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ABSTRACT

Multiple chromosome rearrangements (MCRs) are detected in approximately 10% of patients with acute
myeloid leukemia (AML), and are associated with an adverse prognosis. Comprehensive analysis of the
chromosome rearrangements in these complex karyotypes has previously been hampered by the limitations
of conventional cytogenetic techniques such as G-banding. As a consequence, our knowledge concerning
the genetic alterations in these malignancies is limited. We applied spectral karyotyping (SKY), comparative
genomic hybridization (CGH) and cDNA microarrays to bone marrow cells from AML patients with MCRs
in order to characterize these rearrangements on the genomic and transcriptional level.

Using SKY and CGH we resolved 12 complex AML karyotypes, and also detected novel chromosome
rearrangements. We showed that many of the deletions scored by G-banding harboured cryptic
chromosome rearrangements. The majority were unbalanced translocations and most frequently resulted in
chromosome loss of 5q, 7q and 17p, and chromosome gain of 11q. In addition, the SKY analysis revealed a
number of balanced translocations that had not been desctibed before. Some seem recurrent and may reflect
novel fusion genes directly involved in leukemogenesis. (Paper I)

The chimeric transcripts of one reciprocal translocation detected by SKY, a t(8;16)(p11;p13);(MOZ-CBP),
was analyzed at the sequence level using RT-PCR. The resulting RT-PCR method could be diagnostically
useful, since the detection of t(8;16) in AML has clinical ramifications and may be difficult to identify by
chromosome banding alone. (Paper IT)

In order to investigate the transcriptional profiles of leukemic cells with MCRs we also developed and
applied a high-density cDNA microarray assay. We showed that most of the chromosome rearrangements

were manifested in aberrant gene expression profiles in a gene-dosage dependent manner. (Paper II1)

We also investigated the role of hTERT/telomerase in tumorigenesis and disease. Telomeres, which
constitute the ends of chromosomes and are essential for genomic stability and integrity, are synthesized by a
ribonucleoprotein reverse transcriptase called telomerase. Telomerase consists of an RNA template, a reverse
transcriptase (WTERT) and telomerase associated proteins.

Because hTERT/telomerase activation is critical for cellular immortalization and tumorigenesis we
investigated the copy numbers of /TERT in human tumors and found that ATERT is a frequent target for
DNA amplification. (Paper IV)

Chri-du-Chat syndrome (CdCs) is one of the most common human deletion syndromes and results from
a deletion of the distal part of chromosome arm 5p, where the #/TERT gene is located. We showed that a
heterozygous loss of /TERT is present in CdCs and that hTERT is limiting for telomere maintenance in
humans. Therefore, CdCs might be used as a model to study hTERT regulation and telomerase biology in
humans. (Paper V)

Certain somatic cells can acquire an immortal phenotype by forced expression of hTERT/telomerase.
Treatment with exogenous hTERT has been proposed as a cell-based therapy to allow indefinite expansion
of normal human cells without damaging their genomes. However, using cDNA microarrays we showed that
the gene expression profile of hTERT-immortalized fibroblasts (WTERT-B] cells) is significantly different
from that of normal mortal fibroblasts. One of the highly expressed genes in the hTERT-B]J cells encodes
epiregulin and we found its expression was required to maintain the immortal phenotype. Given the
significant difference in gene expression profiles between the normal and hTERT-immortalized fibroblasts
and the close relationship between epiregulin and tumorigenesis, we concluded that the use of hTERT for

expansion of normal human cells for therapeutic purposes must be approached with great caution. (Paper
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INTRODUCTION

There are more than 100 distinct types of cancer and even more subtypes. Cancers are
classified according to the tissue and cell type from which they arise and can be divided into
four major categories: cancers derived from epithelial cells (carcinomas), from connective
tissue or muscle cells (sarcomas), from hematopoietic cells and cancers detived from cells
of the netvous system. Most cancets originate from a single cell that has undergone a
specific genetic change that enables it to outgrow its neighbours (Fearon et al. 1987;
Fialkow 1976; Hanahan and Weinbetg 2000). Howevet, a single mutation is not sufficient
to convert a healthy cell into a cancer cell. Instead, cancer seems to atise by a process in
which an initial population of slightly abnormal cells, the descendants of a single mutant
ancestor, evolves from a hypetproliferative to a malighant state through successive cycles of
mutation and natural selection (Caitns 1975; Nowell 1976; Vogelstein and Kinzler 1993).
Because cancer is the outcome of a series of random genetic accidents subject to natural
selection, no two cases even of the same vatiety of the disease are likely to be genetically
identical. Nevertheless, several lines of evidence indicate that many of the genetic alterations
seen i cancer can be rationalized to reflect a few essential alterations in cell physiology that
is common to all cancers, namely: the aquisition of autonomous growth, loss of sensitivity
to growth inhibitory signhals, escape from programmed cell death, deficiency in DNA repair
pathways, unlimited ability of cell division, sustained angiogenesis and the ability for
invasive growth and metastasis (Hahn and Weinberg 2002; Hanahan and Weinberg 2000).

There were two aims for the present study. The first was to determine specific genetic
alterations in one type of cancet, acute myeloid leukemia. The second was to examine the
role of telomerase/hTERT in tumotigenesis.

AcCUTE MYELOID LEUKEMIA

Acute myeloid leukemia (AML) tesults from a clonal expansion of myeloid precutsor cells
in the bone marrow, blood ot other tissues (Jaffe et al. 2001). AML includes all forms of
acute leukemia detived from the myeloid, monocytic, etythrocytic and megakaryocytic cell
lineages (Figure 1), and accounts for 70% of all acute leukemias in the Western wotld (Jaffe
et al. 2001). In Sweden, the incidence is approximately 4/100,000 population pet year
(Astrom et al. 2000). AML is uncommon in childhood and the median age at diagnosis is
69.5 years (Astrom et al. 2000).

The clinical sighs and symptoms of AML are diverse and non-specific, but they are usually
directly attributable to the leukemic infiltration of the bone marrow, with resultant
cytopenia. Typically, patients present with signs or symptoms of fatigue, hemorrhage, or
infections with fever due to dectease in red cells, platelets, or white cells, respectively. AML
is an acute disorder because it will cause rapid death of the patient in the absence of
approptiate therapeutic intervention.
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Figure 1. Normal hematopoesis.

Epidemiological studies suggest that both environmental and hereditary factors play a role
in the pathogenesis of leukemia. Among the exogenous factors are viruses, ionising
radiation, cytotoxic chemotherapy and benzene (Sandler and Ross 1997). Cigarette smoking
increases the tisk by about two-fold. Certain heteditary disorders including Bloom’s
syndrome (German 1997; Poppe et al. 2001) and Fanconi’s anemia (Butturini et al. 1994)
are associated with an increased risk of developing AML. An important feature these
disorders have in common is that the susceptibility genes are involved in aspects of
recombinational repair of DNA damage (T'aylor 2001).

Diagnosis and Classification

Diagnosis of AML is established on the basis of morphological, cytochemical, cytogenetic
and immunophenotypic analysis of blood and bone marrow samples. The definitive
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ctitetion for diagnosis is the presence of at least 30% of leukemic blasts in a bone marrow
smear (Bennett et al. 1985).

