroxide (Apontoweil and Berends, 1975;
Greenberg and Demple, 1986). Depletion of GSH causes hypersensitivity of £. coli to
acroline, the structurally simplest o, B-unsaturated aldehyde derived from degradation
of lipid peroxide. It was shown also that GSH chemically reacted with acroline in vitro,
and thus reduced its toxicity. It was further demonstrated that acroline inactivated
glutathione reductase, which was followed by a depletion of GSH (Nunoshiba and
Yamamoto, 1999).

1.7.2 Glutathione reductase

Glutathione reductase is a flavoprotein catalysing the reduction of
glutathione disulfide (GSSG) to glutathione (GSH). The enzyme is a dimer with 50
kDa subunits. The association of the two subunits are arranged in a “head to tail”
manner. Each subunit consists of an NADP+-binding domain, flavin adenine
dinucleotide (FAD)-binding domain and an interface domain. Glutathione is bound to
the FAD domain of one of the subunits and to the interface domain in the other
subunit. The electrons from NADPH are transferred to the FAD, then to the two
cysteine residues and finally to the oxidized glutathione. Surprisingly, the ratio of
reduced to oxidized glutathione does not appear to change significantly in mutants
that lack glutathione reductase (Tuggle and Fuchs, 1985).

The gene encoding glutathione reductase in S. fyphimurium, gor, is
regulated by the transcription factor OxyR (Christman et al., 1985). The levels of GR
increased four-fold in an OxyR overproducing strain. A couple of years later, a similar
response was found in E. coli, were an increase of GR was seen, in an OxyR dependent
manner, after treatment of cells with hydrogen peroxide (Storz and Tartaglia, 1992). In
1995 it was further reported that the transcription of the gor gene was positively
regulated by the transcription factor ° at the stationary phase of growth (Becker-Hapak
and Eisenstark, 1995). The finding was a result from the knowledge that the levels of
GSH in E. coli rise six-fold in the stationary phase, although the levels of enzymes
responsible for GSH synthesis remain constant throughout growth (Apontoweil and
Berends, 1975; Loewen, 1979). Both RpoS and OxyR can thus regulate GR. In a null
mutant for rpoSoxyR, the levels of GR were significantly lower than in the oxyR single
mutant, and could be restored by overproduction of a plasmid encoding rpoS (Becker-
Hapak and Eisenstark, 1995). In the same report, absence of GR increased resistance of
E. coli to certain oxidants, such as hydrogen peroxide, methyl viologen and N-
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ethylmaleimide (NEM). No effect was detected between the gor strain and the parental

strain after treatment with menandione and cumene hydroperoxide.

1.7.3 Glutaredoxins

Glutaredoxins are general thiol-disulfide oxidoreductases (Holmgren,
1979a; Holmgren, 1979b) that can reduce protein disulfides, by a dithiol mechanism
or mixed disulfides forming between oxidized GSH (GSSG) and proteins or low
molecular weight thiols, by a dithiol and/or monothiol mechanism (Bushweller et al.,
1992). Today, E. coli has three well-characterized glutaredoxins (Grx1, Grx2, and
Grx3, encoded by grxA, grxB and grxC respectively). Because of the strong
preference of glutaredoxins for glutathione mixed disulfides, they have been proposed
to participate in an enzyme’s regulation, particularly under oxidative conditions
(Gilbert, 1984; Gravina and Mieyal, 1993).

Glutaredoxins are now known to exist in most living organisms, including
prokaryotes (e.g. E. coli), plants (e.g. rice, spinach, poplar, A. thaliana), viruses (e.g.
bacteriophage T4, vaccinia, HIV), and eukaryotes (e.g. yeast, P. falciparum, rabbit,
calf, pig, and human) ((Holmgren, 1976))((Cho et al., 1998; Minakuchi et al., 1994;
Morell et al., 1995; Rouhier et al., 2002))((Ahn and Moss, 1992; Davis et al., 1997;
Eklund et al., 1992))((Gan et al., 1990; Hopper et al., 1989; Lundberg et al., 2001;
Luthman et al., 1979; Padilla et al., 1995; Rahlfs et al., 2001; Yang and Wells,
1991)).

1.7.3.1 Glutaredoxin 1

Glutaredoxin 1 was the first glutaredoxin discovered, and identified as the
second donor for ribonucleotide reductase, in a mutant lacking thioredoxin 1 in
E. coli (Holmgren, 1976). Even though thioredoxin is more abundant in the cell (10
uM) compared to glutaredoxin (1 puM), glutaredoxin has a 10-fold lower K,, for
ribonucleotide reductase (Holmgren, 1979; Holmgren et al., 1978). Grxl is an
alternate electron donor to thioredoxin for the reduction of PAPS reductase (Tsang,
1981; Tsang and Schiff, 1978). By overexpressing Grx1 to similar levels as Trx1,
Grx1 could also rescue the growth defects of a frxdmetE null mutant and could
reduce methionine sulfoxide reductase (Stewart et al., 1998).

Grx1 has 85 amino acid residues including the active site sequence CPYC,
and a molecular weight of 10 kDa. Thermodynamic stability experiments showed that
oxidized and reduced Grx1 are very similar in stability. In heat-induced denaturation,
monitored by circular dichroism (CD) the T, were 55 and 57 °C for oxidized and
reduced respectively. In GuHCl denaturation, the midpoint denaturation
concentrations were 2M for both oxidized and reduced form. This differs greatly from
the thioredoxin in E. coli, were the oxidized form is far more stable than the reduced
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(Sandberg et al., 1991). The three-dimensional structure of Grx1 has been determined
by NMR spectroscopy, in both its oxidized and reduced form (for more details see
above). The three-dimensional structure is similar to that of Trx1, although the
sequence identity is very low. In addition, the glutaredoxins contains a glutathione-
binding site, which is not present in the thioredoxins (Sodano et al., 1991; Sodano et
al., 1991; Xia et al., 1992). E. coli Grxl has close homologues in most living
organisms (Martin, 1995).

The first null mutant for Grxlwas constructed in 1988, and showed no
significant phenotype (Russel and Holmgren, 1988). The combined null mutant for
trxAgrxA was viable in rich media, but was not viable in minimal media, unless
supplemented with reduced cysteine or glutathione. The finding led to the conclusion
that either Trx1 or Grxl1 is essential for the reduction of PAPS reductase. However,
the null mutant for frxAgrxA maintained deoxyribonucleotide synthesis, with an
increase of ribonucleotide reductase activity of up to 23-fold, implying that a third
hydrogen donor must exist in the cell (later found to be Trx2 and Grx3) (Miranda-
Vizuete et al., 1994; Russel et al., 1990). Lack of thioredoxin or glutaredoxin would
lead to an increase level of one or the other (as determined by ELISA), to maintain a
balance supply of deoxyribonucleotides. Grx1 was 10-fold induced in the absence of
thioredoxin reductase (Hoog et al., 1983). An extremely high (70-fold) increase was
observed for Grx1 in null mutants for gshAtrxA (Miranda-Vizuete et al., 1996).

Grx1 is induced by hydrogen peroxide in an oxyR-dependent fashion (Tao,
1997). The transcriptional regulator OxyR is sensitive to oxidation and activates the
expression of antioxidant genes (there among Grx1) in response to hydrogen peroxide
(for more details about OxyR see below). Grx1 catalyzes the reduction of OxyR in
vivo, and since OxyR regulates Grx1, the response is auto regulated (Ashund et al.,
1999; Zheng et al., 1998).

1.7.3.2 Glutaredoxin 2

Glutaredoxin 2 (Grx2) was purified from an £. coli null mutant lacking
Trx1 and Grx1 (Aslund et al., 1994). Characterization of Grx2 showed that it was
highly different from the other known glutaredoxins in terms of molecular weight,
amino acid sequence and catalytic activity (Vlamis-Gardikas et al., 1997). Grx2
cannot reduce RR or PAPS reductase, but has the highest catalytic activity using the
mixed disulfide between glutathione and f-hydroxyethyl disulfide as substrate with a
turnover of 554 s (HED assay) (Vlamis-Gardikas et al., 1997). E. coli Grx2 has close
homologues in Actinobacillus actinomycetemcomitans (87 % amino acid identity),
Neisseria meningitidis (58 %) and Vibrio cholerae (42 %), all known pathogens but it
is not a ‘ubiquitous’ protein. In contrast to Grx1 (and Grx3), Grx2 is a much larger
enzyme (24.3 kDa) with the N-terminal, residue 1-72, forming a glutaredoxin
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domain, connected by an 11 residue linker to the highly helical C-terminal domain,
residue 84-215 (Xia et al., 2001). The structure of Grx2 is similar to glutathione-S-
transferases, although there is no obvious sequence homology. The structural
similarity is interesting, since a relatively new class of mammalian GST-like protein,
the single cysteine ® class, have glutathione oxidoreductase activity, rather than the
glutathione-S-transferase activity.

1.7.3.3 Glutaredoxin 3

Grx3 was identified at the same time as Grx2 in the null mutant lacking
Trx1 and Grx1 (Aslund et al., 1994). Grx3 had 5 per cent of the catalytic activity of
Grx1 for ribonucleotide reductase, but lacked activity for PAPS reductase (Aslund et
al., 1994; Lillig et al., 1999). Even though Grx3 can act as a electron donor for RR1a
in vitro, it most probably cannot reduce RR1a in vivo. Triple mutants lacking Trx1,
Trx2 and Grx1 are inviable and can only grow when cotransfected with a plasmid
overexpressing any one of these three proteins (Stewart et al., 1998). Grx3 consists of
82 amino acid residues (10 kDa protein), with 33 % sequence identity to E. coli Grx1
(Aslund et al., 1996). The active site of Grx3 is positioned between residues C11 and
C14. The activity of Grx3 is reduced in a Grx3H15V mutant, indicating electrostatic
contributions for the stabilization of C11 (Nordstrand et al., 1999). The three-
dimensional structure of Grx3 confirmed the structural analysis that Grx3 has a
thioredoxin/glutaredoxin fold with a well-defined binding site. In addition, the
solution structure suggested a binding site for a second glutathione (Nordstrand et al.,
1999). Denaturation of Grx3 with GuHCI showed no difference in stability between
the reduced and oxidized forms (Aslund et al., 1997).

TABLE IV
Regulation, sensitivitv and substrates of the thioredoxin and glutaredoxin systems
Gene  Protein Regulation Sensitivity Specificity
gor Glutathione reductase  OxyR, ppGpp H,0,, CHP,tBHP, Glutathione
diamide
arxA Glutaredoxin 1 OxyR H,0, RR, PAPS reductase,
OxyR, ArsC, (MSR)
grxB Glutaredoxin 2 Acid stress H,0, ArsC
grxC Glutaredoxin 3 (RR), ArsC
trxA Thioredoxin 1 ppGpp, osmosis H,0, RR, PAPS reductase,
MSR, (OxyR), DsbD
rxB Thioredoxin reductase Trx1 and Trx2
trxC Thioredoxin 2 OxyR RR, (PAPS reductase)
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1.8 GLUTAREDOXIN FUNCTION AND REGULATION

In comparison to thioredoxins, less is known about the actual function of
the glutaredoxins. Apart from PAPS reductase and ribonucleotide reductase
mentioned above, glutaredoxins can participate in the reduction of ascorbate (Wells et
al., 1990). The dehydroascorbate reduction activity of glutaredoxins is likely to be
important for glutathione-dependent regeneration of dehydroascorbate from ascorbate
(reviewed by (Meister, 1992)).

