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Abstract 
Inter-organ communication is essential for maintaining homeostasis, enabling 
different organ systems to coordinate and adapt to physiological demands. 

Disruptions in these communication networks can lead to metabolic dysfunction 

and disease. This thesis investigates the role of inter-organ communication in 

regulating metabolic processes, with a focus on adipose tissue and skeletal 
muscle. Additionally, we examine how specific signaling molecules—particularly 

those of the kynurenine pathway of tryptophan degradation—interact with these 

tissues to influence metabolic health and disease. We explore how these organs 

communicate in response to stressors and how this communication becomes 
disrupted in disease. 

In Paper I, we investigate how changes in circulating kynurenine metabolites 

affect metabolism. We show that despite marked changes in circulating 

kynurenine metabolites, whole-body energy metabolism remains largely 

unaffected. Importantly, we highlight how the metabolic benefits of kynurenic 
acid depend on its intermittent increase in circulation, similar to transient 

exercise-induced signals that mediate improved metabolic health.  

In Paper II, we identify the gene Zfp697/ZNF697 as a novel regulator of muscle 

regeneration, uncovering its crucial role in skeletal muscle recovery following 

injury.  

In Paper III, we demonstrate that sensory neuron-derived alpha-calcitonin gene-

related peptide (CGRPα) regulates key factors of adipose tissue, including 
adipogenesis, extracellular matrix remodeling, and adipocyte size distribution. 

Together, these studies enhance our understanding of how inter-organ 

communication influences health and disease, offering exciting therapeutic 

opportunities for improving metabolic health. 
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1 Introduction 
The survival and adaptability of multicellular organisms depend on the seamless 

coordination of physiological systems. This coordination is mediated by complex 
networks of inter-organ communication that integrate internal and external 

signals to maintain homeostasis. These networks operate through the central 

and peripheral nervous systems, as well as the exchange of signaling molecules, 

including hormones, metabolites, and cytokines. Together, they enable the 
organism to respond dynamically to fluctuations in nutrient availability, energy 

demand, and environmental stressors. 

Maintaining homeostasis requires that inter-organ communication remains 

intact and functionally effective. When these systems falter, they undermine the 

organism's ability to defend homeostasis, leading to widespread effects on 
health, such as growth, development, immunity, and metabolism. Understanding 

how organs communicate and regulate each other’s activity is therefore 

essential for uncovering the mechanisms underlying health and disease. 

The work summarized in this thesis investigates fundamental aspects of inter-

organ communication, with a particular focus on adipose tissue and skeletal 
muscle—two tissues that undergo remodeling in response to stressors and are 

central to systemic energy metabolism. By exploring the molecular and cellular 

pathways that link these tissues to other organs, this work aims to uncover how 

their involvement in the broader communication network influences systemic 
physiology, tissue remodeling, and metabolic regulation. These findings will 

provide insights into how the body coordinates its responses to maintain 

homeostasis and how disruptions in these processes may contribute to disease. 
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1.1 Inter-Organ Communication 

Inter-organ communication is a fundamental physiological process through 
which organs exchange signals to coordinate responses and regulate systemic 

homeostasis. This dynamic signaling ensures that organs respond appropriately 
to internal and external stimuli, such as metabolic needs or environmental 

stressors, and orchestrate functions like metabolism, immune responses, and 

nutrient allocation. As our understanding of these communication networks 

evolves, we gain valuable insights into their roles in both health and disease. 

1.1.1 Historical Foundations of Inter-Organ Communication 

The importance of inter-organ communication has been recognized for 

centuries, with early contributions shaping our understanding of how organs 

coordinate their activity. One of the first recorded ideas of communication 
between organs comes from the work of the Greek physician Galen of Pergamon 

in the 2nd century, who recognized that the body is unified not by distinct 

boundaries between its parts, but by the interconnectedness of its various 

components [1]. However, it wasn’t until the 19th century that the concept of 
physiological regulation through inter-organ signaling gained substantial 

recognition. Claude Bernard, often referred to as the father of modern 

physiology, introduced the idea of the “milieu intérieur”—the internal 

environment of the body that must remain stable despite external changes [2]. 
This concept laid the foundation for understanding how organs interact and 

maintain physiological balance. Building on Bernard's ideas, Walter Cannon 

coined the term "homeostasis" in the early 20th century, emphasizing how 

multiple organs interact to maintain internal stability in response to physiological 
stressors [3, 4]. These foundational ideas established a framework for 

understanding the role of inter-organ communication in maintaining 

physiological balance. 

Since the pioneering work of Bernard and Cannon, our understanding of inter-

organ communication has evolved significantly. Disturbances in this signaling 
network have been implicated in a range of diseases, including metabolic 

disorders [5, 6], aging-related pathologies [7], and mental health conditions [8]. 

These insights emphasize the crucial role of coordinated inter-organ 

communication in maintaining health [9]. As our understanding deepens, it has 
become increasingly clear that the mechanisms driving inter-organ 

communication are complex and multifaceted. This growing body of research 
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now focuses on the molecular players and signaling pathways that coordinate 

these physiological interactions, offering new insights into how organs 

communicate at the cellular and molecular levels. 

1.1.2 The Inner Dialogue: Mechanisms of Inter-Organ Communication 

To fully grasp how organs communicate, it is essential to first understand the 
underlying mechanisms of this intricate dialogue. The mechanisms of inter-organ 

communication are as diverse as the physiological processes they regulate. In 

theory, any molecule that cells can sense could serve as a signaling tool, offering 
limitless possibilities for tailoring messages and achieving precise cellular 

responses. At the heart of this complexity lies the cell—the fundamental unit of 

tissues and organs—that both sends and receives these signals. 

Cells communicate through three primary modes: endocrine, paracrine, and 

autocrine signaling. Endocrine signaling operates over long distances, traveling 

through the bloodstream to influence target tissues. A classic example of 
endocrine signaling is insulin, a peptide hormone secreted by the pancreas 

which regulates glucose uptake in distant tissues like skeletal muscle and 

adipose tissue. Paracrine signaling, by contrast, occurs between neighboring 

cells within a tissue; for instance, immune cells release cytokines to recruit and 
activate neighboring cells during tissue repair or inflammation. Meanwhile, in 

autocrine signaling, cells respond to signals they themselves produce, such as 

transforming growth factor-beta (TGF-β), which regulates cell proliferation and 

differentiation [10]. Together, these signaling modes play unique and 
complementary roles, forming a dynamic and adaptable network that ensures 

physiological coordination across the organism. 

The molecular "language" of these communication modes is remarkably versatile, 

including peptides (e.g., insulin, leptin), metabolites (e.g., lactate, bile acids), lipids 

(e.g., prostaglandins), and neurotransmitters (e.g., norepinephrine). Each 
molecule is tailored to carry specific messages and is regulated in response to 

distinct cues, creating a dynamic system to regulate physiological responses 

(Figure 1.1).For example, when blood glucose levels rise after eating, the pancreas 

secretes insulin, promoting glucose uptake into cells and lowering blood sugar 
levels. Conversely, when blood glucose levels drop, the pancreas releases 

glucagon, signaling the liver to release stored glucose and raise blood sugar 

levels. This feedback loop highlights how signaling molecules like insulin and 
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glucagon mediate the body's response to changes in the internal environment, 

ultimately regulating blood sugar levels. 

 

Figure 1.1. Inter-organ communication: Signaling factors and their origins 
Examples of mammalian inter-organ communication factors, their tissue origins, and 
destinations, emphasizing the complexity of communication between organs. Reproduced with 
permission from the Annual Review of Genetics, Volume 50 © 2016 by Annual Reviews, 
http://www.annualreviews.org [11]. 

Beyond these chemical messengers, other pathways expand the "vocabulary" of 

inter-organ communication. The nervous system, with its complex network of 
neurons, provides rapid and precise signaling between organs, complementing 

slower, more sustained endocrine signals. Additionally, extracellular vesicles—

small, membrane-bound particles—have emerged as versatile carriers of 

bioactive molecules [12]. These alternative pathways enhance the organism's 
ability to coordinate and regulate physiological responses, adding layers of 

precision and flexibility to the system. 

Given the plethora of molecules secreted by these organs, each organ has a 

specific class of signaling factors dedicated to it. These classes are named with a 

suffix "-kine," derived from the Greek word “kinesis,” meaning movement, 
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combined with a prefix that indicates the originating organ. For example, adipose 

tissue releases adipokines (adipo = adipose), skeletal muscle releases myokines 

(myo = muscle), and the liver releases hepatokines (hepato = hepatocyte, the 

main cell type of the liver). This naming convention underscores the significance 

of these secreted factors, as it reflects the attention given to their roles in inter-
organ communication. 

By leveraging these diverse signaling modes and molecular tools, cells within 

tissues—and the organs they comprise—collectively form a sophisticated 

communication network. Whether acting locally or systemically, these 

mechanisms enable the body to dynamically regulate metabolism, immune 
responses, and tissue repair, ensuring a constant dialogue that facilitates 

adaptive physiological responses. 

1.1.3 The Central Role of Inter-Organ Communication in Metabolic Health 

The inter-organ dialogue is not merely an intricate signaling system—it is the 
foundation upon which whole-body metabolic health depends [5, 6, 13]. 

Maintaining metabolic health requires a continuous and coordinated exchange of 

information among organs to ensure sufficient energy availability. This 

coordination is particularly critical during metabolic stressors, such as extreme 
feeding patterns and physical activity. 

Central to metabolic health is the interplay between key metabolic organs such 

as the pancreas, liver, adipose tissue, skeletal muscle, and the brain, each with a 

specialized role in metabolic regulation. These organs work together to maintain 

energy homeostasis, ensuring that energy is distributed appropriately according 
to physiological needs. For example, adipose tissue releases hormones such as 

leptin and adiponectin, which regulate appetite, glucose metabolism, and energy 

expenditure [14]. Similarly, skeletal muscle releases signaling molecules like 

interleukin-6 (IL-6), which influences glucose metabolism and energy 
homeostasis, particularly in response to exercise [15]. The liver plays a crucial role 

in sensing nutrient availability and regulating metabolic processes, acting as a 

central mediator during feeding and fasting transitions by shifting from energy 

storage to energy utilization [16]. The brain integrates a wide range of sensory 
and metabolic signals, processing signals and detecting circulating metabolic 

hormones and nutrients to maintain metabolic homeostasis [17, 18]. 

In pathological metabolic conditions like obesity, however, disruptions in inter-

organ communication can not only contribute to the development of these 
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disorders but also exacerbate pre-existing metabolic imbalances. For example, 

in obesity, excessive food intake leads to increased secretion of insulin from the 

pancreas. Normally, this insulin would promote the storage of excess energy in 

adipose tissue. However, chronic overproduction of insulin leads to the adipose 

tissue becoming insulin resistant [19]. As a result, excess energy is diverted to 
other tissues, such as the liver and skeletal muscle, where it further exacerbates 

the underlying metabolic pathology. Moreover, this dysregulated signaling is 

often compounded by low-grade inflammation [19], which further impairs insulin 

action and tissue function, contributing to a cycle of metabolic pathology. 

In the following sections, we will explore the roles of adipose tissue and skeletal 
muscle in inter-organ communication. We will examine how these tissues 

maintain energy balance, support tissue health, and regulate metabolism. 

Additionally, we will discuss how specific signaling molecules interact with 

adipose tissue and skeletal muscle, influencing overall metabolic health. 
Understanding the contributions of adipose tissue, skeletal muscle, and related 

metabolic pathways to systemic metabolism will provide valuable insights into 

how targeting these networks could offer novel therapeutic strategies to 

improve both metabolic health and tissue function. 
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1.2 Adipose Tissue 

Adipose tissue is a vital component of the body’s metabolic network, playing a 
fundamental role in energy storage, energy availability, and overall metabolic 

health. Though often associated with energy storage, adipose tissue is a complex 
and dynamic organ with diverse functions. In this section, we will discuss key 

aspects of adipose tissue, including its physiological roles in health, its different 

functional forms, and the processes involved in its growth and expansion. 

Additionally, we will discuss how disruptions in adipose tissue function 
contributes to metabolic diseases and how its regulation is intertwined with 

other organs in the body’s metabolic network. By the end of this section, we will 

have established a comprehensive understanding of adipose tissue's pivotal role 

in both health and disease. 

1.2.1 Adipose Tissue in Health 

The evolving understanding of adipose tissue highlights its integral role in 

metabolic regulation, not merely as an energy store, but as a key player in inter-

organ signaling and systemic health. Historically, adipose tissue was seen as a 
passive reservoir for fat, a concept rooted in early anatomical studies. This view 

persisted until the discovery of leptin in the 1990s [20], which dramatically 

shifted the scientific community’s perspective. Leptin, a hormone secreted by 

adipocytes, was found to regulate appetite and energy expenditure by signaling 
to the brain [21]. This discovery opened the door to understanding the broader 

metabolic roles of adipose tissue, leading to the realization that adipose is not 

just a storage site, but a dynamic endocrine organ. 

Building on this, the functional complexity of adipose tissue becomes even more 

apparent when we explore its cellular composition. Adipose tissue is made up of 
a variety of specialized cell types, including adipocytes, preadipocytes, immune 

cells, endothelial cells, and fibroblasts, each playing distinct yet interconnected 

roles in tissue function and metabolism [22]. While adipocytes are most closely 

associated with adipose tissue, the function of this tissue depends on a 
coordinated effort between these diverse cell types. Preadipocytes serve as 

progenitor cells, capable of differentiating into adipocytes to meet the tissue's 

expanding needs. Immune cells regulate local inflammation, playing a crucial role 

in tissue remodeling and response to metabolic stress. Endothelial cells form 
blood vessels that deliver nutrients and oxygen, essential for tissue health and 

function. Fibroblasts, producing the extracellular matrix, provide structural 
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integrity and facilitate the tissue's dynamic adaptability. Together, these diverse 

cell types enable adipose tissue to serve not only as an energy reservoir but to 

also actively participate in systemic metabolic regulation and endocrine 

signaling [22]. 

1.2.2 The Different Colors of Adipose Tissue 

Adipose tissue displays a range of colors that correspond to distinct cell types 
and depot characteristics. The primary adipocyte types—white (from white 

adipose tissue or WAT), brown (from brown adipose tissue or BAT), beige (or brite, 
i.e., brown-in-white), and pink—each have unique anatomical and functional 

properties (Figure 1.2). Although all adipocytes store lipids, their differing hues 

reflect variations in function and metabolic activity. 

 

Figure 1.2. Adipocyte diversity: White, brown, beige, and pink adipocytes 
(A) UCP1 staining in perirenal adipose tissue of a cold-exposed mouse shows unilocular, UCP1-
negative adipocytes (white), multilocular UCP1-positive adipocytes (brown), and several 
intermediate forms showing weak UCP1 (beige). (B) Subcutaneous adipose tissue of a mouse 
after 2 hours at 4°C reveals partially multilocular UCP1-positive adipocytes.(C) Perirenal adipose 
tissue from a 53-year-old man in Siberia resembles cold-exposed adipocytes in (B). (D) 
Mammary gland of a pregnant mouse displays white adipocytes, transforming forms, and 
epithelial cells with lipid droplets (pink adipocytes). Scale bars: 10 μm (A, B, D); 35 μm (C). 
Reprinted with permission [23-25].  

