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LIST OF ABBREVIATIONS 
 
 

Ab Antibody 
Ac-LDL Acetylated low-density lipoprotein 
AECA Anti-endothelial cell antibody 
Alpha-actin Smooth muscle  
ANCA Anti-neutrophil cytoplasmic antibody 
CD31 Platelet/endothelial cell adhesion molecule (PECAM) 
CD62E E-selectin 
CD105 Endoglin 
CD106  Vascular cell adhesion molecule 1 (VCAM-1) 
CD141 Thrombomodulin 
CD142 Tissue factor 
CD144 Vascular endothelial cadherin 
CK18 Cytokeratin 18 
EC Endothelial cell 
EPCAM Epithelial cell adhesion molecule 
FITC Fluorescein isothiocyanate 
GCP-2 Granulocyte chemotactic protein-2 
G-CSF Granulocyte colony-stimulating factor 
GM-CSF Granulocyte macrophage colony-stimulating factor 
GRO-α Growth-regulated oncogene-alpha 
HLMEC Human lung microvascular endothelial cell 
HRE  Human renal epithelial primary cell line 
HKMEC Human kidney microvascular endothelial cell 
HUVEC Human umbilical vein endothelial cell 
HNEC Human nasal endothelial cell 
HLSEC Human liver sinusoidal endothelial cell 
IL Interleukin 
Ig Immunoglobulin 
IFN-γ Interferon gamma 
L-SIGN Liver/lymphnode-specific ICAM-3 grabbing nonintegrin 
LWG Limited Wegener´s granulomatosis 
MCP-1 Monocyte chemotactic protein-1 
MHC Major histocompatibility complex 
MIP-1α Macrophage inflammatory protein 1-alpha 
MMP-1 Matrix metalloproteinase-1 
MPA Microscopic polyangiitis 
MPO Myeloperoxidase 
NK cell Natural killer cell 
PE Phycoerythrin 
PBMC Peripheral blood mononuclear cells 
PBS Phosphate buffered saline 
PR3 Proteinase 3 
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RA Rheumatoid arthritis 
RLD Renal limited disease 
SEM Scanning electron microscopy 
SLE Systemic lupus erythematosus 
TEM Transmission electron microscopy 
TNF-α Tumor necrosis factor alpha 
VAP-1  Vascular adhesion protein 1 
WG Wegener´s granulomatosis 
vWF von Willebrand factor 
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ABSTRACT 
 
“Vasculitides” are a heterogenous group of disorders that share a common feature of blood vessel 
inflammation. A major cell type of the blood vessel affected is the endothelial cell (EC). 
Wegener’s Granulomatosis (WG) is one type of vasculitis of unknown etiology, involving 
granulomatous inflammation and necrosis that most frequently targets the small and medium-sized 
vessels of the upper respiratory tract, lower respiratory tract and kidneys. A crucial event in the 
initiation, localization and propagation of EC injury in WG involves activation of the EC by 
various stimuli, one of which is anti-endothelial cell antibodies (AECA). However, the exact 
mechanisms by which EC in WG are damaged are not known. 
 
Important criteria for distinguishing the various vasculitides are the size of the vessels involved and 
the organs supported by the inflammed vessels. Thus, use of the relevant EC as target cells for 
studies involving AECA carries implications for understanding the clinically important 
mechanisms underlying the pathogenesis/progression of WG. However such studies are lacking. 
 
Therefore, in order to understand some of the mechanisms by which EC in WG are damaged we 
performed the following studies: 
In paper I, we studied the frequency and interaction of AECA with EC isolated from the clinically 
relevant small blood vessels of the nose, lung and the kidneys. We demonstrated, as compared with 
other patient groups, that WG was significantly associated with non-cytotoxic AECA that 
selectively bind surface antigens on unstimulated nasal, kidney, and lung EC. However AECA 
binding was lost/decreased when cytokine activated EC were used. We also demonstrated that EC 
from various organs are characterized by heterogeneity in morphological/functional aspects, 
marker proteins of cell activation, and responsiveness to cytokines. 
 
In paper II, we report a novel finding that demonstrates the occurrence of two heterogenous 
populations of EC within the nasal microvasculature. One EC population exhibited classic vascular 
endothelial markers with cobblestone-like morphology, while the other was sinusoidal in nature, 
possessing fenestrae. We also established novel protocols for the isolation and culture of these EC.  
 
In paper III, we suggest a novel mechanism by which EC dysfunction in WG may perpetuate 
vasculitis. Our findings suggest that inflammatory EC (IEC) may detach from the inflamed organ 
and enter the circulation, and via production of soluble factors may have an inhibitory effect on the 
repair function of EC progenitors (EPC). We demonstrated that during active WG disease the 
number of circulating IEC was significantly higher as compared to WG patients in remission and 
normal controls. Furthermore, IECs but not EPC expressed two novel EC inflammatory markers; 
vascular adhesion protein 1 (VAP-1) and MHC class-I related chain A (MICA). These markers 
were also highly expressed in kidney biopsies of WG patients during active disease. 
 
In paper IV, we studied the functional role of WG AECA on kidney EC. We report that isolated 
IgG fractions from WG patients induced a rapid calcium flux, up-regulation of MICA, and 
production of neutrophil/monocyte activating chemokines. Furthermore, western blot analysis of 
immunoprecipitated kidney EC proteins with WG IgG revealed three bands of: 190-200 kDa,  
70-73 kDa and 50-53 kDa. 
 
Our data suggest that AECA may play an important role in the dysfunction of EC in WG. AECA 
per se may not be cytotoxic, but may act as “modulators” of the immune responses. Thus, a pro-
inflammatory loop may exist between the binding of AECA to EC and the possible recruitment of 
inflammatory cells via stress/adhesion molecules and production of chemokines resulting in 
inflammation and EC dysfunction. Furthermore, circulating IECs may parallely contribute to the 
pathogenesis/progression of WG by interfering with the functional capacity for vessel wall repair 
by EPC. 
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BACKGROUND    
 
Autoimmunity 
The immune system is an extraordinarily adaptive defence system that has evolved to 
protect us from invading pathogenic microorganisms and cancer. It has the capacity to 
distinguish between foreign molecules and the body´s own cells and proteins, but in some 
individuals, the immune system loses its sense of self and non-self, resulting in an immune 
attack against the host/self. This failure of self-tolerance is the fundamental cause of 
autoimmunity and the symptoms differ depending on which tissues or organs that are 
affected. In rheumatoid arthritis [1] the joints are affected, while in multiple sclerosis the 
brain and cental nervous system are assaulted [2, 3]. 
 
Self-tolerance can be divided into central tolerance and peripheral tolerance. In central 
tolerance, immature lymphocytes that recognize self-antigens in generative lymphoid 
organs (the bone marrow for B-cells and the thymus for T-cells) die by apoptosis [4]. In 
peripheral tolerance, when mature self-reactive lymphocytes encounter self-antigens in the 
peripheral tissues they are shut off or killed [4, 5]. Normal healthy individuals also possess 
mature, recirculating, self-reactive lymphocytes. Since the presence of these self-reactive 
lymphocytes does not result in autoimmune reactions, their activity is regulated by 
mechanisms of the peripheral tolerance, namely anergy (functional unresponsiveness), 
deletion (apoptotic cell death), and/or suppression by regulatory T-cells [2-4]. 
 
Breakdown of these peripheral regulations can lead to activation of self-reactive clones of 
B- and T-cells, generating humoral or cell-mediated responses against self-antigens. These 
reactions can cause serious damage to cells and organs, sometimes with fatal 
consequences. Autoimmune hemolytic anemia [6, 7] is an example of an antibody-
mediated disease, where antigens on red blood cells are recognized by autoantibodies, 
leading to destruction of the blood cells resulting in anemia. In rheumatoid arthritis [1] 
self-reactive T-cells attack the tissue in the joints, causing an inflammatory response that 
result in swelling and tissue destruction.  
 
The mechanisms for the induction of autoimmunity are various and not fully identified, 
and it is unlikely that autoimmunity develops from one single event but rather from a 
number of different events. Some of the proposed mechanisms are; thymic defects, release 
of sequestered antigens, molecular mimicry, inappropriate expression of MHC class II 
molecules, non-specific polyclonal B cell activation and hormonal differences in 
combination with genetic variants, acquired environmental triggers and other random 
events [2, 3, 8, 9]. 
Autoimmune diseases affect 5-7 % of the human population and there are no existing 
curative treatments. Current therapies are aimed at reducing the symptoms to provide the 
patient with an acceptable quality of life. Mostly, these treatments offer non-specific 
suppression not leaving the rest of the immune system undamaged. Immunosuppressive 
drugs are often given with the purpose to slow down the proliferation of lymphocytes. 
This treatment might help to diminish the severity of the autoimmune symptoms, but may 
augment the risk of infection [10, 11]. 
Here, special reference is made to a presumed autoimmune disease with unknown 
aetiology named Wegener´s granulomatosis. This thesis includes studies concentrating at 
understanding some of the mechanisms involved in endothelial cell dysfunction occurring 
in Wegener’s granulomatosis.  
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INTRODUCTION 
 
Wegener’s granulomatosis – a vasculitis disease 
Wegener's granulomatosis (WG) is a rare disease affecting 1 in 20 000 to 30 000 people. 
WG belongs to a group of diseases named vasculitis - simply defined as inflammation of 
the blood vessels [12, 13]. How the vasculitis is defined and develops clinically depends 
both by the size of the vessel involved and what organ the inflammed vessels support [12]. 
The classification of vasculitides was founded upon the 1993 “Chapell Hill consensus” in 
which the vasculitides are distinguished by the smallest vessel involved [14]. WG belongs 
to the small-medium vessel vasculitides (Figure 1) [14]. There is no known cause for WG, 
it is not contagious or hereditary. It affects equal numbers of men and women and can 
occur at any age, but most often it occurs in the 4th and 5th decade of life. It appears that 
Caucasians are more frequently affected than other racial groups [12, 13, 15-17]. 