Fot most of the 20th centuty, AML was subclassified on the basis of similarities between
the leukemic cells and the ptrecursor cells identified at the various developmental stages in
normal hematopoiesis. This approach seemed intuitively obvious, and since the treatment
of these diseases had poor success, it was quite satisfactory. A cooperative French-
American-British (FAB) study group proposed a set of critetia that became widely accepted
in AML classification (Bennett et al. 1976, 1985; Cheson et al. 1990). The initial FAB
classification from 1976 was based on cytomorphology and cytochemistry. As other
techniques like immunophenotyping, cytogenetics, and molecular genetics contributed to
the definition of AML subtypes, the classification was updated in 1985 and now
encompasses eight major subgroups:

MO Acute myeloblastic leukemia without matutration

M1 Acute myeloblastic leukemia with minimal maturation
M2 Acute myeloblastic leukemia with maturation

M3 Acute promyelocytic leukemia

M4  Acute myelomonocytic leukemia

M5 Acute monocytic leukemia

MG Acute etythroleukemia

M7 Acute megakatyoblastic leukemia

A weakness of the FAB classification is its limited clinical televance. In 1999 the World
Health Organization classification for tumors of hematopoietic and lymphoid tissues was
proposed (Jaffe et al. 2001). In an attempt to define biologically homogeneous entities with
clinical relevance it includes morphologic, immunophenotypic, genetic features and clinical
features in its classification. The WHO classification of AML encompasses four major
categoties:

Acute myloid leukemia with recurrent genetic abnormalities
Acute myloid leukemia with multilineage dysplasia

Acute myloid leukemia, therapy related

Acute myloid leukemia not otherwise categorized

The FAB and WHO classifications are cutrently used in parallel.

Prognosis

In general, patients with AML have a poor prognhosis. About 50-85% of patients will
achieve complete remission (<5% of bone marrow blasts) with combined drug therapy.
However, most of these patients will relapse, and only 20% will achieve a long-term
survival (Hiddemann and Buchner 2001). Adverse prognostic factors include an age over 60
yeats, poot physical condition before treatment, AML resulting from prior chemotherapy
or an antecedent hematologic disorder such as a myelodysplastic syndrome (MDS) and high
leukocyte count (Lowenberg 2001). A detailed cytogenetic analysis of the leukemic cells has
been demonstrated to provide critical prognostic information (Ferrant et al. 1997,
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Grimwade et al. 1998; Heim and Mitelman 1995; Jaffe et al. 2001; Mrozek et al. 2001).
AML associated with certain translocations such as t(8;21)(q22;922), t(15;17)(q22;q12) and
inv(16)(p13922)/t(16;16)(p13;q22) ate generally accompanied by a relatively favourable
tesponse  to  therapy, while deletions of 5q or 7q, monosomy 7,
inv(3)(q21926)/t(3;3)(q21;q26) and a complex karyotype ate associated with an adverse
prognosis. In addition, an assessment for multidrug resistance (van den Heuvel-Eibrink et
al. 2000) and immunophenotyping (Hrusak and Porwit-MacDonald 2002) may also provide
prognostic information.

Molecular Pathogenesis

Hematopoiesis (Figure 1) is a stepwise process driven by the alternate expression of specific
transctiptional regulators, growth factors and growth factor receptors, whose combination
determines lineage commitment and maturation (Friedman 2002; Tenen et al. 1997).
Regardless of subtype, AML is characterized by a defect in the normal process of
maturation that converts a myeloid precutsor cell into a mature white blood cell. This block
to differentiation is associated with abnormal proliferation, enhanced cell survival and
diminished response to apoptotic stimuli (Alcalay et al. 2001; Kitada et al. 2002;
Liebermann and Hoffman 2002). Although leukemias are heterogeneous in terms of
phenotype, disease progtression, prognosis and response to therapy, there are a limited
numbetr of mechanisms undetlying leukemic transformation. Those that seem to be of
majot impottance in our understanding and management of AML are summatized below.

Cytogenetic abnormalities

Approximately 65% of AML patients have detectable cytogenetic abetrations in their
leukemic cell population at the time of diagnosis, the remainder have a normal karyotype
(Heim and Mitelman 1995; Grimwade et al. 1998; Mrozek et a. 2001). The cytogenetic
aberrations can be divided into three major groups: balanced rearrangements, unbalanced or
numerical aberrations, and multiple chromosome rearrangements. However, these groups ovetlap, for
example, a ptimary translocation can sometimes be seen as part of a complex karyotype.

Balanced  rearrangements. 'The vast majority of cytogenetic aberrations in AML ate
chromosome translocations and inversions. These balanced rearrangements often represent
critical, eatly events in the genesis of the leukemic clone (Bernardi et al. 2002; Brown et al.
1997; Castilla et al. 1996; Corral et al. 1996; Yuan et al. 2001). At the site of the
chromosome break, they give tise to gene fusions. The coding exons of the two genes
involved become juxtaposed and form a single fusion gene, which codes for a novel hybrid
protein with unique featute. Of the two components of each fusion protein, one is usually a
transctiption factor, whereas the other partner is more vatiable in function, but is often
involved in the control of cell survival and apoptosis (Alcalay et al. 2001; Look 1997;
Scandura et al. 2002). As a consequence, AML-associated fusion proteins function as
aberrant transcriptional regulators that interfere with the process of myeloid differentiation
and enhance cell survival. In addition, the specific stage of myeloid maturation arrest
appears to be directly dependent on the nature of the fusion protein expressed. A large
number of diverse translocations have been described in AMI, of which several are
associated with specific subtypes of AML (Mitelman et al. 2002). The most well studied ate
t(15;17)(q22;q12);(PML-RARa) in M3 acute promyelocytic leukemia (APL) (Brown et al.
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1997), t(8;21)(q22;q22);(AML7-ETO) in M2 AML (Yuan et al 2001), and
inv(16)(p13q22)/t(16;16)(p13;q22);(CBFS-MYHT17) in M4 AML with eosinophilia (Castilla
et al. 1996). Together with their vatiants and the t(9;11)(p22;q23);(MLL-4F9) (Cozral et al.
1996), they account for approximately 40% of all AML (Look 1997).

Unbalanced or numerical aberrations. Recurrent unbalanced or numerical cytogenetic aberrations
are also frequently observed in AML (Heim and Mitelman 1995; Grimwade et al. 1998).
The most common ate deletions of 5q and 7q, and monosomy 7, but deletions of 9q, 12p
and 20q, and trisomy 8 are also seen frequently. The critical genes disrupted by these
abnormalities have not been identified.

Multiple chromosome rearrangements. Approximately 10% of AML patients do not have a single
chromosome aberration at diagnosis but multiple chromosome rearrangements (MCRs)
involving three or mote chromosomes (Grimwade et al. 1998; Heim and Mitelman 1995).
AML patients with MCRs respond pootly to antileukemic treatment and it is likely that
some of these rearrangements contribute to drug resistance and disease progtession
(Schoch et al. 2001). The MCRs in AML often result in chromosome loss of 5q, 7q and 17p
and chromosome gain of 11q and 21q (Lindvall et al. 2001; Van Limbetgen et a. 2002;
Mrozek et a. 2002; Schoch et al. 2002), but the molecular consequences of MCRs ate pootly
understood.

Tyrosine kinase oncogenes

Activating mutations in tyrosine kinases resulting in constitutive kinase activity ate common
in AML (Mecucci et al. 2002). Many of the tyrosine kinase oncogenes ate detived from
genes, such as ¢=A4b/, ¢-Fes, Flt3, c-Fms, ¢-Kit and PDGFRY, that are normally involved in the
regulation of hematopoiesis or hematopoietic cell function (Scheijjen and Griffin 2002).
Despite differences in structure, normal function, or subcellular location, many of the
tyrosine kinase oncogenes signal through the same pathways, including the activation of
phosphotidylinositol 3-kinases (PI3K), the Ras/Raf/MAP kinases, phospholipase C (PLC)
and Signal transducers and activators of transcription (Stats) (Rane and Reddy 2002). It
should be pointed out that cettain chromosome rearrangements can also cause constitutive
kinase activity. For example, the fusion protein c-Abl-Ber of the t(9;22)(q34;q11) has
elevated tyrosine kinase activity (Konopka et al. 1984).