WAT is the most abundant adipose tissue in the adult human body and is 
composed primarily of white adipocytes under healthy conditions. These cells 

contain a single, large, unilocular lipid droplet that displaces organelles such as 

mitochondria and the nucleus to the cell periphery (Figure 1.2A) [26, 27]. The high 

lipid content gives WAT its characteristic pale or yellowish appearance. WAT’s 
primary role is energy storage—accumulating triglycerides for later use when 

energy demands increase. In addition, WAT functions as an endocrine organ, 

secreting hormones like leptin and adiponectin to regulate metabolism, energy 

balance, and insulin sensitivity [28]. In disease states, WAT often exhibits 
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increased immune cell infiltration, particularly by macrophages, leading to a pro-

inflammatory environment. This shift is associated with metabolic dysfunction, 

as chronic inflammation can impair adipocyte function, disrupt insulin signaling, 

and contribute to conditions such as obesity and type 2 diabetes [28, 29]. 

In contrast, BAT has a reddish-brown color due to its rich mitochondrial content 

containing heme cofactors in the cytochrome oxidase enzyme (Figure 1.2 A-C) 
[30]. Unlike white adipocytes, which contain a single large, unilocular lipid droplet, 

brown adipocytes contain multiple smaller lipid droplets. These cells also 

express high levels of genes involved in oxidative phosphorylation, particularly 

uncoupling protein 1 (UCP1) [30]. UCP1 plays a central role in converting chemical 
energy directly into heat—a process known as non-shivering thermogenesis [27]. 

This thermogenic capacity is essential for maintaining body temperature in 

newborns and hibernating animals [31]. Given its ability to dissipate energy as 

heat, activating BAT has emerged as a potential strategy for combating obesity 
and promoting metabolic health by increasing energy expenditure [32, 33]. 

Beige, or brite (brown-in-white), adipocytes are a result of the process known as 

beiging or browning, in which white adipocytes take on features of brown 

adipocytes in response to stimuli such as cold exposure or sympathetic nervous 

system activation (Figure 1.2A-C) [26]. Like brown adipocytes, beige adipocytes 
contain multiple smaller lipid droplets, but they typically lack the high 

mitochondrial content and oxidative phosphorylation markers characteristic of 

classical brown fat. During beiging, white adipocytes upregulate UCP1 and engage 

in non-shivering thermogenesis, converting chemical energy into heat. Once the 
stimuli are removed, beige adipocytes undergo mitophagy-mediated 

mitochondrial removal, reverting to a phenotype that resembles white adipose 

tissue, thus restoring the characteristics of white fat [34]. Notably, beige 

adipocytes do not form a distinct fat depot; instead, they are interspersed 
throughout WAT, contributing to a depot's overall beige phenotype under 

appropriate conditions. Given their ability to dissipate energy as heat like BAT, 

efforts to therapeutically enhance the beiging of white adipocytes are being 

explored as a strategy to increase energy expenditure and improve metabolic 
health, with potential applications for obesity treatment [35]. 

The final adipocyte type discussed here is the pink adipocyte. During pregnancy 
and lactation, subcutaneous adipose depots transform into mammary glands, 

where lipid-rich epithelial cells, known as pink adipocytes, are formed (Figure 
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1.2C) [36]. Although the precise origin of pink adipocytes is still uncertain, one 

hypothesis suggests that they arise from the transdifferentiation of white 

adipocytes within the mammary gland during pregnancy and lactation [36]. 

During this process, white adipocytes transform into milk-secreting epithelial 

cells, termed pink adipocytes, acquiring characteristics necessary for lactation. 
Unlike white, brown, and beige adipocytes, which play key roles in energy storage 

and expenditure, pink adipocytes play a specialized role in milk production and 

contribute to the development and maturation of the mammary duct system 

during lactation [26]. After lactation, these cells can revert to their original 
adipocyte state, demonstrating remarkable cellular plasticity. 

The diverse colors of adipose tissue reflect its functional and metabolic 

heterogeneity, positioning it as a central focus in the study of energy 

metabolism. Research on the various adipocyte types—ranging from the energy-

storing white adipocytes to the thermogenically active brown and beige 
adipocytes, and further to the specialized pink adipocytes involved in lactation—

is deepening our understanding of their unique physiological roles and 

contributions to health and disease. Moreover, the dynamic interplay and 

transformation between these adipocyte types present a compelling area of 
study, with the potential to inspire novel therapeutic strategies for improving 

metabolic health and energy balance. 

1.2.3 The Anatomical Diversity of Adipose Tissue Depots 

Adipose tissue is not only functionally diverse, but its anatomical distribution 
also plays a key role in determining its distinct physiological functions [37-40]. 

While the most common classification scheme divides adipose tissue into 

subcutaneous and visceral depots, this oversimplification overlooks the 

complexity within these categories. Within these broad categories, adipose 
depots can be further subdivided, with each depot exhibiting distinct functional 

differences. Given the focus of this thesis, the following section will focus on two 

well-characterized and widely studied WAT depots in mouse models: inguinal 

white adipose tissue (iWAT), representing subcutaneous fat, and gonadal white 
adipose tissue (gWAT, sometimes referred to as epididymal white adipose tissue 

or eWAT), representing visceral fat (Figure 1.3). This section will briefly highlight 

their correlation to human adipose depots, physiological roles, relevance to 

metabolic health. 
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Figure 1.3. Visceral and subcutaneous adipose tissue depots in mice and humans 
Schematic representation of the major visceral (gonadal; gWAT) and subcutaneous (inguinal; 
iWAT) white adipose tissue depots in mice (left) and humans (right). Reprinted under the 
Creative Commons Attribution License (CC BY) [41]. 

In mouse models, iWAT and gWAT are the primary depots used to study 

subcutaneous and visceral fat, respectively. iWAT is in the inguinal region, just 

beneath the skin, whereas gWAT is found adjacent to the gonads within the 

abdominal cavity (Figure 1.3) [41]. iWAT serves as a reasonable model for human 
subcutaneous adipose tissue due to similarities in location and metabolic 

function [22]. However, gWAT lacks a direct counterpart in humans, as the 

distribution of visceral adipose tissue in humans is markedly different, with much 

of it localized to the omentum, a structure that is only minimally present in 
rodents [27]. These distinctions underscore the importance of considering 

species-specific differences when interpreting findings from mouse adipose 

tissue studies. 

In humans, subcutaneous and visceral adipose tissues exhibit distinct metabolic 

properties with divergent implications for health [42]. Subcutaneous fat (iWAT), 
for example, is associated with a lower risk of metabolic disorders such as type 2 

diabetes and cardiovascular disease. In contrast, visceral (gWAT) is linked to 

adverse metabolic outcomes [42]. Two main hypotheses attempt to explain this 

disparity: (1) depot-specific innervation and blood flow, where visceral fat drains 
into the portal circulation, directly influencing the liver, or (2) intrinsic differences 

in adipocyte function driven by cell-autonomous mechanisms [27]. While these 
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two hypotheses are not mutually exclusive, evidence supporting the latter has 

solid ground.  

For example, preadipocytes show depot-specific gene expression and maintain 

unique characteristics even when cultured under the same conditions [43-46]. 

Correspondingly, the expression of adipogenic transcription factors like PPARγ 

and C/EBPα, which regulate adipocyte differentiation, lipid storage, and the 
secretion of hormones and cytokines, is more abundant in subcutaneous fat [43, 

47]. This suggests that subcutaneous adipocytes are more efficient in storing fat 

and secreting beneficial adipokines compared to their visceral counterparts [40]. 

In contrast, reduced expression of these transcription factors in visceral adipose 
tissue (VAT) may limit its ability to adapt to metabolic demands and increase its 

susceptibility to dysfunction. 

These molecular differences are further reflected in the plasticity of adipose 

tissue depots following environmental stressors. A remarkable characteristic of 

adipose tissue is its ability to dramatically alter its size through the enlargement 
of individual cells (hypertrophy) or the recruitment of new adipocytes 

(hyperplasia), or both (Figure 1.4). In response to high-fat feeding and cold 

exposure in mice, iWAT and gWAT exhibit distinct remodeling patterns [48, 49]. 

In high-fat feeding conditions, iWAT primarily undergoes hypertrophy, whereas 
gWAT shows both hypertrophy and hyperplasia. Following cold exposure, iWAT 

recruits new beige adipocytes, while gWAT recruits new white adipocytes [48]. 

Importantly, these data highlight depot-specific differences, but they should not 

be viewed as absolutes, as they can vary across different experimental models 
[49]. 

Depot-specific differences are also evident in the secretion of key factors [40]. 
Leptin, a hormone beneficial for metabolic health, is expressed at higher levels in 

subcutaneous fat compared to visceral fat [43]. Furthermore, inflammation plays 

a significant role in shaping depot characteristics and is involved in regulating 

the healthy expansion of adipose tissue [50]. Pro-inflammatory cytokines, such 
as TNF-α and IL-6, are produced by adipocytes and influence metabolic health. 

For instance, TNF-α inhibits the breakdown of triglycerides to fatty acids and 

glycerol by lipoprotein lipase and suppresses the expression of key adipogenic 

transcription factors, thereby impairing lipid metabolism and promoting insulin 
resistance [51, 52]. Both TNF-α and IL-6 are produced at higher levels in visceral 

fat, contributing to local inflammation, adipocyte apoptosis, and insulin 
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resistance [53-55]. Although VAT is often characterized by a pro-inflammatory 

profile, this is not an intrinsic property of the depot itself but rather a reflection 

of metabolic and physiological conditions. In aged lean mice for example, VAT 

exhibits an anti-inflammatory and highly lipolytic phenotype, a state that can be 

further enhanced by endurance exercise, underscoring the depot’s dynamic and 
adaptive nature [56]. 

These molecular differences underscore the functional diversity of adipose 

tissue depots and their significant impact on metabolic health. The depot-

specific characteristics—from hormone secretion to inflammatory responses—

help explain the contrasting metabolic effects of subcutaneous and visceral fat. 
Subcutaneous fat, with its higher leptin levels and healthier inflammatory profile, 

contributes to improved insulin sensitivity and energy balance regulation. In 

contrast, the inflammatory environment of visceral adipose tissue and its lower 

leptin production are associated with metabolic disturbances, such as insulin 
resistance and a heightened risk of metabolic diseases [42]. Overall, the 

anatomical distribution of adipose tissue is a critical factor to consider when 

studying its role in health and disease. 

1.2.4 Adipogenesis and Adipose Tissue Expansion 

Adipose tissue serves as the primary energy reservoir in the body, storing and 
releasing energy in response to hormonal signals and energetic demands. The 

ability of mature adipocytes to sequester lipids is crucial for protecting tissues 

vulnerable to lipotoxicity, such as the liver, muscle, and heart. Defects in de novo 
adipogenesis—the formation of new adipocytes from progenitor cells—can limit 

the lipid storage capacity of adipose tissue, leading to improper lipid handling 

and precipitating obesity-related metabolic disorders. Furthermore, the 

metabolically favorable expansion of adipose tissue depends on the recruitment 
and differentiation of adipose progenitor cells (Figure 1.4) [57, 58]. Notably, 

humans retain functional adipose progenitors throughout adulthood, capable of 

differentiation and contributing to tissue remodeling [59]. Processes that affect 

adipogenesis may therefore provide critical insights into the pathophysiology of 
metabolic disorders and reveal potential therapeutic targets. 

Adipogenesis is a highly organized and multifaceted process through which 

precursor cells commit to and mature into functional adipocytes (Figure 1.5). This 

process is orchestrated by an intricate network of signaling pathways and 

transcription factors that regulate the expression of genes necessary for 
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adipocyte development [60-65]. Within the stromal vascular fraction (SVF) of 

adipose tissue lies a pool of pluripotent mesenchymal stem cells (MSCs), which 

serve as the progenitors for adipocytes. Due to their pluripotency, MSCs can 

differentiate into multiple cell types, including myocytes, chondrocytes, 

osteocytes, and adipocytes (Figure 1.5) [66, 67]. 

 

Figure 1.4. White adipose tissue expansion in obesity 
In response to caloric excess, white adipose tissue expands through two mechanisms: 
hypertrophy (enlargement of existing adipocytes, top) and hyperplasia (increase in adipocyte 
number, bottom). Pathological expansion, characterized by hypertrophy, is associated with 
inflammation, fibrosis, and the early onset of insulin resistance. In contrast, healthy expansion 
occurs through hyperplasia, involving the recruitment and differentiation of adipose progenitor 
cells, along with angiogenesis. This process helps maintain proper lipid storage and prevents 
ectopic lipid accumulation, delaying insulin resistance. Reprinted with permission [68]. 

The process of adipogenesis can be divided into distinct phases. The initial 

commitment phase involves lineage specification, during which MSCs transition 

into preadipocytes and lose their pluripotent characteristics. This is followed by 
terminal differentiation, wherein preadipocytes acquire the defining features of 

mature adipocytes (Figure 1.5). A transient but critical phase of cell proliferation, 

known as mitotic clonal expansion, is also required to ensure the proper 

development of these cells [69]. At the molecular level, adipogenesis is governed 
by a network of transcription factors, with the CCAAT/enhancer-binding proteins 

(C/EBPs) and peroxisome proliferator–activated receptor γ (PPARγ) playing 
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central roles in orchestrating the expression of genes necessary for adipocyte 

development. 

In the following sections, we delve into these interconnected phases of 

adipogenesis, highlighting the cellular transitions, signaling events, and 

transcriptional regulation that underpin this process. Particular focus will be 

placed on the pivotal roles of C/EBPs and PPARγ, as well as the mechanisms 
driving mitotic clonal expansion and their coordination with commitment and 

terminal differentiation. Together, these discussions aim to provide a 

comprehensive understanding of the molecular and cellular events that govern 

adipocyte formation. 

1.2.4.1 Commitment 

The commitment of MSCs to the adipocyte lineage is a crucial early step in 

adipogenesis and is regulated by a variety of signaling pathways. Two major 

families of signaling molecules—WNT/β-catenin and transforming growth factor-
β (TGF-β)—play central roles in this process. 

The WNT family of glycoproteins is key to the regulation of MSC fate. WNT 

proteins are secreted to the extracellular matrix and can activate receptor-

mediated signaling in nearby cells, influencing diverse cellular functions such as 

proliferation, apoptosis, and differentiation [67, 70, 71]. Notably, the WNT signaling 
pathway acts as a critical determinant of adipogenic commitment. Depending 

on the activation of either canonical or non-canonical WNT pathways, MSCs may 

either retain their precursor identity or commit to adipogenesis. The canonical 

WNT pathway maintains the precursor state and inhibits adipogenesis, while the 
non-canonical pathway, in contrast, supports adipogenic differentiation [67, 72-

74]. Interestingly, there is a non-canonical WNT pathway that mimics the 

canonical pathway by inhibiting adipogenesis, and this dichotomy is further fine-

tuned by ligand types. For example, WNT5A activates the anti-adipogenic non-
canonical pathway, whereas WNT5B promotes the pro-adipogenic non-

canonical pathway [74, 75]. Furthermore, the relative abundance of these ligands 

influences the outcome [76], highlighting the intricate regulation of WNT signaling 

in MSC commitment.  

