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ABSTRACT 
 
A growing body of evidence shows that phenotypic changes including axon aberrations, 
rather than loss of neurons, account for behavioral impairments during aging. The present 
thesis was undertaken to investigate the occurrence of axon aberrations in relation to 
transmitter identity, glial reaction and sensorimotor disturbances. To shed light on possible 
underlying mechanisms, signs of oxidative stress and inflammation were also examined. The 
studies were performed on behaviorally defined aged (30 months old) and young adult (2-3 
months old) Sprague Dawley rats, by using electron microscopy, immunohistochemistry, in 
situ hybridizsation and reverse transcriptase-polymerase chain reaction. 
The results show that many aged motoneurons lose a significant portion of their bouton 
covering, due to a decreased number of apposing boutons. Consistent with the more 
pronounced sensorimotor disturbances observed in the hind- in comparision with the 
forelimbs, lumbar motoneurons appeared more severely affected than cervical motoneurons. 
In the neuropil of the motor nucleus, aberrant axons were encountered. Ultrastructutal 
analysis of aberrant axons in relation to content of amino acid neurotransmitters and the free 
radical scavenger glutathione (GSH) revealed that many of the aberrant axons contained high 
levels of glutamate-immunoreactivity (–IR) and were often enriched with GSH-IR. Increased 
levels of GSH-IR were also encountered in glutamate-IR terminals with a preserved 
ultrastructure, suggesting that a changed redox status may be mechanistic in the development 
of axon aberrations. GABA- and glycine-IR terminals were more rarely affected, suggesting 
that excitatory and inhibitory pathways are differentially affected. 
In the aged rats, immunohistochemistry showed a reduced fiber density and axon aberrations 
of cholinergic and monoaminergic axons in both the spinal cord and the hippocampus. In 
contrast, the innervation of α-motoneurons by C boutons was preserved in senescence. 
However, the C boutons showed a decreased labeling for cholinergic markers. Regions 
disclosing axon terminal loss and aberrations showed increased expression of glial fibrillary 
acidic protein (GFAP, the main intermediate filament of astrocytes). 
Using Marchi staining on spinal cord sections, the outer parts of the white matter showed 
signs of a changed myelin metabolism and/or dysmyelination in aged rats. In the same 
regions, astro- and microglial cells showed conspicuous signs of activation, most pronounced 
in rats disclosing the most severe sensorimotor disturbances. The glial reaction appeared less 
pronounced in brain white matter compared to the spinal cord white matter. 
The spinal cord white matter of aged rats also disclosed a changed expression of several 
cytokines, while the majority of investigated cytokines were unaltered in the hippocampus. 
One of the most prominent changes was an upregulation of the proinflammatory cytokine 
IFN- γ, encountered in both the hippocampus and the spinal cord. There was a robust 
upregulation of TGFβ-1 and IL1-β in astroglia of spinal cord white matter, while no change 
was evident in the hippocampus. CNTF levels were unaltered in aged rats, however, IR 
appeared reduced in oligodendroglia-like cells, while it seemed increased in astroglia of the 
spinal cord white matter. IGF-1, a molecule with similar effects as CNTF, was upregulated in 
hippocampus but not in the spinal cord.  
 
Keywords: aging, synaptic input, spinal cord, hippocampus, amino acid neurotransmitters, 
astrocyte, microglia, oligodendroglia, C bouton, cholinergic, monoaminergic, cytokine 
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INTRODUCTION 
 
Aging 
Aging can be defined as a process of gradual decrease in functional ability and is associated 
with growing old. During aging there is an accumulation of senescent cells and in most 
organisms, cell (tissue) functions are impaired.  
With advancing age, the risk of acquiring diseases increases. However, aging is not a disease 
itself and needs to be delineated from effects of diseases. Since this is not easily managed in 
long-lived species like humans, animal models with a shorter life span may serve better for 
capturing mechanisms of aging. Distinct from many neurodegenerative diseases (which often 
have a late onset and are therefore confused with aging), deficits in nervous functions during 
normal aging do not correlate with loss of neurons. For decades, neuron loss was considered a 
hallmark of the aging mammalian nervous system, however, recent quantitative studies 
suggest that neuron loss is limited and cannot explain the functional impairments (Bergman 
and Ulfhake, 1998; Johnson et al., 1995; Morrison and Hof, 1997; Rapp and Gallagher, 1996; 
Šimić et al., 1997; Wickelgren, 1996). Instead, an increasing body of evidence implies that 
phenotypic changes including axon aberrations are mechanistic in the emergence of 
disabilities in senescence (see below). Aging affects different organisms as well as tissues 
within an organism differently, depending on whether they are postmitotic/have a retarded 
renewal pace (like the nervous system and skeletal muscles) or are rapidly replaced (e.g. 
damaged epithelial cells in the gut of mammals). Certain neurological symptoms and signs, 
such as weakness, alterations in gait cycle, unsteadiness and increased proprioceptive 
thresholds, are so common in a healthy elderly human population that they are often regarded 
as “normal”. A similar range of behavioral deficits is encountered in aged rodents (see 
Appendix), suggesting that rodents may serve as a useful model to dissect the underlying 
mechanisms. Both humans and rodents exhibit a considerable variability in the effects of 
aging on behavioral and cellular parameters, such that some individuals exhibit extensive 
impairments with age, whereas others show little or no symptoms (Appendix, Burek and 
Hollander, 1980; Koller at al., 1985; Lamberts et al., 1997). The fact that in several species it 
seems possible to distinguish “unsuccessful” and “successful” patterns of aging, may facilitate 
the identification of factors instigating disabilities during aging. 
 Over the years several theories on the mechanisms of aging have been put forward, some 
emphasizing intrinsic biological clocks or ”programs”, whereas others suggest environmental 
factors that damage cells and organs as mechanistic (Martin and Baker, 1993; Warner et al., 
1987). The latter include cell impairment caused by reactive oxygen species (ROS) generated 
in metabolism (Finkel and Holbrook, 2000; Harman, 1981; Kirkwood and Austad 2000; 
Martin and Oshima, 2000; Sohal and Weindruch, 1996). Program theories hold that a 
biological timetable will regulate gene expressions as well as the function of e.g. endocrine 
systems and the immune system and in this way control the aging process (Kuro-o et al., 
1997; Lamberts et al., 1997; Pennisi, 1998). These hypotheses are not mutually exclusive, and 
it seems likely to assume that a combination of genetic and epigenetic factors will affect the 
pace of aging (Hayflick, 2000). Given that life span has a continuous distribution in 
populations, aging is probably not governed by a single factor. It is more likely attributable to 
genetic variation at multiple quantitative trait loci (QTL) and sensitivity of QTL alleles to 
environmental factors (McClearn et al., 1997; Tower, 1996; see also Klebanov and Harrison, 
2002). In C. Elegance and D. melanogaster several genes affecting aging have been identified 
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(e.g. Ewbank et al., 1997; Kimura et al., 1997; Lin et al., 1998). Many of these encode 
proteins regulating growth and energy metabolism (Guarente and Kenyon, 2000; Wolkow et 
al., 2000). In mammals, Pelicci and coworkers (Migliaccio et al., 1999) provided evidence 
indicating that the p66 isoform of the ShcA adaptor protein can regulate life span by its 
sensitivity to oxidative stress. The Shc gene family encodes adaptor proteins associated with 
signal transduction pathways found to regulate life span and phenotype in C. Elegance (for 
references see above). In common for all species examined so far is that caloric restriction 
will retard aging, implying that metabolic processes and generation of ROS may play a key 
role (Masoro, 2000; Roth et al., 1999, and references above). 
  
“The free radical theory of aging”  
According to the “free radical theory of aging” (Harman, 1981), cellular damage caused by 
reactive oxygen species (ROS) will accumulate during life time. Several cellular processes, 
such as mitochondrial respiration, generate ROS. Through reactions with DNA, RNA, lipids 
and proteins they can damage vital cell functions. The high oxygen consumption of the brain 
in relation to its weight indicates the potential generation of a high quantity of ROS during 
brain metabolism (Dringen, 2000 and references therein). If formation of ROS exceeds the 
scavenging capacity, a cell/tissue is under oxidative stress (Dringen, 2000; Sastre et al., 2000). 
Glutathione (GSH) is regarded as a major protectant against ROS in the brain (Cooper and 
Kristal, 1997). GSH is directly involved in redox cycling reactions, in which the reduced form 
is converted to its oxidized counterpart, glutathione disulfide (GSSG). Many studies have 
found an age related shift towards the oxidized form (GSSG) and an accumulation of 
oxidative damage to DNA in the aging brain (Barja and Herrero, 2000; de la Asuncion et al., 
1996; Sohal et al., 1994; Soong et al., 1992 and references above). The level of oxidative 
damage seems to correlate with life span as well as age related impairments such as decline in 
cognitive function and motor skills (Forster et al., 1996; and references above). Thus, a great 
deal of experimental evidence supports the “free radical theory of aging”. The mitochondria 
appear to be particularly vulnerable to the harmful effects of ROS. They disclose considerably 
more DNA damage than nuclear DNA in senescence (de la Asuncion et al., 1996 and 
references above). GSH plays a key role in protecting against oxidative damage in the 
mitochondria, and depletion of GSH leads to mitochondrial damage (Jain et al., 1991 and 
references above). Whether aging is associated with changes in the capacity of ROS 
scavenging has not been resolved (Ashok and Ali, 1999; Benzi and Moretti, 1995). Available 
data indicate that the CNS cells differ in their capacity to withstand attack of ROS. 
Presumably due to a high content of lipids and low concentrations of GSH, oligodendroglia 
appear to be especially vulnerable to ROS. Moreover, oligodendroglia contain high levels of 
iron, which catalyses generation of hydroxyl radicals (OH•), which are the most reactive 
species within the ROS family. Astroglia contain high levels of GSH compared to other cell 
populations of the central nervous system (CNS), and they seem to be able to protect both 
neurons and oligodendroglia from the detrimental effects of oxidative stress (Dringen, 2000 
and references therein).  
 
