
 

From CLINICAL NEUROSCIENCE 

Karolinska Institutet, Stockholm, Sweden 

 

ON GENETICS AND 

TRANSCRIPTOMICS OF 

MULTIPLE SCLEROSIS 

Boel Brynedal 

 

 

Stockholm 2009  

 



All previously published papers were reproduced with permission from the publisher. 

 

Published by Karolinska Institutet. Printed by Reproprint. 

 

© Boel Brynedal, 2009 

ISBN 978-91-7409-309-4



 

 

ABSTRACT 

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system, where 

both genetic and environmental factors influence one individual’s risk of developing the disease. 

This thesis is focused on genetic and transcriptomic aspects of MS. Twelve genes have been 

investigated genetically for their possible independent and interaction mediated effects on MS 

susceptibility and clinical phenotypes, of which five genes were assessed more thoroughly: HLA-

A, HLA-DRB1, CD58, HDGFRP3 and RPL5.  

     The MS association with HLA-A was investigated in Study I using a cohort consisting of 1,084 

MS patients and 1,347 controls. Logistic regression modelling firmly established an association 

suggesting a protective effect of the HLA-A*02 allele (OR: 0.63, p-value: 7x10-12).  

     In Study IV CD58, HDGFRP3 and RPL5 were investigated genetically due to previously 

suggested association in a genome wide association study, and because they had shown 

differential expression in the CSF of MS patients (Study III). CD58 and RPL5 were confirmed to be 

associated with MS susceptibility in 1,077 MS patients and 1,217 controls. SNPs in CD58 

conferred a multiplicative effect (ORs: 1.4-1.2, p-values: 8x10-5 – 3x10-2), whereas the effect of 

RPL5 variants on MS susceptibility was conferred by the heterozygotes (OR: 1.2, p-value: 2x10-2). 

These genes were suggested to affect MS independently of each other as well as other known 

risk factors: sex, HLA-DRB1, IL7R, IL2Rα, CLEC16A, CD226, SH2B3 and KIF1B. The interplay between 

these factors was elucidated, and possible epistatic effects were discovered that warrant further 

investigation.  

     Furthermore, we confirmed the association between HLA-DRB1*15 and lower age at onset, 

but alleles of neither HLA-A, CD58, HDGFRP3 nor RPL5 were found to affect severity or course of 

disease in Study II & IV. 

     In Study III gene expression profiling was performed for the first time in CSF cells from MS 

patients and over 4,000 transcripts were found to be differentially expressed. Simultaneously 

gene expression was also investigated in peripheral blood lymphocytes (PBL), and patients in an 

active phase of disease (relapse) were compared to those sampled in remission. These four 

comparisons revealed that in contrary to cells of the CSF, PBL samples did not show differential 

expression between MS patients and controls. Intriguingly, when comparing MS patients in 

relapse to those in remission, PBL samples showed more than 1,000 differentially expressed 

transcripts whereas in CSF cells no transcripts were differently expressed. Our results imply that 

MS is accompanied by active and proliferating cells in the CSF, distinguished by the regulation of 

genes belonging to immune related pathways. The differential expression in blood lymphocytes 

was characterized by a generally higher expression in relapse but with lower metabolism of 

several amino acids. The regulation in PBL, but not in CSF cells, implies the importance of 

peripheral events in driving a disease bout in MS. 
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1 BOEL’S THESIS 

All studies included in this thesis focus on Multiple sclerosis (MS). Typically we, as 

genetic researchers, describe MS as a complex disease meaning that several genetic 

and environmental factors influence an individual’s risk of developing the disease. 

These genetic risk factors have been pursued ever since it was shown that, in fact, 

inherited factors play a role in MS (reviewed in [1]). As early as in the 1970ies the first 

genetic factor affecting MS susceptibility was discovered through functional tests. 

After some discussion, it was established that a variant of the class II region of the 

major histocompatibility complex, also called the human leukocyte antigen (HLA) class 

II region, conferred a risk of developing MS [2]. In the past few years a lot has been 

accomplished, and several genetic risk factors have been identified. Major 

collaborative projects as well as the technical and methodological progress promise to 

move this field of research ever further. The genetic studies included in this thesis play 

a small role in this development, and these as well as theoretical and methodological 

aspects of genetic studies are discussed in chapter three.  

 

Processes are ongoing within MS patients, dependent or independent of present 

genetic variants, which we would like to elucidate, characterize and understand. This 

thesis includes a study investigating the transcriptome of two tissues from MS patients: 

cerebrospinal fluid (CSF) cells from the central nervous system (CNS), which has never 

been assessed for gene expression profiling earlier and peripheral blood lymphocytes 

(PBL). Gene expression profiling and the results from our investigation are discussed in 

chapter four. 
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2 MULTIPLE SCLEROSIS 

2.1 CLINICAL ASPECTS 

There are no specific tests that confirm a diagnosis of MS, rather MS is in principle 

diagnosed on clinical grounds when there is evidence of lesions in the central nervous 

system (CNS) in the form of at least two clinical bouts of neurological symptoms 

affecting at least two anatomic sites of the CNS, and no better explanation for the 

clinical and paraclinical abnormalities exist. Even a single neurological bout can 

sometimes allow a diagnosis of MS if it is accompanied by the observation of a 

subsequent lesion by magnetic resonance imaging (MRI) or abnormal evoked 

potentials. Thus, the patient history or/and laboratory investigations, such as 

cerebrospinal fluid (CSF) analysis, and radiological investigations, such as evoked 

potentials and MRI, should indicate dissemination in time and space [3].  

 

The neurological symptoms vary considerably between and even within an individual 

patient, but often reflect the location of the lesion within the CNS. Symptoms include, 

but are not limited to, fatigue, numbness, muscular weakness, balance problem, blurry 

vision, pain, bladder dysfunction and cognitive impairment. Typically the disease bouts 

arise over hours or days, then plateau and improve (sometimes incompletely) over 

days to weeks. Many lesions are clinically silent, in fact, MRI studies have indicated that 

lesions appear seven to ten times more frequent than clinical relapses [4]. The number 

of lesions correlates rather poorly with disability, whereas measures of brain atrophy 

possess better correlation [5].  

 

Disability for individuals with MS is most commonly assessed using are the expanded 

disability status scale (EDSS) developed by Kurtzke [6]. Here much of the complexity of 

the condition is assessed through both impairment and disability. The EDSS has shown 

low inter-rater reliability, and this ordinal scale is not evenly distributed [7]. The EDSS is 

a measurement of the experienced disability in one individual at a given time point, 

and does not consider disease duration, thus the severity of disease course for two 

individuals is difficult to compare. Several methods have been proposed to assess 

severity; the multiples sclerosis severity scale (MSSS) uses EDSS in conjunction with 

disease duration, and an individual is compared to others in a large longitudinal 

database and thus assesses cross-sectional disability [8]. Thus, acquiring an MSSS 
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under 1 signifies that ones disability is among the lowest 10 percent as compared to 

the global MSSS. Another approach to assess severity includes survival analysis where 

e.g. time to EDSS 6 can be analysed, this will be discussed in later sections. 

 

Initially, the disease course is usually (in most studies 80-90 %) characterized by 

relapses (disease bouts) and remission (periods of recovery), called a relapsing 

remitting form of MS (RRMS). A majority of these patients develop gradual progression 

between relapses after a median duration of 19 years, and then entered the secondary 

progressive (SP) phase of the disease [9]. For a lesser proportion (5-20 %) the initial 

disease course is primary progressive (PPMS), characterised by a steady progression 

from onset. The majority of MS patients are female, with a female to male ratio of 

approximately 2.5 in our patient cohort, although the PP course is more common 

among men [9].  

 

There is no cure for MS today, but several disease modifying treatments exist that 

reduce the number of clinical relapses and lesions seen by MRI. Different Interferon β 

preparations (Betaferon, Rebif and Avonex) and glatiramer acetate (Copaxone) have 

been used starting in the mid nineties, and more recently several monoclonal antibody 

based medications as well as oral immunomodulatory treatments have appeared and 

are currently under investigation [10].  

  

2.2 IMMUNOLOGY AND PATHOLOGY 

MS is an inflammatory disease where the leukocytes, for unknown reasons, attack the 

oligodendrocytes that produce the myelin surrounding the axons in the CNS. Myelin is 

made up by multiple layers of cellular membrane arranged in segments along the 

axons enabling the saltatory conduction of action potentials. The inflammation of 

myelin is accompanied by demyelination and neurodegeneration, and remyelination is 

present to some extent. Lesions with ongoing active inflammation are associated with 

damage to the blood brain barrier (BBB), indicating an increased influx of immune cells 

into the CNS. Thus, these lesions are usually oriented around blood vessels, and 

characterized by infiltration of lymphocytes and macrophages, the loss of myelin 

sheets and axons that are embedded in astroglial scar tissue [11]. The majority of 

infiltrating lymphocytes are T-cells, and include both CD4+ T-cells – restricted to 

activation by HLA class II presenting cells, and CD8+ T-cells – restricted to activation by 
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HLA class I presenting cells. CD8+ T-cells have been shown to bind to 

oligodendrocytes and axons in MS lesions and the T-cell infiltration has been 

associated to HLA class I expression, thus CD8+ T-cells may play an important part in 

the pathology (reviewed in [11]), although MS has long been viewed as a CD4+ T-cell 

mediated disease [12,13]. Both T-cells (CD4+ as well as CD8+) and B-cells undergo 

clonal expansion within the CNS. Besides the sharply demarcated lesions there is also a 

more diffuse change (signal alterations) and infiltrates of cells in normally appearing 

white matter and a brain atrophy that is sometimes profound in latter stages of disease 

[11,14]. Whether the inflammation or the neurodegeneration is the primary cause of 

MS symptoms, and whether  neurodegeneration can occur in MS independent of 

inflammation has been debated [15,16].  

 

One major hypothesis of the initiation of MS is that (autoreactive) myelin specific T-

cells are activated in the periphery and migrate to the CNS. The activation could be 

facilitated by e.g. molecular mimicry [17] or incorporated myelin proteins in viruses. 

Once across the BBB, the T-cell gets reactivated and release pro-inflammatory 

molecules that further facilitate the recruitment of immune cells into the CNS.  

Autoimmunity is present in anyone to some extent and is usually harmless, but can 

also cause autoimmune diseases. The autoimmune, or immunological, response in MS 

is a likely cause of most, if not all major symptoms, and the reason for its initiation is of 

vital importance. 

 

2.3 EPIDEMIOLOGY 

MS has an uneven distribution throughout the world, with lower prevalence closer to 

the equator [18], and generally prevalence is highest in northern Europe, southern 

Australia and north America. Accordingly, Scandinavia has a high prevalence of about 

1 in 1000 individuals. Most indigenous people, such as the Sami population of 

Scandinavia, do not follow this pattern and show a lower prevalence of MS. It has been 

proposed that the latitude gradient is caused by the emigration of northern European 

individuals to regions with similar climate, thus indicating that northern European 

genetic variants increase the risk of MS, and the lower prevalence of MS among 

indigenous, more isolated, populations could reflect that as well [1]. There are however 

migration studies that indicate environmental influence that cannot be explainable by 

genetics, these studies are often small and individual results might be questionable. As 
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discussed by Compston and Confavreux [18], migration  from high risk areas to low risk 

areas is suggested to decrease ones risk of developing disease, if individuals were 

below fifteen years of age, and migration from low risk areas to high risk areas has 

shown the corresponding pattern.  

 

The latitude gradient has also been suggested to show the environmental influence to 

MS susceptibility, and has been suggested to be caused by less exposure to sunlight 

and thereby decreased levels of vitamin D [19]. Another popular hypothesis is that 

infection could cause the gradient, and both a hygiene hypothesis, where early 

infections prevent development of MS, and hypotheses regarding specific infections 

that would cause MS have been postulated (reviewed in [20]). There are reports 

indicating that the latitude gradient is disappearing [21,22], which might be explained 

by an improved hygiene or spreading of certain pathogens. Alternatively, the latitude 

gradient might reflect that genetic factors are important in MS susceptibility, and the 

disappearance of this gradient could be due to increased migration throughout the 

world during the latest decades.  The evidence for a genetic predisposition in MS is 

however quite robust [1], and is presented in Figure 1. Here it is shown that 

concurrence in MS correlates with degree of genetic sharing, with the largest 

concordance rates seen in monozygotic twins. Different studies have shown variations 

in the concordance rate of all levels, but the correlation between genetic sharing and 

concurrence is almost always seen.   

 

Figure 1. The age adjusted recurrence rate of multiple sclerosis for individuals with different degrees 

of genetic sharing. Data from meta analysis reported in McAlpine’s Multiple Sclerosis [1]. 
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3 GENETIC STUDIES 

Once the existence of genetic risk factors has been demonstrated, the search for 

attributable variants begins. Currently, most of the genes in the human genome are 

known, and through resources such as the HapMap [23] database many of the 

polymorphisms are known as well. The daunting tasks of selecting suitable genes to 

investigate, the genotyping, the statistical analysis and finally functional analysis 

remain, and are henceforth discussed in relation to the thesis.   

  

3.1 AIM  

The aim of Study I & II was to investigate the proposed role of the HLA class I gene HLA-

A in MS susceptibility, and how HLA-A and HLA-DRB1 interact in affecting MS 

susceptibility and clinical phenotypes, such as age at onset, severity and disease 

course. 

 

The aim of Study IV was to test the hypothesis that a few selected genes, having shown 

differential expression in the cerebrospinal fluid (CSF) of MS patients compared to 

controls, as well as suggestive association in a genetic screen performed by the 

international MS genetics consortium (IMSGC) are indeed of importance for MS 

susceptibility and clinical phenotypes. 