In addition to WNT signaling, the TGF-β superfamily of molecules, including TGF-
β and bone morphogenetic protein 4 (BMP4), significantly impacts MSC 

commitment to adipogenesis [77]. While TGF-β and BMP4 have overlapping 

signaling features, their effect on adipogenesis is divergent: TGF-β signaling is 
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inhibitory for adipogenesis, whereas BMP4 promotes it [78, 79]. Upon binding to 

its receptor, TGF-β activates Smad2/3 proteins, which inhibit the transcription of 

key adipogenic transcription factors [78, 80, 81]. Conversely, BMP4 signaling 

activates Smad4, which stimulates the transcription of peroxisome proliferator–

activated receptor γ (PPARγ), a critical regulator of adipogenesis, via the zinc 
finger protein 423 (ZNF423) [82]. The contrasting effects of TGF-β and BMP4 on 

adipogenesis align with observed patterns of adiposity. In obesity, there is an 

impairment in the ability to recruit and differentiate progenitor cells, thus 

exacerbating the pathological adipose tissue environment (Figure 1.4) [59]. 
Interestingly, BMP4 levels are elevated in adipose tissue from individuals with 

obesity, suggesting its role in compensating for impaired adipogenesis. However, 

increased levels of BMP4 antagonists in obesity lead to BMP4 resistance [83]. 

Similarly, TGF-β levels rise in obesity and may contribute to the excessive 
storage of lipids in already mature adipocytes by inhibiting the differentiation of 

new adipocytes [84]. Indeed, strategies to block TGF-β show protection from 

obesity [85].  

 

Figure 1.5. Molecular mechanisms of adipogenesis 
Adipogenesis is the process through which multipotent mesenchymal precursors (also known 
as mesenchymal stem cells, MSCs) differentiate into mature adipocytes. It begins with the 
commitment of MSCs to the adipocyte lineage, resulting in committed preadipocytes. As these 
preadipocytes differentiate, they activate key transcription factors, including PPARγ and 
C/EBPα/β, which drive lipid accumulation and the development of the adipocyte phenotype. 
Reprinted with permission [66]. 

Once MSCs have committed to the adipocyte lineage, they progress through key 

stages that further drive their differentiation into mature adipocytes. These 

stages involve critical events such as mitotic clonal expansion (MCE), where 

preadipocytes undergo synchronized cell division, setting the stage for the 
subsequent acquisition of mature adipocyte characteristics. The regulation of 
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MCE is crucial for ensuring proper adipogenesis and serves as a pivotal step in 

the transition to terminal differentiation. 

1.2.4.2 Mitotic Clonal Expansion 

MCE represents a critical early step in adipogenesis, occurring after growth-
arrested preadipocytes are stimulated to differentiate. During this process, 

preadipocytes synchronously re-enter the cell cycle and undergo several rounds 

of cell division before permanently exiting the cycle [69, 79, 86, 87]. This 

transient period of proliferation is necessary for differentiation to proceed: 
blocking MCE results in impaired or incomplete adipogenesis [69, 88]. While the 

exact mechanisms linking MCE to differentiation are not fully understood, it is 

thought that MCE primes preadipocytes for adipogenesis by altering chromatin 

accessibility at promoter and enhancer regions, thereby enabling the binding of 
key adipogenic transcription factors such as PPARγ and C/EBPs [88]. 

Interestingly, MCE also appears to play a role in balancing the pool of 
preadipocytes within adipose tissue. During the G1 phase of the cell cycle, a 

competitive interaction between cyclin D1 and p21 determines whether 

preadipocytes will differentiate or continue to proliferate [87]. This balance may 

be particularly relevant in conditions of metabolic dysfunction, where 
dysregulated adipogenesis contributes to pathological changes in adipose 

tissue. 

In obesity, the capacity for adipose tissue expansion through the recruitment 

and differentiation of preadipocytes is impaired, contributing to ectopic fat 

deposition and systemic metabolic disturbances (Figure 1.4) [59]. While the role 
of MCE in this context is not fully established, it is possible that disruptions in 

MCE could limit the generation of new, metabolically healthy adipocytes, 

exacerbating insulin resistance and systemic metabolic dysfunction. 

Ultimately, by facilitating both the expansion of committed cells and the priming 

of transcriptional regulators, MCE serves as a critical preparatory phase for the 
subsequent transition to terminal differentiation. 

1.2.4.3 Terminal Differentiation 

Terminal differentiation marks the final stage of adipogenesis, where a 

committed MSC, now a preadipocyte, will complete the transition to a mature 
adipocyte. This process is regulated by a variety of transcription factors and 

signaling pathways, with the expression C/EBPs and PPARγ being the key drivers 
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of terminal differentiation. These transcription factors initiate the expression of 

genes necessary for the acquisition of the adipocyte phenotype, including those 

involved in lipid storage, metabolic regulation, and insulin sensitivity. 

1.2.4.4 CCAAT/enhancer-binding proteins (C/EBPs) 

C/EBPs are a family of transcription factors that play critical roles in regulating 
gene expression, particularly in adipose tissue and the liver. Among the family, 

C/EBPα, β, and δ are particularly important in adipogenesis. These transcription 

factors are expressed in a sequential and overlapping manner during adipocyte 
differentiation, with C/EBPβ and δ being expressed early in terminal 

differentiation, followed by C/EBPα. Once expressed, C/EBPs bind to CCAAT 

motifs in the DNA to regulate the expression of adipogenic target genes. 

In the early stages of adipogenesis, the levels of C/EBPβ and δ are initially low in 

preadipocytes. However, following pro-adipogenic stimulation, their expression 

increases significantly. Notably, despite the rapid increase in C/EBPβ and δ 
expression, their DNA binding activity does not occur immediately. There is a lag 

period of approximately 14 hours after stimulation, during which time the 

expression of two important targets, C/EBPα and PPARγ, is delayed [89-92]. This 

lag period is essential because both C/EBPα and PPARγ are antimitotic [93-98], 
meaning that their premature expression would impair MCE and thus inhibit 

adipogenesis. Once C/EBPβ becomes active, it interacts with the promoter 

regions of the terminal differentiation markers, C/EBPα and PPARγ [89, 90, 92, 

99]. 

As terminal differentiation progresses, C/EBPβ and δ expression decreases and is 
gradually replaced by C/EBPα [90, 99, 100]. C/EBPα then initiates a feedforward 

loop, upregulating its own expression and that of PPARγ, a key transcription 

factor in terminal differentiation. The activation of both C/EBPα and PPARγ is 

essential for the full maturation of adipocytes and the establishment of their 
metabolic functions. 

1.2.4.5 Peroxisome proliferator–activated receptor γ (PPARγ) 

PPARγ, a member of the nuclear hormone receptor superfamily, is a critical 

transcription factor required to drive adipogenesis [101, 102]. It is often referred 
to as the ‘master regulator’ of adipogenesis due to its pivotal role in 

orchestrating the gene expression program necessary for preadipocytes to fully 

differentiate into mature adipocytes. As differentiation progresses, PPARγ 
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expression reaches a threshold that triggers several positive feedback loops, 

sustaining its levels even in the absence of external stimuli [87]. 

One of the key mechanisms by which PPARγ regulates adipogenesis is by acting 

as an irreversible switch following MCE. This is achieved through PPARγ-driven 

expression of the cyclin-dependent kinase (CDK) inhibitor p21, which helps to 

solidify the transition from cell division to terminal differentiation [87]. In 
combination with C/EBPα, PPARγ activates the expression of genes involved in 

lipid metabolism, fatty acid uptake, insulin sensitivity, and other critical functions 

of mature adipocytes. This cooperative action between PPARγ and C/EBPα 

ensures the establishment of adipocyte identity and the proper functioning of 
adipose tissue. 

1.2.4.6 Summary of Adipogenesis 

Adipogenesis is a highly regulated process essential for proper adipose tissue 

function and metabolic health. It involves commitment to the adipocyte lineage, 
MCE, and terminal differentiation, with key transcription factors such as C/EBPα 

and PPARγ driving the expression of genes involved in lipid metabolism and 

insulin sensitivity (Figure 1.5). While these core transcription factors are crucial, 

adipogenesis is also influenced by additional factors, including Notch signaling, 
insulin and thyroid hormones, extracellular matrix composition, and epigenetic 

modifications [60, 61, 63, 66, 103]. Disruptions in any phase can impair adipose 

tissue function and contribute to metabolic disorders like obesity and insulin 

resistance. 

1.2.5 Neural Regulation of Adipose Tissue 

The neural regulation of adipose tissue is a critical component in controlling 

adipose tissue function and overall energy balance and metabolism [104-107]. 
Adipose tissue is innervated by both sympathetic and sensory nerve fibers, each 

with distinct functional roles (Figure 1.6). Research to date has focused 

predominantly on the sympathetic nervous system (SNS), which regulates 

processes like lipolysis and thermogenesis. In contrast, sensory innervation, 
though less well-studied, plays a key role in relaying information from adipose 

tissue to the central nervous system (CNS) [105]. While there is a consensus that 

parasympathetic innervation is absent or negligible in adipose tissue [108], 

understanding the contributions of sympathetic and sensory pathways is 
essential for elucidating adipose tissue biology and metabolism. 
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Figure 1.6. Neural innervation of adipose tissue 
Sympathetic and sensory innervation of adipose tissue. Sympathetic nerve fibers (purple) 
transmit signals from the central nervous system (CNS) to adipose tissue, releasing 
norepinephrine (NE) to activate β-adrenergic receptors. This triggers a cascade involving Gs 
protein activation, adenylate cyclase (AC), and increased cAMP levels, which activate protein 
kinase A (PKA). PKA phosphorylates hormone-sensitive lipase (HSL) and perilipin-A (PLIN1), 
initiating triglyceride (TG) breakdown by lipases such as adipose triglyceride lipase (ATGL) and 
monoglyceride lipase (MGL). This releases fatty acids (FA) and glycerol. Sensory nerve fibers 
(green) relay feedback to the CNS, sensing local FA and leptin levels. Reprinted under the 
Creative Commons Attribution License (CC BY) [109].  

1.2.5.1 Sympathetic Innervation of Adipose Tissue 

The sympathetic nervous system (SNS) plays a pivotal role in regulating adipose 
tissue function. While both BAT and WAT are innervated by sympathetic fibers, 

their physiological roles differ substantially. BAT is primarily associated with 

thermogenesis, driven by dense sympathetic input and the activation of UCP1 
[110]. In contrast, the sympathetic innervation of WAT governs processes such as 

lipolysis, proliferation, and beiging [111-113]. Given the central role of WAT in 

metabolic health, this section focuses on the mechanisms through which the 

SNS influences WAT function. 

The recognition of SNS innervation in WAT dates back to 1898 [114], when nerve 
fibers of unknown origin were first reported within the tissue. Since then, 

accumulating evidence has established that WAT is appreciably innervated by 

the SNS [112, 113, 115]. Early studies focused predominantly on the SNS's role in 

regulating blood vessels within WAT, given its then-established presence 
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surrounding the vasculature [116]. However, advances in imaging techniques have 

since revealed direct sympathetic innervation of adipocytes, highlighting a 

broader role in adipose tissue regulation [117]. 

One of the primary functions of sympathetic innervation of WAT is the regulation 

of lipid metabolism through lipolysis—the breakdown of triglycerides into free 

fatty acids (FFAs) and glycerol [106]. This process begins when catecholamines, 
particularly norepinephrine (NE), are released from sympathetic nerve terminals. 

NE binds to β-adrenergic receptors (β-ARs) on the surface of adipocytes, 

triggering a cascade of intracellular signaling events (Figure 1.6) [118]. This 

includes the activation of adenylate cyclase and subsequent elevation of cyclic 
AMP (cAMP) levels, leading to the activation of protein kinase A (PKA) [118]. PKA 

phosphorylates and activates hormone-sensitive lipase (HSL) and other lipases, 

facilitating the hydrolysis of stored triglycerides [118]. The FFAs released during 

this process serve as a critical energy source for peripheral tissues and help 
regulate systemic metabolism (Figure 1.6).  

Beyond its role in lipid metabolism, the SNS is also instrumental in promoting the 

beiging of white adipocytes—the process by which white adipocytes acquire 

characteristics of brown adipocytes [110]. This transformation is an evolutionary 

adaptation to generate heat, allowing mammals to maintain body temperature 
under cold stress [31]. During beiging, WAT undergoes significant morphological 

and functional changes, including increased mitochondrial content, enhanced 

energy expenditure, and upregulation of thermogenic genes such as UCP1. This 

process is regulated in part by the release of NE from sympathetic terminals, 
which binds to β-ARs on adipocytes and activates signaling pathways that drive 

thermogenic gene expression [118]. Key players in this pathway include 

peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and 

fibroblast growth factor 21 (FGF21), which promote mitochondrial biogenesis and 
thermogenic programming [119]. Given its potential to increase energy 

expenditure and improve metabolic health, beiging has emerged as a promising 

strategy to address obesity-related disorders [120]. 

A lesser recognized role of sympathetic innervation of WAT is the regulation of 

preadipocyte proliferation. Early research demonstrated that NE inhibits 

preadipocyte proliferation in vitro, an effect blocked by β-AR antagonists [121]. In 
vivo, sympathetic denervation of WAT increases fat cell number [112, 113, 122, 123], 

further supporting the role of the SNS in controlling preadipocyte proliferation. 
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However, recent findings have added complexity to this understanding. 

Neuropeptide Y, a neuropeptide secreted by sympathetic neurons, sustains the 

proliferation of a subset of mural cells—a vascular cell type that contributes to 

the formation of thermogenic adipocytes [124]. Together, these findings highlight 

the multifaceted role of the SNS in WAT, regulating not only lipid mobilization and 
energy expenditure but also adipocyte proliferation and tissue remodeling. 

1.2.5.2 Sensory Innervation of Adipose Tissue 

The sensory innervation of adipose tissue was first anatomically documented in 
1985, when substance P (SP), a sensory nerve-associated peptide, was identified 

in the nerves supplying adipose tissue [125]. This was further corroborated by 

anterograde tracer studies, which labeled pseudo-unipolar neurons in the dorsal 

root ganglia—the anatomical location of sensory neuron cell bodies [126]. 
Subsequently, another sensory peptide, alpha-calcitonin gene-related peptide 

(CGRPα), was detected in adipose tissue across multiple species [127, 128]. 

Advances in imaging technologies, such as whole mount confocal microscopy 

[117, 129] and tissue clearing techniques [130], have further solidified the presence 
of sensory innervation in adipose tissue, providing unequivocal evidence that 

sensory nerves play an integral role in adipose tissue biology. 