The most striking example of a tyrosine kinase oncogene in AML is FLLT3. Internal tandem
duplications and activating mutations have been found in approximately 20% and 7% of
AML patients, respectively (Nakao et al. 1996; Schnittger et al. 2002; Yamamoto et al.
2001). Internal tandem duplications are usually found as an isolated anomaly in patients
with normal katyotype and have been associated with an unfavourable prognhosis
(Meshinchi et al. 2001; Schnittger et al. 2002; Whitman et al. 2001). FLT3 is a receptor
tyrosine kinase and appears to mediate cell proliferation and differentiation of
hematopoietic stem cells (Molineux et al. 1997; Muench et al. 1995). The importance of
FLT3 has led to assesment of selective inhibitors as potential therapy for AML. AG1295
(Levis et al. 2001), AG1296 (T'se et al. 2001), hetbimycin A and radicicol (Naoe et al. 2001;
Zhao et al. 2000), are molecules under investigation that show great promise and may lead
to major advances in the treatment of AML.
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Tumor suppressor genes

Homozygous mutations in tumor supptessor genes ate tare in AML. Nonetheless,
dominant-negative mutations have been tepotrted for a number of tumor suppressor genes,
including C/EBPa (Lin et al. 1993) and WT7 (Call et al. 1990; King-Underwood and
Pritchard-Jones 1998). C/EBPu is a transctiption factor, which is known to be a tumor
suppressor and proliferation inhibitor (Lin et al. 1993). Recently it was shown that
mutations of the C/EBPa gene occur in up to 17% of M2 AML with a normal karyotype
(Gombeart et al. 2002; Pabst et al. 2001b). Furthermore, cettain chimeric proteins formed by
chromosome translocations, e.g. AMLI-ETO, can produce a dominant negative
transctiption factor that can decrease exptession of tumor suppressor genes (Pabst et al.
2001a). Gene expression can also be repressed by epigenetic mechanisms such as promoter
hypermethylation, and this may be important in the progression of AML. For example, a
high frequency of hypermethylation of the p75TK*B promoter has been reported for AML
and an inverse cortelation between p75TNKB methylation and ovetall sutvival has been
observed (Chim et al. 2001; Wong et al. 2000).

Alterations of p53 (Levine 1997), the “guardian of the genome”, are found in AML, most
frequently in therapy-related AML and in patients with 17p deletions. In two studies
involving 351 AML and MDS patients, 64% of the patients with 17p deletions had a point
mutation of the remaining p53 allele. On the other hand, only 3% without chromosome
17p deletions had a p53 mutation (Fenaux et al. 1991; Lai et al. 1995).

Secondary leukemia

Secondaty AML are those associated with prior radiotherapy, chemotherapy, or that atise
from an antecedent hematologic disorder such as MDS. Generally patients with secondary
leukemia have a poor prognosis (Dann and Rowe 2001). Chemotherapy-telated leukemias
were first described in survivors of Hodgkin’s disease treated with nitrogen mustard
(mechlorethamine), but were later found in patients treated with other alkylating agents
(procatbazine, lomustine, chlorambucil), and in patients receiving epipodophyllotoxins
(teniposide and etoposide) or other drugs that target topoisomerase II (e.g. anthracyclines)
(Dann and Rowe 2001). The vast majority of therapy-related leukemias will occur within 10
years of the chemotherapy and the risk of developing them generally relates to the
cumulative dose of the offending agent. The cytogenetic lesions associated with therapy-
related leukemias segregate with the class of the antecedent chemotherapy. (Andersen et al.
2002; Dann and Rowe 2001; Olney et al. 2002; Pedersen-Bjergaard et al. 2002; Slovak et al.
2002) Secondary leukemias induced by alkylating agents are most frequently associated with
loss of all or part of chromosomes 5 or 7, usually present first with myelodysplasia, and
have a long petiod of latency (5-7 years). AML associated with topoisomerase inhibitors
occurs with a shorter latency (~2 years) and most commonly involves the translocation of
chromosome band 11q23 (the MLL gene locus) to chromosomes 4, 9, and 19, causing the
t(4;11)(q21;923), t(9;11)(p22;q923) and t(11;19)(q23;p13.1) translocations, respectively. Other
translocations ~ which  commonly occur in  therapy-related AML  include
t(3;21)(q26;q22);(AMLT-E1T7) and t(8;16)(p11;p13);(MOZ-CBP).
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Telomeres and telomerase in AML

A high level of telometase activity (mote than 10-fold compared to normal hematopoietic
cells) has been obseverd in AML (Counter et al. 1995; Engelhardt et al. 2000; Ohyashiki et
al. 1997; Zhang et al. 1996). The level of telomerase activity decreases to normal levels at
remission and tends to be higher at telapse (Engelhardt et al. 2000; Ohyashiki et al. 1997;
Tatematsu et al. 1996). Patients with high levels of telomerase activity show significantly
pootet prognosis compated to those with low telomerase activity (Ohyashiki et al. 1997),
indicating that telomerase activity might be a prognostic factor in AML. However, most
studies have been performed using mononuclear cells obtained from bone matrow or
petipheral blood, and compatison of cells at the similar differentiation stages (e.g. CD34+
cells) will be required in the future.

TELOMERASE BIOLOGY

Maintenance of functional telomeres at chromosome ends is required for the prolonged
survival of organisms with linear chromosomes. Telomeres setve to limit the loss of genetic
material from chromosome ends that is thought to occur due to incomplete DNA
replication by DNA-dependent DNA polymerases. Telomeres protect chromosome ends
from degradation, recombination and fusion events (Blackburn 2000; Gasser 2000). In all
vertebrates including humans, telomeric sequences ate composed of 5-TTAGGG-3’
repeats. The size of telomeric DNA (measured in the germ line), however, varies
substantially among species, e.g. human telomeres are 10-15 kb, while laboratory mice (Mus
musculus) have telomeres that are much longer (>30 kb) and more heterogeneous (Greider
1996). Telomere lengths also vaty, albeit to a lesset extent, among somatic cells within a
species. In this case, genotype, cell type and cellular replicative history appear to be
important variables (Campisi et al. 2001; Forsyth et al. 2002; Prowse and Greider 1995). In
most eukaryotes, telomere sequences are synthesized by a tibonucleoprotein trevetse
transctriptase called telomerase, which consists of an RNA template (WTER), a reverse
transctiptase (hWTERT) and telomerase associated proteins (Collins and Mitchell 2002;
Forsyth et al. 2002; Greider 1998).

All human somatic cells and most cell lines transctibe and accumulate ATER, regardless if
they express telometase activity or not. In contrast, ZTERT mRNA expression is highly
cotrelated with telomerase activity which suggests that hTERT is the rate-limiting

component for telomerase activity and is essential for telomere elongation. (Bodnar et al.
1998; Meyerson et al. 1997; Nakamura et al. 1997)

The Telomere Hypothesis of Cellular Aging and Immortalization

A schematic of the telomere hypothesis of cellular aging and immortalization is shown in
Figure 2.

Senescence

In contrast to the mammalian germline and early embryonic cells, most somatic cells do not
express telomerase (Forsyth et al. 2002). This poses a problem for dividing cells that is
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often referred to as “the end replication problem” (Levy et al. 1992). Because DNA
polymerases only synthesize DNA in the 5’ to 3’ direction and also require a short, labile
RNA primer that is removed following replication, 50-200bp of 3’ telomeric DNA remains
unteplicated at the end of each S phase. Consequently, in the absence of telomerase,
telomeres shorten with each cell division. When telometes reach a critically short length,
normal cells irreversibly arrest proliferation and acquite a characteristic enlarged
morphology, a high frequency of nuclear abnormalities and stain positively for B-
galactosidase. This response has been termed replicative or cellular senescence (Counter et
al. 1992; Mathon and Lloyd 2001; Reddel 1998). Accordingly, ectopic expression of
telomerase can prevent telomere erosion and replicative senescence in vatious human
somatic cells, including fibroblasts, retinal epithelial cells and endothelial cells (Bodnar et al.
1998; Vaziti and Benchimol 1998; Yang et al. 1999).

Several lines of evidence suggest that the senescence response evolved to suppress
tumorigenesis by preventing the proliferation of cells at risk for neoplastic transformation
(Campisi et al. 2001; Harley 2002). Consistent with this idea, normal cells undergo a
senescence arrest when faced with a variety of stimuli, all of which have the potential to
induce or promote neoplastic transformation. These include certain types and levels of
DNA damage and certain mitogen signal transducing oncogenes, such as mutant RAS
(Robles and Adami 1998; Wei and Sedivy 1999). Thus, dysfunctional telomeres trigger a
fundamental cellular response, which is also triggered by many potentially oncogenic
stimuli.