 

3.2 COMPLEX GENETIC DISEASES 

Complex diseases, as opposed to Mendelian diseases, do not show a clear inheritance 

pattern in families. Individuals with greater genetic sharing do however show higher 

concordance, as indicated for MS in Figure 1. Complex, or multifactorial, diseases are 

caused by both environmental and genetic risk factors, where one individual needs to 

acquire several risk factors in certain combinations, in order to develop disease. A 

useful simile has been provided by Rothman [24] where a sufficient cause of disease is 

described as a pie. Here each piece of the pie is a risk factor and disease only develops 

in a person who has acquired an entire pie, and moreover a disease can be caused by 

several different pies (see Figure 2).  
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Figure 2. Illustration of Rothmans pie model showing sufficient causes of disease (at the top) among 

patients, and how the risk factors, pieces of pie (here denoted with different letters), can be 

distributed among controls (bottom).  

 

Thus, a piece of a pie can be present in both patients and healthy individuals, and does 

not have to be involved in the development of disease in all patients. This model 

assumes genetic heterogeneity; a disease can develop due to several different 

combinations of risk factors and thus two individuals can develop disease for 

completely distinct reasons. Using Rothman’s pie models, the strength of one 

component cause relates to how many of the patients of a given disease that are 

attributable to a pie including the component cause. Several measures are used to 

describe this strength; some use the frequency of the risk factor alone, others use both 

the frequency as well as an effect measure of the increased risk attributable to the 

factor in question.  

 

In order to find genetic variants connected to disease one must find means to detect 

the sequence difference or variants linked to the disease causing variants. Currently 

techniques are evolving rapidly - individual genomes have been resequenced, and 
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even though this level of resolution is not yet feasible to a common laboratory, it will 

probably be in a few years. Additionally, epigenetic factors such as methylation, which 

has not yet been investigated in MS, are likely to be of importance for MS 

susceptibility. So far, microsatellites and single nucleotide polymorphisms (SNPs) have 

been the markers of choice in genetic studies rather than resequencing. Microsatellites 

are tandemly repeated DNA sequences with a high mutation rate, which makes them 

very informative since they tend to differ from person to person. SNPs are much more 

common than microsatellites and throughout the genome it is estimated that about 

13 million SNPs exist. A single base alteration is defined as a SNP if it has a frequency of 

at least 1 % in the population.  

 

3.3 ASSOCIATION STUDIES 

In association studies individuals with the disease and controls from the population are 

used to find association between genotype and phenotype. A genetic variant which 

differs in frequency between patients and controls might be or reflect a piece of one or 

more disease pies.  

 

An association study can be conducted at any level, using single markers, entire genes 

or genome wide association studies (GWAS). The latter approach usually includes the 

utilization of immobilised oligonucleotides on arrays to detect SNP alleles.  

 

3.3.1 Choice of genes and markers 

The included genetic studies in this thesis are candidate gene studies, where genes 

were selected for genetic assessment based on prior knowledge. Such information 

could include data from animal model studies, where a genetic variant influences the 

phenotype of disease, or information regarding the function of a certain gene that 

suits what is known about the disease aetiology. Genes with association in another 

disease with some phenotypic feature resembling the disease of interest, or genes 

with previously suggestive association could also be reasonable candidates.  

 

Once decided which genes to investigate, genetic markers within and/or close to those 

genes should be evaluated. One can consider that markers in close proximity are often 

inherited together, that some SNPs are within coding regions, others cause amino acid 

changes in the resulting protein, and some might have been investigated previously. 
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Using data from the HapMap consortium [23] information about known SNPs and the 

correlation between these SNPs in eleven different populations can be extracted. If 

two SNPs are highly correlated it may be possible to only to genotype one of them and 

detect possible association, this approach is referred to as tagging. Investigating 

genetic association using common SNPs and a tagging approach assumes that the 

disease is caused by common genetic variants, or possibly rare variants that correlate 

with a genotyped variant.  

 

3.3.1.1 Early studies in MS (1970-2006) 

During this time HLA variants and blood groups were among the only genetic markers 

available to researchers, and surprisingly HLA was found to behave differently among 

MS patients. Genetic methodologies were not available, and HLA “phenotypes” were 

tested using functional tests such as the mixed lymphocyte culture reaction, 

microdroplet lymphocyte cytotoxicity test and/or complement fixation with platelet 

antibodies [25,26].  Thereby functional alleles of HLA genes were determined, and 

this nomenclature is still in use today. 

 

Several HLA class I alleles were reported as associated, and somewhat later also class II 

alleles, and eventually HLA-DRB1*15 was shown to exhibit the strongest association to 

MS, and the initial class I associations were regarded as secondary [27]. MS is associated 

with a combination, haplotype, of HLA class II alleles: DRB1*1501, DRB5*0101, 

DQA1*0102, DQB1*0602 [28]. The LD within this haplotype is high, and one therefore 

usually genotypes only the DRB1 locus. Moreover, the majority of DRB1*15 alleles are 

in fact of the subtype DRB1*1501 and thus one only genotype individuals at this 

resolution (two digits), which also represents the resolution of the earlier functional 

tests. The DRB1*15 allele is present in about 55-60 % of MS patients and 30 % of 

healthy individuals in our data, and is associated with MS in practically all populations 

studied. Due to putative roles of HLA class I molecules in an animal model of MS, 

experimental autoimmune encephalomyelitis (EAE), and the initial class I associations 

to MS, HLA class I molecules were re-investigated in relation to MS susceptibility within 

our group more recently [29]. Here both the HLA-A, -B and –C genes were genotyped in 

87 MS patients and 102 controls, and those alleles showing signs of association were 

genotyped in an additionally cohort of 113 MS patients and 108 controls. HLA-A*03, 

A*02 as well as B*07 were associated with MS, but HLA-B*07 was dependent on the 
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HLA-DRB1*15 association as shown by stratified analysis. In the stratified analysis 

(DR15 positive and negative groups) HLA-A*02 was suggested to be associated in both 

groups (p-values 0.012 and 0.06), whereas HLA-A*03 was less associated (p-values 

0.072 and 0.12). These groups were apparently small, and reported p-values were 

corrected for multiple testing. Furthermore, the HLA-A*03 allele was found to 

modulate the HLA-DRB1*15 association in a Norwegian cohort, whereas independent 

effects of HLA-A*02 was not investigated [30].  Thus, the roles of HLA-A alleles in MS 

were not elucidated.  

 

Prior to year 2007 hundreds of non-HLA candidate gene studies have been 

conducted to find genetic variants predisposing to MS. None of these provided 

sufficient evidence for any genetic variant to be regarded as truly associated to MS 

susceptibility by the MS research community. In retrospect we can conclude that our 

expectation regarding the effect sizes were exaggerated, and thus numerically too 

limited study populations were utilized. Several published studies reported 

significant associations, but since follow up studies failed to verify them, they were 

regarded as false positives. A multitude of studies showed non-significant findings, 

and one might assume that many more such studies failed to be published 

(publication bias). In my mind, these genes cannot be dismissed; there might be false 

negatives as well as false positives.  

 

3.3.1.2 Finally some success! (2007 and onwards) 

In the early 2000th the pessimism within the MS field was large due to the huge 

amount of “failed” candidate gene studies and the failure of a large microsatellite 

screen in families from several populations [31]. At the time several companies had 

developed techniques to detect many thousands of SNP alleles on arrays and the 

research community was eager to exploit their possibilities. The technique was 

however still expensive, and researchers had realised that the study populations 

needed to be larger than any individual research group usually have access to. 

Consequently the first GWAS in common diseases [32] and MS [33] were published 

during 2007 and were large collaborative projects, including 1000-2000 patients and 

as many controls. Prior to this the first non-HLA gene (IL7R, interleukin 7 receptor) had 

been confirmed in MS, by Lundmark et al. [34] in parallel with Gregory et al [35], when 

validating a smaller initial study performed a few years earlier [36]. Several studies have 
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thereafter validated the IL7R association [33,37], and the IMSGC further validated their 

own initial IL2Rα association. This report was followed by several confirmatory studies, 

and thereby CD58, RPL5 (ribosomal protein L5) and CLEC16A (C-type lectin domain 

family 16) [38-40] were validated as associated to MS. Recently a GWAS initiated in a 

small Dutch isolated population indicated a role for KIF1B (kinesin family member 1B) 

in MS susceptibility, which was validated in a cohort of Canadian, Swedish and Dutch 

case-control populations [41]. Another GWAS performed in an exceptionally well-

characterized MS population was recently published, where genetic variants were 

connected to susceptibility, age of onset, disease severity, brain lesion load and 

normalized brain volume [42]. Here GPC5 (glypican 5) is suggested to confer risk of 

MS, a finding not yet validated by any other group. Genes known to be connected to 

type I Diabetes have also been investigated in MS, and thereby CD226 and SH2B3 

(SH2B adaptor protein 3) were indicated as MS susceptibility genes [43,44]. 

 

3.3.1.3 Choice of genes and markers in Study I & II 

As described above, a possible impact of the class I gene HLA-A in MS susceptibility had 

been reported by our group as well as others [29,30], but these studies were small, 

underpowered and results were unclear. Therefore we set out to investigate HLA-A in 

an independent study population with emphasis on describing the relationship 

between HLA-A and HLA-DRB1 alleles (Study I) in affecting MS susceptibility and clinical 

variables (Study II).  

 

3.3.1.4 Choice of genes and markers in Study IV 

In Study IV genes which had shown involvement in MS both genetically and 

functionally were investigated. At the time of study design the IMSGC article [33] had 

been published and the initial results from our gene expression profiling project (Study 

III) were examined for the first time. Therefore we matched genes from all significantly 

differently expressed probe sets in the CSF of MS patients compared to controls, with 

the genes of the 110 SNPs published in the supplementary of the IMSGC paper. Six 

genes were suggested to be connected to MS in both studies, and three were selected 

for further investigation (CD58, RPL5 and HDGFRP3 (hepatoma-derived growth factor, 

related protein 3)), the others were dropped due to financial restrictions.  
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We included all SNPs within 10 kb upstream and 10 kb downstream of each gene, and 

selected SNPs to detect all common variation within this region. The indicated SNPs in 

the IMSGC study were always included, and SNPs in coding regions were included if 

the HapMap [23] data showed evidence of polymorphism with a frequency of more 

than 5 % in the CEU (CEPH (Centre d'Etude du Polymorphisme Humain) Utah) 

population. 

 

3.3.2 Study population 

The sampling of patients and controls is an important factor to consider in association 

studies since, in order to draw any general conclusions, we need to assume that our 

population of patients and controls are an unbiased sample of the underlying 

population [24]. Patients with an infrequent disease, such as MS, are often sampled at 

hospitals, and thus the controls should be collected within the same catchment area. 

The size of the study population has to be large enough to detect the anticipated 

effects, and now it is becoming increasingly clear that for MS the usual risk factors 

confer small increases in risk, which indicates the necessity to have large study 

populations. 

 

All Swedish patients included in Study I, II & IV were recruited by neurologists at 

Karolinska University Hospitals, and all patients fulfilled the Poser [45] or McDonald 

criteria [3]. Blood samples are usually collected for clinical assessment of HLA-DRB1 

status and the patients are then asked whether they consent to participate in genetic 

studies. We have DNA samples from over 2000 MS patients, a number that gradually 

increases. In Study I 1084 MS patients with HLA-A and HLA-DRB1 genotypes were 

included, excluding those who participated in the earlier HLA-A study [29]. For Study II 

we selected 973 Swedish and 484 Norwegian patients with sufficient HLA genotypes 

and clinical data. In Study IV samples from 1,077 MS patients were included, where the 

majority had been included in both Study I & II. 

 

The blood samples from healthy controls were collected with the cooperation of 

different blood banks in the Stockholm area during two separate time periods: spring 

of 2001 and from late fall and spring of 2004/2005. Information regarding sex and year 

of birth was collected. In order to prevent double samples the blood donors during the 

second collection were asked if they had given blood at the blood banks used for the 
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first collection during the relevant time period. Blood donors were informed that 

samples would be used for genetic research at a Neurology department, and were not 

screened for MS. Additionally it has been argued that blood donors are healthier than 

the general population. These factors could possibly affect our possibility to detect 

true differences between patients and controls generalizable to the entire population. 

In Study I samples from 1,347 healthy controls were included, and in Study IV samples 

from 1,217 healthy controls were included. 

 

3.3.3 DNA extraction 

For all samples, blood was collected using EDTA tubes and frozen until DNA extraction. 

DNA can be extracted from almost every tissue. The usual procedure is to use blood as 

starting material because of the availability. At the Karolinska University Hospital 

Neurology clinics we have collected blood samples and extracted DNA since 1988, and 

consequently several techniques have been used in DNA extraction. When whole 

blood is used for DNA extraction, red blood cells are first lysed to separate them from 

nucleated cells, thereafter the white blood cells are lysed, proteins are removed and 

genomic DNA is precipitated. Different methodologies usually differ in how proteins 

are removed. Initially phenol chlorophorm extraction and methods where high salt 

concentrations are used to remove proteins were used at our clinics. Thereafter DNA 

was extracted using Qiagene kits (PAXgeneTM blood DNA kit) where proteins are 

removed by incubation with a protease; this procedure generated DNA of better 

quality (less degenerated). Samples have also been extracted at the Karolinska Institute 

Biobank using Puregene kits (Qiagene) where a modified salting-out precipitation 

method is used. 

 

3.3.4 Genotyping 

Allele discrimination can be conducted using allele-specific hybridization, allele-

specific primer extension, allele-specific oligonucleotide ligation or allele-specific 

enzymatic cleavage [46]. In the hybridization approach two allele specific probes are 

designed to hybridize to the target sequence only when they align perfectly [46,47]. 

Primer extension techniques are based on DNA template using either two sequence 

specific primers where only perfect matching primers produce amplified DNA, or one 

primer designed to anneal with the 3’ end adjacent to the SNP site [46,47]. The 

nucleotide incorporated by DNA polymerase is determined by mass or fluorescence. 
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The ligation approach relies on the specificity of DNA ligase: two adjacent 

oligonucleotides are annealed to a DNA template and ligated only if there is a perfect 

match between both oligonucleotides and the template [46,47]. Alleles are then 

called based on the detection of ligation. The enzymatic cleavage approach utilize of 

the ability of different enzymes to cleave specific sequences or structures, and is used 

when the polymorphism affect such sites [47]. One example is the invasive cleavage 

approach which utilizes structure specific enzymes that cleave overlapping 

nucleotide sequences where the polymorphic site is at the point of overlap, and the 

overlapping structure is formed with the allele-specific probe [46].  

