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ABSTRACT 
  

Prostaglandins (PGs) are lipid mediators, which act as local hormones. PGs are formed in most cells and 
are synthesized de novo from membrane-released arachidonic acid (AA) upon cell activation. 
Prostaglandin H synthase (PGHS) –1 or 2, also referred to as COX-1 and COX-2, metabolize AA to PGH2, 
which is subsequently converted in a cell-specific manner by downstream enzymes to biologically active 
prostanoids, i.e. PGE2, PGD2, PGF2α, PGI2 or TXA2. PGHS-1 is constitutively expressed in many cells and 
is mainly involved in housekeeping functions, such as vascular homeostasis, whereas PGHS-2 can be 
induced by proinflammatory cytokines at sites of inflammation. Prostaglandin E synthase (PGES) 
specifically catalyzes the conversion of PGH2 to PGE2, which is a biologically potent prostaglandin 
involved in several pathological conditions; including pain, fever, inflammation and possibly some forms of 
cancers and neurodegenerative diseases.  

mPGES-1 was initially identified as a homologue to microsomal glutathione transferase-1 
(MGST1) with 37% identity on the amino acid sequence level and referred to as MGST1-like 1 (MGST1-
L1). Based on the properties of MGST1-L1, regarding size, amino acid sequence, hydropathy and 
membrane localization, the protein was identified as a member of the MAPEG-superfamily (membrane-
associated proteins in eicosanoid and glutathione metabolism). The superfamily consists of 16-18 kDa, 
integral membrane proteins with typical hydropathy profiles and diverse functions. The MAPEG family 
comprises six human members, which in addition to mPGES-1 are; 5-lipoxygenase activating protein 
(FLAP), leukotriene C4 synthase (LTC4S), MGST1, MGST2 and MGST3. MGST1 -2 and -3 are glutathione 
transferases as well as glutathione-dependent peroxidases, while FLAP and LTC4S are crucial for 
leukotriene biosynthesis. 

Human mPGES-1 was cloned and characterized as a 16 kDa, inducible GSH-dependent 
microsomal PGE synthase. Northern dot blot analysis of mPGES-1 mRNA demonstrated a low expression 
in most tissues, medium expression in reproductive organs and a high expression in two cancer cell lines 
(A549 and HeLa). A549 cells had been used earlier as a model system to study PGHS-2 induction by the 
proinflammatory cytokine IL-1β and mPGES-1 was also induced by IL-1β in these cells. A protein of similar 
size was detected in microsomes from sheep vesicular glands, which are known to contain a highly 
efficient microsomal PGES, indicating that mPGES-1 was the long-sought membrane bound PGES. 
Furthermore, a time study of PGHS-2 and mPGES-1 expression revealed a coordinate induction of these 
enzymes, which was correlated with increased PGES activity in the microsomal fraction. Tumor necrosis 
factor-α (TNF-α) also induced mPGES-1 in these cells and dexamethasone was found to counteract the 
effect of these cytokines on mPGES-1 induction. A method based on RP-HPLC and UV-detection was 
developed to efficiently quantify PGES activity. A small set of potential mPGES-1 inhibitors were tested 
and NS-398, Sulindac sulfide and LTC4 were found to inhibit PGES activity with IC50-values of 20 µM, 80 
µM and 5 µM, respectively. 

The human mPGES-1 gene structure was investigated. The mPGES-1 gene span a region of 
approximately 15 kb, is divided into three exons and is localized on chromosome 9q34.3. A 682 bp 
fragment directly upstream of the translation start site exhibited promoter activity when transfected in A549 
cells. The putative promoter is GC-rich, lacks a TATA box at a functional site and contains numerous 
potential transcription factor binding-sites. Two GC-boxes, two tandem Barbie-boxes and an aryl 
hydrocarbon response element were identified. The putative promoter region of mPGES-1 was 
transcriptionally active and reporter constructs were regulated by IL-1β and phenobarbital. 

The expression of mPGES-1 was investigated in synovial tissues from patients suffering from 
rheumatoid arthritis (RA). Primary synovial cells obtained from patients with RA were treated with IL-1β or 
TNF-α. Both cytokines were found to induce mPGES-1 mRNA from low basal levels to maximum levels 
after 24 hours and the induction by IL-1β was inhibited by dexamethasone in a dose-dependent manner. 
The protein expression of mPGES-1 was also induced by IL-1β with a linear increase up to 72 h. In 
contrast, the PGHS-2 induction demonstrated an earlier peak expression (4-8 h). Furthermore, the protein 
expression of mPGES-1 was correlated with increased microsomal PGES activity. In these biochemical 
experiments any significant contribution of cytosolic PGES or other cytosolic or non-inducible membrane 
bound PGE synthases was ruled out. 

A purification protocol for mPGES-1 was developed. Human mPGES-1 was expressed with a 
histidine tag in Eschericha coli, solubilized by Triton X-100 and purified by a combination of hydroxyapatite 
and immobilized metal affinity chromatography. mPGES-1 catalyzed a rapid GSH-dependent conversion of 
PGH2 to PGE2 (170 µmol/min mg). The enzyme, also displayed a high GSH-dependent activity against 
PGG2, forming 15-hydroperoxy PGE2 (250 µmol/min mg). In addition, mPGES-1 possessed several other 
activities; glutathione-dependent peroxidase activity towards cumene hydroperoxide, 5-HpETE and 15-
hydroperoxy-PGE2, as well as conjugation of 1-chloro-2,4-dinitrobenzene (CDNB) to GSH. These activities 
likely reflect the relationship with other MAPEG enzymes. Two-dimensional crystals of purified mPGES-1 
were obtained and a 10 Å projection map was determined by electron crystallography. Hydrodynamic 
studies were also performed on the mPGES-1-Triton X-100 complex to investigate the oligomeric state of 
the protein. Electron crystallography and hydrodynamic studies independently demonstrated a trimeric 
organization of mPGES-1.  

Together with other studies published to date, mPGES-1 has been verified biologically as a drug 
target and the next step in this validation process requires specific inhibitors to be tested in animal disease 
models. 
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ABBREVIATIONS 
 
11R-HpETE 11-(R)-hydroperoxy-5,8,14-cis-12-trans-eicosatetraenoic acid 
12-HHT 12-(S)-hydroxy-8, 10-trans-5-cis-heptadecatrienoic acid 
15R-HpETE 15-(R)-hydroperoxy-5,8,11-cis-13-trans-eicosatetraenoic acid 
15S-HpETE 15-(S)-hydroperoxy-5,8,11-cis-13-trans-eicosatetraenoic acid 
13-PGR ∆13-15-ketoprostaglandin reductase 
15-PGDH 15-hydroperoxyprostaglandin dehydrogenase 
5-HpETE 5(S)-Hydroperoxy-8,11,14-cis-6-trans-eicosatetraenoic acid 
5-LO 5-lipoxygenase 
AA Arachidonic acid, 5,8,11,14-cis-eicosatetraenoic acid  
AD Alzheimer’s disease 
AKR Aldo keto reductase 
APC Adenomatous polyposis coli 
ASA Acetylsalicylic acid 
ATP Adenosinetriphosphate 
cAMP Adenosine 3’,5’-cyclic monophosphate 
cDNA Complementary deoxyribonucleic acid 
CDNB 1-chloro-2,4-dinitrobenzene 
CNS Central nervous system 
CoA Coenzyme A 
COX Cyclooxygenase 
cPGES Cytosolic prostaglandin E synthase 
cPLA2  Cytosolic Ca2+-dependent phospholipase A2  
CRE cAMP response element 
DAG Diacylglycerol 
DHA Docosohexaenoic acid 
DHPC Diheptanoylphosphatidylcholine 
DP Prostaglandin D receptor  
Egr-1 Early growth response-1 
EP Eicosanoid receptor 
ER Endoplasmatic reticulum 
EST Expressed sequence tag 
FLAP Five lipoxygenase activating protein 
FP Prostaglandin F receptor  
GRE Glucocorticoid response element 
GSH Reduced glutathione 
GST Glutathione S-transferase 
His6-mPGES-1 6-histidine tagged microsomal prostaglandin E synthase-1 
HSD Hydroxystereoid dehydrogenase 
Hsp90 Heat shock protein 90 
HSPG Heparan sulfate proteoglycan 
HUVEC Human umbilical vein endothelial cells 
IC Inhibitory concentration 
Iκβ Inhibitory kappa beta 
IL-1 Interleukin-1 
IL-1β Interleukin-1 beta 
INFγ Interferon gamma 
IP Prostaglandin I receptor  
IP3 Inositol 1,4,5-trisphosphate 
iPLA2  Cytosolic Ca2+-independent phospholipase A2 
JNK/SAPK Jun N-terminal kinase/stress activated protein kinase 
LDL Low-density lipoprotein 
LPS Lipopolysaccharide 
LST-1 Liver-specific organic anionic transporter-1 
LT Leukotriene 
LTA4 Leukotriene A4, 5(S)-trans-5,6-oxido-7,9-trans-11,14-cis-eicosatetraenoic acid 
LTC4 Leukotriene C4, 5(S)-hydroxy-6(R)-S-glutathionyl-7,9-trans-11,14-cis-eicosatetraenoic acid 
LTC4S Leukotriene C4 synthase 
LTD4 Leukotriene D4, 5(S)-hydroxy-6(R)-S-cysteinylglycyl-7,9-trans-11,14-cis-eicosatetraenoic acid 
LTE4 Leukotriene E4, 5(S)-hydroxy-6(R)-S-cysteinyl-7,9-trans-11,14-cis-eicosatetraenoic acid  
MAPEG Membrane associated proteins in eicosanoid and glutathione metabolism 
MAPK Mitogen-activated protein kinase 
MGST1 Microsomal glutathione S-transferase-1 
MGST1-L1 Microsomal glutathione S-transferase-1 like 1 
MGST2 Microsomal glutathione S-transferase-2 
MGST3 Microsomal glutathione S-transferase-3 
MMP Matrix metallo protease 
mPGES Microsomal prostaglandin E synthase 
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MyD88 Myeloid differentiation factor 88 
NAD+ Nicotinamid adenine dinucleotide (oxidized form) 
NADH Nicotinamid adenine dinucleotide (reduced form) 
NADPH Nicotinamid adenine dinucleotide phosphate (reduced form) 
NEM N-ethylmalemide 
NF-κβ Nuclear factor kappa beta 
NIK Nuclear factor kappa beta-inducing kinase 
NSAID Non steroidal anti-inflammatory drug 
PA Phosphatidic acid 
PC Phosphatidylcholine 
PG Prostaglandin 
PGA2 Prostaglandin A2, 15(S)-hydroxy-9-ketoprosta-5, 10-cis-13-trans-trienoic acid 
PGC2 Prostaglandin C2, 15(S)-hydroxy-9-ketoprosta-5, 11-cis-13-trans-trienoic acid 
PGCS Prostaglandin C synthase 
PGD2 Prostaglandin D2, 9α, 15(S)-dihydroxy-11-ketoprosta-5-cis-13-trans-dienoic acid 
PGDS Prostaglandin D synthase 
PGE2 Prostaglandin E2, 11α, 15(S)-dihydroxy-9-ketoprosta-5-cis-13-trans-dienoic acid 
PGES Prostaglandin E synthase 
PGF2α Prostaglandin F2α, 9α,11α 15(S)-trihydroxyprosta-5-cis-13-trans-dienoic acid 
PGFS Prostaglandin F synthase 
PGG2 Prostaglandin G2, 15(S)-hydroxyperoxy-9α-peroxidoprosta-5-cis-13-trans-dienoic acid 
PGH2 Prostaglandin H2, 15(S)-hydroxy-9α-peroxidoprosta-5-cis-13-trans-dienoic acid 
PGHS Prostaglandin H synthase  
PGI2 Prostaglandin I2, 6,9α-epoxy-11α, 15(S)-dihydroxyprosta-5-cis-13-trans-dienoic acid (prostacyclin) 
PGIS Prostaglandin I synthase 
PGJ2 Prostaglandin J2, 15(S)-hydroxy-11-ketoprosta-5, 9-cis-13-trans-trienoic acid 
PGT Prostaglandin transporter 
PIP2 Phosphatidyl inositol 4,5-bisphosphate 
PL Phospholipase 
PLA2 Phospholipase A2  
PLC Phospholipase C 
PLD Phospholipase D 
PMA 12-myristate 13-acetate 
POX Peroxidase 
PPAR-γ Peroxisome proliferator-activated receptor gamma 
RA Rheumatoid arthritis 
RP-HPLC Reverse phase high performance liquid chromatography 
sPLA2 Secretory phospholipase A2 
TLR4 Toll-like receptor 4 
TNF Tumor necrosis factor 
TNFα Tumor necrosis factor alpha 
TP Thromboxane A receptor 
TPA Tumor-promoting phorbol esters 
TRAF TNF receptor associated factor 
TXA2 Thromboxane A2, 9α,11α, epoxy-15(S)-hydroxythromba-5-cis-13-trans-dienoic acid 
TXAS Thromboxane A2 synthase 
TXBS Thromboxane B2 synthase 
UV Ultraviolet 
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INTRODUCTION 
 

Historical background  
Almost a century ago, in 1913, Battez & Boulet reported a lowered blood pressure 
and contraction of the urinary bladder in dogs after injections from extracts of the 
human prostate gland (23). In 1930, two gynecologists, Kurzrok & Lieb discovered 
that human semen contracted and relaxed the human uterus during artificial 
insemination (171). Goldblatt (95,96) and von Euler (412,413) extended this research 
and discovered that human semen contained a substance that lowered the blood 
pressure and stimulated the smooth muscle of the uterus. The substance appeared 
to be an amphipathic acid and was termed “prostaglandin” by von Euler (411), since 
its biological activity seemed to originate from the accessory genital glands. Twenty-
four years later, Bergström and Sjövall isolated the prostaglandins E and F (30,31) 
and soon thereafter, the structures of these compounds were solved (29). Mass 
spectrometry was the key method for these discoveries. In 1964, Bergström and van 
Dorp and collaborators, independently discovered that prostaglandins originated from 
C20 polyunsaturated fatty acids (28,389). They incubated homogenates of the sheep 
vesicular gland with [3H]-labeled arachidonic acid (AA) and observed an enzymatic 
conversion to PGE2. The biosynthetic pathway for the formation of prostaglandins 
was not known, but the three incorporated oxygens were found to derive from 
molecular oxygen (263,307) and Bengt Samuelsson postulated the involvement of a 
cyclic endoperoxide in the formation of these compounds (307). In 1973, Hamberg 
and Samuelsson with coworkers isolated two short-lived endoperoxides in the 
biosynthesis of prostaglandins, which subsequentially led to a series of discoveries of 
new metabolic products from this pathway, such as thromboxane (104,105) and 
prostacyclin (221,405). At that time, a high glutathione-dependent prostaglandin E 
synthase activity was also found in microsomes from bovine and sheep vesicular 
glands (223,264,363).     

