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Popular science summary of the thesis

Young men and postmenopausal women are most at risk of a fracture. We know
which treatments work when treating fractures, on average. However, every
patient is unique and has unique circumstances and individual resources. For
example, we know that some patient groups have a 50% risk of dying within one
year, e.g, some elderly and frail patients. We just do not know which individuals

will suffer.

A fracture can have a considerable impact on your quality of life. Constant pain,
the inability to take care of yourself, depression, and disability are common
lifelong outcomes. However, you are at risk of even worse outcomes as there are
strong links between fractures and death.

Using artificial intelligence (Al) and machine learning (ML), we can now analyze
massive amounts of data in ways that have never been possible. We will use this
approach to create a new form of individualized predictions that will predict how
your life is expected to change due to the fracture. This concept is called

personalized medicine.

First, we were able to analyze fractures in X-ray images using artificial
intelligence. Not all fractures are the same, and we needed to determine the type
of fracture, as the type of fracture matters in the choice of treatment.

However, not all patients are the same. We need to map out the characteristics
of the patient. Patients will fill out a form about their health status before the
injury while waiting to see the doctor or on the X-ray results. Doctors will use
that information with the Al model to guide treatment toward the best outcome

by tailoring the surgery and aftercare to the problematic areas.

Using healthcare data from thousands of patients, we teach artificial intelligence
to predict the outcome after a fracture. We hope to focus on those areas where
the patient will suffer the most and complications will follow. By focusing on
preventing specific outcomes, healthcare professionals will minimize the

negative effects of having a fracture on the patient and society.



Populdrvetenskaplig sammanfattning

Yngre méan och postmenopausala kvinnor [6per storst risk for att raka ut for en
fraktur. Vi vet vilka behandlingar som fungerar vid olika frakturer, i genomsnitt.
Men varje patient ar unik, har unika férutsattningar och individuella resurser. Till
exempel sa vet vi att vissa patientgrupper har en 50% risk att d6 inom ett ar, till

exempel vissa aldre och skdra patienter. Vi vet bara inte vilka dessa individer &r.

En fraktur kan ha en betydande inverkan pa din livskvalitet. Konstant smarta,
oférmaga att ta hand om dig sjalv, depression och funktionshinder ar vanliga och
ofta livslanga konsekvenser. Dessutom &r du, efter en fraktur, i riskzonen fér annu

varre utfall da det finns starka kopplingar mellan frakturer och déd.

Med hjalp av artificiell intelligens (ofta kallat fér “Al”) och maskininlarning ("ML")
kan vi idag analysera enorma mangder data pa satt som tidigare inte varit
mojliga. Vart mal ar att anvanda dessa metoder for att skapa en ny form av
individualiserade prognoser som forutspar hur just ditt liv forvantas forandras pa
grund av frakturen. Detta koncept kallas for precisionsmedicin.

Forst lyckades vi att hitta frakturer i rontgenbilder med hjalp av artificiell
intelligens. Men alla frakturer ar inte likadana, och vi fokuserade d& pa att
faststalla typen av fraktur, eftersom typen av fraktur spelar roll vid valet av
behandling. Men inte alla patienter ar likadana. Vi maste kartlagga patientens

forutsattningar.

Malet &r ett system dar patienterna forst fyller i ett formular om sitt
halsotillstand foére skadan, till exempel medan de vantar pa att traffa lakaren eller
pa rontgenresultaten. Lakare, sjukskoterskor, fysioterapeuter och annan
sjukvardspersonal kommer sedan att anvanda den informationen tillsammans
med en Al-modell for att forsoka forsta vilka patientens forvantade
problemomraden kommer att vara. Genom att vélja operation och fokusera
eftervarden till de forvantade problemomradena, &r malet att uppna basta

mojliga resultat — i termer av fortida déd och livskvalitet — for patienten.

Genom att anvanda data fran tusentals patienter lar vi den artificiella
intelligensen att forutspa utfallen efter en fraktur. Vi hoppas kunna fokusera pa
de omraden dar patienten kommer att lida mest och dar komplikationer kommer
att uppsta. Genom att fokusera pa att forebygga specifika utfall kommer
vardpersonal att minimera de negativa effekterna av en fraktur pa bade
patienten och samhallet.



Abstract

Background: Improved interpretation of orthopedic trauma could improve
patient outcomes. The radiograph is the predominant tool in orthopedic
emergency decision-making. Machine learning-guided radiographic

interpretation could help improve patient outcomes.

Aims: 1) Explore convolutional neural networks (CNN) for orthopedic trauma
imaging and fracture and classification in medical imaging. 2) Study CNNs on
combined imaging and registry data to predict patient outcomes after trauma.
3) Evaluate the generalizability of this approach through external validation.

Methods: Study | used CNNs and transfer learning to detect fractures in auto-
labeled wrist, hand, ankle, and foot radiographs. Study Il and Study Il doubled
down on ankle fractures using the AO Foundation-/Orthopedic Trauma
Association (AO) 2018 standard. We manually labeled thousands of ankle exams
and trained a CNN to classify fractures. In Study I, we externally validated a CNN
model against a different site and implemented active learning to improve the
model. Study IV linked fractures in the Swedish Fracture Registry (SFR) to the
trauma radiographs and developed models that, based on the initial radiograph,
predicted patient-reported outcome measures (PROM) or death after one year.

Results

Study I: Deeper CNN architectures outperformed, with the best correctly
classifying 83% of cases, compared to 82% for the human reviewers. For
secondary outcomes, the CNN performed near-perfectly for body parts and
excellently in exam view. A manual review of 400 random training cases found

that the auto-generated labels were the problem.

Study II: The CNN performed well on the primary task. However, several
outcomes were too rare to be included in the training, testing, or error bounding.
For example, type A fractures were challenging to train, and there were many AO

subgroups.

Study lll: The external validation data differed from the training site in important
ways. It included weight-bearing studies, mostly type A fractures, with fewer
views per study. The CNN external validation performance improved with active
learning on type A fractures but decreased somewhat for other types.



Study IV: We tried a range of network configurations and found that the CNN's
ability to predict PROM after one year (PROM1) or death was variable. At best,
the root mean squared errors (RMSE) and mean average errors (MAE) were on

par with the standard deviation.
Conclusions

Study I: We succeeded in predicting fractures in radiographs at the level of
human reviewers. The CNN performance for individual radiographs was better
than indicated by the automatic fracture labels generated for the study.

Study lI: We successfully implemented a CNN for ankle fracture classification
using the AO 2018 standard, looking at the complete exam rather than individual

images.

Study llI: The initial external validation dataset performance was acceptable but
not good enough. We successfully improved external validity using internal
training data and active learning. External validation is essential when reporting
CNN model performance.

Study IV: We performed a series of experiments to train a CNN to predict PROM
after one year and got our models to learn the most common value or the mean

for the PROMs, i.e, overfits. We explore different ways to improve performance.
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Introduction

This doctoral thesis focuses on using Al and ML for the analysis and
interpretation of orthopedic trauma. The assessment of orthopedic trauma is
heavily reliant on medical imaging. Computed tomography (CT), magnetic
resonance imaging (MRI), and, to a much lesser extent, ultrasound are important
in studying orthopedic extremity trauma. However, radiographs (X-rays) are still

by far the dominant mode of study and decision-making for extremity trauma.

Radiographic interpretation of medical imaging can be challenging. Radiologists
take years to train, and specialists in, e.g., musculoskeletal radiology, are not
always available when needed. In addition, every radiograph must be examined
by two radiologists. However, in practice, radiographs must also be interpreted
by non-radiologists, for example, in emergency department settings. Usually, the
orthopedic surgeons examine the radiographs themselves, and sometimes, there
are discrepancies between what the radiologist reports and what the orthopedic
surgeons want to know. In addition, from a global perspective, there is an even

greater shortage of doctors in general, and radiologists are in even shorter
supply.

Modern artificial intelligence (Al) excels at image analysis and interpretation via
machine learning (ML). With the demand for radiographic imaging and
interpretation outstripping the availability of interpretation, Al has been
suggested as a solution. This thesis explores this idea.

The thesis aims to study Al applications on medical data. In developing methods
for studying radiographic imaging, it investigates Al modeling for orthopedic
trauma. The same techniques could also be adapted to other kinds of medical
data. Study | examines fracture detection in ankle, wrist, and hand radiographs .
Study Il uses the AO Foundation/Orthopedic Trauma Association (AO)
classification 2 to study fractures. Study Ill examines external validation and
model tweaking to make Al models usable in other environments 2. In our final
study, Study IV, we attempt to expand the use of fracture radiographs to predict
patient-perceived outcomes over time or death withing one year of the trauma.

This is a doctoral of medicine thesis, so mathematical formalism will be very

sparse.






1 Literature review

11 Data

The foundation of learning is information and data, which is also true for ML. Data
can be difficult and expensive to gather and then validate. However, data
availability has been fundamental to allowing for iterative and empirical tweaking
of algorithms. Much Al development has centered around the drive to tweak
performance on open-source datasets where the desired outcomes are known.
These datasets often serve as benchmarks and validation tools for new methods.

The MNIST dataset contains handwritten greyscale digits, although there are also
versions with small images and hand-drawn letters “ The CIFRA-10 and CIFRA-
100 datasets each contain 60,000 labeled images °. The ImageNet dataset ® is a
set of color photos taken from the Internet that contained approximately 3.2
million hierarchically labeled images (today, approximately 14 million 7). ImageNet
functions as a development data set and has been used for a long time as an ML
competition dataset. Today, many algorithms outperform humans at labeling
images in this dataset. ImageNet, and the ImageNet challenge, is by many

considered the catalyst for the Al and ML boom we see today 8.

Medical data is usually sensitive, i.e.,, personal information requiring strong
privacy protection. It needs close vetting for personal information and trained
experts to review it, and it is often ambiguous (i.e, is it a lung nodule or not). Even
so, the availability and quality of medical data sets have also improved. CheXpert
% and ChestX-ray8 ° are two widely used datasets for studying chest
radiographs. They contain information on the presence or absence of lung
nodules, fluid, infiltrates, and other lesions. In 2018, the MURA dataset of
orthopedic trauma radiographs was released and contained 14,863 studies of
seven study types (e.g, elbow, wrist, hand, and others.) Each study includes
information on the presence or absence of fractures ". Esteva et al. have released
a dataset of skin lesions used to create a melanoma detector for public use
The dataset was biased towards light-skinned patients ®*" and was updated —
showing the power of sharing data for development and validation by the
scientific community. Our test dataset, used for performance testing in Study ||
and Study lll, annotated according to the AO 2018 classification, is set to

become publicly available, as are some additional datasets from our research

group.



The data for the studies in this thesis project consisted of imaging and registry
data.

111 Imaging data

Medical images are stored in a specialized Picture Archiving and Communication
System (PACS), usually in the Digital Imaging and Communications in Medicine
(DICOM) imaging format. The DICOM standard was created to hold medical
imaging and facilitate its transfer inside and between institutions. As such, it is a
standard for communicating and storing DICOM images . The DICOM images in
PACS systems contain the radiographic examination (i.e, the image) and study-
related metadata tags. DICOM has four hierarchical levels that help keep track of
studies: (1) patient, (2) study (also known as exam or procedure), (3) series, and
(4) image (or instance). Each patient can have performed multiple studies in
their life. Each study consists of one or more series. A series can be different
modalities, such as CT and radiographs, but it can also be an ankle and shoulder
series. Each series comprises one or more images that make up a coherent
picture, such as all the slices of a CT scan or the individual images of the
projections in a scaphoid trauma examination *7. While PACS systems usually
store DICOM images, they can also store other imaging data. However, they
typically do not contain information on referrals or radiologist reports. These are
usually stored in radiology information systems (RIS).

For example, in this project, we collected four different imaging datasets. We had
a dataset of radiographic examinations collected from Danderyd Hospital's
PACS. Subsets of this data have been used in three of the studies in this thesis
project: studies | and Il 2 and Study lIl. Other parts of that dataset have been
used for other studies from the same research group -2 The dataset, which
also contains radiologist reports but no referrals, will also serve as the foundation
for future studies and models. For Study lll, we collaborated with a research
group from the Netherlands (Groningen University) that was also connected to
Australia (Flinders University, Adelaide). Through them, we gained access to
radiographic examinations from a trauma center in Adelaide, which were used in
Study IIl.

In the fall of 2020, we collected radiographic examinations for approximately
3,100 fractures from Region Gotland's PACS. In the spring of 2023, we collected
imaging on 41,000 fractures from Region Stockholm's PACS. Both datasets were
based on a second important medical data source—registry-based data.



112  Registries — The Swedish Fracture Registry

The SFR is a Swedish national registry that tracks fractures in Sweden. It was
created in 2011 to track fractures, their treatment, and patient outcomes. The
registry was originally unique in that it tracks both those fractures that have
undergone operative and non-operative treatment. It connects to and syncs
data with national registries, such as the Swedish National Board of Health and

Welfare registers and the Swedish Arthroplasty Register %,

As of December 2020, there were approximately 525,000 registered fractures;
as of July 2024, there were 961,000 fractures. Each fracture is registered by the
participating clinics, i.e, all emergency hospitals in Sweden dealing with
orthopedic injuries. It is usually the treating physician who registers. Patient data,
time of injury, type of injury, and mechanism of injury are registered. The type of
injury is registered using ICD 10 and AO classification, including whether the
fracture is open or closed, close to a prosthesis, and more. Treatment (operative
and conservative) is tracked, and to a lesser extent, complications (e.g., infection
and healing complications) are registered 2.

11211 Using the SFR

The data registration in the SFR, i.e., the type of fracture, has been validated by
Juto et al, who studied 152 ankle fractures registered in the SFR. Three
orthopedic surgeons examined the fractures and created a consensus standard
of fracture classification according to the AO classification. They found excellent
to near-perfect agreement between their observations and the registered
fracture type in the SFR and almost as good results for the fracture group 242,
Wennergren et al. examined the validity of fracture classification in the SFR by
examining 116 humerus fractures. Like Juto et al., a three-surgeon team assessed
all radiographic examinations twice to create a ground truth according to the AO
standard. They also found excellent inter-rater reliability between their standard
and the data in the SFR. However, a caveat was that they had to make a series of
assumptions to reach that accuracy, and without those assumptions, agreement
was moderate . Knutsson et al. performed a similar study on 118 femur fractures
in the SFR, all from the same hospital. They found an almost perfect agreement
for the AO type and a substantial agreement with the AO group . Agreement
between observers in these studies refers to the Landis and Koch scale
regarding Cohen’s Kappa 2. These studies were primarily performed on data
from Gothenburg and the clinics most closely associated with the SFR. However,



in a study by Sundkvist et al, looking at basocervical femoral neck fractures from
the SFR, 868 out of 1185 fractures (73%) were excluded from the study due to
misclassification ?°. Thus, it is unclear how the previous studies apply to the SFR

as a whole.

112.2  Health outcomes after a fracture

Health or patient functional outcomes can be measured as patient-reported
outcome measures (PROMs). The SFR collects PROM using the EuroQuol 5
Dimensions (EQ-5D) % and the short musculoskeletal function assessment
(SMFA) survey ®. Each patient registered in the SFR receives a survey where they
estimate their PROM just before the injury (PROMO). One year after the injury,
they receive another survey where they estimate their current PROM (PROM]).
An additional outcome, death, is added to the SFR, and some patients will die
before answering the surveys. Death is collected via the PID from the National

Population Register in Sweden.
EQ-5D™ is a self-reporting tool that measures five dimensions of health:
mobility
. self-care

1.
2
3. usual activities
4. pain/discomfort
5

. anxiety/depression.

It also consists of a 0O-100 VAS scale on which participants estimate their overall
health status, where O is the worst and 100 is the best %°. The EQ-5D was
developed in the 1980s as a non-disease-specific, standardized tool for
measuring health. Specific versions have been developed and are standardized

for different populations, e.g., Spain, Sweden, Japan, Algeria, etc.

The original EQ-5D consisted of three levels of answers and is now referred to as
EQ-5D-3L (3L). The EQ-5D-5L (5L) is a recent version with five levels 322, The
reason behind this upscaling was that it was difficult to distinguish between
changes in health outcomes. There were attempts to solve this using unofficial
5L, but the current and official 5L have been extensively researched and
validated %4-%°. Indeed, Janssen et al. compared the 3L to the 5L for 3,919
individuals in six countries and found that 5L had more discriminative power .
van Hout et al. showed that it was possible to translate 3L into 5L. However, the

mapping can only reach the value space of the 3L; it needs to be updated for



each specific population and is only valid for the EQ-5D index “°. The SFR moved
from the 3L to the 5L in 2018-2019.

SFMA %' is a simplified version of the original musculoskeletal function
assessment 442, |t is a self-report health-status questionnaire designed to
detect functional status differences in patients with common musculoskeletal
disorders. The SFMA measures how bothered the patient is by these conditions.
It consists of 34 items to measure dysfunction and 12 items to measure “bother,”
i.e., how bothered they are by the dysfunction, on a 5-point scale. The answers
are summed and transformed into an index on a scale of O-100, where O is the
best function, and 100 is the worst function.

The SFR does not contain information on comorbidities and other risk factors.
Survey respondents answer questions regarding smoking in the PROM. However,
information on diseases such as diabetes, cortisone-requiring diseases, alcohol
consumption, etc.,, which is essential for patient outcomes, is not reported.

The registry also contains information on complications via surgeon reporting—
e.g, reoperations—or is answered as part of the PROM1 survey. However, this

data is incomplete or absent, e.g, if the patient died.

The PROM response rate, i.e, PROMO to PROM], is expected to decrease since
there are two surveys to answer, one year apart. It is not easy to know if those
who respond differ in any way from those who do not. Therefore, Juto et al.
conducted a study in 2017 to answer this. Comparing SFR responders to non-
responders, they found that non-responders and responders had similar
functions “%. As mentioned, some patients will pass away during the time

between the two surveys, which is recorded in the SFR.

1.2 Fracture classification

Orthopedic decision-making is not straightforward. Kodama et al. ¢ and Neuhaus
et al. % studied the factors that influence treatment decisions for orthopedic
surgeons. Both found that the appearance of the fracture in the radiographic
image was the dominant factor. While both studies considered distal radius
fractures, radiographic imaging is crucial in all orthopedic decision-making. For
spine surgery, MRl and CT are more important. However, imaging is still vital.

Given that radiographs constitute a significant decision criterion in traumatology,
it is unsurprising that radiologists and orthopedic surgeons try to understand



them better. This is usually done by grouping and attempting to use these
groups to make decisions and fracture classification systems. Numerous
classification systems are used in orthopedics and radiology. Audigé et al.
examined 44 different classification systems for eight different localizations 45,
while Shehovych et al. noted 15 recognized classification systems for distal
radius fractures alone #’. Gilbert et al. studied three different classification

systems for glenoid fracture classification “.

1.21 Classification systems

There are many classification systems. We present a few examples of interest to

our discussion, but as we saw above, there are countless more.

The Lauge-Hansen classification of ankle fractures dates back to the 1950s 4950,
It classifies ankle fractures according to the foot's position at trauma (the
rotational mechanism) and the force that caused the fracture 52

The Danis-Weber classification divides ankle (i.e, malleolar) fractures based on
the radiographic appearance and the lesion relative to the syndesmosis. It
divides fractures into infrasyndesmotic (type A), intrasyndesmotic (type B), and
suprasyndesmotic (type C) fractures 2. The Danis-Weber ankle classification is
a simplified version of the AO ankle classification scheme.

