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Popular science summary of the thesis 
Young men and postmenopausal women are most at risk of a fracture. We know 

which treatments work when treating fractures, on average. However, every 

patient is unique and has unique circumstances and individual resources. For 

example, we know that some patient groups have a 50% risk of dying within one 

year, e.g., some elderly and frail patients. We just do not know which individuals 

will suffer. 

A fracture can have a considerable impact on your quality of life. Constant pain, 

the inability to take care of yourself, depression, and disability are common 

lifelong outcomes. However, you are at risk of even worse outcomes as there are 

strong links between fractures and death. 

Using artificial intelligence (AI) and machine learning (ML), we can now analyze 

massive amounts of data in ways that have never been possible. We will use this 

approach to create a new form of individualized predictions that will predict how 

your life is expected to change due to the fracture. This concept is called 

personalized medicine. 

First, we were able to analyze fractures in X-ray images using artificial 

intelligence. Not all fractures are the same, and we needed to determine the type 

of fracture, as the type of fracture matters in the choice of treatment. 

However, not all patients are the same. We need to map out the characteristics 

of the patient. Patients will fill out a form about their health status before the 

injury while waiting to see the doctor or on the X-ray results. Doctors will use 

that information with the AI model to guide treatment toward the best outcome 

by tailoring the surgery and aftercare to the problematic areas.  

Using healthcare data from thousands of patients, we teach artificial intelligence 

to predict the outcome after a fracture. We hope to focus on those areas where 

the patient will suffer the most and complications will follow. By focusing on 

preventing specific outcomes, healthcare professionals will minimize the 

negative effects of having a fracture on the patient and society. 

  



Populärvetenskaplig sammanfattning 
Yngre män och postmenopausala kvinnor löper störst risk för att råka ut för en 

fraktur. Vi vet vilka behandlingar som fungerar vid olika frakturer, i genomsnitt. 

Men varje patient är unik, har unika förutsättningar och individuella resurser. Till 

exempel så vet vi att vissa patientgrupper har en 50% risk att dö inom ett år, till 

exempel vissa äldre och sköra patienter. Vi vet bara inte vilka dessa individer är. 

En fraktur kan ha en betydande inverkan på din livskvalitet. Konstant smärta, 

oförmåga att ta hand om dig själv, depression och funktionshinder är vanliga och 

ofta livslånga konsekvenser. Dessutom är du, efter en fraktur, i riskzonen för ännu 

värre utfall då det finns starka kopplingar mellan frakturer och död. 

Med hjälp av artificiell intelligens (ofta kallat för ”AI”) och maskininlärning (”ML”) 

kan vi idag analysera enorma mängder data på sätt som tidigare inte varit 

möjliga. Vårt mål är att använda dessa metoder för att skapa en ny form av 

individualiserade prognoser som förutspår hur just ditt liv förväntas förändras på 

grund av frakturen. Detta koncept kallas för precisionsmedicin. 

Först lyckades vi att hitta frakturer i röntgenbilder med hjälp av artificiell 

intelligens. Men alla frakturer är inte likadana, och vi fokuserade då på att 

fastställa typen av fraktur, eftersom typen av fraktur spelar roll vid valet av 

behandling. Men inte alla patienter är likadana. Vi måste kartlägga patientens 

förutsättningar. 

Målet är ett system där patienterna först fyller i ett formulär om sitt 

hälsotillstånd före skadan, till exempel medan de väntar på att träffa läkaren eller 

på röntgenresultaten. Läkare, sjuksköterskor, fysioterapeuter och annan 

sjukvårdspersonal kommer sedan att använda den informationen tillsammans 

med en AI-modell för att försöka förstå vilka patientens förväntade 

problemområden kommer att vara. Genom att välja operation och fokusera 

eftervården till de förväntade problemområdena, är målet att uppnå bästa 

möjliga resultat – i termer av förtida död och livskvalitet – för patienten. 

Genom att använda data från tusentals patienter lär vi den artificiella 

intelligensen att förutspå utfallen efter en fraktur. Vi hoppas kunna fokusera på 

de områden där patienten kommer att lida mest och där komplikationer kommer 

att uppstå. Genom att fokusera på att förebygga specifika utfall kommer 

vårdpersonal att minimera de negativa effekterna av en fraktur på både 

patienten och samhället.  



 

 

Abstract  
Background: Improved interpretation of orthopedic trauma could improve 

patient outcomes. The radiograph is the predominant tool in orthopedic 

emergency decision-making. Machine learning-guided radiographic 

interpretation could help improve patient outcomes. 