Other arachidonic acid metabolites were soon structurally elucidated, such as 
the leukotrienes (LTs), LTC4 (106), LTD4 and LTE4 (187,230). Two separate 
pathways for leukotriene and prostaglandin formation were discovered, namely the 5-
lipoxygenase (5-LO) pathway (39,40) and the prostaglandin H synthase (PGHS) 
pathway (28,389,390), respectively (Fig. 1). All metabolites that originate from 
arachidonic acid or other C20 polyunsaturated fatty acids are commonly called 
eicosanoids due to their related structures. 
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Figure 1. Overview of the 5-LO and PGHS pathways. LTA4 and PGH2 can be further 
metabolized by specific enzymes into various leukotrienes and prostaglandins, 
besides the depicted LTC4 and PGE2. The enzyme abbreviations shown in bold are 
members of the MAPEG superfamily. 
 
 

BIOSYNTHESIS OF EICOSANOIDS 
 

Eicosanoids 
The term eicosanoid originates from the Greek word for 20 (eikosi) and implies 
products derived from polyunsaturated fatty acids with 20 carbon atoms, i.e., 
prostaglandins, leukotrienes, thromboxanes, lipoxins and other related compounds. 
Mammalian cells do not contain the enzymes responsible for introducing double 
bonds beyond carbon number 9 in polyunsaturated fatty acids and therefore, linoleic 
acid (18:2 ω6) and linolenic acid (18:3 ω3) are essential fatty acids that need to be 
obtained through the diet. Linoleic acid can be elongated and desaturated to yield 
dihomo-γ-linolenic acid (20:3 ω6) and arachidonic acid (20:4 ω6), while linolenic acid 
can be converted to eicosapentaenoic acid (20:5 ω6). Of these fatty acids, 
arachidonic acid is the most abundant in human cells. The C20 polyunsaturated fatty 
acids are metabolized into various eicosanoids (Fig. 2).  
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Figure 2. Precursors of eicosanoids. 

Release of arachidonic acid 
Most arachidonic acid is stored in the cell membranes, esterified in the sn-2 position 
of phospholipids (137). Under normal conditions, the level of free arachidonic acid is 
low, but upon stimulation, arachidonic acid is released by phospholipases (PLs). 
Phospholipases and acyl-CoA transferases determine the concentration of free 
arachidonic acid through hydrolysis and re-esterification of phospholipids 
(97,137,335). Phosphatidylcholine (PC) may account for up to 50% of the total 
content of phospholipids and the inositol-containing lipids for 5-8%. Phospholipase A2 

and D can utilize PC as a substrate, while phospholipase C specifically hydrolyzes 
inositol-containing lipids (59). Many PLA2 enzymes are active within the cell or in the 
close vicinity and have distinct, but interconnected roles in arachidonic acid release. 
Phospholipase activity is regulated by several mechanisms including: G-protein 
coupled receptors (59), phosphorylation (186) and activation by divalent cations 
(166). So far, 19 enzymes with PLA2 activity have been identified and cloned in 
mammals (see reviews) (19,121,167). A classification of the PLA2s that has 
historically been utilized, divides them into three groups: secretory (sPLA2), cytosolic 
Ca2+-dependent (cPLA2), and cytosolic Ca2+-independent (iPLA2).  

Phospholipases 
Secreted forms of phospholipase A2 
Secretory PLA2s comprise the largest group of PLA2 enzymes and consist of low 
molecular weight (14-17 kDa), disulfide-linked Ca2+-requiring enzymes (mM range) 
with a highly conserved catalytic site and Ca2+-binding loop (167). Several of the 
sPLA2 enzymes have been reported to take part in a number of biological processes 
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such as inflammation and host defense. Secretory PLA2-IIA is the most widely 
distributed isozyme in humans and rats. Secretory PLA2-IIA is abundantly expressed 
in human tissues related to the immune response (166,322). Moreover, sPLA2-IIA 
can be induced in a wide variety of cells by pro-inflammatory cytokines and 
lipopolysaccharides (LPS) (3,61,172,238,275,356). This induction is suppressed by 
anti-inflammatory glucocorticoids (249,313).  

Secretory PLA2-V is closely related to sPLA2-IIA and is widely expressed in 
human tissues, with the highest expression in the heart (53). Secretory PLA2-V is 
also induced by pro-inflammatory stimuli in several immune cells like mast cells, 
macrophages, and type 2 helper T (TH2) cells (18,312), and appears to substitute for 
sPLA2-IIA in some cells (15,287,312).  

Studies with specific sPLA2 inhibitors, antibodies, antisense nucleotides and 
transfection studies have revealed that several of the sPLA2 isozymes have the 
capacity to regulate cellular arachidonic acid release through distinct mechanisms 
where arachidonic acid is provided to PGHS-1 in the immediate phase and to PGHS-
2 in the delayed phase of cellular prostaglandin formation (235,236,245).  

Both sPLA2-IIA and sPLA2-V are heparan-binding enzymes that display 
significant affinity for cell surface heparan sulfate proteoglycan (HSPG) (242,245). 
The intracellular sorting route, referred to as the HSPG-shuttling pathway, 
concentrates sPLA2-IIA into restricted intracellular compartments, which allows 
colocalization with perinuclear arachidonic acid metabolizing enzymes such as 
PGHS and 5-LO for efficient eicosanoid production (237). However, sPLA2-V can 
also act on the plasma membrane surface independently of HSPG (109,237).   

In addition to these two sPLA2s, sPLA2-X has also been shown to stimulate 
arachidonic acid release when added exogenously to different cell lines (33,110). 
Although, sPLA2-X has a low affinity for cell surface HSPG, it can release arachidonic 
acid spontaneously in the absence of stimuli (33,110). Secretory PLA2-X is 
expressed in the intestine, colon, stomach and testis (68) and has also been 
detected in the immune organs (110).  
 
Cytosolic Ca2+-dependent phospholipase A2 
The cytosolic PLA2-sub family consists of high molecular weight PLA2s (cPLA2s) (>60 
kDa) (57,166,276,347), of which cPLA2α (group IVA) has received the most attention. 
Ca2+ and phosphorylation tightly regulate cPLA2α activity. Cytosolic PLA2α is the only 
known PLA2 enzyme with a marked preference for arachidonic acid over other fatty 
acids in the sn-2 position (57,75,111,166). Cytosolic PLA2α is constitutively 
expressed in most tissues and cells, with the exception of mature B and T 
lymphocytes (93,121,186). Furthermore, the expression of cPLA2α is increased by 
pro-inflammatory cytokines and growth factors and can be prevented by 
glucocorticoids (128,193,313). Submicromolar concentrations of Ca2+ is required to 
facilitate translocation of cPLA2α from the cytosol to the nuclear membrane or 
endoplasmatic reticulum, rather than being necessary for catalysis (124,251,291). 
This translocation is essential for the initiation of arachidonic acid release 
(57,83,316).  

There seems to be a connection between the secreted forms of PLA2s and 
the cytosolic PLA2s. In support for this, certain forms of sPLA2s (IB or IIA) can 
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activate cPLA2α and induce arachidonic acid release via the M-class sPLA2 receptor-
mediated pathway (87,118,135). On the other hand, in mouse macrophage-like cells 
and rat-fibroblastic cells, cPLA2α is required for the induction and activation of sPLA2-
V (16,18,330) and sPLA2-IIA, respectively (172,173).  
 
Cytosolic Ca2+-independent phospholipase A2 
A cytosolic Ca2+-independent PLA2 (iPLA2) was cloned and purified in 1996 
(14,180,364). iPLA2 shows no strict specificity for sn-2 fatty acids and is fully active in 
the absence of Ca2+, but its role in biological events is not fully elucidated (364). 
However, iPLA2 is proposed to play function in phospholipid remodeling through 
deacylation of phospholipids (408).  
 
Other phospholipases 
Arachidonic acid can also be released through the phospholipase C (PLC)-pathway 
by cleavage of phosphatidyl inositol-bisphosphate (PIP2) into inositol trisphosphate 
(IP3) and diacylglycerol (DAG) (294) with subsequent metabolism of DAG by 
diglyceride lipase and release of arachidonic acid (17,26). Phospholipase D (PLD) 
can cleave phosphatidylcholine (PC) into phosphatidic acid (PA) and choline. 
Subsequently, PA can be metabolized by PLA2 into lysoPA and arachidonic acid 
(364). Alternatively, PA is metabolized by phosphatidic acid phosphohydrolase (PAP) 
into DAG (375). DAG can then be further metabolized by diglyceride lipases into 
arachidonic acid (26).  

Functional coupling of PLA2s and PGH synthases 
Pharmacological and biochemical studies of PLA2 isozymes and PGH synthases 
have been performed on various cells in order to identify the enzymes responsible for 
efficient transfer of arachidonic acid in different phases of prostaglandin biosynthesis. 
(172,245,252,330). PGHS-1 seems to be limited to the immediate phase of 
prostaglandin formation, while PGHS-2 is a prerequisite for the delayed phase, which 
lasts for several hours (172,235,240,252).  

The importance of cPLA2 for efficient PG-formation was demonstrated by the 
use of cPLA2 inhibitors (172,239,245,252,300) and by studies using cPLA2 knock-out 
mice (88,385). The inducible sPLA2-IIA and sPLA2-V have been demonstrated to 
participate in both immediate and delayed PG-biosynthesis by the use of antibodies, 
inhibitors and antisense oligonucleotides (172,252,330,358). Cotransfection studies 
of several PLA2s with PGHS-1 or PGHS-2, demonstrated that sPLA2-IIA, sPLA2-V 
and cPLA2 was functionally linked with PGHS-1 and PGHS-2 in the immediate 
response and predominantly with PGHS-2 in the delayed response, whereas iPLA2 
was preferentially linked with PGHS-1 in the immediate response (235,236,245). 
Furthermore, the sPLA2 enzymes can act on neighboring cells to induce arachidonic 
acid release. Functional coupling of sPLA2-V and PGHS-1 has also been seen during 
immediate PGD2-formation (287).  
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METABOLISM OF ARACHIDONIC ACID 
 
Free arachidonic acid is metabolized through oxygenation by three enzymatic 
pathways in mammals. The prostaglandin H synthase (PGHS) pathway produces 
prostaglandins and thromboxanes via the prostaglandin endoperoxides PGG2 and 
PGH2, the lipoxygenase pathway produces leukotrienes and certain hydroperoxy 
acids (HpETEs) and the monooxygenase pathway (cytochrome P-450 enzymes) 
leads to a series of epoxy- and hydroxy-acid derivatives (see reviews) (48,334). 

Biosynthesis of prostaglandins 
Prostaglandins are lipid mediators, which act as local hormones on adjacent cells. 
They are formed in most cells and are synthesized de novo from membrane-released 
arachidonic acid upon cell activation by mechanical stress, cytokines, growth factors 
or certain hormones. Both cPLA2s and sPLA2s can be translocated to the 
endoplasmatic reticulum (ER) and Golgi apparatus after cell activation. Arachidonic 
acid is then released and presented to one of the forms of prostaglandin H synthase 
(PGHS), which metabolize AA to PGH2. PGH2 can subsequently be converted in a 
cell-specific manner by downstream enzymes to biologically active prostanoids, i.e. 
PGE2, PGD2, PGF2α, PGI2 or TXA2 (Fig. 3). In many cases, only one prostanoid is 
produced in a given cell type. For example, thromboxane A2 synthase (TXAS) is 
present in platelets, prostacyclin synthase (PGIS) is present in endothelial cells, 
PGF2α synthase (PGFS) is present in the uterus, two types of PGD2 synthase 
(PGDS) are found in brain and mast cells, respectively and microsomal PGE 
synthase-1 (mPGES-1) is present in activated cells involved in inflammation 
(synoviocytes) (353). 



 

 7 

 

O

O
OH

COOH

OH

COOH

O

OH

OH

COOH

OH

O

OH

COOH

OH

OH

O

COOH

O

OH

O

COOH

O

OH

OH

COOH

O

OH OH

OH

COOH

O
O

OH

COOH

O

OH

OH

OH
OH

O

COOH

O

O

OH

COOH

COOH

OH

COOH

O

OH

COOH

O

COOH

O

OH

COOH

O

OH

COOH

O

OH

COOH

O

PGH2

PGE2

PGD2

PGF2α

15-keto PGE2

13,14-dihydro-
15-keto PGE2

TXA2

TXB2

19(R)-hydroxy PGE2

PGI2

20-carboxy-2,3,4,5-
tetranor-13,14-
dihydro-15-keto PGE1

PGJ2

∆12-PGJ2

15-deoxy-∆12,14-PGJ2

PGA2

PGC2

PGB2

I
II

III

IV

V

VI

VII

VIII

IX

X

XI

XII

XIII

 
 

Figure 3. PGH2-derived prostanoids. I, prostaglandin F synthase, II, prostacyclin 
synthase, III, prostaglandin D synthase, IV, Thromboxane A2 synthase, V, 
Thromboxane B2 synthase, VI, prostaglandin E synthase, VII, PGE 9-ketoreductase, 
VIII, cytochrome P450 (CYP4F), IX, prostaglandin C synthase, X, 15-
hydroxyprostaglandin dehydrogenase, XI, ∆13-15-ketoprostaglandin reductase, XII, 
ω-oxidation, XIII, β-oxidation.  
 
 
PGH-synthase 
Prostaglandin H synthase (PGHS; EC 1.14.99.1), also called prostaglandin 
endoperoxide synthase and cyclooxygenase (COX), is a membrane bound heme-
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dependent bis-oxygenase (COX) and peroxidase. PGHS catalyzes the oxidation of 
arachidonic acid with two molecules of O2, forming the endoperoxide, PGG2. The 15-
hydroperoxide of PGG2 is subsequentially reduced by the peroxidase (POX) activity 
of PGHS to PGH2 (126,205,337,339).  

Two isoforms of PGHS have been found in mammals, PGHS-1 (74,214,422) 
and PGHS-2 (168,417). PGHS-1 is constitutively expressed in most tissues and cells 
and is considered to be a housekeeping enzyme. In contrast, PGHS-2 is inducible by 
various stimuli such as hormones, cytokines and mitogens. Both PGHS-1 and 
PGHS-2 are glycosylated heme-containing homodimers with two catalytic sites. The 
enzymes are located on the luminal surfaces of the endoplasmatic reticulum (ER) 
and on the inner and outer membranes of the nuclear envelope (229,349). PGHS-1 
and 2 are not integral membrane proteins, but rather anchored to the lipid bilayer 
through hydrophobic surfaces of their amphipathic helices. Considerable research 
has focused on the structure, function and physiology of the PGHS isoforms since 
they are the targets of nonsteroidal anti-inflammatory drugs (NSAIDs), which account 
for billions of dollars in sales for the pharmaceutical industry (392). PGHS-1 and 
PGHS-2 have very different expression profiles in several physiological processes 
(120,337). The PGHS isozymes are also involved in pathological processes. PGHS-1 
is involved in thrombosis (273,274), while PGHS-2 mainly takes part in inflammation, 
pain and fever (64) and some forms of cancer (189,406). It has also been suggested 
that PGHS-2 plays a role in neurological disorders like Alzheimer’s (211) and 
Parkinson’s diseases (344).   
 