Crisis

The cell-cycle arrest imposed at senescence is maintained by signals that activate the tumor
suppressots p53 and retinoblastoma (Rb) (Artandi and DePinho 2000; Hata et al. 1991;
Shay et al. 1991). If these pathways are abolished, most human cells proliferate until the
telomeres become extremely short, whereupon they enter an unstable state termed ctisis
(Artandi and DePinho 2000). Cells in crisis attempt to proliferate, but because telomere
erosion and chromosome instability are so severe, they frequently undergo apoptosis. A few
cells, however, acquite a mutation or epigenetic event that enables them to stabilize their
telomeres, most commonly by teactivation of telomerase (Chiu and Harley 1997; Counter

et al. 1992; Kim et al. 1994). Such cells can then proliferate indefinitely and resist
senescence inducing signals, but are at a greatly increased risk for malighant transformation.

Telomerease activation in tumors

Most human malignant tumors express telomerase; those that do not, stabilize their
telomeres by a diffetent mechanism termed alternative lengthening of telomeres (ALT)
(Henson et al. 2002). The observation that increased telomerase expression is selected for
during the malighant progression of tumors (Kolquist et al. 1998) suggests that telomere
stabilization is a requisite step for tumor development and that higher levels of telomerase
expression offer a selective advantage to the tumor cell.

In human tumors, telomere stabilization and cell immortalization often involve

derepression of /TERT (Hatley 2002), but the mechanisms through which this is achieved
are only partially understood. It was recently shown that the /TERT gene is amplified in
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certain tumors, indicating that a direct mutational mechanism can be responsible for up-
regulating telomerase activity (Zhang et al. 2002; Zhang et al. 2000). Furthermore, the
expression of certain oncogenes and tumor virus proteins, can directly up-regulate S TERT
expression (Klingelhutz et al. 1996; Wang et al. 1998; Wu et al. 1999). This ability seems to
be cell-type specific, and correlates with the ability of these oncogenes to immortalize cells.
It is therefore possible that telomerase activation during tumor development can also occur
indirectly, as a result of oncogene activation or a change in the proliferative ot
differentiation status of the cell.

Mean Telomere Length
F Y

(a) Germline, Embryonic Stem Cells

(b) hTERT Transduced Cells

(c) Somatic Cells
/Transforming Event

Replicative
Senescence
(d) Tumor Cells _,,
Crisis

Genomic
Instability

o
L

Checkpoint  Checkpoint Time (Divisions)
Telomerase Dependent

Figure 2. The telomere hypothesis of cellular aging and immortalization.
Schematic illustrating telomere maintenance in: (a) immortal germline and

embryonic stem cells, achieved by the normal constitutive expression of
endogenous telomerase; (b) normal somatic cells immortalized by expression of
ectopic (transduced) hTERT; (c) telomerase-negative somatic cells, and (d) tumor
cells which have undergone growth control mutations and abnormal activation
of endogenous telomerase. In normal, telomerase-negative cells there exist at
least two telomere-dependent mortality phases (horizontal bars). Replicative
senescence is characterized by a checkpoint-dependent arrest likely triggered by a
critical telomere loss or uncapping on one or a few chromosome ends. If cells
lack this checkpoint, or suffer a transforming growth control mutation, they can
continue to divide, losing telomeric DNA until the crisis phase characterized by
major telomere dysfunction, genetic instability, and apoptosis. The vertical bar
represents non-telomeric checkpoint arrest mechanisms seen with many human
and murine cells placed in culture, or when cells suffer non-lethal acute trauma or
inappropriate growth conditions 7 uitro or in vive. (Adapted from Hasley 2002)
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Balancing Telomere Length

It is paradoxical that both telomete dysfunction and telomerase activation occur in human
tumorigenesis. However these events are most likely separated in time during tumor
development. Chromosome instability is thought to be initiated early in tumorigenesis
(DePinho 2000; Rudolph et al. 2001), whereas telomerase activation probably occuts much
later (Chadeneau et al. 1995; Tang et al. 1998). It has been argued that telomerase activation
is necessary to inhibit further instability by stabilizing chromosome ends (Hackett and
Greider 2002; Maser and DePinho 2002)(Figure 3). However, it is unclear whether
telomerase activation in tumorts facilitates tumor growth by circumventing checkpoints that
recognize dysfunctional telomeres or by stabilizing chromosome rearrangements.

Telomere Shortening Telomerase Activation

\mnic Instab/

Tumor Growth

Figure 3. Dual roles for telomerase and telomere dysfunction in genetic
instability and tumor growth. Telomere shortening can potentially contribute
to the genetic instability that drives tumorigenesis. Early stage tumors with
ongoing genetic instability are represented by the cluster of greyish colored
balls. However, telomere shortening may also limit tumor growth by
activating checkpoints. Telomerase activation can facilitate tumor growth, but
telomerase can also help to control genetic instability. Late stage tumors in
which certain cells have been selected from early stages in tumor progression
are represented by the large cluster of dark-grey balls. (Adapted from Hackett
and Greider 2002)

Regulation of the A”TERT gene

Numerous molecules, including transcription factors, cell cycle regulators, and several viral
proteins implicated in tumotigenesis, have been proposed to regulate hTERT expression
(Ductest et al. 2002). Most of these studies wetre petformed by the exptession of positive
regulators in vitro and therefote, the iz vivo regulation of /TERT is still uncleat. Nevertheless,
studies of the /TERT promotor show that it contains a number of putative binding sites for
various transcription factots, including c-Myc, Max, Mad and SP1 (Ductest et al. 2002).
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Different én vitro studies suggested that c-Myc activates /TERT transcription (Greenbetg et
al. 1999; Wang et al. 1998; Wu et al. 1999). Recently, c-Myc was found associated with the
WTERT gene in vivo in telometase-positive promyelocytic leukemia HLG60 cells using
chromatin immunoprecipitation assays (Xu et al. 2001). Differentiation of these cells by
DMSO led to down-regulation of ATERT, loss of association with c-Myc and binding of
the c-Myc antagonist Mad1. Mad is a candidate repressor of ATERT and was identified in a
gene screen for ATERT regulators (Oh et al. 2000). A rise in endogenous Mad mRNA and
Mad protein levels has been inversely correlated with ATERT mRNA levels (Gunes et al.
2000; Oh et al. 2000; Xu et al. 2001). Moreover, wild type p53 has been shown to down-
regulate the transcription of A TERT in human cancer cells by forming a complex with SP1,
thus inhibiting its ability to bind to the ATERT promotor (Xu et al. 2000). Since p53 is
frequently inactivated in tumors, the loss of /TERT tepression may be anothet impottant
consequence of p53 inactivation that promotes tumor development.

Othet possible mechanisms of J/TERT regulation include a putative repressor gene of
HTERT expression localized to chtomosome 3 (Cuthbert et al. 1999; Tanaka et al. 1998),
DNA methylation of the /TERT promoter (Dessain et al. 2000; Devereux et al. 1999), and
alternative splicing (Liu 1999).

Telomerase is ctitical for human health and viability

Arguably, more is known about telomerase dystegulation than about normal physiological
regulatory mechanisms. This may derive in patt from a lack of incentive for studying
endogenous telomerase regulation in vertebrate model systems such as mice, which survive
for many generations in the absence of telometase (Blasco et al. 1997; Mathon and Lloyd
2001). Still, the impact of telomerase tegulation on human health is likely to be much
greater than represented by inappropriate activation of telomerase in tumor cells alone.