 
Figure 1. Spectrum of systemic vasculitides organised according to predominant size  
of vessels affected. Adapted from Jennette et al, Arthritis Rheum 1994; 37:187-192. 
 
 
WG can affect the whole body (systemic), but the main target organs are the upper 
(sinuses, nose, ears, windpipe) and lower (lungs) respiratory tract and kidneys. 
Characteristic features are granulomatous inflammation of the respiratory tract and 
necrotizing vasculitis of the small arteries, capillaries and veins resulting in pulmonary 
haemorrhage and renal failure [18]. 
 
 
Signs and symptoms 
The onset of WG may be gradual or more rapid and severe. About 90% of patients have 
cold like symptoms with a runny nose that fail to respond to usual treatment and last far 
longer than the common upper respiratory tract infection [17, 19, 20]. Other non-specific 
symptoms may include cough, shortness of breath, fatigue, skin rash, fever, loss of 
appetite, weight loss, joint pain, night sweats, protein and blood in the urine. More specific 
symptoms are inflammation of the ear and hearing problems, inflammation of the eye and 
sight problems, narrowing of the trachea and nasal membrane ulcerations/crustings 
resulting in a “saddle-nose” deformity [12, 13, 15, 18, 21-28]. 
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At the cellular level, the endothelial cells are the target of initial injury resulting in 
swelling, necrosis and deadherance of the endothelial cells. Lysed neutrophils are found 
within affected vessel. In the lung, vessels are infiltrated by polymorphonuclear leukocytes 
and the microvascular vasculitis is the cause of the pulmonary haemorrhage. In the kidney, 
the basement membrane subsequently ruptures due to the neutrophil degranulation giving 
rise to glomerular capillary thrombosis and later focal crescentic glomerulonephritis  
[14, 17]. WG is called “pauci-immune” since there are no immunoglobulin and/or 
complement deposits detected in glomerular lesions or at other sites [17]. 
 
 
Diagnosis 
Both clinical and laboratory findings such as the ANCA blood test, other blood tests, urine 
tests, x-rays, and tissue biopsy are needed to establish a diagnosis. ANCA is found in the 
majority (90-95%) of patients who have active generalized WG and can be useful for 
diagnosis and the recommendation for further diagnostic tests [12, 29]. C-reactive protein 
(CRP) and erythrocyte sedimentation rate (ESR) are common blood tests that measure the 
increase in inflammatory generated proteins. CRP is one acute phase protein that provides 
a general indication of acute inflammation. ESR measures the distance that red blood cells 
settle in a tube of blood in one hour; increased rates are often associated with anemia or 
inflammatory states. Urine tests for hematuria and proteinuria (red blood cells and protein 
in urine) indicate kidney involvement and a rise in serum creatinine levels are seen in 
progressive glomerulonephritis. Chest X-ray is used to evaluate lung infiltrates and a 
biopsy commonly taken from the nose or kidney is examined to verify the diagnosis of 
WG [13, 14]. 
 
 
Treatment 
The mean survival of untreated WG patients is approximately five months with over 80% 
dying within one year of disease onset. In the 1970s, the introduction of 
cyclophosphamide (cytotoxic agent) together with cortisone (a glucocorticoid) 
dramatically improved the prognosis with over 80% five-year survival [14, 20, 30].  
For patients suffering from a more severe disease the goal is to quickly control the 
inflammation in order to reduce the tissue damage. Plasma exchange [31] that removes 
immunoglobulins and other inflammatory mediators from the circulation is then 
performed. When the patient reaches remission, the maintainance therapy has to be 
balanced against the risk of a new relapse. Most widely used drugs for maintainance are 
methotrexate and azathioprine (cytostatics) [12, 13, 18, 31-33]. 
 
 
Table 1 shows the most commonly used drugs in the treatment of WG. 
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Table 1. Drugs used in the treatment of WG. 
 
Drug 
 

Drug name Effects Side effects 

Cytostatics Cyclophosphamide 
 

Inhibit DNA replication  
Leads to cell death 
 

Carcinogenic, 
hairloss, vomiting 
 

 Methotrexate 
 

Inhibit synthesis of DNA, RNA, 
proteins and affect mainly the 
proliferation of leukocytes and 
lymphocytes 
 

Anemia, neutropenia, 
nausea, bruising, 
pulmonary fibrosis 
 

 Azathioprine 
 
 
 

Inhibit DNA synthesis - affects 
both the cell and the humoral 
immunity  
 

Bone marrow 
suppression 

Glucocorticoid Prednisone 
 

Diminish both the cellular and 
humoral immunity 

High blood glucose 
levels, weight gain, 
osteoporosis 
 

 Methylprednisolone 
 

Anti-inflammatory 
 
 
 

Weight gain, 
glaucoma, 
osteoporosis 
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ENDOTHELIAL CELLS 
 
Endothelial cells (EC) consist of a heterogeneous population covering the inner surface of 
blood vessels comprising the interface between the cellular and non-cellular components 
of the blood and the extravascular tissues. It is a highly specialized and active monolayer 
composed of approximately 1-6 x 1013 cells and covers a surface area of approximately  
1-7 m2. A typical EC is elongated with a size of 12-30 µm [34, 35]. A normal endothelial 
cell function is vital for all parts of vascular homeostasis [36]. The EC properties to 
maintain normal hemostatic properties of the endothelium are listed in Table 2. When the 
endothelium is injured, these regulatory functions become altered and the endothelium 
loses its specialized properties, resulting in “endothelial cell dysfunction”, which is a 
hallmark of vascular diseases [35, 37, 38]. 
 
Table 2. Endothelial cell properties regulating vascular homeostasis. 
 
 
 
 
 
 
 
 
 
 
 
Heterogeneity of endothelial cells 
There are differences between the endothelium of diverse species, between large and small 
vessels, and between EC derived from different microvascular endothelial beds [39]. In 
addition, endothelial cell heterogeniety exist in different organs, within the vascular loop 
of a given organ, and even between neigboring EC of a single blood vessel where EC from 
different sites of the vascular tree may differ in size, shape, thickness and nuclear 
orientation (Table 3) [34, 35, 37-44]. In different organs this heterogeneity can contribute 
to special functions within the organ. For example, fenestrated and discontinous EC are 
found in the nose [41], liver, spleen, bone marrow sinusoids, kidney glomeruli and lung 
alveoli that facilitates selective permeability required for efficient absorption, secretion, 
and filtering, while continous and tight junctions are present between EC in the brain  
[39, 43, 45-48]. 
 
How EC acquire heterogeniety is not resolved. The genetic (intrinsic hypothesis) predicts 
that an organ is predetermined with a specific phenotype before they migrate from the 
mesoderm to the specific vascular bed [40, 43]. 
The environmental (extrinsic hypotheis) suggest that site-specific properties of EC are 
governed by environmental signals present within the local tissue. Interaction between the 
microenvironment and EC may involve soluble mediators, cell-cell communication and 
organization of matrix proteins on which the endothelium grows and adheres. Probably the 
phenotypic heterogeneity of the endothelium is determined by a combination of both 
genetic and environmental factors [40, 42, 43]. 
 
 
 
 
 

Vessel wall development, growth and development 
Vascular tone; blood flow and blood pressure 
Leukocyte traffic to extravascular tissues 
Fluid permeability across the vessel wall 
Platelet adhesion and aggregation 
Blood coagulation 
Fibrinolysis 
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Table 3. Levels of EC heterogeneity. 
 
Structure 
 

Expression patterns Function 

Size and shape Protein Hemostasis 
Thickness mRNA Vasomotor tone 
Filaments Transcription networks Barrier function 
Vesicles Signaling pathways Leucocyte trafficking 
Junctions  Cell survival 
Microvilli  Cell migration/proliferation 
Nuclear orientation  Antigen presentation 
 
 
 
Role of the endothelium in vasculitis 
EC have a significant and complex contribution to the vasculitis pathogenesis, both as an 
active partner and as a target of injury in the inflammatory response [51]. The interaction 
of EC with components of the cellular immune system involves specific receptor ligand 
pairs, inflammatory interactions with neutrophils, lymphocytes and monocytes and also 
the humoral immune system - all of importance, which may be both damaging and 
beneficial. These phenomena are mediated by cytokines and inflammatory mediators as 
well as products of the coagulation and fibrinolytic pathways [34, 49-51].  
 
 
The endothelium as a mediator of vasculitis 
The endothelium is closely involved with the recirculation of leukocytes and with the 
recruitment of leukocytes to the site of inflammation. Both processes are mediated by 
specific receptor-ligand interactions between the leukocytes and the endothelium.  
Inflammatory molecules and cytokines alter the cell surface expression of many of these 
molecules [52]. Some adhesion molecules expressed on the surface of EC and their 
respective ligands on immunocompetent cells are listed in Table 4. 
 
 
Table 4. Endothelial cell adhesion molecules and ligands.  
 