Gene structure and expression of PGHS-1 
The cDNA of PGHS-1 was first cloned from sheep vesicular glands, a rich source of 
this enzyme (74,214,422), and shortly thereafter, the human gene and primary 
structure was characterized (423). The human PGHS-1 gene consists of 11 exons, 
spans a region of approximately 22 kb and is transcribed as a 2.8 kb mRNA coding 
for a protein with an apparent molecular mass of 70 kDa. The protein is made up of 
599 amino acids, including a glycosylation signal and a peptide of 23 amino acids, 
which is cleaved off in its mature form.  

The PGHS-1 promoter region lacks a functional TATA or CAAT box and is 
GC-rich, which is consistent with a housekeeping gene. Several putative 
transcriptional regulatory elements are found in the promoter region, such as two sp1 
motifs, two AP- sites, an NF-IL6 motif and a GATA.  
 
Gene structure and expression of PGHS-2 
The inducible PGHS isozyme was discovered in chicken and mouse fibroblasts in 
response to src and tumor-promoting phorbol esters (TPA) (168,417). The isozyme 
was named PGHS-2 and subsequent cloning work revealed that the human gene is 
about 8.3 kb long with 10 exons and is transcribed as 2.8, 4.0 and 4.6 kb mRNA 
variants (127,148). PGHS-2 is also a glycoprotein, of which the mature form contains 
587 amino acids. PGHS-1 and –2 display about 60% sequence identity on the amino 
acid level, while sequence identity among orthologs from different species varies 
between 85-90% (336). A number of potential transcription regulatory elements have 
been identified in the 5’-flanking region of the PGHS-2 genes, including a TATA box. 
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Two NF-κβ, three sp1, two AP-2, one NF-IL6, one CRE and one E-box binding site 
have been found (136). PGHS is distantly related to a peroxidase family that split up 
before divergence between mammals and avians.  

PGHS-2 is responsible for PG production in several physiological and 
pathological conditions and there are a number of studies on PGHS-2 gene 
expression in various tissues and cells associated with these conditions (for reviews, 
see) (72,119,120,337). The PGHS-2 gene expression is particularly responsive to 
proinflammatory mediators such as IL-1, TNFα, INFγ, LPS and 12-O-
tetradecanoylphorbol 13-acetate (TPA), but also growth factors, hormones and 
oncogenes. PGHS-2 gene expression can be regulated by some shared signaling 
pathways between the NF-κβ site, NF-IL6 motif, CRE and E-box in the PGHS-2 
promoter (362). Also, three mitogen-activated protein kinase (MAPK) cascades, 
ERK1/2, JNK/SAPK and p38 contribute to the induction of PGHS-2 either 
independently or in a concerted manner (354).  
 
Regulation of PGHS-2 expression 
Gene expression of PGHS-2 is mediated by several receptor-dependent signaling 
processes (Fig. 4). The Toll-like-receptor 4 (TLR4) has been shown to be the 
receptor responsible for LPS-mediated signaling (159,421). LPS-induced cellular 
activation of NF- κβ in endothelial and monocytic cells has been shown to be 
associated with activation of JNK, ERK1/2 and p38 (100). Interestingly, the IL-1 
signaling pathway in mammals is very similar to the Toll signaling pathway in 
Drosophila and activation of these receptors induces the recruitment of an adapter 
molecule called myeloid differentiation factor 88 (MyD88) (113,298). MyD88 recruits 
IL-1 receptor-activated kinase (IRAK), which interacts with TNF receptor associated 
factor 6 (TRAF6). This complex can then interact with NF- κβ-inducing kinase (NIK). 
In turn, NIK activates the Iκβ kinase complex (IKK) that phosphorylates Iκβ. This 
phosphorylation leads to an ubiquitin-proteasome-mediated degradation and release 
of activated NF- κβ. However, the TNF-receptor signaling is not mediated by TRAF6, 
but instead by TRAF2. The signaling pathways of IL-1, TNF and LPS, converge after 
TRAF2 and TRAF6. Another adapter protein, called ECSIT, is linked to the signaling 
pathway from the TLR4 and IL-1 receptors to MEKK. 

The MAPK cascade is a very important signaling pathway for PGHS-2 
expression and consists of three different subgroups of kinases (ERK, JNK/SAPK, 
and p38). The ERKs are mainly activated by growth factors and oncogenes, including 
v-Ras and v-Src. The JNK/SAPK and p38 pathways are activated by proinflammatory 
cytokines, LPS and environmental stress, like ultraviolet light, ionizing radiation and 
oxidative stress. When the MAP kinases are activated, they phosphorylate 
transcription factors, which then regulate gene expression. The proinflammatory 
cytokine IL-1β is a well-known inducer of PGHS-2 gene expression, which signals 
through JNK/SAPK and p38 MAPK (99). The PGHS-2 gene has been shown to be 
an important Ras target since oncogenic mutations in Ras and overexpression of 
PGHS-2 is found in many forms of human cancers, including breast cancer and 
colorectal carcinoma (327,355).  
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Figure 4. Signaling of PGHS-2 gene induction. 

 

Dexamethasone is a common anti-inflammatory steroid, which binds to the 
glucocorticoid receptor (GR) and activates transcription of a number of genes via 
glucocorticoid response elements (GREs) (25). Dexamethasone has been found to 
be an efficient suppressor of inflammatory-induced PGHS-2 expression. No GREs 
are found in the 5’-flanking region of human PGHS-2, but the mechanism of 
glucocorticoid-mediated repression involves suppression of AP-1 and NF-κβ-
dependent transcription (13,314). Dexamethasone can also act through other post-
transcriptional mechanisms of repression and treatment of A549 cells with 
dexamethasone only reduced the transcription rate of PGHS-2 by 40%, while the 
mRNA and protein levels were completely repressed (257,258). The 
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dexamethasone-dependent repression involved a reduced PGHS-2 mRNA half-life 
with shortening of the average length of the poly(A) tails.  

Activated MAPK has also been reported to regulate gene expression at the 
post-transcriptional level by mRNA stabilization of PGHS-2 (52,410). 
 
Biological functions 
PGHS-1 and PGHS-2 have striking differences in tissue expression and regulation, 
therefore it is postulated that they have different physiological functions. Confocal 
fluorescence imaging microscopy and immunohistological techniques have revealed 
differences in subcellular localizations of PGHS-1 and PGHS-2. Both PGHS-1 and 
PGHS-2 are localized in the endoplasmatic reticulum, but PGHS-2 is more 
concentrated in the nuclear envelope (229).   

PGHS-1 is present in nearly all cells under basal conditions (62) and is 
expressed at high levels in specific tissues, such as vascular endothelia, monocytes, 
platelets, renal collecting tubules and seminal vesicles. PGHS-1 produces 
prostaglandins responsible for homeostatic functions, such as regulation of renal 
blood flow, maintenance of the gastric mucosa and platelet function. Studies of 
PGHS-1 (-/-) mice have revealed the biological role of PGHS-1. PGHS-1 (-/-) mice 
have reduced platelet aggregation, are more sensitive to radiation injury, but have no 
gastric pathology as would be expected, since PGHS-1 was thought to protect the 
gastric mucosa (132,179). However, when selective PGHS-2 inhibitors were given to 
PGHS-1 deleted mice, the mucosa protection was significantly decreased (231). 
Thus, both PGHS-1 and PGHS-2 seems to be involved in gastric mucosa protection. 
Furthermore, PGHS-1 seems to be important in reproduction, since PGHS-1 (-/-) 
pairings lead to few offspring (288).  

PGHS-1 is not normally induced, but cell-lines that undergo differentiation and 
mimic the developmental process have increased expression of PGHS-1 (362). 
Shear stress has also been reported to increase PGHS-1 expression in human 
umbilical vein endothelial cells (HUVEC) (268) and this together with 
pharmacological studies (281), suggests a role for PGHS-1 in atherosclerosis.   

PGHS-2 is not normally present in most tissues, but is inducible by 
proinflammatory cytokines, growth factors, hormones and exogenous stimuli in many 
cell types, like synoviocytes, endothelial cells, chondrocytes, osteoblasts and 
monocytes (336). However, constitutive PGHS-2 expression has been found in 
several tissues, like the kidney, lung epithelial cells and intact thyroid tissue 
(10,114,254,295). Also, tissues that are exposed to constant mechanical stress, such 
as bone, blood vessels and brain (electrical stimulation) express PGHS-2 
constitutively (362). PGHS-2 deficient mice have more profound phenotypic changes 
as compared to PGHS-1 (-/-) mice. Female PGHS-2 deficient mice have deficient 
reproductive functions including ovulation, fertilization and implantation (76,227). 
Phenotype changes in PGHS-2 (-/-) mice have also been observed in peritonitis, 
cardiac fibrosis, renal nephropathy and failure of ductus arteriosus closure (55,178). 
PGHS-2 seems to play an important role in tumorigenesis. Supression of 
tumorigenesis in PGHS-2 (-/-) mice have confirmed epidemiological studies, 
demonstrating that NSAIDs suppress the incidence of colon cancer (270). However, 
the effect of NSAIDs on tumorigenesis cannot entirely be explained by inhibition of 
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PGHS-1 or PGHS-2. Studies with PGHS-1 and PGHS-2 double knockout mice have 
revealed novel mechanisms for NSAID activities in tumorigenesis, independent of 
PGHS expression (426).  
   
PGHS catalysis 
Each PGHS-homodimer contains one heme per subunit, which is necessary for both 
the COX and POX reaction (218,267). The COX and POX activities occur at separate 
but functionally interactive sites within the enzyme (342). The peroxidase reaction is 
necessary to activate the cyclooxygenase reaction. A hydroperoxide reacts with the 
heme-iron and initiates a two-electron oxidation, which yields an enzyme state with 
an oxyferryl-heme radical cation, called Compound I. The radical undergoes 
intramolecular migration from the heme group to Tyr385, which creates intermediate 
II (338,376). Already by 1967, Hamberg & Samuelsson proposed the basic steps in 
the PGHS mechanism (103). The postulated mechanism remains virtually the same 
today, however, recent structural studies of PGHS have revealed important functions 
in the mechanism, which can be broken down into four steps (91). The carboxyl 
group of AA interacts with Arg120, which leads to a proper positioning of AA in the 
COX channel (200,277). The tyrosyl radical (Tyr385) initiates the COX reaction by 
abstracting the 13proS hydrogen from AA (103,377,378). This step has been shown 
to be the rate-limiting step of the COX reaction. Subsequently, an 11R-peroxyl radical 
is formed in the presence of O2. The 11R-peroxyl radical then attacks carbon 9 and 
forms the endoperoxide with following isomerization of the radical to carbon 8. A 
major reconfiguration of the substrate is necessary for ring closure between carbon 8 
and 12, during or immediately after formation of the endoperoxide bridge. The ω-end 
of the substrate will have to move much closer to the carboxyl group in this 
conformational change. The 11R-peroxyl radical is believed to swing “over” carbon 8 
with an R-side attack on carbon 9 through the rotation of the bond between carbon 
10 and 11, which brings carbon 12 closer to carbon 8 for ring closure. This would 
also lead to repositioning of carbon 15 for an additional attack of O2, thus forming the 
15S-peroxyl radical. The catalytic cycle of COX is completed by the 15S-peroxyl 
radical, which abstracts the hydrogen from Tyr385, thereby regenerating the tyrosyl 
radical and producing PGG2 (91). The 15-hydroperoxyl group of PGG2 is thereafter 
reduced to PGH2 by the POX activity of PGHS. The crystal structure of PGHS does 
not reveal any direct pathway for PGG2 to travel through the protein from the COX to 
the POX site. PGG2 is believed to exit the COX site through the opening in the 
membrane binding domain and travel around the surface of the protein to get to the 
POX site (342).  

The PGHS POX reaction occurs at a heme-containing active site, close to the 
protein surface, partially exposed to solvent (170,277). The POX reaction is 
considered to be the second step in the formation of PGH2, but the peroxidase 
activity is absolutely required for COX activation (337,338). Initially, other peroxides, 
besides PGG2 are needed to start the COX reaction. Neither the identity nor the 
source of the hydroperoxide needed for the initial heme oxidation in vivo is known. 
However, as soon as the first catalytic cycle of the COX reaction has started, it can 
continue independently of the POX cycle (163). Both PGHS-1 and –2 have been 
shown to reduce a number of peroxides with a marked preference for secondary alkyl 
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hydroperoxides and PGG2 is probably the physiologically most important substrate 
(176,196). 

There are some differences in the rate of POX activities between PGHS-1 
and –2 with no obvious structural explanation (196). The COX activity of PGHS-2 is 
activated at a lower concentration of hydroperoxide than for PGHS-1, possibly 
related to a low peroxide state of the relevant cell (169,340).  

Both the POX and COX activities of PGHS are suicide inactivated during 
catalysis by a breakdown of active enzyme intermediates. The exact mechanism for 
the suicide inactivation and protein modification associated are not known, but 
probably involves reaction of amino acid radicals with molecular oxygen (342).    

Arachidonic acid is the best substrate for PGHS-1 and –2, but both enzymes 
can also oxygenate closely related fatty acids in intact cells, such as linoleic acid 
(18:2 w6), dihomo-γ-linolenic acid (20:3 w6) and eicosapentaenoic acid (20:5 w3). 
PGHS-2, but not PGHS-1 has also been shown to convert the endocannabinoids 2-
arachidonylglycerol and arachidonylethanolamine into the precursors for 
prostaglandin glycerol esters and prostaglandin ethanolamides (164,165).  

The difference in substrate specificity between PGHS-1 and –2 could explain 
the reason for two isozymes. Interestingly, both isozymes have been found to 
produce small amounts of other products, besides PGG2 from AA, due to different 
conformers in the COX active site (11R-HpETE, 11S-HpETE, 15R-HpETE, 15S-
HpETE) (372,416). However, little is known about the role of these alternative 
metabolites in physiology.  

The first three-dimensional structure of a PGHS-enzyme was published in 
1994 (ovine PGHS-1 complexed with the NSAID, flurbiprofen) (277) and soon 
thereafter, the crystal structure of human and murine COX-2 was elucidated 
(170,199). Drug interactions with PGHS have been extensively studied by the use of 
crystallography. The PGHS isoforms were found to be structurally homologous and 
quite superimposable. However, there are some structural differences between the 
COX site of PGHS-1 and –2. The active site of COX-1 and –2 does not share the 
exact same surrounding amino acids and the size of the main channel is slightly 
larger in PGHS-2 (~20%). These differences have made it possible to design 
selective drugs against PGHS-2.  
  
NSAID action 
PGHS-1 and –2 are the major targets for NSAIDs. Structural data of the PGHS 
isoforms have revealed that NSAIDs inhibit the fatty acid substrate binding at the 
COX site. There are two major classes of NSAIDs; the classical NSAIDs, which 
inhibit both PGHS-1 and –2 and the PGHS-2 selective inhibitors (73,234). Most of the 
NSAIDs inhibit PGHS-1 and –2 by a reversible competitive inhibition. However, 
acetylsalicylic acid inhibits PGHS by a rapid, reversible binding followed by a 
covalent modification of Ser530 (91,342,392).  