There is increasing evidence that dysfunctional telomeres may contribute to the
development of aging phenotypes, such as atherosclerosis, poor wound healing, and
immunosenescence (Effros 1998; Herrera et al. 1999; Klapper et al. 2001; Lee et al. 1998;
Rudolph et al. 1999). Furthermore, it was recently shown that 7z vivo mutations in genes
encoding two telomerase holoenzyme components reduce the maximal level of telomerase
activation and also dramatically compromise the proliferative renewal of hematopoietic and
epithelial tissues (Mitchell et al. 1999; Vulliamy et al. 2001). Consequently, human
telomerase deficiency may adversely affect normal human development and limit life span

(Mitchell et al. 1999; Vulliamy et al. 2001; Zhang et al., unpublished data).

CHARACTERIZATION OF CHROMOSOME ABERRATIONS IN CANCER

The identification of recurrent chromosome abetrations in cancet, and the subsequent
characterization of the genes affected by these aberrations, has been one of the great
triumphs of molecular biology. A significant patt of this success has been due to the rapid
development of new molecular technologies. An excellent illustrative example of this is the
identification and charactetization of the “Philadelphia chromosome™ in chronic myeloid
leukemia (CML).
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In 1960, Nowell and Hungetford reported that cells from CML patients had a normal
number of chromosomes, but that one chromosome was too small (Nowell and
Hungerford 1960). This small chromosome became known as the Philadelphia (Ph?)
chromosome and was thought to be caused by a simple deletion. Not until the introduction
of chromosome banding techniques in the eatly 1970s, could Rowley show that the Ph!
chromosome was not caused by a deletion, but an interchange between the end of the long
arm of chromosome 9 and the long arm of chromosome 22 (Rowley 1973). It took another
10 years before the translocation was cloned and the disrupted genes identified (de Klein et
al. 1982; Groffen et al. 1984; Heisterkamp et al. 1983). On chromsome 9, the translocation
distupts -ABL, the human homologue of the transforming sequence of Abelson murine
leukemia virus (A-MuL V), resulting in the expression of an altered form of c-ABL with
tyrosine kinase activity (Konopka et al. 1984). Even though the Ph! translocation is not the
only genetic change associated with CML, the basic research that identified its fusion
ptotein as a tyrosine kinase that is specifically expressed by cancer cells made it an attractive
target. Now, two decades later, a drug that specifically target the activated gene product is
available for the treatment of CML (Druker et al. 2001). The molecular studies with the Ph!
chromosome are a scientific success story that began with the identification of a
chromosome abnormality and its identification as a translocation. Since the development of
chromosome banding techniques, a seties of specific chromosome changes that ate
assoclated with malignancy, especially in leukemias and lymphomas, have been identified
(Heim and Mitelman 1995; Mitelman et al. 2002). Determining the molecular consequence
of these changes might tesult in similar therapeutic strategies as that found for the product
of the Ph! translocation. This possibility motivates further detailed characterization of
chromosome abetrations in cancet.

While it took more than 20 years from the initial discovery of the Ph! chromosome until
the translocation was cloned, today, chromosome abnotmalities can be identified at the
molecular level much more quickly. This is mainly due to the development of new
cytogenetic techniques such as fluotescent 7z sitn hybridization (FISH) technologies
(Landegent et al. 1984; Langer et al. 1981; Pinkel et al. 1986) and to the sequencing of the
human genome (Lander et al. 2001; Venter et al. 2001)(Figure 4). All FISH technologies ate
based on the ability of single stranded DNA to anneal or hybridige to complementary DNA.
In the case of FISH, the target is the nuclear DNA of interphase cells or the DNA of
metaphase chromosomes affixed to a glass microscope slide. Recently, matrix based
technologies, in which hundteds to thousands of DNA fragments attached to a solid
surface serve as the target, were added to the FISH repertoire (Solinas-Toldo et al. 1997). In
order to identify and characterize chromosome aberrations using FISH, a variety of probes
can be used (Rooney 2001). The three main categoties of FISH probes are: probes that
identify a spectfic chromosome structure, e.g. probes that bind to telomere and centromere
sequences; probes that hybtidize to multiple chromosome sequences, e.g. spectral karyotyping and
comparative genomic hybridization; and probes that hybridize to #nigne DINA sequences, e.g.
locus specific probes.
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1960s 1970s 1980s 1990s 1995 —

Figure 4. Important steps in the development of genetic technologies. In
the 1960s, conventional chromosome analysis became available. With the

introduction of chromosome banding techniques in the 1970s it became
possible to detect both numerical and structural chromosomal aberrations.
During the 1980s, several important molecular techniques were developed,
e.g. DNA sequencing and Polymerase Chain Reaction (PCR). In the 1990s,
the field of cytogenetics was revolutionized by the introduction of the
FISH-methodologies. The latest technical achievement is the development
of microarrays, by which thousands of gene or intergenic fragments can be
analyzed simultaneously at the DNA or RNA level.

The choice of FISH probes depends, of coutse, on the biological question in mind.
Mapping translocation breakpoints using locus specific FISH probes has proven to be
extremely powerful. Locus specific clones, e.g. bacterial artificial chromosomes (BACs),
covering a DNA region of intetest can be found in public databases such as NCBI
(http:/ /www.ncbinlm.nih.gov), acquired at a low cost and investigated within a shott
period of time. In addition, FISH with locus specific probes can be used for many other
applications, including identification of gene copy number changes and characterization of
chromosome deletions. A prerequisite for these FISH applications is, however, that the
researcher has an idea of what to look for in order to choose the tight probes. With the
development of multiplex (M)-FISH (Speicher et al. 1996) and spectral karyotyping (SKY)
(Schrock et al. 1996) (Figure 5), which both involve the simultaneous staining of all the
chromosomes in a different color, FISH based screening of the whole genome for
chromosome aberrations became possible. M-FISH and SKY ate particulatly useful in
mapping breakpoints, detecting subtle translocations, identifying matrker chromosomes and
characterizing complex reatrangements (Bayani and Squire 2002; Schrock and Padilla-Nash
2000). Yet, both techniques requite metaphase cells, which can be difficult to obtain from
ptimary tumors.

The development of comparative genomic hybridization (CGH) was driven by the need for
tools that allow genome wide screening for chromosome aberrations, independently of the
availability of metaphase cells in the specimens to be investigated. CGH was introduced by
Kallioniemi et al. in 1992 (Kallioniemi et al. 1992), and has been applied to a broad variety
of tumor types (Forozan et al. 1997; Lichter et al. 2000; Zitzelsbetger et al. 1997). For CGH
analysis, whole genomes of test and reference cells are differentially labeled with fluorescent
dyes and used as probes for 7 situ hybridization against chromosomes of normal metaphase
cells. The differences in fluorescence intensities along the chromosomes in the normal
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metaphase are a reflection of the copy number changes of cortesponding sequences in the
test DNA. The most obvious limitation of CGH is that it only measure differences in copy
numbet, rearrangements not associated with loss or gain of material, such as balanced
translocations, are not detectable. Another limitation is the level of resolution. With
standard protocols, low copy number gains and losses such as trisomies and deletions ate
detected only when the imbalanced region is larger than 10 Mb (Bentz et al. 1998;
Kallioniemi et al. 1994). Recently, microarray based CGH technologies were introduced
which increases the resolution significantly (Pinkel et al. 1998; Pollack et al. 1999; Solinas-
Toldo et al. 1997). In matrix CGH, instead of hybridizing to metaphase chromosomes, the
reference and test DNA are hybridized against DNA fragments attached to a solid sutface,
such as a glass microscope slide. The DNA fragments can either be genomic sequences, e.g.
BACGs, ot cDNA clones. The microatrays containing cDNA clones can also be used for
gene expression profiling. In fact, they are more commonly used for that purpose.

GENE EXPRESSION PROFILING

Determining the sequence of the human genome has vastly increased our knowledge of
genome organization and has been used to identify thousands of previously unknown
genes. Various technologies have been developed to exploit this growing body of data,
including DNA arrays that provide rapid, parallel sutveys of gene expression patterns for
hundreds ot thousands of genes in a single assay. These transctiptional profiling techniques
ptovide an enotmous amount of data that can help us develop a more complete
understanding of gene function, regulation and interaction in both health and disease. In
cancer teseatch alone, a mounting number of gene expression profiling studies are
providing new potential diagnostic and prognostic vatiables, as well as clues for cancer
therapy improvements (Bertucci et al. 2001; Marx 2000).