 

The detection of specific alleles can be done by monitoring the light emitted by the 

products (fluorescence or chemiluminescence) or by measuring the mass of the 

products (by matrix assisted laser desorption/ionization time-of-flight mass 

spectrometry (MALDI-TOF MS)) [46,47]. 

 

3.3.4.1 Genotyping Study I & II 

Functional alleles of HLA-A and HLA-DRB1 at a low (serological) resolution were 

identified using primer extension of sequence specific primers by Olerups SSP kits [48].  

 

3.3.4.2 Genotyping Study IV 

In Study IV SNP alleles were genotyped using one base primer extension technique at 

the Mutation Analysis Facility at Karolinska Institutet, and multiple SNPs were 

genotyped simultaneously. First, amplification probes amplified the region of interest, 

thereafter an allele specific extension reaction was conducted with the addition of 

dideoxy nucleotides. These primers were designed so that the difference in mass 

between all elongated primers in the multiplex assay was at least 20 Da. Alleles were 

thereafter detected using MALDI-TOF mass spectrometry. The genotype calls were 

manually checked by me and one employee at the core facility. Genotyping assays that 

failed at the first attempt were replaced with a tagging SNP when available, or else the 

assay was redesigned with new primers. Concordance analyses with the HapMap data 

as well as analysis of the parent-offspring-compatibility were performed, and showed 

concordance rates of above 99% for all analysed SNPs but rs570440 in CD58 (98.3%) 

and rs8037783 in HDGFRP3 (98.1%). All genotyping assays had a success rate above 89 
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% (mean 94 %), except three HDGFRP3 SNPs that were excluded from the analysis 

(rs12441585: 63%, rs10162999: 60% and rs3816450: 29%). 

 

 

3.3.5 Important concepts 

Some statistical and epidemiological concepts will be discussed throughout my thesis, 

and are therefore presented and briefly discussed here. 

• Null hypothesis: Here refers to that there is no association between the tested 

variant and the disease.  

• Alternative hypothesis: Here refers to that the tested variant is associated with 

the disease. 

• P-value: Probability of obtaining a result at least as extreme as the one 

observed, given that the null hypothesis is true.  

• α: The significance level at which we are willing to reject the null hypothesis. 

• Odds ratio (OR): Effect size. The odds of exposure among persons with the trait 

divided by the odds of exposure among individuals without the trait. This can 

be shown to be the same thing as the odds of trait among exposed divided by 

the odds of trait among unexposed.  

• Power: Given that the alternative hypothesis is true, how likely is it that the test 

identifies the variant (given the effect size of the variant and the number of 

patients and controls).  

• Type I error: Rejecting the null hypothesis when it is in fact true (False positive). 

• Type II error: Not rejecting the null hypothesis when it is in fact false (False 

negative). 

• Haplotype: The allelic variants along a chromosome in one individual.  

• Hardy Weinberg equilibrium (HWE): If a population is in HWE, the genotype 

frequencies can be deduced from the allele frequencies so that at a bi-allelic 

locus: f(AA) = f(A)2, f(Aa) = 2*f(a)*f(A), and f(aa) = f(a)2, where A and a denotes the 

two alleles. Deviance from HWE implies genetic drift, population stratification 

or selection [49]. 

 

3.3.5.1 Linkage disequilibrium and Haplotypes 

Linkage disequilibrium (LD) is the non-random association of alleles at two or more loci 

[50]. Loci on the same chromosome usually have some degree of LD, which increases 
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with decreasing distance. The degree of LD is influenced by the rate of recombination 

between loci, but also by genetic drift, mutations, migration, population expansion 

and selection [51]. If alleles are in linkage equilibrium, all haplotype frequencies are 

equal to the product of all included allele frequencies. One basic measurement of LD, 

D, equals the difference of the observed (estimated) haplotype frequency and the 

product of the frequencies of the included alleles (see formula below). Usually in 

genetic case-control studies the phase (which alleles that are located on the same 

chromosome within an individual) is unknown and thus the haplotype frequency has 

to be estimated [52]. The D value is greatly influenced by allele frequency and 

therefore two different normalized measurements, based on D, are usually employed 

by geneticist: D’ and r2 [53]. Given two loci, A and B, with alleles a1, a2 and b1, b2: 

D = f(a1b1)-f(a1)*f(b1) 

D’ = D / Dmax  

r2 = D2 / f(a1)*f(a2)*f(b1)*f(b2) 

D’ values can range between -1 and 1, r2 values between 0 and 1, and r2 ≤ │D’│. Dmax is 

the maximum of D given the allele frequencies at the two loci. D’ is always 1 if one of 

four possible haplotypes is missing, and indicates that the least common allele is 

always on a haplotype with one of the variants on the other loci, but does not 

necessarily mean that the allele at the other loci has any restriction in haplotype 

partner. A high D’ can thus be interpreted as no recombination has occurred between 

the least common allele and the other loci. An r2 of 1 signify that the two loci are 

completely correlated and one allele at the first locus only exists on one haplotype with 

one of the alleles from the other locus, and vice versa. The fact that alleles at loci close 

to each other often are correlated is utilized when performing genetic association 

studies, since it means that not all genetic variants need to be genotyped; highly 

correlated alleles capture the effects of each other.  

 

LD can also be measured over several alleles at two loci using different methodologies. 

Cramer’s V is a measurement where the statistic is based on a χ2 statistic (see below) 

and Kendall’s tau-b measures the correlation between two rankings [54]. 

 

When a new mutation that change the susceptibility to a given disease occurs, this 

take place on a specific haplotype. The association between this haplotype and the 

mutated allele is only disrupted by new mutations and recombination. Therefore, 
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anonymous markers indicating this ancestral haplotype can be used to assess the 

effect of the disease-causing variant. It has been shown that DNA consist of blocks of 

higher LD where only a few haplotypes exist [55]; this can be due to the occurrence of 

recombination hotspots [56] or stochastic recombination [57,58]. Researchers have 

argued that since most of the genome exists within such haplotype blocks, the 

detection of alleles that tag these haplotypes can be used to assess all common 

variation [58,59]. Gabriel et al. [59] defined a haplotype block as a region where less 

than 5 % of the included pairs of SNPs showed strong evidence of recombination. Each 

of these regions are bounded by a pair of SNPs with 95 % confidence intervals (CI) for 

D’ where the lower limit is above 0.7 and the upper limit is above 0.98.  Inside these 

boundaries there are limits for the CI of D’ between two, three, four or five markers, 

within specified regions of size depending of the investigated population. Wang et al. 

[58] defined haplotype blocks by using an extension of the four gamete test [60], 

where one investigate whether all possible haplotypes exist (if there has been 

recombination) and blocks are defined as regions of contiguous and ordered SNPs in 

which there is no evidence for recombination. A third method used within Haploview 

is the Solid spine of LD [61] which is an estimation algorithm based on a Poisson 

process model, penalized likelihoods, and cubic spline interpolation. 

  

A common practise today is to perform a more conservative tagging, where one allele 

tags highly correlated alleles. A haplotype block definition is used to define regions 

within which association of haplotypes are tested in order to discover association of 

more rare variants that have arose on these more ancestral haplotypes. Other 

haplotypes than those restricted by high LD or low recombination could confer risk of 

disease over and above the risk conferred by any allele of a single SNP. Thus one might 

want to investigate all haplotypes within the genetic region, but due to restrains in 

statistical power and fear of false positives this is generally not conducted. 

 

Since we usually do not know the phase of our alleles, algorithms to estimate 

haplotypes must be used. Normally the expectation-maximization (EM) algorithm 

developed by Dempster et al. [62], and introduced to haplotype estimation during the 

1990ths [52], is employed. Here an initial guess of probable haplotype frequencies are 

supplied, usually the product of individual alleles, and thereafter an iterative process 
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takes places that finds the values for haplotype frequencies that optimises the 

probability of the observed data.  

 

In Study IV all known (HapMap) SNPs within or close to the investigated genes were 

included in the tagging algorithm, and an r2 > 0.9 defined a tagging allele. Haplotype 

frequencies were estimated by the EM algorithm in Haploview [63] and analysis was 

thereafter performed for haplotypes in regions defined by Gabriel et al. [59], or 

covering the entire gene.  

  

3.3.5.2 Genetic model 

Prior to investigating a certain marker for a complex disease, it is impossible to know 

how, if at all, this variant affects the trait. Carrying a certain variant could have an effect 

which is not influenced by the variant at the other chromosome: a dominant model. 

The opposite is called a recessive model, where both chromosomes must carry the 

variant in order for it to exert its effect. Logically, at a bi-allelic genetic marker these 

models are one and the same from the perspective of the different alleles. Often the 

effect depends on the number (zero, one or two) of specific alleles you carry: a 

codominant model. A more specific variant of this is the multiplicative model where the 

effect of being homozygote for the variant is the effect of carrying one allele to the 

power of two. Moreover, the heterozygote might confer effect when none of the 

homozygote does, an overdominant effect. A variant can also be X- or Y-linked when 

located on one of the sex chromosomes. A common procedure is to ignore the genetic 

models and perform the statistical tests on allele counts instead, which may be an 

biased approach if the case-control population deviates from HWE [64,65]. 

Alternatively, several genetic models could be tested in order to elucidate which one 

suits the investigated data better [66]. It could be argued that the correct genetic 

model would display greater statistical power and thus give the most significant p-

value. In reality, the case-control cohort used is usually not big enough to make this 

decision, and the difference in significance levels might be minute.  

 

In Study I & II we chose to investigate the multiplicative model, given that we know that 

HLA-DRB1*15 has a dose dependent effect [67,68] and that we thought that this was a 

reasonable assumption to make. The genotypic effects at these HLA loci would have 

been interesting to assess, but since 18 HLA-A alleles and 14 HLA-DRB1 were identified 
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in our material, the number of genotypes to investigate was too large and the analysis 

would lack adequate power.  

 

In Study IV we took a new approach, and chose to investigate five different models at 

once: recessive, dominant, codominant, overdominant and log additive (multiplicative) 

using the SNPassoc package [69] in R [70]. Thereafter the most significant model was 

reported and suggested to be the most accurate model to describe the SNPs effect on 

the trait, and was subsequently used in adjusted and interaction analyses. 

Undoubtedly this is a simplification of reality, and we do not have adequate power to 

draw firm conclusions regarding the best genetic model, but hopefully our results can 

persuade others in attempting the same thing and eventually the true genetic model 

will be known. In the case of the associated CD58 SNPs, the multiplicative model 

produced the most significant results, but most other models also showed significant 

results. In contrary, RPL5 showed most significant results using the overdominant 

model, but here both the codominant, and to a somewhat lesser extent the dominant 

model, also displayed significant p-values. Both the multiplicative and the recessive 

however lacked any sign of association. An association to the SNPs in RPL5 and CD58 

could be detected using a test based on allele frequencies, which shows its robustness, 

but would not indicate the true genetic model if used solely.    

 

3.3.5.3 Interaction 

In genetic epidemiology, two different kind of interactions are usually discussed: 

biological and statistical interaction. The difference and meaning of the two can create 

confusion [71]. Biological interaction has been defined as when two risk factors 

together cause disease, or, using Rothman’s analogy [24], are two pieces of the same 

pie. Rothman also showed algebraically that biological interaction results in deviation 

from additivity of the disease effects. Statistical interaction in the context of genetics 

can be defined as when two or more variants have an effect upon one another and can 

be tested in a regression model by adding an interaction terms into the model. As 

mentioned below, using logistic regression one assumes that the effects of variants are 

multiplicative, and thus biological interaction is assumed. There are exceptions, such as 

when there is a lack of biological interaction between two genetic risk factors then an 

interaction variable would usually be needed in the logistic regression model to 

represent this.  
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In neither of the included studies in this thesis was the biological interaction assessed 

specifically. I am however quite happy with assuming that there usually is biological 

interaction present between risk factors contributing to disease, especially since we 

assume that multiple risk factors contribute to MS susceptibility and that several 

sufficient causes exist. 

 

In Study I we assessed the statistical interaction between alleles at HLA-A and HLA-

DRB1, and in Study IV interactions between investigated SNPs and suggested risk 

modulators (female sex, HLA-DRB1*15, HLA-A*02 and SNPs in IL7R, IL2Rα, CLEC16A, 

CD226, SH2B3 and KIF1B) were assessed.  

 

3.3.5.4 Confounding 

Confounding is when a variable has an association with the variable you are interested 

in, independent of the trait, and additionally has an association to the investigated trait 

[72] (Figure 3).  

 

Figure 3. Illustration of confounding. The confounder (a genetic or environmental factor) is 

associated to allele A of Gene X (which is the topic of investigation), and also associated to the 

disease. The association between Gene X and the disease is therefore biased by confounding, and 

might not reflect a true association. 

 

Thus the confounder obscures the true effect of the investigated variable to the trait. 

This can be avoided either by including both variables in a logistic regression (see 

below), by selecting patients and controls that have equal distributions of the 

confounder or by adjusting the effect measures using the Mantel-Haenszel 

methodology [24]. When using the Mantel-Haenszel methodology an estimate of the 
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common effect of the variable across the confounder strata is calculated using a 

weighted mean, but should only be used when the effect sizes in the different strata 

are homogeneous [72]. If the effect size differs in the different strata one is facing 

interaction, and other routes of analysis should be taken (see above). 

 

A confounder in a genetic association setting can be another allelic variant in LD with 

the variant you are interested in, but could also be an environmental factor associated 

to the genetic variant you are investigating. A more far-fetched situation would be that 

sex would be associated both to the trait and your investigated genetic variant. This 

could occur if the genetic variant is present on either sex chromosome, but also if the 

variant worsen the survival in one sex but not the other, and hence would become 

more common in the second group.   