Figure 1. Danis-Weber classification. Infra- (type A), trans- (type B), and supra (type C)
syndesmotic. Original artwork by Marta Nummelin

The AO classification is one of the most widely known and all-encompassing
classification systems 245354 The latest update for long bone fractures came out
in 2018 %%, There are additional classifications for spine fractures °¢5” and
pediatric fractures 8%, Unlike many fracture systems, it has been developed



over time and validated through multiple studies. However, it is generally
considered complicated and cumbersome. Studies Il and Il focus on the AO
2018 ankle classification, and Study IV uses the AO classification implicitly, as

lower extremity fractures are registered as AO fractures in the SFR 240,

1.2.2 Utility and problems of fracture classification from radiographs

Few classification systems undergo validation before publication, and fewer are
adequately validated. We expect a clinically used classification to be valid,
reliable, and relevant %6962, The classification should be independent of the
observer, say something about the injury, guide treatment, and positively impact
the outcome. There are some crucial questions regarding the usefulness of

classification systems, which will be addressed in turn.

A fundamental issue is the reproducibility between observers (IRR) and the same
observer at different points in time (IOR) #6662, There are many examples, but we
will mention a few. Neer's classification is a four-segment classification system
based on the observation that humerus fractures tend to be displaced into four
major segments: the lesser and greater tuberosity, the articular surface, and the
humerus shaft . Siebenrock and Gerber studied the reproducibility of
classifications for humerus fractures and compared Neer's and the AO/ASIF
classification (which developed into the current AO system). They found both
systems had such poor reproducibility that they could not compare different
studies 4. Sidor et al. studied Neer’s classification’s reproducibility and found
similarly poor agreement between observers ©°. Marongiu validated AO 2018 for
humerus fractures compared to Neer's classification and the AO 2007 humerus
classes. For AO 2018, they found an agreement similar to Neer's classification,
which significantly improved the 2007 scheme . Fonseca et al. compared the
IRR of the major ankle fracture classification systems ’: the Lauge-Hansen, the
Danis-Weber, and the AO classifications. The Danis-Weber classification was the
top performer, followed by the AO and the Lauge-Hansen. However, the Danis-
Weber system had a moderate agreement 2%’ At the same time, there are
systematic ways to make the AO classification more reliable %%%°. That we need
these systematic ways to make AO more reliable, signals a problem of
complexity — the common critique against the AO system. The reliability and
validity of the Lauge-Hansen system were questioned by Lindsjé when it was
clear that otherwise similar populations from different areas of the world had

dissimilar fracture distributions in terms of the Lauge-Hansen class 7. Later



attempts to reproduce the system by comparing injury footage or reproducing

Lauge-Hansens experiments have generally failed, as we will see later.

Our 2017 study, Study |, found only moderate IRR for detecting fractures in
radiographs . However, in 2020, we found substantial IRR between human
observers for the 2018 AO ankle classification. It varied more for individual
subgroups (e.g, AO 44A1.1) and related to the number of cases 2 In the same
study, there was almost perfect agreement for detecting fractures. There are
several reasons for this improvement. The reviewers had gained more
experience with the review process and examining radiographs. In addition, the
review process had improved, with labeling being performed on the original

image in its original size, which was not in Study |I.

Imagine creating a system that reliably and predictively reproduces and
automates classification, removing IOR and IRR. It would enable wider usage,
validation, and enhanced utility. In the long run, it would allow us to truly study
whether fracture classification matters when we remove the human factor from
the classification. It would enable us to determine whether the classification
systems used and suggested in the future are relevant. One path towards this
that we studied in this doctoral project was using Al and ML.

1.2.3 Ankle fracture classification — Lauge-Hansen vs. Danis-Weber vs. AO ankle

Studies Il and Il focus on detecting and classifying ankle fractures in radiographs.
We repeat the discussion from Study Il regarding ankle classification systems.
There are three central classification systems for ankle fractures: the Lauge-
Hansen, the Danis-Weber, and the AO classifications. In our studies, we used the
Danis-Weber and expanded AQO classifications %°.

The Lauge-Hansen classification system is widely used to predict fracture
patterns and ligamentous injuries based on injury mechanisms. Several studies
have shown that Lauge-Hansen is only partially valid and reproducible. In 1985,
Lindsjo raised the question of the poor reproducibility of the Lauge-Hansen
system between different populations based on previous studies 7°. The findings
of poor reproducibility have been repeated in several studies 774, Gardner et al.
performed an MRI study and found that Lauge-Hansen had limitations in
predicting soft-tissue damage and ligamentous injuries 73. Using actual injury
footage, Kwon et al. replicated these findings in 2010 and 2012 75-77. Boszczyk et
al. compared patient-reported injury mechanisms and radiographs and

concluded the same, i.e., the reproducibility was poor 74 Patton et al. concurred



based on CT findings and complete patient workups 2. Michelson et al. tried to
replicate Lauge-Hansen's results physically, and in a separate study, so did
Haraguchi and Arminger. Both failed and concluded that the Lauge-Hansen
system could not be used to predict injury mechanisms or injury patterns 798, In
the clinic, Lauge-Hansen and AO (complete or the simplified Danis-Weber) are
often used together to guide treatment decisions.

The AO standard launched the Danis-Weber system. Danis-Weber bases its
classification on the fracture’s location in relation to the syndesmosis. This
ligamentous joint holds the distal fibula and tibia together. In type A fractures,
the fibula is broken below the syndesmosis (infra syndesmotic), type B fractures
at the level of the syndesmosis (trans syndesmotic), and in type C fractures

above the syndesmosis (supra syndesmotic).

The AO classification extends the Danis-Weber classification to include medial
and posterior malleolus injuries. It grades fractures based on severity and
physical appearance 5. The fracture types A-C are extended with a group
number (A1-A3, B1-B3, and C1-C3) and then to a subgroup (A11-Al13, etc.).
Generally, a type A fracture is more stable than a type B fracture, which, in turn,
is more stable than a type C fracture. The same goes for groups and subgroups;

for example, Al.lis more stable than C3.3.

The main criticism of the AO ankle system is that many consider it complex.
Another criticism is that isolated medial malleolus fractures are treated as distal
tibial fractures 78 The system also considers ligamentous injuries that are not

readily visible in radiographs. However, they are visible in MR and during surgery.

Lauge-Hansen is mechanism-based and was created to solve the problem of
deciding which ankle fractures to operate and how before imaging was widely
available. The AO standard is based on injury appearance regardless of the
mechanism. We aimed to develop Al models for easy, accurate, and rapid
fracture classification and clinical decision-making. As we do not know the injury
mechanism for each fracture in population-sized datasets, Lauge-Hansen is
inappropriate for this task. As noted, Lauge-Hansen is not well suited to
predicting injury mechanisms from radiographs in its current form, whereas AO is
imaging-based. The classifications are similar, and conversions between the two

systems have been suggested, but no fully agreed-upon or complete conversion
eXiStS 77,82,69,83,52,84_



Figure 2. AO Ankle classification. Original artwork by
Marta Nummelin.



1.3 Artificial intelligence, deep learning, and machine learning
modeling

Intelligence is the ability to perform and learn techniques to solve problems and

achieve goals appropriate to the context. Based on the original definition from

1956 by John McCarthy, Al is “the science and engineering of making intelligent

machines.” 8 The EQUATOR network defines Al as “the science of developing

computer systems which can perform tasks normally requiring human

intelligence.” 888

Machine learning (ML), a field of Al, is the science that concerns the
development of algorithms that learn patterns from data to solve problems
rather than follow explicit rules 8. An algorithm is a sequential list of exact
steps to solve a problem. However, ML algorithms focus on parts of the
problem, like computing rewards or learning. It derives the way to combine the
features, i.e, the weights, from interacting with the data . Al is about learning
features, whereas e.g. statistics is about selecting features. We refer to a trained
algorithm, i.e, the result of an Al or ML algorithm, as a model. ML draws from
computer science, statistics, control theory, biology, and economics to study
how computers can improve knowledge, perception, and thinking based on data
experience. Deep learning (DL), currently the most successful approach, uses
multilayer artificial neural networks (ANN) to compute continuous values (real

numbers) over many iterations of the data.

Hierarchical structures, similar to communicating neurons in biological nervous
systems, are the primary inspiration for ANNs. The visual cortex inspired the first
ANN, so the simplest possible neural network — a single neuron — is called

a perceptron. The neurons are mathematical functions, or computational nodes,
that take an input (e.g., a single value, a vector, matrix, or tensor — the three or
higher dimensional equivalent of matrices) and produce an output. By making
the output from one neuron the input of another, we create a layered structure
of information flow. We can have one neuron communicate with many other
neurons, creating width. Connecting many layers in depth, layer after layer, leads
to deep networks. Training these deep networks is the origin of DL. Initially, a
network of 5-8 layers would be considered deep; today, networks can have
hundreds or thousands of layers, and the output of one network can become the
input of another ANN. Part of DL's success comes from techniques to handle the
increasing number of layers. By changing the mathematical functions in the
neurons and the strength of signaling between nodes, we can have information



flow in the network in various ways. This allows the network to focus on different
things in the data.

1.3.1 The case for ANNs — The Universal approximation theorem

The strength of the ANN approach is that theoretically and under certain
constraints, there is an ANN that can approximate almost any mathematical
function arbitrarily well. l.e, ANNs can be considered universal function
approximators °-, In this context, a mathematical function describes a
relationship, via some form of computation, between input and output. For
example, an image, sentence, or other data can be broken down into numbers
and fed into a function. That function generates an output (new image,
description of image contents, a translation, a prediction, or something else.) The
relationships that can be modeled via ANNs are extensive. However, the universal
approximation theorem for ANNs (several versions and extensions exist) only
states that there is such an ANN, which is why ANNs are so helpful and popular. It
does not say how to find it, which is a highly complex problem and is the reason
why ANNs were not as widely used and popular before 2012.

The neurons in ANNs are composed of nonlinear mathematical functions (i.e.,
equations) called activation functions. There are two necessary conditions of
ANNSs: their activation functions are nonlinear and nonpolynomial *. Without a
non-linear activation function, a neural network is nothing more than a linear
regression model. No matter how many neurons and layers there are, the output
will be equivalent to a single linear regression perceptron. The analogy between
biological and artificial neural networks has limitations. However, biological nerve
cells are also nonlinear. They will only release a signal, or action potential, to the
next neuron if the input matches a specific condition. Usually, this is a buildup in
intracellular charge that exceeds a threshold potential, leading to a signal down
the axon.

1.3.2 Training ANNs

The universal approximation theorem tells us that an ANN should exist that
solves our problem arbitrarily well, but we do not know how to find it. The
modern approach to ANNs is to train an ANN to approximate the theoretical
function (or ANN) and produce a particular outcome. This is the machine learning
part. There are different kinds of learning. In supervised learning, we know the
desired learning outcome, and the ANN is trained to approximate the desired

result. In unsupervised learning, the ANN gets data and finds patterns
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independently, such as grouping a set of observations into groups that fit a
pattern. However, it decides upon the pattern by itself. Some tasks fall in
between and are often called semi-supervised learning. The simplest way to

understand the learning process is to use supervised learning.

In the training phase, the ANN receives input with a known desired output, such
as an image with a label stating what the image contains, a sentence in one
language with a desired translation into another, or a question with the answer.
The task could be for the model to produce the desired output. The input passes
through a series of neurons, and each output serves as the input for the next
neuron in a process called forward propagation. The last neuron produces the
output from the ANN. The algorithm compares the output to the desired (true)
outcome and computes an error via a loss function. The calculated error
residual is propagated back through the ANN from the end to the beginning,
making corrections in a process called backpropagation. The goal is to minimize
the error (i.e, the difference between produced and desired output). The most

significant change, i.e.,, the most correction, is found by following the gradient.

For this reason, backpropagation entails computing differential equations (i.e., of
the activation function) and correcting by the magnitude of the gradient. The
corrected network is then the starting point of the next training round.
Theoretically, each neuron can communicate with every other neuron, but

the importance of each neuron that sends it information is called the weight.
This weight can be anything from zero (i.e, no information exchange or
connection) to anything. The neuron's output can change by assigning different
weights to different inputs. The training process aims to teach every neuron

in every layer how much weight it is to assign to each input. The error correction,
i.e, learning, is the gradient, and the model computes a correction between each
successive network neuron. If the error is small, the gradient is small, the
correction is minor, and vice versa. A final important note is that the training of
an ANN is usually not deterministic. Introducing variability (variable data points)
and randomness is central. This variability, enhanced by the nonlinear activation
functions, allows different connections to form between neurons until they form
stable connections (those that increase the likelihood of the correct output).
This learning process from data — input, model, output, error, correction, repeat —
is how most ML models conduct their training.



Convolutional neural networks (CNNs) are a class of networks well suited to
processing grid-like data, such as images. They use convolution layers, a form of
image processing filter layers that highlight the most essential features in
images. Convolutions combine image features into successively more advanced
features, e.g, combining pixels into lines, then lines into shapes, and the shapes
into objects. CNNs are particularly common in image analysis tasks because

they can learn much from relatively little information.

Recurrent neural networks (RNN) are particularly well-suited to sequential data,
such as time series and text. Their neurons consist of a series of “hidden” states
that act as a memory of previous states. The previous states are updated as a

context to predict the next state—e.g., the next word or value in a time series.

A common problem with both these architectures in practical implementations
is that information is lost downstream. The most recent neuron matters the
most, and the signal is weaker the further you go. For CNNs, this usually entails
losing spatial information (position and detail). For RNN, the training update

signal is lost in a “vanishing gradient,” which is also a problem in CNNs.

Transformer neural networks (transformers) are another network architecture
good at sequential data. Unlike RNNs and CNNs, which process data sequentially
(meaning that the last part of the sequence will matter the most) and update
their state, transformers look at the entire data sequence. Via an attention
mechanism, the network can focus on different parts of the sequence regardless
of where the information is in the sequence ¥7'°°, Transformers are the
foundation of the generative pre-trained transformers (GPT), which are currently
in vogue. They make training problems easy to divide into subproblems (are easy
to parallelize) and are excellent at capturing long-range relationships. They can
also be applied to images and video but require much more data and
computational and economic resources than CNNs or RNNs.

These three are the most widely encountered architectures today, but others
exist, such as the multilayer perceptron, graph neural networks, generative

adversarial neural networks (GANs), and autoencoders.

1.3.3 Recent advances

While the idea behind ANNs is not new, the current Al and DL innovation boom is
relatively new. DL requires a lot of computational power, and only recent
advancements in technology and algorithms have enabled it. Some examples are



improved software, utilizing the computational power of Graphics Processing
Units (GPUs), and diving the problem into subproblems (distributed computing).
Research has also evolved the solutions to the mathematical difficulties
introduced by transferring theoretical mathematics to the constraints of the

physical world.

Allowing for technological advancements that enabled efficient training, the
great revolutions in CNN have consisted of empirical trial and error and minor
tweaks to algorithms. E.g, what activation functions we should use, how to use
them, how to process the input to each neuron, and how we choose how much

weight each neuron puts on each input.

There are countless ML methods, but our studies are based primarily on CNNs.
Therefore, we focus on these. The first genuinely successful CNN was LeNet-5, a
seven-layer CNN 4 It could read handwritten characters and was intended for
banks and the United States Postal Service to read bank checks and letters.
However, due to technical limitations, CNNs did not achieve much further

success for some time.

In 2012, a DL CNN won the ImageNet pattern recognition challenge,
outperforming contending approaches %2 In an instant, error rates fell from 25%
to 10%. The most successful algorithm was the DL CNN AlexNet ' Since then, Al
and DL research has exploded. We mention some widely recognized milestones.
An early milestone was the Network-in-Network (NIN) architecture "2, which built
upon the ideas of AlexNet and added a small network within the network to allow

for better information transference.

Chatfield et al.”®® designed VGG CNN S, an eight-layer CNN, in 2014. In the same
year, Szegedy et al. ** introduced the Inception network (GoogleNet), which has
since been updated multiple times '©51°¢. Simoyan and Zisserman enhanced the
VGG network with VGG-16 and VGG-19 CNNs, which were state-of-the-art at

the time 7.

LSTM networks "¢ (a form of RNNs) use “gates” to allow some information to
pass through the network relatively unchanged (extended memory) and some
gates to pass information from layer to layer (short memory). The long memory
connections inspired Highway networks °°. Highway networks took gated

connections and introduced “skip connections” to allow the transfer of



information across the network. From the previous usable limit of 20 layers,

Highway networks allowed 100 layers or more.

ResNet ™ was built upon the ideas of Highway networks, improving performance
and stability. DenseNet ™ tweaked ResNet by adding connections from every
network layer to every other layer, improving performance with fewer

parameters.

There are countless more CNN architectures. Those mentioned are a few of the
most important or popular. They often serve as a starting point or reference for

developing new applications or testing data.

1.3.4 Alin medicine

An Al intervention is an intervention that relies on an Al or ML component to
serve its purpose 8. Many interesting reviews examine Al and ML for various
medical fields ""™. Hosny et al, to make a case for the increased adoption of Al
describe how the increased availability and need for medical imaging leads to an
increased need for interpreting medical imaging and some of the advances
being made ™. Liu et al. performed a review and meta-analysis of pathology
detection in medical imaging in 2019 ™. They found that many DL studies
reported results on par with healthcare professionals but that the level of
reporting was generally poor and that results were difficult to verify.

While there is much hype about Al and ML, it is essential to note that it is one
tool among others. ML models can fail because the more parameters they have,
the more data they require. This is true, especially for CNNs, which can have
thousands or millions of parameters. Al is not always better than modeling with
other tools. For example, a review of 71 ML models found that they did not
perform better than logistic regression models and were more prone to bias ™.
Oosterhoff et al. tried eight different algorithms to predict outcomes after
orthopedic trauma. All were trained on the same data (one logistic regression
and seven different ML algorithms). They found that their non-ML algorithm
tended to perform better than the rest. However, the training of the models was

not explained ™.

Cary et al. looked at 30-day and 1-year mortality after hip fractures. They
compared a multilayer perceptron (a form of ANN) and logistic regression on
their dataset, and both performed similarly. Given that, they concluded that the
logistic regression model was more accessible to clinicians to interpret and



required fewer computational resources. For that reason, it was the more

reasonable tool . We fully concur.

1.3.5 ML and ANNs in orthopedics

Cabitza et al. provide a review of ML for orthopedics ™. The first paper in their
review was from 2000 and used an ANN to control a trans-femoral prosthesis ™.
In 2010, Pogorelc and Gam compared ANN to decision trees for gait analysis and
found that ANN outperformed the other 2°. Nair et al. also studied gait analysis in
patients with rheumatoid arthritis versus hip osteoarthritis '?. Prasoon et al.
studied MRI scans of knee cartilage using ANN and found better performance
than the state-of-the-art methods at the time 2 Thong et al. used ANN for the
3D reconstruction of an adolescent idiopathic scoliosis patient’s spine 3. Abidin
et al. used ANN for chondrocyte pattern analysis to detect osteoarthritis in CT
scans %, Shim et al. detected rotator-cuff tears in MRI studies 2. To our
knowledge, the first attempt to use ANN for fracture detection was by Al-Helo et
al. 2013, who studied vertebrae fractures in CT scans with impressive accuracy

126, The use of Al and ML has increased further.