While the sensory innervation of adipose tissue has been well-documented 

anatomically, its functional significance is still not fully understood. Early 

experiments suggested that sensory nerves might mediate a reflex arc between 

adipose tissue and the CNS (Figure 1.7) [131, 132]. For instance, leptin—a hormone 
secreted by adipocytes and proportional to body fat [133]—injections into 

adipose tissue increased the electrophysiological activity of afferent nerves 

(Figure 1.6) [132], which was shown to induce lipolysis in contralateral depots via 

sympathetic drive [131]. Subsequent studies have expanded this work, showing 
that the sympathetic response to sensory activation may not be specific to 

adipose tissue but could represent a broader systemic activation (Figure 1.7) 

[134, 135]. Additionally, both SNS-induced lipolysis and fatty acid injections into 

adipose tissue have been found to stimulate sensory afferents, pointing to the 
existence of endogenous stimulants that activate adipose tissue afferents 

(Figure 1.6) [136, 137]. This underscores the possibility that additional, yet-to-be-

discovered stimulants could play a role in regulating energy balance by 

communicating body fat levels to the brain, opening new therapeutic avenues 
for improving whole-body metabolism. 
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Figure 1.7. Sensory innervation of adipose tissue and crosstalk with the CNS  
(A) Sensory nerves detect signals in WAT and release local factors that modulate the 
microenvironment. At the same time, these sensory neurons relay information from the WAT to 
the CNS. (B) The CNS integrates these signals to generate a coordinated response. (C) 
Sympathetic nerves convey this response back to the adipose tissue, releasing signaling 
molecules such as norepinephrine, which modulate the local microenvironment. (D) The 
autonomic nervous system also affects other metabolic organs, such as the liver, muscle, and 
pancreas, to promote systemic homeostasis. Whether adipose-derived signals directly influence 
CNS-driven sympathetic regulation of these organs (light blue arrows) remains unclear. This 
schematic illustrates how the adipose tissue microenvironment might regulate systemic 
metabolism through signaling to local nerve fibers. Reprinted with permission [105]. 

Studies exploring sensory nerve function have utilized various models, including 

chemical and surgical denervation, lipectomy, and genetic manipulation. 
Chemical denervation, which involves the administration of neurotoxic 

compounds like capsaicin to destroy sensory afferents, results in an increase in 

the size of sensory-intact adipose depots [128], which suggests that sensory 

afferents contribute to regulating adiposity. Increased leptin, a signal of higher 
adiposity, typically drives SNS-mediated lipolysis to reduce fat stores. However, 

when sensory input is lost, this signal appears to be absent, leading to a 

reduction in sympathetic drive to adipose tissue. This shift away from lipolysis 

supports the idea that the loss of sensory input signals reduced adiposity and 
triggers energy conservation, ultimately promoting fat accumulation [138]. 

However, conflicting results regarding fat pad mass changes following sensory 
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denervation suggest the need for cautious interpretation of these findings [122, 

130, 139]. 

Compared to chemical denervation, surgical denervation involves lacerating 

nerve bundles containing both sensory and sympathetic nerves [128]. After 

surgical denervation, adipose depots increase in size by up to 50% [122, 128]. The 

increased size is reflected by an increase in cell number, which is thought to 
result from the loss of sympathetic inhibition of adipocyte proliferation [112, 121, 

140]. Interestingly, while sensory denervation alone does not appear to stimulate 

adipocyte proliferation, sympathetic denervation does [113]. 

Lipectomy provides an indirect method to study sensory afferents by removal of 

fat mass while preserving innervation. Lipectomy of epididymal adipose tissue 
triggers compensatory increases in other fat depots [128, 138], accompanied by a 

significant reduction in NE turnover in brown adipose tissue—indicating a shift to 

an energy-conserving state. These observations are consistent with the idea 

that sensory denervation triggers a similar process of fat pad expansion to 
restore body fat stores. 

More recent studies have shown that selective deletion of TRPV1-expressing 
sensory neurons not only promotes a youthful metabolic profile and extends 

lifespan—by reducing CGRPα release from pancreatic islet–innervating fibers 

and thereby enhancing insulin secretion—but also confers systemic metabolic 

benefits [141]. Complementing these findings, targeted ablation of heat-sensing 
CGRPα neurons increases energy expenditure, enhances lipid oxidation, and 

protects against high-fat diet-induced weight gain by promoting adaptive 

thermogenesis [142]. Furthermore, selective genetic ablation of sensory nerves 

innervating iWAT results in increased de novo lipogenesis, fatty acid metabolism, 
and cold‐induced thermogenesis, with these effects being partially dependent 

on intact sympathetic innervation [130, 142]. Sensory neurons expressing the 

mechanosensor Piezo2 were recently shown to regulate thermogenic programs 

in both brown and beige fat, with their effects mediated by the inhibition of NE 
release from sympathetic neurons [143]. Collectively, these findings suggest that 

sensory neurons play a broader role in whole-body energy metabolism while 

specifically regulating sympathetic activity in adipose tissue. 

1.2.5.3 Efferent Properties of Sensory Efferents 

While sensory afferents transmit information to the central nervous system, they 
also possess efferent properties. When activated, sensory neurons release 
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neuropeptides locally (Figure 1.7) [144, 145]. Two neuropeptides of particular 

interest are substance P (SP) and alpha-calcitonin gene-related peptide 

(CGRPα), both of which are well-known for their roles in cardiovascular 

physiology, though their effects on adipose tissue remain less understood. 

CGRPα is widely recognized for its vasodilatory function and its involvement in 

migraine pathophysiology [146]. Interestingly, CGRPα levels are elevated in 
various models of obesity [147-150], a condition characterized by increased 

circulating leptin [133, 151] and free fatty acids [152]—both of which stimulate 

sensory neurons. In the adipose tissue microenvironment where the sensory 

neuron is located, CGRPα concentrations may therefore be higher than what is 
seen in circulation. This raises the possibility that the elevated circulating CGRPα 

seen in models of obesity may be partly due to increased secretion of CGRPα 

from sensory neurons within adipose tissue. However, the local effects of CGRPα 

in adipose tissue remain largely unexplored. One study demonstrated that 
CGRPα promoted lipolysis in 3T3-L1 adipocytes [153]. Others have shown that by 

reducing circulating CGRPα levels, energy expenditure increases, and improved 

weight loss is observed [141, 142, 147, 154, 155]. These studies, however, did not 

address the localized effects of sensory neuron-derived CGRPα in adipose 
tissue, which may have distinct roles compared to circulating levels. 

Similarly, SP, another neuropeptide associated with vasodilation [156], has also 

been linked to obesity [157] and is involved in a variety of metabolic processes. 

SP has been shown to promote a pro-inflammatory environment [158, 159], 

support preadipocyte proliferation and anti-apoptotic pathways [160], impair 
insulin-stimulated glucose uptake in mature adipocytes [161], and reduce lipid 

accumulation during adipogenesis [159], though the effects are not always 

consistent [162]. Interestingly, models that reduce SP signaling have been shown 

to reduce weight gain in high-fat diet-fed mice and improve glucose clearance 
[161, 163]. These findings suggest that SP may contribute to the pathogenesis of 

metabolic disease, yet the specific role of sensory neuron-derived SP within 

adipose tissue remains unclear. 

While the individual effects of SP and CGRPα on metabolism have been partially 

explored, sensory neurons release a variety of other neuropeptides [164-168], 

which likely have complementary or even opposing roles in regulating adipose 
tissue. The relative proportions of these neuropeptides released in response to 

different stimuli add another layer of complexity to the regulation of adipose 



 

26 

tissue by sensory afferents [144, 169, 170]. Although these complexities are likely 

crucial for the communication between sensory neurons and adipose tissue, 

much remains unknown. The field is still in the early stages of understanding how 

these neuropeptides interact and the extent of their physiological relevance in 

adipose tissue biology [156, 164, 171]. 
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1.3 Skeletal Muscle 

Skeletal muscle is a dynamic and multifunctional tissue, essential not only for 
locomotion and physical movement but also for maintaining metabolic 

homeostasis and overall health. Comprising nearly 40% of total body mass in 
adults, skeletal muscle serves as a primary site for glucose uptake and storage, 

energy expenditure, and protein synthesis. Its ability to adapt to a wide range of 

physiological and environmental demands—such as exercise, injury, and 

disease—highlights its remarkable plasticity. 

In this section, we will explore the fundamental biology of skeletal muscle, 

beginning with its role in health, including its structural organization, adaptability, 
and contributions to metabolic regulation. We will then examine how skeletal 

muscle dysfunction contributes to disease states such as sarcopenia, muscular 

dystrophy, and cachexia, with a focus on the molecular pathways driving muscle 

atrophy. Next, we will discuss the processes underlying muscle repair and 
regeneration, emphasizing the interplay between satellite cells, immune 

responses, and extracellular matrix remodeling. Finally, we will consider 

therapeutic strategies aimed at restoring muscle function in conditions 

characterized by muscle dysfunction. Understanding the intricate biology of 
skeletal muscle provides insight into its vital roles in health and disease and 

reveals opportunities for therapeutic intervention. 

1.3.1 Skeletal Muscle in Health 

Skeletal muscle is a highly organized and adaptable tissue that plays a central 
role in movement, metabolism, and overall health. Structurally, it is composed of 

muscle fibers grouped into fascicles, surrounded by connective tissue layers 

that provide support and facilitate force transmission [172]. Each fiber is 
multinucleated, containing myofibrils that enable contraction through the 

interaction of actin and myosin filaments [172]. This precise organization enables 

skeletal muscle to generate force and maintain postural stability, vital for 

locomotion and daily activities. 

Muscle fibers are categorized based on their contractile and metabolic 

properties, spanning a spectrum from glycolytic fast-twitch fibers (type II) to 
oxidative slow-twitch fibers (type I) [173]. Type II fibers, which rely on anaerobic 

glycolysis, provide rapid and powerful contractions but are prone to fatigue. In 

contrast, type I fibers rely on oxidative phosphorylation, supporting sustained 

contractions with greater fatigue resistance [173]. 
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Beyond its structural and mechanical functions, skeletal muscle is a critical 

regulator of metabolic homeostasis [174]. It serves as the body’s largest reservoir 

for glucose disposal during insulin-stimulated conditions [175]. This capacity to 

absorb and store glucose plays a pivotal role in maintaining blood glucose 

homeostasis and energy balance [176]. 

Skeletal muscle is also highly plastic, responding dynamically to various 
physiological demands. Mechanical overload, such as resistance training, induces 

hypertrophy through the activation of signaling pathways like mTORC1, leading to 

increased protein synthesis and muscle fiber growth [177]. In contrast, aerobic 

exercise enhances mitochondrial biogenesis and oxidative capacity, largely 
mediated by PGC-1α activation [178]. Conversely, muscle disuse during 

immobilization or bed rest triggers rapid atrophy, driven by the activation of 

catabolic pathways like the ubiquitin-proteasome system and autophagy [172]. 

In addition to its intrinsic properties, skeletal muscle communicates with other 

tissues via the secretion of myokines, bioactive molecules that influence 
systemic processes such as inflammation and energy metabolism. For example, 

interleukin-6 (IL-6), released during exercise, enhances glucose uptake and 

lipolysis in adipose tissue while promoting anti-inflammatory effects [15, 174, 179]. 

As another example, brain-derived neurotrophic factor (BDNF), released by 
skeletal muscle during exercise, supports neurogenesis and enhances lipid 

oxidation in skeletal muscle [180]. These examples highlight the systemic impact 

of skeletal muscle beyond its intrinsic properties. 

While skeletal muscle's adaptability is critical for its function, this same plasticity 

renders it susceptible to degeneration during periods of disuse or disease. The 

next section examines how skeletal muscle atrophy contributes to pathological 
states, exploring the molecular pathways and experimental models that provide 

insight into these processes. 

1.3.2 When Muscle Misfires: Skeletal Muscle in Disease 

Skeletal muscle dysfunction is a hallmark of numerous pathological conditions, 
manifesting as the progressive loss of muscle mass and function—a condition 

termed muscle atrophy. Atrophy is a common feature of aging (sarcopenia), 

chronic diseases (e.g., cancer cachexia, chronic obstructive pulmonary disease), 
and periods of mechanical unloading such as bedrest, immobilization, or 

microgravity. This loss of muscle mass and function not only impairs mobility 

and quality of life but also disrupts systemic metabolism, exacerbating overall 



 

29 

health decline. Muscle atrophy is a multifactorial process influenced by a range 

of molecular systems, including oxidative stress, inflammation, and mitochondrial 

dysfunction [181]. These factors initiate signaling pathways that converge on 

mechanisms driving protein degradation, ultimately contributing to muscle 

wasting. 

Central to the muscle atrophy process, the ubiquitin-proteasome system (UPS) 
regulates the selective degradation of myofibrillar proteins [181]. This system is 

triggered by various catabolic signals that enhance the activity of muscle-

specific E3 ubiquitin ligases, such as atrogin-1 (MAFbx) and muscle ring finger-1 

(MuRF1) [181]. These ligases are transcriptionally upregulated by Forkhead box O 
(FOXO) transcription factors, which are activated in response to stress signals 

like glucocorticoids and pro-inflammatory cytokines, including TNF-α and IL-6 

[182]. Elevated glucocorticoid levels, often seen during chronic disease states, 

along with cytokine-induced inhibition of Akt signaling [183], further activate 
FOXO transcription factors. This suppression of Akt signaling not only promotes 

FOXO activation but also inhibits mTORC1, reducing protein synthesis and 

exacerbating muscle loss [183]. These pathways converge to upregulate MAFbx 

and MuRF1, leading to enhanced protein ubiquitination and degradation, 
ultimately contributing to muscle atrophy and an overall loss of function [181]. 

In addition to the UPS, autophagy is another critical pathway regulating muscle 

degradation. While basal autophagy maintains cellular homeostasis by removing 

damaged organelles and misfolded proteins, excessive autophagic activity 

exacerbates muscle loss during atrophy. Forkhead box O3 (FoxO3), a key 
transcriptional regulator, controls several autophagy-related genes, including 

LC3 and Bnip3 [181, 184]. LC3 is involved in autophagosome formation, facilitating 

the sequestration of damaged proteins and organelles for degradation, while 

Bnip3 plays a role in mitophagy, the selective autophagic removal of damaged 
mitochondria [184]. Dysregulation of these processes, often triggered by 

catabolic signals like AMPK activation or prolonged glucocorticoid exposure, 

disrupts muscle homeostasis and accelerates the degradation of cellular 

components, contributing to the progression of muscle atrophy. 

Beyond the UPS and autophagy, proteolytic enzymes like calpains and caspases 

contribute significantly to muscle atrophy [181]. Calpains are calcium-dependent 
proteases that cleave various substrates, including structural proteins like 

desmin and α-actinin, thereby compromising muscle integrity [181]. Caspases, 
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particularly caspase-3, also contribute to muscle degradation by cleaving 

myofibrillar proteins such as actomyosin [181]. Their actions, together with those 

of the UPS and autophagy, create a proteolytic cascade that amplifies the 

degradation of muscle proteins, further accelerating muscle loss. 