Endothelial 
cell receptor 

CD 
nomenclature 

Structure Leukocyte ligand 

P-selectin CD62P Selectin Sialyl Lewis X 
E-selectin CD62E Selectin Sialyl Lewis X 
ICAM-1 CD54 Immunoglobulin LFA-1, Mac-1 
ICAM-2 CD102 Immunoglobulin LFA-1 
VCAM-1 CD106 Immunoglobulin VLA-4 

 
 
Lymphocytes and monocytes follow the early transmigration of neutrophils and begin to 
arrive at a lesion about 4 h after an inflammatory stimulus. This change is reflected by 
changes in endothelial expression of adhesion molecules [53]. E-selectin begins to decline 
after 4-6 h, while ICAM-1 and VCAM-1 levels increase. Both ICAM-1 and VCAM-1 are 
induced by IL-1 and TNF and reaches a plateau after 24 h. Besides IL-1 and TNF, EC are 
known to produce several factors that are capable of inducing inflammation and recruiting 
leukocytes such as; IL-6, IL-8, GRO-α, MCP-1, G-CSF, M-CSF, and GM-CSF [54]. 
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The endothelium as a target of tissue injury 
In several vasculitis processes the endothelium itself is a target for injury and results in 
damage such as EC necrosis, denudation, or EC dysfunction that can lead to severe 
consequences [51]. Infectious agents can trigger vasculitis and most of them are immune-
complex mediated (i.e., hepatitis B virus, hepatitis C virus) [55]. Complement-mediated 
lyses as well as neutrophil-mediated EC damage are the main mechanisms of EC injury in 
these processes. However, the role of EC as target of injury seems to be more prominent in 
small-vessel vasculitis [51]. 
 
 
Damage by neutrophils 
ANCA was first described in relationship with glomerulonephritis by Davies et al [56] in 
1982 and Hall et al in 1984 [57]. However, Van der Woude firmly associated them with 
WG in 1985 [58] suggesting that EC may suffer indirect damage owing to the actions of 
ANCA. There are two major types of ANCA [c-ANCA recognizing proteinase 3 (PR3) 
and p-ANCA recognizing myeloperoxidase (MPO)] and both c- and p-ANCA can activate 
primed neutrophils to mediate lysis of cultured EC [59-62]. However, stimulation of 
ANCA alone is not sufficient to cause EC injury [61, 63, 64]. 
 
The proposed ANCA-mediated mechanism in vasculitis is that TNF-primed neutrophils 
translocate PR3 and MPO to the surface and become further activated upon binding by 
ANCA, leading to a respiratory burst with release of reactive oxygen species, proteolytic 
enzymes, increased production of nitric oxide and cytokines/chemokines such as IL-1 and 
IL-8 that perpetuate the inflammatory response. Following ANCA activation, neutrophils 
undergo apoptosis and uptake of opsonised apoptotic neutrophils by macrophages evokes 
more production of TNF. The cytokine release cause further endothelial cell activation and 
upregulation of adhesion molecules affecting transmigration of neutrophils and the 
recruitment of other inflammatory cells [61, 63, 65]. 
There are also demonstrations that PR3 and MPO (highly cationic) can bind non-
covalently to the EC surface and in this sitiuation they can be recognized and bound by 
ANCA. Neutrophils may then bind to ANCA via their Fc portion, activating the 
neutrophils and causing direct injury to the endothelium [66]. 
ANCA is a useful tool in diagnosis and disease monitoring, and the titres are supposed to 
correlate with disease activity. c-ANCA positivity is shown in more than 95% of WG 
patients and 75% of the MPA are p-ANCA positive. However, there are doubts about the 
true pathogenicity of ANCA in small vessel vasculitis [64, 67]. 
 
 
Injury associated with anti endothelial cell antibodies (AECA)  
AECA is a heterogeneous group of antibodies detected in a variety of disorders connected 
with endothelial damage [68-71]. The presence of AECA in WG, Kawasaki disease, 
Behcet´s disease, Takayasu´s arteritis, MPA, SLE and RA are the most documented. In 
WG and MPA the AECA prevalence ranges between 55-80% [72]. In addition, the AECA 
titres have been proposed to change in line with the severity and correlate with the disease 
activity [18, 29, 49, 73-76]. 
The AECA bind to different endothelial structures, mainly via the F(ab)2 portion of the 
IgG immunoglobulin with low avidity [70, 73, 75, 77-79]. The low avidity binding is 
probably the reason for in vivo absence of antibody deposits in the affected vessel wall as 
detected by immunohistochemistry technique [75]. AECA exhibit limited cross-reactivity 
with other cell types, mainly fibroblasts [73]. 
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Bound AECA have the potential to mediate EC injury and lysis through either 
complement or cytotoxic effector cells (CD8+, NK cells) or by more fine changes in EC 
function. The AECA have been found to fix complement in sera from SLE patients, but a 
defined cytotoxic effect has only been demonstrated in patients with haemolytic uremic 
syndrome (HUS) and thrombotic thrombocytopenic purpura [70, 73, 81]. 
Antibody dependent cellular cytotoxicity (ADCC) has been demonstrated in some patients 
with SLE and systemic sclerosis [82]. ADCC is a process by which specific antibody 
binds to the target cell and engages a natural killer cell (NK cell) via its Fc receptor 
causing subsequent lysis of the target EC cell. The importance of ADCC in vasculitides is 
not clear [34, 66]. However, AECA from WG and SLE patients have shown to:  

i) increase expression of adhesion molecules such as CD62E, VCAM-1, and 
ICAM-1, 

ii) leukocyte accumulation and adherence,  
iii) enhanced secretion of proinflammatory cytokines and chemokines (IL-1, IL-6, 

IL-8, and MCP). 
 
The cytokine secretion seems to support the up-regulation of adhesion molecules via an 
autocrine loop [74, 75, 83]. All of these effects might potentially cooperate in inducing the 
vessel wall inflammation seen in vasculitis in vivo. The absorption of anti-PR3 activity 
does not seem to affect the EC modulating effects of isolated IgG AECA from WG 
patients. However, IgG from ANCA positive sera (but AECA-negative) failed to induce 
adhesion molecule expression and leukocyte adherence. There are also WG patients 
positive for AECA, but negative for ANCA, representing patients with a higher risk for 
clinical relapse [74, 75]. One experimental model has provided further evidence that 
AECA can be pathogenic. A panel of mice were immunized with AECA-reactive IgG. 
The mice shortly developed histological signs of both renal and pulmonary vasculitis [74, 
75, 84]. 
 
The antigen targets of AECA are not well defined. Antigen characterization using Western 
blotting and immunoprecipitation of AECA-postive sera with cell membrane preparations 
or whole EC extracts have given indecisive results (ranging between 25-200 kDa) [78, 79, 
85] probably due to the technical difficulties and the wide range of hetergenous antigens 
[49, 75]. However, absorption studies have shown that AECAs antigen specificity does 
not seem to be; nuclear, ABH blood group or MHC complex antigens [69, 73]. The 
diagnostic influence of AECA and the understanding of its role in disease will improve 
when the autoantigens are defined.  
 
 
Damage by the coagulant / thrombotic system 
AECA may have further effects on the EC by promoting a procoagulant state, in concert 
with IL-1 and TNF, with increased production of tissue factor (TF) [61] and von 
Wilebrand factor (vWF) [86]. TF is the initiator of the extrinsic coagulation pathway and 
vWF mediates the process by which platelets adhere to exposed collagen and release their 
granular contents [61]. Furthermore, the thrombosis products themselves can then trigger 
EC activation, leukocyte recruitment and inflammation, for example: thrombin and fibrin 
activate EC to secrete IL-8. Fibrin is also an important chemoattractant for macrophages 
into the Bowman´s space [87]. 
 
Platelets may also contribute to vascular damage via a variety of surface receptors, 
including MHC class I molecules, IgG receptors, low affinity IgE receptors, vWF and 
fibrinogen receptors [66]. Normally, platelets do not adhere to the vascular endothelium or 
to each other, but when the vessel wall is damaged they accumulate and adhere to 
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macromolecules, such as collagen, that is exposed in the subendothelial tissue. Upon 
adhesion to the sub-endothelium, the platelets become activated, change shape, release 
their granular contents (which accelerate the formation of the platelet plug and play a role 
in tissue repair), and aggregate to form a first plug. The surface of activated platelets 
provides a procoagulant surface that triggers the sequential activation of clotting factors to 
produce the thrombin burst that result in fibrin polymerization [65, 66]. 
 
 
Damage by other immunocompetent cells 
Other immunocompetent cells also have the potential to damage the endothelium. In 
autoimmune vasculitis it is possible that EC present autoantigen to either HLA class II or I 
restricted T cells, since EC have the capacity to present antigens to T cells in vitro [88]. 
Activated T cells, predominatly CD4+, are found in biopsy specimens of the respiratory 
tract and kidneys and in PBMCs of WG patients [61]. There is no data yet relating to the 
potential cytotoxicity of monocytes, NK cells or eosinophils to the endothelium in 
vasculitic disorders [66]. 
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CIRCULATING ENDOTHELIAL CELLS 
 
Origin of circulating endothelial cells 
Until recently, it was believed that vascular formation in adults resulted exclusively from 
proliferation, migration and remodelling of pre-existing vessels, a process referred to as 
angiogenesis. Angiogenesis is important for general development, reproduction and 
wound healing, but also for tumour growth and metastasis. In contrast, vasculogenesis is 
defined as the formation of new blood vessels from endothelial progenitor cells (EPCs) 
during embryogenesis. The first evidence for postnatal neovascularization by human 
peripheral blood-derived CD34+ precursors (EPCs) was shown in an immunodeficient 
mice model of hindlimb ischaemia by Asahara and colleagues, who described the 
incorporation of progenitors into sites of active angiogenesis [89]. Angiogenesis and 
vasculogenesis is believed to occur simultaneously [90, 91]. A putative candidate called 
the “hemangioblast” is thought to be a common stem cell precursor for both EC and 
hematopoietic stem cells [43, 92, 93]. 
Circulating EPCs are presumed to be bone marrow derived and to be important in repair 
following vascular damage, while circulating mature EC are cells that randomly detach 
from the vessel wall and enter the circulation as a result of vascular injury [90, 94, 95]. 
There is no proof of biological function assigned to the circulating mature EC.  
 