Aims: 1) Explore convolutional neural networks (CNN) for orthopedic trauma 

imaging and fracture and classification in medical imaging. 2) Study CNNs on 

combined imaging and registry data to predict patient outcomes after trauma. 

3) Evaluate the generalizability of this approach through external validation. 

Methods: Study I used CNNs and transfer learning to detect fractures in auto-

labeled wrist, hand, ankle, and foot radiographs. Study II and Study III doubled 

down on ankle fractures using the AO Foundation-/Orthopedic Trauma 

Association (AO) 2018 standard. We manually labeled thousands of ankle exams 

and trained a CNN to classify fractures. In Study III, we externally validated a CNN 

model against a different site and implemented active learning to improve the 

model. Study IV linked fractures in the Swedish Fracture Registry (SFR) to the 

trauma radiographs and developed models that, based on the initial radiograph, 

predicted patient-reported outcome measures (PROM) or death after one year.  

Results 

Study I: Deeper CNN architectures outperformed, with the best correctly 

classifying 83% of cases, compared to 82% for the human reviewers. For 

secondary outcomes, the CNN performed near-perfectly for body parts and 

excellently in exam view. A manual review of 400 random training cases found 

that the auto-generated labels were the problem. 

Study II: The CNN performed well on the primary task. However, several 

outcomes were too rare to be included in the training, testing, or error bounding. 

For example, type A fractures were challenging to train, and there were many AO 

subgroups. 

Study III: The external validation data differed from the training site in important 

ways. It included weight-bearing studies, mostly type A fractures, with fewer 

views per study. The CNN external validation performance improved with active 

learning on type A fractures but decreased somewhat for other types.  



Study IV: We tried a range of network configurations and found that the CNN's 

ability to predict PROM after one year (PROM1) or death was variable. At best, 

the root mean squared errors (RMSE) and mean average errors (MAE) were on 

par with the standard deviation.	

Conclusions 

Study I: We succeeded in predicting fractures in radiographs at the level of 

human reviewers. The CNN performance for individual radiographs was better 

than indicated by the automatic fracture labels generated for the study. 

Study II: We successfully implemented a CNN for ankle fracture classification 

using the AO 2018 standard, looking at the complete exam rather than individual 

images.  

Study III: The initial external validation dataset performance was acceptable but 

not good enough. We successfully improved external validity using internal 

training data and active learning. External validation is essential when reporting 

CNN model performance. 

Study IV: We performed a series of experiments to train a CNN to predict PROM 

after one year and got our models to learn the most common value or the mean 

for the PROMs, i.e., overfits. We explore different ways to improve performance. 
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Introduction 
This doctoral thesis focuses on using AI and ML for the analysis and 

interpretation of orthopedic trauma. The assessment of orthopedic trauma is 

heavily reliant on medical imaging. Computed tomography (CT), magnetic 

resonance imaging (MRI), and, to a much lesser extent, ultrasound are important 

in studying orthopedic extremity trauma. However, radiographs (X-rays) are still 

by far the dominant mode of study and decision-making for extremity trauma.  

Radiographic interpretation of medical imaging can be challenging. Radiologists 

take years to train, and specialists in, e.g., musculoskeletal radiology, are not 

always available when needed. In addition, every radiograph must be examined 

by two radiologists. However, in practice, radiographs must also be interpreted 

by non-radiologists, for example, in emergency department settings. Usually, the 

orthopedic surgeons examine the radiographs themselves, and sometimes, there 

are discrepancies between what the radiologist reports and what the orthopedic 

surgeons want to know. In addition, from a global perspective, there is an even 

greater shortage of doctors in general, and radiologists are in even shorter 

supply. 

Modern artificial intelligence (AI) excels at image analysis and interpretation via 

machine learning (ML). With the demand for radiographic imaging and 

interpretation outstripping the availability of interpretation, AI has been 

suggested as a solution. This thesis explores this idea. 

The thesis aims to study AI applications on medical data. In developing methods 

for studying radiographic imaging, it investigates AI modeling for orthopedic 

trauma. The same techniques could also be adapted to other kinds of medical 

data. Study I examines fracture detection in ankle, wrist, and hand radiographs 1. 

Study II uses the AO Foundation/Orthopedic Trauma Association (AO) 

classification 2 to study fractures. Study III examines external validation and 

model tweaking to make AI models usable in other environments 3. In our final 

study, Study IV, we attempt to expand the use of fracture radiographs to predict 

patient-perceived outcomes over time or death withing one year of the trauma. 