Furthermore, acetylsalicylic acid has been reported to directly inhibit the NF-
κβ signaling pathway through Iκβ kinase and prevent the expression of PGHS-2 (50). 
This might explain the anti-inflammatory properties of NSAIDs, which are 
independent of PGHS inhibition (419).  
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PROSTAGLANDIN E SYNTHASE 
Prostaglandin E synthase (PGES) (EC 5.3.99.3) specifically converts the 
endoperoxide moeity of prostaglandin endoperoxides into the 9-keto-11-hydroxy 
conformation found in PGE2. PGE2 is the most common prostanoid and mediates a 
number of biological responses through certain prostanoid receptors (see prostanoid 
receptors). Originally, microsomes from sheep and bovine seminal vesicles were 
found to contain high glutathione (GSH)-dependent PGES actvity (223,264,363). 
Many attempts have been made to isolate microsomal PGES, with limited success, 
mainly due to the instability of the enzyme. Several cytosolic glutathione transferases 
have also been found to possess PGES activity. Two anionic glutathione 
transferases with GSH-dependent PGES activity were purified from human brain 
(265). However, these activities were later shown to not be specific for PGE2 
formation, but also produced PGD2 and PGF2α from PGH2 (51,384). Two other 
cytosolic glutathione transferases of the Mu-class have been purified from human 
brain cortex, which demonstrated significant GSH-dependent PGES activities (32). 
Another cytosolic GSH-dependent PGES (cPGES/p23) that is functionally linked with 
PGHS-1 was isolated from rat brain after LPS-treatment (367). There are several 
reports about a membrane-bound GSH-independent PGES in heart, spleen and 
uterus, isolated from rat and bovine (396,397). Recently, the cDNA corresponding to 
the microsomal GSH-independent monkey protein was cloned and purified and is 
now referred to as mPGES-2 (365).  

This thesis is based on the characterization of human microsomal glutathione 
S-transferase-1-like 1 (MGST1-L1), which was cloned and identified in 1999 by 
Jakobsson et al. (143) and will thus be discussed in detail later (see discussion). 
Orthologs of MGST1-L1 have also been cloned from several other species 
(84,182,202,244). The membrane-bound PGE synthases are designated as mPGES 
and the cytosolic PGE-synthases as cPGES. 

mPGES-2 
A membrane-bound GSH-independent PGES expressed in heart, spleen and uterus, 
has been isolated from rat and bovine (396,397) and the corresponding monkey 
protein was recently expressed, purified and referred to as mPGES-2 (365). The 
cDNA for monkey mPGES-2 encodes a 33-kDa protein with the consensus region of 
glutaredoxin and of thioredoxin. The human mPGES-2 gene was localized on 
chromosome 9q33-q34, close to the genes of PGHS-1, mPGES-1 and lipocalin-type 
PGDS. Purified mPGES-2 displayed a KM and Vmax of 28 µM and 3.3 µmol min-1 mg-1, 
respectively with a pH-optimum between 6-7 (365). Recombinant mPGES-2 was 
activated by several SH-reducing reagents such as dithiothreitol, GSH and β-
mercaptoethanol, in order of decreasing effectiveness. Northern blot analysis 
demonstrated that mPGES-2 mRNA was mainly localized in various regions of the 
brain and heart, but not in genital organs, as compared to mPGES-1 (365). More 
recently, transfection studies of mPGES-2 and PGHS-1 or PGHS-2 demonstrated 
that mPGES-2 promoted PGE2 production in the immediate and delayed responses, 
with modest preference to PGHS-2 (241). mPGES-2 demonstrated a constitutive 
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expression in many cells and was not induced during tissue inflammation. However, 
protein expression of mPGES-2 was elevated in human colorectal cancer. 

Cytosolic PGES 
Cytosolic PGES (cPGES) is identical to p23, a 23 kDa, heat shock protein 90 (Hsp 
90)-binding protein, originally implicated as a cofactor for the chaperone function of 
Hsp90 (134,147). cPGES was initially identified as a cytosolic, LPS-induced, GSH-
dependent PGES with KM and Vmax-values of 14 µM and 190 nmol min-1 mg-1, 
respectively (367). In a more recent study, cPGES was shown to be activated in the 
presence of the Hsp 90-complex, Mg2+ and ATP (366). Unlike typical GSTs (305), 
cPGES not only showed negligible activities against several cytosolic GST 
substrates, including CDNB, but was even inhibited by them (367). These properties 
are similar to those of hematopoietic PGDS, which belongs to the σ-class of GSTs 
(151). The homology between cPGES and other cytosolic GSTs, including 
hematopoietic PGDS is low (~20%), but they all share a conserved tyrosine near the 
N-terminus (Tyr9), which serves to stabilize the GSH thiolate in many cytosolic 
GSTs. Mutation of this amino acid abrogated the activity of cPGES, suggesting the 
same function (367). 
 cPGES is constitutively expressed in many tissues and cells, but cannot be 
induced by proinflammatory stimuli, except in the brain, where LPS-treatment 
resulted in a three-fold induction in rat (367). cPGES is mainly localized to the 
cytosol, but can move to the endoplasmatic reticulum after Ca2+-ionophore challenge 
(243). Cotransfection studies of cPGES and PGHS-1 in HEK293-cells have shown 
that these enzymes are functionally linked and associated with maintenance of tissue 
homeostasis (367). However, less efficient biosynthesis of PGE2 has been seen in 
KAT-50, a well differentiated thyroid epithelial cell line, expressing PGHS-2 and 
cPGES (107). The role of cPGES in vivo is not fully understood and studies with 
cPGES (-/-) mice will reveal its implications in physiology and pathophysiology. 
Recent data indicates that cPGES may play an important role during implantation, 
decidualization (260) and parturition (212).  

GSTs 
Several cytosolic GSTs have been reported to convert PGH2 into PGE2, PGD2 and 
PGF2α, non-specifically (51,265,384). Two cytosolic glutathione transferases of the 
Mu-class, purified from human brain cortex demonstrated specific GSH-dependent 
PGES activities (32). The recombinant GSTM2-2 and 3-3 catalyzed the conversion of 
PGH2 to PGE2 at the rates of 282 and 923 nmol min-1 mg-1, with an apparent KM of 
140 and 1500 µM, respectively, at the optimal pH of 8. The human GSTM2-2 and 3-3 
are mainly expressed in the brain (301) and the rat counterpart of GSTM3-3 is 
localized in the thalamus and hypothalamus (146). 
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CATABOLISM OF PGE2 AND FORMATION OF PGF2 
 
The main pathway for catabolism of eicosanoids is initiated by oxidation of the 15(S)-
hydroxyl group, catalyzed by NAD+-dependent 15-hydroxyprostaglandin 
dehydrogenase (15-PGDH) (144), followed by reduction of the ∆13 double bond, 
catalyzed by NADPH/NADH-dependent ∆13-15-ketoprostaglandin reductase (13-
PGR) (Fig. 3) (8). These enzymes are ubiquitously expressed in mammalian tissues 
(359) and the degradation products of these enzymes (15-ketoprostaglandins and 
13,14-dihydro-15-ketoprostaglandins) have significantly reduced biological activities 
(7). There are two types of 15-PGDHs, type I is NAD+-dependent and selective 
towards eicosanoids (144), while type II can use both NAD+ and NADP+ and has a 
broader substrate specificity (194). Since the type II enzyme has much higher KM for 
prostaglandins, compared to type I, it is not believed to play an important role in the 
catabolism of eicosanoids (359). The eicosanoids can be further metabolized, in 
several steps by β- and ω-oxidation of the side chains into various dinor- and tetranor 
products (Fig. 3) (308). For example, β-oxidation shortens the α-chain of various 
prostaglandins into the corresponding C18-homologues (102) and ω-oxidation of 
prostaglandins is performed by cytochrome P-450 enzymes (45,46,269). Actually the 
most abundant prostaglandins in the semen are 19R-hydroxy-PGE1 and 19R-
hydroxy-PGE2 (368).    

PGE2 can also be metabolized non-enzymatically to PGA2, which can be 
further isomerized enzymatically at ∆10 of PGA2 to ∆11, by PGCS, thus forming PGC2 
(Fig. 3) (149). PGCS has been found in serum or plasma from human, rabbit, pig, 
dog, rat and cat (149) and the cat enzyme has also been partially purified. 

PGF synthases 
PGF2 is formed via three pathways from PGH2, PGE2 or PGD2 by PGH 9-, 11-
endoperoxide reductase, PGE 9-ketoreductase, or by PGD 11-ketoreductase, 
respectively (Fig. 3) (393). These activities are dependent on NADH or NADPH. 
Furthermore, a 16.5 kDa, microsomal GSH-dependent PGF2α synthase was partially 
purified from sheep vesicular glands (43) and recently, a novel GSH-activated, LPS-
inducible PGF2α synthase was detected in various cells, with the highest activity 
found in lung (250). These two PGF2α synthases specifically converted PGH2 to 
PGF2α. Several GSH-(S) transferases also have the capacity to produce PGF2α from 
PGH2 (51). 

PGE 9–ketoreductase can convert PGE2 specifically to PGF2α in the presence 
of NADH or NADPH. PGE 9–ketoreductase is a cytosolic enzyme, purified from 
chicken heart (184), human (404) and bovine placenta (153). The enzyme is a 
member of the aldo-keto reductase (AKR) superfamily (409), based on the broad 
substrate specificity, size, cofactors and sequence identities. Furthermore, a carbonyl 
reductase, detected in human brain (403) and a 20α-hydroxysteroid dehydrogenase 
(HSD), were found to be identical with PGE 9–ketoreductase (11,315).   
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PROSTAGLANDIN TRANSPORT 
PGH2 is synthesized in the lumen of the ER by PGHS-1 or PGHS-2 (229) and is then 
believed to diffuse through the membrane, where it is further metabolized by terminal 
enzymes (302,363). The synthesized prostaglandins diffuse across the plasma 
membrane into the extracellular compartment, driven by pH and the membrane 
potential (319). However, metabolic clearance of prostaglandins requires energy-
dependent uptake across the plasma membrane, with following catabolism. Local 
signal termination of prostaglandins must be achieved to prevent undesired effects. 
Several types of prostaglandin transporters that are involved in the re-uptake of 
prostaglandins have been characterized. PGT is a lactate/prostaglandin exchanger 
and is expressed in PGHS-containing cells (197). Another prostaglandin transporter, 
called organic anionic transporter (OATP), has lower affinity and specificity for 
prostaglandins (319). Also, a liver-specific OAT (LST-1) has been cloned from human 
(1). 
 

PROSTANOID RECEPTORS 
The biological activities of prostaglandins are mediated through the binding of 
specific G-protein coupled rhodopsin-type receptors (GPCR) with seven 
transmembrane domains (255). These receptors originate from different genes and 
have been cloned from various species. The receptors have been classified into 8 
types with several subtypes, based on their responsiveness to various 
agonists/antagonists (256) and include: the PGD receptor (DP) (37), four subtypes of 
the PGE receptor (EP1-4) (22,89,290,420), the PGF receptor (FP) (2), the PGI 
receptor (IP) (36) and the TXA receptor (TP) (123) (Table 1). There are several splice 
variants of the EP3, FP and TP receptors (278,285,289), which differ only in their C-
terminal ends. Furthermore, a novel DP receptor was characterized as CRTH2 
(Chemoattractant Receptor-homologous molecule expressed on T-Helper type 2 
cells) and reported to be involved in allergic inflammation and rhinitis (122). 
Functionally, the prostanoid receptors can be divided into three groups: the relaxant, 
contractile and inhibitory receptors. The DP1, EP2, EP4 and IP receptors are called 
the “relaxant” receptors, since they signal through a Gs-mediated intracellular 
increase of cyclic adenosine monophosphate (cAMP). The EP1, FP and TP receptors 
signal through a Gq-mediated increase in intracellular calcium and are thus called the 
“contractile” receptors and the EP3 and DP2 receptors are “inhibitory” receptors that 
couple to Gi and decreases cAMP-formation. Most of the prostanoid receptors are 
located at the plasma membrane, but some have also been found at the nuclear 
envelope (34,35). The roles of prostaglandins in various physiological and 
pathophysiological events have been investigated in mice, deficient in each of the 
prostanoid receptors. A summary of the results from gene-disruption studies is given 
in table 2. The EP1-4 receptors are clearly involved in many pathological conditions.  
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Table 1: Properties of prostanoid receptor subtypes. 

Receptor type G protein Signaling 
DP1 Gs cAMP  
DP2 (CRTH2) Gαi/o cAMP  
EP1 Unidentified [Ca2+]  
EP2 Gs cAMP  
EP3 Gi, Gs, Gq cAMP  

[Ca2+]  
cAMP  

EP4 Gs cAMP  
FP Gq [Ca2+]  
IP Gs, Gq cAMP  

[Ca2+]  
TP Gq, Gi, Gs [Ca2+]  

cAMP  
cAMP  

 
 
Table 2: Major phenotypes of prostanoid receptor deficient mice. 

Disrupted 
gene 

Phenotypes Reference 

DP Decreased allergic response in bronchial asthma (208) 
EP1 Decreased tumor formation in colon (395) 
EP2 Impaired ovulation and fertilization (125,158,373) 
 Impaired regulation of blood pressure (12,158,373,427)  
 Loss of bronchodilation (325) 
 Impaired bone metabolism (191) 
EP3 Impaired febrile response to pyrogens (387) 
 Impaired gastric mucosal integrity (361) 
 Impaired regulation of blood pressure (12) 
 Impaired kidney functions  (86) 
 Decreased pain sensitization (382) 
EP4 Impaired closure of ductus arteriosus (259,321) 
 Impaired regulation of blood pressure (12) 
 Impaired bone resorption (219,304) 
FP Loss of parturition (357) 
IP Thrombotic tendency (246) 
 Decreased inflammatory pain and swelling (246,383) 
 Decreased pain sensitization (246,266,382) 
TP Bleeding tendency (369) 

 



 

 19

THE MAPEG-SUPERFAMILY  
 
The MAPEG (membrane associated proteins in eicosanoid and glutathione 
metabolism)-superfamily was defined according to enzymatic activities, sequence 
motifs and structural properties (141,142). The MAPEG-members are 16-18 kDa 
membrane-bound proteins with similar hydropathy profiles, which indicate that they 
have 3-4 membrane-spanning regions and a similar topology (Fig. 5A) (142). Multiple 
sequence alignment of the human MAPEG members demonstrates six strictly 
conserved amino acids (Fig. 5B). The family was found to consist of six human 
proteins, including 5-lipoxygenase activating protein (FLAP), leukotriene C4 synthase 
(LTC4S), MGST1, MGST2, MGST3 and MGST1-L1. Several members have also 
been identified in plant, i.e. (Arabidopsis thaliana, Oryza sativa and Ricinus 
communis), fungi (Aspergillus nidulans) and bacteria (Synechosystis, Escherichia coli 
and Vibrio cholerae).  

Based on multiple sequence alignments, the MAPEG-family can be divided 
into four subgroups. FLAP, LTC4S and MGST2 belong to one group and are crucial 
for leukotriene biosynthesis. MGST3, together with members in plant and fungi make 
up one group, while Escherichia coli and Vibrio cholerae belong to yet another group 
and MGST1 and MGST1-L1 make up the last group. MGST1, 2- and -3 all have 
glutathione transferase and glutathione –dependent peroxidase activities, possibly 
related to detoxification and protection against oxidative stress.   