 

The existence of confounders is hard to argue against, but they are usually unknown, 

although all previously known risk factors for a trait could possibly be confounders.  

Matching of patients and controls for some possible confounders has been intensely 

argued especially for avoiding population stratification [73]. Recently however, the 

collective impression is that population stratification is not a major problem in well 

powered studies [32] and a gain in efficiency when stratifying for ethnic background is 

only apparent if there is a strong confounding effect [74].  

 

Showing an effect of a variant while adjusting for known risk factors or possible 

confounders, and statistical interaction with these, implies that the variable in question 

has an effect independent of those possible confounders. Usually if a gene is located 

close to a known genetic risk factor there are reasons to suspect that the risk conferred 

by the known risk factors might influence the attained results of the investigated 

variant. Therefore it is important to try to assess possible confounding effects, and 

interactions, in each genetic study. In Study I & II we adjusted for the possible 

confounding effect from HLA-DRB1 alleles on HLA-A alleles and vice versa. In Study IV 

we assessed the independence of each SNP from other suggested risk factors.  
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3.3.6 Statistical tests 

3.3.6.1  χ 2, Fisher’s exact and Rank tests. 

In studies investigating genetic association, the question is simply: “Does the 

distribution of the studied variant differ between individuals with and without the 

trait?” If is does, the variant is said to be associated with the trait. As discussed above, 

one might want to analyse the genotype distribution, the carriage of an allele or the 

heterozygote effect. If your data easily can be tabulated into a contingency table, i.e. 

the carriage of allele A among the affected and unaffected (Table 1), both a χ2 and 

Fisher’s exact test is applicable, where the null hypothesis is that the two variables are 

independent of each other.   

Table 1. Schematic 2x2 table.  

OR = (O12 * O21) / (O11 * O22) 

Expected frequency of carriers of allele A under the 

null hypothesis of no association between A and 

disease is C1/n. 

 

Fisher’s exact test is a nonparametric exact test where the margins are fixed. As test 

statistic the smallest value in the 2x2 table is used, and under the null hypothesis the 

probability of the observed results has a hypergeometric distribution. 

 

The χ2 test is based on the assumption that the test statistic has a χ2 distribution under 

the null hypothesis. Using large samples, this assumption is usually met, but when any 

count is low the Fisher’s exact test should be employed instead [72]. In the χ2 test the 

statistic is based on the difference between the observed allele frequencies and the 

values of Ci/n which would be equal under the null hypothesis, assuming HWE.  

 

Rank tests are non-parametric test that do not assume any distribution of the 

investigated variables except that all investigated variables have the same (possibly 

dislocated) distribution. Here the combined values in all groups are ranked, and the 

positions of each group values are evaluated. The Kruskal–Wallis rank sum test is an 

extension to the Mann-Whitney U test when investigating more than two variables. 

Here the statistic is based on the difference between the mean rank in each group and 

the total average rank [75]. Several additional highly similar methods, such as 

Spearman's rank correlation coefficient, exist. 

 A + A - Total 

Patients O11 O12 R1 

Controls O21 O22 R2 

Total C1 C2 n 

 C1/n C2/n  
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In Study I the Kruskal-Wallis rank sum test was used to assess whether HLA alleles 

influenced severity among MS patients as assessed by MSSS. The effect of HLA alleles 

on MS susceptibility was investigated primarily using logistic regression (se below), 

but was additionally compared with results produced using Fisher’s exact test. 

 

3.3.6.2 Regression 

Another alternative for finding the association between one, or several, variables and 

an outcome is regression analysis. Linear regression investigates whether a continuous 

outcome is dependent the variables in question according to: 

Y = β0 + β1*X1 + … + βn*Xn + ε 

Where Y is the dependent outcome, and Xi is the variables we are investigating, ε is a 

normally distributed error term, β0 is the intercept, or baseline, and βi is a parameter 

measuring the effect of Xi on Y. Given the data all βi are estimated using the least 

squares criterion and thereafter subjected to t-tests [72]. In Study II we used linear 

regression to test whether alleles at HLA-A and HLA-DRB1 had an effect on age at onset 

of MS, and the βi would in this case represent the difference in age among those 

carrying the Xi allele as compared to those carrying the alleles utilized as baseline.  

 

Many techniques have developed from simple linear regression, and involve different 

transformations and link functions. The Cochran-Armitage Trend test has been used 

for assessing significance of genotypic data and is an appropriate test when the 

independent variable is ordinal. Here the probability of the outcome (e.g. disease) is 

assessed as linearly dependent on genotype. Logistic regression can also be used 

when the outcome variable is dichotomous, here the dependent variable is based on 

the probability of disease but has been transformed with a link function: ln(P/(1-P)) = 

ln(odds), usually denoted logit(disease). Here all βi are estimated using least squares or 

maximum likelihood. The significance of the model can then be assessed using a 

likelihood ratio test (among others), and the significance of one variable (estimator) in 

the model can be assessed using the Wald statistic. The Cox Proportional Hazards 

model, is a sort of a regression model on survival data, investigating the effect of 

several variables on time (dependent variable) to a specific event [76]. 
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The advantage of regression models is that several independent variables can be 

determined simultaneously, and thus the independent effect on one variable from 

another can be assessed, and all estimated effects are adjusted for other included 

variables. One allele at each loci will by necessity be included in the intercept of the 

model, and estimated effects would be relative to this baseline. This is usually not a 

concern when analysing SNP alleles, but might cause confusion when multiallelic 

markers are assessed. Therefore caution should be employed when selecting intercept, 

especially when dealing with a multivariable locus, and one line of action is to select a 

common allele with equal frequency among individuals with and without the disease.  

 

In Study I we used logistic regression modelling to show that the HLA-A locus has an 

effect on MS susceptibility independently of HLA-DRB1, even though some LD exists 

between these loci. Initially a model where all HLA-DRB1 alleles were used to predict 

probability of MS was evaluated. Thereafter a model including both HLA-A and HLA-

DRB1 allels was also evaluated, and thereafter compared using a likelihood ratio test to 

the initial model. Additionally, models including interaction variables between alleles 

at the two loci were investigated as well. Thereby, we were able to conclude that the 

HLA-A effect is neither caused by a confounding effect nor an interaction effect with 

HLA-DRB1 in our material. In Study I we additionally compared our results for each 

allele using multivariate logistic regression with those produced by Fisher’s exact test 

and Cochran-Armitage Trend tests. As expected, for some alleles the different 

analyses yielded conflicting results, e.g. the HLA-A*03 allele is associated using both 

Fisher’s exact and Cochran-Armitage Trend tests, but showed no sign of association 

when effects were adjusted for other included alleles (using logistic regression).  

 

In Study II logistic regression was used to investigate the influence of HLA-A and –

DRB1 alleles on disease course, and linear regression was used to investigate the 

influence of HLA alleles on age at onset.  

 

In Study IV we also assessed association to MS susceptibility and course (bout onset 

or PPMS) using logistic regression, using five genetic models (recessive, dominant, 

codominant, overdominant and multiplicative) for each SNP. In this analysis we were 

able to confirm a role for CD58 and the RPL5 region in MS susceptibility. Moreover, 

using the most significant genetic model for each SNP in CD58, HDGFRP3 and the 
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RPL5 region we also investigated how previously known risk factors interact and 

affects the association to MS susceptibility. Survival analysis on time to EDSS six using 

Cox Proportional Hazard model was also performed, but showed no influence of RPL5, 

CD58 or HDGFRP3 on severity. 

 

3.3.7 True effects 

When do we believe that a genetic association is true? I argue that the only convincing 

evidence is replication. For many years several association studies in many diseases 

have been published, but almost none have been confirmed in a second publication. 

This is most probably due to type I errors, but likely also type II errors in the small 

follow up studies. Using a medium sized case-control material of 1000 patients and 

1000 controls many of the now confirmed risk alleles for MS would often only show 

significance levels of 10-2. Those values would normally not survive multiple testing 

corrections if a reasonable number of markers were included simultaneously. Thus it is 

clear that strict correction for multiple testing will produce type II errors. In my mind, 

type II errors are worse that type I errors, since a type I error might be discovered in the 

coming follow up studies, while a initial possible false negative finding will escape 

validation. It is however clear that caution always should be employed when 

interpreting novel findings, especially when associations are found in small 

populations or in stratified subpopulations. It can always be argued that effects seen 

are due to confounders, known or unknown, and thus the independence from 

previous risk factors might be useful to investigate. Once all our patients and controls 

have been completely sequenced, we might be able to prove that genetic effects are 

independent of confounding effects due to LD, but we still cannot exclude 

confounding by environmental factors. When convincing data in favour of a genetic 

effect i presented, the biological cause of association should be explained and proven. 

This daunting step has never been completed in any complex disease as far as I know, 

and could possibly require more complete knowledge on the complex molecular 

interplays occurring in an individual.   

 

3.4 SUMMARY OF RESULTS OF STUDY I, II AND IV. 

Four genes have been investigated throughout this thesis, and we have showed 

associations with MS susceptibility for HLA-A, CD58 and the RPL5 region.  
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In Study I the HLA-A association was shown to be independent of the long known HLA-

DRB1 association. At the HLA-DRB1 locus the DRB1*15 allele conferred the largest 

effect: an OR of 2.3 per allele, p-value of 8x10-9. All other DRB1 alleles showed neutral 

or protective effects where DRB1*01 and DRB1*X (mainly attributable to DRB1*07) 

were significantly protective. At the HLA-A locus only the HLA-A*02 allele showed 

significant association to MS susceptibility, with an OR of 0.65 and p-value of 1x10-4. 

Moreover, we also evaluated interaction terms between HLA-A and HLA-DRB1 alleles, 

between A*02 and DRB1*15 in particular, that did not reveal any significant 

interaction. Thus, the HLA-A effect is neither caused by a confounding effect nor an 

interaction effect with HLA-DRB1. 

 

In Study II we could not detect any effect of HLA-A on disease course, age at onset or 

severity (as measured by MSSS), whereas an association between HLA-DRB1*15 and 

lower age at onset was confirmed.   

 

When investigating CD58, HDGFRP3 and RPL5 in Study IV we were able to control for 

possible confounding effects by the newly discovered risk factors IL7R, IL2Rα, CLEC16A, 

CD226, SH2B3 and KIF1B as well as female sex, HLA-DRB1*15 and HLA-A*02. The 

associations to CD58 and the RPL5 region were confirmed in our Swedish case-control 

material, and were not secondary to any other known risk factors. RPL5 showed a 

heterozygote effect on MS susceptibility, whereas CD58 had a multiplicative effect. 

Moreover, we were able to show suggestive interactions between SNPs in RLP5 and 

sex, which, through a stratified analysis, indicated that RPL5 contribute to MS 

susceptibility among men, but not women. The RPL5 region contains three genes 

that have showed association to MS susceptibility: EVI5 (ecotropic viral integration 

site 5), FAM96A (family with sequence similarity 96, member A) and RPL5, and the 

relationship between these genes in MS require more investigation since they are in 

LD with each other. Additionally, we showed some suggestive associations between 

SNPs in CD58 and HDGFRP3 to the primary progressive course of MS. Some 

associations, such as an interaction between RPL5 variants and sex, and associations 

between HDGFRP3 and CD58 variants and disease course are more suggestive, and 

warrant further investigation. Survival analysis on time to EDSS 6 using Cox 

Proportional Hazard model was also performed, but showed no influence of RPL5, 

CD58 or HDGFRP3 variants on severity. 
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3.5 DISCUSSION ON MS GENETICS  

During the 1970ies several HLA class I alleles were reported as associated, those with 

increased frequency among MS: HLA-A*03, A*07, A*10 and B*07 and those with 

decreased frequency among MS patients e.g. HLA-A*02 and A*12 [2,26,77,78]. Later, a 

strong association between the HLA-DRB1 allele DRB1*15 and MS was described and 

the initial class I associations were regarded as secondary [27]. In a later meta-analysis 

by Jersild [2] HLA-B*07 was associated to HLA-DRB1*15, indicating that a B*07 

association could be secondary to the stronger DRB1*15 effect. No specific association 

was found between DRB1*15 and A*03, even though A*03 and B*07 showed 

association. Thus, the associations of HLA class I entities were never exhaustively 

investigated, but simply regarded as secondary to the association between B*07 and 

DRB1*15. 

 

MS is associated with a combination, haplotype, of HLA class II alleles: DRB1*1501, 

DRB5*0101, DQA1*0102, DQB1*0602 [28]. The DRB1*15 allele is present in about 55-60 

% of MS patients and 30 % of healthy individuals (our data), and is associated to MS in 

practically all populations studied. Additional studies have proposed roles for other 

alleles at HLA-DRB1, or combination of certain alleles in MS susceptibility [79-81].  

 

Due to the early proposed roles of HLA class I alleles in MS susceptibility, and reports 

on the effect of class I molecules in EAE, these genes were investigated within our 

group by Fogdell-Hahn et al. [29], and later Harbo et al. [30]. The effects of HLA-A alleles 

were investigated through stratified analysis according to carriage of HLA-DRB1*15, 

and showed somewhat conflicting results on whether A*03 or A*02 possessed effects 

in all subgroups. To elucidate the role of HLA-A entities we used a large independent 

study population in Study I and determined possible associations using logistic 

regression, thus enabling HLA-DRB1 adjusted statistics to be assessed for HLA-A alleles. 

Thereby we confirmed the strong protective effect of HLA-A*02, while the crude HLA-

A*03 association did not reach significance when adjusting for other alleles. Thus there 

is clearly a genetic factor influencing risk of MS in the HLA class I region, but there are 

conflicting arguments regarding the responsible gene: Yeo et al. later published a 

paper using stratified analysis where HLA-C*05 is suggested to be associated 

independent of other class I and II alleles [82]. The final strata in this analysis where the 
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HLA-C association was observed was however small, 226 MS patients, and it was 

unclear in the report whether this allele was associated in the entire population or only 

in the final strata. It remains to be elucidated whether multiple loci within the HLA class 

I region affects MS susceptibility. In order to perform an exhaustive investigation of 

effects in the class I region, more genes need to be assessed, tentatively HLA-B, but 

many other functional candidates exist. Most MS researchers however agree that there 

is a true MS locus in, or close to, the HLA class I region.  