1.3.6 ML and ANN for outcome prediction in Orthopedics

Dijkstra et al. conducted a systematic review of predictive ML models for
orthopedic trauma and found 45 studies . Most models were derived for hip
fracture patients. Mortality and hospital stay were the most predicted outcomes.
Some were ANNs, but none appear to have been CNNs. However, they excluded
studies reporting on models analyzing diagnostic imaging, which is this thesis's
foundation. The Machine Learning Consortium studied ANNs to predict infection
risk after operative treatment using ANNs. They also tested different ML

algorithms and one ANN but provided scarce information about modeling details

128

1.3.6.1  Mortality prediction after fracture using ANNs

In Study IV, we examine, among other things, whether the patient died within one
year of the study. This has mostly been done for hip fractures because they
have the highest mortality and worst post-fracture recovery. Lin et al. studied
mortality after hip fractures and compared a logistic regression and ANN model
to predict 1-year mortality, resulting in an AUC of 0.95 for the ANN vs an AUC of
0.78 for logistic regression 2. While interesting, the excellent performance was

probably due to overfitting. In a similar study by Shi et al,, the results were an



AUC of 0.87 for the ANN vs. an AUC of 0.73 for logistic regression on a much

larger dataset and testing many different networks.

Liu et al. systematically reviewed ML models for predicting mortality in hip
fracture patients. For hip fractures, postoperatively, mortality is reported
between 5% and 30% within one year. They found that ML models had an ideal
mortality prediction after hip joint surgery. ANNs and random forest algorithms
had the best performance and, in general, better accuracy than existing clinical
scores . DeBaun et al. tried three models (LR, naive Bayes, and ANN) and found
the ANN superior ™.,

In contrast, Oosterhoff et al,, as mentioned previously, found no performance
boost for ML algorithms over logistic regression ™. Cary et al. looked at 30-day
and 1-year mortality. They compared an ANN and logistic regression and found
similar performance ™. Chen et al. used an ANN to predict mortality after a hip
fracture. They trained it on a national registry and found it worked better than
Cox regression ¥2. Cao et al. used all hip fracture patients registered in Sweden
between 2008-2013 to model predictive preoperative characteristics for 30-
mortality in traumatic hip patients after surgery. They cross-referenced with the
Swedish National Board of Health and Welfare registers to get date of death and
comorbidity data. Comparing logistic regression and ANN, the latter performed

somewhat worse, but confidence intervals are not provided ™2,

1.4 Ethical considerations and methodological biases

Al has many benefits and pitfalls, and we must consider its ethical implications.
We elaborate on some common issues that clinicians should consider. The

following discussion builds upon Olczak et al., 2021,

Outcome imbalance: Medical outcomes are often heavily skewed towards
some specific and commonly occurring ones. A negative outcome is the most
likely outcome for most disease tests — as most people are healthy for what is
tested. However, this is not true under certain circumstances. We are unlikely to
find ankle fractures if we randomly examine people’s ankles in the street. We are
considerably more likely to find fractures examining ankles after trauma in the
ER. Where there are multiple outcomes, individual outcomes become less likely.
We are more likely to find any ankle fracture than a fracture of the medial
malleolus and the posterolateral rim (Volkmann's fragment) — i.e, AO 44B3.3.



By emphasizing rare cases, we can alleviate the imbalance during training, also
known as assigning weights to classes. We can also manipulate the images so
that the network becomes less sensitive to particular features, known as data
augmentation. This becomes more difficult during testing as the test examples
are usually fewer than the training examples. We must also consider what
algorithms we use in training and evaluating model performance depending on
the dataset.

Missing data: We need many examples of the outcomes we are searching for to
train a model. A rare outcome is not likely present in the data or can be so
infrequent that we cannot get a good training result. The algorithm cannot learn a
pathology if it is not in the training data. While we could write rules for an
algorithm to follow, it is impractical to write rules for all possible outcomes that
occur in the real world. Fundamentally, this differs from humans, who can
understand a thing before encountering it, e.g., a Pipkin fracture in the hip. Thus,

we can have unknown gaps in our models.

Overfitting: Al learns by studying examples. If the model learns the data too well,
it learns training cases rather than the general features. An overfitted model will
give a false sense of security and lead to a more biased model. This is a common
concern in any form of statistical learning, and it is why data is split into at least a
training and a test set, with no overlapping cases (e.g, patients). The test set
contains examples the model never encounters during training and cannot learn.
Another way is to compare the model to data from an independent location, i.e.,

external validation.

Data and privacy: ML models are powerful tools, but some are “data hungry.”
ANNs can have hundreds, and sometimes millions, of parameters. They need a
lot of data to optimize all parameters, learn the desired patterns, and capture
unusual cases. Therefore, they thrive on large amounts of data during training,
encouraging large-scale data collection. Large-scale data collection constitutes
a risk to patient integrity and sometimes data ownership. Medical data cannot
usually be shared due to its sensitive nature, which causes reproducibility,
traceability, and reporting problems. It is also sometimes possible to extract the
underlying training data from the ANN model, further complicating privacy and

integrity.

Bias and fairness: Bias comes from input data and design decisions during

development. Biases are mapped to the output. This means that the Al model



will learn and reproduce prejudice in the data % Common confounders and
biases are race, gender, and socioeconomic factors. For example, an Al
melanoma detector was trained on a population dominated by fair skin and was
shown to perform worse on dark-skinned patients **. A study by Zech et al.
studied chest radiographs from different sites and found that the CNN could
implicitly learn where the data points came from and adjust predictions
accordingly . In another study by the same research group, hip fractures from
radiographs were studied with high accuracy. However, correcting for
socioeconomic, logistical, and healthcare process data factors (e.g, different
scanners, locations, age), they could show that their model performance fell to a
random detector 6. Recognizing, reflecting, and examining biases in Al studies is

essential ¥,

Informed consent and autonomy: Al risks autonomy (the right to self-
determination) and integrity. Al models return outcomes based on opaque
datasets, and their results are difficult to explain to patients. There is also a risk
that decision-making responsibility will be diverted from clinicians to algorithms
that “perform superior to an expert.” Healthcare systems and clinicians might
implicitly become forced to implement and follow Al recommendations, forcing

patients to subject themselves to Al ©8,

Interpretability and safety: Transparency is crucial for clinical Al
implementations, with the critical implications that can come with errors. The
preferred option is to share data and as much information about the model as
possible. A problem not unique to medicine is that data can be very sensitive.
The data cannot always be legally shared. In addition, there are risks in releasing
development and research models to the public, for example, for public scrutiny.
They risk being used for other things than validating the model. This can cause
considerable harm as an unfinished or unvalidated tool is used outside the

intended context ™.

Al models are often described as “black boxes.” The model's decision processes
are largely unknown, and so is what happens inside. Enhanced transparency and
interpretability of the algorithms could compensate for this. Understanding the
inner workings of ML models is a field that is actively researched and is
constantly evolving. However, we need to learn to interpret ML models, and some
argue that we must create interpretable models from the start . For example, a
popular attempt to understand CNN models is to visualize the regions that
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activate the model toward a specific classification decision. One popular
method is activation (or heat/saliency) maps that show what areas of an image
the model reacted to. Another method bounds the region of interest into boxes.
However, whether the incorrect or correct region is emphasized, neither explains
why the model reacted to that region, and their ability to explain the model is

incomplete .

Responsibility and liability: How to allocate responsibility and liability for an Al
intervention is unclear. A model that is 99% correct is wrong 1% of the time. Even
excellent Al models fail in obvious cases. Suppose an Al recommendation was
accurate, and not following it harmed the patient. Are clinicians responsible for
not following the “black box” recommendation of the model? Suppose the Al
recommendation was followed, which resulted in a critical error, constituting
malpractice. Who is responsible? Who is liable? Both legally and morally? This
fundamental issue must be resolved before Al decision-making replaces
clinicians’ judgment: the creators of Al models need to accept legal

responsibility for the outcomes of Al models.

Reproducibility: Traditionally, machine learning has been presented to a non-
medical community, but as the research has moved into medicine, it poses new
challenges. While reproducibility is fundamental to all sciences, there are
differences in focus between reporting traditional ML and medicine — resulting in

problems specific to Al interventions.

The EQUATOR network & is the originator of evidence-based reporting
guidelines for medical research. Well-known guidelines include SPIRIT ™,
CONSORT "2, and STROBE 3. In recognition of the increasing prevalence of Al
intervention research but poor reporting, the EQUATOR network has created the
CONSORT-AI 8° and SPIRIT-Al ® addendums 88. Both focus on clinical trials (trial
protocols and trial reporting) containing Al interventions.

Protocols for reporting on prognostic and diagnostic studies using ML and Al
were published in 2024 via TRIPOD+AI “4¥5, while STARD-AI is still in
development . However, Olczak et al. 8 also examined the different aspects of
research, implementation, and reporting of Al interventions. Similar checklists
exist for reporting Al and ML in medicine. Such guidelines should help avoid

common problems specific to the medical domain.
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Overdiagnosis: There are risks with the probable over-availability of Al models,
where we can upload any data and easily and cheaply get a result. Routinely
using a cheap and fast model can lead to overdiagnosis, or even correct
diagnosis, of benign conditions. This can lead to unnecessary psychological
suffering, overuse of healthcare resources, and unnecessary treatments, which in
turn can lead to complications and more suffering.

1.5 Discussion and conclusion

Orthopedic trauma is a considerable part of the global health burden, and with
an aging population, this will increase. This thesis project envisions a system that
can help clinicians and researchers on multiple levels. We strive towards an
automated fracture classification system to improve interrater and intra-
observer reliability. It could allow for backward utility, i.e., application to previous
data and studies, and forward utility, i.e., a clinical intervention as part of a
computer-aided decision system. As such, we envision a system where we can
predict patient outcomes, which could greatly improve patients’ quality of care
and aid in research.
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2 Research aims

This thesis aimed to explore various facets of pathology detection and
prediction using artificial neural networks.

The specific aims of this thesis were to:

1. Explore CNN for image analysis and classification in orthopedic medicine
and transfer learning.

2. Develop complex fracture classification, particularly for ankle fracture
classification, according to the AO standard.

3. Explore CNN model verification, transferability, and generalizability of an Al
model to a clinical setting.

4. Explore using neural networks for patient outcome prediction using PROM

with the purpose of personalizing orthopedic medicine.
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3 Materials and methods

3.1 Study design

Studies I-lll were cross-sectional studies, and Study IV was a cohort study. Study
I and Il were single-center studies, whereas Study lll added an external validation
site. Study IV was a multicenter study that used an additional external site for

model evaluation.

3.2 Data sources

Studies | and Il used data from a single site (Danderyd Hospital, Stockholm,
Sweden). Study Il used the same data source as studies | and Il but added an
external validation site (Flinders Medical Centre, Adelaide, Australia) as an
external validation dataset (EVD). It used the test set of Study Il as an internal
validation dataset (IVD). Study IV used register data from the SFR and related
imaging collected from major trauma hospitals in the Stockholm region of

Sweden. We also collected imaging from Gotland, Sweden, for the EVD.

3.21 Danderyd Hospital, Stockholm, Sweden (DS)

IMAGING: Images were collected from DS PACS for all traumatic imaging at DS
between 2002 and 2015.

REPORTS: Radiology reports were collected from the RIS system.
All data was anonymized upon collection.

3.2.2 Flinders Medical Centre, Adelaide, Australia (FMC)

IMAGING: We received 399 anonymous radiologic studies of post-ankle trauma
emergency imaging. Studies were selected and provided by our research
collaborators connected to Flinders University Medical Centre in Adelaide,

Australia. We did not receive radiology reports or patient data.
REPORTS: We had no radiologist reports for the Flinders data.

All data was anonymized upon collection.

3.2.3 The Swedish Fracture Registry (SFR)

Data was collected on all fractures registered at the seven emergency hospitals
in the greater Stockholm region between 2011-01-01 and 2019-06-30. We also
collected data on all fractures from Region Gotland during the same period.
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Data was pseudonymized upon collection, and the unique personal identification
number (PID) of all patients was only used to ensure there was no overlap
between different study populations and to associate imaging with patients and

fractures.

3.2.4 Region Stockholm (RS)

Region Stockholm has a joint PACS database managed by “Bild och
funktionstjansten” (BFT) and SECTRA AB. We collected radiographic imaging of
the fractures registered in the SFR during 2023. The seven major emergency

hospitals in the Stockholm Region were included.

Capio S:t Goérans Hosptial

Danderyd Hosptial

Karolinska University Hospital, Huddinge
Karolinska University Hospital, Solna
Sodersjukhuset Hospital

Sodertalje Hospital

Noopr e

Tio Etthundra Norrtéalje Hospital

Data was pseudonymized after collection, and the PID of all patients was only
used to associate imaging with pseudonymous SFR data.

3.2.5 Region Gotland (RG)

In December 2020, we collected the radiographic imaging of fractures in the SFR
for Region Gotland. Imaging was collected for all registered fractures during the
study period and one year forward. The eighth hospital in Study IV was thus:

8. Visby Lasarett

Data was pseudonymized after collection, and the PID of all patients was only

used to associate imaging with pseudonymous SFR data.

3.3 Neural networks

3.3.1 Images and imaging

The labeling evolved over the studies. When present, labels were extracted from
the DICOM metadata.

For Study |, the primary outcome was fracture (yes/no). We used an
unsupervised ML technique called Latent Dirichlet (LDA), a form of natural
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language processing (NLP), to extract report topics from the radiologist reports
16147 | DA is based on the idea that unique combinations of words are used in
texts depending on topics. These topics create groups. We used these groups to
create regular expressions that assigned class labels to studies based on the

radiographic report. The fracture label was assigned for the entire study.

The gold standard/test set was randomly selected from the training data based
on these autogenerated labels. We aimed for a 50/50 split between fracture and
no fracture. We used manual labeling by human reviewers to assign labels to the
gold standard set. The reviewers first labeled the test set independently. We
then held a consensus session to determine the labels for images where there

was reviewer disagreement, with a majority vote deciding the final label.

After the test set had been extracted, a subset of radiographs and labels in the
training data were also manually reviewed. This was done to evaluate the
automatic label generation and improve the labeling quality. We also held error
review sessions, where we went through subsets of network classification errors
that did not agree with the labels.

The CNN outcome labels were based on each image rather than the entire study,
in contrast with the automatic label generation for fracture, which labeled the
study. The secondary outcomes body part, laterality, and exam view were
extracted from the DICOM metadata. When available in the metadata, they were

unique to each image.

The labelers were a medical student, a resident radiologist, a senior consultant
radiologist, one consultant orthopedic trauma surgeon, and two senior trauma
consultants.

For studies Il and lll, labels were based on the AO 2018 standard. A manual
review of all radiographs and studies was required to assign classes. Labeling
was performed using the Raiddex platform, an in-house-developed labeling tool.
The gold standard set (“test set” in Study Il and IVD in Study Ill) was randomly
selected from the labels generated for Study I. The goal was to get a set with
two-thirds “fracture” and one-third “no fracture.” After division into train and
test sets, each set was independently labeled according to the AO ankle
classification.

For Study IV, labels were based on data in the SFR register. The primary

outcomes were PROM]1 or death within the study period. When possible, we
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calculated the one-year change in PROM, PROMA. If the patient died during the
study period, they could not have answered the PROMI survey.

One year change in PROM = PROMI — PROMO

The one-year change in PROM was derived from PROMO, which patients
answered weeks post-trauma. We believed it was less reliable than PROM1 and
had too many confounders that we could not correct for in this study. Therefore,
we considered APROMs as important secondary outcomes. Less important
secondary outcomes were AO class, as reported in the SFR. When assigning
images to fractures, we used the DICOM metadata to match images with
fractures, as multiple fractures could be present in the same study. We selected
all series that studied the fractured region within seven days of the trauma to
capture post-intervention and immediate follow-ups. We only looked at lower
extremity fractures, i.e, from the femur and distally. We also included adjacent
imaging when available. However, we generally defined adjacent as the most
proximal and distal segments to the fractured segment. The reason was that we

wanted to capture more facets of the fractured region.

3.3.2 Image transformations

As CNNs can only learn to detect outcomes they have seen, having a wide range
of data is essential. The goal is to make the activation general yet specific to the
outcome. We want to change the information content of the image but keep the
vital information the same. Transformed images were passed to the network with

the same training labels as the original image.

Rotation and reflections: By rotating and reflecting the image, we give the
network different angles and perspectives of the same object or type of object,

but the fundamental information remains the same.

Jittering: Altering the pixel values by other proximal pixels is called jittering.
Jittering can make the image look more “grainy” and less sharp, enforcing other
features and training the network to look at less sharp images.

Cropping or blocking: Cutting out smaller regions of images is a way to change
the information content in the image. Usually, we hope that the relevant region
remains, in our case, the fracture, but this is not guaranteed. But cropping is
random; the same area will not be cropped, and often, the thing of most interest

will remain. It could also enforce the learning of different class features, as the
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most prominent feature might be hidden, and the network must depend on the

less noticeable feature of the class.

3.3.3 Convolutional neural networks

For Study |, we evaluated a series of different neural networks (AlexNet, VGG 8,
VGG-16, VGG-19, and Network In Network). For studies Il through IV, we used the
ResNet architecture. Similarly to Study |, we initially tested different network
architectures (ResNet, DenseNet 8, and Inception °%°¢) and found ResNet
performed best for our task. All network architectures were freely available,

open-source networks.

3.3.31 AlexNet (BVLC reference net)

AlexNet ' was the original neural network implementation that sparked the Al
and CNN boom. It uses rectified linear units (ReLU) nonlinear functions instead of
others that were popular when it was introduced. It has eight layers; the first five
are convolutional, and the remaining three are fully connected. AlexNet was one
of the CNNs studied in Study |.

3332 VGG 8 16, 19 layers

The Visual Geometry Group (VGG) S (8 layers) ' and VGG-16 and VGG-19
networks °” are CNNs that improved upon AlexNet's architecture and
performance by making the neural networks “deeper.” Sixteen and nineteen
layers were the deepest that still allowed for proper training. Deeper networks
were “too” deep as the training signal (the gradient) became too small for model

training. VGG networks were evaluated in Study |.

3.3.3.3 Network In Network

Network in Network was an attempt to improve CNN's ability to study local

image patches 2. It was evaluated in Study |.

3.3.34 ResNet

ResNet is built upon the VGG architecture with up to 50 or 100 neurons. It used
skip connections for residuals, which allowed better network training as the

gradient update could pass deeper down the network e,

While there are newer CNN architectures, these are robust and still widely used

today.
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3.3.3.5 Classification using one-hot encoding

Classification evaluation was done using one-hot encoding. This means that
each outcome is trained and tested independently of the others. In our models,
fracture, 44A, 44A1, and 44A1.1 are four different and independently determined
classes. Each study is evaluated against all possible classes.

3.4 Statistics

Evaluation metrics are important to model building, particularly in machine
learning, where the model inputs and outputs are complex. Evaluation metrics
tell us if a model does what it purports to do. Table 1displays various
performance metrics used in medicine and machine learning that were most
relevant to our studies. As Olczak et al. 2021 8 discussed, we must balance our
presentation between absolute correctness and the intended audience. We

follow the recommendations therein.

Table 1. Evaluation metrics.