Glutaredoxins can function as efficient hydrogen donors for peroxiredoxin
from poplar sieve (Rouhier et al., 2001). The reduction of peroxiredoxin is either via
a dithiol or a monothiol mechanism (Rouhier et al., 2002a; Rouhier et al., 2002b).

Human Grx1 can catalyse the reduction of plasma glutathione peroxidase
(Bjornstedt et al., 1994). The human plasma glutathione peroxidase is an extracellular
selenoenzyme that detoxifies hydroperoxides. Furthermore, the yeast dithiol
glutaredoxins (Grx1 and Grx2) possessed a glutathione peroxidase activity converting
hydroperoxides to the corresponding alcohols. It was proposed that the glutathione
peroxidase activity of the glutaredoxins could be conjugated to GSH by glutathione-
S-transferases (Collinson et al., 2002).

The mitochondrial yeast Grx5 is essential for the activity of Fe/S enzymes
and null mutants for Grx5 causes iron accumulation in the cell. Thus, it has been
suggested that Grx5 is part of the mitochondrial machinery involved in the synthesis
and assembly of iron/sulfur centers (Rodriguez-Manzaneque et al., 2002).

Glutaredoxins are required for the reduction of arsenate reductase (ArsC)
in E. coli (Gladysheva et al., 1994). ArsC catalyses the reduction of arsenate to the
less harmful compound arsenite. ArsC has a single catalytic cysteine residue, Cys12,
that can form a covalent thiolate-As(V) intermediate. Glutaredoxins are required to
reduce the enzyme bound ES-As(V) intermediate to an ES-As(IIl) intermediate.
Mutants lacking the N-terminal cysteine in the active site, leading to an inactive
enzyme, could not catalyse the ArsC-As(V) reduction, while mutants lacking the C-
terminal cysteine could still support the activity of ArsC (Shi et al., 1999). This
finding led to the conclusion that the ArsC intermediate is not formed during the
catalytic cycle but instead an ArsC-S-SG complex, which subsequently is reduced by
glutaredoxins via a monothiol mechanism. From the E. coli glutaredoxins, Grx2 has
the highest catalytic activity, in reducing arsenate reductase (Shi et al., 1999).

The redox regulation of transcription factors is important and especially
during oxidative stress in several signal transduction pathways. Nuclear factor I (NFI)
is for instance sensitive to oxidative inactivation due to the presence of a conserved,
oxidation-sensitive cysteine residue (Cys3) within the NFI DNA-binding domain
(Bandyopadhyay and Gronostajski, 1994). Cys3 forms mixed disulfides with
glutathione, which decreases the DNA-binding activity of NFIL. Glutaredoxin can
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reduce the mixed disulfide and thus reactivate the DNA-binding activity of the
oxidized, inactive NFI (Bandyopadhyay et al., 1998).

Another protein whose its biological activity is regulated via reversible
glutathionylation is G-actin. The glutathionylation site has been identified as Cys374.
Deglutathionylation can be efficiently catalysed by glutaredoxin, and results in a 6-
fold increase in the rate of actin polymerisation (Wang et al., 2001).

Protein tyrosine phosphatases participate in the control of cell cycle and
signal transduction. Glutathionylation of Cys215 of protein tyrosine phosphatase 1B
gives inactive enzyme. Human glutaredoxin is able to reactivate the enzyme by
reducing the glutathione mixed disulfide (Barrett et al., 1999).

Glutaredoxins are potent antioxidants against dopamine-induced oxidative
stress in rat cerebral granule neurons, preventing their apoptosis by activating the
binding activity of nuclear factor kappa B (NF-kB) (Daily et al., 2001a). £. coli Grx2
was able to penetrate into the granule neurons and exert its activity by activating
NF-kB. Addition of Grx2 resulted in translocation of NF-kB from the cytoplasm to
the nucleus, by promoting the phosphorylation and degradation of I-xBa.. In addition,
the DNA binding activity of pre-existing nucleus NF-kB was enhanced. The effect
was mediated by upregulation of Ref-1, which in turn activated NF-kB. Grx2 could
actually activate both the Ras/phosphoinotiside 3-kinase/Akt/NF-«kB and the
JNK1/2/AP1 cascades (Daily et al., 2001b).

Tyrosine hydroxylase is the initial and rate limiting enzyme in the
biosynthesis of the neurotransmitter dopamine. Posttranslational modification in
terms of glutathionylation of the enzyme results in a strong reduction of its catalytic
activity. Glutaredoxin can fully restore enzyme activity by reducing the glutathione
mixed disulfide (Borges et al., 2002). It is thus likely that the glutaredoxin system
may regulate the dopamine biosynthesis under conditions of oxidative stress or drug
induced toxicity.

Two glutaredoxins have been characterized in Vaccinia virus, G4L and
O2L. They have a predicted thioredoxin fold and contain the redox active CXXC motif.
Both enzymes are active in the classical “HED-assay”, and they show
dehydroascorbate reductase activity in vitro (Ahn and Moss, 1992; Gvakharia et al.,
1996). GAL is an essential intermediate in cytoplasmic disulfide formation for virion
assembly (White et al., 2002). Vaccinia virus encodes and packages its own
glutaredoxins in its virus particle. This is in contrast to the immunodeficiency virus
type 1 (HIV-1), which has been reported to carry the human glutaredoxin within its
viral particle (Davis et al., 1997).

Glutaredoxins can catalyze the reduction of GSSG by reduced
dihydrolipoamide with high efficiency (Porras et al., 2002). The lipoamide/HED
activity ratio was highest for E. coli Grx2. These findings suggest a new role for the
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glutaredoxins using reducing equivalents from the catabolic pathways, to maintain
glutathione in the reduced state, without the consumption of NADPH (Porras et al.,
2002).

Finally, studies of human Grx1 has shown that is it widely distributed and
found in all tissues examined. However, the expression of Grx1 is especially high in
tissues with high metabolic turnover (e.g. Skeletal and heart muscle, liver kidney and
brain), as well as in epithelial tissue of the skin and tongue, where high number of
cells undergo cell differentiation (Padilla et al., 1992; Rozell et al., 1993). Except for
its wide distribution in cells, glutaredoxin has also been detected in plasma, indicating
an extracellular role for human Grx1 (Nakamura et al., 1998).

The thioredoxin and glutaredoxin systems of E. coli can compensate for
each other in vivo (Table V).

TABLE V
Phenotypes for null mutants of the thioredoxin and
glutaredoxin systems
Genotype Protein Comment
trxA Trx1 Increased sensitivity to cumene

hydroperoxide, improved viability after

exposure of H,0,

rxC Trx2

trxB TrxR Formation of disulfides in the cytosol,
improved viability after exposure of
cumene hydroperoxide

grxd Grx1 Slightly increased sensitivity to diamide

grxB Grx2 See paper 1

grxC Grx3 Slightly increased sensitivity to cumene
hydroperoxide and menandione

gor GR Maintain GSH in a reduced state,
increased sensitivity to diamide

trxAgrxA Not viable in minimal media, growth slow
under aerobic conditions, no growth defect
under anaerobic conditions

gortrxA Glutathione is maintains in a reduced state

gshAtrxA Highly increased Grx1 levels

trxBgor In need of a reductant to grow

trxAtrxCgrxA Not viable under aerobic conditions

33



Characterization and function of E. coli glutaredoxins

1.9 GLUTAREDOXIN ISOFORMS

The glutaredoxin family has grown during the last years, and there are today
numerous isoforms known in different organisms with largely different catalytic
properties. In terms of their structure and catalytic properties, glutaredoxins can now be
classified in three categories (Vlamis-Gardikas and Holmgren, 2002).

The first is exemplified by the classical glutaredoxins, which are 10 kDa
proteins, with the CXXC motif (usually CPYC) as their active site and with the
thioredoxin/glutaredoxin fold. Grx1 and Grx3 of E. coli, belong to this first classical
category. Both are ~10 kDa proteins with similar structure (the thioredoxin
/glutaredoxin fold) and they have 33% sequence identity (Aslund et al., 1996;
Bushweller et al., 1994; Martin, 1995).

The second category is structurally related to the glutathione-S-transferases,
but with glutaredoxin oxidoreductase activity. Common structural characteristics are a
two-domain structure, the first domain having a thioredoxin/glutaredoxin fold
containing the active site residues and the second domain having a highly a-helical
structure. This class of glutaredoxins is defined by E. coli Grx2. E. coli Grx2, has a
three-dimensional structure, highly similar to glutathione-S-transferases (Xia et al.,
2001). It only differs form the glutathione-S-transferases in that it contains the active
site sequence CPYC in the glutaredoxin domain, and thus has glutaredoxin activity.
Other proteins that are structurally related to this category even though they have no
significant amino acid homology and only one active site cysteine, are the human 0
class glutathione-S-transferase, the human glutathione-S-transferase ® 1 (GSTO1), the
mouse glutathione-S-transferase 0-like stress response protein (p28), and the human
chloride intracellular channel 1 (CLIC1) (Board et al., 2000; Harrop et al., 2001;
Kodym et al., 1999; Rossjohn et al., 1998). All these proteins are detoxifying or stress
response proteins.

The third category of glutaredoxins is defined by having a monothiol active
site (normally CGFS). Monothiol glutaredoxins have so far been identified in yeast
(yGrx3, yGrx4 and yGrx5) and man (PICOT). The yeast monothiol glutaredoxins have
a protective role against oxidative stress. A mutant lacking Grx5 was very sensitive to
both menandione and hydrogen peroxide and contained high amounts of carbonylated
proteins compared to the parental strain. The mutant had increased sensitivity (more
than 10-fold) to high concentrations of KCl. A yeast null mutant for the three-
monothiol glutaredoxins was not viable suggesting that monothiol glutaredoxins are
very specific for their substrates and their functions cannot be replaced by their dithiol
counterparts (Rodriguez-Manzaneque et al., 1999). The human monothiol, PKC-
interacting cousin of thioredoxin (PICOT), is expressed in various tissues, and when
overexpressed in T-cells, it inhibits the activation of c-Jun N-terminal kinase and the
transcription factors AP-1 and NF-kB (Witte et al., 2000). Monothiol glutaredoxins
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have been identified in many different species, through genome databank searches
(Fomenko and Gladyshev, 2002; Isakov et al., 2000).

1.10 CATALYTIC MECHANISM OF GLUTAREDOXIN

Glutaredoxins catalyze GSH-disulfide oxidoreductions usually via two
redox active cysteine separated by two other amino acids (typically CPYC)
(Holmgren, 1989; Holmgren and Aslund, 1995). The oxidoreductions are either
dithiol reactions reducing protein disulfides or monothiol reductions of mixed
disulfides with glutathione. In comparison, the structurally related thioredoxins may
predominantly reduce protein disulfides.

In the dithiol reduction, the solvent exposed N-terminal cysteine of the
active site sequence of the glutaredoxin, initiates a nucleophilic attack on one of the
sulfur atoms of the disulfide target (Fig. 6A). This results in the formation of a mixed
disulfide between the glutaredoxin and the target protein (Fig. 6B). The free second
carboxy-terminal cysteine of the active site gets deprotonated and attacks the N-
terminal glutaredoxin sulfur atom participating in the mixed disulfide with the target
protein (Fig. 6C). As a consequence, oxidized glutaredoxin (Grx-S,) and reduced
target (Prot-(SH),) are generated (Fig. 6D).