 

At the HLA-DRB1 locus two additional variables showed significant association in Study 

I: DRB1*01 and DRB1*X (consisting of rare alleles) mainly attributable to DRB1*07. Even 

though we are able to adjust for effect at other loci, the reciprocal effect of associated 

alleles is not avoided using logistic regression. By sequentially excluding individuals 

carrying the most significant allele at the HLA-DRB1 locus we nevertheless saw that 

both DRB1*01 and DRB1*07 contribute to the modulation of risk for developing MS 

(data not shown). Thereby we also confirm that several alleles at the HLA-DRB1 locus 

affect disease susceptibility. In contrary to some studies [79,80,81 ] we do however see 

an independent effect of DRB1*01, whereas others suggested that DRB1*01 was 

protective only in the presence of DRB1*15. Independent effect of DRB1*17 and 

DRB1*14 have been suggested [79,80,81 ] but were not confirmed in Study I. 

 

In Study I we illustrated the biological interactions of being a carrier of different 

genotypes at HLA-A and HLA-DRB1, where the most susceptible genotype combination 

conferred an OR of 22, and the most protective an OR close to 0.4.  

 

The HLA molecules are responsible for presenting the majority of all present peptides 

within the individual, this is accomplished by two routes. Firstly, via the existence of 

multiple genes of both the class I and class II type, arising from earlier occasions of 

gene duplication (reviewed in [83]). Additionally, the HLA genes are highly 

polymorphic, and one specific HLA molecule binds a range of different peptides, 

sharing only a few conserved residues [84]. HLA class I and II molecules are responsible 

for antigen presentation to T-cells, but possess different roles. HLA class I molecules are 

present on all nucleated cells and mainly present peptides produced within the cell to 

CD8+ T-cells, which are programmed to kill those cells they specifically recognize. HLA 

class II molecules present peptides to CD4+ T-cells, whose role is to activate other cells 
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of the immune system. Thus, HLA class II molecules are present on those cells 

participating in eliciting immune responses, such as dendritic cells, B-cells and 

macrophages. Unlike class I molecules, class II molecules bind peptides originating 

from phagocytosed proteins present in acidified endocytic vesicles [84].  

 

As with any genetic association, a true associated variant could confound our findings, 

by being in LD with the detected variants. This possibility will not be disproven prior to 

the resequencing of large numbers of MS patients and controls, and will therefore be 

mostly disregarded during the remainder of this discussion. The possible causal role of 

variants of both HLA class I and II are easily argued for due to their fundamental role 

within the immune system, but so far the knowledge on mechanisms for how the 

specified variants confer altered risk of MS is limited. MS associated molecules could 

facilitate the presentation of encephalitogenic peptides to T-cells, or compromise the 

negative selection in the thymus. Otherwise, the current HLA molecules might have 

different affinity for peptides resembling CNS antigens (molecular mimicry).  

 

Interestingly, the HLA-A*02 allele has the ability to present ligands independent of the 

TAP (Transporter, ATP-binding cassette) complex that usually transport peptides into 

the ER [85], and instead bind signal sequence-derived peptides which have been 

released into the ER by the signal peptidase complex [86]. This indicates that the HLA-

A*02 allele possesses quite unique functions, and might thus partly explain the 

association with this specific allele. HLA-A*02 is able to bind peptides created under 

stressful/deviant circumstances, as when various viruses [87] try to evade the immune 

surveillance.  

 

In an elegant study by Friese et al. [88] mice transgenic for either human HLA*03 or 

double transgenic for A*03 and A*02, and/or transgenic for a T-cell receptor (TCR) 

specific for the myelin proteolipid protein (PLP) 45-53 (2DI-TCR), presented by HLA-

A*03 [89] were investigated. Double transgenic mice (A*03 and 2DI-TCR) showed 

symptoms of disease after immunization with PLP 45-53, albeit not single transgenic 

mice. Double transgenic mice showed early infiltration of mostly CD8+ T-cells binding 

the A*03-PLP complex, but about 15 % were CD4+ T-cells. Later in disease CD4+ T-cells 

dominated in the CNS, and disease progression was shown to be dependent on 

functional CD4+ T-cells. Interactions between class I genes were investigated, and the 
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addition of an HLA-A*02 transgene to A*03 and 2DI-TCR double-transgenic mice 

completely prevented disease. The spleens of the triple transgenic mice showed a 90 

% reduction of CD8+ T-cells able to bind the A*03-PLP complex. These results indicate 

that expression of HLA-A*02 results in negative selection of 2DI-TCR thymocytes that 

express a higher level of this TCR receptor. It remains to be elucidated whether this 

occurs in humans as well, and whether HLA-A*02 contributes to negative selection and 

reduced level of other autoimmune clones as well, but that might be hypothesised. 

 

In Study II we did not detect any association of alleles at HLA-A to age at onset, disease 

course or severity (as measured by MSSS). We did however validate an association 

between HLA-DRB1*15 and younger age at onset, as previously suggested [90-93], 

although our material is partly overlapping with the Masterman et al. and Celius et al. 

study. Additionally, we found an association between DRB1*04 and PPMS prior to 

correction for multiple testing, as also suggested previously [94-96]. The PPMS groups 

are however always small, making these results more difficult to argue for.  

 

The apparent lack of correlation between possessing an effect on MS susceptibility and 

possessing a role in MS severity may seem counter intuitive. A variant influencing 

whether disease develops in an individual could be expected also to take part in the 

expressitivity above the limit of detection, and would therefore also be evident when 

assessing severity. One must bear in mind however that case-control cohorts have just 

recently grown to the size where genetic associations can be detected at the effect size 

that is common in complex diseases. Therefore, performing statistical analysis on half 

this population (the patients), for phenotypes that may be even more difficult to 

pinpoint than the actual MS diagnosis, has a limited power. I believe that when larger 

patient cohorts are available, and we as researchers have begun to use the proper 

tools for assessing severity, MS susceptibility genes will in many occasions also be 

found to influence disease severity. 

 

A few years ago the first non HLA gene in MS susceptibility, IL7R [34,36], was 

discovered within our group and subsequently confirmed in other populations [33,35]. 

Through the IMSGC screen [33] many new candidates were brought to life, and IL2Rα 

[38,97], CLEC16A [38,43,98], CD58 [38,42](Study IV) and the RPL5 region [38,39](Study IV) 

have now been confirmed as genes conferring MS susceptibility. Furthermore the 
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IMSGC investigated SNPs that had shown associations to type I diabetes, and thereby 

showed associations to CD226 and SH2B3 and confirmed the association to CLEC16A 

with a second SNP [43]. Recently, a study initiated in a Dutch isolate and further 

investigated in case-control materials from Holland, Canada and Sweden suggested a 

association between KIF1B and MS [41].  Within our group we attempt to genotype all 

discovered genetic risk factors for MS in our cohort, and due to this I was able to 

investigate our candidate genes in relation to other factors thought to affect MS 

susceptibility. Thereby, twelve factors were mutually investigated: sex, HLA-DRB1, HLA-

A, IL7R, IL2Rα, CLEC16A, CD58, RPL5, FAM69A, CD226, SH2B3 and KIF1B, as well as all two-

way interactions. 

 

In Study IV we tried to map the effects within CD58, HDGFRP3 and RPL5, and also 

included two SNPs in FAM69A since its nucleotide sequences are overlapping with 

RPL5, and both of them were found to be differently expressed in Study III. The 

association to RPL5 was confirmed, but several SNPs showed association, both in RPL5 

and FAM69A, and these variants were in high LD (D’ above 0.9, r2 between RPL5 

variants and FAM69A variants at 0.26) in our data. Furthermore, we did not include the 

EVI5 variants that have shown association [39] and these could also confound our 

finding, even though they are contained within separate LD blocks according to 

HapMap. The risk seemed to be conferred by the heterozygote, and moreover we 

detected a suggestive interaction between RPL5 and sex implying that RPL5 may be a 

risk factor among men only. RPL5 encodes a ribosomal protein in the 60S subunit and 

thus takes part in the translation within cells. It could be so that different variants of 

these proteins can translate different proteins more or less effective, and thereby affect 

MS susceptibility. 

 

CD58 is a co-stimulatory molecule that acts as receptor for the surface CD2 antigen 

present of T and NK-cells. Therefore different variants of this molecule might influence 

the affinity and affect the following immune response. CD58 is expressed on 

endothelium in brain micro vessels in the blood brain barrier (BBB) and therefore 

impacts the ability of T-cells to cross the BBB (reviewed in [99]).  

 

Many of the genes contributing to MS susceptibility are immune related: HLA-A, HLA-

DRB1 and CD58 as mentioned above, IL7Rα is crucial for proliferation and survival of T 
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and B lymphocytes [100], IL2Rα is a T-cell growth factor receptor involved in the 

suppression of autoimmune disease, CD226 encodes a membrane molecule involved 

in the adhesion and co-stimulation of T-cells and SH2B3 encodes an adaptor protein 

mediating the interaction between the TCR and intracellular signalling pathways. Less 

is known about CLEC16A but it is expressed on B-cells, NK-cells and dendritic cells. 

Different variants of these genes can thus be hypothesised to affecting MS 

susceptibility by changing the affinity or intensity of reactions conferred.  Other 

associated genes are not immune related like RPL5 as mentions earlier, or KIF1B 

encoding a protein involved in the transport of mitochondria along microtubules.   

 

Many additional genetic risk factors will probably be found within the next couple of 

years, and those we know today might be redefined. Now might be the time to start 

indulging ourselves with functional characterization of these genetic variants.   
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4 GENE EXPRESSION PROFILING 

Gene expression profiling is a technique for simultaneous describing mRNA levels of 

multiple genes, thus trying to deduce which processes the investigated cells are 

involved in. Gene expression profiling captures a snapshot of the activities within 

sampled cells, at the mRNA level.  

 

Whereas the genetic code within an individual stays rather constant during life, the 

expression of genes is known to vary between tissues and throughout life. Therefore 

the investigation of gene expression might be more difficult. At the same time, the 

variation between individuals at a certain gene is larger at the mRNA level than at the 

DNA level which implies that gene expression might explain the difference in 

phenotype to a larger extent than DNA. The changes in gene expression can however 

also often be the result of disease, direct or indirect, adding another level of 

uncertainty.  

 

4.1 AIM 

The aim in Study III was to investigate possible differential expression of genes both 

centrally and peripherally in MS patients compared to controls, in order to formulate 

hypotheses about ongoing processes.  

 

4.2 DIFFERENT TECHNOLOGIES 

Several technologies exist for detecting the levels of mRNA of multiple transcripts 

simultaneously, and generally include either a sequencing approach [101] or a large 

number of nucleotide probes attached to a surface; the latter approach is used within 

this thesis and henceforth discussed. The sample of interest is labelled and then 

hybridized to the probes and subsequently detected. Different methods differ in the 

length of the probe on the surface, how the probes are synthesized, how many 

samples are hybridized on one array etc. Measuring the quantity of label in each 

location gives an intensity value that should be correlated to the quantity of the 

corresponding transcript in the sample. There are two major routes of labelling in use 

today. One can hybridize two samples on each array labelled by a red and a green 

fluorescence, and then measure the ratio of colour emitted. Alternatively, one sample 

is labelled with a fluorescence label and then hybridized to a single array, and the 
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intensity of each location is measured. In our gene expression study (Study III) we 

utilized arrays manufactured by Affymetrix (Santa Clara, CA, USA) where a single 

sample is hybridized to each array. 

 

4.3 AFFYMETRIX GENE CHIPS 

The oligonucleotides on the Affymetrix arrays are designed in silico and synthesised on 

the array surface using a photolithographic procedure, contributing to a low batch-to-

batch variability. Probes are either designed against the transcripts 3’ end [102], or 

against each known exon in a gene [103]. The latter approach consequently has the 

potential to detect and discriminate between different transcription variants, known or 

unknown. Additionally, tiling arrays are available in order to discover novel transcripts 

[104]. Study III was conducted using microarrays with probes designed against the 3’ 

end of the transcripts; hence further introduction will only discuss matters applying to 

that approach. In order to detect and correct for unspecific binding to probes, there is 

one mismatch (MM) probe for each perfect match (PM) probe on many Affymetrix 

array, these differ in one base on the 13th position. Each oligonucleotide on the array is 

25 nucleotides long, which would generate a rather low specificity if used alone. 

Therefore a single transcript is detected by, at least, one set of probes, with 11 pairs of 

probes in each set. We used GeneChip® Human Genome U133 Plus 2.0 arrays in Study 

III which contain more that 54,000 probe sets and has a feature size of 11 µm. At the 

time of probe design of the U133 arrays, probes were designed to bind all known 

transcripts found in UniGene with information from a draft assembly of the human 

genome from the University of California, Santa Cruz (April 2001). A draft assembly of 

the human genome from NCBI (Nov 2003) was used to design the additional probe 

sets on the Plus 2.0 arrays. In total, 38,572 UniGene sequences, 2,669,196 bdEST 

sequences, 49,135 GeneBank sequences and 13,696 RefSeq sequences were used to 

design the probe sets on the utilized arrays [105]. These arrays detect more than 

47,400 transcripts of more than 38,500 genes [102], figures that vary due to that the 

Affymetrix annotation is built on UniGene clustering which are regularly updated, and 

never manually curated (personal communication, NCBI Helpdesk). 

 

4.3.1 Study population 

In analogy to the discussion regarding choice of patients and controls in genetic 

studies, we want our study population to reflect the entire population of individuals 
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with disease and the general population. Gene expression profiling studies are 

however usually smaller than genetic studies, due to financial restrictions. One might 

assume that gene expression fluctuate more, and has a larger variation between 

individuals than genetic status. The variability within one individual, between tissues 

and within tissues is huge [106].  

 

For Study III we included 12 individuals with MS that were sampled during a disease 

bout, 14 MS patients sampled during remission and 18 controls with other 

neurological diseases (OND) where all controls had a non-inflammatory disease. 