 
Vascular injury: detachment of endothelial cells 
In normal conditions, 99% of endothelial cells are quiescent and the physiological 
turnover of the endothelium is reflected by low basal levels of circulating EC (CECs; EPC 
including mature EC). In healthy individuals, hardly any CECs are detectable in the 
peripheral blood. The potential mechanisms of EC detachment from the vessel are 
multiple [96, 97]. Mechanisms suggested to be associated with increased detachment of 
EC are summerized in Table 5. 
 
Table 5. Possible mechanisms of endothelial cell detachment in vascular injury. 

Activation of apoptosis 
Cytokine and protease-mediated injury 
Defective endothelial cell adhesion: intercellular, or to the extracellular matrix 
Imbalance in pro-angiogenic and anti-angiogenic factors 
Mechanical injury 
Drugs, e.g. cyclosporine 

 
 
Characterization of circulating endothelial cells 
Conformity about the phenotypic differentiation of EPC and circulating mature EC is still 
lacking as these cells share several markers. The most widely used EPCs surface marker 
are Flk-1/KDR and CD133, although Flk-1/KDR is also expressed on mature EC [98-
102]. Flk-1/KDR is a receptor for vascular endothelial cell growth factor (VEGF). This 
receptor seems to be important for embryonic endothelial cell differentiation and 
vasculogenesis. FLk-1 cells can give rise to both endothelial cells and vascular smooth 
muscle in vitro and in vivo [98, 103]. CD133 is downregulated upon differentiation and is 
therefore a marker for EPCs. CD133 positive cells have the capacity to differentiate into 
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EC in vitro [98, 99, 104]. A very small subset of cells (0.01 - 0.002%) of mononuclear 
cells in the peripheral blood stain positive for these two markers simultaneously [99, 100]. 
CECs are mostly detected with antibodies against CD146. The marker CD146 is however 
not specific for mature EC and detects both EPCs and mature EC in the circulation [94, 
105-109]. Thus, currently there are no specific markers that help differentiate EPCs from 
mature EC. Therefore phenotypic markers that may help distinguish between these two 
EC types are needed.  
 
 
Isolation of circulating endothelial cells 
From a clinical point of view, markers of ongoing endothelial injury and damage are of 
great interest for the diagnosis, monitoring of the disease activity, as well as to make a 
decision about treatment.  
The methodology for detecting CECs evolved from smears of peripheral blood [110] to 
immunomagnetic isolation [110, 111]. Since CECs are present in extremely low levels as 
compared with other cell populations in peripheral blood, the CD146-immunomagnetic 
isolation has become the golden standard for their detection and enumeration [105]. 
However, EPCs may also be CD146 positive, which make the method unreliable and 
needs futher evaluation [94]. The most common alternative to the CD146-immunobead 
method is flow cytometry, where whole blood is generally labelled with monoclonal 
antibodies. Flow cytometry is regarded to be more sensitive, often reporting up to 1000-
fold higher numbers of CECs as compared with the immunobead method [94]. The 
variability in the numbers of CECs is not only a reflection of different methods used, but 
also the diversity of each disease studied. In Table 6 some studies of CECs enumeration in 
different diseases are summarized. 
 
 
Table 6. Circulating endothelial cells (CECs) in vascular disorders. 
 

Disease 
 

Method used Cases (CECs/ml) Normals (CECs/ml) 

SLE Flow cytometry 
 

89 10 

Systemic sclerosis Flow cytometry 
 

243-375 77 

ANCA vasculitis 
 

Immunobead 136 5 

Kawasaki disease Immunobead 15 6 
 

Throbotic thrombocytopenia 
 

Immunobead 6-220 <3 

Rickettsial infection 
 

Immunobead 5-160 <3 

Renal transplantation 
 

Immunobead 24-72 6 
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Circulating endothelial cells in vascular disorders 
Elevated levels of CECs are found in a variety of conditions characterized by vascular 
injury or vessel formation (Table 6) and the number of CEC have been shown to correlate 
with the degree of endothelial injury or neovascularization.  
In ANCA associated vasculitis, SLE, Behcet´s disease, acute coronary syndromes, sickle 
cell patients, and in patients following allogenic stem cell transplantation - CEC levels 
were higher during the acute phase of the clinical syndrome and were found to predict 
both the severity and outcome in the vascular disease [106, 107, 111-113]. In remission, 
patients demonstrate only moderately elevated CECs numbers and with immuno-
suppressive treatment the CECs numbers decline markedly. With ANCA-associated 
vasculitis, it has also been demonstrated that these CECs were necrotic together with pro-
coagulant features [114, 115]. 
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INFLAMMATORY MOLECULES 
 
Endothelial cells (EC) are able to amplify the inflammatory response by adhesion 
molecule expression, cytokine production and angiogenesis (angiogenesis is not further 
discussed) [34]. EC act as the gatekeepers for tissues, regulating the quality and amount of 
leukocytes entering organs during both basal immune surveillance and inflammation. In 
order to do this EC respond to cytokines/chemokines and other proinflammatory agents 
that alter or induce the expression of molecules on the endothelium, leading to the ordered 
capture and later transendothelial migration of leukocytes from the blood [66]. 
 
Two such “stress”- induced molecules on the endothelium are the vascular adhesion 
protein 1 (VAP-1) and MHC class I – related chain A molecule (MICA). In this thesis, 
VAP-1 and MICA were shown to be highly expressed in kidney sections from active WG 
patients. Therefore, these two molecules will be further highlighted.  
Another important feature of inflammation in vascular disease is the chemokines that 
direct the migration of leukocytes to the site of injury [116, 117]. A brief description of 
some chemokines detected in our studies will follow in Table 7.  
 
 
MHC class I – related chain A molecule (MICA) 
Major histocompatibility complex (MHC) class I chain related molecules (MIC) show 
homology (30%) with classical human leukocyte antigen (HLA) molecules, but they do 
not bind peptide nor combine with the β2 microglobulin, are not expressed on normal 
circulating lymphocytes, and are not upregulated by IFN-γ [118, 119]. The MIC genes are 
located within the MHC class I region of chromosome 6. Seven MIC loci (MICA-MICG) 
have been detected, of which only MICA and MICB encode expressed transcripts. There 
are more then 50 recognized human MICA alleles. MICB is less polymorphic, although 17 
alleles have been described so far. The MICA locus encodes a membrane bound poly-
peptide of 383-389 amino acids with a relative molecular weight of 62 kDa, and the MICB 
locus encodes a protein of 383 amino acids bearing 83% homology with MICA [118]. 
The biological function of MICA and MICB still remains unknown, but in response to 
stress (e.g., virus, bacteria, heat, cold, oxygen deprivation), MIC proteins are expressed in 
endothelial cells, monocytes, epithelial cells, and fibroblasts, but not in CD4+, CD8+ or 
CD19+ cells [118, 119]. MIC acts as a ligand for NK cells, γδ T-cells and CD8+ T cells 
which express NKG2D receptor that co-localizes with DAP10, a transmembrane signaling 
adapter protein [118, 119]. When MICA is recognized by NKG2D receptors, this 
engagement is supposed to activate the cytolytic responses of the NKG2D bearing cells 
against the MICA expressing cells resulting in lysis of the cells [120]. In humans, the 
NKG2D receptor has a dual role: it functions as a stimulatory receptor in NK cells and as a 
co-stimulatory receptor in T-cells, however the mechanism underlying this functional 
duplicity is not fully elucidated. [121]. 
 
MIC molecules have been shown to be involved in areas like CMV infection, tumor 
biology and transplantation. For example, in transplantation, one study showed a 
significant correlation between pre- or post-transplant MICA specific antibodies and graft-
loss. A total of 43,7 % of the patients with acute rejection had antibodies that reacted with 
kidney EC, wheras 90% of the non-rejectors did not [122]. 
 
MICA has also been involved in some autoimmune diseases. In RA, soluble MICA was 
found in large amounts in synoviocytes maybe causing autoreactive T cell stimulation 
[118]. In addition, as compared with healthy individuals, patients with WG, RA, and 
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multiple sclerosis have been shown to have increased frequencies of CD8+/CD28 null T-
cells expressing killer cell inhibitory receptor (KIR) and/or NKG2D. One proposed idea is 
that the acquisition of stimulatory NK receptors by senescent T cells contributes to the 
breakdown of tissue tolerance in autoimmune diseases. The expression of stimulatory NK 
receptors could provide a mechanism through which the TCR activation can be amplified 
and through which the threshold for T cell activation by self-antigens can be lowered. 
Since NKG2D is constitutively expressed, acquisition of its stress induced MIC ligands 
might be the triggering incident that leads to breakdown of tolerance [121]. Whether 
breakdown of tolerance occurs in a similar manner in WG is not known. 
 