FIG. 6. The glutaredoxin
A B ¢ P disulfide mechanism.
Grx Prot Grx Prot Grx Prot Grx Prot
Reduction of disulfide
jz ﬁjs s j’ H bonds in target proteins
—3p|H — —_—
| L/ 2 by glutaredoxin.
S S—s S S H
\ g

In the monothiol mechanism concerning the reduction of protein-SG
mixed disulfides, glutaredoxins utilize only the N-terminal cysteine thiol (Fig. 7)
(Bushweller et al., 1992). In this reaction, glutaredoxins specifically interacts with the
glutathione moiety of the glutathione mixed disulfide target and not the protein
substrate, due to the glutaredoxin affinity to glutathione (Bushweller et al., 1994;
Nordstrand et al., 1999). This results in the formation of a covalent Grx-SG
glutathione mixed intermediate and release of the non-glutathione moiety in a
reduced form. The Grx-SG mixed intermediate is reduced by a second glutathione
molecule, generating oxidized glutathione (GSSG). In turn, glutathione reductase,

regenerates glutathione by reducing the glutathione disulfide.
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FIG. 7. The monothiol
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glutathione mixed

disulfides.

Since the reduction of protein glutathione mixed disulfides only seems to
require the recognition of the glutathione moiety of the substrate, and not the
substrate itself, the monothiol mechanism resulting in deglutathionylation, can thus
be seen as a more general function of the glutaredoxins. Contrary to what was
originally believed, glutathionylation of proteins may not only occur due to increased
GSSG levels, as the formation of protein glutathione conjugates has been reported
without an increase of GSSG levels (Maples et al., 1990). Protein glutathionylation is
an increasingly important regulatory mechanism in biochemical processes, by
reversible modification of protein thiols (Cotgreave and Gerdes, 1998). Several
proteins have been detected to undergo glutathionylation due to changes in the
intracellular redox environment. These include protein chaperones, cytoskeletal
proteins, cell cycle regulators and enzymes of the intermediate metabolism (Lind et
al., 2002). Furthermore, these types of posttranslational modification are involved in
the regulation of specific transcriptional events vital to the adaptation seen in cells
during oxidative stress (Klatt and Lamas, 2000). For instant, glutathionylation of Cys
62 of eukaryotic NF-kB subunit p50, and Cys 269 of c-Jun, result in loss of DNA
binding activity (Klatt et al., 1999; Pineda-Molina et al., 2001). Tyrosine
hydroxylase, protein kinase Co and tyrosine phosphatase 1B are all inhibited by
reversible glutathionylation (Barrett et al., 1999; Borges et al., 2002). Even though
there are many reports about posttranscriptional regulation via S-glutathionylation in
eukaryotic cells, only the transcription factor OxyR has so far been reported to be
regulated in this manner in E. coli (Kim et al., 2002).

1.11 GLUTAREDOXIN IN HEALTH AND DISEASE
1.11.1 Pregnancy

High glutaredoxin activity is present in oocytes and in the ovary, and there
is strong immunostaining of human Grx1 in the pinopodes of the endometrium and in
cervix (Rozell et al., 1993; Sahlin et al., 2000; Stavreus-Evers et al., 2002). Due to the
strong immunostaining in the endometrium it has been suggested that glutaredoxin
plays an important role during implantation (Stavreus-Evers et al., 2002). Expression of

the mRNA levels of glutaredoxin in the cervix are increased over 2-fold at term
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pregnancy and immediately post partum. Glutaredoxin may thus be involved in the
regulation of cervix ripening (Sahlin et al., 2000). There is also a significant
correlation between the mRNA levels of glutaredoxin, both in normal and growth
restricted pregnancies. It is believed that the glutaredoxin system is affected in
placenta from pregnancies with pre-eclampsia and/or growth restriction of fetuses,
and that the decrease of Grx1 levels correlates to the severity of the condition (Sahlin
et al., 2000).

1.11.2 Aging

It is generally believed that aging results from oxidative damage of
macromolecules from fluctuations in the balance between oxidants and antioxidants
(Martin et al., 1996; Rikans and Hornbrook, 1997). There is for instance an age related
decline in GSH levels that have been reported for a number of organisms.
Overexpression of glutathione in transgenic Drosophila results in an increased life span
(Sohal and Weindruch, 1996). The life span of Drosophila has also been increased by
30 %, by overexpression of CuZn SOD (Orr and Sohal, 1994). Mutations in signal
transduction proteins have increased the lifetime of C. elegans and Drosophila
(Johnson, 1990; Kenyon et al., 1993; Lin et al., 1998). Both cytoplasmic and
mitochondrial superoxide dismutases (SOD) are required for the long-term survival of
yeast. Overexpression of SOD1 and SOD2 increases viability in stationary phase
(Longo, 1999; Longo et al., 1996). The results are consistent with studies performed
with mice lacking sod! or sod? (Huang et al., 1997). Similar to eukaryotic cells,
stationary phase E. coli become increasingly oxidized. This is despite their enhanced
capacity to manage oxidative stress by the global regulator cs, OxyR and SoxRS (see
review by (Nystrom, 2002a; Nystrém, 2001; Nystrém, 2002b)). The oxidative stress
theory on aging opens the possibility for a pivotal potential function for the thioredoxin
and the glutaredoxin systems.

1.11.3 HIV/IAIDS

Patients infected with the human immunodeficiency virus (HIV) are
suffering from systemic oxidative stress and have an altered glutathione status in the
cell (Eck et al., 1989). Several studies have shown that HIV infected patients have
lower levels of both intracellular and extracellular glutathione (Buhl et al., 1989; Pace
and Leaf, 1995; Staal et al., 1992). Decreased intracellular glutathione levels in HIV
infected individuals have been shown for several cells including, CD4+ T cells,
peripheral blood mononuclear cells and erythrocytes (De Rosa et al., 2000; Eck et al.,
1989; Repetto et al., 1996). HIV infected individuals, have increased levels of protein
bound glutathione, a sign of increased oxidative stress (Ghezzi et al., 2002). Moreover,

N-Acetylcysteine (NAC), a prodrug of cysteine that is required for glutathione
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synthesis, has been used in treatment of HIV infected patients, and was shown to
improve the survival of these patients (Herzenberg et al., 1997).

The involvement of glutaredoxin in HIV pathogenesis was first reported in
1997, when HIV-1 protease was found to be a substrate for glutaredoxin (Davis et al.,
1997). HIV-1 encodes an aspartyl protease, which is required for viral maturation
(Darke et al., 1994). The two cysteines of the HIV-1 protease are involved in redox
regulation of its activity. Modification of either of the two cysteines resulted in a
decrease or loss of protease activity. Further studies showed that glutathionylation of
Cys67 increased the activity several fold and also stabilized the activity in vitro (Davis
et al., 1996). On the contrary, glutathionylation of Cys95 abolished activity. Treatment
of deglutathionylated protein with glutaredoxin resulted in a 3-5 fold higher activity
than the reduced form. Glutaredoxin preferentially deglutathionylates Cys95. Human
glutaredoxin may also be incorporated in the HIV virion (Davis et al., 1997).

1.11.4 Neurodegenerative diseases

Dopamine neurons are sensitive to oxidative stress, and this is for instance
the case in Parkinson’s disease. Parkinson’s disease is a neurodegenerative disorder that
results in a mass destruction of the nigrostriatal dopamine system. A clear connection
between dopamine turnover and glutathione oxidation has been reported (Spina and
Cohen, 1989). Tyrosine hydroxylase is the initial and rate limiting enzyme in the
biosynthesis of the neurotransmitter dopamine. It lacks disulfides, but the cysteine in
the enzyme can be regulated by glutathionylation. As previously mentioned tyrosine
hydroxylase can be reduced and thus reactivated by glutaredoxin. It has thus been
suggested that the glutaredoxin system may regulate the dopamine biosynthesis under
conditions of oxidative stress or drug induced toxicity (Borges et al., 2002).

There are today increasing evidence that oxidative stress is involved with
the pathogenesis of Alzheimer’s disease. Grxl mRNA levels in neurons from
Alzheimer’s disease were reduced, suggesting a potential role of glutaredoxin in the
pathogenesis of the disease (Ginsberg et al., 2000).

1.11.5 Neoplastic disease and drug resistance in cancer

Pancreatic cancer is a solid highly malignant cancer with poor prognosis.
Grx1 is overexpressed in pancreatic cancer in comparison to normal parental tissue. A
correlation between the increased levels of glutaredoxin and drug resistance towards
the drug cis-diamminedichloroplatinum has been observed (Nakamura et al., 2000).

Glutaredoxin was 4-fold upregulated in breast tumor cells. In this case,
resistance to a chemotherapeuthic drug, adriamycin, was associated with the

increased levels of glutaredoxin (Wells et al.. 1995).
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Cis-platin is a chemotherapeutic drug that can inhibit glutaredoxin
activity. The inhibition studies were performed in vitro under anaerobic conditions
and were shown to be irreversible (Wells et al., 1991). A glutathione adduct of cis-
platin also inhibits glutaredoxin activity in vitro in a dose dependent manner (Arner et
al., 2001).

1.11.6 Atherosclerosis

As with other diseases, oxidative stress is believed to be an important
factor for atherogenesis. In atherosclerotic lesions, infiltrating macrophages highly
expresses glutaredoxin. Western blot analysis demonstrated that hydrogen peroxide
stimulated the expression of glutaredoxin in time- and dose-dependent manners.
These results suggest the possible role of glutaredoxins as antioxidants, conferring

protecting against the formation of atherosclerotic lesions (Okuda et al., 2001).

1.12 PERIPLASMIC REDOX ACTIVE ENZYMES

Many proteins require disulfide bonds for their proper fold and function.
Over the ten last years it has become clear that that disulfide bond formation,
reduction and isomerisation are all catalysed processes (for more details se reviews by
(Debarbieux and Beckwith, 1999; Fabianek et al., 2000; Raina and Missiakas, 1997;
Rietsch and Beckwith, 1998; Ritz and Beckwith, 2001)). In eukaryotic cells protein
disulfides are formed in the endoplasmic reticulum, while in prokaryotes like E. coli,

the process is normally catalysed in the periplasmic space.

1.121 DsbA-DsbB

The periplasmic space contains two enzymes that promote the formation of
disulfides, the thiol-disulfide oxidoreductase DsbA and a cytoplasmic membrane
protein DsbB (Bardwell et al., 1991). DsbA is a small (21 kDa) monomeric protein
belonging to the thioredoxin superfamily, and has a “classical” active site with the
CXXC motif. The three-dimensional structure showed that DsbA consists of two
domains. One domain has a thioredoxin like fold, and the other is a compactly folded
helical domain (Martin et al., 1993). DsbA is responsible for oxidizing thiols in newly
synthesized and translocated proteins. The redox potential (£,") of purified DsbA is
-0.122 V, in agreement with the oxidizing properties of this protein (Wunderlich and
Glockshuber, 1993). The low pKa value (3.5) of the N-terminal C30 is believed to
contribute to the oxidizing power of DsbA (Nelson and Creighton, 1994). The reaction
between the reduced substrate and the oxidized form of DsbA results in an electron
transfer to DsbA. Null mutants for dsbA have a pleiotropic phenotype. They are more
sensitive to DTT, and benzylpencillin, as well as to Cd**, Zn*" and Hg?" and they lack
active alkaline phosphatase, P-lactamase and the outer membrane protein OmpA

39



Characterization and function of E. coli glutaredoxins

(Bardwell et al., 1991; Battistoni et al., 1999; Kamitani et al., 1992; Metheringham et
al., 1995; Rensing et al., 1997; Stafford et al., 1999; Yamanaka et al., 1994). Other
processes that are affected are mobility (disrupted flagellar assembly), and infection
sensitivity to phage M13 (defected F pilus assembly) (Bardwell et al., 1991; Dailey and
Berg, 1993). Other phenotypic characteristics include the lack of holocytochrome c,
defects in enterotoxin I secretion and folding of periplasmic Cu,Zn superoxide
dismutase (SOD). Homologous proteins have been found in several proteobacteria,
with sequence identities between 29 % and 97 %.