Neuroaxonal dystrophy 
As mentioned above, a common stigmata in the mammalian nervous system is axonal 
aberrations. Neuroaxonal dystrophy (NAD) is a process that, at least initially, is restricted to 
the terminal part of the axon. At the electron microscopic level it is characterized by swelling, 



 

  7

increased density of organels and neurofilaments, accumulation of normal and enlarged 
mitochondria, patches of electrondense material, multivesicular bodies and dysmyelination 
(Jellinger and Jirásek, 1971; Suzuki and Suu, 1978). NAD was first described by Seitelberger 
and is encountered in the aging CNS of a number of species, including humans and rodents 
(Fujisawa and Shiraki, 1980; Seitelberger, 1971 and references therein). NAD has also been 
referred to as axonal spheroids (Jellinger and Jirásek, 1971; Suzuki and Suu, 1978), aberrant 
axons and axon dystrophy/dystrophic axons (Fujisawa and Shiraki, 1980; Johnson et al., 
1993; van Luijtelaar et al., 1988). In the following text these terms will be used 
interchangeably. 
Although NAD is occurring with increasing frequency and severity as age advances (Brannon 
et al., 1967; Fujisawa and Shiraki, 1978), there are considerable differences among 
individuals regarding the extent of changes (Brannon et al., 1967). Moreover, it appears to be 
a selective process involving certain axons but not others. The dorsal column nuclei, 
especially the gracile nucleus, appear to be severely affected. But NAD is also encountered in 
e.g. other sensory relay nuclei, grey matter of the spinal cord, substantia nigra, basal ganglia, 
hippocampus and cortex (Fujisawa and Shiraki, 1978; Jellinger and Jirásek, 1971; Johnson et 
al., 1993; van Luijtelaar et al., 1988; 1991; 1992). Despite the apparent selectivity of NAD, 
reports on its relation to neurochemical phenotype of the affected axons are few. The 
serotoninergic (5-HT) system was the only identified transmitter system when this project was 
initiated. In the 5-HT system both individual as well as regional differences in the extent of 
NAD have been described, e.g. cortex is more affected than hippocampus and in the spinal 
cord the lumbar region contains more NAD than the cervical regions (for references, see 
above). Mechanisms suggested to induce the age related NAD include metabolic disturbances, 
reduced axonal flow, vitamin E deficiency and the deleterious effects of free radicals (for 
references, see above). More recently, changes in interactions between axon terminal and 
target, retrograde signaling and trophic mechanisms have been added to the list of 
mechanisms that may underpin NAD (reviewed by Cowen and Gavazzi, 1998; Ulfhake et al., 
2000, 2002).  
 
Axon loss, astrogliosis and dysmyelination 
In association with NAD there is a loss of axon fibers and terminals and it is suggested that 
NAD represents a “dying-back” process (Fujisawa and Shiraki, 1978; Fujisawa, 1988; 
Kikuchi et al., 1990). An age related loss of axon terminals has been established in several 
studies of hippocampus and various cortical regions (Glick and Bondareff, 1979; McWilliams 
and Lynch, 1984; Saito et al., 1994; Uemura, 1980; van Luijtelaar et al., 1988). The functional 
significance of the axon terminal loss is underscored by work correlating behavioral deficits 
to loss of axon terminals (Chen et al., 1995). Some regions affected by NAD and/or axon loss 
have been reported to disclose an increase in astroglia processes and elevated levels of glial 
fibrillary acidic protein (GFAP, the main intermediate filament of astrocytes), i.e. astrogliosis 
(Fujisawa and Shiraki, 1978; Goss et al., 1991; Lindsey et al., 1979; Nichols et al., 1993; 
Nichols, 1999). Dysmyelination was originally described in relation to NAD (for references 
see above), however more thorough studies on dysmyelination in the central nervous system 
(CNS) are scarce. There are reports on distended myelin sheaths in spinal cord white matter 
and some brain regions of aged rats and monkeys (Burek et al., 1976; Feldman and Peters, 
1998; Peters et al., 1991, 1994; van Steenis and Kroes, 1971). Most studies on age related 
dysmyelination have been done on peripheral nerves and spinal cord roots. From these studies 



 

  8

it is clear that dysmyelination mainly affects large myelinated fibers and is associated with 
axon atrophy, dystrophy and loss of axons (Bergman and Ulfhake, 2002; Burek et al., 1976; 
Gilmore, 1972; Karlsson and Hildebrand, 1996;  Kazui and Fujisawa, 1988; Knox et al., 1989; 
Krinke, 1983).  
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AIMS 
 
With support of the background given above, we decided to examine NAD in greater detail 
using a rodent model described in the Appendix. Most of the work in this thesis focused on 
the spinal cord in order to enable correlation to behavioral sensorimotor deficits in the aged 
animals. More specifically the aims were as follows: 
 
1. To study changes in axon terminals contacting spinal motoneurons and to examine the 
occurrence of NAD in neurochemically identified axons (papers I, II , III, unpublished 
observations).  
 
2. To study signs of changed redox status and possible relationship with NAD and 
neurochemical phenotype (paper III).  
 
3. To study signs of increased breakdown/changed turnover of myelin (paper I).  
 
4. To study micro- and astroglial reaction (papers I, IV). 
 
5. To study cytokine expression in relation to glial cells (paper V). 
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MATERIALS AND METHODS 
 
Experimental animals (papers I-V) 
Young adult (2-3 months old) and aged (30 months old) Sprague-Dawley rats of both sexes 
were used, see Table 1. For details on cohort characteristics and housing conditions, see 
Appendix. Rats show a progressive deterioration of sensorimotor behaviour, with symptoms 
usually emerging at an age of 24-26 months and mainly being confined to the hindlimbs. The 
symptoms are described according to a previously described staging protocol (Johnson et al., 
1995) and compromise moderate muscle atrophy and an adduction insufficiency in the least 
affected cases (stage I). More severely affected animals disclose symptoms ranging from a 
prominent muscle atrophy and an ataxic gate (stage II), to a more or less complete hindlimb 
paralysis with severe muscle wasting (stage III). Furthermore, the rats are subjected to a 
panorama of behavioral tests in order to more thoroughly determine the degree of age related 
impairments, see Appendix. All experimental procedures were performed under deep 
chloralhydrate (300-420mg/kg i.p.) or pentobarbital (40mg/kg) anaesthesia. The experiments 
were approved by the local ethical committee (Stockholms Norra Djurförsöksetiska nämnd; 
project numbers N59/91, N75/93, N263/95, N90/97, N54/00). 
 
Immunohistochemistry (papers I, II, IV, V) 
Deeply anaesthetized animals were perfused through the ascending aorta with Ca 2+-free 
Tyrode´s solution and then with a fixative containing 4% w/v paraformaldehyde and 0.2% 
picric acid in 0.1M phosphate-buffered saline (PBS; pH 7.4) (Zamboni and De Martino, 1967) 
for 6-8 minutes. In addition, six animals included in paper IV were perfused as described 
above but for 12 minutes and without the addition of picric acid to the fixative. No difference 
in tissue morphology or labeling pattern was observed between the two methods of fixation.  
Tissue samples were then dissected out, put in the same fixative for 90 minutes, and then 
stored in 10% sucrose in PBS at 4ºC overnight. Sections were cut at 14µm in cryostat and 
proceeded according to the indirect immunofluorescence technique (Coons, 1958), or with 
modifications for double-labeling (Staines et al., 1988). Briefly, the sections were rehydrated 
in PBS and incubated at 4ºC overnight (polyclonal antibodies) or for 72 hours (monoclonal 
antibodies) in a humid chamber with the primary antibodies. See Table 2 for specification of 
used antibodies. Following thorough rinsing in PBS, the sections were incubated with 
fluorescent conjugated secondary antibodies for 30 minutes at 37ºC. Thereafter, the sections 
were rinsed and mounted in glycerol/PBS (3:1) containing 0.1% p-phenylendiamine in order 
to retard fading (Johnson and Nogueira Araujo, 1981; Platt and Michael, 1983).  
For 11 and 8 animals included in paper IV and V respectively, a modified procedure for 
fixation was used. Fresh, i.e. unfixed tissue was quickly dissected out and immediately frozen 
on dry-ice. Following sectioning, the tissue specimens were fixed by immersion in 4% 
paraformaldehyde and then treated as the tissue fixed by perfusion. Although this method has 
the disadvantage of tissue morphology being less well preserved, it was used for a few 
antibodies that yielded a more distinct labeling with this method.  
Immunohistochemistry is a powerful method for determining localization of substances in a 
tissue. However, the validity of findings obtained is directly related to the degree of 
specificity that can be achieved. Specificity can be controlled by preabsorbing the antibody 
with the appropriate antigen, which should abolish staining. Western blot demonstrating a 
single band is also an indicator of specificity. The different antibodies used here have been 
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tested with regard to specificity by preabsorption and/or Western blot (see papers for 
references). The specificity of the GFAP antibody used in paper I was not discussed. 
However, the labeling pattern obtained with that antibody have been confirmed in paper IV 
with two other GFAP antibodies (see Table 2), for which specificity have been tested. 
Additional controls, i.e. omission of primary or secondary antibodies resulted in no labeling. 
Despite these controls, it must be acknowledged that an element of uncertainty still remains as 
to the specificity of the staining. Consequently, antibody labeling is referred to as like 
immunoreactivity (LI) or immunoreactivity/immunoreactive (IR). 
 