 
Vascular adhesion protein 1 (VAP-1) 
VAP-1 is a glycoprotein consisting of two identical subunits of 90 kDa upregulated upon 
inflammation from intracellular granules distinct from Weibel-Palade bodies. It is 
expressed in endothelial cells, pericytes, smooth muscle cells, fat cells, dendritic cells in 
germinal centers, but is absent in all leukocytes [123, 124]. VAP-1 functions as an 
adhesion molecule in the process of leukocyte trafficking to sites of inflammation. Only 
CD8+ T cells and NK cells bind to VAP-1, while monocytes, B cells or T helper cells do 
not. The ligand couterpart for VAP-1 is not characterized [125-129]. 
Besides its adhesive property, it also possesses semicarbazide-sensitive amine oxidase 
(SSAO) enzyme activity. SSAO belongs to the copper-containing monoamine oxidases 
that catalyze the oxidative deamination of primary amines to the products: aldehyde, 
ammonium, and hydrogen peroxide [124, 130]. Both hydrogen peroxide and aldehydes are 
potent biological substances. At high concentrations they are cytotoxic and may contribute 
to different vascular lesions. Hydrogen peroxide may also have a signalling role in 
proliferation and gene expression of P-selectin in vascular EC and smooth muscle cells, 
further improving the leukocyte rolling [131]. VAP-1 SSAO activity is also required and 
critical for leukocyte transmigration, but how the adhesive and enzymatic properties of 
VAP-1 collaborate in this process remains unknown. Usage of the new SSAO inhibitor 
(BTT-2027) is the first evidence that blocking of the SSAO activity effectively 
ameliorates the development of an inflammatory reaction in vitro and the possibility of 
successfully combating inflammatory reactions via these small molecule compounds 
may open new ways for developing useful anti-adhesive therapeutics [130]. 
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Chemokines 

Table 7. Brief description of the chemokines used in this study [117, 132]. 
 
Chemokine Attractant for 

 
Expressed in 

MCP-1 Monocytes, macrophages, T-cells EC, fibroblasts, smooth muscle cells, epithelial 
cells, mononuclear leukocytes 
 

IL-8 Neutrophils EC, monocytes, macrophages, T-cells, fibroblasts, 
keratinocytes 
 

GRO-α Neutrophils HUVEC, monocytes, fibroblasts, epithelial cells, 
melanocytes 
 

GCP-2 Neutrophils EC, fibroblasts 
 
 
 

ENA-78 Neutrophils EC, fibroblasts, platelets, mast cells 
 
 

MIP-1α Mainly CD8+ T-cells, but also B-cells, 
NK-cells, dendritic cells, eosinophils, 
macrophages 

EC, T cells, B cells, monocytes 
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AIMS OF THE PRESENT STUDY 
 
The exact mechanisms by which endothelial cells of the upper and lower respiratory 
tract and kidneys are damaged in Wegener´s granulomatosis are not known.  
Therefore, the general aim of this thesis was to elucidate some of the mechanisms by 
which endothelial cells are damaged in Wegener´s granulomatosis.  
 
 
The specific aims were: 
 
Paper I.  
To study the interaction and frequencies of AECA in WG sera with clinically relevant 
endothelial cells isolated from the small blood vessels of the nose, kidney and lung. 
 
Paper II.  
To isolate and characterize human nasal endothelial cells from the inferior turbinate. 
 
Paper III.  
To elucidate the role of circulating endothelial cells in the pathogenesis/progression of 
Wegener´s granulomatosis. 
 
Paper IV.  
To investigate the functional role of IgG AECA in the pathogenesis of WG. 
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METHODOLOGICAL CONSIDERATIONS 
 
Most of the methods have been described in detail in Papers I-IV. The following section 
list some of the methods used together with some general considerations. 
Informed consent was obtained from all patients prior to blood or tissue sampling.  
All studies were approved by the ethics committee at Karolinska University Hospital in 
Huddinge (Dnr 407/01 and 263/03).  
 
 
Patients and samples  
In paper I, serum samples from WG, “limited Wegener´s granulomatosis” (LWG), 
microscopic polyangiitis (MPA) and renal limited vasculitis (RLV) were included. 
All patients were defined according to the “Chapel Hill Consensus Conference on the 
nomenclature of systemic vasculitides”. For comparison, patients with SLE, RA and 
healthy normal individuals were also included. All SLE and RA patients were under 
treatment at time of blood sampling. After blood sampling, serum was separated by 
centrifugation and stored in -20 °C until use.  
In paper II, human nasal specimens (1-2 cm) were obtained from patients undergoing 
surgery due to some structural deformity, such as septal deviation, for the isolation of 
nasal EC. These patients were healthy and with no other pathological conditions apart 
from their septal predicament, that might have an effect on the actual outcome of the nasal 
EC isolation. After surgery, the biopsy was immediately placed in standard cell culture 
medium (RPMI 1640) until isolation was performed. Isolation of nasal EC was usually 
performed within 3-4 hours after surgery. 
In paper III, blood samples were obtained from untreated active PR3-ANCA positive WG 
patients, treated WG patients in remission and normal healthy controls. All blood samples 
were analysed on the same day, in most cases within 1-2 hours. 
In paper IV, sera from WG patients known to have high frequencies of AECA reactive 
against kidney EC (based on our previous results in paper I) were pooled and used for 
further isolation of IgG fractions. 
 
 
Detection of AECA with flow cytometry 
The detection of AECA in patient sera against endothelial surface antigens can be 
performed using various methods. The most common are flow cytometry assay and 
enzyme-linked immunosorbent assay (ELISA). For the flow cytometric assay, trypsinized 
and single-cell suspended cells were incubated with patient serum, followed by a 
secondary fluorescent-labelled anti-human antibody that was detected by the flow 
cytometer.  
The advantage of the FACS technology is that it is rapid, quantitative and phenotypically 
different subsets of cells can be studied simultaneously. In addition, several measurements 
such as; debris, cell size, granularity, cell death, cell proliferation, cell cycle analysis, 
cytokine expression etc, can be applied by using the flow cytometry. When studying a 
known homogenous population of cells, flow cytometry may not be necessary. In such a 
case the ELISA method is equally quick, easy, less expensive and allows processing of 
larger number of samples per day than with the flow cytometer. However, flow cytometry 
is also used for uniform cell populations [80]. 
The advantage of cell based ELISA is that the cells are in their natural adherent monolayer 
appearance. The drawback is that the immobilization/fixation of the cells might alter the 
protein confirmation of the native protein making the true antigen undetectable, and might 
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give false positive or negative reactions [133, 134]. Second, sera have been found to react 
strongly with the gelatin coating used in ELISA plates to facilitate EC adhesion [80]. 
Whether the antibodies in the sera bind to the gelatin coating in a non-specific manner or 
reacting specifically against gelatin epitopes is not clear. In addition, the colored end 
product is proportional to the amount of protein in the whole sample, which does not 
permit single cell analysis.  
 
 
Isolation of nasal endothelial cells 
In one of our studies we used five different types of human microvascular EC. These were 
isolated from; nose, kidney, lung, liver and human umbilical cord (HUVEC). 
Lung (HLMEC) EC and HUVEC were commercially purchased and were cultivated in 
their respectively recommended media. Kidney (HKMEC) and liver (HLSEC) EC were 
isolated according to methods described earlier in detail [135, 136]. 
However, for the isolation of the nasal endothelial cells (HNMEC) there did not exist any 
established protocol. Briefly, the nasal biopsy specimens were first cut/minced into small 
pieces and enzymatically digested with collagenase type IV solution. We found that 
collagenase IV and a digestion time of 5-7 minutes were enough to break down the native 
collagen that holds the nasal tissue together.  
The HNMEC were isolated using anti-CD144 antibody coupled microbeads. This method 
is simple, quick and gave a general yield of approximately 2.5x105 CD144+ cells per 1.5 
cm of nasal tissue specimens. Culture of CD144+ cells demonstrated the presence of two 
heterogeneous EC populations with different morphology; one cobblestone and one 
fusiform. From these cultures we manually picked the cobblestone and the fusiform 
populations and placed these in new individual culture plates. This step needed precision, 
a firm hand and good knowledge of cell morphology. Both cell types were cultured under 
same conditions and maintained their characteristics during 11-13 passages. The vascular 
type was however more frequent in the CD144+  cultures, yielding in general 70% vascular 
and 30% sinusoidal HNMEC. 
 
 
Gene microarray 
In one of the studies (paper II) we performed a microarray analysis. Total RNA from two 
different populations (vascular and sinusoidal) of unstimulated HNMEC was prepared. 
Labelled cDNA were hybridized to a Human Genome U133 Plus 2.0 Gene chip which 
represents around 38 500 genes, where some genes were represented by more than one 
probe set. The actual microarray procedure was performed by Karolinska Institute Core 
Facility using well-established standard protocols from Affymetrics, Inc. (Santa Clara, 
CA, USA). This method generates large amounts of genetic information, which can be 
obtained in a short period of time. However, it is tedious to handle all data properly for a 
correct analysis. The sample data is given as fold change e.g., increased or decreased in 
comparison between the two samples, and not absolute values of the relative mRNA 
abundance for each representative gene. The use of a third sample for comparison would 
give more accurate results. Unfortunately, the reproducibility is limited by the high cost of 
the assay. Another disadvantage is that data collected from different microarray platforms 
cannot be accurately compared due to the absence of a “common language” to exchange 
data between different groups.  
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Boyden chamber assay 
The Boyden chamber is used to study the chemotaxis of leukocytes or other migratory 
cells. A solution containing a chemokine/chemotactic factor is placed in the bottom 
chamber and the cell suspension is placed in the upper chamber. A filter separates the 
lower and upper chamber. Cells are then allowed to migrate through the pores, across the 
thickness of the filter, and toward the source of chemoattractant in the lower chamber 
[137]. 
Another way of studying cell migration is by using a transwell system [138]. In this 
system the filters are inserted at the bottom of a dish ranging from 24-96 well sizes, which 
can be inserted in a suitable cell culture plate. The transwell system is much easier to 
handle since the size of the loading chambers are larger and operates with larger volumes 
of fluid. Small volumes of fluids often make bubbles when pipetting, which can disturb 
the assay especially in the Boyden assay where the volume in the upper chamber is only 
56 µl. However, for small quantities of cells and fluid the Boyden assay is prefered to the 
transwell system. Cell-cell/cell-substrate/cell-matrix interactions and feeder-layers can 
also be studied with the transwell system since cell layer can be cultured on top of the 
filters. The filter can later be fixed and subjected to both transmission and scanning 
electron microscopy (EM). Neither cell culturing nor EM is possible with the Boyden 
chamber filters. However, both the Boyden and transwell system can be used to study 
chemotaxis, chemokinesis and haptotaxis.  
 