Lastly, underlying chronic inflammation plays a pivotal role in muscle atrophy, 

acting synergistically with the previously discussed mechanisms to exacerbate 
muscle degradation. Among the cytokines involved, IL-6 and TNF-α play 

prominent roles. IL-6 activates the STAT3 pathway, which modulates several 

signaling cascades, including JAK/STAT3, ERK, and PI3K/Akt, ultimately promoting 

muscle wasting [185]. TNF-α, on the other hand, binds to its receptor and 
activates the IKK complex, leading to the phosphorylation, ubiquitination, and 

degradation of IκB proteins [185]. This process frees NF-κB to translocate to the 

nucleus, where it initiates the expression of genes involved in muscle atrophy. 

The interplay of inflammation, proteolytic enzyme activation, and impaired 

protein turnover creates a cascade that accelerates muscle atrophy. This 
network of signaling pathways, involving the UPS, autophagy, calpains, and 

caspases, drives the degradation of muscle proteins and further compromises 

muscle function. Chronic inflammation amplifies these processes, creating a 

vicious cycle that not only leads to muscle wasting but also worsens the 
progression of disease, contributing to diminished mobility, reduced quality of 

life, and increased vulnerability to further complications. Despite significant 

advances, this complex process remains incompletely understood, requiring 

further exploration to fully elucidate its mechanisms and implications. 

1.3.3 Muscle Regeneration: From Damage to Repair 

Muscle regeneration is a critical biological process that restores muscle tissue 

following injury or disease. It is a highly dynamic and complex response, 

encompassing inflammation, immune cell recruitment, satellite cell activation, 
and tissue remodeling. In this process, three key stages contribute to successful 

tissue repair: injury and inflammation, proliferation and differentiation of satellite 

cells, and remodeling and maturation of the regenerating muscle tissue. Here, we 

will explore these stages, focusing on the molecular mechanisms that drive each 
phase. 
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1.3.3.1 Injury and Inflammation 

The initiation of muscle regeneration begins with injury, which can manifest 
acutely, such as through physical trauma, exercise-induced microtears, or 

chemical damage, or chronically, as in degenerative diseases like muscular 

dystrophy (Figure 1.8). Tissue injury triggers the release of intracellular signals 

known as damage-associated molecular patterns (DAMPs), which play a critical 
role in activating the immune response [186]. 

 

Figure 1.8. Skeletal muscle regeneration after acute injury 
The top panel illustrates key biological responses following muscle damage, while the bottom 
panel shows histological images of muscle regeneration after acute muscle damage. One day 
post-injury, necrotic fibers are visible, followed by an inflammatory response on day two. 
Activated satellite cells proliferate, leading to the formation of new muscle fibers within the first 
week. By day ten, muscle structure is largely restored, with centrally located nuclei marking 
regeneration. Over time, fibers continue to grow and mature, with nuclei shifting toward the 
periphery. Reprinted under the Creative Commons Attribution License (CC BY) [186]. 

The inflammatory response, though often associated with negative connotations, 

is an essential component of muscle repair. Among the first responders to the 
site of damage are neutrophils and mast cells [186]. Mast cells release pro-
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inflammatory cytokines, including TNF-α, interleukin-1 beta (IL-1β), and 

interferon-gamma (IFN-γ), which together stimulate the recruitment of 

peripheral neutrophils to the site of injury [187]. Neutrophils are pivotal in 

removing necrotic debris and amplifying the inflammatory response by releasing 

additional pro-inflammatory mediators that stimulate subsequent waves of 
immune cell infiltration [187]. 

As the inflammatory process progresses, macrophages gradually replace 

neutrophils in the damaged tissue [187]. Initially, phagocytic macrophages 

(historically referred to as M1 macrophages) work to clear cellular debris and 

sustain the pro-inflammatory environment. Over time, a shift occurs towards 
non-phagocytic macrophages (sometimes described as M2 macrophages), 

which are thought to promote the resolution of inflammation and initiate tissue 

repair through the secretion of anti-inflammatory cytokines and growth factors 

[187]. Although the strict M1/M2 dichotomy remains controversial, it is widely 
accepted that macrophages play a dual role in muscle regeneration, first as 

initiators of inflammation and later as mediators of repair [186]. 

These interrelated and time-dependent waves of immune cell activity are 

essential for transitioning from inflammation to tissue regeneration, setting the 

stage for the activation of satellite cells and subsequent phases of repair and 
remodeling. 

1.3.3.2 Proliferation and Differentiation of Satellite Cells 

Following the inflammatory response, satellite cells—muscle-specific stem 

cells—play a central role in the regeneration process. Satellite cells reside in a 
quiescent state beneath the basal lamina of muscle fibers, characterized by the 

expression of markers such as Pax7 [186]. Upon injury, they are activated by 

signaling molecules released from the damaged tissue and infiltrating immune 

cells, including hepatocyte growth factor (HGF), fibroblast growth factor (FGF), 
and insulin-like growth factor-1 (IGF-1) [188]. These signals trigger the transition 

of satellite cells from quiescence to an activated state, initiating their 

proliferation to expand the myogenic progenitor pool (Figure 1.8). 

During the proliferative phase, satellite cells downregulate Pax7 and upregulate 

myogenic regulatory factors (MRFs) such as MyoD and Myf5, which commit 
them to the myogenic lineage [186]. This phase is tightly regulated by both 

intrinsic factors, such as cell-cycle regulators, and extrinsic cues, including Wnt 

and Notch signaling [188, 189]. Notch signaling, in particular, maintains the 
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undifferentiated state of proliferating satellite cells, delaying premature 

differentiation and ensuring an adequate pool of progenitors for regeneration 

[189]. 

As satellite cells proliferate, a subset begins to exit the cell cycle and initiates 

differentiation, marked by the expression of myogenin and MyoD [186]. 

Differentiated myogenic progenitors, or myoblasts, begin to fuse with one 
another and with existing myofibers, restoring the structural and functional 

integrity of the muscle. The fusion process is mediated by a cascade of events 

involving actin cytoskeleton remodeling and the expression of fusogenic proteins 

such as myomaker and myomerger [190]. 

Importantly, while most satellite cells contribute to the repair process, a subset 
returns to quiescence to replenish the satellite cell pool, ensuring the muscle's 

regenerative capacity for future injuries. This balance between proliferation, 

differentiation, and self-renewal is critical and relies on finely tuned interactions 

between signaling pathways, such as transforming growth factor-beta (TGF-β) 
and bone morphogenetic proteins (BMPs) [186, 187]. Dysregulation of these 

processes can lead to impaired regeneration, as observed in chronic muscle 

diseases and aging. 

The interplay of these molecular and cellular events underscores the importance 

of satellite cells in orchestrating the repair and renewal of damaged muscle 

tissue, bridging the inflammatory phase with the final stages of tissue 
remodeling. 

1.3.3.3 Remodeling and Maturation 

The final stage of muscle regeneration involves the remodeling and maturation of 
tissue to restore both structural integrity and functional capacity. During this 

phase, newly formed myofibers increase in size, align with the existing muscle 

architecture, and replace embryonic myosin heavy chain (eMyHC) with adult 

isoforms, acquiring the contractile properties characteristic of mature muscle 
fibers. The maturation process is further evidenced by the peripheral placement 

of nuclei within myofibers, a hallmark of fully developed muscle tissue (Figure 1.8) 

[186]. 

Beyond myofiber maturation, the restoration of functional performance relies on 

the reestablishment of critical support systems. Angiogenesis, driven by vascular 

endothelial growth factor (VEGF), ensures an adequate blood supply, while 
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reinnervation restores communication between muscle fibers and the nervous 

system [191]. The successful integration of regenerated myofibers with 

neuromuscular junctions (NMJs) is essential for enabling proper signal 

transmission and contractile performance, bridging the gap between structural 

repair and functional recovery [186]. 

The extracellular matrix (ECM) undergoes substantial remodeling to provide 
structural support and facilitate the integration of newly formed fibers with pre-

existing ones. Fibroblasts play a central role in this process, depositing collagen 

and other matrix proteins under the influence of regulatory factors such as TGF-

β. While controlled ECM deposition forms a beneficial scaffold, excessive fibrosis 
can result in scarring and impaired muscle function [186]. 

Ultimately, the coordinated maturation of myofibers, ECM remodeling, 

angiogenesis, and reinnervation ensures the restoration of muscle strength and 

resilience, marking the completion of the regenerative cycle. 

1.3.4 Therapeutic Implications: Restoring Muscle Function 

In conditions such as sarcopenia, cachexia, and muscular dystrophies, the 
regenerative processes in muscle tissue are often disrupted. Sarcopenia, for 

example, is characterized by diminished satellite cell function and a reduced 

ability to repair muscle damage [172]. Cachexia, on the other hand, is driven by 
systemic inflammation, which exacerbates muscle wasting and impairs the 

regenerative response [192]. In muscular dystrophies, genetic defects in muscle 

fibers or satellite cells prevent normal muscle regeneration, leading to 

progressive loss of muscle function [186]. These diseases share a common 
feature: an impaired ability to activate satellite cells, control inflammation, and 

remodel the ECM, all of which are essential for efficient muscle repair and 

regeneration. 

One approach to enhancing muscle regeneration is modulating inflammation, 

which is particularly relevant in conditions like cachexia, where chronic 
inflammation accelerates muscle loss [185-187]. Inhibiting pro-inflammatory 

cytokines like TNF-α can reduce muscle wasting and promote muscle repair. 

Targeting inflammatory signaling pathways, such as NF-κB, could also create a 

more favorable environment for muscle regeneration, as NF-κB regulates various 
inflammatory mediators involved in muscle degradation. 
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In conditions like sarcopenia, where satellite cell activation is impaired, 

stimulating these cells is crucial for muscle repair. Myostatin inhibitors, such as 

follistatin, promote muscle growth by blocking the negative regulation of satellite 

cells, helping to overcome the limitations of satellite cell function in aged or 

diseased muscle [185]. Another promising strategy involves the use of exercise 
mimetics like irisin, a myokine that promotes satellite cell activation and muscle 

regeneration without requiring physical exercise [181, 193]. 

Muscular dystrophies are marked by excessive fibrosis and impaired ECM 

remodeling, which impede the regeneration of muscle tissue. Targeting ECM 

remodeling pathways can help mitigate these issues and restore muscle 
function [194]. Matrix metalloproteinases (MMPs), which degrade ECM 

components, have been explored to prevent excessive fibrosis and support 

muscle regeneration [194]. On the other hand, inhibiting excessive ECM 

deposition is also important, as overproduction of collagen can lead to scarring 
and impaired muscle function. At the same time, promoting healthy ECM 

deposition with specific proteins, such as collagen type IV, can improve the 

structural integration of newly formed myofibers. 

In addition to inflammation and ECM remodeling, gene therapies are being 

investigated for their potential to restore muscle function in diseases like 
Duchenne muscular dystrophy (DMD) [195]. For DMD, delivering a functional 

copy of the dystrophin gene via AAV vectors has shown promise in clinical trials, 

offering hope for restoring muscle function in affected individuals [195]. Another 

novel approach involves exosome-based therapies, which can deliver 
regenerative factors directly to muscle tissue, stimulating satellite cell activation 

and ECM remodeling in a more controlled manner [196]. 

In conclusion, therapeutic strategies targeting inflammation, satellite cell 

activation, and ECM remodeling hold great promise for enhancing muscle 

regeneration, particularly in diseases where these processes are impaired. 

However, despite advances in our understanding of the molecular mechanisms 
driving muscle injury and repair, treatments for conditions such as sarcopenia, 

cachexia, and muscular dystrophies remain limited and often insufficient. These 

diseases are characterized by disrupted regenerative processes, and current 

therapies largely fail to fully restore muscle function. Therefore, there is a 
pressing need for continued research to identify novel mechanisms and 

therapeutic targets that could lead to more effective treatments. Ultimately, this 
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research could help develop therapies that not only improve muscle 

regeneration but also offer tangible benefits to patients suffering from these 

debilitating conditions. 
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1.4 The Kynurenine Pathway of Tryptophan Degradation 

The kynurenine pathway is the central route for tryptophan metabolism, 
accounting for the catabolism of over 90% of dietary tryptophan not used for 

protein synthesis [197]. While historically recognized for its role in nicotinamide 

adenine dinucleotide (NAD+) biosynthesis, the kynurenine pathway is 

increasingly understood for its widespread influence on human health [198]. Its 
bioactive metabolites regulate immune responses, brain function, and energy 

metabolism, linking this pathway to conditions such as , chronic inflammation, 

and obesity [197, 198]. In the following sections, we explore the biochemical 

framework of the kynurenine pathway, its major metabolites, and their biological 
roles, with a focus on kynurenine, kynurenic acid, and quinolinic acid, particularly 

in relation to bioenergetics. 

1.4.1 Introduction to the Kynurenine Pathway 

Tryptophan is an essential amino acid with several metabolic fates. It can be 
incorporated into proteins, converted into melatonin via the serotonin pathway, 

or metabolized through the kynurenine pathway. Under normal physiological 

conditions, most tryptophan is routed through the kynurenine pathway, where a 
series of enzymatic reactions produces various bioactive metabolites (Figure 1.9) 

[197]. Notably, the kynurenine pathway is responsible for the de novo synthesis 

of NAD+, emphasizing its central role in maintaining cellular energy balance [197]. 

The kynurenine pathway begins with the enzymatic degradation of tryptophan 

by either indoleamine 2,3-dioxygenase (IDO1/IDO2) or tryptophan 2,3-

dioxygenase (TDO), depending on the tissue context [197, 198]. This first step 
converts tryptophan into N-formylkynurenine, which is then rapidly hydrolyzed 

to kynurenine, the central intermediate of the pathway (Figure 1.9). From 

kynurenine, the metabolism can take several distinct routes. One route produces 

kynurenic acid (KYNA) via kynurenine aminotransferases (KATs) [199]. 
Alternatively, kynurenine can be converted into 3-hydroxykynurenine (3-HK) by 

kynurenine-3-monooxygenase (KMO), eventually leading to the formation of 

quinolinic acid (QUIN) [200]. A parallel branch converts kynurenine to anthranilic 

acid (AA), which also contributes to QUIN production (Figure 1.9). Additionally, 
KYNA can be generated via an immune-related pathway involving interleukin-4-

induced-1 (IL4I1) [201]. Ultimately, the kynurenine pathway results in the 

production of either KYNA or QUIN, with QUIN serving as a precursor for NAD+ 

(Figure 1.9).  
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Importantly, only tryptophan, kynurenine, and 3-HK can cross the blood–brain 

barrier, while downstream metabolites such as KYNA and QUIN remain confined 

to the periphery. This distinction limits the interpretation of peripheral 

kynurenine pathway metabolite levels with respect to their functional properties, 

and it calls for caution when linking systemic kynurenine pathway activity to CNS 
effects [197]. 