Section analysis 
Tissue sections were examined in a Nikon Microphot-FX epifluorescence microscope 
equipped with the proper filters for FITC- and LRSC fluorescence. Photomicrographs were 
captured either using an Ultrapix 1600 CCD camera with a 1536x1024 element matrix 
connected to the microscope or a black-and white Kodak Technical Pan camera. Quantitative 
analysis of IR (paper IV) was performed by using the Optimas software (Optimas Co., 
Bothell, WA, USA). A representative slide for the marker to be analysed was used to set 
exposure time. Images from all sections subjected to analysis were then captured without 
changing the settings. The IR was recorded in a square-shaped area with the filters for FITC 
fluorescence. After subtraction of background labeling, sampled in the vicinity, and emitted 
fluorescence by lipofuscin granulae a sum of all pixel values above background within the 
square-shaped area was recorded. 
In paper I, sections were also examined in a confocal laser scanning microscope, Sarasto 
1000. 
 
Marchi staining (paper I) 
Deeply anaesthetized animals were perfused through the descending aorta. Following a brief 
rinse with Tyrode´s solution, fixation was performed with a mixture of 4% glutaraldehyde and 
0.5% paraformaldehyde in 0.1M PBS. Spinal cord segments were dissected out, placed in a 
fresh fixative, then stored in PBS overnight and thereafter sectioned at 50µm on a Vibratome. 
They were then incubated with Marchi solution for 18 hours, dehydrated in alcohol with a 
final step in aceton and finally embedded in Epon (Agar 100 resin, Agar Aids, Essex, UK). 
 
Section analysis 
Sections were examined under a light microscope using an eye-piece grid and a ×60/1.4 
Nikon oil-immersion planapochromate objective. Marchi-positive bodies were counted 
through the depth of the section within a pre-determined area placed in selected regions of the 
spinal cord sections.  
 
In situ hybridization (papers II, IV) 
Following decapitation of deeply anaesthetized animals, the unfixed tissue was dissected out 
and immediately frozen on dry ice. Sections were cut at 14µm in a cryostat and thaw mounted 
onto Probe-on or aminoalkylsilane-coated slides. In situ hybridization was then performed 
according to previously published protocols (Dagerlind et al., 1992; Young III, 1990). 
Oligonucleotide probes (see papers for details) were labeled at the 3´-end with α-[35S]dATP 
using terminal deoxynucleotidetransferase. Without any pre-treatment the sections were 
hybridized for 16-18 hours at 42ºC in a humid chamber. The hybridization solution contained  
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106 cpm of the radiolabeled probe per 100µl; 50% formamide; 4xSSC; 1x Denhardt´s 
solution; 1% Sarcosyl; 0.02M sodium phosphate; 10% dextran sulphate; 500µg/ml sheared 
and heat denatured salmon sperm DNA and 200mM dithiotreitol. Following hybridization, 
sections were washed 4x15 min in 1xSSC at 56ºC, brought to room temperature in the final 
rinse and dehydrated in ascending concentrations of ethanol. Thereafter NTB2 nuclear track 
emulsion was applied by dipping and after 2-4 weeks exposure, the sections were developed 
in Kodak D-19 developer. Propidium iodide was used for counterstaining and, finally, the 
sections were cover-slipped in glycerol. 
The specificity of the oligonucleotide probes are of crucial importance for the validity of the 
results. To control specificity, all oligonucleotide probes were synthesized against sequences 
published in GenBank and were not found to have any significant sequence similarities to 
other deposited sequences. It should be kept in mind, though, that far from all sequences have 
been cloned. However, with the hybridization stringency conditions used, unspecific binding 
may only occur if the probes have >90% homology with a certain mRNA. Thus, the 
probability of unspecific binding to an unrelated mRNA  species is extremely small. 
Moreover, specificity of the oligonucleotide probes used have also been controlled by 
addition of excess unlabeled probe to the hybridization solution and resulted in an abolished 
signal. 
 
Section analysis 
Sections were examined in a Nikon Microphot-FX microscope equipped with an Ultrapix 
1600 CCD camera with a 1536x1024 element matrix. In the quantitative analysis (paper II), it 
was assumed that the number of silver grains overlying a cell profile was proportional to the 
number of mRNA copies contained within the sectioned cell. Dark field illumination was 
used to visualize the silver grains, while epifluorescence was used to visualize the propidium 
iodide counterstain. Thus, every examined field yielded two separate images. Image analysis 
was then performed using the Optimas software. Briefly, the image pair generated from each 
field was presented as an RGB image, with the silver grain image presented in the blue and 
the counterstained image in the red channel. Cell profiles subjected to analysis had their cross 
sectional area recorded and thereafter a binary threshold was set for the silver grain image. 
Data was then extracted from the traced cell profiles, providing information about their cross 
sectional area and the percentage of that area occupied by silver grains (labeling density). 
Furthermore, in each recorded field the background labeling density was sampled in a 
representative portion of the neuropil. 
 
Reverse transcriptase-polymerase chain reaction (RT-PCR) (paper V) 
Total RNA was isolated from unfixed tissue with an RNA extraction kit according to the 
manufacturer (TRIZOL®-protocol; GibcoBRL, Life Technologies, Täby, Sweden). Reverse 
transcription was then conducted in a reaction volume containing 10µl containing 25ng of 
total RNA, 25 units MuLV reverse transcriptase, 2.5µM Oligo d(T)16, 10 units Rnase 
inhibitor, 1mM of each dNTP (dATP, dCTP, dGTP, dTTP), 5mM MgCl2 and 1xPCR Buffer 
II. The RT-reaction mixture was incubated for 10 minutes at room temperature, brought to 
42˚C in a Perkin Elmer GeneAmp PCR system 2400 for 15 minutes and finally terminated by 
5 minutes incubation at 99˚C. Polymerase chain reaction was carried out by addition of a PCR 
master mix to the RT-reaction mixture, yielding a reaction volume of 50µl containing the 
following components: 0.2 µM of each oligonucleotide primer, 5 units AmpliTaq Gold DNA 
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polymerase, 2mM MgCl2, 200µM of each dNTP and 1xPCR Buffer II. For each experimental 
sample, three PCR reaction mixtures were prepared and subjected to three different numbers 
of PCR cycles (e.g. 31, 33 and 35). The three cycle points were chosen according to preceding 
experiments, so that the PCR amplification was found to be within the range of experimental 
progression. Despite a high number of cycles some mRNAs were too rare to be detected. 
Accordingly, the total RNA was increased up to 100ng. Hot start PCR was performed, and 
included an initial template denaturation and DNA polymerase activation step at 95˚C for 12 
minutes. Each following cycle consisted of denaturation at 95˚C (15 sec) and primer 
annealing/ extension at 60˚C (30 sec, with an automatic increment of 3 seconds per cycle). At 
the end of the last cycle, the reaction was kept at 72˚C for 7 minutes and then brought to 4˚C. 
In all experiments RT-PCR was performed simultaneously on young adult and aged rat 
samples. The oligonucleotide primer pairs were synthesized against sequences deposited in 
GenBank and they were checked to avoid homologies with other sequences. All experiments 
included negative controls, where template RNA or reverse transcriptase was omitted, 
resulting in no detectable PCR product. Furthermore, a positive control was run to analyze 
failures during the PCR process. Intron spanning primers, producing different size products 
from DNA and cDNA, respectively, were used to check for possible DNA contamination of 
the samples. Ten µl of the PCR product was electrophoretically run on a 1.5% agarose gel 
containing ethidium bromide. The gels were visualized in an u.v. transilluminator and images 
were captured using an 8-bit CCD camera. Subsequent analysis, using the Optimas software, 
included measurement of the mean grey levels of each band, correction for local background 
and normalization against GAPDH levels. In the evaluation of the results, an arbitrary limit 
was set such that a difference between young adult and aged rats of a least 100% was 
considered significant. 
 
Electron microscopy (paper I- III) 
Rats under deep anaesthesia, were perfused through the descending aorta. Following a brief 
rinse with Tyrode´s solution, the tissue was fixed by 4% glutaraldehyde and 0.5% 
paraformaldehyde in 0.1M phosphate-buffered saline (PBS). Tissue was dissected out and 
placed in fresh fixative, then stored overnight in PBS. Sections were cut at 50µm on a 
Vibratome, treated with 1% OsO4 in PBS for 1 h, dehydrated in a graded series of alcohol 
with a final step in aceton, then embedded in Durcupan ACM (Fluka, Buchs, Switzerland). 
Under inspection in a light microscope, appropriate areas were trimmed out and subjected to 
ultrathin sectioning on a LKB Ultratome. They were then mounted on formvar-coated nickel 
slot grids and counterstained with uranyl acetate and lead citrate. 
 