FLAP is hypothesized to act as a substrate provider for 5-lipoxygenase (5-LO) 
and is necessary for efficient 5-LO activity (77,201,215). LTC4S specifically catalyzes 
the conjugation of LTA4 (the 5-LO product) with GSH, thus forming LTC4 
(174,261,402). MGST2 and MGST3 have also been found to possess LTC4S 
activities (139,140), but the activity of MGST3 was modest. Human MGST2 
expression was localized in the liver, endothelial cells and lung membranes (320), 
while LTC4S was mainly localized in lung membranes, platelets, eosinophils and 
mast cells. LTC4S is specific for LTA4, but MGST2 and MGST3 have broader 
substrate specificity. MGST2 and MGST3 can also catalyze GSH-dependent 
peroxidase activity against 5-HpETE, with apparent KM of 7 µM and 21 µM, 
respectively (140). Furthermore, MGST2, but not MGST3 can catalyze conjugation of 
GSH to CDNB, implying that MGST2 and MGST3 are involved in detoxification and 
oxidative stress. MGST1 has wide substrate specificity and is broadly expressed, 
with the highest concentration in the liver (225). The substrates for MGST1 include 
halogenated arenes, like CDNB, various polyhalogenated hydrocarbons (5) and lipid 
hydroperoxides (224,233), suggesting a role in protection against oxidative stress 
(232). LTA4 and other epoxides are poor substrates for MGST1 (226,345). 
Interestingly, LTC4 is a tight-binding inhibitor of MGST1, but the function for this is not 
known (21). An overview of the MAPEG members in eicosanoid metabolism is 
presented in figure 1. 
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Figure 5A. Hydropathy plots of the human MAPEG members, based on the 

alignments in 5B. 
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A  1                10                20                30                 40                50                60                 70                80                90 

MGST1  MVDLTQVMDDEVFMAFASYATIILSKMMLMSTATAFYRLTRKVFANPEDCVAFGKGENAKKYLRTDDRVERVRRAHLNDLENIIPFLGIGL 
MGST1-L1 MPAHSLVMSSPALPAFLLCSTLLVIKMYVVAIITGQVRLRKKAFANPED··ALRHGGPQYCR··SDPDVERCLRAHRNDMETIYPFLFLGF 
B                               10                   20                30                         40                                   50                  60 

MGST2         MAGNSILLAAVSILSA·CQQSYFALQVGKARLKYKVT··P···PAVT·GSPE·········FERVFRAQQNCVE·FYPIFIITL 
FLAP     MDQETVGNVVLLAIVTLISV·VQNGFFAHKVEHESRTQNGR··S···FQRT·GTLA·········FERVYTANQNCVD·AYPTFLAVL 
LTC4S         MKDEVALLAAVTLLGV·LLQAYFSLQVISARRAFRVS··P···PLTT·GPPE·········FERVYRAQVNCSE·YFPLFLATL 
C                          10                  20                30                 40                         50                          60                  70 
MGST3      MAVLSKEYGFVLLTGAASF·IMVAHLAINVSKARKKYKVEY·P···IMYS·TDPEN·····GHIFNCIQRAHQNTLE·VYPPFLFFL 
 
A               100               110               120                130                            140               150 

MGST1  LYSLS·GPDPSTAILHFRLFVGARIYHTIAYLTPLPQPN·······RALSFFVGYGVTLSMAYRLLKSKLYL 
MGST1-L1 VYSFL·GPNPFVAWMHFLVFLVGRVAHTVAYLGKLRAPI·······RSVTYTLAQLPCASMALQILWEAARHL 
B      70                  80                90                100               110                120               130               140 

MGST2  WMAGW·YFNQVFATCLGLVYIYGRHLYFWGYSEAAKKRITGFRLSLGILALLTLLGALGIANSFLDEYLDLNIAKKLRRQF 
FLAP   WSAGL·LCSQVPAAFAGLMYLFVRQKYFVGYLGERTQSTPGYIFGKRIILFLFLMSVAGIFNYYLIFFFGSDFENYIKTISTTISPLLLIP 
LTC4S  WVAGI·FFHEGAAALCGLVYLFARLRYFQGYARSAQLRLAPLYASARALWLLVALAALGLLAHFLPAALRAALLGRLRTLLPWA 
C             80                90                100                110                   120               130                140               150 

MGST3  AVGG··VYHPRIASGLGLAWIVGRVLYAYGYYTGEPSKRSR··GALGSIALLGLVGTTVCSAFQHLGWVKSGLGSGPKCCH 
 
 
Figure 5B. Multiple sequence alignments of the human MAPEG members. The groups are based on sequence similarity derived from a larger 
multiple sequence analysis made by Jakobsson et al. (141). 
 
M :Same within a group 
M :Same in all  
M :Same in two groups
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AIMS OF THE PRESENT INVESTIGATION 
mPGES-1 was initially identified as a homologue to microsomal glutathione transferase-
1 (MGST1) with 37% identity on the amino acid sequence level. Before the function of 
mPGES-1 was known, it was referred to as MGST1-like 1 (MGST1-L1). Based on 
primary structure alignment and hydropathy plot studies, mPGES-1 was discovered to 
belong to the MAPEG-superfamily. mPGES-1 was found to specifically catalyze the 
conversion of PGH2 to PGE2 in the presence of glutathione. The aim of this study was to 
biochemically characterize human mPGES-1 and explore its relation to PGHS-2 in 
various pathological conditions. 
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METHODOLOGY 

Common methods 
I performed the following methods in the original articles; cell culture (paper I, II, III), 
subcellular fractionation (paper I, II, III, IV), gel electrophoresis and Western blotting 
(paper I, II, III, IV), Northern blotting (paper I), reverse phase high performance liquid 
chromatography (RP-HPLC), (paper I, II, IV, V), UV-spectroscopy (paper V), protein 
determination (paper I, II, III, IV, V) and ultracentrifugation (paper I, II, III, IV, V).  

Assay development  
In paper I, we used [3H]-PGH2 to measure PGES activity, however, with unsatisfactory 
quantitative results. Due to the unstable nature of PGH2, a quantitative and reproducible 
PGES assay was needed. Therefore, we developed a PGES assay, based on RP-HPLC 
and UV detection (paper II). Several compounds were tested as potential internal 
standards and 11β-PGE2 was found to be the most suitable candidate. 11β-PGE2 eluted 
with almost baseline separation from PGE2 and did not interfere with non-enzymatically 
formed PGF2α or PGD2 (paper II, fig. 1). 11β-PGE2 and PGE2 demonstrated identical UV 
absorbance properties at 195 nm. Equal amounts of 11β-PGE2 and PGE2 (as 
determined by GC/MS) were compared before and after solid phase extraction to test 
the recovery of the PGES assay (~90 %). To optimize the quantitative analysis and 
minimize interference by non-enzymatic degradation products, a stop-solution containing 
FeCl2 was added. FeCl2 terminates the reaction and converts PGH2 into mainly 12-HHT 
and malondialdehyde. The substrate (PGH2) was kept on CO2-ice until use to keep the 
non-enzymatic activity low. Solid phase extraction was performed immediately after 
terminating the reaction, since prostaglandins are more stable in organic solvent. 
Analysis was then performed, using RP-HPLC and UV-detection at 195 nm. 
 A purification protocol for recombinant human 6-histidine tagged (His6) mPGES-1 
was developed. Human His6-mPGES-1, expressed in E. coli BL21(DE3) was purified in 
two steps by hydroxyapatite and immobilized metal affinity chromatography (Paper V). 
First, His6-mPGES-1 was completely solubilized in 4% Triton X-100, with preserved 
enzymatic activity in the solubilized extract. The solubilized extract was mixed with 
hydroxyapatite and after a 10-min incubation on ice, was subjected to a short 
centrifugation pulse. The supernatant, containing the unbound fraction was cleared by 
centrifugation and filtration. The cleared fraction was then loaded on a 1-ml HiTrap 10 
chelating column (Amersham Biosciences), charged with Ni2+. The remaining 
unspecifically bound proteins were removed by a wash step of 60 mM imidazole and the 
purified histidine-tagged protein was finally eluted with 350 mM imidazole as a single 
peak. The eluted protein was immediately desalted on a HiPrep 26/10 desalting column 
(Amersham Biosciences). Human His6-mPGES-1 was purified to apparent homogeneity 
with a yield of 1.0-3.5 mg per liter of BL21(DE3) expression culture, when purifying from 
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whole cell lysate (Paper V, fig. 4). An important finding for successful purification was 
that GSH and glycerol had a stabilizing function for solubilized mPGES-1 (therefore 
included in all the buffers used for purification).  

Hydrodynamic studies 

To determine the molecular mass of mPGES-1, we performed hydrodynamic studies in 
presence of Triton X-100 (Paper V). The sedimentation coefficient of the mPGES-Triton 
X-100 complex was determined by the use of sucrose gradients. Purified mPGES-1 and 
marker proteins with known sedimentation coefficients were added on top of a 5-20 % 
sucrose gradient containing GSH and Triton X-100. The samples were then subjected to 
ultracentrifugation at 160,000 x gav for 45 h at 20ºC. Fractions were collected and PGES 
activity, refractive index and protein content were measured (Paper V, fig. 9A). After 
plotting the activities and protein content, the sedimentation coefficient of mPGES-1 
could be calculated by linear regression. The partial specific volume of the mPGES-
Triton X-100 complex was determined by density equilibrium centrifugation. Purified 
mPGES-1 was added to a 20-50 % sucrose gradient containing GSH and Triton X-100. 
The tubes were centrifuged at 246,000 x gav at 20ºC until equilibrium had been reached 
(72 h). Fractions were collected and the refractive index, i.e. sucrose content, was 
plotted against PGES activity (Paper V, fig. 9B). The sucrose content of the fraction with 
the highest PGES activity corresponded to the density of the mPGES-Triton X-100 
complex and the density was inverted to yield the partial specific volume. The Stokes 
radius was determined by the use of gel exclusion chromatography. Purified mPGES-1 
was loaded on a Sephacryl S-300 HR column together with marker enzymes (high 
molecular weight gel filtration calibration kit). The samples were eluted, collected and 
analyzed by measuring PGES activity and absorbance at 280 and 405 nm (Paper V, fig. 
9C). The square root of –log Kav values were plotted against the known Stokes radii of 
the marker enzymes and the Stokes radius of the mPGES-Triton X-100 complex was 
obtained.  

The sedimentation coefficient, partial specific volume and Stokes radius were 
then substituted into the Svedberg equation (Paper V, Eq. 1) and the molecular weight 
of the mPGES-1-Triton X-100 complex was calculated. To determine the amount of 
bound detergent in the complex, protein content and UV-absorbance was measured on 
the eluted fractions from the immobilized metal ion affinity column. The resulting weight 
of the mPGES-1-Triton X-100 complex agreed with a trimeric quaternary structure.   
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RESULTS 

Paper I  
Human mPGES-1 was cloned and characterized as a 16 kDa, inducible, GSH-
dependent, microsomal PGE synthase. The tissue distribution of mPGES-1 was 
analyzed by Northern blot and high expression was found in two cancer cell lines, A549 
and HeLa cells. mPGES-1 was also expressed at intermediate levels in reproductive 
organs. A rabbit anti-human antiserum was raised against the amino acids 59-74 of 
mPGES-1 and Western blot analysis specifically recognized a 15-to 16-kDa protein in 
the membrane fraction of bacteria expressed mPGES-1. PGES activity was measured 
after incubation with [3H]-PGH2 and analyzed by RP-HPLC with radioactivity detection. 
The membrane fraction contained a high GSH-dependent PGES-activity (0.25 µmol min-

1 mg-1). A549 cells had been used earlier as a model system to study PGHS-2 induction 
by the proinflammatory cytokine IL-1β and mPGES-1 was also induced by IL-1β in these 
cells. Western blot analysis also detected a 16-kDa protein in sheep vesicular glands. 

Paper II  
In the following study, protein expression of PGHS-2 and mPGES-1 was further 
investigated in A549 cells after IL-1β treatment. A time study of PGHS-2 and mPGES-1 
expression revealed a coordinate induction of the enzymes. The observed induction was 
correlated with increased PGES activity in the microsomal fraction. Tumor necrosis 
factor-α (TNF-α) also induced mPGES-1 in these cells and dexamethasone was found 
to completely suppress the effect of both cytokines on mPGES-1 induction. A method 
based on RP-HPLC and UV-detection was developed to measure PGES activity. This 
method was used to screen for potential inhibitors of mPGES-1, including a small set of 
NSAIDs, stable PGH2 analogues and cysteinyl leukotrienes. NS-398, Sulindac sulfide 
and LTC4 were found to inhibit PGES activity with IC50-values of 20 µM, 80 µM and 5 
µM, respectively. 

Paper III  
In order to investigate the gene structure of mPGES-1, a P1 clone containing the gene 
for mPGES-1 was isolated and characterized. The mPGES-1 gene was localized on 
chromosome 9q34.3, spanning a region of approximately 15 kb and divided into three 
exons. The transcription start of the PGES gene has not been identified, but a 682 bp 
fragment directly upstream of the translation start site exhibited promoter activity when 
transfected in A549 cells. The putative promoter is GC-rich, lacks a TATA box at a 
functional site and contains numerous potential transcription factor binding-sites. Two 
GC-boxes, two tandem Barbie-boxes and an aryl hydrocarbon response element (AHR) 
were identified. The putative promoter region of mPGES-1 was transcriptionally active 
and reporter constructs were regulated by IL-1β and phenobarbital. 
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Paper IV 
Since PGE2 had been demonstrated to play an important role in several pathological 
conditions like rheumatoid arthritis (RA), it was important to study the role of mPGES-1 
in these conditions. Primary synovial cells were obtained from synovial tissues derived 
from patients suffering from RA. These cells were treated with IL-1β or TNF-α and the 
expression of mPGES-1 and PGHS-2 were investigated by Northern and Western blot. 
Both cytokines induced mPGES-1 mRNA from a low basal level to a maximum level at 
24 h. Moreover, the IL-1β induction was inhibited by dexamethasone in a dose-
dependent manner. The protein expression of mPGES-1 was induced by IL-1β with a 
linear increase up to 72 h. PGHS-2 was also induced, however with an earlier peak 
expression (4-8 h). The protein expression of mPGES-1 correlated with PGES activity 
and demonstrated a 3-5 -fold increase after IL-1β treatment. No PGES activities were 
found in the cytosolic fractions nor in the absence of GSH, ruling out any contribution of 
cytosolic PGE synthases and GSH-independent PGE synthases. 

Paper V  
In order to study the structure and biochemical function of mPGES-1, the protein was 
overexpressed as an N-terminal 6-histidine tag fusion protein in E.coli BL21(DE3). 
Bacterial recombinant histidine-tagged mPGES-1 was solubilized with Triton X-100 and 
purified by a combination of hydroxyapatite- and immobilized metal affinity 
chromatography. mPGES-1 catalyzed a rapid GSH-dependent conversion of PGH2 to 
PGE2 and demonstrated a high kcat/KM (paper V, Table I). mPGES-1 could also catalyze 
several other activities; GSH-dependent conversion of PGG2 to 15-hydroperoxy PGE2, 
glutathione-dependent peroxidase activity towards cumene hydroperoxide, 5-HpETE 
and 15-hydroperoxy-PGE2, as well as conjugation of 1-chloro-2,4-dinitrobenzene 
(CDNB) to GSH (paper V, Table II). 