The reoxidation of DsbA is performed by DsbB. DsbB is a 20 kDa
cytoplasmic membrane protein with four transmembrane segments and two periplasmic
loops (Bardwell et al., 1993). Each of the loops contains a pair of essential cysteine
residues (Cys41, Cys44 and Cys 104, Cys130) that form disulfide bonds in vivo. It is
believed that the disulfide bond from Cys41 and Cys44 is intramolecularly transferred
to Cys104 and Cys130 and then to the active site cysteines in DsbA. Disulfide linked
heterodimers, between Cys30 of DsbA and Cys104 of DsbB have been captured,
suggesting that the oxidation of DsbA is a pure protein-protein interaction with DsbB
(Guilhot et al., 1995; Kishigami and Ito, 1996). Recently the redox potential of the two
disulfides in DsbB were determined to —271 and —284 mV, which is considerably lower
than the disulfide of DsbA. This makes DsbB unsuitable to function as an oxidant to
DsbA. 1t is therefore suggested that oxidation of DsbA by DsbB possibly occurs via a
direct quinone reduction instead of via thiol disulfide exchange as it was assumed
(Inaba and Ito, 2002; Regeimbal and Bardwell, 2002). The reoxidation of DsbB is
further dependent on the presence of either cytochrome bd or bo and of either a
menaquinone or ubiquinone electron acceptor. Cytochrome bo is the preferred electron
acceptor during aerobic growth, while cytochrome bd is used under more anaerobic
conditions (Bader et al., 2000). Mutants for DsbB are deficient in formation of
disulfides in periplasmic proteins and are sensitive to DTT and benzylpenicillin
(Missiakas et al., 1993). Cytochrome ¢ maturation is also inhibited in dsbB null mutants
(Metheringham et al., 1996; Sambongi and Ferguson, 1996).

1.12.2 DsbC-DcbD

In the E. coli periplasm, the isomerizations of non-native disulfide bonds
are carried out via similar pathway as DsbA-DsbB. This pathway consists of the
disulfide bond isomerase DsbC and the cytoplasmic membrane protein DsbD. DsbC
is a soluble periplasmic protein that forms a homodimer composed of two monomers
of 216 amino acids (23.5 kDa), each containing four cysteine residues (Missiakas et
al., 1994). Null mutants for dsbC have defects in the disulfide bond formation of
periplasmic proteins (but not as much as in the dsb4 and dsbB mutants), and lose
their ability to correctly fold periplasmic proteins with multiple disulfides (Joly and
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Swartz, 1997; Rietsch et al., 1996). DsbC exhibits two distinct functions, the
isomerase/reductase activity, which is located at the N-terminus of the protein and the
chaperone activity, which is contributed by the C-terminus. The chaperone activity of
DsbC has been shown to assist the refolding of misfolded proteins in vitro (Darby et
al., 1998). The N-terminus of DsbC is responsible also for its dimerisation property.
A mutant resulting in a monomeric protein exhibited no chaperone activity. The
monomeric DsbC mutant can complement null mutants for dsbA, suggesting that
DsbC is turned from a disulfide isomerase into an oxidase (Bader et al., 2001). This
can be compared with the eukaryotic protein disulfide isomerases, which is dimeric
and contain two active sites.

DsbD is a cytoplasmic membrane protein and it is responsible for the
reduction of DsbC. DsbD is a 565 amino acid polypeptide, composed of a central
hydrophobic domain () containing eight potential transmembrane segments and two
periplasmic segments, one thioredoxin-like domain at the C terminus (y) and one at
the N terminus (a). DsbD contains a number of essential cysteine residues that are
conserved among the bacterial species and were shown to be essential for the DsbD
function (Stewart et al., 1999). Reducing equivalents are initially transferred from
NADPH to TrxR, thioredoxin, DsbD and finally to DsbC. The electrons in DsbD are
transferred to the hydrophobic 3 domain, to the thioredoxin like ¥ domain, to the o
domain, and finally to DsbC where they reduce the active site cysteines (Collet et al.,
2002). Lack of DsbD leads to hypersensitivity to DTT and benzylpenicillin, and
double mutants for dsbCdsbD are not as motile as their parental strain (Missiakas et
al., 1995).

1123 CcmG, CcmH, DsbG

E. coli contains three more thiol redox periplasmic proteins, CcmG, CcmH
and DsbG. CemG and CemH are both involved in the complex pathway of cytochrome
¢ biogenesis (Thony-Meyer, 2002). CcmG is a 20 kDa protein with an N-terminal
membrane anchor and faces the periplasm with its hydrophilic C-terminal domain
containing the active site (Fabianek et al., 1998). CcmG is reduced by DsbD, in the
same manner as the one described above for DsbC. The CcmG family shares a
conserved sequence GVXGXPE at the C-terminus that may specify protein-protein
interactions (Fabianek et al., 1997). The crystal structure of CcmG revealed a
thioredoxin fold with an unusually, acid active site, and a groove formed from two
inserts in the fold (Edeling et al., 2002). Point mutations of one or both cysteine
residues of the active site in the chromosomal cemG gene produce strongly decreased
levels of holocytochrome ¢ (Fabianek et al., 1998). In contrast to many other
oxidoreductases, CcmG has high substrate specificity, since it did not show thiol
disulfide reductase activity in the classical insulin assay, nor did the ccmG mutation
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affect the refolding or activity of the periplasmic alkaline phosphatase (Monika et al.,
1997; Page and Ferguson, 1997).

CcemH is a membrane bound protein with the conserved motif LRCXXC
exposed into the periplasm (Fabianek et al., 1999). CcmH has a reducing function
during cytochrome ¢ maturation (Monika et al., 1997). During anaerobic growth, when
E. coli normally synthesizes c-type cytochromes, only the second cysteine residue of
the CXXC active site of CcmH was found to be essential for cytochrome ¢ maturation.
In contrast, when cells are grown under aerobic conditions, both cysteines are required
(Fabianek et al., 1999).

DsbG is synthesized as a 27.5 kDa precursor protein and is processed in the
periplasm to a mature protein of 25.7 kDa. DsbG share sequence homology with DsbC
(29 %), and has a similar redox potential (-125 mV) (Andersen et al., 1997; Bessette et
al., 1999). Like DsbC, DsbG forms a homodimer with a redox reactive CXXC motif,
which is reduced by DsbD (Bessette et al., 1999). The precise function of DcbG is not
known, but the dsbG null mutant results in accumulated reduced periplasmic proteins.
Furthermore, the mutant cells were not viable unless dsbA or dsbB were overexpressed

or oxidizing compounds were added to the medium (Bessette et al., 1999).

TABLE VI
Summary of the periplasmic redox active enzymes
Gene Protein MW of Localization Biological Sensitivity Supressors
monomer function
(kDa)
dsbA DsbA 21 Periplasm Thiol oxidant DTT, DsbD mutations,

Benzylpencillin, High levels DsbC
Cd2+ Zn2+ ng+

dsbB DsbB 20 Cytoplasmic  Oxidant DTT, Oxidant (GSSG,
membrane Benzylpencillin cysteine)
DsbD mutation
dsbC  DsbC 23 Periplasm Disulfide bond DTT Reductant (low
Isomerase, levels of DTT)
Chaperone
dsbD  DsbD 50 Cytoplasmic Reductant DTT, Copper ~ Reductant (low
membrane levels of DTT or
GSH)
dsbE/  DsbE/Ccm 20 Periplasm  Cytochrome ¢
cemG Biogenesis
cemH  CemH Periplasm Cytochrome ¢
Biogenesis
dsbG  DsbG 26 Periplasm Disulfide bond
isomerase,
Chaperone
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1.13 OXIDATIVE STRESS AND ANTIOXIDANT SYSTEMS

Oxidative stress occurs when cells are exposed to elevated levels of reactive
oxygen species, such as superoxide (O."), hydrogen peroxide (H,O,) and alkyl
hydroperoxide ("OH). Oxidative stress can lead to DNA damage, thus mutations, as
well as lipid peroxidation, disassembly of iron-sulfur clusters, disulfide bond formation,
protein carbonylation etc. In order to protect cells against the damage caused by
oxidative stress, cells produce a number of antioxidant enzymes. Both thioredoxins and
glutaredoxins have been shown to have a protective role against oxidative stress (see
reviews by (Carmel-Harel and Storz, 2000; Holmgren, 2000; Ritz and Beckwith,
2001)). Apart from the protective role against oxidative stress of the glutaredoxins in
E. coli, glutaredoxins from several other organisms have shown similar effects. For
instance, all yeast glutaredoxins participate in the protection against oxidative stress
(Grant, 2001; Herrero and Ros, 2002). The expression of both dithiol yeast
glutaredoxins (Grx1 and Grx2) are induced in response to various stress conditions
including oxidative, osmotic, and heat stress (Grant et al., 2000). The expression of
both genes is regulated at the transcriptional level, via the stress-responsive STRE
elements (Grant et al., 2000). Yeast Grx1 null mutants are sensitive to oxidative stress
induced by superoxide anion, whereas a strain lacking Grx2 or the monothiol
glutaredoxin Grx5 are sensitive to hydrogen peroxide (Luikenhuis et al., 1998;
Rodriguez-Manzaneque et al., 1999). The expression of mammalian glutaredoxin is for
instance induced after exposing cells to TPA or ultraviolet B radiation (UVB), both
treatments known to induce oxidative stress (Kumar and Holmgren, 1999; Rosen et al.,
1995).

1.13.1 Transcription factors affecting antioxidant defenses

Two transcription factors that clearly protect against oxidative stress are
OxyR and SoxRS. The transcription factor OxyR regulates the response to hydrogen
peroxide and the transcription factors SoxR and SoxS regulate the adaptive response to
superoxide generating compounds (reviewed by (Pomposiello and Demple, 2001; Storz
and Imlay, 1999)).