Thete are two main types of DNA atrays used for expression profiling: cDNA microatrays
containing cDNA clones of approximately 0.5-2 kb length (Schena et al. 1995) and
oligonucleotide atrays that use gene specific oligonucleotides in the range of 20-80 bps
(Lockhart et al. 1996). The expression profiling experiments in this study were performed
with cDNA microatrays (Figure 06).

cDNA microarrays

The first step when planning a cDNA microarray assay is to acquite a well-characterized
and annotated set of cDNA clones. After clone selection, amplification and purification, the
cDNAs are loaded into microtiter plates of an arraying robot and then mechanically spotted
onto chemically modified microscope glass slides. The robotic atrayers provide a
reproducible and precise mathematical map from spots on the arrays to wells in the
microtiter plates, and therefore, to the cDNA clones and the genes that they represent.
Once a collection of microarray slides is printed, each slide can be used for a single
experiment.
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subsequent agglomeration of clustered pairs into larger clusters, again on the basis of
distance (Eisen et al. 1998). Although these methods have proven to be useful for many
putposes, e.g. distinguishing novel tumor classes, they also tend to be dominated by shared
characteristics of the samples distinguished by large sets of genes. The tesult is that
physiological features of the samples that could in theory be distinguished by variations in
the expression of a small set of genes (for example, drug resistance) can in fact be lost in
clustering patterns that are dominated by more general aspect of the sample’s biology (for
example, differentiated versus undifferentiated cell types). To circumvent this, various
supervised clustering techniques have been developed as a complement to the unsupervised
methods, including Cluster Identification Tool (CIT) (Rhodes et al. 2002). These methods
differ in undetlying algorithm, but all aim to identify gene expression patterns that are
significantly associated with a specific feature of the samples (for example, drug resistance).

Cautionary notes can be made about all microarray analysis methods. The most important
being that the identification of a robust structute ih a dataset does not necessarily imply
biological significance. For instance, samples could cluster according to data quality or
method of sample preparation. Such a result might be highly reproducible and statistically
significant, but would be of no biological meaning.
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AIMS OF THE STUDY

The specific aims of the present study were to:

e Chatactetize multiple chromosome teartangements in acute myeloid leukemia on
the genomic and transcriptional level.

e Explore copy number changes of the felomerase reverse transcriptase gene locus in
human tumors and Chri-du-Chat syndrome and cortelate A TERT copy number to

changes in telomerase activity, telomere length and chromosome instability.

e Investigate the molecular consequences of hTERT immortalization of somatic cells.
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RESULTS AND DISCUSSION

PAPER I-III: Characterization of chromosome rearrangements in AML

Paper I. In papet I we applied spectral karyotyping (SKY) and comparative genomic
hybridization (CGH) to bone matrow cells from 12 acute myeloid leukemia (AML) and 10
myelodysplastic syndromes (MDS) patients with multiple chromosome reatrangements in
order to resolve and understand more precisely the genetic alterations in these malighancies.

Multiple chromosome reartangements (MCRs) can be detected in up to 10% and 30% of de
novo AML and MDS, respectively, and in up to 50% of therapy-related AML and MDS
(Fenaux et al. 1996; Grimwade et al. 1998). AML patients with MCRs have an adverse
prognosis. Reported complete temission rates vary from 21-46%, with a median overall
survival between 1-5 months (Grimwade et al. 1998; Schoch et al. 2001). Likewise, MDS
patients with MCRs tend to progress to AML with a poot prognhosis (Greenberg et al
1997). Although MCRs are frequent in AML and MDS and might be relevant to leukemic
transformation and disease progression, it has not been possible to characterize these
aberrations in detail by conventional cytogenetic banding techniques such as G-banding.
While single chromosome reatrangements can be characterized with considerable precision
using G-banding, even skilled cytogeneticists are confronted with great difficulties when
attempting to analyze MCRs. The final G-banded katyotypes are often incomplete and
exhibit various chromosome abnormalities of unknown origin, as well as deletions and
gains of chromosomes. The introduction of multicolor FISH, e.g. SKY (Schrock et al
1996) (Figure 5), marked a significant methodological improvement making it possible to
resolve these karyotypes.

Indeed, our results cleatly demonstrated that SKY can resolve complex karyotypes in AML
and MDS, and also detect cryptic chromosome rearrangements. In total, 101 structural
aberrations wete identified by SKY of which only 16 (16%) were possible to characterize to
the same extent by G-banding. In general G-banding identified loss of chromosome
material quite well, though SKY results often led to a revision of the size of the deleted
segment. Furthermore, one-third of deletions scored by G-banding were shown by SKY to
represent cryptic translocations or insertions. The wvast majotity were unbalanced
translocations and most frequently resulted in chromosome loss of 5q, 7q and 17p. We also
showed that MCRs result in DNA gain of certain chromosome regions. In our patient
material, chromosome 8 and chromosome arm 11q showed the most frequent gains. In
addition, locus specific FISH for the MIL gene revealed that the 11q gains observed
resulted in additional copies of MLL.

MCRs in AML have often been referred to as random cytogenetic abetrations. However, a
number of studies similar to ours have been published suggesting that the MCRs are not
random but define a recurting pattern (Kakazu et al. 1999; Kerndrup and Kjeldsen 2001;
Mohr et al. 2000; Mrozek et al. 2002; Schoch et al. 2002; Van Limbergen et al. 2002). To
summarize, MCRs in AML result in a loss of chtomosome material more often than a gain.
Unbalanced rearrangements, often tepresented by unbalanced translocations leading to loss
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of chromosome material, ate much mote frequent than loss of whole chromosomes. The
chromosome regions lost are often large and most frequently involve 5q, 7q, 12p and 17p.
Structural rearrangements leading to a gain of chromosome material most frequently
involve 11q and 21q. Furthermore, gain of 11q results in additional copies of the ML
gene. Balanced translocations ate also found, but to a much lesser extent than unbalanced
translocations. Most of the balanced translocations ate novel but some seem to be shared.
For example, reciprocal translocations involving chromosome band 4q31 and 5q31 have
been reported by three independent groups (Lindvall et al. 2001; Van Limbergen et al. 2002;
Veldman et al. 1997). Motreovet, certain chromosome aberrations often accompany each
other. Deletions of 5q and 17p ate frequently seen in the same MCRs karyotype, as ate
amplifications of 11q and deletions of 17p. Patients with these combined net DNA
imbalances appear to have an extremely poor prognosis. Clinical correlations like these
tepresent the most important outcome of these studies, ie. they indicate that thorough
characterization of MCRs in a larger seties of patients will make it possible to subdivide
AML with MCRs into molecular subclasses, which could reflect different clinical behaviors
and prognosis.

Paper II. The aim of paper II was to investigate the tesulting chimeric transctipts of the
reciprocal translocation, t(8;16)(p11;p13). Case 1 corresponds to patient no. 11 in paper I.