Freeze-substitution and postembedding immunocytochemistry 
Freeze-substitution is a method that in addition to providing good ultrastructure also allows 
good antigen preservation and is therefore suitable for immunocytochemistry (van Lookeren 
Campagne et al., 1991). Rats were perfused as described above with a fixative containing 
either 4% glutaraldehyde and 0.5% paraformadehyde (paper III) or 4% paraformaldehyde and 
0.25% glutaraldehyde (paper II) in PBS. Since the antibodies used (glutamate, GABA, 
glycine, GSH) recognize the glutaraldehyde conjugated epitope, rats perfused with the 
fixative containing higher glutaraldehyde concentration was used for postembedding 
immunocytochemisry. Spinal cord segments were dissected out, then stored in a fixative with 
a concentration of 10% of that used for perfusion. Thereafter they were subjected to 
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cryopotection through immersion into a graded series of glycerol (van Lookeren Campagne et 
al., 1991). The specimens were then plunged into liquid propane cooled by liquid nitrogen, 
using a rapid-freeze apparatus (KF80; Reichert-Jung), and subsequently transferred to a pre-
cooled chamber (-90ºC) of  the rapid-freeze apparatus. Freeze-substitution was then 
performed according to the protocols by Müller et al. (1980). Ultrathin sections were cut on a 
LKB Ultratome, then mounted on formvar-coated nickel slot grids. 
For sections subjected to immunocytochemistry, a postembedding procedure based on that of 
van Lookeren Campagne et al. (1991) with small modifications (see Hjelle et al., 1994) was 
used. Briefly, it concluded the following steps. (i) Tris buffered saline (0.05M Tris, with 
different NaCl concentrations depending on which antibody used) containing 0.1% (w/v) 
sodium borohydride and 50mM glycine, or Tris buffered saline with 1% Triton X-100 but no 
sodium borohydride if sections were incubated with antibody against glycine; (ii) Tris-
buffered saline containing 2% human serum albumin; (iii) incubation with antibody; (iv) 
incubation with secondary antibodies coupled to colloidal gold particles; (v) counterstaining 
with uranyl acetate and lead citrate. The used antibodies have been previously characterized 
(see paper III for references). Preabsorption with the respective antigen abolished all labeling. 
As an additional specificity control, the tissue sections in each experiment were incubated 
along with the test systems of plastic-embedded amino acids/ peptide conjugates (see Hjelle et 
al., 1994 for details). Enrichment of gold particles was only encountered over corresponding 
conjugate. 
 
Section analysis 
The sections were examined in Philips EM 301 and CM 12 electron microscopes. 
Photomicrographs were captured and quantitative analysis was performed either by recording 
data directly on photomicrographs using a digitising tablet (SummagraphicsTM) and a 
commercially available software (BioquantTM) or, after scanning of negatives, with the       

Optimas  software. A method previously described (Hackney et al., 1996), was used for 
analysing the subcellular distribution of immunoreactivity for GSH and the examined amino 
acid neurotransmitters (paper III). By the use of an overlay screen, gold particles were 
counted over non-mitochondrial vesicle-containing and vesicle-free axoplasmic regions 
located entirely within each bouton profile. Thus, the mean gold particle density for non-
mitochondrial regions containing synaptic vesicles and those that did not was obtained. 
Similarly, the number of gold particles present in the corresponding adjacent postsynaptic 
area was recorded (Örnung et al., 1996). For the amino acid neurotransmitters, a quotient 
between the gold particle density in boutons and their adjacent postsynaptic region was 
calculated. Thus, an estimate on the enrichment of amino acid neurotransmitter 
immunoreactivity in the vesicle-containing region of each bouton was obtained. By applying a 
criterion for pre- to postsynaptic labeling ratio, most boutons could be classified as being 
enriched with one of the amino acids. In addition, GSH-IR was also quantified in pre- and 
postsynaptic mitochondria. In the analysis of aberrant and normal appearing axon profiles in 
the neuropil, all gold particles in the axolemma were recorded. This was due to the fact that 
mitochondria could not be distinguished in the aberrant axons and subsequently had to be 
included also in the analysis of normal appearing axon profiles.  
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Statistics (papers I-V) 
Analysis of variance (ANOVA) with Fisher´s LSD was used to test differences between 
groups. Two-sample analysis was done with Student´s t-test or Mann-Whitney U test. Data 
clustering was performed using K-mean cluster analysis. The levels of significance were 
indicated as follows: p>0.05=not significant (ns), p<0.05=*, p<0.01=**, p<0.005=***. 
Correlations were done using linear regression analysis of the data sets.  
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Table 1. Animals used in the studies. 

 
The figures in the Age column represents months. The following abbreviations 
are used in the table: perf.= fixed by perfusion; GA= glutaraldehyde; PF= 
paraformaldehyde; PA= picric acid; imm.= fixed by immersion (i.e. after 
mounting on slides); EM morph.= electron microscopy, morphological analysis; 
IHC= immunohistochemistry; EM ICH= high resolution postembedding 
immunocytochemistry; ISH= in situ hybridization; RT-PCR= reverse 
transcriptase-polymerase chain reaction 
 
 

Gender Age  No of rats Tissue processing Method Used in study 
male 2-3 2 perf., 4% GA + 0.5% PF EM morph. I, II 
male 30 2 perf., 4% GA + 0.5% PF EM morph. I, II 
male 2-3 2 perf., 4% GA + 0.5% PF Marchi I 
male 30 2 perf., 4% GA + 0.5% PF Marchi I 
male 2-3 4 perf., 4% PF + 0.2 PA IHC I 
male 30 4 perf., 4% PF + 0.2 PA IHC I 
male 2-3 4 4% GA + 0.5% PF EM ICH III 
male 30 4 4% GA + 0.5% PF EM ICH III 
female 2-3 4 perf., 4% PF + 0.2 PA IHC II 
female 30 4 perf., 4% PF + 0.2 PA IHC II 
female 2-3 3 perf., 4% PF+ 0.25% GA EM morph. II 
female 30 3 perf., 4% PF+ 0.25% GA EM morph. II 
female 2-3 3 fresh frozen ISH II 
female 30 6 fresh frozen ISH II 
male 2-3 3 perf., 4% PF IHC IV 
male 30 3 perf., 4% PF IHC IV 
male 2-3 4 perf., 4% PF + 0.2 PA IHC IV 
male 30 3 perf., 4% PF + 0.2 PA IHC IV 
female 2-3 4 imm., 4% PF IHC IV 
female 30 7 imm., 4% PF IHC IV 
male 2-3 3 fresh frozen ISH IV 
male 30 4 fresh frozen ISH IV 
female 2-3 3 perf., 4% PF + 0.2 PA IHC V 
female 30 3 perf., 4% PF + 0.2 PA IHC V 
female 2-3 4 imm., 4% PF IHC V 
female 30 4 imm., 4% PF IHC V 
female 2-3 4 frozen in liquid nitrogen RT-PCR V 
female 30 8 frozen in liquid nitrogen RT-PCR V 
male 30 5 frozen in liquid nitrogen RT-PCR V 
female 2-3 3 perf., 4% PF IHC unpublished 
female 30 4 perf., 4% PF IHC unpublished 
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Table 2. Primary antibodies used in the studies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Antibody Raised in Dilution Study Source 
ChAT Mo 1:800 II Mr. Hartman 
Clusterin Mo 1:500 IV Upstate Biotechnology, USA 
Clusterin Rb 1:1000 IV Mr. Griswold 
CNTF Rb 1:500 V Mr. Sendtner 
ED1 Mo 1:500 IV, V Serotec, UK 
ED2 Mo 1:500 IV, V Serotec, UK 
FGF-2 Mo 1:400 V Mr. Reilly 
GABA Rb 1:1000 III Mr. Ottersen 
GFAP Mo 1:50 I Boehringer Mannheim, Sweden 
GFAP Mo 1:1000 IV, V Sigma, USA 
GFAP Rb 1:1000 IV, V Dako, Denmark 
Glutamate Rb 1:6000 III Mr. Ottersen 
Glutathione Rb 1:300 III Mr. Ottersen 
Glycine Rb 1:300 III Mr. Ottersen 
IL1-β Go 1:40 V R&D systems, UK 
IL6 Go 1:40 V Santa Cruz, USA 
OX42 Mo 1:1600 IV, V Seralab, UK 
PGP 9.5 Rb 1:1000 IV Ultraclone, Ltd, UK 
Serotonin Rb 1:400 unpublished Mr. Verhofstad 
TGFβ-1 Rb 1:80 V Santa Cruz, USA 
TNF-α Go 1:80 V R&D systems, UK 
Transferrin Rb 1:1000 IV, V Nordic, The Netherlands 
Tyrosin 
hydroxylase 

Rb 1:1000 unpublished Mr. Markey 

VaChT Go 1:2000 II Chemicon Internatinal Inc., USA 
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RESULTS AND DISCUSSION 
 