Measure Calculation or description

TP + TN
Accuracy

TP + FP + TN + FN
Recall, true positive rate (TPR), TP
Sensitivity TP +FN
TN
Specificity FP+ TN
Youden J sensitivity + specificity — 1
. FP e

False positive rate (FPR) FPIIN- 1- specificity
Precision, Positive predictive value TP
(PPV) FP + TP
Negative predictive value (NPV) _IN

TN + FN
Model performance curves
Receiver operating characteristic sensitivity (y-axis) against (1-specificity) (x-
(ROC) curve axis), i.e, TPR against FPR
Precision-recall (PR) curve Precision (y-axis) against sensitivity (x-axis)
Area under the curve (AUC)
AUC of the ROC curve (AUROC) Statistic of model performance
AUC of the PR-curve (AUPR) Statistic of model performance
Regression or ordinal data modeling errors
Standard deviation (SD) J;Z(prediction — mean value)?

samples — 1
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Table 1. Evaluation metrics.

Measure Calculation or description

_ )2
Means squared error (MSE) Z(true value — prediction)

number of cases
Root mean squared error (RMSE) VMSE
Y:|true value — prediction|

Mean absolute error (MAE)
number of cases
Multiple measurements

categories
Yic1 measurement; - n;

Frequency weighted average antegories
i=1 i

TP (True positive), FP (False positive), TN (True negative), FN (False negative). Table adapted from Olczak et
al. 20218,

3.4.1 Balanced vs.imbalanced problems

If there are two outcomes to a model (e.g, fracture yes/no), the model is a binary
classifier. We call it a multilabel classifier if we have more than two outcomes. It
is common practice in classification tasks to reformulate a multilabel outcome
as a binary task. If we have three classes, e.g, ankle fracture Weber A, B, and C, a
classifier will often translate the problem into three separate tasks: Webber
A/not A, Weber B/not B, and C/not C. As the number of outcomes increases, the
“not” class will become more prevalent relative to the individual classes. A
dataset can be both balanced and imbalanced at the same time. We can have a
50/50 distribution for fracture yes/no, but a subgroup, e.g., Pipkin fracture, can
be on in a ten thousand ™°.

3.4.2 Dataset size selection

A random classifier should always be able to reach the accuracy of the most
dominant class by simply guessing that outcome. Therefore, selecting a 50/50
positive/negative outcome in the test set is customary. If the classifier obtained
an accuracy of 40%, we could flip the labels and have 60% accuracy. Some
argue that you should always select 50/50 data distribution, where one-half is
no finding. This is not always possible or reasonable. For example, there is no
default option in our Webber example where the outcomes are Webber A, B, and
C. We should have a 33/33/33 test class split. If we were to add “no fracture” and
make that 50% of the test, there would be a 17.5/17.5/17.5/50. Any model could
always reach at least 50% accuracy by guessing no pathology, making a lower

modeling accuracy unlikely.

As the number of classes increases, this becomes more difficult, and as we work

with real-world problems, this can become impractical, impossible, and perhaps
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unethical. Studies Il and Il have approximately 40 possible outcomes for ankle
classes. If we wanted to balance the training or test set, we would have had to
peek at the dataset before selecting them — introducing bias and perhaps losing
important information. Some outcomes are not presented at the necessary
proportion, and some are not present at all. In addition, if we have many
outcomes and want them represented, the amount of data separated for testing
might further remove the few existing cases or fail to include any of the cases in
the test set. For this reason, studies Il and Ill aimed at 2/3 fractures, and the rest
had no fracture in the test data.

3.4.3 Accuracy

Accuracy is commonly used to measure the proportion of correct guesses
compared to all guesses. Each instance is equally important, including the TN.
Accuracy can be misleading for imbalanced problems when the TN can
dominate and is generally not recommended for imbalanced data ®. Take the
AO ankle classification down to subgroup classification, as in studies Il and Il in a
perfectly balanced dataset (44A11 - 44C3.3 and no fracture, i.e, 27 outcomes). If
we have a model that says no to whatever outcome, the classifier will have
approximately 96% accuracy and perfect specificity (probability that the test
returns negative if the thing tested is negative). However, sensitivity (the
probability of a positive test result given that the condition is positive) would be

zero. The expected random accuracy of a classifier with n classes is

n

ACCrangom = plz
=1

3.4.4 Precision andrecall

Unlike accuracy and specificity, precision and sensitivity (i.e, recall) do not
consider TN, making them better suited to imbalanced problems. Precision and
recall are defined in Table 1. Precision is the likelihood that a positive prediction is
truly positive, while recall is the proportion of actual positives that are correctly
identified.

3.4.5 Areaunder the curve (AUC)

Area under the curve (AUC) measures are a way to evaluate the overall
performance of models and not specific instances of the model. When
constructing a model, we must select a threshold (or cut-off) value (often a

probability) at which the test returns positive or negative. We might, for example,
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decide that the test will return positive if it is more than 50% likely true, i.e, p >
0.5; otherwise, it will return negative. For a screening test, we usually prefer a
lower threshold. We can get different performance metrics for the model
depending on whether we set this probability high or low. Performance
measures, such as specificity, sensitivity, accuracy, precision, etc, rely on this
probability threshold and are threshold-dependent. Selecting a threshold can be
arbitrary, based on experience, or one can try to optimize it as a parameter
based on experiments.

A way around this is to look at different thresholds and performances across a
range of thresholds. Plotting the threshold-specific measures into a diagram for
different thresholds will result in a curve. The area under the positive outcome
guesses is the area under the curve (AUC). This is a summary statistic that
speaks to overall model performance. However, it does not say anything about
the specific components. It will not capture the actual best possible or worst
possible performance but an average over the range of all thresholds. We need
to look at the actual curves to understand each component properly. Also, we
must decide on a particular threshold when implementing the model.

3.4.6 Areaunder the receiver operating characteristic curve (AUROC)

The area under the receiver operating characteristic curve (AUROC) looks at the
true positive rate vs the false positive rate. It measures the overall performance
of a model over all thresholds or independently of thresholds. The AUROC (often
abbreviated as AUC in the literature) is widely used. AUROC measures the ability
of the model to assign a higher probability to a randomly chosen true positive
case than a true negative case. Random AUC is always 0.5, or 50%. It considers
true negative instances equal to positives, making it poorly suited for
imbalanced datasets.

3.4.7 The area under the precision-recall curve (AUPR)

A precision (positive predictive rate) and recall (sensitivity, the true positive
rate) curve (PR curve) focuses on performance in the positive class. It ignores
true negative cases, making it useful for imbalanced datasets. The area under the
PR curve (AUPR) measures the trade-off between precision and recall across all
thresholds. A random classifier will give the AUPR as the prevalence of the class
in the data.

AUPR2nsom = Number of cases for the class/total number of cases
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A random classifier should give AUPR 0.2 for a class that makes up 20% of the

data. Anything above is better than chance ™.

Deciding how to measure model performance can be challenging. There are
different schools of thought, and there is no best way for all situations, but it is
an active field of research. We prefer AUC performance measures for model
development, but once you intend to deploy a model, you need to decide on a
decision threshold. There are ways to extract the “optimal threshold” for both

curves, but the optimal performance is not always the desired outcome.

3.4.8 Bootstrapping confidence intervals (ClI)

Bootstrapping is a statistical sampling procedure often used to generate
probability distributions, such as ninety-five % confidence intervals (95% CI)
152153 Bootstrapping consists of randomly sampling data points from the dataset
with replacement. We generate a distribution by repeatedly sampling the same
number of points as our original dataset. Repeating this many times allows us to
assess variability and derive confidence intervals. Therefore, we can estimate
how representative our outcome is compared to chance. We used
bootstrapping to calculate confidence intervals.

3.4.9 Top-N performer

Top-N performer means that, for a multilabel classifier, we look at the N most
likely outcomes, and if your outcome is one of those, you are partially correct.
We only looked at the top-1performers, i.e, the most likely (highest probability)

outcomes in our studies.

3.410 Weighted average

There are different ways to calculate aggregate average performance for a
multilabel classifier. Averaging the performance metric over the number of
classes (i.e, the arithmetic mean or macro average) gives equal weight to all
outcomes. A rare class performing exceedingly well or poorly will have a
disproportionate influence. In an imbalanced set, this can matter a lot. If we
instead weigh the outcome based on the number of instances in the class, we

get the micro average, also known as the frequency-weighted average.

last
case=1" Icase - MEASUI€cyge

last ’
case=1 lcase

frequency-weighted average =

where n is the number of cases .
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3.5 Data and population
351 Studyl

3.5.11  Study population

The data represented a random subset of patients who had ankle, foot, wrist, or
hand fractures and were radiographically examined at DS between 2002 and
2015. Pediatric patients, i.e., having open physes, were excluded. All data was
collected anonymously, and there was no way to identify patients or derive

population statistics.

3.5.12 Images, radiology reports, and labels

The primary labeling outcome was the presence or absence of a visible fracture
in the radiograph (fracture yes/no). Fracture classification labels were first
generated from the radiologist reports associated with each study. LDA is a form
of unsupervised machine learning for NLP, i.e., text analysis ®*’. The radiology
reports were analyzed using LDA to generate report topics. These topics were
manually refined and used to extract labels from radiologist reports 6147,

Secondary outcomes — side/laterality, body part, and exam view — were

extracted from the DICOM image metadata.

3.5.13 Training data

The original data consisted of 256,458 radiographs. We divided the patients into
an 80/20/10 train/training validation/test split. The training and validation data
were used for model training.

3.5.14 Test data/gold standard

A random test set of 400 images (from the same number of patients) was
selected from the patient test dataset. Two senior orthopedic consultants
independently reviewed and labeled the radiographs. The radiographs were
reviewed at the same resolution as the network (256x256 pixels), with all
available views and the radiologist’s report. Afterward, a consensus session was
held for all radiographs on which the reviewers disagreed, resulting in a
fracture/no fracture gold standard. The review process was inspired by Audigé

et al. 468
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3.5.15 Network performance review

We tested multiple CNNs, as described below. After the best-performing
network for the fracture detection task had been determined, a network error
review was conducted. We selected 200 radiographs where the CNN had
misclassified the exam view, 200 radiographs where it had misclassified the
laterality, and all radiographs where the body part had been incorrectly
classified. We manually reviewed all these images for the respective category. All
images were also examined for fracture presence. A senior radiologist consultant
reviewed the exam view outcome alone, whereas JO (medical student) and MG
(consultant orthopedic trauma surgeon) reviewed fracture, body part, and

laterality.

3.5.2 Studyll

3.5.2.1 Study population

The study population was a subset of the same collected dataset as in Study |,
i.e., the population of patients from DS between 2002 and 2015 without any
population parameters or identifiable information. Only ankle imaging was
included, and studies with open physes were excluded.

3.5.2.2 Images, radiology reports, and labels

Study Il only included ankle-level imaging. Pediatric images (i.e., open physes)
were excluded because they are classified differently from adult fractures 55591%,
As in Study |, initial study labeling (fracture/no fracture) was performed with
automated text analysis based on radiology reports. Studies were then

separated into training and test sets before AO classification.

Reviewers looked at the full-resolution images and labeled the entire study using
all images. Labelers had access to the radiologist’s report during labeling.
Radiologist reports never contained the AO classification; however, sometimes,
the location was mentioned according to the Danis-Weber classification (infra,
trans, or supra syndesmotic) %°. To the extent that tibia or fibular fractures were
visible, they were also labeled according to the AO 2018 classification standard.
If fractures were visible in the foot, these fractures were labeled according to
bone location (e.g., os talus, os calcaneus, os cuboid, etc.).

Primary outcomes were AO ankle fractures (i.e, segment 44). Other fractures

were secondary outcomes, e.g, fibula (4F2), tibia (42 or 43), etc.). During image
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classification and training, studies were labeled using a purpose-built labeling

platform Raiddex created in-house.

3.56.23 Training data

Study Il only examined fractures visible in ankle imaging. Compared to Study |,
ankle fracture data was expanded with additional ankle studies. The training data
was labeled by a group of five reviewers consisting of a senior consultant
orthopedic trauma surgeon (AS), a consultant orthopedic trauma surgeon (MG),
an emergency medicine specialist (TA), a junior doctor (JO), and a fifth-year
medical student (FE). TA, JO, and FE were specially trained for the labeling task
and labeled between 2000 and 4000 exams each.

At least two out of five reviewers reviewed each study included in the training
set. If there were any discrepancies between reviewers, MG reviewed the exam
and decided on the final class. The training set included only outcomes with at

least five cases.

3.5.24 Test set/gold standard

The test set consisted of 400 randomly selected patients to ensure no overlap
between the training and the test set. To accommodate the large number of
classes and the non-specificity of the initial automated labeling, 2/3 of the
studies were selected to have a fracture label. All studies (409) of the selected
patients were included in the test set.

Two orthopedic trauma surgeons (MG and AS) independently reviewed all
studies in the test set. For cases where the reviewers disagreed on labeling, a

consensus session was held to decide the classification.

3.5.3 Studylll

3.5.3.1 Study population

We used the same data set, and thus the general population, from DS for training
and modeling, as in studies | and Il. Studly II, like Study IIl, only examined ankle
fractures. Additionally, 399 ankle exams of random patients from Flinders
Medical Centre in Adelaide, Australia, were included as EVD. As population data
did not exist for the DS dataset, the dataset from Flinders was provided

anonymized and without any population data or radiologist reports.

37



3.56.3.2 Images, radiology reports, and labels.

Study lll used the same datasets as Study I, but additional studies were included
in the training dataset. The Flinders data was labeled similarly to the DS test data,
except it was provided without radiologist reports.

3.56.3.3 Training data

The same training data as in Study Il was extended with 2664 additional labeled
studies. At least two reviewers reviewed all newly included studies: MG (senior
consultant orthopedic trauma surgeon), JO (medical doctor), and FW (medical
student). As part of active learning, described later, many studies in the original
training dataset from Study Il were re-reviewed.

3.5.3.4 Internal validation data

Study lll used the gold standard derived in Study Il as an IVD.

3.5.3.5 External validation data

Three hundred ninety-nine studies were obtained from Flinders. Four orthopedic
trauma surgeons (MG, JD, FIJ, and EA) independently classified images according
to the AO 2018 standard. Two surgeons classified the entire dataset, and two
surgeons classified half of the data each. Once classification was performed
independently, a consensus session was held. During the consensus session,
disagreements in classification between reviewers were resolved by a majority

vote. The result was the EVD.

3.5.4 StudylVv

Figure 3 shows the data collection and design of Study IV.

3.5.4.1 Study population

All fractures registered in the SFR by one of the emergency hospitals in the
greater Stockholm Region from the start of the SFR (2011-01-01) until 2019-06-
30 were eligible for inclusion. The seven hospitals included were Danderyd
Hospital, Karolinska University Hospital in Solna and Huddinge, Norrtélje Hospital,
S:t Goéran Hospital Sédersjukhuset Hospital, and Sédertalje Hospital. Visby
Hospital in Gotland, Sweden, was included as a control or external validation site.
Inadvertently, a subset of the patients in the previous Danderyd dataset (studies
I-1lI) were included in this study. However, we could not say which patients were
reintroduced as that data was anonymous.
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Figure 3. Schematic overview of data sources, retrieval, exposures, and study
outcomes. Data was collected on each fracture from the SFR. All radiographs
visualizing a fractured and adjacent segments within seven days of trauma were
collected from various PACS systems. Variables and imaging studies were merged. 3)
The Al model was trained to predict outcomes and individual PROM scores one year
after the trauma from the merged data.

PACS — Picture Archiving and Communications Systems. PROMs — self-reported
patient-reported outcome measures. SFR — Swedish Fracture Registry. PROMA — one
year change in PROM.
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Included were all patients where there was a PROMI registered or who died
within one year of the fracture date. If both were missing, the patient was
excluded. In addition, fractures were excluded if there was no initial radiographic
imaging of the fracture (i.e., no radiographic imaging within <7 days). Only
fractures of the lower extremities were eligible for inclusion, i.e., proximal
femur/hip and distal. Pelvic/acetabular fractures were not included. Any patients
with any fracture or treatment registered at any Stockholm site and Gotland
were excluded to ensure no patient overlap between training and test data.

3.5.4.2 Images, radiology reports, and labels.

Imaging was collected independently from the PACS of Region Stockholm and
Region Gotland. Studies were matched to the SFR fracture using DICOM
metadata. As described above, all studies possibly visualizing each fracture were

mapped to the fracture.

Outcomes were collected from the SFR. The primary outcomes were PROMI1
outcomes. Secondary outcomes were fracture segment, AO class (as per the
SFR), and the change in PROM. We intended to predict complications
(reoperation and infections); however, these were difficult to derive reliably from
the SFR. It would require a manual review of all imaging (including MRI and CT) of

the fractured area within one year of the trauma for all fractures.

3.56.4.3 Training data and validation data

We split the Stockholm dataset 80/20 between training and training validation
data. Due to too few data points, we did not create a local test set (IVD). Instead,

we used an EVD with patients from Gotland as test data.

3.5.4.4 Test data — external validation data

As stated, the test data consisted entirely of the Gotland EVD.
3.6 Modelling

3.6.1 Studyl

3.6.11  Outcomes

The primary outcomes were 1) the top-performing neural network on fracture
detection and 2) fracture detection accuracy (fracture yes or no) in terms of
accuracy. Secondary outcomes were prediction accuracy on extremity (hand,

foot, ankle), side (left or right), exam view, and previous/old fracture (yes/no). A
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secondary outcome was also to assess if transfer learning was a reasonable
strategy for training on orthopedic trauma. While ascertaining if transfer learning
worked was of primary interest, it was a secondary outcome. We did not

extensively compare training from scratch to transfer learning.

3.6.12 Modeling and neural networks

Study | compared five network architectures: BVCG reference net (“AlexNet”) ©,
VGG 8/16/19-layers 7, and Network In Network *°. We used pre-trained
networks, i.e, trained for other tasks, and they were then retrained for the
fracture prediction task. The idea was that the network had learned a set of
primary properties and shapes, which could then be remodeled and adapted for
fracture detection. This is called “transfer learning”. Transfer learning helped
these networks to manage more with the limited data set we provided.

After training, the best-performing network on the primary task (fracture
detection) was selected for final evaluation on the gold standard. Performance
was evaluated using top-1accuracy.

3.6.2 Studyll

3.6.2.1 Outcomes

The primary outcome was ankle fracture classification according to the AO 2018
ankle fracture classification %% in terms of AUROC. Secondary outcomes were
fracture detection (yes/no), fibular and tibial fractures (AO 2018 classification),

and foot fractures (bone localization). IRR was also a secondary outcome.

3.6.2.2 Modeling and neural networks

We used the ResNet neural network architecture 9, and training details are
described in Table 2.

Table 2. Neural network architecture and training strategies for Study |Il.

Layer type Blocks Kernel size Filters Group
ResNet block 1x2 5x5 32 Image
ResNet block 1x2 3x3 64 Image
ResNet block 4x2 3x3 64 Core
ResNet block 2x2 3x3 128 Core
ResNet block 2x2 3x3 256 Core
ResNet block 2x2 3x3 512 Core
Image max 1 - - Pool
Convolutional 1 x1 72 Classification
Fully connected 1 - 4 Classification
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Table 2. Neural network architecture and training strategies for Study II.

Fully connected 1 - 4 Classification

Session Epochs Internal learning Noise Teacher-student
rate pseudolabels

Initialization 70 0.025 None No

Noise 80 0025 5% No

Teacher-student 40 0.005 5% Yes

Regularization 20 0.025 10% No

SWA 20x5 0.01 5% No

Overfitting strategy Description

Image jittering Each image was randomly flipped, cropped and rotated during

training.
Random noise A denoising autoencoder was employed to regularize the visual

representation manifold. The encoder and decoder have
identical layers and parameters.