Two-dimensional crystals of purified mPGES-1 were prepared and a projection 
map was determined by electron crystallography. Furthermore, hydrodynamic studies 
were performed on the solubilized mPGES-1 detergent complex (Triton X-100) to 
investigate the oligomerization of the protein. These two methods independently 
demonstrated a trimeric organization of mPGES-1.  
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  DISCUSSION  

Identification of mPGES-1 
Human, microsomal, GSH-dependent prostaglandin E synthase (mPGES-1) was initially 
discovered as an EST-tag by database searches of enzymes involved in eicosanoid and 
glutathione metabolism. The EST-clone was found to code for a protein with 37% 
sequence homology to microsomal glutathione S-transferase-1 (MGST1), thus it was 
referred to as MGST1-like 1 (L1). The gene coding for MGST1-L1 was also 
independently identified as a p53 induced gene (PIG12), but no function was described 
(279). Based on the properties of MGST1-L1 regarding size, amino acid sequence, 
hydropathy and membrane localization, it was identified as a member of the MAPEG 
superfamily. In 1997, Burgess and Reddy reported on a 16.5 kDa, microsomal GSH-
dependent PGF2α synthase in sheep vesicular glands (43) and since the PGF2α synthase 
possessed certain properties similar to other MAPEG members, PGH2 was tested as a 
substrate for several of the members, including MGST1-L1. MGST1-L1 did not produce 
any PGF2α, but showed a specific formation of PGE2. Hence, MGST1-L1 was referred to 
as microsomal PGES-1 (paper I). An antiserum raised against an internal peptide of 
mPGES-1 also recognized a protein of similar size in microsomes from sheep vesicular 
glands, which are known to contain a highly efficient microsomal PGES, indicating that 
mPGES-1 was the long-sought membrane bound PGES (Paper I). 

Biochemical characterization of mPGES-1 
Basal expression of mPGES-1 
We examined the expression of mPGES-1 in human tissues, and Northern dot blot 
analysis of mPGES-1 mRNA demonstrated a low expression in most tissues, medium 
expression in reproductive organs and a high expression in two cancer cell lines (A549 
and HeLa) (Paper I). A low basal expression of mPGES-1 has also been observed in 
several rat tissues, but high constitutive expression was seen in the stomach (202). A 
high expression of mPGES-1 was also found in the thymus of rat as well as epithelial 
cells of the human thymus (297). The highest constitutive expression of mPGES-1 in 
mouse was observed in the ovary, urinary bladder and kidney (98). Furthermore, 
mPGES-1 has been detected in conjunction with ovulation and fertilization (84,183). 
Impaired fertility was seen in mice lacking the EP2 receptor (125,158) and PGHS-2 
(76,227). Furthermore, mPGES-1 has been implicated in bone metabolism as well as 
certain metabolic bone diseases like osteoporosis (54,244,303). mPGES-1 may 
therefore participate in normal physiology, especially in renal function, bone metabolism, 
reproduction and maintenance of the gastrointestinal mucosa. However, it should be 
noted that mPGES-1 null mice do not demonstrate any phenotypic changes in these 
organs and functions, suggesting that other non-inducible PGE synthases can substitute 
for mPGES-1 in normal physiology (374,381). 
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Regulation of mPGES-1 expression  
A549 cells were reported to produce more PGE2 after cytokine treatment (133,217) and 
fibroblasts treated with LPS or platelet derived growth factor (PDGF) contained high 
microsomal PGES activity (157,207). Since A549 cells were earlier used as a model 
system for PGHS-2 induction by IL-1β and mPGES-1 mRNA was highly expressed in 
these cells, it was logical to study mPGES-1 protein expression in this model. 
Non-treated A549 cells had a low expression of mPGES-1, but the protein expression 
was induced significantly by IL-1β (Paper I). The basal expression of mPGES-1 in rat 
was also very low, but could be dramatically induced by LPS in various organs 
(202,244,418). These data suggested that the induction of PGHS-2 and mPGES-1 could 
be co-regulated. We examined this possibility in a time study of PGHS-2 and mPGES-1 
expression in A549 cells. A coordinate induction of PGHS-2 and mPGES-1 protein 
expression was observed in these cells after treatment with IL-1β with a linear increase 
up to 72h (Paper II). Various proinflammatory stimuli have been shown to co-ordinately 
induce mPGES-1 and PGHS-2 in several types of cultured cells, often associated with 
increased PGE2 production (Paper II and IV) (202,244,346). Furthermore, induction of 
mPGES-1 was seen after β-amyloid treatment of astrocytes (311) and hormonal 
stimulation of ovarian follicles (84). A summary of mPGES-1 induction in various tissues 
and cells is presented in table 3.  

Glucocorticoids are known to reverse inflammatory processes, and cytokine-
induced mPGES-1 expression was abolished by dexamethasone in A549 cells (Paper 
II). Inhibition of mPGES-1-induction by dexamethasone has also been reported in other 
cell types, such as macrophages and synoviocytes (Paper IV) (244). Even though 
mPGES-1 and PGHS-2 appear to be co-regulated in many cases, their rate of induction 
differ in some cell systems, indicating separate regulatory mechanisms of induction 
(Paper IV). Co-expression of PGHS-2 and mPGES-1 have been observed in various 
pathological conditions and diseases; including pain, fever, inflammation, cancer and 
Alzheimer’s disease, suggesting a functional link between these enzymes for efficient 
prostaglandin production (Paper II and IV), (78,202,244,374,381,418). 
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Table 3: Induction of mPGES-1 in various tissues and cells. 

Source Stimulus Reference 
In vivo   
Rat tissues LPS (202,244) 
Rat, lung and hind paw  Adjuvant (202) 
Rat, brain endothelial cells IL-1β, LPS (78,418) 
Bovine, follicular granulosa cells Gonadotropin (84) 
In vitro   
Human, lung adenocarcinoma cells  IL-1β, TNFα (143,370) 
Human, vascular smooth muscle cells IL-1β, TNFα, LPS, PMA (346) 
Human, rheumatoid synovial cells IL-1β, TNFα (353) 
Human, orbital fibroblasts IL-1β (108) 
Rat, peritoneal macrophages LPS (244) 
Rat, calvaria osteoblasts IL-1β (244) 
Rat, astrocytes β-amyloid (311) 
Mouse, osteoblastic cells IL-1β, TNFα (244) 
 

 
Functional coupling of mPGES-1 and PGHS-2 
The reports about coordinate induction of mPGES-1 and PGHS-2 implicated that they 
were functionally linked (Paper II and IV), (244). In support for this, AA-treated HEK293 
cells, co-transfected with mPGES-1 and PGHS-2 produced several times more PGE2, 
compared to when mPGES-1 or PGHS-2 were expressed alone (244). Furthermore, in 
vivo studies of rats demonstrated that PGHS-2 inhibitors reduced formation of PGE2 
more efficiently compared to other prostaglandins (112). Also, several reports have 
demonstrated co-localization of mPGES-1 and PGHS-2 in the endoplasmatic reticulum 
and perinuclear membrane (182,244,418). This is in agreement with our studies of IL-1β 
induced A549 cells, where the only PGES activity was found in microsomes and only in 
the presence of GSH (paper II). Recently, mPGES-1 was also shown to specifically 
convert PGG2 to 15-hydroperoxy PGE2, suggesting an alternative pathway for PGE2 
biosynthesis (paper V). Although this has not been observed in vivo, it implies yet 
another functional link between PGHS-2 and mPGES-1. 

However, our study on synoviocytes isolated from patients with RA, suggest that 
mPGES-1 and PGHS-2 expression is regulated by different mechanisms (paper IV). IL-
1β increased the expression of mPGES-1 in a linear manner up to 72h, while the 
expression of PGHS-2 reached a maximum already after 4-8h. The IL-1β induced 
PGHS-2 expression seems to involve NF-κβ, but the mPGES-1 promoter does not 
contain any such NF-κβ site. Furthermore, the 3’-region of mPGES-1 lacks the AUUUA 
instability sequences found in the PGHS-2 gene. Also, cytokine-induced expression of 
mPGES-1 was recently demonstrated to be regulated by Egr-1 (early growth response-
1) (253), mediated by the p38 mitogen–activated protein kinase pathway (299), implying 
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that PGHS-2 and mPGES-1 can be induced by the same kind of stimuli, but use different 
signaling pathways.  
 
Gene structure and expression of mPGES-1 
The primary structures of human, mouse and rat mPGES-1 demonstrate a high degree 
of amino acid sequence homology (>80%). The gene organization of human mPGES-1 
is similar to MGST1, but differs from other MAPEG members that contain additional 
exons (paper III) (156). The putative promoters of both mPGES-1 and MGST1 are GC-
rich, lacks a TATA-box at a functional site and contain several potential transcription 
binding sites. A number of potential transcription factor binding-sites were identified in 
the promoter of mPGES-1, i.e. two GC-boxes, two tandem Barbie-boxes and an aryl 
hydrocarbon response element (AHR) (paper III). The putative promoter region of 
mPGES-1 was shown to be transcriptionally active and could be induced by IL-1β and 
down-regulated by phenobarbital. If physiologically relevant, the mPGES-1 gene is the 
first gene known to be repressed by phenobarbital. 

However, the tandem Barbie-boxes were recently shown not to be involved in the 
down-regulation of mPGES-1 by phenobarbital (79). Phenobarbital is believed to act on 
a cis-acting PB-Responsive Enhancer Module (PBREM) element (130), but the 
mechanism behind this down-regulation has not been elucidated. Also, Sp1 and Sp3 
were shown to be responsible for basal expression of mPGES-1, but only Sp1 was 
needed for basal MGST1 expression (79).  

There are several reports that indicate that both PGE2 and PGD2 participate in 
regulation of sleep and wakefulness. PGD2 has been shown to be the most potent 
endogenous sleep-promoting substance (386), while PGE2 has been suggested to 
counteract the effect of PGD2 (115,116). PGE2 is also present at higher levels in the 
brain during wakefulness (92). Phenobarbital is an effective sedative and anticonvulsant 
and since we found that it reduced mPGES-1 promoter activity, it may indicate that 
mPGES-1 is involved in sleep and wakefulness (paper III). However, this remains to be 
investigated and mPGES-1 null-mice will be a useful tool to study this hypothesis. 

The gene and primary structure of mouse mPGES-1 were recently characterized 
(253). The organization of the mouse mPGES-1 gene was similar to the human mPGES-
1 gene, regarding exons/introns and lack of a functional TATA box. Several consensus 
cis-acting elements were found within 1.8 kb upstream of the mouse mPGES-1 gene, 
including C/EBPα and –β, AP-1, two tandem GC-boxes, three putative glucocorticoid 
response elements and two progesterone response elements (253). The tandem GC-
boxes in the mPGES-1 promoter were shown to play a major role in regulating its 
inducible transcription. Electro mobility shift assay (EMSA) studies of the mouse 
mPGES-1 promoter region indicated that the GC-boxes did not bind Sp1 or Sp3, but 
bound an inducible zinc finger protein, called Egr-1, instead. Egr-1 was demonstrated to 
be a key transcription factor in regulating the inducible expression of mPGES-1. 
Cytokine-induced mPGES-1 expression was demonstrated to be regulated by Egr-1, 
mediated by the p38 mitogen–activated protein kinase pathway (299). Interestingly, no 
binding site for NF-κβ, CRE or E-box has been found in the mPGES-1 promoter, as seen 
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in PGHS-2 induction. Thus, it indicates that the mechanisms for induction of mPGES-1 
and PGHS-2 are different.  
 
Steady state kinetics of mPGES-1 
mPGES-1 specifically converts PGH2 to PGE2, but only in the presence of GSH, which is 
absolutely required for activity and GSH can not be substituted by other thiols (paper V), 
(271). Purified, bacteria expressed, mPGES-1 demonstrated an efficient catalytic 
conversion of PGH2 with a Vmax value of 170 µmol min-1 mg-1 at 37ºC (paper V, Table I 
and II). The apparent KM for mPGES-1 was 0.16 mM and is comparable to KM for other 
PG-synthases (paper V, Table IV). Furthermore, in line with our data, Lazarus et al. 
observed a KM of 130 µM for mouse mPGES-1, expressed in Escherichia coli (182). 
Also, our preliminary data suggest a high KM for PGH2 in IL-1β-induced A549 cells 
(unpublished). The apparent KM for GSH was 0.7 mM, determined at a concentration of 
400 µM PGH2 (paper V, Table I). 

In 1974, Samuelsson et al. proposed that PGE2 could be formed through 
isomerization of PGH2 or by isomerization of PGG2 to 15-hydroperoxy-PGE2, with 
subsequent reduction to PGE2 (309). In the search for additional activities, we 
investigated whether the unstable intermediate PGG2 could be isomerized by mPGES-1. 
Incubation with PGG2 actually demonstrated an even more efficient conversion of PGG2 
to 15-hydroperoxy-PGE2 (Vmax: 250 µmol min-1 mg-1) in the presence of GSH, as 
compared to PGH2 (paper V, Table I and II). The importance of PGG2 as an alternative 
substrate for mPGES-1 will be further discussed below. 

Independently from our study, Ouellet et al. reported on the purification of 
mPGES-1 expressed in a baculovirus system (271). They also observed a high PGES-
activity, but a lower KM compared to us, in the presence of dodecylmaltoside (Vmax: 38 
µmol min-1 mg-1, KM: 14 µM at 0ºC). The discrepancies in activity and KM for mPGES-1 
may depend on differences in the enzyme activity assay, the temperature and the type 
of detergent used. Other explanations can be differences in post-transcriptional 
modifications and lipid composition between prokaryotic and eukaryotic cells. There are 
actually several putative phosphorylation sites in the mPGES-1 sequence that might be 
important for modulation of mPGES-1 (unpublished).  
 
Glutathione as cofactor 
Reduced glutathione (GSH) is a γ-glutamylcysteinylglycine-tripeptide, which is quite 
abundant within cells (~ 5 mM). GSH is essential for maintaining the structure of red 
blood cells and for keeping hemoglobin in the ferrous state, but is also involved in 
detoxification reactions with hydrogen peroxide and organic peroxides. GSH is 
absolutely required for mPGES-1 activity (paper I), with an apparent KM of 0.7 mM 
(paper V, Table I), but also has a stabilizing effect on solubilized mPGES-1. 
Furthermore, GSH could not be substituted by other SH-reducing agents for mPGES-1 
activity (paper V) and does not seem to be oxidized during mPGES-1 catalysis (271). 
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Speculations on PGE2 biosynthesis 
mPGES-1 efficiently catalyzed a GSH-dependent conversion of PGG2 to 15-
hydroperoxy-PGE2 (15-HpPGE2) (paper V, Table II). This activity suggests an 
alternative pathway for the synthesis of PGE2 (paper V, fig 10). Either, PGG2 is 
converted into 15-hydroperoxy-PGE2 by mPGES-1 with subsequent reduction to PGE2, 
non-enzymatically or enzymatically by glutathione-dependent peroxidases (9,262) or 
alternatively by the POX activity of PGHS-1/-2.  