1. Changes in synaptic connectivity of spinal motoneurons and prevalence of NAD in 
neurochemically identified pathways (papers I, II, III) 
Loss of synaptic input (paper I) 
Using electron microscopy, spinal cord motoneuron somata were found to have a reduced 
bouton coverage. Since bouton size did not differ between young adult and aged animals and 
motoneuron size remains unchanged in senescence (Johnson et al.1995), it was concluded that 
the reduced coverage was due to a decreased number of axon terminals contacting the 
motoneurons (c.f. Conradi and Ronnevi, 1975). This age related deafferentation was not 
uniform across the motoneuron population. About 50% of the cervical and 40% of the lumbar 
motoneurons had values for the examined parameters similar to those in young adult rats. 
Furthermore, affected motoneurons were found intermingled with motoneurons that had a 
normal bouton coverage, indicating that age related loss of synaptic input may depend in part 
on the postsynaptic neuron and was not likely a process intrinsic to the presynaptic axons. 
Since the deafferentation appeared more extensive of lumbar than cervical motoneurons, it 
correlated with the pattern of behavioral motor impairment of the aged rats. Loss of synaptic 
input during aging has been described in other regions of the CNS (e.g. Glick and Bondareff, 
1979; McWilliams and Lynch, 1984) and there is evidence for a correlation between cortical 
axon terminal loss and cognitive deficits (Chen et al., 1995). 
The mechanism(s) by which spinal motoneurons become deprived of synaptic input during 
aging is not clear, however, several mechanisms may be in operation. In the neuropil axon 
profiles and terminals showed signs of dystrophy indicating that NAD may at least be one of 
the “deafferentation mechanisms”. So far, only a few, of the different inputs to spinal 
motoneurons such as the bulbospinal serotoninergic system (Johnson et al., 1993) and primary 
afferents from the muscle spindles (Bergman and Ulfhake, 2002), have been described to be 
affected by NAD and/or axon loss. Thus, fairly little was known about the prevalence of NAD 
among different inputs to motoneurons and then also to what extent the loss was a selective 
process among afferent inputs. 
 
C boutons are not lost during aging (paper II) 
The C boutons constitute an enigmatic synaptic input to spinal cord motoneurons. They are 
large cholinergic boutons that form highly specialized somatic/juxta-somatic contacts with 
motoneurons (Conradi, 1969; Li et al., 1995; Nagy et al., 1993). Their origin and exact 
function remain unknown, but from lesion studies it has been suggested that they exert a 
trophic function on motoneurons (Pullen and Sears, 1983) and that they derive from local 
interneurons (Hellström et al., personal comm.; Hellström et al.,1999; Pullen and Sears, 
1983). By using immunohistochemistry with antibodies against the vesicular acetylcholine 
transporter (VAChT) and choline acetyltransferase (ChAT), qualitative light microscopic 
analysis revealed a reduction of large cholinergic boutons in close apposition with 
motoneuron somata in aged rat spinal cord. However, analysis at the electron microscopic 
level failed to confirm a loss of C boutons and, in addition, showed that the characteristic 
morphological appearance of the C boutons was well preserved. This was also true for aged 
motoneurons that showed a substantial overall loss in bouton covering. Thus, C bouton input 
to motoneurons seems to be resistant to the processes of stripping motoneurons from synaptic 
input, which is interesting against the possibility that they may exert a trophic function. Our 
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data, however, indicates a loss/downregulation of their cholinergic phenotype in senescence, 
which contrasts to the preserved cholinergic phenotype of α-motoneurons of the same 
individuals. It can not be excluded that phenotypic changes in aged motoneurons (Bergman et 
al., 1999; Johnson et al., 1995, 1999) are of relevance here, since synaptic communication is 
bi-lateral (see also below) and ample evidence suggest that the target influence the phenotype 
of innervating fibers (Cooper and Sofroniew, 1996; Ernsberger et al., 1997; Guidry and 
Landis, 1998). An example of this is the changes in neuropeptide expression taking place in 
the serotoninergic neurons (which innervate motoneurons) following motor axon 
manipulation and, possibly, also during aging (Johnson et al. 1993, 1995; Van den Bergh, 
1988, 1991; see also Piehl et al., 1991). Moreover, several recent studies have reported on the 
importance of retrograde synaptic signaling with trophic molecules for transmission 
properties and plasticity of synaptic axon terminals. It is believed that the target neuron 
release neurotrophins in an activity-dependent manner, which then can influence the function 
of the presynaptic terminal (Schinder and Poo, 2000; Schuman, 1999).  
Since death of motoneurons in neurodegenerative diseases has been linked to the loss of C 
boutons (Nagao et al., 1998) it is plausible that the preservation of C boutons contributes to 
the survival of motoneurons in senescence (Johnson et al., 1995; 1999 and references therein). 
The hypothesized trophic function of C boutons does not necessarily have to be associated to 
the cholinergic transmission. The presence of dense core vesicles in C boutons and the close 
association to post synaptic endoplasmatic reticulum, suggest that C boutons can release other 
neuroactive molecules and influence protein synthesis. 
 
Non C bouton cholinergic axons (paper II, unpublished observations) 
In addition to the large C boutons, the spinal cord neuropil contains small cholinergic 
terminals. In the ventral horn many of these are recurrent axon collaterals innervating 
Renshaw cells but also motoneurons (Cullheim et al., 1977).  
  
 

            
       
Figure 1. Sections from the granule cell layer (gl) of the hippocampal dentate gyrus (hipp) 
from a young adult (Ad) and aged (Ag) rat. Cholinergic terminals are shown by using an 
antibody against the vesicular acetylcholine transporter (VAChT). Note decreased density of 
terminal-like profiles in (B) compared to (A). Scalebar corresponds to 20µm. 
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There was no conspicuous difference between aged and young adult rats with respect to 
density of small cholinergic terminals, however, in the aged some of them had a dystrophic 
appearance, suggesting that NAD affects also cholinergic pathways.  
In the hippocampus of aged rats, the density of cholinergic fibers was clearly reduced (Figure 
1). This is in line with earlier reports (Lukoyanov et al., 1999), however, signs of NAD were 
more infrequent than in the spinal cord. Considering the findings on C boutons, the paucity of 
cholinergic fibers in the aged hippocampus may not necessarily reflect loss of fibers but could 
also be caused by neurotransmitter phenotype changes in senescence.  
 
Monoaminergic axons (unpublished observations) 
Using immunohistochemistry against tyrosine hydroxylase (TH; Markey et al., 1980, see 
Table 2 in Materials and methods), the rate-limiting enzyme in the synthesis of noradrenaline 
and dopamine, a decreased density of TH immunoreactive fibers was apparent in both the 
hippocampus and in the spinal cord of aged rats (Figure 2).  
 
 

           
 

           
 
Figure 2. Sections from young adult (Ad) and aged rat (Ag) spinal cord ventral horn (vh, 
shown in A and B) and the hippocampus (hipp, shown in C and D), labeled with the TH 
antibody. Note decreased fiber density in B and D. Arrow in B point at an aberrant profile. 
The hippocampal layers stratum radiatum (sr) and stratum lacunosum moleculare (s l-m) are 
indicated.  Scalebars correspond to 50µm.  
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Some of the TH positive fibers showed signs of NAD in the aged rats. This is in line with 
previous reports (Masuoka et al., 1979; van Luijtelaar et al., 1992; see also Olson et al., 1973).  
The NAD-affected TH positive axons were, however, more frequent in the spinal cord than in 
the hippocampus, whereas loss of immunoreactive fibers was severe in both regions. Since 
dopaminergic and noradrenergic fibers are present in both spinal cord and hippocampus 
(Hökfelt et al., 1979; Loughlin et al., 1986; Swanson, 1982), it cannot be resolved if both 
pathways are equally affected by NAD.  
Using immunohistochemistry with an antibody against serotonin (Steinbusch et al., 1978; 
Verhofstad and Johnson, 1983, see Table 2 in Materials and methods), we could confirm 
earlier results of axon aberrations and loss of immunoreactive fibers in the aged 
serotoninergic system (Johnson et al., 1993; van Luijtelaar et al., 1992: see also Olson et al., 
1973). However, in line with the findings on TH fibers, it appeared as if NAD of 
serotoninergic axons was more frequent in the spinal cord than the hippocampus, while fiber 
loss was extensive in both regions. One tempting explanation for the differences in the 
occurrence of NAD between the spinal cord and the hippocampus in senescence is a 
difference of influences from the target, e.g. expression of trophins or other molecules 
affecting innervation (Gavazzi et al., 1992 and references cited above).  
 
Amino acid neurotransmitters (paper III) 
About 90% of boutons apposing spinal motoneurons appear to use one or a combination of 
glutamate, GABA and glycine as fast neurotransmitters (Fonnum, 1984; Örnung et al., 1998). 
Quantitative analysis in the electron microscope, indicated that aberrant axons (only 
encountered in the aged rats) often were glutamatergic, while GABAergic and glycinergic 
fibers were only rarely affected. One mechanism that might contribute to the susceptibility for 
NAD among glutamatergic axons may be age related phenotypic changes in the target 
neurons. Evidence from studies on cortical and hippocampal cell cultures and brain slices, 
suggest that excitatory and inhibitory transmissions are differentially affected by retrograde 
neurotrophin signaling at synapses. Glutamatergic signaling is increased whereas GABAergic 
is depressed in response to neurotrophins (Leßman, 1998; Schinder and Poo, 2000; Schuman, 
1999). If similar mechanisms operate in the spinal cord, phenotype changes in the target 
neurons may affect excitatory and inhibitory boutons differentially.  
 