 
Calcium mobilization 
To evaluate if isolated IgG from WG patients had a capacity to mobilize calcium flux in 
EC, a dual-excitation fluorescent microscopy was used together with the calcium-sensitive 
ratiometric dye Fura 2-AM. Stimulus, WG IgG or normal IgG was added to the cells in a 
final concentration of 0.5 mg/ml. Total record time was 200 seconds. Images were 
acquired and the ratio between 340 nm/380 nm ratio images were calculated 'off-line' 
following background subtraction with commercially available software (Miracal, Life 
Science Resources Ltd). A measurement of Ca2+ levels with fluorescent probes is one of 
the most sensitive techniques known. The method is based on the principle that these 
compounds display shifts in their excitation or emission upon calcium binding [139-141]. 
Since there are no known reports about IgG AECAs role as a stimulating/activating agent 
on endothelial cells in vasculitides, this study was conducted in order to see if IgG AECA 
from WG patients had a capacity to mobilize a calcium flux in kidney EC. With this 
method, a first sign of cell activation can be determined, however, downstream events, 
such as signalling pathways, cannot be determined.  
 
 
Purification of human anti-PR3 depleted IgG antibodies 
Sera from WG patients known to have AECA reactive against HKMECs (based on our 
previous results in paper I) were pooled and total IgG fractions were isolated using goat 
anti-human IgG (Fc-chain specific) agarose beads according to standard procedure.  
Bound IgG was eluted by 0.1 M Glycine-HCl (pH 2.5) in fractions and neutralized with  
1 M Tris-HCl (pH 7.5). Protein concentration was measured spectrophotometrically at 280 
nm, IgG fractions were pooled, dialyzed, lyophilized, and resuspended in distilled water.  
 
Since a role for neutrophils and c-ANCA has been implicated in the pathogenesis of WG, 
we depleted the WG IgG fractions from c-ANCA antibodies (directed against PR3). The 
isolated WG IgG fraction was then applied to a prepared PR3-column and the flow-
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through was collected, dialyzed and concentrated as described above. The efficiency of 
anti-PR3 depletion was evaluated by measuring the ANCA activity by anti-PR3 ELISA 
(PR3-ELISA from Wieslab AB, Lund, Sweden) according to manufacturer’s protocol. IgG 
concentration was determined by standard Mancini method. The PR3-depleted WG IgG 
was used for all subsequent analysis.  
 
 
SDS-PAGE and Western blot 
SDS-PAGE and Western blotting was performed to identify the autoantigen(s) recognized 
by anti-PR3 depleted WG IgG. HKMEC were labelled with biotin-7-NHS (D-biotinoyl-e 
aminocaproic acid-N-hydroxysuccinimide ester) solution and immunoprecipitated 
according to standard protocol. The biotin-labelled proteins were purified by 
immunoprecipitation (with 10 mg/ml of WG IgG) and protein G agarose beads. 
Immunoprecipitated proteins were then electrophoretically separated on an 8% resolving 
gel. After electrophoresis, the proteins were blotted onto a PVDF membrane and 
subsequently detected using a streptavidin-horseradish peroxidase conjugate and 
luminal/iodophenol as substrate. The chemiluminescence signal was visualized by 
exposure on X-ray film. 
This method is sensitive and involves many steps that might give unexpected results.  
For example, it is difficult to assay if the immunoprecipitation with the primary antibody 
has worked successfully, and when loading the protein onto the gel the exact amount of 
protein is not known. Another drawback is that proteins of same size cannot be separated. 
For example, if we have many copies of two different proteins that were both of the same 
amino acids long, they would travel together through the gel in a mixed band. As a result, 
it is not possible to separate these two proteins from each other with SDS-PAGE method. 
A 2-dimentional gel (2D-gel) approach where the proteins are separated according to size 
and isoelectric point would give a better molecular identification of the proteins.  
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RESULTS AND DISCUSSION 
 
Organ specific anti-endothelial cell antibodies  
AECA have been described in several vasculitis disorders both primary and secondary 
vasculitides, with a common effect resulting in endothelial damage [30, 70, 74, 75]. 
Although, the presence of AECA in ANCA-positive vasculitis and SLE are the most 
documented [142]. In most of these studies regarding AECAs pathogenic role, HUVEC 
cells have been traditionally used as a target cell line [39, 143, 144]. This may be 
misleading, due to the fact that the endothelium displays phenotypic and functional 
heterogeneity depending on the anatomical site. In WG it is the small to medium sized 
vessels that are damaged, whereby the use of a large vein EC becomes questionable. The 
anatomic localization of the affected vessel is also closely related to the clinical 
manifestations seen in vasculitides. 
 
Therefore, in paper I, we isolated EC from the relevant target organs affected in WG 
namely, nose, lung and kidney, for the detection of AECA in sera from WG and MPA 
patients. Sera from RA, SLE and normal healthy controls were also included in the study. 
We found by flow cytometry, that significantly higher numbers of WG patients reacted 
specifically against unstimulated kidney (71%) and nose (61%) EC, as compared to 
unrelated target cells like HUVEC (7%) and liver (0%) EC (p<0.0001). These findings 
point out the importance of using the correct target EC when studying different vasculitis 
disorders, since EC have specialized functions depending on their tissue location. The 
same pattern of reactivity was also seen in WG patients in remission. However, the titres 
of the AECA were much lower.  
Another pattern was shown with RA and SLE sera. AECA from RA patients reacted 
weakly (0-10%) in general (except with lung EC 60%) against all of the EC used, while in 
SLE, AECA reacted strongly (between 55-100%) against all EC types without any organ 
specificity. RA is an autoimmune disease that causes chronic inflammation mainly of the 
joints [145] and SLE is a chronic disease with many manifestations in glomeruli, skin, 
kidney, lungs, synovium and other places [146]. The different disease patterns in these two 
disorders correlate with the low percentage of AECA in RA sera and high percentage of 
AECA in SLE sera, respectively.  
 
AECAs reactivity was also investigated against cytokine stimulated (TNF-α and IFN-γ) 
EC. Interestingly, significantly fewer sera reacted against stimulated kidney (29%) and 
nose (11%) EC (p<0.001). A similar pattern of decreased AECA reactivity upon cytokine 
stimulation has also been described in haemolytic uremic syndrome (HUS) [81]. 
Speculations on this decreased reactivity may be that TNF-α and IFN-γ induce a down 
regulation of the AECA target antigen, or induce an antigen alteration, alternatively induce 
endocytosis of the antigen making the antigen undetectable for AECA. Maybe this might 
explain the fact that WG patients show high levels of AECA in circulation and absence of 
in vivo antibody deposits in affected vessels [147]. 
Nor do most types of vasculitides show any in vivo complement depositions, indicating 
that AECA most probably are not lytic. Antibody dependent cellular cytotoxicity (ADCC) 
has only been established in a few studies concerning AECA role in vasculitis [147] and is 
not regarded as a mechanism involved in EC damage in vasculitides.  
 
We found that WG sera were not able to lyse unstimulated nose or kidney EC in a 
complement-dependent cytotoxic assay. However, when using cytokine stimulated nose 
EC, WG sera lysed ~ 60% of the nose EC as compared to 10-15% in the unstimulated 
scenario. Perhaps the cytokine treatment makes the cells further susceptible to unknown 
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reactive components present in the sera. The same experiment was carried out after heat-
inactivation (1 hour, 56 °C) of the WG sera, and the percentage of lyzed cells remained the 
same, indicating that the complement factors (e.g., are heat-labile) may not play a role in 
the lysis of cells. Furthermore, this increased lysis of nose EC was only observed with WG 
and MPA sera and not with RA or SLE sera, again reflecting the disease specificity in 
vasculitis. However, addition of sera from all patient groups to cytokine stimulated lung 
EC resulted in increased lysis. In addition, without adding rabbit-complement to the 
reaction, nose and lung EC were the two cell types most sensitive to cytokine treatment as 
detected with propodium iodide staining of dead cells. Another interesting finding was that 
addition of WG but not MPA sera, to cytokine stimulated nose EC resulted in aggregation 
or clumping of the cells. The biological significance of this observation is currently not 
known. 
In summary, these results give additional confirmation that EC from different locations are 
in fact heterogeneous not only in their phenotype, but also in their response to different 
stimulus. This indicates the importance of using clinically relevant target EC for a better 
understanding about the processes underlying the disease mechanism in WG as well as in 
other vasculitides.  
 