Samples from individuals in disease bout were sparse, and by chance a majority of the 

samples with good enough sample quality and clinical characteristics were from males. 

Since our most profound aim was to investigate differences between MS patients and 

controls we matched these groups according to sex. All samples were collected 

prospectively as a part of a larger undertaking, during scheduled visits at the Karolinska 

University Hospital’s neurology clinics. All study participants gave their informed 

consent, and were not treated with any immunomodulatory treatments. 

 

4.3.2 What tissue is relevant to investigate? 

Given a specific disease, one might ponder on which tissue that is most relevant to 

investigate. In Study III our aim was to investigate the processes that occur within an 

MS patient, and one obvious choice of tissue might be lesions from within the CNS. 

Removal of tissues from the brain of living individuals is not ethically defendable, and 

the use of post mortem samples would usually imply late stage disease, high age or 

unusual circumstances in addition to the changes in RNA occurring after death, all of 

which could influence the microarray investigation [107]. In our case, we have a 

biobank of CSF samples from newly diagnosed patients, and patients with suspected 

or confirmed neurological diseases of other kinds. CSF has long been used as a 

surrogate of tissues from the brain and brainstem, and it does not seem unlikely to 

assume that changes within the CNS would affect the CSF as well. The CSF does 

however contain a low amount of cells, and large quantities were usually needed in 

order to perform a gene expression profiling investigation. Improved purification and 

amplification procedures have decreased the demands on amounts of RNA, and we 

showed that from as little as 0.68 ng of RNA we were able to produce an adequate 
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amount (>15μg) of labelled cRNA via a two-cycle labelling protocol, which enabled 

us to proceed with Study III as planned.  

 

CSF is produced at a number of sites within the brain, in particular in the choroid 

plexus, and is a watery solution that serves as a transport medium. Lymphocytes 

perform immune surveillance in the CSF, and about 80-90 % of the present cells are T-

cells [108]. In the CSF of normal healthy individuals the CD4+ T-cells dominate, 

whereas mostly CD8+ T-cells are present in brain tissue (reviewed in [99]). The cellular 

composition of CSF is not a simple reflection of cells in peripheral blood [108], thus 

migration into CSF is controlled. Active lymphocytes migrate to and from the CSF from 

blood trough the blood CSF barrier, and to/from the CNS through the CNS CSF barrier, 

and a recent report suggest that lymphocyte entry occurs via the choroid plexus [109]. 

Lymphocytes within the CSF and CNS of MS patients are believed to have migrated 

from blood, and selective migration, selective accumulation and/or clonal expansion of 

cells creates antigen and clonally-restricted populations [110-113]. The composition of 

cell populations in CSF has been shown to be different between MS patients and 

controls (with non-inflammatory neurological diseases); MS patients have larger 

proportions of B-cells and plasma cells, and lower proportions of monocytes, natural 

killer (NK)-cells and NK-like T-cells [108]. No correlation between cell populations in CSF 

and PBL could be seen in that study, and no statistical difference between the two 

groups was detected in PBL. In addition, the distribution of cell populations in CSF of 

MS patients remained stable through time and exacerbations [108]. 

 

 The sampling of CSF through lumbar puncture is an unpleasant event for the subject. 

Blood on the other hand is easily accessible, and therefore an easy choice when 

performing any biological study on a supposedly autoimmune disease. One of our 

aims was to investigate whether any biomarkers could be identified, genes with 

expression levels that clearly separate MS patients from controls, which would also be 

more useful to discover in cells from blood than from CSF cells. Moreover, there have 

been claims that blood mimics the processes in the CNS in MS [114]. We chose to 

perform global gene expression profiling in two tissues from each individual 

simultaneously in Study III, both CSF and PBL. Gene expression profiling has been 

conducted earlier in MS using cells from blood [115-122] and solid brain tissue [123-

127]. 
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It is clear that differences in gene expression in any experiment, using any technique, 

in any tissue examined can be due to different cell compositions in the samples 

examined. The investigation of gene expression does however give another resolution 

of processes occurring than investigating differences in cell populations. My personal 

opinion is that multiple studies in different tissues, sorted cells from tissues and cell 

lines, using different techniques and inquiring different levels of processes will be 

necessary in order to elucidate the processes occurring in MS. 

 

4.3.3 Sample preparation and hybridization 

Sample handling, RNA extraction and storage can affect RNA quality and thus the 

microarray results. In Study III we assessed RNA quality prior to microarray procedure 

using 28s/18s rRNA ratio and RNA integrity number (RIN) [128] as measured by a 2100 

bioanalyzer (Agilent, USA). In a study by Thompson et al. [107] RIN values below 

seven were considered low quality, and sensitivity in microarray studies was 

markedly decreased at this level.  

 

For Study III both CSF and PBL samples were collected at the same scheduled visit at 

the Karolinska University Hospitals Neurology clinics during 2002 until 2006. CSF 

samples were immediately centrifuged, and the pellet was recovered and stored at -

70°C until use. The blood peripheral lymphocytes were separated, pelleted and frozen 

on dry ice and stored at -70°C until use. Total RNA was extracted using PicoPure™ RNA 

isolation kit (Arcturus, USA) according to manufacturers instructions, and with DNase 

treatment according to supplier’s instructions (Qiagen RNase free DNase set, Hilden, 

Germany). We demanded a high RNA quality as measured by a18s/28s ratio above 1.3 

and a RIN value above 7.7.  

 

Since cell numbers are sparse in CSF, we investigated how low quantities of total RNA 

that would be sufficient to produce an adequate amount of cRNA for hybridization 

(>15µg) when using the Affymetrix two-cycle labeling protocol (Affymetrix, Santa 

Clara, CA, USA). Six low quantity samples ranging from 0.14 to 3.18 ng of RNA were 

tested, and only the lowest amount failed. Thus, we concluded from as little as 0.68 ng 

of RNA enough cRNA can be produced.  
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We chose to treat all included samples equally, so even though most PBL samples had 

plenty of RNA they all underwent the two-cycle labeling procedure, and all but two 

samples produced adequate amounts of labelled cRNA. All samples were hybridized to 

Human Genome U133 Plus 2.0 arrays, and were thereafter visually inspected in true 

colour and using different scaling, and two arrays with regional biases were excluded 

(one MS CSF, one control PBL). 

 

4.4 PRE-PROCESSING 

Pre-processing involves background correction, summarization of probe sets and 

normalization. The aim is to analyse true biological differences, and not variance 

introduced by sample preparation, array manufacturing or processing (labeling, 

hybridization, and scanning). There is known correlation between variance and mean, 

where low intensities lead to large variance [129,130]  

 

Several methods exist for all pre-processing steps, and I will focus on a few of those 

that apply to Affymetrix arrays. The most influential step in pre-processing is 

background correction [131], dealing with unspecific binding; this correction can be 

either probe specific or not. As mentioned earlier Affymetrix probes usually come in 

pairs of perfect matches and mismatches. The original intention was that background 

correction could be accomplished by subtracting the MM values from the PM values 

(this is performed in the MAS 5 algorithm). In reality up to one third of probe pairs on a 

given array have MM values that are higher than the PM values. Additionally values of 

MM grow with PM values, indicating that MM probes detect the same transcripts as 

the PM probes [129,132].  

 

Strong probe effects exist for Affymetrix arrays where a probe set usually shows a 

distinctive profile across different arrays, suggested to be due to different affinity or 

position dependent base effects [133]. Although different treatments or disease stages 

might increase the variance in probe set profiles [134].  These effects demand an 

adjusted method for summarizing the intensity values from the 11 probe pairs, 

available methods include: robust average, linear mixed models, multiplicative models 

fitted to PM or PM-MM, trimmed mean and others [129,132 ,135]. 
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Lastly, normalization is intended to balance the individual intensity values, since small 

differences in e.g. total RNA quantity or hybridization periods might affect overall 

intensities. Affymetrix original scheme (used in MAS 5) was to scale each array so that 

the mean intensity for all arrays is the same; this gives a scaling value that is used in 

later quality control (QC) steps.  

 

Through literature studies [129,131,132,136,137] at the start of Study III we decided that 

the most favoured methods for conducting pre-processing was robust multi-array 

average (RMA) [133] and CG-RMA [131]. These methods both use a robust linear model 

to summarize probe sets, but perform different background corrections. RMA uses a 

global background correction, while GC-RMA includes information about GC content 

in probes. None of them use the MM probe data, and both work in log2 scale where 

PM values grow roughly linearly with respect to concentrations [131]. Normalization 

in both these methods assume that the majority of genes are not differently expressed 

between different samples, and therefore the distribution, every quantile, of intensity 

values should be equal for all samples [131,135]. One might argue that this could 

remove true differences between samples, especially in the tails of the distribution 

where a probe could get the same value on each array. This has been argued not to be 

a problem since multiple probes are used for each probe set, and individual probes 

would be scattered throughout the distribution [135]. Others have indicated that RMA 

reduced variance to inappropriate levels thus leading to high false positives [138].  

 

When large differences are expected, as when comparing a stimulated cell line to an 

un-stimulated one, quantile normalization is improper since a multitude of genes are 

suspected to show differential expression.  The effect of MAS 5, RMA and GC-RMA 

normalization can be viewed in Figure 4 showing these values for some of the arrays 

used in Study III, illustrating the large difference between them.  

 

In Study III we chose to use the GC-RMA normalization, because it considers probe 

sequence and thus some on the bias due to probe effects can be eliminated. 
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Figure 4. Our data from Affymetrix arrays, measuring gene expression in CSF samples, shows 

intensity (x-axis) plotted against proportion of probe sets (y-axis). Data normalized by MAS 5 

(plotted log2 transformed), RMA or GC-RMA. 

 

Affymetrix gene expression arrays has several basic quality measures: average 

background, scale factor, percent of genes called present, 3’ to 5’ ratio of GAPDH 

(glyceraldehyde-3-phosphate dehydrogenase) and β-actin and spike-in probes, these 

are intended to show how well the amplification, labeling and hybridization has 

proceeded. We investigated these measures using the Simpleaffy package [139] in R 

[70]. The 3’ to 5’ ratios are known to deteriorate when using a two cycle labeling 

procedure, which could be seen in our results as well. Three samples showed deviating 

values throughout Affymetrix quality control (QC): two PBL MS relapse and one control 

CSF, and were not included in the final analyses. 

 

4.5 STATISTICAL ANALYSIS OF GENE EXPRESSION PROFILING DATA 

Gene expression profiling produces a wealth of data, in Study III about 54,000 data 

points per sample and a maximum of 26 vs. 18 individuals in one comparison. Just by 

chance thousands of transcripts will be differentially expressed. It is logical to assume 

that in a given tissue at a given time (at sampling) not all genes are transcribed, and 

one might therefore want to remove data points produced by non-expressed genes 

prior to analysis in order to increase power (less probe sets to analyse, less correction 

for multiple testing). We removed probe sets with a low variance across samples in 
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Study III: the normalized (by GC-RMA) intensity values for a given included gene should 

have a reasonably large variance, as detected by an inter quantile range of at least 0.5. 

Undoubtedly truly expressed, and even truly differently expressed, probe sets might 

have been removed trough this filtering step. Given the decrease in numbers of 

analysed probe set from 54,000 to around 14,000, and the results from the proceeding 

analysis, this filtering step does not seem illogical and increased our power to detect 

differentially expressed probe set. Another route of filtering might be judged on the 

intensities of the probes: whether Affymetrix algorithm called the probe set present on 

a reasonable amount of arrays among others. I report all fold changes on the raw scale, 

even though values per probe set is on the log2 scale, where the mean for each group 

is calculated on the log2 scale. Thus, fold changes are reported as: 

Fold change = 2(mean (group 1 log2 values) – mean (group 2 log2 values))  

 

At the initiation of statistical analysis, data is retained in a gene expression data matrix 

with rows corresponding to probe sets and columns corresponding to samples.  

 

4.5.1 Pattern discovery 

Using unsupervised methods, one can try to detect structures in the data while not 

taking considerations to the sample or gene labels. Using clustering techniques 

objects are clustered based on measurements of similarity of expression, and one 

expect that functionally related genes and samples cluster together [140]. Several 

types of measurement of similarity exist, such as Euclidean: the geometric distance in 

the multidimensional space or Manhattan: average difference across dimensions. We 

used clustering of samples in Study III in order to support our notion of exclusion of low 

quality arrays; samples that showed deviant values in these initial quality assessments 

were also deviant in clustering and component analysis were therefore removed from 

further analysis (three samples mentioned in the earlier paragraph: two PBL MS relapse 

and one control CSF).  

 

Several dimensional reduction techniques exist where similar entities are combined. 

Principal component analysis (PCA) is one of these methods, here linear combinations 

of the row or column vectors are computed, and the first principal component 

contains the largest variation within the samples, and the second one is orthogonal to 
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the first one and contains the second largest variance within the data, and so forth 

[141]. Thus, principal component one describes the largest variance, and hopefully the 

first two or three components will describe most of the variance in the data set since 

they are easily plotted against each other and visualised. In Study III PCA was 

conducted using the made4 package [142] and Figure 2 shows the resulting array 

projections.  

 

Figure 5. Principal component representation of samples, plotting principal component one against 

principal component two.  

 

As expected probe sets that detect different expression levels depending on tissue 

examined created the first principal component. When the PCA is conducted 

separately in each tissue, relapse samples seem to separate from others among PBL 

samples, and control samples seem to separate from others in CSF samples.   