11311  OwR

OxyR is a transcription factor that activates the expression of several
antioxidant defensive genes in response to elevated levels of hydrogen peroxide. The
response after hydrogen peroxide treatment is remarkably rapid, with the highest gene
expression seen between one and five minutes (Michan et al., 1999). Genes affected

are for instance katE (hydroperoxidase), ahpCF (alkylhydroperoxide reductase), gor
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(glutathione reductase), grxA (glutaredoxin 1), #xC (thioredoxin 2) among others
(Christman et al., 1985; Ritz et al., 2000; Tao, 1997; Zheng et al., 2001). The OxyR
protein consists of 305 amino acids and has a mass of 34 kDa (Christman et al.,
1989). The N-terminus contains a helix-loop helix DNA binding motif and is
connected to the C-terminus by a flexible linker that is sensitive to proteolytic
digestion (Choi et al., 2001). The levels of OxyR do not change in cells treated with
hydrogen peroxide, but the regulation is rather post-translational (Storz et al., 1990).
OxyR normally exist in an inactive reduced form that can be oxidized by hydrogen
peroxide to the active, DNA-binding form. Oxidation of Cys198 and Cys208 to
intracellular disulfide gives active OxyR. Cellular exposure to 100-1000 pM
hydrogen peroxide results in the oxidation of these cysteines to form intermolecular
disulfide bond. The in vivo oxidation reaction is fast and is completed within 30
seconds. Only the oxidized form can bind DNA at the promoter site, to stimulate
transcription by protein-protein interaction with RNA polymerase. Footprinting
studies showed that OxyR binds to the promoters as a tetramer (Toledano et al.,
1994). The crystal structure revealed that the disulfide bond formation between the
redox sensitive cysteines leads to a large structural change within the regulatory
domain (Choi et al., 2001). Grx1 and Trx1 are able to reduce, and thus deactivate
OxyR in vitro, but Grx1 seems to be the preferred reductant in vivo (Aslund et al.,
1999; Zheng et al., 1998). Since Grxl itself is regulated by OxyR, the response to
hydrogen peroxide is autoregulated.

A mutant E. coli strain overexpressing continuously OxyR, overexpresses
the OxyR regulated genes, and is more resistant to hydrogen peroxide than its wild type
parental strain. In accordance, null mutants for oxyR are more hypersensitive to
hydrogen peroxide and fail to activate the OxyR regulated genes. In a wild type strain,
the OxyR protein is constitutively produced, but under the control of the cAMP-CRP
complex, transcription of the oxyR gene increases during exponential growth and
decreases upon transition to stationary phase. In null mutants for cya or crp, no increase
in the expression of OxyR can be observed. On the other hand, a null mutant for rpoS
allowed OxyR expression to increase as the cells entered stationary phase (Gonzalez-
Flecha and Demple, 1997). Recent studies have shown that the OxyR protein can exist
in a S-nitrosylated (S-NO), S-glutathionylated (S-SG), and hydroxylated (S-OH) state
in vivo. The post-translational modification of the proteins regulatory thiol (Cys199) is
transcriptionally active, but differs in structure, cooperative properties, DNA binding
affinity, and promoter activity, with glutathionylated OxyR having the highest
transcriptional activity (Kim et al., 2002).
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1.13.1.2 SoxRS

Inducible resistance to superoxide generating agents is dependent on the
integrity of the soxRS locus, which encodes two separate transcription activators, the
SoxR and SoxS proteins (Greenberg et al., 1990; Tsaneva and Weiss, 1990). SoxR is
a homodimer of 17 kDa subunits, with each monomer containing a [2Fe-2S] cluster,
and it belong to the MerR family of transcription factors (Amabile-Cuevas and
Demple, 1991; Hidalgo et al., 1995; Wu et al., 1995; Wu and Weiss, 1991). The
SoxR protein is constitutively expressed at low levels and is activated upon exposure
to superoxide generating agents or nitric oxide (Pomposiello and Demple, 2001). The
SoxR activity is controlled by the oxidation state of the [2Fe-2S] cluster, which
undergoes a one-electron oxidation and reduction (Hidalgo et al., 1995; Wu et al.,
1995). In the reduced state, SoxR binds to the DNA without activating soxS
transcription. Once it is oxidized, the transcriptional activity is activated without
affecting the DNA binding affinity (Ding et al., 1996; Gaudu and Weiss, 1996).
Furthermore, it has been shown that the metal centers of SoxR are not required for the
initial folding of SoxR, were mutation of any of the cysteine residues, resulting in
lack of [2Fe-2S] clusters, yields a stable dimeric protein that tightly binds to DNA
(Bradley et al., 1997; Hidalgo and Demple, 1994). Oxidized SoxR is rapidly reduced
once the oxidative stress is removed (Ding and Demple, 1997). The regulation of the
soxRS regulon occurs in two steps (Nunoshiba et al., 1992; Wu and Weiss, 1992).
Under conditions of oxidative stress, SoxR is activated by oxidation or nitrosylation
by nitric oxide, which then can activate the transcription of the soxS gene.

SoxS is a protein of 13 kDa that may activate the expression of at least 17
genes or operones, resulting in increased resistance to oxidants, antibiotics, organic
solvents and macrophage-generated nitric oxide. Genes upregulated by SoxS include
manganese superoxide dismutase (sod4), the DNA repair enzyme endonuclease IV
(nfo), aconitase A (acnAd) and fumerase C (fumC) (Reviewed by (Storz and Imlay,
1999)). The proteins regulated by the soxRS system results in a mechanism to avoid
oxidative damage which includes, scavenging of oxidants, DNA repair, reduced
permeability and excretion of toxicants (Greenberg et al., 1990).

Null mutants for gshA, trx4 or trxB do not affect the induction of a soxS-
lacZ fusion in response to paraquat. On the other hand, the soxS-lacZ induction was
significantly reduced in a double mutant for gshAtrx4, indicating that the
glutaredoxin or the thioredoxin system is required for the activity of the SoxR protein
(Ding and Demple, 1996; Ding and Demple, 1998).
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1.13.2 Additional proteins belonging to the thioredoxin structural

superfamily with involvement in oxidative stress

Apart from the thioredoxin and the glutaredoxin systems described above,
there are other enzymes with Trx/Grx fold whose antioxidant activity is dependent on
GSH or TrxR. Glutathione transferases, glutathione peroxidases and peroxiredoxins

are some of these enzymes.

1.13.2.1 Glutathione transferase

Glutathione S-transferases (GSTs) play important role in higher eukaryotes
in the binding, transformation and detoxification of a wide variety of both endogenous
and exogenous compounds, such as carcinogenic, mutagenic, toxic and
pharmacologically active substances (Chasseaud, 1979). GST enzymes have been
studied extensively in eukaryotes since their discovery in 1961. GSTs are usually active
as dimers, and exists as both homodimeric and heterodimeric proteins. They can be
expressed constitutively or by induction of a variety of both natural and xenobiotic
compounds (reviewed by (Vuilleumier, 1997)).

GSTs have been defined to different classes, a, p, 7, 6, {, ® in mammals, ¢
and t in plants J in insects and [ in bacteria (Sheehan et al., 2001). £. coli has one GST
enzyme that has been cloned and characterized, and shows high affinity to GSH (K, of
40 uM) (lizuka et al., 1989; Nishida et al., 1994). E. coli GST was isolated as a dimer
of an identical subunit of 23 kDa, each consisting of 201 amino acid residues. The
E. coli GST conserves overall constructions common to the eukaryotic enzymes, in
polypeptide fold, dimeric assembly, and glutathione binding site (Nishida et al., 1998).
Its amino acid sequence is 54 % identical to that of Proteus mirabilis GST, but less
than 20 % any of the eukaryotic GSTs.

At a functional level, GST can be distinguished in two types. The first, most
common reacts with electrophilic compounds to yield stable glutathione conjugates.
The second type, yields metabolites and energy for the bacterial growth. The latter
enzymes may be quite specific for bacteria, since GSTs from eukaryotes appear not to
be active in central metabolism, but rather to specialize in detoxification reactions. In
bacteria, the few known glutathione S-transferases (e.g. dichloromethane dehalogenase,
1,2-dichloroepoxyethane epoxidase and tetrachlorohydroquinone reductase), are
catabolic enzymes with an essential role for growth on recalcitrant chemicals (e.g.
dichlormethane). Glutathione conjugates, produced by bacterial electrophilic
compounds, might be disposed through excretion. E. coli, possesses two glutathione-
gated potassium channels, KefB and KefC, which are activated by glutathione-S-
conjugates formed with methylglyoxal. Activation of these channels leads to
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cytoplasmic acidification, which protects the cells during electrophilic attack (Ferguson
et al., 1995).

1.13.2.2 Glutathione peroxidase

Glutathione peroxidases are believed to be one of the most important
defenses against peroxides in mammalian cells. Bacteria lack such activity, but it has
been detected in S. cerevisiae were three genes have been identified (GPX1, GPX2,
GPX3) (Galiazzo et al., 1987). Null mutants for the gene encoding for GPX3, are
hypersensitive to hydrogen peroxide and #-butyl hydroperoxide (Inoue et al., 1999).

1.13.2.3 Peroxiredoxins

Peroxiredoxins (Prxs) form a large family of antioxidant enzymes that is
divided into several molecular clades and is spread over all living domains. They are
low efficiency peroxidases using thiols as reductants, and differ from the other
peroxidases in that they do not contain metals ions or prosthetic groups. This family of
proteins was discovered as late as in 1988, when a thiol-specific antioxidant protein
(TSA) was identified (Kim et al., 1988). It was not until 1994 that the antioxidant
efficacy of TSA could be attributed to peroxidase activity, with the specific donor
substrate being thioredoxin (Chae et al., 1994). All TSA related proteins are today
collectively called ‘peroxiredoxins’ (Chae et al., 1994). The Prxs superfamily can be
divided into two subgroups, the 1-Cys and the 2-Cys peroxidases, in accordance to the

presence of one or two conserved cysteine residues in the catalytic mechanism of the

enzyme.

1.13.2.3.1 __ Thioredoxin peroxidases

In E. coli there are two enzymes that have peroxidase activity that require
thioredoxin and thioredoxin reductase for their catalytic cycle. The first enzyme is a
20 kDa periplasmic protein (encoded by #px) (Cha et al., 1995). It was discovered as a
peroxidase, protecting cells from DNA damage and glutamine synthetase inactivation
that was caused by metal-catalyzed oxidation. In E. coli substitution of serine for
Cys94 results in complete loss of Prx activity. Null mutants for fpx are hypersensitive
to the superoxide generating compound paraquat and slightly sensitive to
hydrogenperoxide and #-butyl hydroperoxide (Cha et al., 1996).

The second enzyme is a 18 kDa protein called bacterioferritin-comigratory
protein (encoded by bcp) and belongs to the 1-Cys peroxidases (Jeong et al., 2000). It
shows homology to alkylhydroperoxide reductase and has been found to have similar
antioxidant activity as the #px-encoded protein. Bcp mutants are hypersensitive to

hydrogenperoxide and 7-butyl hydroperoxide.
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1.13.2.3.2 ___Alkylhydroperoxide reductases

Alkylhydroperoxide reductase (encoded by ahpCF) is composed of two
components, a 22 kDa AhpC subunit that acts as a substrate and a 52 kDa AhpF
flavoprotein that uses NADH or NADPH to reduce oxidized AhpC.
Alkylhydroperoxide reductase converts lipid hydroperoxides and other ROOH to the
corresponding alcohols. The enzyme was discovered in an OxyR constitutive active
strain that was more resistant to cumene hydroperoxide than the parental wild type
strain (Jacobson et al., 1989). OxyR regulates the expression of ahpCF (Tartaglia et
al., 1989). Null mutants for aipCF are slightly more sensitive to hydrogen peroxide
and highly more sensitive to cumene hydroperoxide (Storz et al., 1989).

An E. coli strain that lacks thioredoxin reductase and glutathione reductase
grows extremely poorly under aerobic conditions unless a reducing agent such as
dithiothreitol (DTT) is present (Bessette et al., 1999). This strain can be rescued by
AhpC. It is a mutation occurring at high frequencies in the gene a/spC that leads to
restored cell growth in this strain. This mutation, leads to the addition of one amino
acid, which in turn converts the AhpC protein from a peroxidase to a disulfide
reductase, using Grx1 as substrate (Ritz et al., 2001).