The t(8;16)(p11;p13) results in the fusion of the genes MOZ and CBP (also named
CREBBP) at chromosome band 8p11 and 16p13, respectively (Borrow et al. 1996), and is
strongly associated with AML displaying monocytic differentiation, erythrophagocytosis by
the leukemic cells, poor response to chemotherapy and a dismal prognosis (Becher et al.
1988; Bernstein et al. 1987; Heim et al. 1987; Lai et al. 1987; Quesnel et al. 1993; Velloso et
al. 1996). It affects both infants and adults and either arises de novo, ot is therapy ot
occupationally related. MOZ, which codes for a zinc finger protein with acetyltransferase
activity, is also reatranged in other 8pll abetrations involving TIF2 in inv(8)(p11ql3)
(Carapeti et al. 1998) and p300 in t(8;22)(p11;q13) (Chaffanet et al. 2000). CBP codes for a
global transcriptional coactivator involved in the regulation of various DNA binding
transctiption factors (Chan and La Thangue 2001). MOZ-CPB fusions may therefore
aberrantly activate a number of genes in these AML cases. Heterozygous mutations of the
CBP gene have been found in patients with Rubinstein-Taybi syndrome, suggesting that
haploinsufficiency of CPB may cause this syndrome (Petrij et al. 1995). CBP has also been
identified as the target of the t(11;16)(q23;p13) in therapy-related AML and MDS, in which
it rearranges with MIL (Sobulo et al. 1997). In addition, Panagopoulos et al. showed that
the MORF gene at 10q22, which is highly homologous to MOZ (Champagne et al. 1999),
was fused to CBP in an AML patient with t(10;16)(q22;p13) (Panagopoulos et al. 2001).
Together these findings suggest that CBP fusions to these histone acetyltransferase genes
may play an important role in the pathology of AML.

Previous to our report, only one t(8;16)(p11;p13) was described at the sequence level using
reverse transcriptase (RT)-PCR (Borrow et al. 1996). Various explanations for the failure of
amplifying the MOZ-CBP and CBP-MOZ fusion transcripts by RT-PCR were proposed,
including low expression or high instability of the transcripts (Giles et al. 1997). However,
we showed that both the MOZ-CBP and CBP-MOZ transcripts can successfully be
amplified by RT-PCR in patients with t(8;16). This method could be diaghostically useful,
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since the detection of t(8;16) in AML has clinical ramifications and may be difficult to
identify by chromosome banding alone. This is particulatly true in leukemic cell populations
with poot chromosome morphology and/ot MCRs. In addition, RT-PCR amplification and
subsequent sequencing of t(8;16)(p11;p13) fusion transctipts in more AML patients will
enable the detailed genomic characterization of this translocation.

Paper IIL. In paper III we applied cDNA microatray to compare the global gene
expression in mononuclear cells from AML patients with complex (AML-MCRs) and
normal (AML-CN) karyotype. All samples were also analyzed by SKY and CGH. Patient
AML-MCRs 1, 2, 3 and 4 correspond to patient no. 2, 3, 7 and 13 in paper I, respectively.

A number of research groups have already repotted on gene expression profiling of acute
leukemias, mostly on acute lymphoid leukemias (ALL) (Armstrong et al. 2002; Ferrando et
al. 2002; Golub et al. 1999; Larramendy et al. 2002; Schoch et al. 2002; Virtaneva et al. 2001;
Yeoh et al. 2002). The first study from Golub et al. involved the analysis of diaghostic bone
marrow samples from AML and ALL patients (Golub et al. 1999). They developed a class
prediction algorithm, which could successfully distinguish AML from ALL solely on the
basis of the gene expression data. This result was significant not because new methods are
required to correctly diagnose ALL and AML but rather because it demonstrated the
feasibility of cancer classification based on the analysis of primary tumor samples using
DNA arrays and pattern recognition analytical tools. The same group later showed that
ALL carrying a chromosome translocation involving the ML gene have a characteristic,
highly distinct gene expression profile that can clearly be separated from conventional ALL
and AML, suggesting that ALL with ML translocations define a new disease entity
(Armstrong et al. 2002). With findings like these in mind, Virtaneva et al. applied clustering
and class prediction algorithms to gene expression data from AML samples with isolated
trisomy 8 versus normal karyotype (Virtaneva et al. 2001). However, AML with trisomy 8
could not be cleatly separated from AML with normal karyotype using the same
approaches that successfully distinguished AML, ALL and MLL samples. This was
somewhat disappointing but not entirely surprising, since AML with trisomy 8 and AML
with normal karyotype are heterogeneous on the phenotypic level and occut in ovetlapping
FAB subgroups (Heim and Mitelman 1995). In contrast, ALL with MIL translocations are
more homogeneous on the phenotypic level (Jaffe et al. 2001).

In our study we faced the same problem as Virtaneva et al. While the gene expression
profiles of both AML-MCRs and AML-CN wetre clearly distinct from those of samples
obtained from healthy bone marrow donors, the two AML groups could not be separated
by class prediction and unsupervised clustering algotithms. This result most likely reflects
ovetlapping phenotypes in the patient matetial, but could potentially be due to limitations
of the technology and analytical tools available today. However, by applying a supervised
clustering algotithm, Cluster Identification Tool (Rhodes et al. 2002), we could identify
individual genes that were differentially expressed between AML-MCRs and AML-CN.
Some of these genes were located in chromosome regions we knew contained DNA
imbalances in AML-MCRs. This indicated that MCRs might result in an altered gene
expression in a gene-dosage dependent manner.
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To investigate this hypothesis further, we plotted the expression profiles of all genes
mapped to chromosome regions that showed DNA gains and losses by SKY and CGH.
Seventeen-75% of genes in amplified regions and 47-88% of genes in deleted regions
exhibited a change in gene expression cotrelated with the type of chromosome abetration.
To petform a mote objective analysis of whether regions with chromosome gains ot losses
are associated with a cortesponding change in gene expression, we performed a statistical
test known as Comparative Genomic Microarray Analysis (material and methods, paper
III). This analysis arranges gene exptession data based on genomic mapping information
and determines if a genomic region (here defined by chromosomal arm boundaries)
contains a significantly disproportionate number of genes with increased or reduced
expression. We found that most of the chromosome aberrations identified by CGH wete
manifested in abertant gene expression profiles as determined by Comparative Genomic
Microartay Analysis. T'o our surprise, tegions with a disproportionate humber of genes with
reduced expression wete also found in samples with balanced CGH, most frequently for
chromosome arm 7q. These obsetvations need to be further investigated, but the finding is
interesting because 7q is frequently deleted in AML and is associated with an adverse
prognosis (Gtimwade et al. 1998).

Concluding remarks of paper I-III. It has been suggested that the main mechanism of
MCRs in leukemogenesis is loss of tumot-suppressor genes since MCRs result in loss of
genetic matetial more often than gain (Schoch et al. 2002). In line with this hypothesis, our
microatray data showed that the DNA losses result in an altered gene expression in a gene-
dosage dependent manner. However, the SKY and M-FISH repotts have also revealed that
complex AML karyotypes contain a significant numbet of balanced translocations, of which
the majority are novel and could teflect chimeric genes directly involved in the leukemic
transformation. Futthermore, the pathogenic role (if any) of the numerous unbalanced
translocations reported by us and others, is at present unknown. The translocated segments
might only serve as donors of telomeric sequences necessary to stabilize termini of
chromosomes that have undergone terminal deletions, thus do not contribute directly to
leukemogenesis. On the other hand, a recent study identified a recurrent unbalanced
translocation that resulted in a gene fusion functionally similat to those created by balanced
translocations (Ladanyi et al. 2001). Interestingly, at least one of the unbalanced
translocations found in our study, der(5)t(5;17)(q11;q11), has also been reported by other
groups (Mrozek et al. 2002; Wang et al. 1997).

The complexity of MCRs in AML leads to the assumption of an undetlying genetic
instability. This instability could in tutn explain the poor response to chemotherapy in these
patients, because genome instability increases the occutrence of drug resistance. In addition,
the mechanisms that allow cells with MCRs to sutvive instead of undergoing apoptosis may
be related to the mechanism that prevents the cells from undergoing apoptosis after
cytotoxic treatment. Interestingly, it was recently shown that over-activity of the non-
homologous end-joining DNA repair pathways may result in illegitimate joining and
alighment of noncontiguous broken DNA ends, leading to translocations, deletions and
evasion of apoptosis in myeloid leukemias (Gaymes et al. 2002). Howevet, other
mechanisms distinct from impaired DNA repair pathways may also cause MCRs. Studies in
yeast have identified numerous genes that, when altered, lead to chromosome instability.
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These include genes that function in S-phase checkpoints, recombination pathways, and
telomere maintenance (KKolodner et al. 2002).