This is a doctoral of medicine thesis, so mathematical formalism will be very 

sparse.
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1 Literature review 

1.1 Data 

The foundation of learning is information and data, which is also true for ML. Data 

can be difficult and expensive to gather and then validate. However, data 

availability has been fundamental to allowing for iterative and empirical tweaking 

of algorithms. Much AI development has centered around the drive to tweak 

performance on open-source datasets where the desired outcomes are known. 

These datasets often serve as benchmarks and validation tools for new methods. 

The MNIST dataset contains handwritten greyscale digits, although there are also 

versions with small images and hand-drawn letters 4. The CIFRA-10 and CIFRA-

100 datasets each contain 60,000 labeled images 5. The ImageNet dataset 6 is a 

set of color photos taken from the Internet that contained approximately 3.2 

million hierarchically labeled images (today, approximately 14 million 7). ImageNet 

functions as a development data set and has been used for a long time as an ML 

competition dataset. Today, many algorithms outperform humans at labeling 

images in this dataset. ImageNet, and the ImageNet challenge, is by many 

considered the catalyst for the AI and ML boom we see today 8. 

Medical data is usually sensitive, i.e., personal information requiring strong 

privacy protection. It needs close vetting for personal information and trained 

experts to review it, and it is often ambiguous (i.e., is it a lung nodule or not). Even 

so, the availability and quality of medical data sets have also improved. CheXpert 
9 and ChestX-ray8 10 are two widely used datasets for studying chest 

radiographs. They contain information on the presence or absence of lung 

nodules, fluid, infiltrates, and other lesions. In 2018, the MURA dataset of 

orthopedic trauma radiographs was released and contained 14,863 studies of 

seven study types (e.g., elbow, wrist, hand, and others.) Each study includes 

information on the presence or absence of fractures 11. Esteva et al. have released 

a dataset of skin lesions used to create a melanoma detector for public use 12. 

The dataset was biased towards light-skinned patients 13,14 and was updated – 

showing the power of sharing data for development and validation by the 

scientific community. Our test dataset, used for performance testing in Study II 

and Study III, annotated according to the AO 2018 classification, is set to 

become publicly available, as are some additional datasets from our research 

group. 
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The data for the studies in this thesis project consisted of imaging and registry 

data. 

1.1.1 Imaging data 

Medical images are stored in a specialized Picture Archiving and Communication 

System (PACS), usually in the Digital Imaging and Communications in Medicine 

(DICOM) imaging format. The DICOM standard was created to hold medical 

imaging and facilitate its transfer inside and between institutions. As such, it is a 

standard for communicating and storing DICOM images 15. The DICOM images in 

PACS systems contain the radiographic examination (i.e., the image) and study-

related metadata tags. DICOM has four hierarchical levels that help keep track of 

studies: (1) patient, (2) study (also known as exam or procedure), (3) series, and 

(4) image (or instance). Each patient can have performed multiple studies in 

their life. Each study consists of one or more series. A series can be different 

modalities, such as CT and radiographs, but it can also be an ankle and shoulder 

series. Each series comprises one or more images that make up a coherent 

picture, such as all the slices of a CT scan or the individual images of the 

projections in a scaphoid trauma examination 16–18. While PACS systems usually 

store DICOM images, they can also store other imaging data. However, they 

typically do not contain information on referrals or radiologist reports. These are 

usually stored in radiology information systems (RIS). 

For example, in this project, we collected four different imaging datasets. We had 

a dataset of radiographic examinations collected from Danderyd Hospital’s 

PACS. Subsets of this data have been used in three of the studies in this thesis 

project: studies I and II 1,2 and Study III. Other parts of that dataset have been 

used for other studies from the same research group 19–22. The dataset, which 

also contains radiologist reports but no referrals, will also serve as the foundation 

for future studies and models. For Study III, we collaborated with a research 

group from the Netherlands (Groningen University) that was also connected to 

Australia (Flinders University, Adelaide). Through them, we gained access to 

radiographic examinations from a trauma center in Adelaide, which were used in 

Study III. 

In the fall of 2020, we collected radiographic examinations for approximately 

3,100 fractures from Region Gotland's PACS. In the spring of 2023, we collected 

imaging on 41,000 fractures from Region Stockholm's PACS. Both datasets were 

based on a second important medical data source—registry-based data. 
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1.1.2 Registries – The Swedish Fracture Registry 

The SFR is a Swedish national registry that tracks fractures in Sweden. It was 

created in 2011 to track fractures, their treatment, and patient outcomes. The 

registry was originally unique in that it tracks both those fractures that have 

undergone operative and non-operative treatment. It connects to and syncs 

data with national registries, such as the Swedish National Board of Health and 

Welfare registers and the Swedish Arthroplasty Register 23. 