The kynurenine pathway is not only a central metabolic route but also a dynamic 

system that can be modulated by various physiological factors. For instance, the 

kynurenine pathway is particularly responsive to inflammatory signals, with the 

rate-limiting enzymes IDO1 and KMO being sensitive to proinflammatory 
cytokines [202, 203]. During acute inflammation, these enzymes are upregulated, 

driving a compensatory increase in kynurenine metabolism. This helps modulate 

immune responses and aid in resolving the inflammatory state by producing 

anti-inflammatory metabolites like KYNA. However, in chronic inflammation, the 
pathway can shift from compensatory to pathological [197]. Prolonged activation 

of IDO1 and KMO can lead to the overproduction of neurotoxic intermediates like 

QUIN and 3-HK, contributing to neuroinflammation and immune dysfunction. 

Thus, the response of the kynurenine pathway to inflammation is context-
dependent, with its role determined by the balance between acute, 

compensatory activation and chronic, pathological activation. 

Beyond inflammation, the kynurenine pathway's role is also influenced by 

metabolic stressors, including exercise and obesity. Exercise activates the 

kynurenine pathway in a manner that favors anti-inflammatory and 
neuroprotective metabolites, such as KYNA [199, 204, 205]. This shift supports 

the body's adaptation to physical stress by enhancing immune function and 

promoting neuroprotection, highlighting the pathway's role in maintaining 

homeostasis during acute stress. On the other hand, obesity, often characterized 
by low-grade chronic inflammation, leads to dysregulated kynurenine pathway 

activity [206-208]. The upregulation of IDO1 and KMO in this inflammatory 

context increases the activity of the kynurenine pathway and favors the 

production of neurotoxic intermediates like QUIN. This response can further 
exacerbate systemic inflammation, indicating a more pathological role of the 

kynurenine pathway in obesity compared to its beneficial effects during 

exercise. 
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Figure 1.9. The kynurenine pathway and Its physiological roles 
A small portion of tryptophan is converted to serotonin, melatonin, or used in protein synthesis, 
but most is degraded via the kynurenine pathway. Under normal conditions, this pathway 
primarily produces quinolinic acid, which is used to generate NAD+, a crucial cofactor for cellular 
energy. Kynurenic acid, another metabolite in the pathway, plays key roles in various 
physiological processes. Notably, only tryptophan and kynurenine can cross the blood-brain 
barrier, while quinolinic acid and kynurenic acid cannot. The bold arrow indicates the primary 
metabolic route of tryptophan degradation, with unbroken arrows for enzymatic steps and 
broken arrows for spontaneous reactions. Reprinted with permission [197].  
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In summary, most tryptophan is metabolized via the kynurenine pathway, 

producing a range of bioactive metabolites. The balance between its branches is 

influenced by various stressors such as inflammation, exercise, and obesity. 

While the levels of KYNA and QUIN in the CNS have important implications for 

psychiatric disorders [209, 210], the kynurenine pathway metabolites have 
diverse physiological functions, with significant implications for both health and 

disease [197]. 

1.4.2 Kynurenine Metabolites and Their Biological Roles 

The kynurenine pathway generates a variety of metabolites that influence both 
central and peripheral physiology. Among these, KYNA and QUIN are notable for 

their contrasting roles in inflammation, oxidative stress, and neuromodulation. 

1.4.2.1 Kynurenic Acid (KYNA) 

KYNA exhibits potent anti-inflammatory and antioxidant properties. It supresses 
the expression and secretion of pro-inflammatory cytokines such as TNF-α in 

monocytes, IL-4 in invariant natural killer T (iNKT) cells, and IL-23 in dendritic 

cells [211]. In vivo, KYNA reduces TNF-α secretion in LPS-treated mice [212]. 
Additionally, KYNA scavenges reactive oxygen species (ROS), mitigating 

oxidative stress and preserving tissue integrity under inflammatory conditions 

[213]. 

KYNA’s biological effects are mediated in part through its activation of G-protein 

coupled receptor 35 (GPR35) and the aryl hydrocarbon receptor (AhR) [205, 
214]. GPR35 is expressed in various immune cells, including monocytes, mast 

cells, basophils, and iNKT cells, as well as in tissues such as the digestive tract, 

lung, and skeletal muscle. As a high-affinity ligand for GPR35, KYNA influences 

immune cell function by modulating signaling pathways involved in inflammation 
[214]. For example, KYNA inhibits N-type calcium channels in sympathetic 

neurons, reduces cAMP production, and downregulates inflammatory cascades, 

such as the PI3K/Akt and MAPK pathways [214]. These effects help limit 

inflammation and protect against excessive immune responses by modulating 
key signaling pathways, such as those involved in NF-κB activation and cytokine 

release. 

Similarly, KYNA’s interaction with AhR regulates immune responses and prevents 

excessive inflammation. AhR is a ligand-activated transcription factor involved in 

immune response regulation [215-217]. For example, its activation induces 
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immune tolerance by promoting the differentiation of regulatory T cells and 

limiting the production of pro-inflammatory cytokines [214]. AhR-deficient mice 

demonstrate heightened inflammatory responses, underscoring the receptor’s 

importance in immune homeostasis [218]. KYNA-mediated AhR activation also 

offers neuroprotection by countering excitotoxic damage induced by neurotoxic 
metabolites of the pathway, including QUIN. 

In summary, KYNA plays a protective role by acting as a potent anti-

inflammatory and antioxidant molecule. Through its interactions with GPR35 and 

AhR, KYNA modulates immune responses and helps maintain tissue homeostasis 

under inflammatory conditions. These multifaceted properties underscore 
KYNA’s therapeutic potential in counteracting inflammation, oxidative stress, and 

neurodegeneration. 

1.4.2.2 Quinolinic Acid (QUIN) 

In stark contrast to KYNA, QUIN is a potent neurotoxin, exacerbating 
inflammation and oxidative stress [219]. Initial observations of QUIN's neurotoxic 

effects emerged when intracerebroventricular injections of QUIN in mice led to 

convulsions [220]. Further studies revealed that QUIN acts as a selective agonist 

at the N-methyl-D-aspartate (NMDA) receptor, triggering an influx of calcium 
into neurons and astrocytes, leading to excitotoxicity [219]. This is compounded 

by QUIN’s ability to increase glutamate release while inhibiting its reuptake, 

further amplifying its neurotoxic effects [219]. Chronic exposure of human 

neurons to QUIN results in structural neuronal damage, including dendritic 
beading, microtubule disruption, and loss of organelles [221]. 

Beyond its direct neurotoxic effects, QUIN is a significant contributor to 

neuroinflammation. Intrastriatal administration of QUIN increases the expression 

of pro-inflammatory cytokines, such as TNF-α, further amplifying oxidative stress 

and neuronal damage [219]. During CNS inflammation, QUIN levels increase 
significantly, primarily due to enhanced synthesis by microglia in response to 

inflammatory stimuli such as IFN-γ. This elevated QUIN production is further 

supported by peripheral macrophages, which can produce up to 20- to 30-fold 

more QUIN than microglia [222]. The combined synthesis of QUIN by microglia 
and macrophages creates a positive feedback loop where inflammation 

stimulates QUIN production, which further amplifies inflammation and damages 

the blood-brain barrier (BBB) [197]. This permeability allows peripheral QUIN to 

enter the CNS, perpetuating the cycle of neuronal damage and inflammation. 



 

42 

Additionally, QUIN promotes oxidative stress through multiple mechanisms 

which can be independent of its activity at NMDARs. Through the NMDAR, QUIN 

induces calcium influx, leading to mitochondrial dysfunction and an increase in 

oxidative stress. Independent of NMDAR activation, QUIN interacts with iron to 

produce hydroxyl radicals through the Fenton reaction [223]. QUIN also activates 
nitric oxide synthase (NOS) in both astrocytes and neurons, amplifying free 

radical production and further exacerbating oxidative damage [224]. 

Together, QUIN is a multifaceted neurotoxin that exerts its harmful effects 

through neurotoxic, inflammatory, and oxidative pathways. By acting on NMDA 

receptors, amplifying inflammation, and promoting ROS production, QUIN 
contributes to a vicious cycle of neuronal damage and cell death. Its diverse 

mechanisms of action make it a key mediator in neurodegenerative and 

inflammatory conditions. 

1.4.2.3 Kynurenine 

Kynurenine serves as a central intermediate in the kynurenine pathway, linking 
upstream tryptophan metabolism to its downstream bioactive derivatives, such 

as KYNA and QUIN (Figure 1.9). Kynurenine has diverse physiological roles, 

including immune modulation, contributions to neurophysiology, and 
implications in disease pathogenesis [197]. 

The CNS receives approximately 60% of peripheral kynurenine via transport 

across the BBB, while the remaining is produced locally [225]. Under 

inflammatory conditions, increased BBB permeability can alter kynurenine flux, 

increasing its availability and exacerbating its neuroactive roles [197].  

Like KYNA, kynurenine has immune-modulatory roles through the AhR [215]. 
Activation of AhR by kynurenine exhibits various effects depending on the 

cellular context. For example, AhR activation in tumor cells enhances the 

expression of genes that facilitate cell migration and metastasis [226]. 

Conversely, in immune cells, AhR activation dampens effector T-cell responses 
and fosters immune tolerance by targeting regulatory B cells and dendritic cells 

[227]. This immunosuppressive environment can be exploited by cancer cells to 

evade immune detection. 

Exercise physiology provides another dimension to kynurenine’s relevance, as 

the conversion of kynurenine to KYNA in skeletal muscle is hypothesized to 

underlie exercise-induced neuroprotective effects [199, 205]. Moreover, acute 
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endurance exercise has been shown to activate AhR in peripheral blood 

mononuclear cells, suggesting a mechanistic link between exercise-induced 

kynurenine metabolism and immune modulation [228]. This metabolic shift not 

only enhances KYNA production but may also contribute to an anti-

inflammatory state, offering insights into the systemic benefits of physical 
activity. 

1.4.3 Bioenergetic and Metabolic Aspects of The Kynurenine Pathway 

With the multifaceted roles of kynurenine pathway metabolites, it is no surprise 
that the pathway has been implicated in several aspects of bioenergetics [198, 

205, 229]. The kynurenine pathway contributes to the maintenance of cellular 

energy homeostasis by providing de novo synthesis of NAD+, a critical cofactor 

for enzymes involved in cellular energy metabolism and ATP production. NAD+ is 
also crucial for DNA repair, immune modulation, and transcriptional regulation 

[230]. Under physiological conditions, NAD+ is generated from tryptophan in 

most cell types, including neurons, astrocytes, and activated macrophages. In 

response to immune activation, macrophages increase ROS production, which 
can lead to cellular damage in chronic inflammatory conditions [231]. In these 

cases, kynurenine pathway metabolites help to compensate for the increased 

demand for NAD+, maintaining cellular energy balance despite the inflammatory 

stress [197]. 

Kynurenine pathway metabolites, particularly QUIN and KYNA, are well positioned 

to influence metabolic health through their modulation of NMDARs, where QUIN 
acts as an agonist and KYNA serves as an antagonist [232, 233]. While NMDARs 

are well-known for their role in neuronal function and excitotoxicity, they are also 

expressed on various cell types that contribute to whole-body metabolism. For 

example, in the pancreas, inhibition of NMDARs on β-cells enhances glucose-
stimulated insulin secretion, potentially alleviating glucotoxicity and contributing 

to the beneficial effects of exercise in treating type-2 diabetes [234-236]. In 

rodents, activation of NMDARs exacerbates obesity-related pathogenesis, 

whereas NMDAR antagonism has been shown to alleviate this [237]. Notably, 
recent studies suggest that combining NMDAR antagonism with GLP-1 analogues 

could serve as a dual-action therapy for obesity treatment [238]. Therefore, the 

balance between NMDAR agonists and antagonists—such as QUIN and KYNA, 

respectively—may play a critical role in regulating whole-body energy 
metabolism and influencing metabolic health outcomes [200]. 
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Exercise also regulates kynurenine pathway dynamics by promoting the 

conversion of kynurenine to KYNA through upregulation of KATs via a PGC-1α1-

dependent mechanism [204, 239]. Kynurenine crosses the blood-brain barrier, 

while KYNA does not, enabling aerobically trained skeletal muscle to effectively 

detoxify neurotoxic kynurenine into neuroprotective KYNA . This strategy has 
been shown to reduce depressive-like symptoms in mice [199]. Additionally, 

KYNA increases adipose tissue energy expenditure and induces an anti-

inflammatory gene expression profile in adipose tissue [205], highlighting its 

beneficial effects on metabolic health. 

In summary, the kynurenine pathway plays a vital role in maintaining NAD+ 
balance, a key regulator of cellular energy metabolism. Given its effects on 

metabolic tissues such as muscle, adipose tissue, and pancreatic β-cells, the 

kynurenine pathway is emerging as a significant player in whole-body energy 

metabolism. Its ability to influence inflammatory responses, modulate NMDAR 
activity, and adapt to metabolic demands, positions it as a promising target for 

therapeutic interventions in metabolic diseases like obesity and type-2 

diabetes. Continued research into the roles of kynurenine pathway metabolites 

could reveal novel strategies for improving metabolic health and managing 
related disorders. 

1.4.4 Kynurenine Metabolites as Possible Regulators of Adipose-Sensory Nerve 
Crosstalk 

Adipose tissue is richly innervated by sensory neurons, establishing a 

bidirectional communication network with the CNS. Although the precise 

biological roles of sensory neuron to adipose communication is still being 
uncovered, kynurenine pathway metabolites—particularly KYNA and QUIN—may 

act as critical modulators of adipose-sensory nerve crosstalk through their 

effects on NMDARs expressed on sensory neurons. 

KYNA is an NMDAR antagonist with known neuroprotective activity in the CNS 

[240], while QUIN is an NMDAR agonist with strong excitotoxic properties [241-
245]. NMDARs are ligand-gated ion channels traditionally associated with 

nociceptive transmission but are also expressed on sensory afferents that 

innervate peripheral tissues [169, 246-252]. When sensory neuron NMDARs are 

activated, they stimulate the local release of neuropeptides such as alpha-
calcitonin gene-related peptide (CGRPα) and substance P (SP) [169, 170, 253]. 
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Through these mechanisms, KYNA and QUIN could influence peripheral 

neuropeptide release and potentially regulate local tissue function. 

Therapeutically, targeting peripherally restricted NMDAR ligands offers an 

intriguing strategy to modulate neuropeptide release without central side effects 

[158, 169]. For instance, QUIN, as an NMDAR agonist, does not cross the blood-

brain barrier, making it a candidate for manipulating peripheral NMDAR activity. 
However, given that QUIN also serves as a precursor for NAD+, an essential 

molecule for cell viability. This dual role necessitates caution when considering 

strategies to manipulate QUIN levels, as it may have broader metabolic 

implications. 