1.13.3 Other antioxidant defence systems in E. coli
1.13.3.1 Superoxide dismutase (SOD)

E. coli contains the manganese and iron containing cytosolic SODs
(MnSOD and FeSOD respectively), and a periplasmic copper-zink containing SOD
(Cu/ZnSOD). In 1986 an E. coli mutant was constructed lacking both the iron and
manganese containing SOD isozymes. The null mutant exhibited growth defects, but
only when oxygen was present. This phenotype was also only apparent when both
enzymes were absent (Carlioz and Touati, 1986). SOD catalyses the reaction were
superoxide is conjugated to form hydrogen peroxide and oxygen:

20," +2H— H,0, +0,

1.13.3.2 Superoxide reductase (SOR)

Recently a novel type of superoxide scavenging enzyme, was discovered,
catalyzing the direct reduction of superoxide. These iron containing proteins were
named ‘Superoxide reductases’ (ROS), and have now been well characterized in

several organisms.
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In 1996 attempts were made to clone a SOD gene from Desulfoarculus
baasii. Surprisingly the isolated gene was a desulfoferrodoxin (Dfx), a protein that had
been previously described but whose function was unknown (Pianzzola et al., 1996).
Dfx was assisting in the scavenging of superoxide, even though the SOD activity of
Dfx was modest (Liochev and Fridovich, 1997). Two independent studies confirmed
that Dfx and its homologues enzymes may acts as superoxide reductases. The
superoxide reductase activity was confirmed by purifying and characterizing the
enzyme in Pyrococcus furiosus, and in Desulfoarculus baasii (Jenney et al., 1999;
Lombard et al., 2000). In Pyrococcus furiosus superoxide reductase uses electrons from
NAD(P)H and NAD(P)H-rubredoin oxidoreductase, to reduce superoxide to hydrogen

peroxide, which in turn is reduced to water by peroxiredoxins.
02.- + e_ '1‘21'1+ —> H202

1.13.3.3 Catalases

Catalases are found in most aerobic organisms and employ a two-electron

transfer mechanism in the dismutation of hydrogen peroxide to water and oxygen.
2H,0, — O, + 2H,O

Two catalases (or hydroperoxidases) with very different properties have
been identified in E. coli, hydroperoxidase I (HPI), and hydroperoxidase I1 (HPII). HPI
was first described as a bifunctional enzyme exhibiting catalatic and o-dianisidine
peroxidatic activity (Claiborne and Fridovich, 1979a). After a catalase deficient mutant
had ben isolated, the gene encoding for HPI, karG, was identified, subcloned and
sequenced (Loewen et al., 1985; Loewen et al., 1983; Triggs-Raine et al., 1988; Triggs-
Raine and Loewen, 1987). HPI has a tetrameric structure of identical 80 kDa subunits
and it contains two molecules of protoheme IX (Claiborne and Fridovich, 1979b). It is
induced in response to hydrogen peroxide and it is part of the oxyR regulon (Morgan et
al., 1986).

HPII was characterized as a monofunctional catalase, containing a modified
heme that gave the enzyme its characteristic green color (Claiborne et al., 1979;
Loewen and Switala, 1986). HPII is a tetramer of identical 84 kDa subunits, encoded
by katE. In contrast to HPI, HPII synthesis does not respond to hydrogen peroxide and
is not regulated by OxyR. HPII remains low throughout early exponential phase, and
increases six to nine folds in the transient to stationary phase (Loewen et al., 1985). The
induction requires ¢° (Mulvey et al., 1990). HPII is also important for long-term

survival under starvation conditions (Mulvey et al., 1990).
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1.14 RESPONSE TO CHALLENGES OTHER THAN OXIDATIVE STRESS

Organisms have acquired numerous responses required for their survival
during environmental variations. They have the ability to sense and adapt to changes in
temperature, osmolarity, nutrients and hydrogen ion concentration (pH). Part of the
bacterial stress responses and their connection to the thioredoxin and glutaredoxin

systems are briefly reviewed.

1.14.1 The stringent response

During nutrient starvation, cells of E. coli elicit stringent control to conserve
energy, the phenomenon termed “stringent response”. This control encompasses a rapid
reduction in ribosomal RNA biosynthesis during cellular starvation (Cashel et al.,
1996). The adaptation to nutrient stress is characterized by downregulation of nucleic
acids and protein synthesis and the simultaneous upregulation of protein degradation
and amino acid synthesis. The hallmark of the stringent control is the accumulation of
guanosine-3’,5 -tetraphosphate (ppGpp), which by binding to RNA polymerase
(RNAP) (Chatterji et al., 1998), causes a rapid reduction in ribosomal RNA
transcription, probably by reducing the stability of the open promoter/RNAP complexes
at ribosomal RNA promoters (Bartlett et al., 1998; Gourse et al., 1998). tRNA was
found to be regulated in a similar manner, were free tRNA accumulates at the A-site of
the 50s ribosome, leading to a stall in protein synthesis, in turn resulting in a reaction
were ribosome bound RelA is activated to synthesise ppGpp (Haseltine and Block,
1973).

ppGpp affects the growth rate of bacteria, since the synthesis of stable RNA
correlates directly with the growth rate of an organism. A steady—state level of ppGpp
at exponential phase is maintained in the cytosol by the two enzymes, RelA and SpoT.
RelA is a synthase, whereas SpoT primarily is a hydrolase, with synthase activity under
certain conditions. A spoTreld null mutant is therefore devoid of ppGpp and is
polyauxotrophic (Xiao et al., 1991). The alarmone ppGpp can also act as a positive
effector of gene expression, and a large number of o'’-dependent genes require this
nucleotide for their induction during stationary phase and starvation (Kvint et al., 2000).
For instance £. coli Trx1 transcription is positively regulated by ppGpp (Lim et al.,
2000). ppGpp is also involved in protein degradation and DNA replication (Cashel et
al., 1996; Kuroda et al., 1997; Kuroda et al., 1999). The DNA replication is inhibited by
ppGpp in cells during stringent response to cope with decreased cellular growth rate. It
was further shown that termination of DNA synthesis, during stringency, essentially
requires ppGpp and the replication protein, RTP, which is required for normal
termination (Autret et al., 1999). ppGpp participates also in the DNA repair pathway in
the cell (McGlynn and Lloyd, 2000).
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1.14.2 Regulation of gene expression of stationary phase

Bacteria respond to different stresses with the synthesis or activation of
sigma factors, which in turn regulate the transcription of genes involved in cellular
responses. E. coli has six different sigma factors that have evolved to respond to
different stresses, including starvation, heat shock, nitrogen depletion, extracytoplasmic
stress, citrate-dependent iron transfer and the need for flagellin.

The transcription factor 6°, encoded by 7poS was initially characterized as a
regulatory protein controlling the expression of proteins involved in the starvation or
stationary phase response. rpoS encodes a 342 amino acid, 38 kDa protein that
functions as an alternative sigma factor (sigma-38) for RNA polymerase. The rpoS
gene was first known as katF because of its regulatory effects on karE, which encodes a
stationary phase specific catalase (catalase IT) (Mulvey and Loewen, 1989). The gene is
very similar to the previous sigma factors in E. coli, and due to its crucial role under
stress conditions, Lange and Henge-Aronis renamed the katF gene to rpoS and
designated its product ¢* (Lange and Hengge-Aronis, 1991). ¢® has been shown to
control the expression of over 50 genes during the transient from exponential phase to
stationary phase. Some of the gene products are involved in protection against oxidants
(e.g. catalases) and repair of oxidative damage (e.g. exonuclease III). £. coli glutathione
reductase is one protein positively regulated by c° in the stationary phase of growth
(Becker-Hapak and Eisenstark, 1995).

High
Reduced  starvation High cell Low Increased LOW  Carbon temperature
growth rate Qﬁpemture OW
rpoS — % rpoSmRNA———p G S — » Proteolysis
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Transcription
>60 o*-dependent genes

FIG. 8. Regulation of ¢ is affected at different levels and by various stress conditions. An
increase in the cellular ¢° level can be obtained either by stimulating c° synthesis at the level of
transcription or translation or by inhibiting proteolysis of ¢°.

c° is involved in many phenomena specific for stationary phase, starvation,
osmotic shock, acid shock, heat shock and cold shock (Fig. 8). Protein levels of c°

51



Characterization and function of E. coli glutaredoxins

undetectable during exponential phase, but during entry into stationary phase they are
drastically increased (Jishage and Ishihama, 1995). The concentration of c° is
controlled at the level of transcription, translation and protein stability (Lange and
Hengge-Aronis, 1994). Control of rpoS transcription involves ppGpp as a positive
regulators and the cAMP receptor protein (CAMP-CRP) as a negative one. The
translation of ¢° is controlled by a number of interacting factors (HU, Hfq, DstA RNA,
OxyS, DksA and ppGpp) and the protein is sensitive to proteolysis by ClpP (Fig. 9). In
mutants lacking the protease ClpP, c° levels at the exponential phase were similar to
those in the stationary phase of wild type cells. On the other hand, ClpP levels remain
the same at all stages of growth, leading to the proposition that ¢° becomes more
resistant to this protease in the stationary phase (Schweder et al., 1996; Webb et al.,
1999; Zgurskaya et al., 1997). The null mutant for 7poS has a striking phenotype where
a rapid cell death follows soon after entry in the stationary phase (Eisenstark et al.,
1995).

RposS is believed to be involved in pathogenesis (Prince et al., 1994). In the
enterobacticterial pathogens, Sa/monella and Shigella, the wild type strain was found to
be substantially more lethal to mice than the rpoS mutant (Lee et al., 1995; Small et al.,
1994). There is also evidence that RpoS regulates genes that directly initiate cellular
infectivity (Heiskanen et al., 1994; Kowarz et al., 1994). Mouse inoculation studies
with Salmonella rpoS mutants of both wild type and virulence plasmid-cured strains
suggest that rpoS contributes to Salmonella virulence via the regulation of

chromosomal genes (e.g. the Salmonella plasmid virulence (spv) genes).

HU, Hfq, DsrA RNA

4
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FIG. 9. The rpoS translational network. RpoS mRNA is thought to exist in at least two
different conformations, one being a more closed structure (inactive), and the other being a
more open and translationally competent structure (active). The translation stimulating factors
HU, Hfq and DsrA RNA can bind to the rpoS mRNA and drive it to the active form. OxyS,
DksA and ppGpp are likely to act more indirectly.
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1.14.3 Acid stress

E. coli possesses an amazing ability to adapt and survive under acid stress.
One critical host defense system that E. coli must overcome is the acid stress barrier
present in the stomach. The mean stomach pH under fasting conditions is
approximately 2.0. These levels caused by inorganic acids (H+) in the stomach can be
life threatening to E£. coli. It has evolved both constitutive and inducible defense
systems to survive under these conditions. Three major functions of the cell may be
affected by acid conditions, the capacity for nutrient acquisition and energy
generation, cytoplasmic pH homeostasis and preservation of protein and DNA
structure. It is for instance known that several types of E. coli DNA repair mutants are
more rapidly killed under acidic conditions than their parental strain (Sinha, 1986).
Low pH is also an important signal that E. coli has entered a potential host
environment. This signal triggers the induction of many virulence genes (Lucas and
Lee, 2000). Among the many proteins induced by acid stress is E. coli Grx2 (Arnold
et al., 2001).