 

4.5.2 Single transcripts 

Usually one of the goals in a gene expression profiling study is to detect differently 

expressed genes between two or more conditions. Different test statistics do however 

rely on different assumptions regarding the distribution. In gene expression profiling 

numerous statistical methods are used to assess significant differential expression, and 

I will review some of the most commonly used. 
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A t-test is a simple statistical test designed to detect differences in means between two 

populations with values from a normal distribution [72]. The test statistic has the form:  

t = (mean1-mean2) / (s*√N)  

Where s is the standard deviation and N is the number of samples. Many of the most 

popular methods in gene expression profiling are t-tests or modified t-tests. A Welch t-

test does not assume that the variance in the two groups is equal, and thus the 

denominator in the t-statistic is slightly changed (√(s1
2/N1 + s2

2/N2)). Dudoit et al. [141] 

proposed the use of permutations of sample labels to estimate the null distribution of 

the Welch t-statistic, thus avoiding any assumption on distribution. Genes or probe 

sets with low fold changes could also have lower variance, and can thus more easily be 

judged statistically significant differentially expressed. Therefore the significance 

analysis of microarrays (SAM) methodology adds a fudge factor to the denominator of 

the t-statistic where the fudge factor is calculated from the distribution of gene-

specific standard errors [143]. Using the Limma package [144] the log-odds of 

differential gene expression is modelled by linear regression. A t-test with a Bayesian 

adjusted denominator is used, this has been described as equivalent to shrinkage of 

the estimated sample variances towards a pooled estimate, resulting in more stable 

results when the number of arrays is limited [145].  

 

Different rank based methods exist as well, the rank product methods calculate the 

product of all ranks for every gene divided by the total number of examined genes, 

genes are thereafter ranked according to their rank product [146]. One can also assess 

significance by the area under a receiver operating characteristic (ROC) curve. Here 

true positives and false positives from a classification procedure are plotted against 

each other, and the area under the curve provides an estimate of the probability that 

the gene is regulated between the two groups [147].  

 

When performing a single statistical test one might feel at ease with knowing that the 

probability of acquiring a significant p-value when the null hypothesis is in fact true is 

limited to 5 %.  When considering multiple items at once, as during a microarray 

investigation, the equivalent action would produce 2,700 type I errors (for a 54,000 

probe set array). Several means to adjust for this has evolved. One can change the level 

of the test in order to limit the chance of one false positive to a desired level, one such 

method is the Bonferroni correction and simply reduces the level of α by the number 
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of comparisons or independent comparisons. This is a conservative correction that will 

produce many type II errors. Another lines of action includes limiting the proportion of 

false positives among all test judged as significant. The false discovery rate (FDR) 

correction was first proposed by Benjamini and Hochberg [148]. Here the items are 

arranged in a list according to significance level, and the first item to survive the 

correction is the one with a p-value of: pi < ( i / m ) * q 

Where i is the index in the ordered list, m is the number of tests and q is the desired 

FDR. Thus this methodology takes consideration to the number of tests as well as how 

many tests that initially were judged as significant. If 1000 tests are made and 50 tests 

are significant, no test will survive the correction (given that α = q = 5%). If however all 

1000 test are judged significant, no correction will be performed since this indicates 

that the accepted number of false positives exist in the result already.    

 

In Study III we chose to use a Welch t-test with a null distribution created by 1,000,000 

permutations to detect differentially expressed probe sets. Thereafter we restrained 

the FDR to 5 % using the multtest package [149] in R [70]. 

 

Since we had an unbalanced study population regarding sex among our MS patients 

sampled in relapse or remission we performed a linear regression [144] on status as 

well as sex in order to elucidate regulation independent of sex in the PBL comparison. 

 

4.5.3 Sets of transcripts 

When performing a gene expression profiling project, one might become 

overwhelmed by a large number of differentially expressed genes from which 

hypothesis regarding disease processes should be formulated. Luckily for us, 

researchers have been studying genes and proteins and their functions and 

connections for a long time and have created tools for inferring functional properties 

of long lists of genes. Genes can be joined by their participation in certain pathways, 

available pathway databases include: Gene Ontology [150], Kyoto Encyclopedia of 

Genes and Genomes (KEGG) [151], Ingenuity Pathway Analysis (IPA, 

www.ingenuity.com, Ingenuity Systems) and several other commercial alternatives. 

The expression of genes can additionally be controlled by the same transcription factor 

(TF), information regarding that can be extracted from the TRANSFAC database 

[152,153].  
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After deciding which sets of genes to analyse, one needs to decide how to perform the 

analysis. One standard procedure involves determining enrichment of significantly 

differentially expressed genes within a pathway using a χ2-test or Fisher’s exact test, 

and this is the procedure used in IPA. In Study III the differently expressed genes from 

the CSF comparison of MS and control samples as well as those from the PBL 

comparison of relapse vs. remission were analysed using IPA.  

 

Mootha et al. [154] suggested using a method not drawing the arbitrarily line between 

significantly and not significantly differentially expressed genes. Instead subtle but 

coordinated changes in expression of genes belonging to the same gene set can be 

assessed. Here the distribution of genes belonging to one pathway in the full list of 

sorted genes is assessed, and clustering of genes on this list indicates coordinated 

differential expression. We have used a similar methodology in Study III, where the t-

statistics for each gene belonging to a KEGG pathway are joined and normalized and 

compared to a null distribution created by permutation, as implemented in the 

Category package [155] in R [70]. Thereby we assessed the regulation within 

predefined sets of genes using two different databases (KEGG and IPA) and two 

different statistical approaches.  

 

4.5.4 Networks 

Building networks is a way of characterizing your data, and is meant to illustrate 

contexts within your data that would otherwise go unnoticed. A network can either be 

built bases solely on the actual data or with information from other sources as well. In 

Study III we built networks in IPA using their database on published connections 

between molecules, e.g. protein-protein binding or influence of expression. Thus, 

possible functional networks can be built that are not part of settled pathways, and 

could thus shed light on potential functional groups in the investigated traits. IPA only 

displays small networks with a maximum size of about 35 molecules, and the highest 

rated network is the one with most connections. The reason for this restriction is that 

large complex networks are hard to grasp and draw conclusions from.  
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4.5.5 Annotation 

As mentioned earlier the probes on Affymetrix arrays were designed to hybridize to 

RNA sequences found at the time in the UniGene, bdEST, GeneBank and RefSeq 

databases. The content of such databases are constantly developed, refined and 

rearranged. Therefore, some of the probe sets found on the arrays does not align to 

any known sequence today, and those that do can be given different annotations 

due to different strategies of annotation. Affymetrix builds their annotation on 

UniGene clustering, which is a fully automated process where sequences that align 

around the same gene or each other are joined into clusters that automatically get 

an annotation. In Study III we used Affymetrix annotation through the Bioconductor 

package hgu133plus2.db [156] and realized that this route of annotation creates some 

discrepancies, especially since a number of probe sets aligning to immunoglobulin 

transcripts were annotated as HLA-C when using the Affymetrix annotations. Thus we 

sought another route of annotation that demanded that the probe sets aligned to 

well-characterized mRNA sequences. Ensembl’s Biomart is an attempt to correlate 

different biological databases to each other. Using the biomaRt package [157] we 

could therefore in Study III collect those Ensembl transcripts that aligned to our probe 

sets, and from these we also collected RefSeq ID’s and HGNC (HUGO gene 

nomenclature committee) gene symbols as well. This more conservative method does 

not annotate a rather large proportion of the probe sets, and we therefore decided to 

use both methods. There was however a small number of analyzed probe sets (6-7%) 

that did not acquire annotation using any of these methods even though they 

seemingly are detecting expressed genes. 

 

The knowledge on sequences grow for each day, and probe sets designed a couple of 

years ago will most certainly not be the ultimate answer. Approaches have been 

proposed where alternative mapping of probes of Affymetrix arrays are based on up-

to-date knowledge [158,159]. 

 

4.6 CONFIRMATION OF DIFFERENTIAL EXPRESSION 

There is a multidimensional problem with most gene expression profiling studies; 

since there are many times more probe sets than samples to be compared. Due to this 

and occasionally additional problems, validation of the observed differential 

expression may be warranted. One could either perform a technical confirmation; 
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detect the same differential expression using the same samples again, or a biological 

confirmation using new independent samples. Confirmational studies are usually 

performed using quantitative real time PCR (qRT-PCR). 

 

4.6.1 Quantitative real time PCR 

qRT-PCR is a technique whereby the amount of transcript (absolute or relative to input 

of mRNA or another gene) is detected in real time during a PCR reaction. The 

logarithmic increase in target is detected using different probes or dyes.  

 

Real time PCR has three phases: exponential phase, linear phase and plateau phase. In 

the exponential phase the product increase exponentially, doubling in each cycle if 

the efficacy is at 100 %, since there is no limitation in reagents. As reagents become 

limited a more linear increase in product is seen, which eventually, as some reagent 

become depleted, reaches a plateau. Plotting logarithm 2 transformed product (as 

measured by fluorescence of probes) versus cycle number yields a linear range at 

where signal correlates to with the original template [160,161]. A horizontal 

threshold is set above background disturbances during the exponential growth, and 

the number of cycle it takes for a product to reach this threshold is denoted the Ct 

value and functions as the primary statistic in RT-PCR. Quantity of target can be 

assessed either absolutely or relatively where the absolute quantification employs a 

calibration curve in order to derive the input of target. Relative quantification 

estimates quantity of target in relation to an internal reference gene, which in turn is 

compared to target vs. reference in other samples. Usually the exact copy number of 

target is not of primary importance, thus relative quantification is employed. Several 

data analysis method exist in relative quantification, two of the most common are 

the efficiency calibrated method [162,163] and the ΔΔCt method [164], and both 

assume that the efficiency of amplifications is the same across all samples. The 

experiment will involve serial dilutions of samples for PCR detection of both target 

and reference gene, and the Ct number is plotted against cDNA input and the slope 

is used to calculate the amplification efficiency. ΔCt is calculated by subtracting the 

Ct value of target from the reference, and ΔΔCt is then calculated by subtracting a 

control ΔCt value, i.e. the mean ΔCt value among controls, from each ΔCt value. If the 

amplification efficiency is good, around 100 %, the expression ratio equals 2–ΔΔCt. 
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One can also calculate the expression ratio while taking consideration to difference 

in efficiency between reference and target:   

(efficiency target)ΔCt (target) / (efficiency reference) ΔCt (reference) 

Another method compares the individual Ct values against respective standard 

curve, and expression ratio is calculated as the ratio between these two measures 

[165]. This methodology can also be used to assess absolute quantification if the 

exact quantities in the standard curves are known.  

 

As discussed by others [166] the correlation between microarray data and RT-PCR 

data is quite poor, especially for low fold changes. Variability in technical procedures 

affects both methods and in particular the route of normalization differs greatly. The 

choice of reference gene in qRT-PCR is critical, and should have a stable non variable 

expression in all samples investigated [167], moreover the utilization of several 

reference genes simultaneously is more stable [168]. When analysing replicated 

samples, separated just prior to PCR, the difference in Ct values becomes 

approximately 0.5 Ct. Including all further handling of samples the variation will be 

greater, and differences of one Ct (which equals a fold change of 2) will usually not 

be detected (personal communication, Per Larshammar, Applied Biosystems). 

 

In Study III we used a SYBR green detection system (Bio-Rad) and the ΔΔCt method 

together with a nonparametric Wilcoxon signed-rank test to validate differential 

expression. We attempted at confirming the regulation using the same samples as 

those used in the original gene expression profiling, and additionally added an 

independent population of MS patients and controls. The groups remained quite 

small, and thus they were joined in the final analysis. The primers for the quantitative 

PCR were designed to bind to the same sequences as the probes on the Affymetrix 

array. Five of the most significantly differently expressed transcripts were selected for 

validation in the CSF of MS patients and controls, using GAPDH as a reference gene. 

All these genes displayed large fold changes, and all were confirmed as differentially 

expressed. We also tried to validate ten transcripts in the PBL comparison of MS 

patients in relapse to those in remission, these transcripts showed fold changes 

ranging from 0.58 to 2.29. Initially GAPDH was used as a reference gene, and one of 

the investigated transcripts was confirmed (one additional transcripts displayed a p-

value of 0.06). When investigating the variance of intensity for probe sets detecting 
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GAPDH in our Affymetrix data, we realised that GAPDH seemed to vary more than the 

investigated transcripts. We therefore selected a new reference genes based on our 

microarray data: TGS1 (trimethylguanosine synthase homolog). The correlation 

between GAPDH and TGS1 was relatively high: 0.909, but TGS1 had a much lower 

expression. We were however not able to confirm differential expression of any of 

the investigated transcripts. It is well known that confirmation of differential 

expression of fold changes below two is uncommon [166] and depends on 

concentration of target and qRT-PCR method used [169]. The use of several stable 

reference genes averaged together with a geometric mean would give a more stable 

normalization [168 ], and thus the ability to detect smaller fold changes. But the use 

of the geometric mean of GAPDH and TGS1 as reference did not validate any 

transcripts in Study III. The nature of differently expressed probe sets in the two 

comparisons did however differ more than in the magnitude of fold change; differently 

expressed probe sets during disease bouts in PBL did not align well with validated 

ensembl transcripts. Out of the 1031 significant probe sets in PBL 61 % did not map to 

an Ensembl transcript whilst only 28 % of the 4176 significant probe sets in the CSF 

comparison of MS patients to controls lacked this conservative annotation. This 

indicates that transcripts other than the most validated and characterized are 

differently expressed during an MS bout. The qRT-PCR data did however showed some 

tendencies for association, and these trends followed the initial findings, thus a larger 

study population might have validated additional transcripts.   

 

Could the lack of confirmation in our PBL comparison indicate that no true differential 

expression is present there? We have performed a rather assumption free significance 

testing based on permutation and a conservative correction for multiple testing, and 

still more than a thousand probe sets were judged as differentially expressed. It could 

be that we were unlucky in our choice of transcripts to validate, and that those ten 

transcripts are among the 50 (on average) false positives. I think that a more likely 

explanation is that qRT-PCR is not ideal for detecting these small differences and that 

using a larger population and optimising the procedure might have validated more 

transcripts. Another explanation is that the differential expression seen is merely a 

consequence of a systematic bias, but the nature of such a bias is unknown to us.  
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4.7 SUMMARY OF RESULTS OF STUDY III 

4.7.1 Comparing MS patients and controls 

We detected over 4,000 differently expressed transcripts in CSF cells comparing MS 

patients (sampled both in relapse and remission) to controls, whereas the same 

comparison in PBL did not show any differentially expressed transcript. This was also 

illustrated using PCA where CSF samples from MS patients clustered distant from a 

cluster of controls (Figure 5). This implies that CSF cells demonstrate some aspects of 

the disease processes in MS patients, in contrast to PBL. The most differentially 

expressed probe sets were immunoglobulins that showed fold changes of up to 500, 

which act as a positive control since we demanded oligoclonal IgG bands in all 

assessed MS patients. Five of the most differently expressed probe sets were also 

validated using quantitative RT-PCR: AIF1 (allograft inflammatory factor 1), TNFRSF17 

(tumour necrosis factor receptor superfamily, member 17), MGC29506, POU2AF1 (POU 

class 2 associating factor 1) and PLAUR (plasminogen activator, urokinase receptor).  