As of December 2020, there were approximately 525,000 registered fractures; 

as of July 2024, there were 961,000 fractures. Each fracture is registered by the 

participating clinics, i.e., all emergency hospitals in Sweden dealing with 

orthopedic injuries. It is usually the treating physician who registers. Patient data, 

time of injury, type of injury, and mechanism of injury are registered. The type of 

injury is registered using ICD 10 and AO classification, including whether the 

fracture is open or closed, close to a prosthesis, and more. Treatment (operative 

and conservative) is tracked, and to a lesser extent, complications (e.g., infection 

and healing complications) are registered 23. 

1.1.2.1 Using the SFR 

The data registration in the SFR, i.e., the type of fracture, has been validated by 

Juto et al., who studied 152 ankle fractures registered in the SFR. Three 

orthopedic surgeons examined the fractures and created a consensus standard 

of fracture classification according to the AO classification. They found excellent 

to near-perfect agreement between their observations and the registered 

fracture type in the SFR and almost as good results for the fracture group 24,25. 

Wennergren et al. examined the validity of fracture classification in the SFR by 

examining 116 humerus fractures. Like Juto et al., a three-surgeon team assessed 

all radiographic examinations twice to create a ground truth according to the AO 

standard. They also found excellent inter-rater reliability between their standard 

and the data in the SFR. However, a caveat was that they had to make a series of 

assumptions to reach that accuracy, and without those assumptions, agreement 

was moderate 26. Knutsson et al. performed a similar study on 118 femur fractures 

in the SFR, all from the same hospital. They found an almost perfect agreement 

for the AO type and a substantial agreement with the AO group 27. Agreement 

between observers in these studies refers to the Landis and Koch scale 

regarding Cohen’s Kappa 28. These studies were primarily performed on data 

from Gothenburg and the clinics most closely associated with the SFR. However, 
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in a study by Sundkvist et al., looking at basocervical femoral neck fractures from 

the SFR, 868 out of 1185 fractures (73%) were excluded from the study due to 

misclassification 29. Thus, it is unclear how the previous studies apply to the SFR 

as a whole. 

1.1.2.2 Health outcomes after a fracture 

Health or patient functional outcomes can be measured as patient-reported 

outcome measures (PROMs). The SFR collects PROM using the EuroQuol 5 

Dimensions (EQ-5D) 30 and the short musculoskeletal function assessment 

(SMFA) survey 31. Each patient registered in the SFR receives a survey where they 

estimate their PROM just before the injury (PROM0). One year after the injury, 

they receive another survey where they estimate their current PROM (PROM1). 

An additional outcome, death, is added to the SFR, and some patients will die 

before answering the surveys. Death is collected via the PID from the National 

Population Register in Sweden. 

EQ-5D™ is a self-reporting tool that measures five dimensions of health: 

1. mobility 

2. self-care 

3. usual activities 

4. pain/discomfort 

5. anxiety/depression. 

It also consists of a 0-100 VAS scale on which participants estimate their overall 

health status, where 0 is the worst and 100 is the best 30. The EQ-5D was 

developed in the 1980s as a non-disease-specific, standardized tool for 

measuring health. Specific versions have been developed and are standardized 

for different populations, e.g., Spain, Sweden, Japan, Algeria, etc. 

The original EQ-5D consisted of three levels of answers and is now referred to as 

EQ-5D-3L (3L). The EQ-5D-5L (5L) is a recent version with five levels 32,33. The 

reason behind this upscaling was that it was difficult to distinguish between 

changes in health outcomes. There were attempts to solve this using unofficial 

5L, but the current and official 5L have been extensively researched and 

validated 34–39. Indeed, Janssen et al. compared the 3L to the 5L for 3,919 

individuals in six countries and found that 5L had more discriminative power 39. 

van Hout et al. showed that it was possible to translate 3L into 5L. However, the 

mapping can only reach the value space of the 3L; it needs to be updated for 
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each specific population and is only valid for the EQ-5D index 40. The SFR moved 

from the 3L to the 5L in 2018-2019. 

SFMA 31 is a simplified version of the original musculoskeletal function 

assessment 41,42. It is a self-report health-status questionnaire designed to 

detect functional status differences in patients with common musculoskeletal 

disorders. The SFMA measures how bothered the patient is by these conditions. 