 
Nasal endothelial cells  
We report a novel finding about the presence of two heterogeneous populations, vascular 
and sinusoidal, of human nasal microvascular EC isolated from the inferior turbinate. 
During the isolation of nasal EC in paper I, we observed the presence of two 
morphologically different EC in the cell cultures. Therefore, in paper II, we pursued this 
observation and studied in detail the two different EC types.  
Both populations were examined by light and electron microscopy, flow cytometry and 
immunocytochemistry. Analysis demonstrated that the vascular population exhibit classic 
vascular endothelial markers (CD31, CD62E) with cobblestone-like morphology.  
The sinusoidal population had fusiform morphology and did not express CD31 and 
CD62E. However, the sinusoidal population expressed another surface marker, L-SIGN, 
which is found in sinusoidal EC of the liver and lymph nodes [135]. The sinusoidal 
population also showed other features, such as fenestration, lack of tight junctions and was 
discontinuous. These EC characteristics resemble those of the liver EC where the 
arrangements of the liver sinusoids facilitate the exchange that takes place between the 
blood and hepatocytes [45, 46, 148]. In comparison, the microvasculature of the nose 
contains a network of capillaries with fenestrations allowing water to escape into the 
lumen airway, permitting evaporation and enabling conditioning of the inspired air [149, 
150]. Perhaps the lack of CD31 and CD62E expression in the nose is a reflection of their 
different functions that may have impact on their leukocyte interactions at this anatomic 
site. Currently, there are no studies performed on how immune cells interact with nasal 
sinusoidal EC and the consequences of these interactions are not known.  
 
In the liver, it has been suggested that the lack of important adhesion molecules might 
indicate an increased risk of recurrent infections [45, 46] and the loss of fenestrations may 
result in diseases like cirrhosis, fibrosis, atherosclerosis, hyperlipoproteinemia and cancer 
[48]. Our group has recently shown that autoantibodies against liver sinusoidal EC can 
transform these cells to a vascular type with no fenestration and tight junctions [135]. This 
transformation may play an important role in hepatocellular failure and portal 
hypertension in patients with autoimmune hepatitis and primary biliary cirrhosis. Whether 
capillarization of the nasal sinusoidal EC occurs in various nasal disorders is not known 
and will be interesting to investigate. 
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The existence of vascular and sinusoidal EC was further confirmed by in vivo staining of 
nasal biopsy sections. Here, sinusoidal EC (L-SIGN positive) were found mainly in the 
surrounding area of epithelial cells, whereas vascular EC were found in vessel areas. This 
typical pattern is also observed in the liver [45, 46, 48]. 
For additional insight in the EC heterogeneity, the vascular and sinusoidal EC were 
analysed by gene array. From the vast data generated, we selected genes considered to be 
involved in human EC biology. In general, the profile between the two populations was 
comparable, with a few exceptions. The sinusoidal EC showed higher expression of five 
genes: MMP-1, MCP-1, CD106, collagen type 1 and osteoprotegerin.  
Further investigation is needed in order to explain if these differences have any 
physiological or clinical implications. However, it is important to note that this represents 
cells from one individual at one single time point, and it is likely that the gene expression 
will vary between individuals.  
In conclusion, these two heterogeneous EC populations provide a unique in vitro system to 
study the biology of nasal vascular and sinusoidal EC in normal conditions as well as 
inflammatory processes in various nasal disorders such as: asthma, non-allergic 
inflammation, allergic rhinitis, vasculitides such as Wegener´s granulomatosis, nasal 
polyposis and other nasal diseases.  
 
 
Circulating endothelial cells 
Circulating endothelial cells (CECs) consist of at least two cell types: endothelial 
progenitor (EPCs) cells and mature inflammatory EC (IECs). EPCs are either bone 
marrow or peripheral blood derived and IECs are probably detached from the vessel wall 
and enter the circulation due to vascular injury. Several studies concerning vasculitis (as 
well as in other disorders) indicate the use of CECs as a disease marker and /or as a 
monitor marker for relapses [94, 107, 109, 110, 112, 114, 115, 151-158]. Most of these 
studies isolate CECs by using CD146 antibody coupled magnetic beads [94, 105, 109, 
114, 158]. CD146 is expressed on both progenitor and mature EC [94, 114], but also in 
our experience on activated T cells (unpublished results), making the results hard to 
interpret. On the other hand, EPCs have been identified using monoclonal antibodies 
against several surface markers including; CD133, VEGFR-2, Tie-2, and CD34 [99, 101, 
104, 159-166]. No general agreement of a consensus for EPCs and IECs markers exists 
today. 
 
In paper III, we reported that WG patients with active disease displayed significantly 
higher number of circulating (IECs), as compared to WG patients in remission and healthy 
controls. A novel finding is that these circulating IECs could be distinguished from EPCs 
by the expression of vascular adhesion protein 1 (VAP-1) and MHC class-I related chain 
A (MICA). IECs expressed both VAP-1 and MICA, while the EPCs did not. Isolated IECs 
(with VAP-1 coupled beads) showed expression of MICA, several known endothelial cell 
surface markers, but were negative for stem cell, leukocyte, monocytes, B cell and NK cell 
staining, indicating their true endothelial origin.  
 
EPCs were isolated by a two-step colony-forming assay resulting in colonies of EPCs 
consisting of multiple thin, flat cells originating from a central cluster of rounded cells 
[167]. Colonies were counted manually and stained positive for markers like CD133 and 
VEGFR-2, and e-NOS. EPC colonies were negative for VAP-1, MICA and i-NOS 
staining. By flow cytometry, single and double staining also confirmed the fact that VAP-
1 and MICA might be used as markers to distinguish EPCs from IECs.  
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EPCs have been shown to contribute to the homing and regeneration of the vasculature in 
several injury-model studies [89, 90, 102] while no function has so far been ascribed to 
IECs after their detachment from the site of injury. 
 
However, we showed in this study that IECs secreted various neutrophil activating 
chemokines (IL-8, ENA-78, MIP-1α and GRO-α) and expressed iNOS and supernatants 
from IECs induced increased neutrophil migration. In addition, supernatants from IECs 
had a significant negative effect on the proliferation, migration and eNOS expression of 
EPCs. WG patients with active disease also showed decreased amount of EPC colonies as 
compared to those in remission. Together, these results indicate that IECs may contribute 
to the vascular damage by impairing the functional capacity for repair by EPCs (see figure 
2, page 50), and IECs might be helpful as a disease marker in the diagnosis of WG.  
 
In vivo staining of kidney sections from WG patients with active disease showed 
expression of endothelial VAP-1 and MICA. Perhaps the circulating IECs observed in 
WG might be cells detached from the site of injury, due to the vasculitis in the kidneys.  
We also observed that increased levels of IECs were associated with increased organ 
involvement. Whether this is an outcome of the endothelial damage in different organs is 
at present not known.  
 
 
Functional binding of IgG AECA 
In paper IV, the general aim was to elucidate the functional role of IgG AECA (anti-PR3 
depleted) from WG patients. Kidney involvement is seen in the majority of WG patients 
(85%) [13, 168]and kidney EC was therefore the choice of target cell used for studying the 
functional role of AECA. We had earlier observed an intense expression of MICA and 
VAP-1 in kidney biopsy sections taken from patients with active WG. Therefore one of 
the aims was to investigate if IgG AECA could induce expression of VAP-1 or MICA on 
kidney EC. We also attempted to identify the putative autoantigens recognized by IgG 
AECA. 
We found that stimulation of kidney EC with WG IgG elicited a rapid Ca2+ flux (a primary 
signal of cell activation) within seconds, induced high levels of neutrophil/monocytes 
attracting chemokines MCP-1 and GCP-2, and up-regulated surface expression of MICA, 
but not VAP-1. MICA is known to be induced by external stress and is the ligand for 
NKG2D receptors found on mainly natural killer cells, CD8+ T-cells, and γδ T cells [118]. 
The ligand engagement of NKG2D activates NK cells and potently costimulates effector T 
cells [121, 169, 170]. However, the biological significance of MICA remains unknown 
[119]. CD8+ and  γδ T-cells were the most frequent cell types when staining WG kidney 
sections for infiltrating cells. 
 
Based on the above observations, we propose the following mechanism for endothelial 
dysfunction in WG in figure 2, page 50. 
 
Western blot analysis of immunoprecipitated HKMEC proteins with IgG AECA revealed 
three bands of: 190-200 kDa, 70-73 kDa and 50-53 kDa. Further molecular identification 
and characterization of the immunoprecipitated proteins will be of importance for studying 
the nature of the autoantigens in WG. 
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CONCLUSIONS 
 
 
In our studies, we demonstrate the following: 
 
 

• WG patients have high frequency of non-lytic AECA against clinically relevant 
EC namely: nose, kidney, and lung endothelial cells, but not against unrelated 
liver EC and HUVEC, indicating organ specificity for the AECA.  

 
 
• Nasal microvascular endothelium consists of two heterogeneous populations of 

cells - vascular and sinusoidal. These cells will provide a unique in vitro system 
to study the pathogenesis of nasal vascular diseases. 

 
 
• VAP-1 and MICA are novel markers of endothelial inflammation that may help 

to distinguish between EPCs and IECs.  
 
 

• IECs might be a new disease marker in WG. 
 
 

• IECs may contribute to the vascular damage by impairing the functional capacity 
for repair by EPCs. 

 
 

• In kidney EC, stimulation with WG IgG AECA elicited a rapid Ca2+ flux, 
induced high levels of chemokines and up regulated surface expression of MICA. 

 
 

• Western blot of immunoprecipitated kidney EC with WG IgG AECA revealed 
three bands: 190-200 kDa, 70-73 kDa and 50-53 kDa. 
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POPULÄRVETENSKAPLIG SAMMANFATTNING  
 
Vårt immunförsvar är utvecklat för att skydda kroppen mot främmande ämnen, t ex 
bakterier, svamp och virus, som hotar att angripa vår kropp. Immunförsvaret gör detta 
genom att känna skillnad på vad som är kroppen själv och vad som är främmande (t ex 
bakterier som kommit in i kroppen), och därefter angripa det som är främmande medan 
den egna kroppen lämnas ifred. Tyvärr händer det att immunsystemet angriper en eller 
flera av kroppens egna vävnader, vilket kallas för autoimmunitet. Några välkända exempel 
på autoimmuna sjukdomar är multipel scleros (MS), systemisk lupus erythematos (SLE), 
reumatisk artrit (RA) och typ I diabetes. Orsaken till varför dessa sjukdomar uppkommer 
är oklar, men troligt är att det är en kombination av arv och miljö, d v s att en person med 
en viss genetisk uppsättning under vissa omständigheter utvecklar sjukdomen. 
 