Teacher-student Semi-supervised training where a co-existing teacher network
network using learned the labels from both the report and image. This allowed
alternate data us to use the teacher’s labels when images had none. As these

labels were less certain than the manually labeled images, the
teacher label's loss was reduced by 10%. During the teacher-
student session the data set was augmented unlabeled exams
using a ratio of 1:2. During all sessions we switched between the
ankle dataset and a similarly labeled dataset with wrist images
that consisted of 17,511 exams. These were also augmented with
unlabeled images with the same proportion between unlabeled
as labeled in the ankle dataset ™°.

Stochastic weight A cosine function was used for decreasing the learning rate. It

averaging (SWA) was reset between each section of training. Once the learning
rate leveled off, we trained for 5 series using stochastic weight
averaging . In Study Il we had five series of 20 epochs.

Active learning Poorly performing categories, during training, were actively
reviewed. We also added more training examinations to further
improve accuracy, more examinations were added to improve
those categories. Highest entropy over predictions was used as
the sampling strategy for active learning. l.e., we selected the
cases that were closest to 50% probability for an outcome and

focused on labeling those. This also called uncertainty sampling
162-165

Adapted from Olczak et al. 20212.
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3.6.3 Studylll

3.6.3.1 Outcomes

The primary outcome was model performance (AUPR and AUROC) on 1) the
external validation set and 2) the internal validation set. Secondary outcomes
were fracture detection (yes/no), fibular and tibial fracture classes (according to
AO 2018 classification), foot fractures (bone localization), and IRR.

As we concluded in Study Il, the data was imbalanced with many possible
outcomes. For that reason, we followed the recommendations of Olczak et al.
20218 and focused on other performance measures (AUPR), which are better
suited to imbalanced data. However, we also reported AUROC as it is more
widely used.

3.6.3.2 Modeling and neural networks

While the network was not pre-trained, other anatomies and outcomes were
included during training. This was done to introduce noise and randomness,
hoping the model would be perturbed sufficiently to find a better optimum.
However, the network’s training data is expanded with other features that can be
transferable to the actual task. We have seen this enhance network performance,
and it is related to the transfer learning concept in Study I. Unlike Study Il, we did
not use teacher-student augmentation during training. Other than that, the
modeling parameters are described in Table 2.

3.6.4 StudylVv

3.6.4.1 Outcomes

The primary outcome was model performance at predicting the PROM1 or
prediction of death within the study period on the EVD. Secondary outcomes
were the one-year change in PROM and fracture classification according to the
AO classification used in the SFR.

We used the RMSE vs. the SD to evaluate model performance on ordinal and
numerical outcomes. The RMSE needed to be lower than the SD for the model to
be helpful. If RMSE was greater than or equal to the SD, we could have guessed
the most frequent outcome (mode) or the mean, and our expected error would
be approximately the SD. If RMSE was equal to, or very close to, the SD, this
suggested that the model has learned the mode or mean — i.e, it was considered
a sign of overfitting.
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For non-ordinal classification tasks, we used accuracy if they were balanced and
binary. We used AUROC and AUPR as performance measures for complex and
imbalanced classification.

3.6.4.2 Modeling and neural networks

Study IV is an experimental study that, like Study |, consisted of multiple
experiments to obtain the best model for predicting patient outcomes. We used
a ResNet-based model with the same design as in Study Il but experimented
with many different hyperparameters. The model was trained sequentially on all
tasks. There were three types of training tasks: classification (fracture AO class,
sex), ordinal scale prediction (most PROM outcomes), and regression tasks (age,
PROM indices, VAS score, etc.). Primary outcomes were included in all models,
and secondary outcomes depending on the experiment.

For this study, we want to predict PROM], a patient-centric measure. Therefore,
we experimented by including adjacent radiographic imaging within seven days
of the trauma. The idea is that we have a patient and not just a fracture. Our
initial approach is to look at each study separately, even where there should not
be a fracture but pass the same training PROMO or death within 1 year. We hope
the model will “overfit” and recognize that it is the same patient. Other
experiments will include combining all imaging into one patient/training case, as
Study Il combined all radiographs in one study, whereas Study | looked at
individual radiographs. Other experiments will only look at the actual fracture
location imaging and ignore other imaging for the patient, except if the patient
has multiple fractures.

Classification

During our training, we learned that a model that trains on various outcomes
tends to perform better at individual outcomes. The model becomes richer and
learns more patterns. Therefore, we included classification tasks as secondary
outcomes. Also, classifications were taken from the SFR and not generated by us.

Ordinal classification

Ordinal parameters have an order, but the steps are not necessarily evenly
spaced. For example, a scale with “bad,” “neutral,” “good,” and “best.” The
distance between “good” and “best” is arbitrary, but “best” is always better. We
implemented the rank-consistent ordinal regression (CORN) loss ™ as in the

coral-pytorch package '®® for ordinal outcomes. Nearly all PROM1 outcomes are
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ordinal, except for indices, and we additionally construct the one-year change in
PROM, i.e, PROMA, outcomes, which are ordinal or numerical, depending on the
parameters they were derived from.

The CORN Loss uses binary classification (comparing two outcomes) to check if
the outcome is greater than the previous class. For example, is the outcome 20,

2], 22, etc, where O, 1, 2, ... are the ordered outcomes?

We also experiment with modifications to the CORN Loss, in line with the Focal
Loss introduced by Lin et al. in 2018 . The Focal Loss was introduced into an
object detection scenario with extreme class imbalance. It introduced a
modulating factor f (y,p;) = (1 — p.)" to the Cross-Entropy Loss, commonly
used in object detection. Here, p: = p if we are looking at the correct (“true”)
class, and p: = 1 — p otherwise, where p is the predicted probability of the class. y
is a focusing parameter that downweighs easy examples. The more likely a class
is, i.e, p—1, the smaller (1 — p,)" will get, as long as y21. The easier classes will
influence the loss and training less.

We experiment with an implementation of the modulating factor with the CORN
Loss as

Focal CORN Loss = f(y,p:) - CORN(X,y),
where y and p: are as before, and CORN(X,y) was defined as in Cao et al ™,
Linear regression

We had previously found regression modeling of parameters, like distance and

positions in radiographs, difficult with MSE loss. This is likely because CNNs have
difficulty retaining spatial information 8. However, we were not looking to model
spatial relationships. Therefore, we experimented with alternate loss functions to

see if we could train the network to perform better at regression tasks.

For regression outcomes, we experimented with MSE loss and robust general
loss '°. The robust general loss was implemented using the robust_loss_pytorch

package °. We chose whichever performed best and did not report the other.
Experiments
We conducted several experiments varying:

e Image size
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e “Study” vs. “patient” data combinations
e Loss functions

e Optimizers

e Model input (secondary parameters)

e Various regularizers, such as L2 regularization, drop out
Testing and model evaluation

To avoid model selection and presentation bias, we test only the best-
performing model from the experiments on the EVD after all experiments are
concluded.
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4 Results

4.1 Studyl

411 Primary outcome - Fracture detection

We trained five pre-trained neural network models on a dataset of 256,458

radiographs, of which 56% had been labeled as having a fracture (See Table 3).

Table 3. Image and label data.

Table 3a Table 3b
Label n (%) * Label error n (%)
Fracture
No m,275 (43) Correctly classified 276 (69)
Yes 143,183 (56) Misclassified 124 (31)
Missing 2,000 (1)
Laterality
Left 120,377 (47) Correct laterality 52(26)
Right 132,511 (52) Misclassified 8 (4)
Missing 3,570 (1) Marker missing 140 (70)
Exam body part
Finger 390 (0.2) Correct body part 17
Thumb 76 (0) Related body part 51
Scaphoid 27,962 (1) Unrelated body part 15
Hand 5,614 (2) Invalid image 3
Wrist 65,264 (25)
Ankle 98,002 (38)
Missing 59,150 (23)
Exam view

Distal 7136 (3) Correct view 110 (55)
AP 55,916 (22) Misclassified 90 (45)
Oblique 44,962 (18) Unrelated view 12 (6)
Proximal 6,776 (3) Closely related view 78 (39)
Radial 6,946 (3) Ankle: mix-up between AP and

mortise 22 (1)
Lateral 67,465 (26) Ankle: mix-up between oblique

and lateral 23(12)
Ulnar 7,014 (3) Scaphoid: mix-up between

supination and pronation 14 (7)
Missing 60,243 (24) Scaphoid: mix-up between

distal and proximal 7(4)

Miscellaneous 12 (6)

3a shows raw image and label data and 3b the results of the manual review of classifications and labels.
These were labels from the training set. Olczak et al. 2017 .
*70% were reserved for training, 20% for validation, and 10% for testing.
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56% of images were labeled as having a fracture, and 43% as not having one.
Only 1% of radiographs could not be labeled. Ankles were the most studied body
part (38%), followed by wrists (25%). 23% of images were missing information

about the body part, and 24% lacked information on the exam view.

The VGG-16 model performed best in training validation for the primary
outcome, and we selected it as our evaluation model. VGG-19 was a close
second, and the differences in performance for the two models were minimal. All
networks performed excellently for the exam body part and similarly for the
exam view. Laterality had the most significant spread between the networks. See
Figure 4.

Accuracy (%)

100 Exam body part Exam view Fracture Side
rﬁ
80
60
40
20
00 5 10 13 0 5 10 13 0 5 10 13 0 5 10 13

Training time (no. epochs)

Performance of the 5 networks. An epoch is 1

. Network
pass over all images. o

- BVLC reference net
- VGG 8 layers

— VGG 16 layers

- VGG 19 layers

~ Network-in-network

Figure 4. Performance of the five networks during validation. The best performer at
fracture detection, VGG-16, was selected for further analysis. Image from Olczak et al.
2017

VGG-16 had a fracture detection accuracy of 83% (95%Cl 80-87%) on the gold
standard. This was on par with the accuracy of human reviewers, who were 82%
(95%CI 78-86) accurate for reviewer 1and 82% (95%Cl 78-85) for reviewer 2
(see Table 4).
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Table 4. Outcomes compared between observers.

Observer Label ® Network® Reviewer1 Reviewer2 Gold standard
Label ® - 80 (0.6) 76 (0.5) 74 (0.5) 83 (0.7) 79-87
Network ® 80(06) - 84 (0.7) 86 (0.7) 83 (0.7) 80-87
Reviewer 1 76 (0.5) 84(07) - 90 (0.8) 82 (0.6) 78-86
Reviewer 2 74 (05) 86(07) 90 (0.8) - 82 (0.6) 78-85
Gold standard 83(07) 83(07) 82 (0.6) 82 (0.6) -

Performance is the % of outcomes where both observers agree reported as accuracy % (kappa) 95% Cl.
Olczak et al. 2017

2 Four of the radiographs were missing and were excluded from the analysis for this category.

®VGG-16, the best performing network during training and validation.

412 Secondary outcomes

The best model's performance was impressive for the secondary outcomes. The
accuracy of identifying the exam body part was near perfect, 100%. The
accuracy of determining the exam view was >95%, and for identifying the
laterality, it was 90%. These results underscore the reliability and robustness of
our model. A subsection of misclassifications and images was manually studied
for causes of error. For fracture misclassification, the study was often labeled as
a fracture, but a fracture was not visible in that view. In 69% of cases, the model
correctly classified the radiographs, while the label was incorrect. For the exam
views, the view was frequently mistaken for a similar view. It was also clear that,
for example, scaphoid images were often taken in non-standard views. See Table
3b for details.

4.2 Studyll

Out of 5495 radiographic ankle exams, 400 patients (409 exams) were assigned
to the test set. The remaining 5086 examinations were used for model training
and validation. No patients were present in the test and training sets. As studies

had been vetted in Study |, none were excluded now. See Figure 5.

Table 5. Case distribution in training and test set.

Train (n=4,941) Test (n=409)
Yes Maybe No Yes Maybe No
Fracture 2156 (44) 121 (2) 2,664 (54) |306(75) 13 (3) 90 (22)
Malleolar (44) 1696(34) 63 (1) 3182 (684) (210 (1) 6 (1) 193 (47)
Tibia distal (43) 254 (5) 6 (0) 4,681(95) |63 (15) 2 (0) 344 (84)
Fibula (4F2-3) 129 (3) 3 (0) 4809(97) |37 (99 O (©O) 372 (9)
(T‘B')a disphyseal g5 (2) 0 (0) 4853(98) |27 (7) O (0) 382 (93)
Other bone 210 (4) 47 (1) 4684 (95) |35 (9) 5 (1) 369(920)

“Other bone” generally indicates a visible fracture of the foot. It was possible for an examination to have
multiple fracture labels. Percentages of dataset in parenthesis. Table from Olczak et al. 20212
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Figure 5. Combined Study Il and lll flowchart. The dashed line demarcates the data
used in Study Il. The data outside the demarcations are the extensions made for
Study lIl. Image adapted from Olczak et al. 2024 3.

The training set had 44% fractures and 54% without, whereas the test set had
the desired distribution of 75% fractures. However, only 210 (51%) were malleolar
fractures; the rest were fractures of the tibia, fibula, and foot bones. See Table 5.
The distribution of fractures according to the AO 2018 ankle classification for the
training and test sets is displayed in Figure 6 and Table 6. All types of ankle
fractures were represented in the training set except for A3.2 and only one A2.2
in the entire data. Type B fractures were twice as many as type A fractures, and
the training set had twice as many type C fractures as type B fractures. The test
set had mostly type B fractures, with more type C than type A fractures.

The network could detect a malleolar fracture with an AUCmaieoar 0.92 (0.89-
0.95). However, the weighted mean AUC (WAUC) was WAUC maieoiar 0.90, with
wAUC, 0.84, wAUCg 0.90, and wAUC. 0.87. These, along with individual AO
outcomes, are presented in Table 7. We only reported outcomes (32 out of 39)

with 22 cases, the minimum for computing confidence intervals.
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Table 6. Distribution of AO outcomes in the malleolar fracture data.

AO type

Train (n=4,941)

Test (n=409)

44A (483 train & 31test cases)

All

Al.2
Al3
A21
A2.2
A2.3
A3.1
A3.3

44B (1,015 train & 136 test cases)

B1.1
B1.2
B1.3
B21
B2.2
B2.3
B3.1
B3.2
B3.3
44C (255 train & 47 test cases)
Cull
C12
C13
C21
C22
C2.3
C31
C3.2
C3.3

78 (22)
165 (46)
14 (32)
105 (93)
1()
7 (6)
n
2

385 (74)
132 (25)
6 (1)
99 (44)
105 (47)
19 (9)
76 (28)
152 (57)
41(15)

85 (67)
20 (16)
22 (17)
30
21
39
10
9
19

I OO 34O

N

39
26

20
16

12
13

— WO WD

.

% of the AO group is reported in parenthesis after the count, if there were more than 100 cases in the group. Olczak

etal. 20212
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Figure 6. Distribution of AO classes in the malleolar fracture data. Diagram from Olczak
et al. 20212

Figure 7 and Figure 8 illustrate examples of classification errors the model

performs.

Figure 7. Type A fractures the network incorrectly classified as a type C fracture. Image
from Olczak et al. 20212
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Table 7. Modeling outcomes for AO ankle (44) fractures in the test set.

a0 Coses | Sensitivity  SPeciSity oudens 4+ AUC (95% CI
Malleolar 216 86 90 0.76 0.92 (0.89-0.95)
44A 32 73 81 0.54 0.81(0.72-0.88)
1 22 88 75 063 0.87 (0.77-0.94)
11 6 75 93 068 0.87 (0.70-0.98)
21 7 80 83 0.63 079 (0.54-0.94)
31 9 75 88 0.63 0.84 (0.70-0.95)
2 7 100 74 074 0.91(0.83-0.97)
21 5 100 74 074 0.89 (0.80-0.97)
3 2 100 86 0.86 0.90 (0.83-0.96)
44B 137 89 88 0.77 0.93 (0.90-0.95)
1 67 90 88 077 0.93 (0.88-0.96)
11 39 87 84 o7 0.89 (0.85-0.93)
21 26 92 85 0.77 0.90 (0.81-0.96)
2 38 82 84 0.65 0.87 (0.80-0.92)
21 20 100 72 072 0.87 (0.83-0.92)
2.2 16 88 74 0.62 0.82 (0.68-0.91)
23 2 100 98 0.98 0.99 (0.97-1.00)
3 32 78 90 068 0.90 (0.85-0.94)
31 12 83 75 0.58 0.79 (0.63-0.90)
3.2 13 92 82 0.74 0.91(0.84-0.96)
3.3 6 100 91 0.91 0.96 (0.93-0.98)
44C 47 74 90 0.65 0.86 (0.79-0.92)
1 24 75 79 0.54 0.83 (0.72-0.91)
11 17 76 85 0.61 0.86 (0.74-0.94)
12 5 80 92 072 0.89 (0.77-0.97)
13 2 100 88 0.88 0.92 (0.86-0.97)
2 18 100 72 072 0.91(0.86-0.95)
21 6 83 93 0.76 0.91(0.79-0.98)
22 3 100 88 0.88 0.96 (0.88-1.00)
23 9 100 77 077 0.88 (0.84-0.92)
3 5 100 88 0.88 0.95 (0.90-0.98)
Weighted mean AUC
A 0.84
B 0.90
C 0.87
Malleolar ® 0.90

a Criterion based on Youden's Index "-"74 defined as YI(c) = max.(Se(c) + Sp(c) — 1). This is maximizes the
sum of Sensitivity and Specificity 7576 and to the criterion that maximizes concordance, which is a

monotone function of the AUC. Adapted from Olczak et al. 20212
b Weighted mean of malleolar classes in the table.
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Figure 8. The fracture is a malleolar type C fracture. The network predicted a type B
fracture. Image from Olczak et al. 20212

4.3 Study il

Study Il initially contained the same data distributions as Study Il (see Figure 5
and Table 5). We added 2,664 training cases for 7,750 training and validation
cases, focusing on type A fractures, for active training but do not report the

resulting training distribution.

There were considerable differences between the IVD and EVD. The EVD had
three projections, whereas the EVD had 24. The EVD was focused on lateral
malleolus fractures with a higher proportion of type A fractures (94 out of 274
malleolar fractures in the EVD vs 32 out of 216 in the IVD). The EVD included one-
week follow-ups and weight-bearing studies, which are not immediate studies at
the ER, as all were in the IVD. The exclusion criteria for the EVD were images or
views of poor quality and severely displaced fractures, whereas none had been
excluded from the training data or IVD. This amounted to less severe fractures in
the EVD, i.e, a higher proportion of type Al and Bl fractures. See Table 8 for

details.
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Table 8. Properties of the IVD and EVD.

Dataset properties IVD EVD

Cases 409 399
Projections 24 3
Focus Ankle study Lateral malleolar fracture

Initial imaging, one-week follow-

Timing Initial imaging up, weight-bearing
Implants & casts Yes No
Open physes No No
Excluded on Insufficient qufaIltY views

None Poor quality images

imaging quality Severely displaced fractures

Fracture Cases Percent (%) Cases Percent (%)

Base 253 61,9% 277 69,4%
Malleolar 216 52,8% 274 68,7%
Fibula * 37 9,0% 3 0,8%

Previous

fracture/other* 134 32,8% 15 3,8%
Foot* 57 13,9% 2 0,5%

Numbers are based on ground truth labelling by reviewers after the consensus session. The IVD is the
internal validation dataset and the EVD the external validation dataset. Table from Olczak et al. 2024 3.
* Denotes fractures and outcomes that were flagged as fractures during study selection but are not
malleolar fractures but secondary outcomes.