It is also important to note that sensory afferents not only release neuropeptides 
locally but also transmit signals centrally by releasing neurotransmitters at the 

presynaptic terminal in the spinal cord [170, 254]. Manipulating NMDAR activity at 

these central terminals could influence neurotransmitter release and alter 

transmission speed to the brain [255]. As kynurenine metabolites, including 
KYNA and QUIN, are present in both peripheral and central compartments, their 

potential regulatory roles may extend beyond local adipose tissue-neuron 

interactions to influence systemic and CNS-mediated processes. 
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1.5 Summary 

The complex network of interactions between different organ systems is 
fundamental to maintaining homeostasis, allowing organisms to integrate neural 

and molecular signals and adapt to physiological demands. In this thesis thus far, 
we have discussed key aspects of inter-organ communication, focusing on 

adipose tissue, skeletal muscle, and the kynurenine pathway of tryptophan 

metabolism. We explored adipose tissue’s central role in whole-body energy 

metabolism, emphasizing both the importance of adipogenesis for healthy tissue 
expansion and the critical influence of its neural innervation. We then discussed 

skeletal muscle regeneration, highlighting the intricate interactions among 

immune cells, muscle fibers, and satellite cells that are essential for effective 

repair and functional recovery. Finally, we discussed how the bioactive 
metabolites produced by the kynurenine pathway of tryptophan degradation 

possess diverse biological functions and are uniquely positioned to influence 

whole body metabolic health. By further understanding the mechanisms of inter-

organ communication explored throughout this thesis, we can better define their 
implications for health and disease and identify new therapeutic opportunities. 
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2 Research Aims 
The overarching theme of this thesis is to investigate inter-organ communication 

within the contexts of adipose tissue and skeletal muscle biology. Both tissues 
are critical regulators of systemic energy homeostasis and are influenced by 

diverse signaling pathways, including those mediated by neural, metabolic, and 

immune cues. This work aims to deepen our understanding of these pathways 

and their implications for health and disease. The specific aims are: 

Paper I: Constitutive loss of kynurenine-3-monooxygenase changes 
circulating kynurenine metabolites without affecting systemic energy 

metabolism. 

The kynurenine pathway of tryptophan degradation is influenced by metabolic 

stressors, with exercise increasing circulating kynurenic acid levels, while obesity 

is associated with elevated quinolinic acid. This study aimed to investigate the 
metabolic consequences of constitutive loss of kynurenine-3-monooxygenase 

(KMO), which shifts kynurenine metabolism away from quinolinic acid towards 

kynurenic acid production. The findings clarify the role of chronic KMO inhibition 

in metabolic regulation and provide valuable insights into ongoing development 
of KMO inhibitors as potential therapies. 

Paper II: Zfp697 is an RNA-binding protein that regulates skeletal muscle 
inflammation and remodeling. 

Skeletal muscle recovery from atrophy and injury involves complex remodeling 

processes driven by interactions among muscle fibers, immune cells, and 

satellite cells. Recently, our group identified Zfp697, a gene induced during 

skeletal muscle recovery following atrophy. The aim of this study was to 
investigate how Zfp697 regulates regenerative responses in skeletal muscle. 

Understanding Zfp697's role in muscle remodeling provides insights into 

therapeutic strategies to enhance recovery from muscle damage. 

Paper III: Sensory neuron-derived alpha-calcitonin gene-related peptide 

controls adipogenesis. 

The sensory innervation of adipose tissue mediates part of the bidirectional 

communication between the brain and adipose tissue; however, the local release 
of neuropeptides by sensory neurons and their effects on adipose tissue remain 

poorly understood. Alpha-calcitonin gene-related peptide (CGRPα) is a sensory-



 

48 

neuron-derived neuropeptide and is elevated in models of obesity. Here, we 

aimed to evaluate the impact of CGRPα on adipogenesis and its potential role in 

adipose tissue remodeling. Our findings provide novel insights into the local 

effects of sensory neuropeptides on adipose tissue biology, with potential 

implications for CGRPα-targeted therapies, which are already used for migraine 
treatment and may influence broader metabolic effects. 
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3 Results and Discussion 

3.1 Paper I: Constitutive loss of kynurenine-3-monooxygenase 
changes circulating kynurenine metabolites without affecting 
systemic energy metabolism. 

Tryptophan degradation primarily occurs via the ubiquitous kynurenine pathway. 

This pathway is a critical metabolic route that supports the de novo synthesis of 
NAD+ but also generates bioactive metabolites with diverse regulatory roles in 

immune, neurological, and bioenergetic processes [197]. Among these 

metabolites, kynurenic acid (KYNA) and quinolinic acid (QUIN) are particularly 

well-studied due to their well-established roles in the central nervous system 
[199, 204]. However, growing evidence suggests that their roles extend to whole 

body energy metabolism [205]. This is potentially mediated through their 

opposing interactions with NMDARs, where QUIN acts as an agonist and KYNA as 

an antagonist [232, 233]. Given the critical role of NMDARs in regulating energy 
metabolism—including glucose-stimulated insulin secretion [234-236] and 

responses to high-fat diets in mice [237]—the balance of NMDAR agonists and 

antagonists in peripheral tissues, such as QUIN and KYNA, respectively, may 

significantly influence systemic metabolic outcomes. 

The potential role of these metabolites in energy metabolism is further 

emphasized by the kynurenine pathway’s sensitivity to metabolic stressors. For 
example, circulating KYNA levels rise following exercise, whereas obesity is 

associated with elevated QUIN production [206-208, 256]. These observations 

suggest that the pathway is a key mediator of metabolic adaptation, with KYNA 

and QUIN potentially acting as regulators of whole body energy metabolism. This 
led us to hypothesize that the genetic deletion of kynurenine 3-monooxygenase 

(KMO)—leading to increased circulating KYNA and decreased QUIN—would 

manifest as differences in whole body energy metabolism. 

Generation and Validation of the KMONULL Model 

The production of QUIN is contingent upon the activity of KMO, a rate-limiting 
enzyme that directs the kynurenine pathway toward QUIN synthesis. Conversely, 

the inhibition or loss of KMO activity shifts the pathway toward KYNA production. 

This makes KMO a valuable target for manipulating the balance of these 
metabolites. Here, we used a knockout-first strategy to eliminate Kmo gene 

expression (KMONULL), which we validated by measuring the expression and 
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protein levels on both chow and high-fat diet conditions. Notably, while knockout 

efficiency can vary depending on context [257], our approach achieved robust 

suppression across dietary conditions. This provided a stable and reliable model 

to examine the systemic metabolic effects of altered kynurenine pathway 

metabolites. 

Consistent with previous studies, KMONULL mice exhibited a profound increase in 
circulating KYNA levels and a marked reduction in QUIN [258-262]. These 

biochemical changes confirm the expected metabolic shifts resulting from KMO 

deletion, providing a model for studying the systemic effects of high KYNA and 

low QUIN levels. 

KMONULL Mice on a Chow or High-Fat Diet Exhibit Comparable Metabolic 
Phenotypes Compared to Controls 

To evaluate the impact of altered kynurenine metabolites on whole-body energy 

metabolism, we performed comprehensive metabolic assessments, including 
glucose tolerance tests, body composition analysis, glucose-stimulated insulin 

secretion, and indirect calorimetry. Surprisingly, despite profound changes in 

circulating metabolite levels, KMONULL mice displayed no significant changes in 

body weight, glucose handling, insulin secretion, or energy expenditure. 
Challenging these mice with a 15-wk high-fat diet yielded similar results: KMONULL 

and wildtype controls (KMOWT) mice exhibited comparable metabolic 

phenotypes under obesogenic conditions.  

Influence of Genetic Background on Metabolic Phenotypes 

The above findings contrast earlier studies reporting a ~10% increase in body 
weight and higher fasting blood glucose levels in KMONULL mice [258, 259]. One 

potential explanation for the discrepancies between our results and previous 

reports lies in the genetic background of the mice used. While our study used 
mice on a C57BL/6N background, these earlier studies used mice on a C57BL/6J 

background. Although these strains differ only by a single letter in name, they 

have several known genetic differences. Notably, C57BL/6J mice possess a 

mutation in the nicotinamide nucleotide transhydrogenase (Nnt) gene, which 
affects mitochondrial function and predisposes them to high-fat diet-induced 

metabolic disease [263]. For example, C57BL/6J mice gain more weight and 

exhibit greater glucose intolerance than their C57BL/6N counterparts when 

challenged with a high-fat diet [264]. 
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To investigate the potential influence of the Nnt mutation, we crossed KMONULL 

mice with C57BL/6J wild-type mice and selected for the presence of the 

mutation. As such, this cohort resulted in KMONULL and KMOWT mice all with an Nnt 

mutation. However, even under these conditions, KMONULL and KMOWT had similar 

body weights and glucose tolerance responses. While this suggests that the Nnt 
mutation alone does not account for the observed discrepancies between 

studies, other genetic differences between the strains may play a role [265, 266]. 

Further backcrossing onto a pure C57BL/6J background will be essential to fully 

elucidate these effects. 

Chronically Elevated KYNA and Adipose Tissue Biology 

Given the known thermogenic and immunomodulatory effects of KYNA in 

adipose tissue [205], we hypothesized that chronically elevated KYNA levels in 

KMONULL mice would enhance energy expenditure or alter adipose tissue 
transcriptomes. However, transcriptomic analysis of iWAT revealed no significant 

differences beyond the deletion of Kmo itself. This suggests that the chronic 

changes in circulating metabolites, including KYNA, does not replicate the effects 

of acute or exercise-induced KYNA increases [205, 267-269]. 

One explanation may lie in the kinetics of KYNA elevation. Acute increases, such 
as those induced by exercise, may elicit distinct biological responses compared 

to sustained elevation. Indeed, KYNA has been shown to enhance beta-

adrenergic signaling in primary adipocytes with repeated treatments, while a 

single dose has no effect [205]. Additionally, chronic KYNA elevation may lead to 
receptor desensitization or internalization, a process well documented for many 

G protein-coupled receptors. These findings highlight the complexity of KYNA 

signaling and the need for further research into its temporal dynamics and 

receptor-mediated effects. 

Alternatively, the effects of KYNA may be influenced by its receptor 
pharmacology. To date, four receptors have been proposed to interact with 

KYNA: NMDARs, AhR, GPR35, and α7nAChRs [197]. KYNA acts as an agonist at 

GPR35, influencing energy balance and inflammatory responses [205, 270]. 

Conversely, it serves as an antagonist at NMDARs, modulating glutamatergic 
neurotransmission [240]. The role of KYNA at α7nAChRs is more nuanced; while 

some studies suggest antagonistic effects [271], others find no significant 

interaction [272]. Additionally, KYNA activates AhR, linking tryptophan 

metabolism to immune regulation [215-217]. The diverse expression of these 
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receptors across various cell types and their distinct biological activities makes 

it challenging to predict the outcomes of fluctuating KYNA levels. 

Broader Implications of Altered Kynurenine Metabolites 

While this project was initially driven by the hypothesis that KYNA and QUIN are 

key modulators of energy metabolism, our findings reveal that KMONULL mice 
exhibit a markedly altered circulating metabolome. These changes extend 

beyond KYNA and QUIN, with notable increases in anthranilic acid and reductions 

in 3-hydroxyanthranilic acid. The anthranilic branch of the kynurenine pathway 

provides an alternate route to produce QUIN independent of KMO. However, the 
next metabolite after anthranilic acid, 3-hydroxyanthranilic acid, was reduced, 

suggesting that the conversion of anthranilic acid to 3-hydroxyanthranilic acid is 

not a major pathway. 

Moreover, the interplay between metabolites of the kynurenine pathway 

warrants further investigation, as their combined effects may modulate systemic 
energy metabolism in ways that individual metabolite studies cannot capture. 

For instance, while KYNA has thermogenic properties, kynurenine exacerbates 

HFD-induced obesity and insulin resistance [273]. The simultaneous elevation of 

KYNA and kynurenine in KMONULL mice may result in opposing metabolic effects, 
effectively neutralizing their individual impacts. These findings highlight the 

complexity of the kynurenine pathway and suggest that systemic metabolic 

outcomes may depend on the combined influence of its metabolites rather than 

the actions of any single compound. 

Conclusion  

Our findings demonstrate that chronic alterations in kynurenine pathway 

metabolites via genetic deletion of Kmo do not significantly impact whole body 

energy metabolism in mice on a C57BL/6N background. These results challenge 
previous reports and emphasize the need for careful consideration of genetic 

background and metabolite kinetics in preclinical research. By integrating 

metabolic, biochemical, and transcriptomic data, this study provides a 

comprehensive foundation for future investigations into the kynurenine 
pathway’s role in systemic metabolism and its therapeutic potential. 
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3.2 Paper II: Zfp697 is an RNA-binding protein that regulates skeletal 
muscle inflammation and remodeling. 

Skeletal muscle comprises approximately 40% of total body mass in healthy 
individuals, playing a central in locomotion, energy metabolism, and 

thermoregulation. Beyond these roles, muscle mass and function are directly 

linked to overall health and inversely associated with mortality, underscoring its 
importance to quality of life [172]. Remarkably, skeletal muscle can regenerate 

and adapt to changes in use or disuse, altering its size, metabolism, and fiber 

composition. This regenerative capacity is crucial for recovery from atrophy and 

injury; however, its failure can result in fibrosis and irreversible loss of function, as 
seen in muscular dystrophies and aging-related sarcopenia [172, 186]. 

Understanding the complex interplay of immune cells, extracellular matrix 

remodeling, and protein turnover in muscle regeneration is key to advancing 

therapies for injuries, intense exercise recovery, and genetic muscle diseases. 

Zfp697 Expression Is Induced in Skeletal Muscle During Regeneration and 
Remodeling 

Using a well-established mouse model of hindlimb unloading and reloading, we 

aimed to uncover novel regulators of muscle regeneration. This model 
recapitulates the progression of muscle atrophy due to disuse, followed by 

compensatory hypertrophy and regeneration during reloading. Through 

transcriptomic analysis, we identified the previously uncharacterized zinc finger 

protein 697 (Zfp697 in mice and ZNF697 in humans) as significantly upregulated 
during the early stages of muscle reloading [274]. Zfp697 expression was 

transient, peaking during the regenerative phase before subsiding as muscle 

structure and function normalized. This expression pattern was corroborated in 

independent models of skeletal muscle remodeling, including cardiotoxin-
induced injury and intense physical exercise, underscoring Zfp697’s conserved 

role across contexts. 

Our findings were further reinforced by publicly available human datasets, which 

revealed conserved Zfp697 expression in human skeletal muscle. Notably, 

ZFP697 was enriched in regenerative myonuclei populations, including those 
associated with denervated or dystrophic muscle fibers, suggesting a conserved 

role across species and underscoring its potential translational relevance. 

However, human data often lack the temporal resolution and experimental 
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control achievable in animal models, emphasizing the value of integrating diverse 

models to capture the complexity of muscle remodeling. 