It consists of 34 items to measure dysfunction and 12 items to measure “bother,” 

i.e., how bothered they are by the dysfunction, on a 5-point scale. The answers 

are summed and transformed into an index on a scale of 0-100, where 0 is the 

best function, and 100 is the worst function. 

The SFR does not contain information on comorbidities and other risk factors. 

Survey respondents answer questions regarding smoking in the PROM. However, 

information on diseases such as diabetes, cortisone-requiring diseases, alcohol 

consumption, etc., which is essential for patient outcomes, is not reported. 

The registry also contains information on complications via surgeon reporting—

e.g., reoperations—or is answered as part of the PROM1 survey. However, this 

data is incomplete or absent, e.g., if the patient died. 

The PROM response rate, i.e., PROM0 to PROM1, is expected to decrease since 

there are two surveys to answer, one year apart. It is not easy to know if those 

who respond differ in any way from those who do not. Therefore, Juto et al. 

conducted a study in 2017 to answer this. Comparing SFR responders to non-

responders, they found that non-responders and responders had similar 

functions 43. As mentioned, some patients will pass away during the time 

between the two surveys, which is recorded in the SFR. 

1.2 Fracture classification 

Orthopedic decision-making is not straightforward. Kodama et al. 44 and Neuhaus 

et al. 45 studied the factors that influence treatment decisions for orthopedic 

surgeons. Both found that the appearance of the fracture in the radiographic 

image was the dominant factor. While both studies considered distal radius 

fractures, radiographic imaging is crucial in all orthopedic decision-making. For 

spine surgery, MRI and CT are more important. However, imaging is still vital. 

Given that radiographs constitute a significant decision criterion in traumatology, 

it is unsurprising that radiologists and orthopedic surgeons try to understand 
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them better. This is usually done by grouping and attempting to use these 

groups to make decisions and fracture classification systems. Numerous 

classification systems are used in orthopedics and radiology. Audigé et al. 

examined 44 different classification systems for eight different localizations 46, 

while Shehovych et al. noted 15 recognized classification systems for distal 

radius fractures alone 47. Gilbert et al. studied three different classification 

systems for glenoid fracture classification 48.  

1.2.1 Classification systems 

There are many classification systems. We present a few examples of interest to 

our discussion, but as we saw above, there are countless more. 

The Lauge-Hansen classification of ankle fractures dates back to the 1950s 49,50. 

It classifies ankle fractures according to the foot's position at trauma (the 

rotational mechanism) and the force that caused the fracture 51,52. 

The Danis-Weber classification divides ankle (i.e., malleolar) fractures based on 

the radiographic appearance and the lesion relative to the syndesmosis. It 

divides fractures into infrasyndesmotic (type A), intrasyndesmotic (type B), and 

suprasyndesmotic (type C) fractures 52. The Danis-Weber ankle classification is 

a simplified version of the AO ankle classification scheme. 

 

Figure 1. Danis-Weber classification. Infra- (type A), trans- (type B), and supra (type C) 
syndesmotic. Original artwork by Märta Nummelin 

The AO classification is one of the most widely known and all-encompassing 

classification systems 24,53,54. The latest update for long bone fractures came out 

in 2018 55. There are additional classifications for spine fractures 56,57 and 

pediatric fractures 58,59. Unlike many fracture systems, it has been developed 



 

 7 

over time and validated through multiple studies. However, it is generally 

considered complicated and cumbersome. Studies II and III focus on the AO 

2018 ankle classification, and Study IV uses the AO classification implicitly, as 

lower extremity fractures are registered as AO fractures in the SFR 24,60. 

1.2.2 Utility and problems of fracture classification from radiographs 

Few classification systems undergo validation before publication, and fewer are 

adequately validated. We expect a clinically used classification to be valid, 

reliable, and relevant 46,61,62. The classification should be independent of the 

observer, say something about the injury, guide treatment, and positively impact 

the outcome. There are some crucial questions regarding the usefulness of 

classification systems, which will be addressed in turn. 