4.3.1 Flinders data (EVD)

Type A fractures were the second most numerous, and all but one (dropped)
were type Al Only for type Al did performance not exceed chance, but the
decrease was not statistically significant. Type B fractures performed well, but
three cases did not perform better than a random classifier. Type C fractures
were either Cl1.1 or C2.], and the classifier performed well on both. Figure 9 shows
an incorrectly classified type B fracture with network activation. Figure 1
illustrates examples of type A fractures where the network classified them

incorrectly, where one is shown in Figure 10 with an activation map.

An AUROC of 0.83 is good for fracture detection, and an AUPR of 0.93 is
excellent. The change in wAUC for the EVD after active learning was +0.06 to
wAUC 0.83, and wAUPR was +0.07 to 0.64. Twenty-one outcomes were
represented in the EVD, and 17 were statistically significantly better than chance.
Type C fractures decreased performance (AAUPR -0.06), resulting from the
network losing understanding of type C2.1 fractures (AAUPR -0.38). The model
could perform better than random for all outcomes with>5 test cases. For
classes with fewer cases, except B2.2, the 95% Cl could not be bounded to
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indicate that the performance was significantly better than chance. Table 9

shows model performance and improvement on the EVD.

Table 9. Flinders external validation dataset (EVD) performance. 399 Cases.

AO Cases AUC(95%CI) AAUC AUPR (95% CI) AAUPR
Malleolar 274  0.86(0.82-0.89) 003 0.93 (0.91-0.96) * 0.00
44A 94 0.74 (0.68-0.80) 012 0.52 (0.43-061) * 0.20
1 93 0.75 (0.69-0.81) 014 0.57 (0.46-064) * 0.25
11 5 0.63(0.33-094) -007 0.04 (0.00-0.6) 0.02
12 28 0.78 (069-0.87) 015 0.26 (0.11-0.39) * 014
1.3 60 0.68(061-076) 008 0.30 (0.21-0.42) * 010
44B 142 0.90(0.87-093) 003 0.84 (0.78-0.88) * 003
1 ne 0.84(0.80-0.88) 003 0.68 (0.60-0.76) * 007
11 87 0.80(0.75-0.85) 005 0.47 (0.37-0.57) * 006
12 27 0.80 (072-0.88)  0.02 0.9 (0.11-0.31) * 003
13 2 060(017-102) -030  0.01(0.00-002) -001
2 21 0.85(075-094) 010 0.32 (0.18-0.49) * 019
21 18 0.85 (0.75-0.95) 0.12 0.33 (016-0.56) * 0.24
22 3 0.93(0.88-099) 000 0.05 (0.01-0.16) * -003

3 5 0.82(061-1.04) -006 0.9 (0.01-0.47) on

31 5 0.82(063-102) -005 0.2 (0.01-0.30) 007
44cC 38 0.89(0.82-096) 004 0.63 (0.45-077) * -006
1 28 0.90 (0.84-096) 008 0.42 (0.26-0.62) * 007
11 27 090 (0.84-097) 007 0.44 (0.22-064) * 010

2 9 092(0.82-101) -004 019 (0.04-0.37) * -0.40
21 9 090 (0.79-102) -004 0.6 (0.05-0.31) * -0.38

Weighted mean A Weighted mean A
AUC AUPR
0.83 +0.06 064 +0.07

Performance reported with the area under the receiver operating characteristic curve (AUC) and the area
under the precision-recall curve (AUPR). 95% confidence intervals (Cl) were computed using
bootstrapping. Outcomes with <1 instance were not reported. AAUC and AAUPR was the difference in AUC
and AUPR comparing the actively trained network to the pre-active training network. A Implies a change
or difference. Table modified from Olczak et al. 2024 3.

* Indicates that the AUPR with 95% Cl exceeded random AUPR.

4.3.2 Danderyd (IVD)

Performance was adequate for type A fractures, but only four classes were
shown to be significant. See Table 10 for model performance on the IVD after

active learning. Type B and type C fractures were overall better than chance.

The network had an AUC of 0.95 and an AUPR of 0.96, both excellent. The wAUC
improved by +0.04 to 0.93, and the wAUPR improved by +0.08 to 0.65. wAUC
differed by 0.10 between the EVD and IVD (0.83 vs. 0.93), but the wAUPR for the
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EVD and IVD were similar (0.64 vs. 0.65). Thirty-four outcomes and 26 were
statistically significantly better than chance, except for one type B outcome.
Once again, all performance seemed substantially better than chance, but the
lack of cases made bounding the errors difficult.

~1.00 -0.75 -0.50 -0.25 0.00 025 050 075 1.00

Figure 9. Activation heatmap of a type 44B1.2 fracture, incorrectly classified as a type
C fracture. The activations show what the model reacts to when classifying fractures.
Study from the external validation dataset and Olczak et al. 2024 3.

—

-1.00 —0.75 -0.50 -0.25 0.00 025 050 075 1.00 -1.00 -0.75 -0.50 -025 0.00 025 050 075 1.00

Figure 10. Activation heatmaps where a type 44A1.3 fracture is incorrectly classified as
a type B fracture. The activations show what the model reacts to in the radiograph.
Study from the external validation data and Olczak et al. 2024 3,
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Options (%)

Row no. A B C Max True categories
1 1 86 21 B Al3
2 2 5 89 Cc Al3
3 2 2 37 c Al3
4 3 4 5 C Al3

Figure 11. Incorrectly classified cases where the network failed to detect Type A, sorted
from lowest probability to highest. Studies from taken from the EVD. Table and images
from Olczak et al. 2024 3,
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Table 10. Danderyd internal validation dataset (IVD) performance. 409 cases.

Cases AUC (95% CI) AAUC AUPR (95% ClI) AAUPR

Fracture 216 0.95 (0.94-0.97) 0.03 0.96 (0.94-097) * 0.03

44A 32 0.84 (0.76-0.92) 0.04 0.46 (ON-0.61) * 0.23
1 22 0.84 (0.76-0.92) -0.03 0.37 (015-0.56) * 019
11 6 0.88 (0.79-0.97) -0.01 0.04 (0.01-0.10) 000
1.2 7 0.84 (0.69-1.00) -0.02 0.30 (0.01-0.61) 0.22
1.3 9 0.82 (0.69-0.96) 0.03 0.18 (0.01-0.45) omn
2 7 0.99 (0.97-1.00) 0.15 0.52 (0.04-0.75) 0.28
21 5 0.99 (0.97-1.00) 0.09 0.41(0.00-0.65) 0.15
2.3 2 0.99 (0.99-1.00) 0.14 0.25 (0.00-0.50) 0.23
3 2 0.95 (0.86-1.04) -0.02 0.08 (0.03-0.17) * 0.01
44B 137 0.96 (0.93-0.92) 0.04 0.92 (0.88-0.95) * 0.05
1 67 0.95 (0.93-0.98) 0.05 0.77 (0.67-0.86) * 014
11 39 0.90 (0.87-0.94) 0.07 0.37 (0.25-0.51) * 0.06
12 26 0.94 (0.91-0.97) 0.07 0.40 (0.22-0.60) * 0.15
1.3 2 0.96 (0.90-1.02) 0.04 0.06 (0.01-0.23) * 0.03
2 38 0.86 (0.80-0.92) 0.01 0.40 (0.25-0.56) * 0.04
21 20 0.91(0.85-0.97) 0.05 0.37 (0.20-0.55) * 014
2.2 16 0.88 (0.77-1.00) -0.01 0.35 (0.15-0.53) * 013
2.3 2 0.87 (0.68-1.07) -0.05 0.03 (0.00-0M) * 0.00
3 32 0.92 (0.89-0.96) 0.06 0.50 (0.27-0.59) * 0.03
31 12 0.90 (0.83-0.97) 004 018 (0.06-0.34) * 002
3.2 13 0.92 (0.88-0.96) 0.08 0.20 (0.08-0.35) * -004
3.3 6 0.96 (0.93-0.99) 0.02 0.16 (0.03-0.30) * 0.06
44C 47 0.93 (0.89-0.97) 0.05 073 (0.61-0.82) * 0.20
1 24 0.90 (0.84-0.97) 0.05 0.42 (0.27-0.63) * 018
11 17 0.93 (0.87-0.99) 0.03 0.39 (0.21-0.60) * 016
12 5 0.86 (0.75-0.97) -0.01 0.05 (0.01-0.12) 0.01
1.3 2 0.93 (0.83-1.02) 0.02 0.04 (0.01-014) * 0.02
2 18 0.93 (0.90-0.97) -002 0.40 (016-0.58) * -005
21 6 0.86 (0.74-0.99) -0.08 0.22 (0.01-0.51) 007
2.2 3 0.99 (0.99-1.00) 0.08 0.32 (0.00-0.62) 0.28
2.3 9 0.92 (0.88-0.96) 003 011 (0.04-0.21) * 0.00
3 5 0.98 (0.97-1.00) 0.07 0.29 (0.02-0.67) * 0.21
3.1 3 0.96 (0.90-1.03) 0.29 0.16 (0.00-0.50) 015
Weighted mean A Weighted mean A
AUC AUPR
0.93 +0.04 0.65 +0.08

Performance reported with the area under the receiver operating characteristic curve (AUC) and the area
under the precision-recall curve (AUPR). 95% confidence intervals (Cl) were computed using
bootstrapping. Outcomes with <1 instance were not reported. AAUC and AAUPR was the difference in AUC
and AUPR comparing the actively trained network to the pre-active training network. A Implies difference.
Table modified from Olczak et al. 2024 3. * Indicates that the AUPR with 95% Cl exceeded random AUPR.
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4.4 Study IV

The SFR had 41,043 unique fractures from Stockholm and Gotland during the
study period and 41,004 after excluding patients that overlapped both regions.

After exclusion and inclusion, we had 297 fractures (275 patients) in the EVD

(Gotland in Study V) and 6,161 fractures (5,430 patients) remaining from the

seven clinics in the Stockholm training data. No fractures were excluded due to

missing imaging. See Figure 12 for a flowchart and Table 11 for more details.
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Figure 12. Data flowchart of Study IV, with the number of unique fractures reported.
Numbers in parenthesis is the number of unique patients.
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Table 11. Population statistics for fractures in the training and test sets.

Parameter Train (Stockholm) Test (Gotland)
Unique patients 4344 275

Unique fractures 4952 297

Died in study period 1591 89

PROMO * 3658 128

PROM1 * 3367 208

Gender female/male (%) 64.5% [ 34.5% 61.3% / 357%

Age (min: meanzsd: max; 14:71.2+18.9: 108; 75; 89 18: 70.3£17.8:102; 72; 90
median; mode)

Number of AO classes 149 75

* Not necessarily complete PROM.

Table 12 lists training parameters derived from the SFR for classification
outcomes and regression variables, and Table 13 gives the same for ordinal

variables. Both tables show the training data from Stockholm.

Table 12. Classification and regression outcomes in the Stockholm data.

CLASSIFICATION Niractures  Noutcomes  Mode

Died in study period 1,591 2 No

Injury sex 4,952 2 Female

Body part * 4,952 6 -

Segment * 4,952 17 -

AO Class * 4,952 149 -

REGRESSION VARIABLES N Mean SD Median Min Max
PROM1 EQ5D index 2781 0.68 0.31 073 -06 100
PROMI1 Daily activity index 3306 28.86 3118 15.00 0] 100
PROMI Emotional index 3296 3107 21.83 28.57 o] 96.4

PROMI Arm-hand function 3302 n.83 2115 0.00 0] 100
index

PROMI Mobility index 3303 27.80 2479 22.22 0 100
PROMI Function index 3304 24.86 23.09 1765 0 100
PROM1 Bother index 3141 23.26 22.52 16.67 0 100

For scores, a higher number means more decrease in function or more problems, except for EQ5D Index
where the reverse is true. N is the count of the parameter.
* Secondary outcome. Primary and secondary outcomes are treated identically by the network.

Table 13. Ordinal outcomes in the Stockholm training data.

ORDINAL VARIABLES N Mean SD Median Min Max Mode
PROMO Recovery expected 1747 1.51 0.96 1 1 5 1
PROMO Smoker 3367 171 0.87 2 1 4 1
PROM1 EQ5DANxiety 2832 139 057 1 1 3 1
PROM1 EQ5DPain 2825 175 056 2 1 3 2
PROMI EQ5DUsualAct 2816 145 067 1 1 3 1
PROMI EQ5DSelfCare 2837 123 053 1 1 3 1
PROM1 EQ5DMobility 2827 155 055 2 1 3 2
PROMI EQ5DVAS * 3296 201 113 2 1 5 1
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Table 13. Ordinal outcomes in the Stockholm training data.

ORDINAL VARIABLES N Mean SD Median Min Max Mode
PROM1 DifficChair 3289 1.62 1.08 1 1 5 1
PROMI1 DifficOpenMedBottle 3289 1.62 1.08 1 1 5 1
PROMI DifficShop 3272 1.85 134 1 1 5 1
PROMI DifficStairs 3287 230 128 2 1 5 1
PROMI DifficTightFist 3273 135 0.80 1 1 5 1
PROM1 DifficShower 3284 186 120 1 1 5 1
PROMI1 DifficComfortSleep 3200 168 094 1 1 5 1
PROMI1 DifficBendKneelDown 3291 2.61 140 2 1 5 1
PROMI1 3294 152 1.00 1 1 5 1
DifficUseButtonsZippers

PROMI DifficCutFingernails 3290 156 114 1 1 5 1
PROM1 DifficDressYourself 3282 156 098 1 1 5 1
PROMI DifficWalk 3280 210 115 2 1 5 1
PROMI DifficGetMoving 3267 206 102 2 1 5 1
PROM1 DifficGoOutYourself 3282 1.82 1.38 1 1 5 1
PROM1 DifficDriveCar 3248 203 153 1 1 5 1
PROMI1 3291 1.38 0.91 1 1 5 1
DifficCleanAfterBathroom

PROM1 DifficUseHandle 3290 136 0.87 1 1 5 1
PROMI1 DifficWriteType 3298 142 096 1 1 5 1
PROM1 DifficTurning 3294 159 097 1 1 5 1
PROMI1 3282 262 142 2 1 5 1
DifficPhysRecreaActivity

PROMI DifficUsualLeisureAct 3283 200 126 1 1 5 1
PROMI1 DifficSexAct 3032 218 161 1 1 5 1
PROMI DifficLightHousework 3300 176 123 1 1 5 1
PROM1 3294 252 155 2 1 5 1
DifficHeavyHousework

PROMI DifficUsualWork 3288 21 1.41 1 1 5 1
PROMI1 OftenLimp 3253 264 145 2 1 5 1
PROMI1 3274 217 124 2 1 5 1
OftenAvoidUsingPainful

PROMI1 OftenLeglLock 3261 180 1083 1 1 5 1
PROMI1 3269 1.92 107 2 1 5 1
OftenProblConcentration

PROMI1 OftenOverworkAffect 3260  2.57 129 2 1 5 1
PROMI1 OftenActlrritable 3283 198 0.96 2 1 5 1
PROM1 OftenTired 3290 290 m 3 1 5 3
PROM1 OftenFeelDisabled 3283 255 1.41 2 1 5 1
PROMI1 3293 245 127 2 1 5 1
OftenAngryFrustrated

PROMI1 3292 239 119 2 1 5 2
BotherUseHandArmLeg

PROMI1 BotherUseBack 3266 172 1.06 1 1 5 1
PROMI1 BotherWorkHome 3283 1.98 121 1 1 5 1
PROM1 BotherPersonalCare 3293 170 112 1 1 5 1
PROMI1 BotherSleepRest 3293 176 103 1 1 5 1
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Table 13. Ordinal outcomes in the Stockholm training data.

ORDINAL VARIABLES N Mean SD Median Min Max Mode
PROMI 3274 256 139 2 1 5 1
BotherLeisureRecreAct

PROMI1 BotherFriendsFamily 3286 1.41 0.86 1 1 5 1
PROMI1 BotherThinkConcRem 3293 170 101 1 1 5 1
PROMI1 BotherAdjustCope 3287 194 m 2 1 5 1
PROMI1 BotherUsualWork 3276 1.97 127 1 1 5 1
PROMI1 BotherFeelDepend 3297 1.82 121 1 1 5 1
PROMI BotherStiffPain 3286 241 118 2 1 5 2
PROMI1 Recov 2516 256 136 2 1 5 2
PROMI1 Reoperated 3240 018 038 0 (0] 1 0

For scores, a higher number means more decrease in function or more problems, EQ5D VAS where the
reverse is true. N is the count of the parameter. The mode is the most common (highest frequency) value.
* VAS can be treated as numerical or ordinal variable, and some sources argue that it acts more like an
ordinal than continuous variable .

Table 14 and Table 15 lists parameters of the Gotland data for comparison.

Table 14. Classification and regression outcomes in the Gotland set.

CLASSIFICATION Nrractures  Noutcomes  Mode

Died in study period 89 2 No

Injury sex 297 2 Female

Body part * 297 6 -

Segment * 297 17 -

AO Class * 297 75 -

REGRESSION VARIABLES N Mean SD Median Min Max
PROM1 EQ5D index 158 072 0.29 080 -0.17 10
PROMI Daily activity 207 22.05 29.49 8.33 0] 100
index

PROM1 Emotional index 207 25.98 2112 2143 0 8214
PROMI Arm-hand 205 10.42 19.86 0.00 0] 96.875
function index

PROMI1 Mobility index 205 2210 2414 13.89 0 100.0
PROMI Function index 205 19.93 2217 12.50 0] 95.59
PROMI Bother index 196 17.79 20.54 8.33 0 875

For scores, a higher number means more decrease in function or more problems, except for EQ5D Index
where the reverse is true. N is the count of the parameter. The mode is the most common (highest
frequency) value.

* Secondary outcome. Primary and secondary outcomes are treated identically by the network.

Table 15. Ordinal outcomes in the Gotland set.

ORDINAL VARIABLES N Mean SD Median Min Max Mode
PROMO Recovery expected 120 153 0.93 1 1 5 1
PROMO Smoker 123 17 0.80 2 1 4 2
PROMI EQ5DANxiety 161 127 047 1 1 3 1
PROMI1 EQ5DPain 162 170 0.57 2 1 3 2
PROM1 EQ5DUsualAct 162 1.33 0.59 1 1 3 1

63



Table 15. Ordinal outcomes in the Gotland set.