2. NAD, transmitter phenotype and oxidative stress (paper III, unpublished 
observations) 
In the material used for analysis of NAD in axons using amino acid neurotransmitters, 
adjacent sections were labeled with antiserum against the free radical scavenger glutathione 
(GSH) to examine if GSH synthesis is upregulated pre- and/or postsynaptically in the lumbar 
motor nuclei of aged rats. GSH is a major protector against ROS in the brain and synthesis is 
regulated by feed-back inhibition of GSH (Cooper and Kristal, 1997, Dringen, 2000). Thus, 
changes in GSH expression are likely to reflect alterations in redox status. The quantitative 
analysis revealed an increase in GSH immunoreactivity in both pre- and postsynaptic 
compartments in the lumbar motor nuclei of aged rats. Presynaptically, the enrichment of 
GSH immunoreactivity was seen in axonal boutons of normal appearance as well as in 
dystrophic boutons, and was furthermore restricted to the extra-mitochondrial compartment. 
In particular glutamatergic axon terminals contained high levels of GSH, in fact, close to 50% 
of all glutamate immunoreactive boutons in the aged rats contained very high levels of GSH 
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immunoreactivity. Increase of GSH in both normal and dystrophic glutamatergic axon 
profiles in the aged rats, may indicate that oxidative challenge precede the occurrence of 
NAD. Despite the fact that mitochondria are reported to be the primary target of age 
associated oxidative damage (Ashok and Ali, 2000; Barja and Herrero, 2000; de la Asuncion 
et al., 1996; Ferrándiz et al., 1994; Sastre et al., 2000), mitochondria in the axon terminals did 
not show an increase in GSH immunoreactivity. Low levels of mitochondrial GSH have been 
linked to degeneration and impaired function (de la Asuncion et al., 1996; Dringen et al., 
2000; Jain et al., 1991; Meister, 1995) and there is a similarity in the ultrastructure of 
mitochondria in aberrant axons and mitochondria subjected to experimentally induced 
oxidative damage (Jain et al., 1991; Meister, 1995). Mitochondrial deterioration may result in 
decreased formation of ATP, impairing energy dependent reactions such as transmitter release 
and degradation processes. Subsequently, terminal content and undegraded material may 
accumulate in the terminal and cause the development of NAD. Postsynaptically, GSH was 
increased both in the cytosolic and the mitocondrial compartments of aged rats, indicating a 
change in redox status also in motoneurons. All in all, the results support the notion that aging 
is associated with an increased oxidative stress (Harman, 1981) and indicate that different 
transmitter systems are differentially affected. 
 
3. Dysmyelination (paper I) 
Whereas only a few studies have addressed the issue of dysmyelination in the white matter of 
CNS during aging (Dickson et al., 1990; Feldman and Peters, 1998; Fuisawa, 1988; Peters et 
al., 1994), numerous studies have described and characterized age related dysmyelination in 
spinal roots and/or peripheral nerves (Berg et al., 1962; Bergman and Ulfhake, 2002, Gilmore, 
1972; Johansson et al., 1996; Kazui and Fujiawa, 1988; Karlsson and Hildebrand, 1996; Knox 
et al., 1989; Krinke, 1983; Sharma et al., 1980; van Steenis and Kroes, 1971). We used 
staining with Marchi solution to examine myelination of the spinal cord at the light 
microscopic level. There was a marked increase of Marchi-positive bodies (MPBs), suggested 
to represent myelin degradation products (Corneliuson et al., 1988; Fransson and Ronnevi, 
1984; Hildebrand 1977; Persson and Berthold, 1991), in the outer portions of the spinal cord 
funiculi of aged rats (Figure 3). MPBs in adult animals are found mainly along large 
myelinated fibers and probably reflect a normal turn-over in thick myelin sheaths (Hildebrand 
1977). However, during Wallerian degeneration there is a drastic increase in number of MPBs 
(Franson and Ronnevi, 1984). Thus, our data suggest an increased breakdown of myelin but a 
defect in clearance of myelin debris can not be ruled out. However, the regions containing 
most MPBs had also vacuoles and a more pale appearance, indicating a low content of myelin 
(Figure 3) (Corneliuson, 1988). Thus, an increased breakdown seems to be a more likely 
explanation to the increased number of MPBs during aging.  
From the figure below (Figure 3), it is evident that there is an overlap between regions 
affected more severely by dysmyelination and the regions harbouring ascending sensory 
pathways and some of the descending bulbospinal pathways. Some common features of these 
pathways are that they are far-projecting, they are myelinated and that they have a 
monoaminergic or a glutamatergic neurochemical phenotype.  
In paper I, it was also noted that there appeared to be close coincidence of regions affected by 
dysmyelination (white matter; see above) or NAD/loss of axon terminals (motor nucleus, 
paper I; superficial part of the dorsal horn, Bergman and Ulfhake, 2002), on the one hand, and 
signs of astrogliosis, on the other. 
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Figure 3. A crossection through the thoracic spinal cord (reproduced from paper I) and a 
schematic representation of some major ascending and descending axon tracts (data replotted 
from “The rat nervous system”, edited by Paxinos, 1995). Scalebar corresponds to 220µm. 
 
 
4. Astro- and microglial reaction (papers I, IV) 
From the results discussed above it is evident that NAD and fiber/terminal loss are hallmarks 
of the aged rat grey matter, while signs of myelin changes are evident in the spinal cord white 
matter. Since astroglia and/or microglia are activated in a number of conditions with axon 
and/or myelin damage (Kreutzberg, 1996; Liedtke et al., 1996; Wilson and Molliver, 1994; 
Zielasek and Hartung, 1996), we decided to look for signs of astroglial and microglial 
activation in the spinal cord and, for comparison, also in more rostral brain regions.  
 
Grey matter (papers I, IV) 
In the aged rat spinal cord, GFAP expression and GFAP positive profiles were increased 
around motoneurons and in the superficial part of the dorsal horn. Signs of astrogliois were 
also evident in several brain regions, e.g. the hippocampus. Electron microscopic analysis of 
spinal motoneurons with a decreased bouton covering, showed that they were surrounded by 
pale processes, most likely of astroglial origin. Signs of microglial activation and phagocytic 
activity were not conspicuous in the spinal cord of aged rats, despite occurrence of axon 
dystrophy and loss of synaptic terminals. In the literature, there are some controversies 
concerning the role for microglia in bouton elimination. Following axotomy of motoneurons 
there is an elimination of bouton from the receptive domain of the lesioned motoneuron 
(Lindå et al., 1992). In some animal models, post axotomy shedding of synapses occur 
without microglial reaction (Svensson and Aldskogius, 1993). However, there is also 
evidence favouring that microglia are responsible for terminal degeneration (Blinzinger and 
Kreutzberg, 1968; Wilson and Molliver, 1994) or at least influence the displacement process 
(Aldskogius et al., 1999). Since microglial activation has been claimed to be a rapid and 
transient event in grey matter (Raivich et al., 1999 and references therein), microglial 
activation may not be easy to capture. Nevertheless, a low level activation of microglia was 
evident in our material, thus a role for them in bouton removal during aging cannot be ruled 
out. There is morphological evidence that immature astrocytes are responsible for the 
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postnatal removal of boutons from motoneurons (Ronnevi, 1978) and data indicates that also 
mature astrocytes are involved in the detachment of presynaptic terminals following axotomy 
(Aldskogius et al., 1999 and references therein). However, astroglia are also necessary for 
maintaining a number of other functions, e.g. synapse formation, synaptic plasticity and 
integrity, ion homeostasis, transmitter metabolism, regulation of extracellular matrix (Araque 
et al., 1999; Haydon, 2000; Pfrieger and Barres, 1996; Ridet et al., 1997; Ullian et al., 2001) 
and in the defence against oxidative stress (Dringen, 2000 and references therein). Thus, the 
observed astrogliosis of the grey matter may perhaps mainly serve other purposes than bouton 
removal during aging. 
 