Since the two active sites of PGHS are spatially well-separated, PGG2 has to 
diffuse from the COX site to the other side of the enzyme to reach the POX pocket (Fig. 
6A) (337). This may not be the most efficient route for the unstable PGG2 metabolite. An 
alternative pathway for PGE2 production could occur through shuttling of the 
intermediate between PGHS and mPGES-1. Possibly, PGG2 is transferred to mPGES-1 
instead of diffusing to the POX pocket. mPGES-1 could then convert PGG2 to 15-
hydroperoxy-PGE2, which is subsequently shuttled back to PGHS-2, where the reduction 
to PGE2 occurs (Fig 6B).  

Biochemical topology studies on MGST1 have demonstrated that the active site 
is located on the cytoplasmic side of the ER (6). According to the “positive-inside rule” 
and topology predictions of prokaryotic MAPEG members (unpublished), the N- and C-
terminals are located on the periplasmic side of prokaryotic cells, which corresponds to 
the luminal side of the ER in eukaryotic cells (67,333,414). In line with this, hydropathy 
plots of the MAPEG members indicate that the N- and C-terminals of each protein are 
located on the same side of the membrane (Fig. 5A) (141). Furthermore, mutational work 
on the hydrophilic loops of LTC4S (175) and affinity studies of MK-886 on FLAP (203) 
indicate that the loops responsible for activity are located on the same side of the 
membrane. Together, these data implies that the active site of mPGES-1 could be 
located on the cytoplasmic side of the ER. 

FLAP is involved in the transfer of AA to 5-LO and is necessary for efficient 5-LO 
activity (77,201,215). In analogy with FLAP, interaction between PGHS-2 and mPGES-1 
could hypothetically facilitate more efficient PGE2 biosynthesis. Transfection of FLAP 
into certain cell systems has been reported to increase PGHS-2 expression and PGE2 
biosynthesis (24). However, FLAP has no PGH2 metabolizing capacity (unpublished 
results). 
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Figure 6. Hypothetical pathways for PGE2-biosynthesis. 
 

Speculations on mPGES-1 catalysis  
Several mechanisms have been proposed for the GSH-dependent conversion of PGH2 
to PGE2. These mechanisms include nucleophilic attack by the thiolate anion of 
glutathione. In 1971, Lands et al. proposed a mechanism with a GSH-assisted hydride 
shift (177). However, this reaction involves the unstable intermediate, thiohemiketal. 
More likely, the nucleophilic thiolate anion will attack the peroxide oxygen on C-9, thus 
forming an adduct of GSH (or enzyme cysteine thiol) and PGH2, with subsequent 
enzyme-assisted deprotonation of C-9, producing PGE2 and thiolate anion (Fig. 7A). 
Possibly, another GS- (or enzyme cysteine thiolate) in solution could act as a base in the 
second step. This is in agreement with the proposed mechanism of hematopoietic PGDS 
(151). The mechanism for mPGES-1 could also proceed in a concerted manner by 
abstraction of the proton on C-9 by a glutathione or enzyme cysteine thiolate, followed 
by isomerization into PGE2 (Fig. 7B). These mechanisms of mPGES-1 involve activation 
of reduced GSH, which is in line with our observation of a Meisenheimer complex with 
mPGES-1 (unpublished results). A tyrosine has been suggested to activate GSH in 
several cytosolic GSTs (305), hematopoietic PGDS (151) (σ-class cytosolic GST), 
cPGES/p23 (367) and also in LTC4S (Tyr93) (175). However, mutation of the highly 
conserved Tyr117 in mPGES-1 did not affect catalytic activity (244) and neither did 
mutations of tyrosines in MGST1 inhibit catalysis (399). The amino acids responsible for 
GSH-binding and catalytic activity in mPGES-1 and MGST1 have not yet been identified. 
However, N-ethylmalemide (NEM) activates MGST1 and inhibits mPGES-1, implying 
that a Cys or Ser participates in the mechanism of MGST1 and mPGES-1 (Paper V), 
(399). Recently, Watanabe et al. demonstrated that Cys110 is essential in the active site 
of mPGES-2 (398). A mechanism involving Cys110 was proposed, similar to the one in 
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figure 7A where Cys110 attacks the peroxide linkage at C-9, instead of activated GSH. 
Arg110 is strictly conserved in all MAPEG members and when it was replaced with Ser 
in mPGES-1, the catalytic function was abrogated, implying an essential role (244). In 
LTC4S, Arg51 has been proposed to function as a proton donor in the opening of the 
LTA4 epoxide for conjugation with GSH (175). However, mutation of the corresponding 
amino acid in mPGES-1 (Arg70) did not affect the PGES-activity.  
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Figure 7. Proposed mechanisms for PGE2 formation by mPGES-1. 

 
Inhibition of mPGES-1 
We tested some common NSAIDs, stable PGH2-analogues and cysteinyl leukotrienes in 
vitro as putative inhibitors of mPGES-1. The mPGES-1 activity was inhibited by LTC4, 
NS-398 (a specific PGHS-2 inhibitor) and sulindac sulfide with IC50-values of 5, 20 and 
80 µM, respectively (Paper V). mPGES-1 was also inhibited by MK-886, a FLAP 
inhibitor with an IC50-value of 3 µM (202). MK-886 binds to the AA-binding region of 
FLAP, which is highly conserved in LTC4S and mPGES-1 and could possibly be involved 
in the binding of eicosanoids (203). The motif ERXXXAXXNXXD/E might represent a 
consensus sequence for interaction with AA and/or other eicosanoids (202). 
Furthermore, 15-deoxy-∆12,14-PGJ2, arachidonic acid, docosahexaenoic acid (DHA) and 
eicosapentaenoic acid (EPA) were recently reported to inhibit mPGES-1 with similar 
IC50-values (0.3 µM) (282). This observation suggests a novel mechanism of action for 
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the anti-inflammatory effects of DHA, EPA and 15-deoxy-∆12,14-PGJ2. The main target for 
15-deoxy-∆12,14-PGJ2 is believed to be the peroxisome proliferator-activated receptor-γ 
(PPAR-γ) (145,292), but can also inhibit IL-1β -induced PGE2 formation by a PPARγ-
independent way in rheumatoid synoviocytes (379). The PPARγ-independent anti-
inflammatory effect of 15-deoxy-∆12,14-PGJ2 could at least partially be explained by 
inhibition of mPGES-1. 

15-deoxy-∆12,14-PGJ2 is formed from PGHS-2 derived PGD2 through a series of 
dehydration reactions (Fig. 3). The presence of 15-deoxy-∆12,14-PGJ2 in vivo has been 
demonstrated by immunohistochemistry on LPS-treated macrophages and macrophages 
in atherosclerotic plaques (329). Formation of 15-deoxy-∆12,14-PGJ2 has also been 
reported during resolution of inflammation in carrageenin-induced pleurisy in rats (94).  

Furthermore, the activity of mPGES-1 was not inhibited by CDNB, a common 
substrate for GSTs (244), in contrast to cPGES (367).  

Purification of mPGES-1 
Previous attempts to isolate GSH-dependent membrane-bound PGES were only partially 
successful (223,264,363). The main obstacle was the instability of the protein, which lost 
activity rapidly after purification. Recently, we managed to purify human mPGES-1 by a 
combination of hydroxyapatite and immobilized metal affinity chromatography (Paper V). 
The expression system of histidine-tagged mPGES-1 was quite efficient for a 
membrane-bound protein, as seen by the amount of pure enzyme recovered and 
purification factor (up to 2% of the total membrane protein).   

Earlier purification attempts of mPGES-1 demonstrated that Triton X-100 was a 
suitable detergent for solubilization, but higher concentrations (>1.5%) led to a 
decreased recovery of activity (363). However, recombinant histidine-tagged mPGES-1 
was completely solubilized by 4% Triton X-100, with preserved enzymatic activity in the 
solubilized extract when GSH and glycerol were included in the buffer (Paper V, fig. 2A). 

Another purification protocol of mPGES-1, based on hydroxyapatite column 
chromatography, has been described (271). One percent 
diheptanoylphosphatidylcholine (DHPC) was used for solubilization of Sf-9 cell 
membranes and gave 72% recovery of the mPGES-1 activity. Since DHPC is rather 
expensive, the purification of mPGES-1 was conducted in the presence of 1% 
octylglucoside instead. These expression systems and purification protocols for mPGES-
1 provide useful tools for future crystallization and mechanistic studies.  

Quaternary structure of mPGES-1 
2-D crystallization attempts on MGST1 have previously been successful (117) with 
increasingly higher resolutions of the projection structure (317,318). Purified his6-
mPGES-1 in 1% Triton X-100, was successfully crystallized by adding phospholipids 
prior to reduction of the detergent content (Paper V). Triton X-100 was used for 
solubilization of bacteria expressed mPGES-1 and fortunately, the same detergent was 
suitable for 2-D crystallization. Another important factor for successful crystallization of 
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mPGES-1 was the use of crystallization conditions similar to those successful for 
MGST1. A 10 Å projection structure of mPGES-1 was obtained after several steps of 
image processing (Paper V, fig. 8). The molecular weight of his6-mPGES-1 in relation to 
the unit cell size implied that mPGES-1 forms a trimer in the crystal. Optimization of the 
2-D crystallization conditions will hopefully lead to a high resolution structure of mPGES-
1 in the future.    

We have performed hydrodynamic studies on the mPGES-1-Triton X-100 
complex (Paper V). To determine the molecular mass of the complex, the sedimentation 
coefficient, partial specific volume and Stokes radius were measured. A sedimentation 
coefficient of 4.1 S, partial specific volume of 0.891 cm3/g and a Stokes radius of 5.09 
nm were obtained and the Svedberg equation was then used to calculate the molecular 
mass of the mPGES-1-Triton X-100 complex, which was found to be 215 000. The 
detergent content of the mPGES-1-Triton X-100 complex was 2.8 g Triton X-100 /g 
protein and after subtracting the values for the detergent content our calculations match 
with a trimeric quaternary structure (Paper V). Thus, two independent methods indicate 
that mPGES-1 has a trimeric quaternary structure. This is in line with studies on the 
closely related MGST1, which also has been demonstrated to be a trimer 
(41,117,198,400). The quaternary structure of FLAP and LTC4S remains to be 
determined. 

Additional activities of mPGES-1 
Glutathione dependent peroxidase activity 
Since MGST1, -2 and -3 are GSH–dependent peroxidases (142), mPGES-1 was tested 
with several peroxide substrates. mPGES-1 was found to reduce 15-hydroperoxy-PGE2 
to PGE2 in presence of GSH, albeit at a low catalytic rate (0.04 µmol min-1 mg-1) (Paper 
V, Table II). Non-enzymatic production of PGE2 from 15-hydroperoxy-PGE2 was 
significant. GSH is present intracellulary at mM concentrations under normal 
physiological conditions and might be sufficient for non-enzymatic reduction of 15-
hydroperoxy-PGE2 (341). Alternatively, GSH-dependent peroxidases or PGHS-1/-2 
could reduce 15-hydroperoxy-PGE2 to PGE2. In addition, mPGES-1 showed a modest 
GSH-dependent activity against 5-HpETE (0.04 µmol min-1 mg-1), but catalyzed the 
GSH-dependent peroxidase activity towards cumene hydroperoxide more efficiently 
(0.17 µmol min-1 mg-1) (Paper V, Table II). In fact, this activity was in the same range as 
with recombinant rat MGST1 (401). These data indicate that mPGES-1 might be 
involved in protection against oxidative stress, but since the peroxidase activities of 
mPGES-1 are low compared to the PGES activity, they probably reflect the relationship 
with other MAPEG enzymes. 
 
Glutathione transferase activity 
Several proteins with PGES-activity also have GST-activity towards CDNB, like the two 
anionic forms of cytosolic PGH-E isomerases (265) and the cytosolic Mu-class 
glutathione transferases M2-2 and M3-3 (32). Since several of the MAPEG members 
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also possess glutathione transferase activity (141,142,225), it was of interest to study 
GST-activity on mPGES-1. mPGES-1 catalyzed a small, but significant CDNB-GSH 
conjugating activity (0.8 µmol min-1 mg-1) (Paper V, Table II). However, no GST-activity 
against LTA4 was detected with mPGES-1 (unpublished). The GST-activity of mPGES-1 
might also reflect the relationship with other MAPEG enzymes. 

mPGES-1 in pathology 
The collective data from knock-out and pharmacological studies of PGHS-2 
(76,190,192,227,231,270) and EP-receptors (125,158,216,303,321,387,394) clearly 
suggest involvement of PGE2 in various pathological conditions. Several enzymes with 
PGES activity have been identified and cloned, but mPGES-1 is the most active, 
inducible PGES enzyme reported thus far (paper V, Table IV), (271) and constitutes a 
highly probable candidate for PGE2 production in pathology. mPGES-1 null mice 
demonstrated a normal phenotype regarding fertility and number of offspring (374,381), 
unlike the PGHS-2 null mice, which showed deficient renal and reproductive functions 
(76,227). Likely, other proteins with PGES activity are involved in fertilization and 
development. Importantly, the mPGES-1-deficient mice completely lost the capability to 
produce PGE2 over baseline levels after LPS-treatment in vivo (381). Recently, Trebino 
et al. studied mPGES-1 null mice in several pathological models and observed a marked 
reduction of inflammatory responses and pain, as compared with wild-type mice  (374).   
 
Inflammation  
The classical signs of acute inflammation are pain, swelling, heat generation and local 
reddening and loss of function (dolor, tumor, calor, rubor and functio laesa).  
NSAIDs diminish pathological symptoms related to inflammation by inhibition of 
prostaglandin formation (206,228,391). PGE2 is formed in large quantities at sites of 
inflammation and can mediate several pathological features of inflammation (181). PGE2 
is a potent vasodilator (407) and acts synergistically with histamine and bradykinin to 
increase microvascular permeability with edema as a consequence (70,284). These 
vascular changes also result in local warmth, erythema and inflammatory pain.  

Trials with PGHS-2 specific inhibitors have confirmed the dominant role of 
PGHS-2 in producing proinflammatory prostaglandins (64). Furthermore, genetic 
deletion of PGHS-2 prevents the development of autoimmune arthritis (248). Both 
PGHS-2 and mPGES-1 are induced by proinflammatory stimuli, like IL-1β, TNFα and 
LPS both in vitro (Paper I, II and IV) (244,346) and in vivo (78,202,244,374,381,418), 
implying an important role for these enzymes in inflammatory conditions. Also, induced 
mPGES-1 expression was inhibited by the anti-inflammatory glucocorticoid 
dexamethasone (Paper II and IV), (202,244). mPGES-1 was recently demonstrated to 
be overexpressed in synovial tissues from patients with RA (Westman, 2003, submitted). 
Furthermore, Trebino et al. studied the pathogenesis of collagen-induced arthritis in 
mPGES-1 deficient mice. They demonstrated the importance of mPGES-1 in both acute 
and chronic PGE2-dependent inflammation in vivo (374). These data clearly strengthen 
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the importance of mPGES-1 in inflammatory processes. mPGES-1 represents an 
important, “overlooked” drug target for the treatment of inflammatory disease. This is 
probably due to the seemingly opposed modes of action by PGE2. For instance, PGE2 is 
both proinflammatory and promotes resolution of inflammation (20). Furthermore, PGHS-
2 derived prostanoids, like 15-epi-lipoxins and resolvins have been demonstrated to 
promote resolution of inflammation (94,188,323). Inhibition of mPGES-1 will thus 
theoretically spare the beneficial prostanoids, including physiologically important PGE2. 
 