ORDINAL VARIABLES N Mean SD Median Min Max Mode
PROMI1 EQ5DSelfCare 163 1.20 0.51 1 1 3 1
PROM1 EQ5DMobility 161 147 0.55 1 1 3 1
PROM1 EQ5DVAS * 180 76.56 19.02 80 10 100 90
PROMI DifficChair 203 180 1.06 1 1 5 1
PROMI DifficOpenMedBottle 205 160 1.08 1 1 5 1
PROMI DifficShop 205 160 118 1 1 5 1
PROMI DifficStairs 205 197 121 2 1 5 1
PROMI DifficTightFist 204 142 0.86 1 1 5 1
PROMI DifficShower 205 161 104 1 1 5 1
PROMI1 DifficComfortSleep 205 156 0.85 1 1 5 1
PROMI DifficBendKneelDown 205  2.33 1.40 2 1 5 1
PROMI 205 1.51 104 1 1 5 1
DifficUseButtonsZippers

PROMI DifficCutFingernails 203 143 0.99 1 1 5 1
PROM1 DifficDressYourself 203 142 0.86 1 1 5 1
PROMI DifficWalk 205 184 108 1 1 5 1
PROMI DifficGetMoving 205 180 093 2 1 5 1
PROM1 DifficGoOutYourself 205 160 123 1 1 5 1
PROMI DifficDriveCar 201 174 1.4 1 1 5 1
PROMI 204 126 0.76 1 1 5 1
DifficCleanAfterBathroom

PROMI DifficUseHandle 204 124 069 1 1 5 1
PROMI DifficWriteType 204 142 0.93 1 1 5 1
PROM1 DifficTurning 203 149 0.91 1 1 5 1
PROMI 205 224 140 2 1 5 1
DifficPhysRecreaActivity

PROMI1 DifficUsualLeisureAct 203 173 117 1 1 5 1
PROMI DifficSexAct 190 194 1.58 1 1 5 1
PROMI DifficLightHousework 206 154 1.09 1 1 5 1
PROMI 206 221 1.50 2 1 5 1
DifficHeavyHousework

PROM1 DifficUsualWork 206 187 1.31 1 1 5 1
PROMI OftenLimp 202 245 1.45 2 1 5 1
PROMI 205 188 114 1 1 5 1
OftenAvoidUsingPainful

PROMI OftenLeglock 204 162 0.95 1 1 5 1
PROMI 206 182 101 1 1 5 1
OftenProblConcentration

PROM1 OftenOverworkAffect 205  2.32 125 2 1 5 1
PROMI OftenActlrritable 207 179 097 1 1 5 1
PROMI OftenTired 207 270 1.06 3 1 5 3
PROMI1 OftenFeelDisabled 207 220 1.32 2 1 5 1
PROMI 207 220 120 2 1 5 1
OftenAngryFrustrated

PROMI 206 212 105 2 1 5 2
BotherUseHandArmLeg

PROMI1 BotherUseBack 205 163 101 1 1 5 1
PROMI1 BotherWorkHome 202 168 104 1 1 5 1
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Table 15. Ordinal outcomes in the Gotland set.

ORDINAL VARIABLES N Mean SD Median Min Max Mode
PROMI1 BotherPersonalCare 206 148 0.95 1 1 5 1
PROMI BotherSleepRest 205 167 1.00 1 1 5 1
PROMI 205 215 1.31 2 1 5 1
BotherLeisureRecreAct

PROMI1 BotherFriendsFamily 205 120 062 1 1 5 1
PROM, BotherThinkConcRem 205 164 1.00 1 1 5 1
PROMI1 BotherAdjustCope 204 167 0.97 1 1 5 1
PROMI1 BotherUsualWork 204 166 102 1 1 5 1
PROMI1 BotherFeelDepend 204 163 113 1 1 5 1
PROMI BotherStiffPain 204 225 109 2 1 5 2
PROMI Recov 205 231 128 2 1 5 1
PROMI1 Reoperated 205 014 0.34 0 (0] 1 (0]

For scores, a higher number means more decrease in function or more problems, except for EQ5D VAS
where the reverse is true. N is the count of the parameter. The mode is the most common (highest
frequency) value.

* VAS can be treated as numerical or ordinal variable, and some sources argue that it acts more like an
ordinal than continuous variable ™.

Table 16 and Table 17 reports the PROMA data, secondary outcomes, for the
training set. We see that all scores, on average, show a decrease in function,
whether they are directly associated with lower extremities or not. Examples are
PROMA DifficOpenMedBottle or PROMA DifficWriteType. However, even the most
affected SFMA parameter, PROMA OftenLimp, does not, on average, increase one
step on the scale. l.e, the mean change is <1 for all ordinal values except EQ5D
VAS.

Table 16. PROMA regression outcomes in the Stockholm training data.

REGRESSION VARIABLES N Mean SD Median Min Max
PROMA EQ5DIndex 2,672 -0.10 0.30 -0.07 -12 14
PROMA DailyActindex 3,213 9.76 2118 5 -100 100
PROMA Emotionallndex 3,200 9.40 20 714 -82 79
PROMA ArmHandFuncindex 3,238 3.01 12.74 0 -100 94
PROMA MobilitylIndex 3,244 11.99 19.02 8.33 -72 89
PROMA Functionindex 3,243 8.56 15.67 5.88 -85 85
PROMA Botherindex 2,949 9.82 18.71 6.25 -83 88

For scores, a higher number means more decrease in function or more problems, except for EQ5D Index
where the reverse is true. N is the count of the parameter. The mode is the most common (highest
frequency) value. PROMA is the one-year change in PROM.

Table 17. PROMA ordinal outcomes in the Stockholm training data.

ORDINAL VARIABLES N Mean SD Median Min Max
PROMA EQ5D VAS * 2,393 -8.75 22.24 -5 -100 98
PROMA EQ5D Anxiety 2,761 0.07 0.59 0] -2 2
PROMA EQ5D Pain 2,765 0.29 0.69 0 -2 2
PROMA EQ5D Usual Act 2,737 012 0.66 0] -2 2
PROMA EQ5D SelfCare 2,785 0.05 0.46 0] -2 2
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Table 17. PROMA ordinal outcomes in the Stockholm training data.

ORDINAL VARIABLES N Mean SD Median Min Max
PROMA EQ5D Mobility 2,770 0.23 0.56 0 -2 2
PROMA DifficChair 3,229 0.42 0.97 0 -4 4
PROMA DifficOpenMedBottle 3,207 012 0.80 0 -4 4
PROMA DifficShop 3,185 0.27 102 0 -4 4
PROMA DifficStairs 3,209 0.56 103 0 -4 4
PROMA DifficTightFist 3,201 0.07 071 0 -4 4
PROMA DifficShower 3,203 0.32 100 0 -4 4
PROMA DifficComfortSleep 3,208 0.26 0.95 0] -4 4
PROMA DifficBendKneelDown 3,224 0.59 118 0] -4 4
PROMA 3,227 013 071 0 -4 4
DifficUseButtonsZippers

PROMA DifficCutFingernails 3,214 0.12 0.80 0] -4 4
PROMA DifficDressYourself 3,205 0.21 073 0 -4 4
PROMA DifficWalk 3,210 0.52 0.98 0] -4 4
PROMA DifficGetMoving 3,184 0.49 0.92 0 -4 4
PROMA PROM, 3,209 0.26 0.99 0 -4 4
DifficGoOutYourself

PROMA DifficDriveCar 3,142 0.29 109 0] -4 4
PROMA 3,216 010 0.68 0 -4 4
DifficCleanAfterBathroom

PROMA DifficUseHandle 3,209 on 0.69 0 -4 4
PROMA DifficWriteType 3,222 0.09 0.68 0] -4 4
PROMA DifficTurning 3,224 017 0.79 0] -4 4
PROMA 3,175 0.75 1.32 1 -4 4
DifficPhysRecreaActivity

PROMA DifficUsualLeisureAct 3,169 0.38 m 0] -4 4
PROMA DifficSexAct 2,784 0.20 116 0 -4 4
PROMA DifficLightHousework 3,193 0.20 0.93 0 -4 4
PROMA DifficHeavyHousework 3,183 043 116 0] -4 4
PROMA DifficUsualWork 3,160 0.37 110 0 -4 4
PROMA OftenLimp 3134 0.93 1.51 1 -4 4
PROMA 3142 0.53 1.30 0 -4 4
OftenAvoidUsingPainful

PROMA OftenLeglLock 3153 0.33 104 0 -4 4
PROMA 3,169 0.22 0.98 0] -4 4
OftenProblConcentration

PROMA OftenOverworkAffect 3,143 0.63 1.34 0 -4 4
PROMA OftenActlrritable 3172 0.12 0.97 0] -4 4
PROMA OftenTired 3,187 0.34 112 0 -4 4
PROMA OftenFeelDisabled 3,181 0.69 1.27 0 -4 4
PROMA OftenAngryFrustrated 3,184 0.54 124 0 -4 4
PROMA 3,202 0.85 129 1 -4 4
BotherUseHandArmLeg

PROMA BotherUseBack 3,176 0.18 0.98 0 -4 4
PROMA BotherWorkHome 3,185 0.35 102 0] -4 4
PROMA BotherPersonalCare 3,210 0.23 0.92 0] -4 4
PROMA BotherSleepRest 3,192 012 104 0 -4 4
PROMA BotherLeisureRecreAct 3,159 0.70 1.39 0] -4 4
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Table 17. PROMA ordinal outcomes in the Stockholm training data.

ORDINAL VARIABLES N Mean SD Median Min Max
PROMA BotherFriendsFamily 3,189 0.09 0.91 0] -4 4
PROMA BotherThinkConcRem 3,201 on 0.92 (0] -4 4
PROMA BotherUsualWork 3161 0.4 118 (0] -4 4
PROMA BotherFeelDepend 3,197 0.24 m 0] -4 4
PROMA BotherStiffPain 3187 0.54 1.26 o] -4 4

For scores, a higher number means more decrease in function or more problems, except for EQ5D VAS
where the reverse is true. N is the count of the parameter. The mode is the most common (highest
frequency) value. PROMA is the one-year change in PROM.

* VAS can be treated as numerical or ordinal variable, and some sources argue that it acts more like an
ordinal than continuous variable .

Below, we report the training and validation of RMSE for some outcomes. Figure
13 shows changes in the RMSE for two models. We look at the curves in general
and do not focus on individual models. We compare the RMSE to the SD from
Table 13. The validation error for OftenAvoidUsingPainful approached an RMSE of
1.25 vs. SD 1.24. OftenFeelDisabled had RMSE 1.45 vs. SD 1.41, whereas
OftenProblemConcentration had RMSE 2.00 vs. SD 1.07 for the best model.
OftenLimp is decreasing towards RMSE 1.55 vs. SD 1.45. OftenLeglock at best
performs at RMSE 2.40 vs SD 0.95.
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Figure 13. Comparing the root mean squared error (RMSE) for PROMI parameters. The
x-axis is batch iterations, and the y-axis is the RMSE.

We find the same pattern for the outcomes in Figure 14, which also reports
additional variables. In Figure 14, we also find that the best model's prediction
accuracy for “Died in study period” was 67.5% on average, which is the

percentage of people who did not die in the study period. We see a similar
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pattern for “Injury Sex.” For most parameters, we saw training performance

tapering off and little additional benefit from additional training.

Figure 15 shows that the one-year change in PROM, PROMA, outcomes deviated
considerably for these same models. The graphs are representative of PROMA
training performance. Preliminary results show that after seven epochs, the Focal
CORN Loss (with a=1and y=2.0) seems to perform better than other losses.
However, we started to see the network clipping the losses, i.e., the losses are so
small that they are set to zero and ignored to prevent exploding gradients — but

these cases do not contribute to learning.
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Figure 14. The
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Figure 15. Training RMSE for PROMA parameters. The Focal CORN Loss (green) seven

epochs compared to models using MSE and robust adaptive loss at approximately 50

epochs.
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5 Discussion

5.1 Fracture detection using CNNs

The kind of fracture detection from radiographs, as concerns this thesis, is a
relatively recent phenomenon. In Olczak 2017 (Study 1), we applied artificial
intelligence to fracture detection using CNNs . We built upon the ideas of Shin et
al. ”® and Tajbakhsh et al. 7, who used transfer learning on medical images of
chest radiographs. Both used pre-trained CNN and retrained them to classify
chest radiographs. We applied a similar strategy to orthopedic trauma
radiographs of hands, wrists, and ankles. We reached orthopedic surgeons’
detection performance for several different outcomes; however, these were on
the downscaled image . An additional feature, only implicitly stated in the
original article, was that unsupervised learning with natural language
processing (NLP) — language and text analysis — was used to derive the labels.
NLP is another form of ML, and the goal was to create a workflow from report to
label to classification — as there were over 250,000 radiographs. However, the
NLP method caused problems with label and classification accuracy "%, Kim
and MacKinnon also used the transfer learning approach to study radiographs of
distal radius fractures. They performed better than our study on a much smaller,

more curated, and less clinically relevant dataset ™.

Urakawa et al. studied intertrochanteric hip fractures and achieved high
performance in fracture detection ™. Gale et al. predicted the presence of hip
fractures with expert-level accuracy 2. Still, the results were not peer-reviewed,
and no peer-reviewed version has been presented. However, Badgeley et al.,
from the same research groups, presented results from a study of hip fractures,
which reached a very high accuracy. However, they could also show that their
accuracy was random once they accounted for logistic and healthcare
parameters 8. In essence, the model overfitted to other data parameters than
fracture detection. Nicolaes, in turn, studied vertebrae fractures and were able to
localize fractures in a CT scan ™,

The described papers illustrate essential pathology detection. Just detecting a
fracture (e.g, fracture is present or not) is not always a clinically relevant task. It
is something most doctors can quickly learn. This triviality is also suggested by
the excellent AUC values that many studies report. We believed that it is more

relevant to determine the properties of the fracture, whether we need to do

something about the fracture, and what that intervention should be. As
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discussed, the commonly used criteria for selecting interventions are, for
example, Neer’s classification for humerus fractures or the Lauge-Hansen or the
AO classification for ankle fractures. These are more complex classification tasks
than just detecting the fracture, and the results are more complicated to learn
and present to the end user.

Qi et al. trained a CNN to detect and classify femoral radiographs according to
the AO classification and to place bounding boxes around the fracture location
184 i.e. the region of interest (ROI). They attained an area under the receiver-
operating characteristic curve (AUC) of 0.71for the double task %, which is not
considered useable in a clinical context. It was also unclear if the RO, the
classification, or the combined task attained that level of accuracy. In 2021
(Study 1) 2 we studied ankle fractures, classifying them according to the AO 2018
classification without drawing an ROI. We reached a weighted AUC of 0.90 for all
classes. We also approached prediction differently. Qi et al. approached
classification in order of severity, i.e, C3 to Al. If the algorithm detected a
positive outcome (>50% likely) in one class, it stopped, and later classes were
ignored - even if that class would be more correct. Instead, we predicted all
outcomes simultaneously and selected the most likely outcome. We also
examined the complete study — i.e, where the fracture might be visible in one
projection but not another, whereas Qi et al. studied individual
images/radiographs. Gan et al. examined the presence or absence of distal

radius fractures and located the ROl but did not classify the fractures further 8.

Chung et al. studied humerus fractures according to Neer’s classification '/,
whereas Heimer et al. used cadaveric CT scans to study skull fractures '®. Choi
et al. studied fracture detection in pediatric elbows ™. Bluthgen et al. studied
wrists ®°. More complex outcomes also occur. Dreizin et al. studied CT slices of
pelvic studies to classify fractures according to the AO standard ' Lind et al.
classified knee fractures ', Qi et al. identified femur fractures ® Tanzi et al.
identified hip fractures °, and Akbarian et al. studied hip fractures according to
the AO 2018 system 2.

While these studies use CNNs to study fractures, other outcomes are also
explored. For example, Jang et al. used a CNN to predict osteoporosis from
radiographs 2 Magnéli et al. studied glenohumeral osteoarthritis and avascular
necrosis, and Olsson et al. classified knee osteoarthritis according to the

Kjellgren-Lawrence system °.
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We see that tradeoffs need to be made during algorithm creation and
implementation. Some consider a bounding box (i.e., ROl prediction) highly
valuable. In contrast, others consider it a risk that will draw attention to the ROI
but cause reviewers to miss the whole picture. The idea behind these studies is
that if we can classify fractures and medical image data accurately and
consistently, we can use that information to agree upon treatment. As we saw,
the critique of many classification systems is their (a) difficulty of application
and (b) questions about their reproducibility between observers, leading to their
(c) poor utility. The development of consistency, reproducibility, and reliability
will produce utility. In addition, any system can be trained to report the class of
several models, allowing for comparison and usage of what best serves the
situation.

None of the mentioned studies examined outcome prediction from imaging

using CNNs.

5.2 Imaging-based patient outcome prediction

While studies exist that use image-based CNNs to predict outcomes, these are
usually for chest radiographs, chest CT, or skull imaging. They derive predictions
for COVID-19, pneumonia, ICU admission, etc. 377, Shin et al. ¥ built a model to
predict pneumonia outcomes on an existing imaging data analysis platform. A
clinical software model examined chest radiographs and calculated a severity
score. This severity score was then part of a multivariate Cox-regression model
to predict pneumonia outcome. Kim et al. used a similar approach but trained
the image analysis CNN themselves. They used a pre-trained CNN on chest
radiographs to predict 30-day mortality from the radiographs and compared it
to a clinical score. The CNN performed better, but not significantly better. Then,
similarly to Shin, they combined the CNN output with the clinical score in a
logistic regression model and used the score output instead of the clinical score
components. The combined model performed significantly better than the

clinical score or CNN alone 6.

Pease et al. developed a model for predicting outcomes after traumatic brain
injury from CT scans. They created a separate linear discriminant analysis model
and combined the models using an ensemble stacking model to create a
superior model 5. Gordeau et al. ** trained a network to predict mechanical
ventilation outcomes in COVID-19 patients. Instead of ensemble stacking, they

used a similar feature enhancement approach. They pre-trained a model and
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then selected the (two out of 1024) most distinctive features of the classifier.
They used those features and the linear model output that predicted mortality
to train various classifiers. Kwon et al. taught a CNN to predict COVID-19
outcomes. Unlike the other models, they added clinical variables as input to the
last fully connected layer, i.e, the classification layer 3. We have found no
imaging-based outcome predictor for orthopedic trauma. The closest was
Alfraihat et al, who used radiographic features to predict future radiographic
features. They used features of the images but not the actual imaging '

5.3 Studyl

5.3.1 Discussion of results

We showed that the CNN could classify radiographs on par with human
reviewers regarding the presence or absence of fractures. The most common
errors were due to image ambiguity or missing data. “Fracture” was a label for
the entire study, whereas the network looked at individual images. This confused

the training and performance assessment we concluded in our manual review.

We showed that CNNs trained for other tasks could be retrained to detect
fractures. In addition, they could be retrained to detect exam views, body parts,
and laterality in a skeletal radiograph. This had previously been tested for other
medical domains, such as lung nodules in chest radiographs *°, spine MRI 2°°, and
CT slices 7879291 However, this was the first study to show this for skeletal trauma

radiographs.

We also showed that deeper layered models, with more features and nodes,
outperformed shallower models, which indicated that the extra computational
effort to train them was worthwhile. Neither did we see tendencies toward
overfitting the data during training. We believed this was because we had a large
data set, that training and validation sets were resampled at each epoch, and
perhaps the automatic labeling created noise in the data. Overfitting means the
model learns the individual data points, e.g., recognize the image and label rather

than the features that define the label.

Surprisingly, the best networks could capture laterality better than the others. As
training images were randomly mirrored and rotated, laterality effects from the
scanner—e.g. the right hand appearing to the left—should be largely eliminated.
Our interpretation was that the network captures other indicators that we did

not. Perhaps the dominant hand's bone structure or tissue differs from the non-
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dominant hands. This indicates that ML models can find patterns and predictors
of which we are unaware. For example, an automated algorithm found that the
stroma around breast cancers had value in prognosis %2

5.3.2 Strengths

We used a large dataset of 256,000 radiographs, which we believe assisted it in
not overfitting.

With excellent performance on secondary outcomes, many of which have
multiple possible outcomes, we showed that the ML model learned to interpret
the data.

5.3.3 Limitations

The primary outcome, fracture, was automatically extracted from radiologist
reports, though the extraction criteria had been manually coded via key phrases.
Trained specialists with many years of experience generated the reports. The
language was not always easy to interpret, and the same report could refer to
different fractures or features in the same exam. We concluded that radiologist

reports were unsuitable for labeling orthopedic trauma radiographs.