Three distinct, but overlapping, systems to resist acid stress have been
identified in E. coli (Hersh et al., 1996; Lin et al., 1995; Lin et al., 1996). Which
system is induced and functional, depends on the media and on the growth conditions.
The first system is an oxidative or glucose-repressed acid resistance, highly
dependent upon the transcription factor o® and repressed by glucose. In many
situations this system is also dependent on the cAMP receptor protein (Castanie-
Cornet et al., 1999). S. typhimurium mutants defective in rpoS or producing low
levels of c°, are extremely sensitive to acid treatment (Audia et al., 2001). The HdeA
protein, encoded by the hdeAB operon, is under control of ¢® and is one of the most
abundant proteins in the periplasm at the stationary phase of growth (Waterman and
Small, 1996). A null mutant for HdeA was found to exhibit 10 000-fold lowering in
its survival compared to the parental strain after incubation at pH 3. The current belief
is that HdeA and HdeB form heterodimers in the periplasm under normal conditions
that dissociate at acidic pH to bind to unfolded periplasmic proteins, preventing their
aggregation (Gajiwala and Burley, 2000).

The second system provides the highest level of acid resistance, allowing
cells to survive at very low pH (pH of 2). This system is glutamate dependent and
requires the two glutamate decarboxylase isoenzymes encoded by gadA and gadB and
the y-aminobutyric acid (GABA) antiporter GadC. At pH 2.5 only one of the gad
genes is required for rescuing the cell, while during more acidic conditions with pH
2.0 both the genes are required. The regulation of this system is very complex, with
the control occurring at the transcriptional level within a 20 bp conserved region

located 50 bp from the transcriptional start of both operons (Castanie-Cornet and
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Foster, 2001). It is believed that CRP normally represses the gad genes. When CRP-
CcAMP levels are high, ¢® is required for expression of gad. If CRP is absent or when
cAMP levels are low, ¢° is not required. In the latter case, the housekeeping o™
efficiently transcribes the gad genes. However, acid induction is still required (Audia
et al., 2001). Another protein functioning as an activator of gad4 is GadX. GadX
increases the production of the glutamate decarboxylases and activates the
transcription of the gadA and gadB promoters. It is proposed that GadX is a
transcriptional regulator of genes required for acid resistance and virulence of
enteropathogenic E. coli (Shin et al., 2001).

The third and last system to resist acid stress is an arginine-dependent acid
resistant system. This system shows a more modest protection of the cell compare with
the glutamate dependent system. This system requires arginine decarboxylase encoded
by adid. Arginine decarboxylase converts arginine to agmatine, resulting in the

consumption of a proton and thus elevation of the cytoplasmic pH.

1.14.4 Osmosis

Bacteria can survive dramatic changes in their extracellular osmolality.
Responses to osmolality changes are active or passive. Bacteria respond to osmotic
upshifts in three overlapping phases. Phase one (within 1-2 min) is characterized by
dehydration (loss of some cell water), phase two (after 20-60 min) by adjustment of
cytoplasmic solvent composition and rehydration and finally phase three (after 1 h)
by cellular remodeling (DNA/Protein synthesis, cell growth and division resumed).
The response to osmotic downshift is not as well characterized, but is also believed to
proceed in three phases. First water uptake in phase one, followed by extrusion of
water and cosolvents in phase two and last in phase three by cytoplasmic cosolvent
reaccumulation and cellular remodeling (for more details se (Wood, 1999)).

One general mechanism of response to osmotic conditions is via c°.
Osmotic upshift results in an elevated cellular c° level, similar to that observed in
stationary phase. The increase is a result of stimulation of rpoS translation as well as
inhibition of the turnover of ¢° .c° in turn, can acts as a global regulator for the
osmotic control of gene expression, and the regulation actually occurs in cells of the
exponential phase (Hengge-Aronis et al., 1993). It has been suggested that the *%, c*
and c° regulons co-operate closely in the management of hyperosmotic stress
(Bianchi and Baneyx, 1999). CRP-cAMP can also function as a sensitive regulator to
osmotic changes. The complex can function either as a repressor (e.g. proP P1
promoter) or as an activator (e.g. lac promotor) (Landis et al., 1999).

Mechanosensitive channels (MscS, MscM, Mscl) are central in the
release of cytoplasmic solutes to achieve a rapid reduction of pressure during the

transient from high to low osmolarity (Berrier et al., 1992). They are located in the
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cytoplasmic membrane of E. coli, and detect osmolality changes indirectly as changes
in mechanically imposed membrane stress. The MscL is the only mechanosensitive
channel cloned. The mscL gene encodes a 15 kDa protein with two transmembrane
domains (Blount et al., 1996). Two-dimensional crystals of the channel indicated a
homohexameric structure (Saint et al., 1998). A more recent investigation proposed
that it rather consists of five subunits (Sukharev et al., 1999). Cleavage of the external
loop of each monomer, results in a functional channel, but with dramatically
increased mechanosensitivity. It was suggested that the loop acts as a spring that
resists the opening of the cannel and promotes its closure when the channel is opened
(Ajouz et al., 2000).

Apart from the low molecular weight compounds (ions, metabolites and
osmoprotectants) released by the mechanosensitive channels, some cytoplasmic
proteins are also excreted from £. coli upon osmotic downshock; among them are Trx1
(Lunn and Pigiet, 1982). Levels of E. coli Trx1 are also elevated upon osmotic upshock
(Scharf et al., 1998). In a shift back to low osmolarity conditions, Trx1 is secreted via
the mechanosensitive channel MscL (Ajouz et al., 1998). It could be that the high levels
of Trx1 may be deleterious after osmotic upshock, or it could be that Trx1 may be
needed in the periplasm. Trx1 remains trapped in the periplasm, unless the outer
membrane is disrupted by Tris-EDTA treatment (Berrier et al., 2000).
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2 RESULTS AND DISCUSSION

The results on which this thesis is based on are thoroughly presented and

discussed in papers (I-V). Comments and brief summary for each paper follow below.

21 PAPERI

Characterization of Escherichia coli null mutants for glutaredoxin 2

In contrast to the classical E. coli Grx1 and Grx3, Grx2 is a larger protein,
of 24 kDa, with has almost no homology with the other glutaredoxins of E. coli,
except the conserved active site (CPYC). Little was known about this protein, so to
improve the understanding of glutaredoxin function, a null mutant for the Grx2 gene
(grxB) was constructed and combined with null mutants for the other glutaredoxins.
Null mutants for grxB and all three glutaredoxin genes (grxA4 grxB grxC") were viable
in rich and minimal media. Grx2 was found to contribute to 80 % of the total
glutaredoxin activity measured by the B-hydroxyethyl disulfide (HED) assay.

Levels of intracellularly expressed alkaline phosphatase (AP) showed that
Grx1 and Grx2 (but not Grx3) under certain conditions contributed in the reduction of
cytosolic disulfides. However, the role of Grxl as a reductant of disulfide bonds
could be reversed to that of an oxidant under very oxidizing environments. This
phenomenon had been described for the thioredoxins, but never before for the
glutaredoxins.

Glutaredoxins contributed to the defence against hydrogen peroxide, with
gshA and grxB minus cells being more sensitive to hydrogen peroxide and other
oxidants as shown by increased carbonylation of intracellular proteins of the relevant
mutants, particularly in the stationary phase. Grx2 and GSH are likely to constitute
therefore to the major thiol system for the protection of proteins against hydrogen
peroxide induced carbonylation.

Significant upregulation of catalase activity was observed in null mutants
for thioredoxin 1 and the three glutaredoxins, while upregulation of glutaredoxin
activity was observed in catalase deficient strains with additional defects in the
thioredoxin pathway. This shows an interconnection between the glutaredoxin and
catalase antioxidant defences.

An unexpected finding was that gor-grxA-grxB-grxC- stains did not grow
well on minimal medium plates unless supplemented with some form of reduced sulfur
(SOs%, Met or Cys). Reduction of SO, to SOs” is catalyzed in E. coli by PAPS
reductase. Trx1, Trx2 and Grx1 can reduce the disulfide of the PAPS reductase while
Grx2 and Grx3 cannot. Therefore, £. coli should not need any glutaredoxin to reduce
sulfate to sulfite, thioredoxins should be able to compensate for this fully. However,
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since gor-grxA-grxB-grxC- cells could be rescued by monothiol Grx2, it seems that a
mechanism for the activation of PAPS reductase involves a mixed disulfide with
GSSG, which in turn results in an inactive enzyme. In other words, we believe that
PAPS reductase is a subject to a mixed disulfide mechanism for the regulation of its

activity.

2.2 PAPERII
Protein levels of Escherichia coli thioredoxins and glutaredoxins and

their relation to null mutants, growth phase and function

The aim of this work was to further characterize the interactions and
compensation of the thioredoxin and glutaredoxin systems of E. coli. We developed
sensitive ELISAs for the two thioredoxins (Trx1, Trx2) and the three glutaredoxins
(Grx1, Grx2, Grx3) of E. coli. We found that levels of the Grx2, Grx3 and Trx1 were
highly abundant. In a wild type strain, Trx1 levels increased at the stationary phase of
growth, as did the levels of Grx2. Grx3 and Trx2 levels were quite stable during
growth. Grx1 levels decreased, while cells moved from the exponential to the
stationary phase of growth.

The levels of the different redoxins were further analysed in different
genetic backgrounds. A dramatic elevation of Grx1 (20-30-fold) was observed in null
mutants for trxArxC and trxAtrxBtrxC while levels of the other redoxins in all
combinations of examined null mutants increased about 2-3-fold. Overall, our data
suggest that only Grx1 and Trxl have strictly overlapping and specific functions,
presumably the reduction of ribonucleotide reductase. The reduction of
ribonucleotide reductase was examined by measurements of thymidine incorporation
in newly synthesized DNA, by using different null mutant cells. This showed that it is
mainly Grxl and to a lesser extent Trxl that are involved in the reduction of
deoxyribonucleotides.

All glutaredoxin species were elevated in catalase deficient strains,
particularly when combined with null mutants from the thioredoxin or glutaredoxin
system, implying an antioxidant role for the glutaredoxins. However, administration
of hydrogen peroxide resulted in a decrease of Grx2 (and Grx3) levels while addition
of mercaptoethanol increased the amounts of both Grx2 and Grx3. Transcription of
Grx2 and Grx3 is thus not likely to be regulated by OxyR.

It is known that the expression of GR is regulated at the exponential phase
by OxyR (Christman et al., 1985) and at stationary phase by ppGpp (Becker-Hapak
and Eisenstark, 1995). In agreement with previous results we found that GR levels
were higher at the stationary phase of growth. Simultaneous elevation of GR activity
and the glutaredoxin activity (katEkatG and katEkatGtrxB null mutants) was also
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detected. This would fit well with the need to reduce their increased glutathione
disulfide occurring as a by product of increased glutaredoxin activity in the particular

strains.

2.3 PAPERIII
Expression of Escherichia coli glutaredoxin 2 is mainly regulated by
ppGpp and sigma s

We wanted to investigate the regulation of Grx2 during the transient from
exponential growth to starvation. Guanosine-3’.5’-tetraphoshate (ppGpp) and o°
(RpoS), which regulate the transcription of genes in the stationary phase of growth
affected dramatically the expression of Grx2. Grx2 expression was inhibited by cAMP
at the exponential phase, but since it is known to function as a negative regulator for the
expression of o, the effect on Grx2 is more likely to be indirect through down
regulation of o°. Grx2 levels were also positively affected by osmotic upshock. More
experiments are needed to elucidate whether this is a direct effect or an indirect effect
via 6°.