A fundamental issue is the reproducibility between observers (IRR) and the same 

observer at different points in time (IOR) 46,61,62. There are many examples, but we 

will mention a few. Neer’s classification is a four-segment classification system 

based on the observation that humerus fractures tend to be displaced into four 

major segments: the lesser and greater tuberosity, the articular surface, and the 

humerus shaft 63. Siebenrock and Gerber studied the reproducibility of 

classifications for humerus fractures and compared Neer’s and the AO/ASIF 

classification (which developed into the current AO system). They found both 

systems had such poor reproducibility that they could not compare different 

studies 64. Sidor et al. studied Neer’s classification’s reproducibility and found 

similarly poor agreement between observers 65. Marongiu validated AO 2018 for 

humerus fractures compared to Neer’s classification and the AO 2007 humerus 

classes. For AO 2018, they found an agreement similar to Neer's classification, 

which significantly improved the 2007 scheme 66. Fonseca et al. compared the 

IRR of the major ankle fracture classification systems 67: the Lauge-Hansen, the 

Danis-Weber, and the AO classifications. The Danis-Weber classification was the 

top performer, followed by the AO and the Lauge-Hansen. However, the Danis-

Weber system had a moderate agreement 28,67. At the same time, there are 

systematic ways to make the AO classification more reliable 68,69. That we need 

these systematic ways to make AO more reliable, signals a problem of 

complexity – the common critique against the AO system. The reliability and 

validity of the Lauge-Hansen system were questioned by Lindsjö when it was 

clear that otherwise similar populations from different areas of the world had 

dissimilar fracture distributions in terms of the Lauge-Hansen class 70. Later 
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attempts to reproduce the system by comparing injury footage or reproducing 

Lauge-Hansens experiments have generally failed, as we will see later. 

Our 2017 study, Study I, found only moderate IRR for detecting fractures in 

radiographs 1. However, in 2020, we found substantial IRR between human 

observers for the 2018 AO ankle classification. It varied more for individual 

subgroups (e.g., AO 44A1.1) and related to the number of cases 2. In the same 

study, there was almost perfect agreement for detecting fractures. There are 

several reasons for this improvement. The reviewers had gained more 

experience with the review process and examining radiographs. In addition, the 

review process had improved, with labeling being performed on the original 

image in its original size, which was not in Study I. 

Imagine creating a system that reliably and predictively reproduces and 

automates classification, removing IOR and IRR. It would enable wider usage, 

validation, and enhanced utility. In the long run, it would allow us to truly study 

whether fracture classification matters when we remove the human factor from 

the classification. It would enable us to determine whether the classification 

systems used and suggested in the future are relevant. One path towards this 

that we studied in this doctoral project was using AI and ML. 

1.2.3 Ankle fracture classification – Lauge-Hansen vs. Danis-Weber vs. AO ankle 

Studies II and III focus on detecting and classifying ankle fractures in radiographs. 

We repeat the discussion from Study III regarding ankle classification systems. 

There are three central classification systems for ankle fractures: the Lauge-

Hansen, the Danis-Weber, and the AO classifications. In our studies, we used the 

Danis-Weber and expanded AO classifications 55. 

The Lauge-Hansen classification system is widely used to predict fracture 

patterns and ligamentous injuries based on injury mechanisms. Several studies 

have shown that Lauge-Hansen is only partially valid and reproducible. In 1985, 

Lindsjö raised the question of the poor reproducibility of the Lauge-Hansen 

system between different populations based on previous studies 70. The findings 

of poor reproducibility have been repeated in several studies 67,71–74. Gardner et al. 

performed an MRI study and found that Lauge-Hansen had limitations in 

predicting soft-tissue damage and ligamentous injuries 73. Using actual injury 

footage, Kwon et al. replicated these findings in 2010 and 2012 75–77. Boszczyk et 

al. compared patient-reported injury mechanisms and radiographs and 

concluded the same, i.e., the reproducibility was poor 74. Patton et al. concurred 
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based on CT findings and complete patient workups 78. Michelson et al. tried to 

replicate Lauge-Hansen’s results physically, and in a separate study, so did 

Haraguchi and Arminger. Both failed and concluded that the Lauge-Hansen 

system could not be used to predict injury mechanisms or injury patterns 79,80. In 

the clinic, Lauge-Hansen and AO (complete or the simplified Danis-Weber) are 

often used together to guide treatment decisions. 

The AO standard launched the Danis-Weber system. Danis-Weber bases its 

classification on the fracture’s location in relation to the syndesmosis. This 

ligamentous joint holds the distal fibula and tibia together. In type A fractures, 

the fibula is broken below the syndesmosis (infra syndesmotic), type B fractures 

at the level of the syndesmosis (trans syndesmotic), and in type C fractures 

above the syndesmosis (supra syndesmotic). 

The AO classification extends the Danis-Weber classification to include medial 

and posterior malleolus injuries. It grades fractures based on severity and 

physical appearance 55. The fracture types A-C are extended with a group 

number (A1-A3, B1-B3, and C1-C3) and then to a subgroup (A1.1-A1.3, etc.). 