White matter (papers I, IV) 
GFAP expression was increased in the outer portions of spinal cord funiculi of the aged rats, a 
pattern coinciding with that encountered for Marchi-positive bodies (see above). In the same 
regions, OX42 labeled profiles disclosed the characteristics of activated microglia 
(Kreutzberg, 1996) and ED1 positive profiles were numerous. Since ED2 labeling was similar 
in both age groups and restricted to perivascular locations, and the intact blood brain barrier 
does not allow entry of immune cells to any great extent (Becher et al., 2000), ED1 labeled 
profiles were considered as phagocytes derived from resident microglia. Thus, it appears as if 
signs of myelin changes (see above), activation of microglia (OX42), presence of phagocytic 
(ED1) microglia, and astrogliosis are related events during aging. This is not surprising, since 
astroglia and microglia together with MPBs have been suggested to be involved in normal 
myelin catabolism (Hildebrand et al., 1993 and references therein). In addition, expression of 
the multifunctional protein clusterin was increased in astroglia in the outer parts of spinal cord 
funiculi. Since one of its attributed functions is lipid scavenging in myelin clearing processes 
(Rosenberg and Silkensen, 1995), it is likely that the upregulation reflects an increased 
breakdown of myelin. 
By measuring the photometric values of GFAP, OX42 and ED1, a positive correlation was 
recorded between these markers for gliosis. In this analysis it also became apparent that aged 
animals with severe sensorimotor impairment showed more extensive signs of gliosis than 
aged animals with mild behavioral deficits or young adult animals. This is consistent with 
results obtained in aged monkeys, where memory impairment correlated with the degree of 
degenerative changes in myelinated axons and microglial activation (Peters et al., 1994). In 
aged rats, a positive correlation between GFAP expression in hippocampus and corpus 
callosum and the extent of behavioral deficits have been observed (Soffié et al., 1999; 
Suguaya et al., 1996).  
The findings made here that microglial activation is much more overt in the white than the 
grey matter of the spinal cord, is in accordance with results from other brain regions (Ogura et 
al., 1994; Perry et al., 1993; Peters et al., 1994; Sheffield and Berman, 1998; Sloane et al., 
1999). Since myelin breakdown products are potent activators of microglia and microglia 
phagocytosis appears to be instrumental in the removal of myelin/myelin debris in de-
/dysmyelinating conditions (Lawson et al., 1994; Zielasek and Hartung, 1996), it is likely that 
the microglial activation in the white matter during aging, is secondary to dysmyelination. 
Since microglial activation in a lesion situation is an inflammatory reaction, it may also cause 
harm. “Uncontrolled” inflammatory processes have been suggested to worsen the course of 
neurodegenerative diseases such as Alzheimer´s disease (Campbell et al., 1998). Judging from 
experimental studies, however, it seems as if a myelin debris clearance by macrophages is a 
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prerequisite for proper remyelination and functional restoration (Franklin and Hinks, 1999; 
Zhang et al., 2001). Similarly, astroglia seem to be important for successful remyelination as 
well as structural organization of the white matter (Hinks and Franklin, 1999; Liedtke, 1996; 
Woodruff and Franklin, 1999; Yao et al., 1995a). Thus, the activation of astroglia may reflect 
an attempt towards remyelination during aging. 
From analysis of co-processed tissue, it appeared as if microglial activation and astrogliosis 
were less pronounced in brain white matter regions compared to the spinal cord. This may 
reflect a lesser extent of dysmyelination in rostral CNS regions, or a relatively lower density 
of large myelinated fibers in the white matter of the brain.  
 
5. Cytokine expression and glial cells in the aged spinal cord and hippocampus (paper 
V) 
Glial cell activation and inflammatory responses are tightly regulated by molecules referred to 
as cytokines and chemokines (Asensio and Campbell, 1999; Turrin and Plata-Salamán, 2000). 
Cytokines are divided into families, like pro-inflammatory or trophic. However, many 
cytokines as IL6 and TGFβ−1 are involved in both inflammatory and trophic signaling 
(Flanders et al., 1998; Van Wagoner and Benveniste, 1999). Since both inflammatory 
signaling and trophic support are highly relevant in a state of age related axon aberrations and 
gliosis, the expression and cellular distribution of several cytokines were examined in the 
spinal cord and, for comparison, the hippocampus of young adult and aged rats. The changes 
were more pronounced in the spinal cord than in the hippocampus and, in particular, the white 
matter of the spinal cord contained glial cells with increased content of cytokines. Among the 
examined cytokines, only IFN-γ was upregulated in both the hippocampus and the spinal 
cord. IFN-γ is a potent proinflammatory cytokine that can induce cytotoxic functions in 
microglia, and it is likely that an increased expression could be connected to the phagocytic 
activity of microglia observed in aged rats. However, the cellular source of the increased level 
of IFN-γ could not be determined here. Although T-lymphocytes and natural killer cells are 
regarded to be the source for IFN-γ (Aloisi, 2001; Popko et al., 1997), evidence indicates that 
both astro- and microglia can synthesize this cytokine (De Simone et al., 1998). Considering 
that at least T-lymphocytes are only rarely encountered in brains of young adult as well as 
aged rats (Perry et al., 1993), it appears plausible that IFN-γ is produced in the activated glial 
cells in the aged rats. Since dysmyelination/disruption of myelin sheath appears to be able to 
directly activate microglia (Lawson et al., 1994; Zhang et al., 2001), the contribution of 
peripheral immune cells for eliciting glial activation may not be needed. TNF-α, another 
molecule implicated in microglial cytotoxicity, mainly recognized for its destructive effects 
on oligodendroglia (Stoll and Jander, 1999 and references therein) did not show a consistent 
change in expression in the aged rats. However, a prominent feature in the spinal cord white 
matter of all aged rats studied, was TNF-α positive profiles tightly enclosed by large activated 
microglia, suggesting this molecule involvement in their phagocytic activity. 
CNTF was encountered in astroglia and oligodendroglia of the white matter in aged and 
young adult rats. In the aged rats, the expression of CNTF appeared decreased in 
oligodendroglia of the white matter, whereas it was increased in astroglia processes. Since 
CNTF can protect oligodendroglia from cytotoxicity and also influence myelination 
(Dell´Albani et al., 1998; Linker et al., 2002), a decreased expression may render aged 
oligodendroglia more vulnerable to insults and less competent to handle the demand for 
remyelination. The increased expression of CNTF in astroglia might reflect its effects in 



 

  26

inducing astrogliosis (Kahn et al., 1997; Winter et al., 1995), or an effort to support 
oligodendroglia. IGF-1 can exert similar effects on oligodendroglia and myelination as CNTF, 
and has also been shown to reduce demyelination and up-regulate gene expression of myelin 
proteins (Yao et al., 1995b; Ye and D´Ercole, 1999). However, in contrast to CNTF, the 
expression of IGF-1 was upregulated in the hippocampus only. At least in part, an 
upregulation of IGF-1 in the hippocampus may explain the differences between this region 
and the spinal cord concerning degree of gliosis and differences in occurrence of dystrophic 
axons. 
In addition to an increased expression of CNTF, astroglia in the spinal cord white matter also 
disclosed increased content of IL1-β, IL6, FGF-2 and TGFβ-1. FGF-2 was also increased in 
astroglia of the spinal cord grey matter and the hippocampus. Since all these molecules can 
induce astrogliosis (Baghdassarian et al., 1993; Chiang et al., 1994; Laping et al., 1994; Reilly 
et al., 1998), it is likely that their upregulation reflects a role in the age related astrogliosis. 
Interestingly, only FGF-2 was upregulated also in astroglia of the grey matter (spinal cord and 
hippocampus), which suggests that the mechanisms underlying the white matter and grey 
matter gliosis are different. In addition to their effects on astroglia, FGF-2 and TGFβ-1 can 
promote myelination (Franklin and Hinks, 1999). Thus, their increased expression may reflect 
mechanisms to promote repair processes. Following experimental induced demyelination, 
remyelination takes place in the aged rat CNS as extensively as in young adult rats, but at a 
slower pace (Shields et al., 1999), indicating that the capacity for remyelination is retained.  
 
Aspects on gender 
Although not specifically addressed, it was revealed that the senescence related changes in 
cytokine expression (and glia activation; paper IV) were similar in male and female rats, 
except for TNF-α, which was upregulated in spinal cord of male but not female aged rats. 
Whether this represents a “true” gender difference or rather reflects individual differences was 
not resolved. Although we have been unable to detect conspicuous differences in behavior 
between female and male rats (Appendix), it seems likely that the changes occurring in 
several hormonal systems during aging (Lamberts et al., 1997) may contribute to the 
phenotypic changes observed in senescence, an issue that deserves further attention. 
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GENERAL DISCUSSION 
 
Results of this thesis work are compatible with the “free radical theory of aging” (see 
Introduction). However, the differences in the loss of axon terminals, NAD and 
dysmyelination between regions and neurochemically identified systems, can hardly be 
explained by a simple interpretation of this theory. Rather, it suggests that several and 
possibly diverse mechanisms contribute to the age related changes. Although direct evidence 
is missing, impairment of oligodendrocyte integrity is probably a key element in NAD of 
large (projecting) myelinated axons. Data presented here also indicates that NAD is associated 
with the neurochemical phenotype of the axon and, possibly, phenotypic changes of the target 
neurons/cells.  
 
Neurochemical phenotype and prevalence for NAD. 
 The selective vulnerability for NAD in glutamatergic and monoaminergic axononal pathways 
may relate to the handling and the metabolism of the transmitters.  
Glutamate signaling can initiate an oxidative challenge through stimulation of NMDA 
receptors, referred to as excitotoxicity (Leist and Nicotera, 1998; Michaelis, 1998). This 
mechanism has mainly been implicated in damage of the postsynaptic profile. Perhaps 
surprising, age related axon damage affects the glutamatergic axon itself. However, NMDA 
receptors are also expressed presynaptically (Liu et al., 1994; Michaelis, 1998 and references 
therein), and it has been suggested that glutamate can be detrimental to the glutamatergic 
terminals themselves (Mattson et al., 1998), which would be consistent with an increased 
susceptibility for NAD. The function of astroglia is critical for a normal function of glutamate 
synapses. For example, the glial glutamate transporter is responsible for the re-uptake of the 
transmitter from the synaptic cleft and this transporter has been shown to be especially 
vulnerable to the actions of ROS (Keller et al., 1997). Astroglia are also responsible for the 
further handling of glutamate and re-loading of the transmitter precursor to the presynaptic 
axon terminal (Hertz et al., 1999). In addition, evidence (see Introduction) indicate that 
astroglia support neurons in the protection against oxidative stress. If one or several of these 
functions become impaired during aging, the probability for glutamate toxicity will increase 
and may explain the higher prevalence for NAD in glutamatergic axons compared to axons 
using other amino acid transmitters. 
During monoamine metabolism, ROS (hydrogen peroxide) are formed through the actions of 
the enzyme monoamine oxidase (MAO), situated at the outer mitochondrial membrane. This 
will add to the ROS generated in the electron transport chain during cell respiration, and may 
thus increase the probability for oxidative damage in monoaminergic axon terminals. 
The major contribution to the ROS in neurons derives from cell respiration, thus, the 
metabolic demand in neurons that give rise to large and/or far-projecting axon arbors may be 
at greater risk for oxidative damage than locally projecting neurons with a less extensive axon 
arbor. This is consistent with the findings made here and earlier studies showing a high 
incidence for NAD in the dorsal column system and the serotoninergic system (for references 
see above). 
 