The classification, fracture/no fracture, has limited utility. Improved extraction
using improved natural language processing might provide more helpful

information.

Radiologist reports have limitations. They answer specific questions in the
referral. Since we did not have access to referrals, the reports were taken out of
context. Information in the image might have been omitted, which limits their
utility.

The fracture was labeled for the study, whereas the network looked at individual
images. While a fracture might be visible in one projection, it could be hidden in
another. However, the network and gold standard studied each radiograph

independently and did not consider this.

We did not have population data for the dataset, so we could not infer how
general the results were.
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5.4 Studyll

5.4.1 Discussion of results

We classified fractures according to the AO standard for ankle fractures using Al
with better than random performance. Unlike Study |, we did not use a pre-
trained network for Study Il. In addition, unlike Study |, the network in Study ||
looked at the entire examination, including all images and projections.

One of our stated limitations with Study | was that we believed that classification
needed to be more complex than just detecting fracture. For that reason, we
implemented the AO 2018 ankle classification. As implemented in our study, we
used the AO classification down to the subgroup level. We looked at type, group,
and subgroup independently. Theoretically, but unlikely, a study could be
classified as type 44A, group 44B2, and subgroup 4F2C3.3. We looked at all the
images in the study for all possible outcomes and selected the most likely
outcome. Some outcomes could co-occur, such as fracture yes/no, and other
types of fractures, such as foot and tibia fractures. A different approach, chosen
by Qi et al,, was to select a priority order for the network. While they were only
classified into the AO group, they looked sequentially at the fractures in order of
severity, i.e, 44C3 > 44C2, 44C1, 44B3, etc. If 44C3 was positive, the model
stopped and never checked if another, less “serious” injury group had a higher
probability 4.

A problem we encountered with our classification, which became more
pronounced the more finely granular the class, was missing data and imbalanced
data. As we saw in Table 6, some outcomes are not represented in the training or
testing data (such as 44A3.2) or are very rare in the training data and not
present in the test data (e.g., 44A2.2). The model will thus never be able to
detect a 44A3.2 fracture and is highly unlikely to learn what is specific for a
44A2.2 fracture. In addition, 44A2.2 occurs once in the entire dataset of 409
studies. Several other outcomes are about nearly as rare. These outcomes pose
a problem when measuring performance. We cannot compute statistics for non-
present classes or reliable statistics for classes with too few cases. In addition,
as we saw in our discussion of accuracy and AUROC, accuracy can be over-

optimistic.
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5.4.2 Strengths

Our complex and granular model meaningfully and comprehensively represented
the AO classification for lower extremity trauma. We focused our reporting on
the primary outcome of malleolar fractures. The article supplement reports
performance for secondary outcomes for fibular, tibial, and foot fractures and
IRR.

5.4.3 Limitations

The model performance was difficult to assess, with few cases for many
outcomes. Even while significant training had occurred, the actual utility of the
classifier was challenging to determine. Many classes were missing or had very
few training cases. This introduced classes similar to a more prevalent class but
gave a tiny training signal. Excluding rare cases from training might give better

model learning for remaining outcomes.

We did not perform external validation, so it was not possible to assess how

representative the model was in different clinics or scenarios.

The training and test sets were not extensive enough to fully capture all possible

malleolar fracture outcomes.

5.5 Study Il

5.5.1 Discussion of results

The study aimed to validate a fracture classification model externally and to
study strategies to deal with the difficulties that arise from the change in
environment — dataset shift. Despite having very few training cases for some
outcomes, the model appeared to perform better than chance at all individual
outcomes. However, it was sometimes impossible to show due to low
prevalence. As expected, the model appeared to perform better for the IVD.
Comparing our classifier to other classifiers was difficult, as model external
validation is rare and even rarer for complex classifiers.

5.5.11 Model training

ML training often comes down to learning hidden factors, and ML models are
usually considered “black boxes.” Hopefully, the parameters learned are related
to the appearance of the actual pathologies. As mentioned previously, the study
by Badgeley et al. found that healthcare and logistic parameters were often

responsible for prediction, i.e., a form of overfitting. Correcting their models for
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those factors, the performance of a well-performing classifier fell to that of a
random classifier 6. Exposing an ML model to a dataset from a different location
subjects it to a different distribution — also called a dataset shift 2. It helps to
correct for logistic factors. While data is not readily available, external validation
should be integral to the more mature model training and development stage. If
a model only performed well on the data it was trained on or from one hospital,

we could quantify this and seek ways to amend it.

In this study, the EVD had properties other than those of the IVD. There were
three times as many type A fractures in the EVD. All EVD studies had three
images compared to Danderyd, which had at least four views. The CNN had
never been exposed to follow-ups during training, but such follow-up studies
were present in the EVD, as signaled by “weight-bearing.” A human reviewer who
sees a non-displaced "weight-bearing” fracture understands this as less
alarming. The network was not trained to recognize this signal. Al models are
rarely validated. This makes it difficult to assess how transferable or general they
are. It also made it difficult to determine what performance we could expect in
our study or whether our results were good or bad. For the three external
validation studies, Oliveira e Carmo et al. found that performance was not
dramatically affected by the EVD 2°* (see Table 18a.) Those studies evaluated
models with just a few outcomes. Our classifier had 40 outcomes for ankle
fractures — not all mutually exclusive. The review found two similarly complex
classifiers 2 (see Table 18b) with model-wide AUC on the internal validation
data, similar to our model. However, they were not externally validated and are
from the same dataset as the ankle subsets in Study Il and Study Ill (radiographs
from Danderyd Hospital between 2002 and 2016) were taken from.

We were dissatisfied with the model during external validation and wanted to try
ways to improve model performance without overfitting data. Increasing image
resolution during training, on its own, did not affect EVD performance. Dropping
views in the exams to make the training data resemble the EVD more was
ineffective. We believed that type A fractures only provided a discrete training
signal for the network. We therefore concentrated on active training (i.e.,
additional data for training that focused on the problematic class and on
predicting edge cases for that class). In combination with improved resolution,
we saw improved performance. However, performance did not improve beyond
400x400px.
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Table 18. Comparable studies to Study Il

Study Anatomy Outcomes Exclusion Performance
18a External validation studies
Dislocation,
Choi Ebow Supracondylar/ ngracon aylar VD AUC 098
2020 ™ no fracture EVD: AUC 0.99
fracture, bone
dysplasia
?ggh;g ?90 Wrists Intact/defect - :;/VDb:A,ALJUCCod.g; o
IVD: mean F1-
Zhou Ribfractures Old, healing, and No fracture score 0.84
2020 2°%  CT-slices fresh EVD: F1-score

18b Complex classifiers
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Dreizin
2021

Lind 2021

19

Qi 2020

184

Tanzi
2020 208

Yoon
2020 297

Lee 2020

208

Olsson
20212

Chung
2018 ¥

Pelvic, CT-
scans

Knee

Femur

Hip

Inter-
trochanteric
3DCT

Femur

Osteoarthritis

Shoulder

AO Type A-C
No. outcomes: 3

AO knee
No. outcomes:
49

AO femur
No. outcomes: 11

AO
No. outcomes: 5

AO type A
No. outcomes: 10

AO A1-B3
No. outcomes: 9

Kellgren &
Lawrence

No. outcomes: 5
Neers’

No. outcomes: 5

Any operative
treatment

Any
disagreement
between
reviewers

Type Band C

No separation
of patients
between
training and
test

Type C (too
rare)

Reviewer
disagreement

ACC 56-85%

AUC 0.87 for
proximal tibia;
0.89 for patella;
0.89 distal femur

ACC 72%

AUC 86%

ACC 97% and
90%

AUC 0.87, F1-
score 0.86, vs
AUC 0.75, F1-
score 0.5
depending on
configuration

AUC 0.92

ACC 65-86%;
AUC 0.90-0.98

The IVD is from the original training data location. The EVD is any data from a different site. Table 18a
compares external validation studies found by Oliveira e Carmo et al. 2021. Table 18b compares studies
that evaluate complex classifiers with many outcomes (multinomial classifiers) comparable to our
study, where none is externally validated. ACC is accuracy. F1is the Fl-score. AUC is the area under the

receiver-operator characteristic curve (AUROC). Table from Olczak et al. 2024 3.
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External validation ensures the model's generality. However, we believe that
reversing a model's generalization process in a clinical application can be
desirable. We could gain a more locally accurate model by actively retraining the
externally valid model to be more specific with data from the clinic or scanner

where it will be used, like the transfer learning we studied in Study |.

We need to be careful when applying an algorithm to a new setting. Lim et al.
concluded that many common orthopedic procedures had poor evidence-
based medicine support and were unnecessary 2°°. Audgé et al. found that many
fracture classification schemes used in the clinic were not validated 46" Oliveira
e Carmo et al. found that many ML models were not externally validated 2°4. As
far as we know, this was the first study to raise the question of what we can
expect from such a complex fracture classification model in terms of external
validity. Comparing our model to other multinomial classifiers, it transferred well
(see Table 18b) 1920184187191206-208 Tqos like our model and its improved iterations
could be part of the solution toward a more evidence-based and stringent form

of medicine.

5.5.2 Strengths

This was an external validation study, which is rare in orthopedic ML. We found
no external validation study of such a broad classification scheme.

The EVD differed from the IVD but still focused on the same problem.
Introducing new problem domains (weight-bearing, one-week follow-ups)
strengthens the reliability of the results. Even after active training, there was no

real risk of model overfitting.

5.5.3 Limitations

We did not have population data for the IVD dataset, so none was collected for
the EVD. Having an external validation dataset compensated for this,

compensated for this somewhat.

Since we found no similarly complex classifiers to be externally validated, we had

nothing against which to compare and assess our classifier.

Though there was considerable learning, and practically all outcomes were
better than chance, many were too rare and difficult to bound. This made model

performance challenging to assess for rare outcomes.
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As with all CNN models, we do not know the actual decision algorithm and
cannot know why it works/does not work. While we can use heatmaps—or
activation maps—they do not provide rules or guides for improving the model.

5.6 StudylV

5.6.1 Discussion of results

Using imaging data and registry parameters, we have modeled patient outcomes
after a fracture in the lower extremities. Compared to previous studies, Study IV
shifted the focus to modeling numerical and ordinal outcomes. Therefore, we
returned to the experimental trial approach of preceding studies, such as Study |,
and related studies, such as the one documented in Olczak 2024 6147 We
studied 154 different PROM (primary and secondary) outcomes. At a 95%
confidence level, we expect approximately eight outcomes to appear as good
fits randomly. This is less likely to be a random chance if the same outcome

performs well during training and external validation.

The validation performance, i.e., our proxy of model performance until all
experiments are trained, showed learning of PROM1 parameters but less so for
PROMA. Initially, our best-performing models, just under 50% of outcomes,
showed learning in PROMI but very few in PROMA. The changes in PROM over the
year were small. We, therefore, experimented with different loss functions. The
robust general loss was designed to deal robustly with outliers, i.e, to smooth
them out, and there were tendencies to underperform compared to the
standard MSE loss. However, after we implemented the Focal CORN Loss, we
also started seeing learning in PROMA. The goal of implementing the Focal Loss
was to capture uncommon and incorrectly classified examples that deviate from
the mean and mode, i.e, to increase the importance of the outliers. It can be that
we are pushing the model to rely less on the images and even more on the SFR

data, and that is why we are overfitting further.

As discussed in the literature review, we found orthopedic studies that used
imaging directly to predict patient outcomes, nor had they been reported as
failures or successes. The closest was Alfraihat et al,, who used radiographic
features derived from the radiograph to predict future radiographic features but
did not use the actual imaging '°8. Pease et al. developed a CNN for predicting
outcomes after traumatic brain injury from CT scans. Their model predicted
mortality or the value on a brain injury outcome scale '®°. Like the approach in

Study IV, Kwon et al. trained a CNN to predict COVID-19 outcomes using patient
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parameters and imaging. Unlike our model, they passed the clinical variables as
input to the last fully connected layer, i.e., the classification layer, along with the
CNN image data '*3. Many studies combine the output of CNNs with regression
models to improve performance. Shin et al. ¥ used an existing CNN tool to
predict a severity score for pneumonia, and this severity score was funneled into
a regression model. Kim et al. used a similar approach but trained the network
themselves to predict 30-day mortality. They combined the CNN output with
the clinical score in a logistic regression model *6. Gordeau et al. trained a
network to predict mechanical ventilation outcomes. They pre-trained a model
and then selected the (two out of 1024) most distinctive features of the image
classifier (i.e, most variable nodes in the last layer before the classification layer).
For each prediction, they passed those features to a linear model, and that
output was to train other models. We have found no imaging-based outcome
predictor for orthopedic trauma '*4. Pease et al. used their CNN outcomes as

input to a regression model to improve predictions ™.

Study IV was a pilot study to determine the feasibility of using a combination of
radiographs and patient parameters to predict patient outcomes. We provide

some considerations for improving the modeling in the future.

Kwon et al. combined different patient parameters with the imaging, as we did.
They passed the clinical variables and the image data as input to the
classification layer. Missing values were imputed '3, In this study, given the many
PROM parameters, the different anatomies and injuries, and the possibility of
several inputs missing simultaneously, creating a linear model for imputation
would require several different imputation models. We would have had to
develop different imputation strategies for various types of fractures, possibly
with fewer cases than there are parameters to model. Therefore, we ignore
missing values and train each outcome separately. However, value imputation
could improve modeling in future studies as it could strengthen the relationship
between variables.

We experimented with predicting complications, such as reoperation and
infection, within one year. While some complications are registered in the SFR,
they are not complete or well-defined. In addition, it would have required us to
manually study and label all imaging for each fracture within one year of the
trauma, including MRI and CT scans, from all possible locations the patient might

have visited during that year. We would have to look for signs of reoperation,
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infections, and other signs of a complication. This was beyond the scope of this
study. In addition, we did not attain sufficient quality in our primary outcomes to

focus on secondary outcomes.

Our network examined each series individually, and each study associated with
the injury got the same patient parameters. The model received the same PROM
parameters in some experiments for different studies. For example, a hip
fracture with multiple adjacent studies, e.g., long femur and knee imaging, could
get the same PROM. However, if there were no fractures in the knee, that imaging
would look uncomplicated, giving confusing signals to the model. A different
strategy would have been to combine all imaging from the same time interval
into a single series for a complete picture. This would have been similar to how
we went from looking at single images in Study | to looking at complete series in
later studies.

Our study focuses on studying multiple fracture types in one model, including all
the lower extremities. We did this in part because of the low PROM answer rate.
It could have been better to focus on one segment. In the Stockholm data, hips,
wrist, and third ankle fractures were the most common, two of which we
captured in this study. We can hypothesize that lower extremity injuries will
affect patients similarly for many PROMs. A wrist fracture will affect patients very

differently and would likely not make the model learn better.

We used a standard ResNet. Other CNN architectures, or indeed transformer
networks, could have been used. We could have experimented with different
architectures, similar to the approach in Study |, to select the best suited.
However, unlike Study |, we did not have a clear-cut outcome to determine the
“best” model. In addition, it was a good strategy to start with (or calibrate on) a
known architecture and see what performance we could reach there. The risk is
that ResNet is insufficient to capture the relationships well, as for Network In
Network compared to VGG-16 in Study .

5.6.2 Strengths

Our patient data comes from the SFR, a large, validated national register that
includes non-operatively treated fractures.

This is a multi-center study with external validation.
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5.6.3 Limitations

The data’s biases and limitations correspond with the selection bias generally
expected from registries and PROMs. However, there are indications that non-
responders in the SFR are much like responders regarding PROM.

The switch from EQ5D-3L to 5L limits the generalization and prospective power

of EQ-5D outcomes until a validated mapping between the two is established.

We did not have information on the patient’s other health parameters, which are
known to affect outcomes, such as smoking, diabetes, cardiovascular health, etc.
Co-morbidities are essential in recovery, in deciding treatment and overall

outcomes.
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6 Conclusions

6.1 Studyl

We showed the utility of artificial neural networks in detecting the presence or
absence of fractures in trauma radiographs and various anatomies with high
accuracy. We also showed the viability of transfer learning for orthopedic
fracture detection. We also found that we could detect other features from
radiographs, such as body parts, exam views, and laterality. In part, this was due
to better labels from which to train.

6.2 Studyll

We developed a fracture classifier for the AO 2018 ankle classification system to
classify fractures to the subgroup level (44A11-44C3.3). Performance fell with
complexity. For example, the AO type was more accurate than the group. This
was expected as the task was difficult for human reviewers to perform on a
radiograph.

6.3 Study Il

In Study lll, we underscored the critical need for external validation of Al models,
as it is a crucial factor in assessing their utility. Our exploration of external
validation revealed that our initial model did not perform as desired on external
data. This was highlighted by the impact of unexpected logistic factors that
reflected different clinical practices. We refined our model using active learning
and concluded that while Al models should be trained to be general, they will
later benefit from being honed for the specific task and setting to which they are
applied.

6.4 Study IV

In Study IV, we conducted a multicenter study to train a CNN to predict patient
outcomes using fracture radiographs and patient-reported outcomes. After
focusing on classification tasks in previous studies, Study IV shifted towards
modeling numerical, categorical, and ordinal variables, usually the domain of
regression models. We experimented with different ways to construct models.
We found that the network could learn to predict PROM], but the indications
were that it had learned the mode. We found a low response rate to the SFR,
which caused problems with both the training and external validation set and

data size.
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7 Points of perspective

Since the beginning of the projects that amounted to this thesis, new
technologies have been introduced for Al and ML. Attention networks and
transformers are powerful image analysis tools. They are the foundation of
the generative pre-trained transformers (GPT) models in vogue today. During
the thesis process, using transformers for this research was contemplated.
However, the amount of data, processing power required, and potential
ethical implications were prohibitive. While still a computationally massive
undertaking, it is now feasible with the growth of computational power and
resources available.

The tasks that CNN and Al models perform for the user must be more
comprehensive and practical. However valuable, identifying the presence of a
fracture is not an exceedingly challenging task. The ultimate goal would be to
have an Al model that reliably and coherently gives properties of the fracture,
which could be tuned and honed as the knowledge of the field changes. In our
studies, we have chosen the AO standard as an imperfect proxy. If we can
create a model to predict the outcome after a fracture, we could attempt to
reverse engineer a “classification” scheme that finds predictive features in
the fracture appearance of which we were unaware.

Even more, using ML, CNNs, and other types of ANNs to predict long-term
outcomes after a fracture from imaging and patient data would be a step
along personalized precision medicine in orthopedics. We can imagine an
enhanced model that takes the imaging, patient parameters such as
comorbidities and PROM at injury — and accurately predicts the most likely
outcomes for the patient conditioned on different treatment options. No
single option might give perfect outcomes for all functions, but we could
select the one that optimizes the patient’s desired outcome. Given the
nature of ANNs, they can be retrained and updated as time goes on,

treatment evolves, and the model impacts future patients.
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The author has authored the comprehensive summary/“"kappa” and all papers
without generative Al. The author has used generative Al for the following

purposes:

- ChatGPT models 3, 4, 40, 40 mini, and Google Bard, assisted with language,
such as proofreading self-authored texts, detecting inconsistencies in
passages, and helping with formulations. They were also used to screen,
clarify, understand, and translate texts and journal papers.

- ChatGPT models 4 and 40 and Github Copilot have been used to generate,
improve, and analyze software code.

- Spell correction software (Grammarly) has been used to proof the text.
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