 

IPA analysis in CSF revealed 45 significantly enriched pathways, where “TREM1 

Signalling” and “Role of Pattern Recognition Receptors in Recognition of Bacteria and 

Viruses” were the two most significant. Overall immune-related pathways dominated 

the list of enriched pathways. The analysis of coordinated regulation within KEGG 

pathways in CSF illuminated the roles of “Complement and coagulation cascades” as 

most significantly downregulated in MS, and “Cell cycle” as most significantly 

upregulated in MS. Overall, this analysis illuminated the roles of protein export and 

degradation, basal transcription factors and other fundamental processes.  

 

Networks were built based on our data as well as known connections between 

molecules contained in the knowledge database of IPA, and these were scored based 

on their connectivity. The highest scoring network represented biological functions 

related to protein degradation, protein synthesis, and cellular assembly and 

organization. One of the hubs in this network is LMNA (lamin A/C), a protein in the 

nuclear lamina protein network underlying the inner nuclear membrane that 

determines nuclear shape and size, and which is involved in cellular integrity and gene 

expression [170]. CTNNB1 (catenin (cadherin-associated protein), beta 1), an adherens 

junction protein, makes up another subnode. The second highest scoring cluster is 

centred around CDKN1A (cyclin-dependent kinase inhibitor 1A), a regulator of cell 
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cycle progress at G1, and the functional analysis showed enrichment of molecules 

involved in “cell cycle”, “cancer” and “reproductive system disease”. The third most 

highly ranked network contains molecules involved in “immune and lymphatic system 

development and function”, “tissue morphology”, and “haematological system 

development and function”.  

 

Transcription factor binding site analysis showed enrichment of 84 TF binding sites, 

most significant were the E2F family and ZFP161 (homologue of zink finger protein 

161, mouse).  

 

Although no single transcript was deemed differentially expressed in PBL, the analysis 

of coordinated regulation of KEGG pathways suggest the importance of 41 pathways, 

most significant being “ECM-receptor interaction” detected as upregulated in MS, and 

“Citrate cycle (TCA cycle)”, downregulated in MS.  

 

4.7.2 Comparing MS patients in relapse and remission 

The most striking among our findings was the suggestion that a disease bout is 

companioned by a substantial difference of transcription in PBL, albeit no 

simultaneous differential expression can bee seen in the CSF. The 1031 differentially 

expressed probe sets contain a surprisingly large proportion of probe sets lacking 

alignment with Ensembl transcripts, over 60 %, whilst the entire list of analysed probe 

sets contain 37.7 % such probe sets. This implies that quite uncharacterized transcripts 

are differentially expressed in the PBL of patients with relapse.  

 

The IPA analysis suggested the importance of 43 pathways, the two most significant 

being “SAPK/JNK Signalling” and “Hypoxia Signalling in the Cardiovascular System”. 

The analysis of coordinated regulation within KEGG pathways showed 60 pathways 

upregulated during a relapse, and 14 downregulated. Noticeable is that upregulated 

pathways consisted of pathways related to development, metabolism and basic cell 

signalling, such as “Dorso-ventral axis formation”, “GnRH signalling pathway”, “Fatty 

acid metabolism” and “Notch signalling pathway”, whereas a majority of 

downregulated pathways were connected to the metabolism of several amino acids.  
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The highest scoring network contained molecules involved in “gene expression”, 

“protein degradation” and “protein synthesis”. The mediator complex (also known as 

TRAP, SMCC, DRIP, or ARC) and other molecules involved during transcription formed 

one small highly interconnected subcluster, whereas two transcription factors (SP1 and 

VHL (von Hippel-Lindau tumour suppressor)) formed two additional nodes. The 

second highest scoring network was related to “cancer”, “reproductive system disease” 

and “neurological disease”, and one major node was the signal transduction protein 

YWHAZ (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, 

Z isoform). The third most highly ranked networks major node was the tumour 

suppressor PTEN (phosphatase and tensin homolog) and related functions were “gene 

expression”, “DNA replication, recombination and repair”, and “cell cycle”.  

 

The TF binding site analysis implied 29 enriched binding sites, most significant were 

binding sites for Hb (Hunchback) and PLZF (Promyelocytic leukemia zinc finger, also 

called zinc finger and BTB domain containing 16 (ZBTB16)). 

  

4.8 DISCUSSION ON MS TRANSCRIPTOMICS TODAY 

To our knowledge, we have performed the first gene expression profiling experiment 

investigating MS processes using samples from CSF, and additionally we also included 

paired samples from PBL. Thus we could detect large differences in the regulation of 

transcription within these two tissues, which suggested that even though CSF of MS 

patients differ greatly in expression of genes as compared to controls, a disease bout 

could only be detected when assessing the gene expression in PBL. 

 

 Large scale gene expression in CSF has not been performed in MS previously, 

supposedly due to the demands on large amount of RNA, thus these results can not be 

discussed while considering other gene expression profiling studies. We measured 

gene expression in the total cell population of CSF from MS patients and controls with 

other neurological diseases. Thus, we expected samples consisting of about 80-90 % T-

cells, and a few percent of NK-cells, NK-like T-cells, B-cells, plasma cells and monocytes, 

where MS patients would have a smaller proportion of monocytes and NK-like T-cells, 

and a larger proportion of B-cells and plasma cells  [108]. We did see many upregulated 

transcripts connected to B-cells, e.g. TNFRSF17 (tumour necrosis factor receptor 

superfamily, member 17, also called B-cell maturation factor, BCMA), POU2AF1, MS4A1 
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(membrane-spanning 4-domains, subfamily A, member 1) and CD24 which were 

upregulated by fold changes of 20, 15, 4 and 5 respectively in MS CSF as compared to 

controls. The most differently expressed transcripts were connected to 

immunoglobulin with fold changes of up to 500.  These differences might in part 

reflect the expected increase of B cells (7 fold) and plasma cells (13 fold) but not 

entirely. In the pathway analysis we saw marked decrease of pathways involved in 

monocytes and macrophages such as “TREM1 signalling” and “Complement and 

Coagulation cascades”. A very limited number of studies have investigated gene 

expression in the CSF of MS patients, but we do confirm lower expression of VEGF [171] 

in MS patients compared with controls.  

 

A number of transcripts earlier found to be upregulated within MS lesions, were 

suggested to be downregulated in the CSF of MS patients in Study III: TREM2, C3 and 

C1qB with fold changes of 0.17-0.37 [172 ], ALOX5 with fold change 0.43 [173], IL18, IL1β 

and CCR1 with fold changes of 0.23-0.53 [174]. PLAUR was also expressed 

proportionally less in MS CSF as compared to controls in our study, but have been 

shown to have a higher protein expression in lesions and normal appearing white 

matter of MS patients [175]. Moreover the PLAU-complex has unique abilities to 

facilitate transmigration trough the BBB [176]. These changes might reflect the 

selective transmigration of cells from CSF further into CNS.   

 

Additionally, various results indicate more proliferating and active cells in the CSF of 

MS patients: ribosomal genes, cell cycle genes, “cell cycle” pathway, “protein export” 

pathway and “basal transcription factors” pathway were all upregulated in the CSF of 

MS patients.  

 

When comparing the expression in PBL from MS patients and controls, two KEGG 

pathways involving integrins were upregulated: “ECM-receptor interaction” and 

“Focal adhesion”. This might implicate that migration and factors enabling migration 

to the CNS is increased in peripheral blood of MS patients.   

 

The large amount of genes differently expressed between samples collected during a 

relapse or remission in PBL were enriched for inflammatory and stress related 

pathways, and gene expression, protein degradation and protein synthesis were also 
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distinguished. One must bear in mind, however, that all pathway analyses are built 

on the annotation, which was troublesome for the differentially expressed probe sets 

in this comparison (60 % lacked the more conservative annotation). It’s hard to draw 

conclusions regarding the ongoing processes when the involved transcripts are 

unknown, and further attempt to characterize these transcripts would be useful. 

However, the UniGene based annotation does imply what gene or at least which 

genetic region (close to the gene) that is involved, and therefore the following analyses 

do reveal important knowledge. We are eager to see coming studies investigating the 

gene expression in relapse/remission and whether our findings will be validated. 

 

Some other studies have investigated gene expression in cells from blood and 

compared patients in relapse to remission or controls. Arthur et al. [117] investigated 

patients with MS sampled during a disease bout (n = 10), or during remission (n = 10), 

and blood donor controls (n = 6, 20 RNA samples from women were pooled prior to 

microarray procedure, 5 samples from males were used individually). Gene expression 

was examined in whole blood, not lymphocytes, and this is the most likely explanation 

to the disagreement in results. No correction for multiple testing was conducted in the 

Arthur et al. study, but the most noticeable is that the regulation seemed to be as big 

in relapse as in remission, in contrary to our results. Arthur et al. focused especially on 

ALOX5 which they found upregulated in both relapse and remission as compared to 

controls [117]. We confirm the upregulation of ALOX5 in relapse samples using three 

probe sets, with fold changes of 1.5 to 2.4. In remission however, the ALOX5 probe sets 

were rather downregulated (fold change of 0.7) in our material but not significant even 

when judging from the uncorrected p-value. Others have examined gene expression in 

peripheral blood mononuclear cells with special emphasis on apoptosis related gene 

expression and relapse [119]. Here many (1,578) differentially expressed genes were 

found comparing patients in relapse to those in remission, and genes relevant for 

regulation of apoptosis, caspase activity, and caspase regulation activity were 

significantly downregulated in acute relapse. We confirm the regulation of a number 

of genes: BCLAF1, TAX1BP1, RTN4 and SMNDC1 among others, and moreover we also 

see enrichment and regulation of apoptosis related pathways such as “Apoptosis 

signalling” and “Death Receptor Signalling”.  
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Simultaneously with the regulation seen in PBL, no differential expression is seen in 

CSF between relapse and remission samples. The KEGG analysis reveals only 

upregulated pathways during a disease bout which were related to basic metabolism, 

maybe indicating somewhat more active cells.   

 

Gene expression profiling in MS is still in its infancy, although all conducted studies do 

reveal part of ongoing processes. Many more diverse investigations are needed to 

firmly establish the ongoing pathological processes. 
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5 CONCLUDING REMARKS 

This thesis is focused on genetic and transcriptomic studies of MS, both methodologies 

promising to reveal parts of the MS aetiology. It is undoubtedly so that other areas of 

research also are needed in order to discover all risk factors for developing MS, such as 

epigenetics and epidemiological studies of environmental risk factors. We have 

however been able to investigate the relationship between twelve risk factors in this 

thesis: female sex, HLA-DRB1, HLA-A, IL7R, IL2Rα, CLEC16A, CD58, RPL5, FAM69A, CD226, 

SH2B3 and KIF1B. This alone demonstrates the huge progress made within the MS 

research field in the last couple of years, where the studies in this thesis played a minor 

role. The risks these factors confer are not caused by confounding of each other, but 

several epistatic effects between them were suggested and deserve further 

investigation.  

 

CD58 and RPL5 were investigated genetically partly because of their differential 

expression in the CSF of MS patients as compared to controls. Additionally RPL5 was 

shown to be expressed at a lower level during a disease bout as compared to remission 

in PBL. Intriguingly both RPL5 and CD58 have been suggested to have connections to 

the differential expression of p53 family members [177,178], and the “p53 signalling 

pathway” was detected as enriched of differentially expressed probe sets during 

disease bouts. Other MS susceptibility genes were also suggested to be differently 

expressed in Study III; KIF1B was upregulated in PBL during a disease bout, and 

downregulated in CSF of MS patients and SH2B3 was downregulated in CSF of MS 

patients. A number of HLA transcripts were differently expressed in the CSF of MS 

patients, mostly class II molecules showing a lesser expression. A limited number of the 

individuals included in the gene expression profiling were investigated genetically, 

thus no genotype phenotype correlation analysis has been performed, but this is a 

rational next step. 

 

If I were given funds and additional time, I believe it would be worthwhile to 

investigate the implicated transcription factors in Study III genetically. Moreover, those 

genes with differential expression as well as genetic association could also be assessed 

more thoroughly. I expect that additional studies on tissues from MS patients will be 

performed, and hopefully able to validate the results presented here. It is my hope that 
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our gene expression profiling data, now retained in a public repository, can aid the 

researchers in our group as well as others. 

 

As mentioned above, interdisciplinary research across many fields will be necessary to 

understand MS aetiology. But there is also great deal to be accomplished in each 

individual field. Through the rapid development of whole genome resequencing the 

utilization of such data is not far off, so we should prepare ourselves in order to be able 

to take advantage of that technical breakthrough. When whole genome resequencing 

has become the standard procedure the existence of each independent genetic risk 

factor might eventually be known, and gene-gene interactions investigated. However, 

at that point functional understanding needs to be acquired as well, an equally tedious 

task. One utopian study would involve whole genome resequencing data as well as 

transcriptional and proteomic profiling from many tissues at many time points from 

thousands of patients and controls. It might take some time, but it is likely that we will 

eventually get there. Meanwhile, progress is rapid and I am sure that our knowledge 

on MS aetiology will continue to grow, and that all pieces of the puzzle can lead to a 

better understanding of the disease and most importantly, ultimately help individuals 

suffering from MS. 
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