Wegener´s granulomatos (WG) är en systemisk vaskulit sjukdom (vaskulit = inflammation 
i blodkärl) som uppkallats efter den tyske läkaren Friedrich Wegener, född 1907-1990. 
Den årliga incidensen uppskattas till 10-15/miljon/år med mycket lätt manlig övervikt. 
Sjukdomen kan förekomma hos barn och upptill hög ålder. Det finns ingen känd orsak till 
varför man får WG, men sjukdomen är inte smittsam och det finns inga bevis på att den är 
ärftlig. 
Hur den kliniska bilden yttrar sig beror dels på storleken av det kärl som är drabbat dels 
vilket eller vilka organ de drabbade kärlen försörjer. I WG är det de små till medelstora 
artärerna som blir drabbade. Alla organ kan i princip drabbas, men det vanligaste är 
luftvägarna och njurarna.  
Vanliga och ospecifika symtom är nästäppa, rinnsnuva, näsblödningar, trötthet, feber, 
hosta mm. Dessa symtom misstolkas ofta som en besvärande förkylning/luftvägsinfektion 
som inte ger vika för antibiotika behandling. Det tidigaste tecknet på njurpåverkan vid 
WG är att urinen innehåller röda blodkroppar eller proteiner. Om detta går obehandlat kan 
njurfunktionen förloras inom några dagar. Mer än 95% av patienterna med WG har sk. 
ANCA-antikroppar mot cytoplasmatiska (i cellen) komponenter i neutrofiler (en typ av vit 
blodkropp). Vanligast är antikroppar riktade mot enzymet proteinas-3 (PR3-ANCA) som 
har hög specificitet för WG. Hos en del, men inte alla patienter med WG, följer halten av 
dessa antikroppar sjukdomens aktivitet. 
Förloppet för många patienter är ofta dramatiskt, och individer kan på några veckor 
utveckla livshotande sjukdomstillstånd. Om inte behandling med steroider, cytostatika, 
plasmafores eller dialys tillgrips, leder WG till döden. Tyvärr vet man idag fortfarande inte 
hur dessa sjukdomar uppkommer och specifika behandlingsmetoder saknas. Det finns 
alltså ett stort behov av metoder för att upptäcka och förbättra behandlingen av dessa 
sjukdomar. 
 
Frånsett ANCA antikroppar, har > 60 % av WG patienterna även förekomst av anti-
endotelcells antikroppar (AECA) riktade mot ett/flera okända protein (er) på endotelets 
yta. Endotelet täcker insidan av kroppens alla kärl och bildar således en barriär mellan 
blodet och underliggande vävnad. Tidigare betraktades endotelet som passivt och statiskt, 
men det har visat sig att endotelet har en mängd viktiga funktioner varav en är reglering av 
kärltonus. Endotelet är också involverat i den inflammatoriska processen där adhesions-
molekyler och andra substanser påverkar de vita blodkropparnas interaktion med 
kärlväggen. Det finns flera typer av endotel i kroppen som är förknippat med olika organ 
funktioner. Den vanligaste typen är kontinuerligt endotel som återfinns hos kapillärerna i 
skelettmuskel, hud, hjärtmuskel och bindväv. Fenestrerat (med öppningar) endotel 
återfinns i magtarmkanalens och bukspottkörtelns kapillärer samt i njurens glomerulus. 
Även i levern och mjälten uppvisar endotelet mycket stora diskontinuerliga fenestreringar. 
Även samma organ kan innehålla olika typer av endotel. Ett exempel är njuren där 
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kapillärerna i glomeruli är diskontinuerliga och fenestrerade i peritubulära kapillärer och 
kontinuerliga i andra delar.  
 
Målet med denna avhandling var att studera interaktionen mellan AECA och endotelceller, 
i hopp om att försöka förstå någon/några av de mekanismer som bidrar till att endotel-
cellerna blir skadade i de blodkärl som försörjer just luftvägarna och njurarna.  
I artikel I har vi studerat förekomsten av AECA i sera från WG patienter. I de flesta studier 
angående AECA har man använt endotelceller från navelsträng (HUVEC). I denna studie 
har vi istället valt att använda endotelceller isolerade från sjukdomens målorgan, såsom 
näsa, lunga och njure. Vi fann att ett större antal WG patienter hade AECA riktade emot 
näs- (61%), lung- (25%) och njurendotel (71%), i jämförelse med HUVEC (7%), vilket 
ifrågasätter användandet av HUVECs i AECA studier. 
 
I artikel II utvecklades ett nytt protokoll för isolering av humana endotel celler från 
nässlemhinna (inferior turbinate), som visade att det fanns två typer av endotel celler;  
en vaskulär med ”kullerstens” morfologi och en andra sinusoidal med fenestreringar och 
stjärnformig morfologi. Dessa två typer av endotelceller kan även hittas i levern och 
njurarna, och kan komma att bli viktiga i studier rörande endotelcellers biologi och deras 
interaktion med immunceller vid sjukdomar i näsregionen.  
 
Frånsett, ANCA och AECA antikroppar kan perifert blod även innehålla s.k. cirkulerande 
endotelceller. Det finns två typer; den enda har sitt ursprung i benmärgen (EPC; 
endothelial progenitor cells) och den andra består av mogna endotelceller (IEC; 
inflammatory endothelial cells) som har avlägsnas från blodkärlets insida pga skada. 
Artikel III visar att WG patienter med aktiv sjukdom har högre nivåer av IECs jämfört 
med WG patienter i remission och friska individer. Dessa IECs kan särskiljas från EPCs 
med två nya markörer, VAP-1 (vascular adhesion protein 1) och MICA (MHC class-I 
related chain A), som EPCs inte uttrycker. Supernatanter från IECs cellkulturer visade sig 
också ha en negativ påverkan på EPCs prolifiering och migrationskapacitet. En möjlighet 
är att IECs bidrar till WG progress genom att störa EPCs funktionella kapacitet att reparera 
skadade kärl.  
 
I artikel IV isolerade vi IgG (immunoglobulin av klass G) fraktioner från WG patienter 
med höga nivåer av AECA. Immunoprecipitering av njurendotel med WG IgG gav tre 
band; 190-200 kDa, 70-73 kDa and 50-53 kDa. Vid stimulering av njurendotel med dessa 
WG IgG påvisades en snabb kalcium mobilisering (ett första tecken på cell aktivering), 
uppreglering av MICA på cellytan och höga nivåer av neutrofil/monocyt attraherande 
kemokiner (utsöndrat protein). MICA är en molekyl som induceras av ”stress” (virus, 
bakterier, svamp, syrebrist, värme, kyla etc). Dess ligand, NKG2D receptorn, kan hittas på 
immunceller såsom T-celler och NK celler.  
 
Sammanfattningsvis, baserat på ovanstående resultat föreslår vi att mekanismen (se figur 
2, sidan 50) för endotel skada kan medieras av IgG AECAs inbindning till endotelet och 
att det därefter sker en pro-inflammatorisk loop genom rekrytering av immunceller via det 
uppreglerade MICA uttrycket, tillsammans med lokal produktion av kemokiner som 
ytterligare attraherar fler immunceller. Troligtvis aktiverar även inbindningen av IgG 
AECA till endotelet ett ökat uttryck av adhesionsmolekyler som vidare underlättar 
immuncellernas infiltration genom endotelet. WG IgG antas vara medierande i 
sjukdomsprocessen genom att bidra till en pro-inflammatorisk profil istället för att ha en 
direkt cytotoxisk (celldödande) verkan på endotelet. Parallellt med detta, kan cirkulerande 
IECs eventuellt bidra till sjukdomens progression genom att hindra EPCs kapacitet att 
reparera endotelskadan. 
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Figure 2. Upon IgG AECA binding;  
A rapid calcium flux (a) generates an initial signalling process, stimulating the 
endothelium to secrete chemokines (b), which attracts monocytes and neutrophils (c) to 
the site of inflammation as well as release of IL-1, IL-6, IL-8 that may enhance the 
inflammation. The endothelium can also upregulate adhesion molecules (d) necessary for 
the rolling and transmigration of various leukocytes into the inflamed tissue. As the 
monocytes enter the tissue (e) they become macrophages, which efficiently mediate 
activation of T cells, which in return secrete more cytokines recruiting and activating 
more macrophages. This self-perpetuating response may lead to granuloma formation 
characterized by extensive tissue damage.  IgG AECA binding also stimulates the 
endothelium to express MICA (f), which can be recognized by (g) NK cells and γδ T cells 
via their NKG2D receptor. Via the receptor-ligand engagement, T and NK cells are 
stimulated to release various substances, which might further enhance the established pro-
inflammatory loop. The inflamed endothelium also expresses the inflammation-associated 
molecule vascular-adhesion protein-1 (VAP-1). Endothelial cells from the inflamed organ 
may detach (h) and enter the circulation. The circulating inflammatory endothelial cells 
(IECs) release soluble factors (i) that have a negative effect on endothelial progenitor cells 
(EPCs) (j) derived from the bone marrow or peripheral blood. IECs may decrease the 
proliferative or migratory capacity of EPCs, as well as down regulate eNOS expression. 
Thus, IECs may contribute to EPC dysfunction by interfering with their functional 
capacity for vessel wall repair. 
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