Generally, a type A fracture is more stable than a type B fracture, which, in turn, 

is more stable than a type C fracture. The same goes for groups and subgroups; 

for example, A1.1 is more stable than C3.3. 

The main criticism of the AO ankle system is that many consider it complex. 

Another criticism is that isolated medial malleolus fractures are treated as distal 

tibial fractures 67,81. The system also considers ligamentous injuries that are not 

readily visible in radiographs. However, they are visible in MR and during surgery. 

Lauge-Hansen is mechanism-based and was created to solve the problem of 

deciding which ankle fractures to operate and how before imaging was widely 

available. The AO standard is based on injury appearance regardless of the 

mechanism. We aimed to develop AI models for easy, accurate, and rapid 

fracture classification and clinical decision-making. As we do not know the injury 

mechanism for each fracture in population-sized datasets, Lauge-Hansen is 

inappropriate for this task. As noted, Lauge-Hansen is not well suited to 

predicting injury mechanisms from radiographs in its current form, whereas AO is 

imaging-based. The classifications are similar, and conversions between the two 

systems have been suggested, but no fully agreed-upon or complete conversion 

exists 77,82,69,83,52,84. 
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Figure 2. AO Ankle classification. Original artwork by 
Märta Nummelin. 
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1.3 Artificial intelligence, deep learning, and machine learning 
modeling 

Intelligence is the ability to perform and learn techniques to solve problems and 

achieve goals appropriate to the context. Based on the original definition from 

1956 by John McCarthy, AI is “the science and engineering of making intelligent 

machines.” 85 The EQUATOR network defines AI as “the science of developing 

computer systems which can perform tasks normally requiring human 

intelligence.” 86–88  

Machine learning (ML), a field of AI, is the science that concerns the 

development of algorithms that learn patterns from data to solve problems 

rather than follow explicit rules 89,90. An algorithm is a sequential list of exact 

steps to solve a problem. However, ML algorithms focus on parts of the 

problem, like computing rewards or learning. It derives the way to combine the 

features, i.e., the weights, from interacting with the data 85. AI is about learning 

features, whereas e.g. statistics is about selecting features. We refer to a trained 

algorithm, i.e., the result of an AI or ML algorithm, as a model. ML draws from 

computer science, statistics, control theory, biology, and economics to study 

how computers can improve knowledge, perception, and thinking based on data 

experience. Deep learning (DL), currently the most successful approach, uses 

multilayer artificial neural networks (ANN) to compute continuous values (real 

numbers) over many iterations of the data. 

Hierarchical structures, similar to communicating neurons in biological nervous 

systems, are the primary inspiration for ANNs. The visual cortex inspired the first 

ANN, so the simplest possible neural network – a single neuron – is called 

a perceptron. The neurons are mathematical functions, or computational nodes, 

that take an input (e.g., a single value, a vector, matrix, or tensor – the three or 

higher dimensional equivalent of matrices) and produce an output. By making 

the output from one neuron the input of another, we create a layered structure 

of information flow. We can have one neuron communicate with many other 

neurons, creating width. Connecting many layers in depth, layer after layer, leads 

to deep networks. Training these deep networks is the origin of DL. Initially, a 

network of 5-8 layers would be considered deep; today, networks can have 

hundreds or thousands of layers, and the output of one network can become the 

input of another ANN. Part of DL’s success comes from techniques to handle the 

increasing number of layers. By changing the mathematical functions in the 

neurons and the strength of signaling between nodes, we can have information 
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flow in the network in various ways. This allows the network to focus on different 

things in the data. 

1.3.1 The case for ANNs – The Universal approximation theorem 

The strength of the ANN approach is that theoretically and under certain 

constraints, there is an ANN that can approximate almost any mathematical 

function arbitrarily well. I.e., ANNs can be considered universal function 

approximators 91–96. In this context, a mathematical function describes a 

relationship, via some form of computation, between input and output. For 

example, an image, sentence, or other data can be broken down into numbers 

and fed into a function. That function generates an output (new image, 

description of image contents, a translation, a prediction, or something else.) The 

relationships that can be modeled via ANNs are extensive. However, the universal 

approximation theorem for ANNs (several versions and extensions exist) only 

states that there is such an ANN, which is why ANNs are so helpful and popular. It 

does not say how to find it, which is a highly complex problem and is the reason 

why ANNs were not as widely used and popular before 2012. 