Pain  
Prostaglandins are involved in pain as shown by the antinocieceptive effect of NSAIDs 
and studies with exogenously added prostaglandins, which are able to induce 
hyperalgesia and allodynia (161). The importance of PGE2 in inflammatory pain has also 
been demonstrated using selective anti-PGE2 antibodies that inhibit pain sensitization, 
edema and hyperalgesia in rats (220,280). Peripheral nocieceptor terminals are 
sensitized by PGHS-2 derived PGE2 and produce localized pain hypersensitivity (210). 
Peripheral inflammation also affects the neighboring tissue and causes pain 
hypersensitivity (secondary hyperalgesia) and can also cause diffuse muscle and joint 
pain, fever, fatigue and anorexia (69). These illness symptoms were thought to occur by 
a brain-regulating mechanism involving nerve impulses from the injured region through 
the spinal cord to the brain (415). However, Samad et al. (306) and Ek et al. (78) 
independently proposed that nerve impulses are not involved, but it is the 
proinflammatory cytokine, IL-1β that signals the brain about local inflammation. PGHS-2 
seems to be involved in these central nervous system (CNS) responses, since it is 
induced by IL-1β in the spinal cord neurons, elevating PGE2 levels in the cerebrospinal 
fluid (306). Knock-out studies of prostanoid receptors have shown that IP and EP3 are 
the major prostaglandin receptors, mediating enhanced acetic acid-induced writhing 
response in LPS pre-treated mice, i.e. in endotoxin-enhanced inflammatory nocieception  
(382). Furthermore, spinal EP1 and EP3 receptors have been demonstrated to mediate 
PGE2-induced allodynia and hyperalgesia, respectively (216). Recently, knock-out 
studies demonstrated that mPGES-1 is involved in mediating acute pain in inflammatory 
processes (374). Acetic acid-induced pain was reduced by 50% in mPGES-1-null mice, 
similar to NSAID-treated control mice. These data implicate an important role for 
mPGES-1 in inflammatory pain.     
   
Fever 
Fever is a CNS-controlled rise of body temperature in response to infection or 
inflammation (310). At the site of inflammation, activated immune cells produce 
proinflammatory cytokines, including IL-1, IL-6, and TNF-α, which reach the bloodstream 
and target the brain (80). Fever can be suppressed by NSAIDs, implying that 
prostaglandins are involved in fever generation. Indeed, PGE2 has been shown to play a 
critical role in the CNS where it acts on EP3 receptors (387). Studies using selective 
PGHS-2 inhibitors and knock-out mice have shown that PGHS-2, but not PGHS-1, is 
involved in suppression of PGE2-formation, associated with a decrease in fever (47,190). 
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The role of mPGES-1 in fever was recently elucidated (78,418). Intravenous injection of 
rats with IL-1β or LPS induced mPGES-1 messenger RNA in vascular cells throughout 
the brain (78,418). PGHS-2 was also induced with a more transient up-regulation of 
mRNA. Furthermore, in situ hybridization and immunohistochemistry revealed a co-
localization of mPGES-1 and PGHS-2 after IL-1β treatment, indicating an efficient PGE2 
production. mPGES-1 mRNA was also co-expressed with mRNA coding for the 
interleukin-1 receptor (IL-1 R) in blood brain barrier endothelial cells (78). Furthermore, 
recent data on mPGES-1 (-/-) mice have confirmed that this enzyme is critical for fever 
generation (Engblom et al., 2003, submitted). The current mechanism of PGE2 synthesis 
in fever-mediation is believed to proceed through a series of steps; circulating IL-1β 
binds to IL-1 receptors on the luminal surface of endothelial cells, resulting in PGHS-2 
and mPGES-1 expression, followed by PGE2 synthesis. Due to the amphipathic 
properties of PGE2, it can then diffuse into the parenchyma where it binds to 
prostaglandin-sensitive neurons in the ventromedial preoptic area (VMPO), leading to 
fever (82).  
 
Rheumatoid arthritis 
Rheumatoid arthritis (RA) is a common chronic inflammatory and destructive joint 
disease with a prevalence of 0.5-1%. Typical symptoms are joint swelling and pain 
caused by the inflammatory process, eventually leading to destruction of the joint (343). 
The cause of RA is not entirely understood, but it has been speculated whether the 
disease can be triggered by infectious agents (332). RA is regarded as an autoimmune 
disease and there is a strong association to a number of autoantibodies (351). 
Proinflammatory cytokines, like TNF-α, IL-1 and IL-6 play a central role in pathogenesis 
of RA (71,85). Several proinflammatory cytokines like IL-1β and TNF-α are known to 
induce the production of PGE2 in RA at sites of inflammation (Paper IV) (296). There is 
evidence for PGE2 as a mediator of inflammation in arthritis (63). PGE2 affects tissue 
remodeling at sites of chronic inflammation and can also modulate the immune system. 
PGE2 is also involved in inflammatory angiogenesis (27), bone destruction (296) and 
induction of matrix metalloproteinases (MMPs) in RA (213,324).  

During the last couple of years, a number of reports have described the 
importance of PGHS-2 and mPGES-1 in the pathology of RA and models of RA. High 
expression of PGHS-2 has been seen in RA (66,152,185,331) and PGHS-2-specific 
inhibitors clearly have a great impact on pain and inflammation (64,155). Induced co-
expression of PGHS-2 and mPGES-1 was recently seen in human synovial cells after 
treatment with proinflammatory cytokines (Paper IV) (162). Several models of RA have 
implicated the importance of mPGES-1. For instance, induction of mPGES-1 was seen 
in a rat-adjuvant induced arthritis model (58,202). This arthritis model was also 
demonstrated to have a systemic effect, inducing mPGES-1 in the endothelial cells along 
the blood-brain barrier and in the parenchyma (81). The unambiguous involvement of 
mPGES-1 in RA was demonstrated in a collagen-induced arthritis model, using mPGES-
1 (-/-) mice (374). Recently, another report demonstrated that mPGES-1 is 
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overexpressed in synovial tissues from patients with RA (Westman et al., 2003, 
submitted).  

 
Cancer 
There is clinical, biochemical and genetic evidence for the importance of PGHS-2-
derived PGE2 in the development of colorectal cancer and also possibly other cancers 
(406). A number of epidemiological studies indicate that chronic use of NSAIDs lowers 
the incidence and mortality rate for colorectal cancer in humans and in animal models 
(204,283,326). PGHS-2 is highly expressed in various transformed cell lines and tumor 
tissues (154,355) and treatment with selective PGHS-2 inhibitors reduces the adenoma 
burden in both humans (350) and animals (286). Also, overexpression and antisense 
suppression have demonstrated that PGHS-2 is involved in the progression of several 
cancer forms (195,380).  

More direct evidence for the importance of PGHS-2 and PGE2 in colorectal 
tumorigenesis was found in gene targeting studies. In a human model for familial 
adenomatous polyposis, gene disruption of PGHS-2 (270) or the EP2 (348) receptor 
resulted in reduction of the number of intestinal polyps. In another model, disruption of 
the genes for EP1 (395) or EP4 (247) suppressed the development of carcinogen-
induced colorectal cancer. Furthermore, gene disruption of cytosolic PLA2α also lead to 
reduced polyposis in Apc mutant mice (129,360). Angiogenesis, important for tumor 
progression, was markedly suppressed in EP3 (-/-) mice, in a model that mimics tumor-
stromal angiogenesis (4).  

Both PGHS-2 and mPGES-1 are needed for efficient PGE2-biosynthesis. This 
has been shown in a human embryonic kidney cell line (HEK293) and when co-
transfected with mPGES-1 and PGHS-2, but not PGHS-1, showed an aggressive growth 
and aberrant morphology (244). In a following study, co-expression of mPGES-1 and 
PGHS-2 resulted in colony formation in soft agar culture and tumor formation when 
implanted into nude mice (150).  

However, when HEK293 cells were incubated with PGE2 for at least two weeks, 
no change in morphology was seen (244). This is contradictive to what has been seen in 
human colorectal carcinomas where PGE2 treatment led to increased growth, motility 
and change in morphology, possibly mediated through the EP4 receptor (327,328) and 
must be further investigated.  

Since mPGES-1 was found to possess other activities besides PGES activity, 
other metabolites produced by mPGES-1 could possibly contribute to procarcinogenic 
effects (Paper V). For example, the biological function of 15-hydroperoxy-PGE2 is not 
known and is a possible candidate.  

mPGES-1 was also overexpressed in colon cancer, lung cancer and endometrial 
carcinoma (138,424,425). mPGES-1 was demonstrated to be overexpressed in >80% of 
the human colon and lung tumors and adenomas, but there were differences in the 
degree of expression between mPGES-1 and PGHS-2 and some tumors expressed very 
little of these enzymes (424,425). Recently, mPGES-1 was found to be overexpressed in 
>50% of human gastric cancer cells (van Rees et al., 2003, in press). However, in 
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contrast to PGHS-2, mPGES-1 was not induced by phorbol 12-myristate 13-acetate 
(PMA) or IL-1β, indicating different regulatory mechanisms for PGHS-2 and mPGES-1 
expression. Further studies on mPGES-1 are necessary to elucidate its implications in 
carcinogenesis.   
 
Alzheimer’s disease 
There are three major pathologies that characterize Alzheimer’s disease (AD): senile 
plaques, neurofibrillary tangles and inflammation (101). One of the most critical events 
for the onset of Alzheimer’s disease is the deposition of β-amyloid in the brain. In the 
search for β-amyloid-induced genes in rat astrocytes, mPGES-1 mRNA was identified by 
a cDNA subtraction technique, suggesting a potential role in the development of 
Alzheimer’s disease (311). Many epidemiological studies indicate that chronic use of 
NSAIDs delays the onset of Alzheimer's disease (42,101). This is probably due to 
inhibition of the increased PGHS-2 expression and PGE2 production found in patients 
with Alzheimer’s disease (160,222,272). Also, IL-1β-induced PGHS-2 expression and 
PGE2-secretion was inhibited by dexamethasone in human neuroblastoma cells, 
suggesting a coupling of glial derived IL-1β and increased PGHS-2 expression in 
neuronal cells in chronic degenerative diseases, like Alzheimer’s disease (131).   
 
Atherosclerosis 
Inflammation has been found to play a central role in the events that leads to erosion of 
atherosclerotic plaques (388). In fact, markers of inflammation are related to increased 
risk of cardiovascular disease (293). Macrophages participate in the inflammatory 
process and synthesize MMPs, which are capable of degrading plaque constituents. 
Increased expression of MMP-2 and MMP-9 has been found in human plaques in 
association with macrophages (90). Induction of MMP-2 and MMP-9 is activated by a 
PGE2/cAMP-dependent pathway (60). In agreement, colocalization of PGHS-2 and 
mPGES-1 was recently seen in symptomatic atherosclerotic plaques, coupled with 
induction of metalloproteinases, resulting in plaque rupture and clinical symptoms (56). 
Also, a specific PGHS-2 inhibitor (NS-398) decreased production of MMPs, which was 
reversed by PGE2. Furthermore, the involvement of PGHS-2 in early atherogenesis was 
recently confirmed in low-density lipoprotein (LDL)-receptor deficient mice (44). Another 
report describes the importance of PGHS-1-derived prostaglandins in acceleration of 
atherogenesis in LDL-receptor knockout mice (281). Thus, both PGHS-1 and –2 seem to 
be involved in atherosclerosis and an evaluation of the effects of various selective 
PGHS-2 inhibitors on plaque progression in humans should follow. The beneficial effects 
of a selective mPGES-1 remain to be studied.  

mPGES-1 as a drug target 
PGHS-2 specific inhibitors have reduced gastrointestinal toxicity compared to less 
selective PGHS-2 inhibitors, but other unwanted side effects exist (64). Specific PGHS-2 
inhibition can lead to edema and elevated blood pressure due to altered excretion of 
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sodium (352). Specific PGHS-2 inhibition also leads to inhibition of renal and systemic 
PGI2 (49,209), which may alter the balance between platelet-derived thromboxane A2 
and endothelial-derived PGI2, leading to altered vascular haemostasis and perhaps to an 
increased risk of thrombosis (38,65). Thus, a specific mPGES-1 inhibitor is desirable, 
sparing beneficial prostanoids that participate in resolution of inflammation and important 
physiological systems in which other prostaglandins participate.  

Other effects of a specific mPGES-1 inhibitor in inflammatory conditions may 
include conversion of PGH2 (shunting) to other enzymatically or non-enzymatically 
produced prostanoids (Fig. 3) or novel anti-inflammatory products (94). For example, 
cells that express PGDS could “shunt” PGH2 into PGD2, which can be non-enzymatically 
metabolized into 15-deoxy-∆12,14-PGJ2. This shunting could thus lead to an even more 
efficient anti-inflammatory effect through inhibition of mPGES-1, since 15-deoxy-∆12,14-
PGJ2 is an inhibitor of mPGES-1 and also has anti-inflammatory properties. Studies with 
specific inhibitors of mPGES-1 on various cell systems and mPGES-1 (-/-) mice are 
needed to further elucidate any shunting effects. Shunting may also be a disadvantage if 
large amounts of TXA2 are produced.  

Another advantage with specific inhibition of mPGES-1 was seen in mPGES-1 (-
/-) mice, which demonstrated a normal phenotype, suggesting that other PGE synthases 
substitute for mPGES-1 in normal physiology (374,381).  

Conclusions 
Our data cover characterization of human mPGES-1 from initial identification to 
purification, 2–D crystallization and kinetic characterization, including discovery of new 
activities. Human mPGES-1 was cloned and characterized as a 16 kDa, inducible, GSH-
dependent, microsomal PGE synthase and was identified as a member of the MAPEG 
superfamily. mPGES-1 possessed several activities besides PGES-activity, like GSH-
dependent peroxidase activities and GSH-transferase activities, probably representing 
the evolutionary relationship to other MAPEG members. We observed that mPGES-1 
was induced by proinflammatory cytokines and this induction was prevented by 
dexamethasone, suggesting a role in inflammatory processes. mPGES-1 was found to 
play an important role in RA where it was induced by IL-1β and TNF-α in an 
experimental setting. Several studies of mPGES-1 and PGHS-2 indicate that they are 
functionally linked and can be induced by the same kind of stimuli, but with different 
signaling pathways. PGHS-2 and mPGES-1 play an important role in a number of 
pathological conditions and diseases like inflammation, pain, fever, RA, cancer, 
atherosclerosis and neurodegenerative diseases.  

mPGES-1 is a very interesting, novel drug target due to its seemingly specific 
involvement in pathophysiology. Continued research is required, especially on the 
structure of the protein and on the catalytic mechanism. The aim is to produce specific 
and effective inhibitors to be tested in various clinical trials. 
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