OxyR, a positive effector for the expression of Grx1, did not affect the
levels of Grx2 or Grx3. Grx2 levels were instead elevated in an oxyR null mutant. In
comparison to Grx2, levels of Trx1 were mainly regulated by ppGpp but not c°. In
accordance with the role of Grx2 as a protein of the stationary phase, null mutants for
grxB were lysing at the stationary phase of growth and exhibited a distorted
morphology.

The elevation of Grx2 levels to up to 1 per cent of total cell protein
combined with the high GSH levels of the stationary phase (Loewen, 1979), and the
distorted morphology of the grxB™ cells at the stationary phase, imply a vital yet
unknown function for Grx2.

24 PAPERIV
Redox regulation of 3’-phosphoadenylylsulfate reductase from

Escherichia coli by glutathione and glutaredoxins

PAPS reductase is the key enzyme for the reduction of sulfate to sulfite.
Prototrophic bacteria or fungi mainly use inorganic sulfate as the only supply of sulfur
for the biosynthesis of amino acids and essential cofactors. In E. coli, Trx1 or Grx1 is
essential for the reduction of sulfate. In this paper we wanted to investigate the actual
reason from our previous finding that a gor-grxA4-grxB-grxC- stains did not grow well
on minimal medium unless supplemented with reduced sulfur, even though thioredoxin
was present (Paper I).
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We found that incubation of PAPS reductase with oxidized glutathione lead
to enzyme inactivation with simultaneous formation of a mixed disulfide between
glutathione and the active site Cys239. Glutathionylated PAPS reductase could be
reduced in vitro by the glutaredoxins. Furthermore, glutathionylated PAPS was
observed also in vivo in poorly growing gor grxA'grxB grxC expressing inactive Grx2
C9S-C128S. However, in better growing cells expressing monothiol Grx2C12S or wild
type Grx2, the protein mixed disulfide species was absent. Reversible glutathionylation
may thus regulate the activity of PAPS reductase (Fig 10).

~SH 3 -8-8G 3 -$-SG
GSfSG GS-SG
—_—
4 GSH 4 GSH
open -SH -SH -5-SG
open,
PAPS inactive
1 2
-SH
PAPS '? 1: only PAPS
: i Y -3 2: only trx, grx (dithiol), not DTT
. PAP 3: GSSG
-S suffite  glosed 4: only grx {monothiol), not DTT

Fig. 10. Model of the thiol-based mechanism and the conformational changes of PAPS

reductase.

Formation of protein-glutathione mixed disulfides is of physiological
relevance for E. coli, since up to 2 % of the total glutathione content (10 - 20 uM) is in
the form of protein-mixed disulfides in a wild type cell and can be even higher, as for
example in trxAgrxA null mutants (5 - 7 %) (Miranda-Vizuete et al.. 1996). In
mammalian cells, extensive glutathionylation of protein substrates has been identified
to include chaperons, cytoskeletal proteins, cell cycle regulators and enzymes
participating in the intermediate metabolism (Lind et al., 2002). A similar study would
be of great interest for the E. coli system.

2.5 PAPERYV

Cloning and characterization of a novel Escherichia coli monothiol

glutaredoxin

In this work we report the cloning of a novel putative monothiol E. coli
glutaredoxin, glutaredoxin 4 (Grx4). This is a protein of 115 amino acids (13 kDa), a
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monothiol active site (CGFS) and with high homology to the monothiol yeast Grx5 (37
% sequence identity). The active site of Grx4 (CGFS) is identical to that of the yeast
enzymes, but in terms of size, Grx4 is close to Grx1 and Grx3 from E. coli of ~10 kDa.
In comparison, yGrx3 is of 285 amino acids, yGrx4 of 244, yGrx5 of 151 and the
human PICOT of 335. E. coli Grx4 with 115 amino acids is thus the smallest of the
monothiol family. The predicted fold for Grx4 is suggestive of the classical alternated
o/ structure for Trx/Grx. Structural analysis of Grx4 by CD showed a mixed o/f3 fold
but also a higher helical content in comparison to Grx1.

Grx4 lacked activity in the classical HED assay that measures the reduction
of the low molecular weight mixed disulfide between [3-mercaptoethanol and oxidized
glutathione. To examine whether the lack of activity of Grx4 in the HED assay was due
to its CGFS monothiol active site, we overexpressed Grx4 mutants with a dithiol
(CGFC, CPYC) in the active site. These mutants were not active in the HED assay.
Since overexpressed Grx4 was folded properly (CD data), it could be that the HED-
gluathione mixed disulfide is simply not a substrate for Grx4. Grx4 was active however
in the reconstitution of [4Fe-4S] cluster in apoFNR to give FNR. FNR is a
transcriptional factor that upregulates the transcription of proteins in conditions of low
oxygen.

Grx4 was highly abundant, with levels up to 6 pg/mg of total soluble
protein. Like the other three glutaredoxins of E. coli, Grx4 was upregulated in mutants
lacking the thioredoxin system. As is the case for Grx2 and Trxl, Grx4 was
upregulated at the stationary phase of growth with an almost three-fold increase. The
regulation of Grx4 thus differs from that of the yeast monothiol glutaredoxins, which
were, all at their maximum expression during the exponential phase of growth and their
mRNA levels decreased under detection limits at the stationary phase (Rodriguez-
Manzaneque et al., 1999). Levels of Grx4 were regulated at the stationary phase by
ppGpp, but not RpoS. This regulation by ppGpp is similar to that of Trx1 (Lim et al.,
2000).

60



Aristi Potamitou

3 CONCLUSIONS
The results in this thesis expanded the understanding of the role of the
glutaredoxin system in E. coli. More specifically:

3.1.1.1 Paper!

o Grx2 comprised 80 % of the catalytic activity of the glutaredoxins in the cell,
when measured by the classical HED assay.

o Grx2 has a protective role in the defense against oxidative stresses. The relevant
null mutant had very high levels of protein carbonylation after treatment of the
cells with hydrogen peroxide.

o Grx1 could act as a disulfide bond-forming enzyme under oxidizing conditions.
This has been reported for the thioredoxin previously, but not for any
glutaredoxin.

3.1.1.2 Paper Il
o Five sandwich ELISAs were developed, for Grx1, Grx2, Grx3, Trx1 and Trx2

in E. coli. The assays were shown to be highly specific and sensitive.

o Levels of Grx2 and Grx3 were found to be very abundant in the cell, with Grx2
reaching as high as to 10 pg/mg of total soluble protein.

o Grx1 and to a less extend Trx1, were shown to be the main hydrogen donors for
ribonucleotide reductase.
3.1.1.3 Paper III

o As previously shown for Trx1l, Grx2 was elevated at the stationary phase of
growth. Furthermore, ppGpp and RpoS regulated the expression of Grx2.

o Grx2 was positively regulated by osmotic upshock, and downregulated by
c¢AMP. These changes might be a direct effect on Grx2 or an indirect via c°.
3.1.1.4 PaperlV

o PAPS reductase is glutathionylated in vitro and in vivo, and its activity is redox
regulated by the glutaredoxins.
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3.1.1.5 PaperV

o A novel glutaredoxin, Grx4, was discovered, belonging to the category of

monothiol glutaredoxins, having the active site CGFS.

o Grx4 seems having a thioredoxin/glutaredoxin fold, but with a higher o-helical
content (CD spectra).

o Grx4 lacks activity in the HED assay, but is active in the reconstitution of the
Fe/S cluster protein FNR.

o Grx4 is likely to be regulated by ppGpp in an RpoS independent manner, but
only at the stationary phase of growth.
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4 FUTURE PERSPECTIVES

Findings presented in this thesis have raised several important questions
concerning the role and function of different proteins of the thioredoxin superfamily.
Listed below are some questions that I would like to address in the future.

41 EXAMINE REGULATION OF GLUTAREDOXINS AT
TRANSCRIPTIONAL LEVEL
Our analysis on the regulation of Grx2 and Grx4 have so fare only been
performed at the protein level. To better understand the mechanism, we are planning to
perform quantitative mRNA measurements of Grx2 and Grx4 to really show that there
is a transcriptional regulation. In addition we would like to do in vitro transcription

experiments with different forms of E. coli RNA polymerase.

4.2 |IDENTIFICATION OF CANDIDATE SUBSTRATES FOR GRX2, GRX3
AND GRX4

We recently found that Grx2, Grx3 and Grx4 are highly abundant in cells,
with Grx2 reaching up to 10 pg/mg (one per cent) of total soluble protein while
contributing to more than 80 % of total GSH-oxidoreductase activity (HED assay) in
E. coli crude extracts. However it is only Grx1 that has been thoroughly characterized
in terms of specific electron acceptors. We therefore want to characterize the unknown
substrates for these glutaredoxins using the following methods:

(i) Via monothiol glutaredoxin mutants.

Overexpression of a monothiol glutaredoxin species fused to a His-tag
will lead to formation of a stable complex of monothiol glutaredoxin and its
substrate(s). The complex will be purified using an affinity matrix for the His-tag.
Reduction with DTT will release the glutaredoxin partner, which will finally be
identified with electron spray mass spectrometry or N-terminal sequencing.

(ii) Via the identification of substrates after reduction-alkylation.

Crude lysates will be alkylated and then treated with reduced glutaredoxin.
A new alkylation will follow with a fluorescent alkylator. Lysates will be analyzed in
2D gels and samples treated with glutaredoxins will be compared with the non-treated
controls. Fluorescent spots in the glutaredoxin-treated samples (good candidates for
glutaredoxin substrates) will be analyzed by electron spray mass spectrometry or N-

terminal sequencing.
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With the second method, we will also be able to identify in vivo
glutathionylated proteins. Glutathionylation is now a day believed to play an important
role in protein regulation, and over 2 % of the total protein concentration is

glutathionylated in E. coli under normal conditions.

4.3 STRUCTURAL DETERMINATION OF GRX4

A structure of a monothiol glutaredoxin is currently lacking. Such a
structure would provide information on the folding similarities between classical dithiol
and monothiol glutaredoxin isoforms. It will also contribute to a better understanding of
the monothiol mechanism and the substrate specificity of monothiol glutaredoxin
species. Therefore, we are currently working on the structural determination of Grx4 in
collaboration with Malin Fladvad and Maria Sunnerhagen (Molecular Biophysics,
MBB).

4.4 NRDH LEVELS AND REGULATION

NrdH is a protein with thioredoxin like enzymatic properties, but a structure
similar to £. coli Grx3. Little is known today about its in vivo function and regulation
of expression. Therefore, we have raised polyclonal antibodies against NrdH and will
set up a specific ELISA method to determine the actual protein levels. We will also
measure the levels of NrdH after growth under various conditions and in different
genetic backgrounds to elucidate its specific function i vivo.

4.5 GLUTAREDOXIN LEVELS AND FUNCTIONS UNDER ANAEROBIC
CONDITIONS

There is considerable evidence about the levels and function of glutaredoxins
under aerobic conditions. We would therefore like to measure the glutaredoxin levels in
different genetic backgrounds under strictly anaerobic conditions. This might help to

elucidate functional differences between the glutaredoxins.
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