PAPER I'V-V: Consequences of copy number changes of the ATERT gene

Paper IV. In paper IV we applied locus specific FISH for the /TERT gene to investigate
HTERT copy number changes in human tumors.

A hallmark of cancer cells is their limitless replicative potential (Hanahan and Weinberg
2000). Thete is strong selective pressure on tumor cells for replicative immortality, as a large
number of cell divisions are required to accumulate the 5-10 independent mutations and
clonal expansions typically needed to generate a malignant growth (Harley et al. 1994). In
human tumors, telomere stabilization is a requisite step for cells to acquite replicative
immortality and often involves derepression of the ATERT gene, which is located at
5p15.33 (Bryce et al. 2000; Meyerson et al. 1997; Nakamura et al. 1997). However, the
biochemical and genetic mechanisms governing hTERT expression in tumor cells are not
well understood. We noticed that in the CGH literatute DNA gain of chromosome band
5p15 is frequently reported for vatious types of tumors
(http:/ /wwrw.helsinki.fi/cmg/CHG-data.htm). Because DNA  amplification is an
important mechanism that allows tumor cells to increase expression of critical genes, we

hypothesized that the #TERT gene may be a tatget for DNA amplification.

Our tesults showed that the A/TERT gene was amplified in 8 out of 26 (31%) tumor cell
lines and 17 out of 58 (30%) primary tumots examined. In addition, 13 out of 26 (50%) cell
lines and 13 out of 58 (22%) ptimary tumors displayed a low copy gain of /TERT. For both
cell lines and primary tumors the number of ATERT copies vatied significantly between
cells. One neutoblastoma cell line, Lan2, exhibited high-level extra chromosomal
amplification of ATERT in double minutes. Lan2 showed a 5-fold increase in ATERT
mRNA expression and a 3-fold increase in telomerase activity compared to cell lines
without A TERT copy number gain. However, comparing all cell lines, 5TERT copy humber
gain could not be significantly cotrelated to an increased expression of /TERT mRNA or
increased telomerase activity.

We suggested that acquiting copies of the A TERT locus may be one way fot evolving tumor
cells to inctease the level of telomerase, thus ensuring telomere maintenance and replicative
immortality. A number of groups have shown that eatly neoplastic lesions typically possess
undetectable or low telomerase activity, wheteas the progtession to advanced malighant
lesions is associated with more robust levels of telomerase (Chadeneau et al. 1995;
Engelhardt et al. 1997; Tang et al. 1998; Yan et al. 1999). These findings indicated that
increased levels of telomerase is selected for duting the malighant progtession of tumots.
The ptimaty tumors and cell lines in our study exhibited heterogeneity of /TERT copy
numbers, which may reflect such selective pressure. The vatiation of /TERT copies pet cell
might explain our difficulties in cortrelating ATERT copy number to ATERT mRNA
expression, as mRINA was isolated from whole cell populations. However, in a more recent
study of cervical catcinomas we could cotrelate ATERT copy number with protein
expression by immunohistochemical staining (Zhang et al. 2002).
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Paper V. In paper V we investigated whether the 5p deletions present in Chti-du-Chat
syndrome are associated with heterozygous loss of ATERT and haploinsufficiency of
hTERT.

It was recently shown that the hereditaty syndrome Dyskeratosis congenita is caused by
defective telomerase activity. Mutations in the gene coding for the telomerase RNA
template (HTER) have been found in the autosomal dominant form (Vulliamy et al. 2001),
while the X-linked form is caused by defective processing of A/TER (Mitchell et al. 1999).
These findings led us to the hypothesis that telomerase deficiency might be present in Chri-
du-Chat syndrome (CdCs), another hereditary syndrome, which is associated with deletion
of chromosome arm 5p (Lejeune et al. 1963).

CdCs is one of the most common human deletion syndromes, with an incidence of 1 in
50,000 bitths. In young children the syndrome is characterized by psychomotor retardation,
microcephaly, growth rate failure, craniofacial abnormalities and micrognathia. One of the
most characteristic features in newborn children is a high-pitched cat-like cry that is usually
considered diagnostic for the syndrome. (Baccichetti et al. 1988; Gersh et al. 1995; Mainardi
et al. 2001; Niebuhr 1978; Ovethauser et al. 1994; Van Buggenhout et al. 2000)

We examined the /TERT gene status in 10 CdCs patients and found that all exhibited a
heterozygous loss of ATERT. The deletion of ATERT was associated with decreased
induction of /TERT mRNA expression in activated T-lymphocytes and the lymphocytes
exhibited shorter telomeres compared to age-matched controls. A reduction of teplicative
lifespan and a high rate of chromosome fusions were observed in cultured fibroblasts from
CdCs patients. Reconstitution of telomerase activity by ectopic expression of hTERT
extended the telomere length, increased population doublings and prevented end-to-end
fusions of chromosomes, indicating that restoration of telometase activity in CdCs
fibroblasts can promote genetic stabilization of the cells.

Clinical features of CdCs such as growth retardation, premature gray hair and low sperm
production might reflect impaired cell replication caused by haploinsufficiency of
hTERT/telomerase. Howevet, it should be kept in mind that the deletions in CdCs vary in
size from small, involving only chromosome band 5p15, to the entite short arm of
chtomosome 5. (Mainardi et al. 2001). Therefore, loss of genes in addition to ATERT likely
also play crucial roles in the development of CdCs.

PAPER VI: Molecular profiling of "yTERT immortalized cells

Paper VI. In paper VI we investigated the molecular consequences of hTERT
immortalization of human fibroblasts.

The proliferation of mammalian cells in culture is limited by the development of replicative
senescence, first described by Hayflick (Hayflick 1965). Hayflick observed that cultured
human fibroblasts exhibit a very reptoducible but limited number of cell doublings.
Senescent cells arrest their growth, stop cell division, become enlarged and for unknown
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reasons, stain positively for [B-galactosidase. Replicative senescence is strongly associated
with telomere shortening (Mathon and Lloyd 2001) and it was found that introducing
hTERT into certain cell types can extend their lifespan and potentially immortalize them
(Bodnar et al. 1998; Vaziti and Benchimol 1998; Yang et al. 1999). It has been proposed
that treatment with exogenous h'TERT might be useful for cell-based therapies by allowing
indefinite expansion of normal human cells without damaging their genomes (Jiang et al.
1999; Morales et al. 1999). Even though hTERT immortalized cells lack phenotypic ot
morphological characteristics of transformed cells, such as loss of contact inhibition or
gtowth in low serum, it is unclear to what whether hTERT-immortalized cells are
physiologically and biochemically the same as theitr hormal counterparts. For this reason we
compared the gene expression profiles of normal and hTERT-immortalized fibroblasts
(hTERT-BJ cells) using high-density cDNA microatrays.

Our results clearly showed that the expression profile of hTERT-B] cells is significantly
different from that of normal mortal fibroblasts. Several genes involved in DNA repair and
epidermal differentiation were significantly down-regulated in the hTERT-BJ cells, and
considerable expression differences of several growth factors were observed. One of the
highly expressed genes in the hTERT-BJ cells encodes epiregulin, a potent growth factor
(Baba et al. 2000; Shelly et al. 1998; Shirakata et al. 2000; Toyoda et al. 1997; Zhu et al.
2000). Blockade of epiregulin significantly reduced the growth of hTERT-B] cells and
colony formation of h'TERT-transformed fibroblasts on soft agar. In addition, we showed
that inhibition of epiregulin function in hTERT-BJ cells triggered a senescence program.

Our results suggested that both activation of telomerase and subsequent induction of
epiregulin ate requited to maintain the hTERT-immortalized phenotype. Given the
significant difference in gene expression profiles between the normal and hTERT-
immortalized fibroblasts, and the close relationship between epiregulin and tumorigenesis,
we concluded that hTERT-immortalized cells should not replace their normal counterparts
for studies of normal cell biology. In addition, the use of h'TERT for expansion of normal
human cells for therapeutic purposes must be approached with great caution.
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