Possible effects by target neurons and dysmyelination on NAD and axon terminal loss 
As evident from the results of paper I, loss of synaptic input is selective among spinal 
motoneurons. Thus, some but not other motoneurons are affected indicating that the target 
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neuron may be instrumental in synaptic removal during aging as is the case when motoneuron 
axons are severed in young individuals. As discussed above, the target neuron at synapses 
influences the function of the presynaptic axon terminal through retrograde signaling 
mechanism(s). In fact, an intact retrograde signaling may be a prerequisite to maintain 
phenotype and integrity of the presynaptic terminal. Such a mechanism has also been put 
forward as an explanation for innervation deficits in PNS in senescence (e.g. Johansson et al., 
1996; reviewed by Cowen and Gavazzi, 1998; Ulfhake at al., 2000, 2002). 
Although according to its definition, NAD is a process in the axon, myelinated axons are 
dependent on oligodendroglia for integrity and NAD is associated with dysmyelination (see 
Introduction and references below). Studies on multiple sclerosis and experimental-induced 
encephalomyelitis have shown that NAD appears in the wake of demyelination, suggesting 
that dysmyelination can induce NAD (Giordana et al., 2002; Raine and Cross, 1989; 
Woodruff and Franklin, 1999). A possible explanation for this is that compact myelin/myelin 
components are necessary for neurofilament organization in the axonal cytoskeleton (Brady et 
al., 1999; de Waegh et al., 1992; Yin et al., 1998), subsequently dysmyelination may interfere 
with axonal transport. Others have discussed changes in axonal transport as a cause for NAD, 
although an exact mechanism by which this would occur has not been established (Jellinger 
and Jírasek, 1971; Schmidt et al., 1997). Despite controversy regarding changes that take 
place in the different components of axonal transport with age, there is evidence suggesting 
that the rate of slow anterograde transport, responsible for the movement of cytoskeleton and 
enzymes of intermediary metabolism may be decreased (Jacob, 1995; Komiya, 1980; 
McQuarrie et al., 1989). This can have implications for synaptic plasticity and possibly results 
in reduced activity at the terminal. Since neurofilament accumulation has been described in 
inactive nerve terminals of the goldfish (Bondar and Roots, 1977), it might be hypothesized 
that during aging reduced activity in axon terminals, through presynaptic and/or postsynaptic 
(see above) mechanisms, results in neurofilament accumulation and subsequent distortion of 
the axon architecture. Moreover, interactions between compact myelin and axon are suggested 
to influence neurofilament organization through activation of kinases and phosphatases 
(Brady et al., 1999). Hence, it is plausible that dysmyelination itself, disrupting the compact 
myelin, may result in abnormally phosphorylated epitopes that are more resistant to 
degradation and subsequently can accumulate in the distal axon, as seen in NAD. Indeed, 
there is evidence for an increased phosphorylation of neurofilaments in senescence (e.g. Gou 
et al., 1995; Uchida et al., 1999). 
 
Factors that may contribute to dysmyelination 
Dysmyelination (and thereby possibly also NAD) may be elicited by a number of factors, e.g. 
changes in trophic signaling (e.g. PDGF, IGF-1, FGF-2 and CNTF), cytotoxic molecules (e.g. 
TNF-α and IFN-γ), intrinsic changes including oxidative stress in the oligodendroglia and/or 
myelin sheath (Casaccia-Bonnefil, 2000 and references below).  
Administration of exogenous IGF-1 and PDGF has been found to decrease demyelination in 
acute/semi-chronic experimental animal models (Allamargot et al., 2001; Jean et al., 2002; 
Yao et al., 1995b). The endogenous expression of TGFβ−1, FGF-2, PDGF and IGF-1 shows a 
distinct regulatory pattern in experimental demyelination–remyelination processes (Hinks and 
Franklin, 1999, 2000), suggesting that they play different supportive roles in the repair 
process. Of these molecules, only TGFβ−1 showed a consistent upregulation in the spinal 
cord during aging (paper V) and for CNTF our data indicates the possibility of a decreased 
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content of CNTF protein in oligodendrocyte-like profiles. Thus, it cannot be excluded that the 
progressive dysmyelination occurring during aging, in part, is due to a deficient/exhausted 
remyelination/repair process. Interestingly, IGF-1 was upregulated in the hippocampus of the 
aged animals and may be one factor contributing to the lower incidence of NAD and glial 
activation in this region compared to the spinal cord (paper IV and V). It should be mentioned 
here, that since the relative number of large myelinated axon probably is lower in the 
hippocampus than in the spinal cord less signs of glial changes were expected.  
One, not mutually exclusive, explanation to the dysmyelination is the detrimental actions of 
ROS (see Introduction). This notion is supported by a study with monkeys in which brain 
white matter disclosed signs of oxidative damage (Sloane et al., 1999). By the reaction 
between ROS and membrane components, its properties are altered (Beckman and Ames, 
1998) and products formed in these reactions can be directly harmful to oligodendroglia (Gard 
et al., 2001) and recognized by macrophages (Vlassara et al., 1988).  
There are also evidence that changes in the fatty acid composition can activate microglia 
(Poulos, 1995 and references therein; Dubois-Dalcq et al., 1999). The brain is rich in very 
long chain fatty acids (VLCFA) and there is evidence favouring an age related increase in 
their length as well as an increased proportion of unsaturated compared to saturated VLCFA 
(Giusto et al., 1992). This pattern resembles the situation in adrenoleukodystrophy (ALD) an 
X-liked inherited demyelinating disease, where VLCFA accumulate due to disturbed transport 
into the peroxisomes, resulting in an impaired β-oxidation of VLCFAs. The accumulation of 
VLCFA is suggested to destabilize the myelin and cause an activation of microglia (Dubois-
Dalcq et al., 1999). It is therefore tempting to speculate that the age related increase in the 
length of VLCFA can cause destabilization and subsequent dysmyelination. Also, results from 
mice deficient in CGT, the enzyme required for the synthesis of galactocerebroside (GalC, 
one of the most abundant myelin lipids) indicate that an intact lipid composition is necessary 
for myelin stability. Interestingly, the same mice exhibited differences between regions in 
myelin stability (Coetzee et al., 1996) indicating that phenotypic subpopulations based on 
morphological and/or biochemical differences (Anderson et al., 1999; Bjartmar et al., 1994; 
Norton and Cammer, 1984) may vary with respect to vulnerability to genetic and/or 
environmental changes.  
Increased break down of myelin in de- and dysmyelination triggers a reactive inflammatory 
astro- and microgliosis. Several of the proinflammory cytokines involved in inflammation are 
potentially harmful to oligodendroglia and the inflammation process itself can be damaging to 
oligodendroglia function if it is not strictly controlled. 
Results from knock-out and mutant mice, have also shown that the myelin proteins influence 
myelin sheath integrity (Klugmann, 1997; Nadon and Duncan, 1995; Weiss et al., 2000). In 
the aged rat CNS, expression of several of the myelin proteins is decreased (Sim et al., 2000; 
Virgili et al., 2001), which may reflect a decreased myelin content secondary to 
dysmyelination but possibly also a deficiency in remyelination processes.  
As well as the changes in lipid composition, also a decreased synthesis/turn-over of proteins 
and/or posttranslational modifications of protein (Sato et al., 1999) may be primary events in 
the impairment of oligodendroglia function. 
 
Natural history of NAD and dysmyelination during aging 
In contrast to acute lesions where remyelination and/or re-innervation take place (Woodruff 
and Franklin, 1999), the reparative efforts during aging are not sufficient to ameliorate 
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impairment of function(s). However, this is probably not so initially. It is worthwhile to 
remember that signs of NAD are evident in human post mortem material, from subject less 
than 10 years of age and become progressively more abundant with advancing age. Thus for a 
considerable period of time (relative to the expected life span of the species), the NAD and 
dysmyelination process do not induce overt behavioral impairment in the individuals (see 
Appendix). At later time points, impairments emerge and become progressively worse but 
with considerable variations among individuals in a population. There are several 
explanations for this pattern; firstly it is likely that the instigating mechanism(s) can act in a 
chronic manner that over time may exhaust repair mechanisms. Secondly, with advancing age 
cells that are not replaced may become more vulnerable to insults. Thirdly, both 
environmental factors as well as genetic differences may affect both the susceptibility for 
NAD and dysmyelination.  
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