The hindlimb unloading and reloading model remains a cornerstone in our 

approach due to its ability to capture atrophy, hypertrophy, and regeneration 

within the same system. Despite its utility, its limitations must be acknowledged, 

including the lack of chronic pathological features, such as those seen in 
cachexia or sarcopenia, and potential systemic effects like altered vascular or 

neural inputs. These factors may obscure muscle-specific mechanisms of 

regeneration, highlighting the importance of this consideration. By leveraging 

complementary approaches however, we demonstrated the transient 
upregulation of Zfp697 across regenerative contexts, suggesting its critical role 

in skeletal muscle remodeling. 

Zfp697 Regulates Inflammatory and Interferon Signaling Pathways in Skeletal 

Muscle 

Skeletal muscle regeneration requires a well-coordinated immune response, 
characterized by early pro-inflammatory signals to recruit immune cells and 

activate satellite cells, followed by resolution of inflammation to facilitate tissue 

repair [186]. Our data demonstrate that Zfp697 plays a central role in these 
processes by activating a broad inflammatory gene program in myotubes and 

intact muscle tissue. 

Functional analyses of cultured myotubes revealed that overexpression of 

Zfp697 induced chemokine production, upregulated interferon-stimulated 

genes, and enriched interferon-α and -γ signaling pathways. Conversely, Zfp697 
knockdown impaired the myotube response to interferon-γ, highlighting its role 

as a mediator of interferon signaling in muscle cells. Interestingly, Zfp697 

knockdown not only dampened basal interferon signaling but also hindered the 

transcriptional response to injury-associated stressors. These findings align with 
clinical studies showing that variants in ZFP697 are linked to altered interferon-β 

responses in multiple sclerosis patients [275], suggesting a broader role for 

Zfp697 in immune modulation. 

The observed link between Zfp697 and interferon signaling pathways raises 

intriguing questions about its broader implications in immune modulation. Given 

that interferon responses play a dual role in both promoting and resolving 
inflammation, Zfp697 may act as a critical modulator of this balance. 

Investigating its interaction with other immune regulators, such as NF-κB or STAT 
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proteins, could provide deeper insights into its function. Moreover, whether 

Zfp697’s role extends to non-muscle tissues or systemic immune responses 

warrants further exploration. 

Clinically, these findings highlight Zfp697 as a potential therapeutic target for 

enhancing muscle regeneration or modulating immune responses in disease 

contexts. However, translating these insights into therapeutic strategies poses 
challenges, including the need to finely tune its activity to avoid excessive or 

insufficient immune responses. Further understanding of how Zfp697 expression 

and activity are regulated could reveal additional therapeutic targets for 

modulating its levels in different pathological conditions. Future studies using 
advanced genetic tools, such as tissue-specific knockouts or CRISPR-mediated 

gene editing, will be invaluable in delineating the precise mechanistic 

contributions of Zfp697 to muscle and immune biology. 

Zfp697 Is Essential for Muscle Regeneration In Vivo 

To assess the physiological importance of Zfp697, we generated myofiber-
specific Zfp697 knockout (mKO) mice. Under basal conditions and during 

hindlimb unloading, mKO mice displayed no significant differences in muscle 

mass, fiber size, or gene expression compared to control mice. However, upon 
reloading, mKO mice exhibited profound defects in muscle regeneration. Across 

three different injury-recovery paradigms—hindlimb reloading, downhill running, 

and cardiotoxin-induced injury—mKO mice were unable to recover muscle mass, 

strength, or normal gait parameters. At the molecular level, these deficiencies 
were associated with impaired activation of genes involved in inflammation, ECM 

remodeling, angiogenesis, and cell proliferation. 

Further investigation revealed a marked reduction in satellite cell activation and 

fibro-adipogenic precursor (FAP) dynamics in mKO mice. Satellite cells, essential 

for muscle repair, failed to proliferate and differentiate effectively in the absence 
of Zfp697. Similarly, FAPs, which transiently promote ECM remodeling and 

support satellite cell function, exhibited reduced activation, compromising the 

overall regenerative response. This striking loss of regenerative capacity 

underscores the critical role of Zfp697 in muscle repair. However, given that 
damaged myofiber-derived factors (DMDFs), such as metabolic enzymes like 

GAPDH, have been shown to promote satellite cell activation [188], this 

impairment is perhaps not entirely unexpected. One possibility is that Zfp697 

influences the release or activity of these factors, thereby regulating the 



 

56 

regenerative response. Alternatively, Zfp697 itself may function as a DMDF, 

acting directly on satellite cells to facilitate their activation and proliferation. 

Supporting this idea, our deconvolution analysis of RNA-seq data revealed that 

Zfp697 mKO mice failed to expand key regenerative cell populations, including 

FAPs and satellite cells, during the early stages of reloading-induced 
regeneration. This failure was further reflected in reduced numbers of Pax7-

positive satellite cells and fewer proliferative Ki67-positive cells in mKO muscle. 

Collectively, these findings suggest that Zfp697 is a crucial component of the 

myofiber-intrinsic response to injury and plays a key role in coordinating the 
broader regenerative program. 

Mechanistic Insights into Zfp697 Function 

Zfp697 is a member of the zinc finger protein (ZFP) family, known for its diverse 

roles in transcriptional regulation, RNA binding, and protein-protein interactions 
[276]. Although initially hypothesized to act primarily as a transcription factor, 

our data suggest that Zfp697 functions primarily as an RNA-binding protein in 

skeletal muscle. Enhanced crosslinking and immunoprecipitation (eCLIP) analysis 

revealed that Zfp697 preferentially binds processed mRNAs and miRNAs, 
including miR-206, a muscle-specific microRNA (myomiR) involved in muscle 

regeneration and pathology. Its strong affinity for miRNAs positions Zfp697 as a 

key modulator of post-transcriptional regulation, influencing pathways critical for 

muscle repair and regeneration. 

Interestingly, Zfp697 also exhibited enrichment in retrotransposable element-
derived RNAs, which are potent activators of interferon responses. This finding 

suggests a dual role for Zfp697, not only in modulating immune signaling but also 

in maintaining RNA homeostasis during cellular stress. Given the well-

documented involvement of interferon responses in muscle repair and aging, 
Zfp697 emerges as a key integrator of both transcriptional and post-

transcriptional regulatory networks. 

Conclusion 

Our findings position Zfp697 as a pivotal regulator of muscle regeneration, 
orchestrating processes at the intersection of immune signaling, ECM 

remodeling, and RNA homeostasis. Acting as a molecular switch, Zfp697 

facilitates the transition from the pro-inflammatory phase of injury repair to 

tissue regeneration, preventing prolonged activation that could lead to fibrosis or 
chronic inflammation. By modulating chemokine expression and interferon-



 

57 

stimulated genes, Zfp697 recruits and activates macrophages while maintaining 

the balance between constructive and destructive ECM remodeling, critical for 

successful regeneration. Additionally, Zfp697’s RNA-binding capacity adds 

complexity to its role, ensuring RNA homeostasis during cellular stress by 

regulating miRNAs and retrotransposon-derived RNAs. This dual functionality not 
only supports efficient resolution of inflammation but also protects against 

chronic inflammatory states that impair regeneration. Together, these findings 

establish Zfp697 as a central player in the coordination of immune, cellular, and 

molecular processes required for effective muscle repair, with potential 
implications for understanding and treating muscle-related pathologies. 
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3.3 Paper III: Sensory neuron-derived alpha-calcitonin gene-related 
peptide controls adipogenesis. 

Sensory nerve activation leads to the localized release of neuropeptides, which 
are known to play key roles in various physiological processes. However, the 

effects of these locally released neuropeptides, particularly within adipose 

tissue, are not well understood. In this study, we investigate the role of alpha-
calcitonin gene-related peptide (CGRPα), a neuropeptide released from sensory 

neurons, in adipose tissue biology. Growing evidence suggests that CGRPα is 

involved in energy homeostasis, with models of obesity showing elevated 

circulating CGRPα levels [147-150]. Furthermore, anti-CGRPα-targeted therapies, 
established as frontline treatments for migraine, have shown potential weight-

modulating effects [277-279], highlighting the importance of understanding 

CGRPα’s role in metabolic regulation. 

CGRPα Inhibits Adipocyte Differentiation In Vitro 

To investigate the effect CGRPα on preadipocytes, we treated primary murine 
adipocyte cultures derived from the iWAT of male mice. Our in vitro experiments 

showed that CGRPα significantly inhibits adipocyte differentiation, as shown by 

reduced adipocyte formation and dysregulated expression of key adipogenic 
transcription factors. These findings align with previous studies that have 

demonstrated CGRPα’s role in differentiation in various cell types [280-286]. 

Importantly, pre-treatment with a CGRPα receptor antagonist reversed these 

effects, indicating a receptor-mediated mechanism. Additionally, we identified a 
critical time window during early differentiation where CGRPα exerted its effect. 

RNA sequencing of differentiating preadipocytes treated with CGRPα revealed a 

fibro-inflammatory gene signature, along with evidence of ECM remodeling. 

Notably, we observed upregulation of inflammatory markers, including cytokines, 

in response to CGRPα. This raises the possibility that CGRPα triggers a cascade 
where it acts on cells to initiate inflammation, which in turn promotes cytokine 

release. The released cytokines could then feedback onto the cells, further 

exacerbating the inhibition of differentiation. This feedback loop suggests that 

CGRPα’s effects might not be solely limited to direct signaling but could involve 
an inflammatory component that amplifies the inhibition of adipocyte 

differentiation. 

Interestingly, the highest differentially expressed gene in our RNA-sequencing 

dataset was Nos2, which encodes nitric oxide synthase, an enzyme involved in 
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nitric oxide (NO) production. Studies have shown that NO inhibits adipocyte 

differentiation and promotes a pro-fibrogenic response [287]. However, the role 

of NO in adipogenesis remains controversial [288]. In any case, the interaction 

between sensory neurons and adipose tissue is an area that has not been 

extensively characterized, particularly regarding how nerve endings 
communicate with adipocytes. It remains unclear whether these neurons form 

true synapses or junctions with adipocytes or if they rely on signal diffusion or 

propagation to transmit information [289]. The potential for secondary signaling 

events, such as the release of cytokines or NO, to propagate sensory-derived 
signals from the sensory neurons to other cells within the adipose tissue remains 

a testable hypothesis. 

In Vivo Knockdown of CGRPα Reveals Complex Effects on Adipocyte Size 

Distribution 

To test the in vivo effects of CGRPα on adipocyte differentiation, we specifically 
targeted the knockdown of CGRPα in sensory neurons innervating the inguinal 

iWAT. Based on our in vitro findings, we hypothesized that reducing CGRPα 

would relieve the inhibition of adipogenesis and result in smaller adipocytes. 
However, contrary to our expectations, analysis of adipocyte size distribution 

showed an increase in the mean and median adipocyte size. These results 

suggest that the effects of CGRPα on adipose tissue in vivo are more complex 

than initially anticipated. 

One possible explanation for this discrepancy is that, while we selected a 
strategy to modify CGRPα while minimizing compensatory sympathetic 

signalling, some residual sympathetic activity may still have occurred. Although 

we did not specifically measure sympathetic signals, this could have influenced 

the outcome. Additionally, while our primary focus was on adipogenesis, CGRPα 
is known to affect mature adipocytes as well [153, 290-294]. The interaction 

between CGRPα and various cell types in adipose tissue could therefore involve 

complementary or even opposing roles.  

Furthermore, the model we used did not include a specific stressor to induce 

differentiation. At room temperature, the absence of such a stimulus may have 
been insufficient to trigger adipogenesis. For instance, cold exposure has been 

shown to increase the number of new adipocytes in iWAT [48]. Therefore, an 

experiment involving cold exposure and knockdown or overexpression of CGRPα 
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would perhaps yield different results, potentially providing further insights into 

the role of CGRPα in adipogenesis under stress conditions. 

The observed increase in adipocyte size in the CGRPα knockdown model also 

raises the question of whether adipocyte size alone is an adequate measure of 

CGRPα’s impact on adipose tissue. A more direct assessment of adipogenesis 

could be achieved using models such as the adipochaser mouse [48], which 
labels new versus old adipocytes. This approach would provide a more precise 

measurement of CGRPα’s effects on adipocyte differentiation, offering a clearer 

picture of its role in adipose tissue remodeling beyond adipocyte size 

distribution. 

Possible Sexual Dimorphism in CGRPα Sensitivity 

An intriguing consideration is the potential for sex differences in response to 

CGRPα. CGRPα has a well-established role in migraine, a condition that 

disproportionately affects women, suggesting that females may be more 
sensitive to CGRPα than males [295]. If this pattern extends to adipose tissue, it 

raises the possibility that the effects of CGRPα on adipogenesis and adipose 

tissue remodeling could differ between sexes. Given that females represent the 

largest group using CGRPα-targeting migraine therapies, understanding how 
these medications influence adipose tissue biology is particularly important. 

Future investigations should explore whether these sex-specific differences in 

CGRPα sensitivity influence adipose tissue biology, as this could have important 

implications for understanding metabolic regulation and therapeutic strategies. 

Conclusion 

This study highlights the effects of CGRPα on adipose tissue biology, particularly 

its inhibitory influence on adipocyte differentiation in vitro and its influence on 

adipose tissue characteristics in vivo. Our findings underscore the complexity of 
neuropeptide signaling within adipose tissue, suggesting that CGRPα’s actions 

are mediated by a combination of direct receptor interactions, inflammatory 

cascades, and potential secondary signaling pathways. Moreover, the possibility 

of sex-specific responses and tissue-specific compensatory mechanisms 
emphasizes the need for further research to unravel the diverse roles of CGRPα 

in metabolic regulation. These insights not only enhance our understanding of 

the sensory nervous system’s contribution to adipose tissue dynamics but also 

hold implications for the development of targeted therapies addressing 
metabolic disorders. 



 

61 

4 Concluding Remarks and Future Directions 
The survival and adaptability of multicellular organisms rely on the effective 

coordination of their internal systems through complex networks of inter-organ 

communication. This communication, facilitated by the nervous system and the 
exchange of signaling molecules, helps maintain physiological balance and 

enables dynamic responses to fluctuations in nutrient availability, energy 

demand, and stress. Disruptions in these networks can lead to metabolic 

imbalances, impacting growth, immunity, and overall health. Thus, understanding 
inter-organ communication is key to uncovering the mechanisms behind health 

and disease. 

This thesis explored the complex role of inter-organ communication, focusing on 

three key topics: the kynurenine pathway of tryptophan degradation and its 

impact on whole body energy metabolism, the role of the zinc finger protein 
Zfp697 in skeletal muscle inflammation and remodeling, and the effects of 

sensory-derived CGRPα on adipose tissue. Through these studies, this thesis 

highlighted how metabolic pathways and signaling mechanisms across different 

tissues integrate to maintain homeostasis and how disruptions in these 
processes contribute to metabolic dysfunction. By uncovering the molecular and 

cellular underpinnings of these interactions, this work provides valuable insights 

into whole-body metabolism, muscle regeneration and inflammation, and 

adipose tissue remodeling, offering potential avenues for therapeutic strategies 
across metabolic and musculoskeletal disorders. 
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