The neurons in ANNs are composed of nonlinear mathematical functions (i.e., 

equations) called activation functions. There are two necessary conditions of 

ANNs: their activation functions are nonlinear and nonpolynomial 91. Without a 

non-linear activation function, a neural network is nothing more than a linear 

regression model. No matter how many neurons and layers there are, the output 

will be equivalent to a single linear regression perceptron. The analogy between 

biological and artificial neural networks has limitations. However, biological nerve 

cells are also nonlinear. They will only release a signal, or action potential, to the 

next neuron if the input matches a specific condition. Usually, this is a buildup in 

intracellular charge that exceeds a threshold potential, leading to a signal down 

the axon. 

1.3.2 Training ANNs 

The universal approximation theorem tells us that an ANN should exist that 

solves our problem arbitrarily well, but we do not know how to find it. The 

modern approach to ANNs is to train an ANN to approximate the theoretical 

function (or ANN) and produce a particular outcome. This is the machine learning 

part. There are different kinds of learning. In supervised learning, we know the 

desired learning outcome, and the ANN is trained to approximate the desired 

result. In unsupervised learning, the ANN gets data and finds patterns 
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independently, such as grouping a set of observations into groups that fit a 

pattern. However, it decides upon the pattern by itself. Some tasks fall in 

between and are often called semi-supervised learning. The simplest way to 

understand the learning process is to use supervised learning. 

In the training phase, the ANN receives input with a known desired output, such 

as an image with a label stating what the image contains, a sentence in one 

language with a desired translation into another, or a question with the answer. 

The task could be for the model to produce the desired output. The input passes 

through a series of neurons, and each output serves as the input for the next 

neuron in a process called forward propagation. The last neuron produces the 

output from the ANN. The algorithm compares the output to the desired (true) 

outcome and computes an error via a loss function. The calculated error 

residual is propagated back through the ANN from the end to the beginning, 

making corrections in a process called backpropagation. The goal is to minimize 

the error (i.e., the difference between produced and desired output). The most 

significant change, i.e., the most correction, is found by following the gradient. 

For this reason, backpropagation entails computing differential equations (i.e., of 

the activation function) and correcting by the magnitude of the gradient. The 

corrected network is then the starting point of the next training round. 

Theoretically, each neuron can communicate with every other neuron, but 

the importance of each neuron that sends it information is called the weight. 

This weight can be anything from zero (i.e., no information exchange or 

connection) to anything. The neuron's output can change by assigning different 

weights to different inputs. The training process aims to teach every neuron 

in every layer how much weight it is to assign to each input. The error correction, 

i.e., learning, is the gradient, and the model computes a correction between each 

successive network neuron. If the error is small, the gradient is small, the 

correction is minor, and vice versa. A final important note is that the training of 

an ANN is usually not deterministic. Introducing variability (variable data points) 

and randomness is central. This variability, enhanced by the nonlinear activation 

functions, allows different connections to form between neurons until they form 

stable connections (those that increase the likelihood of the correct output). 

This learning process from data – input, model, output, error, correction, repeat – 

is how most ML models conduct their training. 
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Convolutional neural networks (CNNs) are a class of networks well suited to 

processing grid-like data, such as images. They use convolution layers, a form of 

image processing filter layers that highlight the most essential features in 

images. Convolutions combine image features into successively more advanced 

features, e.g., combining pixels into lines, then lines into shapes, and the shapes 

into objects. CNNs are particularly common in image analysis tasks because 

they can learn much from relatively little information. 

Recurrent neural networks (RNN) are particularly well-suited to sequential data, 

such as time series and text. Their neurons consist of a series of “hidden” states 

that act as a memory of previous states. The previous states are updated as a 

context to predict the next state—e.g., the next word or value in a time series. 

A common problem with both these architectures in practical implementations 

is that information is lost downstream. The most recent neuron matters the 

most, and the signal is weaker the further you go. For CNNs, this usually entails 

losing spatial information (position and detail). For RNN, the training update 

signal is lost in a “vanishing gradient,” which is also a problem in CNNs. 

Transformer neural networks (transformers) are another network architecture 

good at sequential data. Unlike RNNs and CNNs, which process data sequentially 

(meaning that the last part of the sequence will matter the most) and update 

their state, transformers look at the entire data sequence. Via an attention 

mechanism, the network can focus on different parts of the sequence regardless 

of where the information is in the sequence 97–100. Transformers are the 

foundation of the generative pre-trained transformers (GPT), which are currently 

in vogue. They make training problems easy to divide into subproblems (are easy 

to parallelize) and are excellent at capturing long-range relationships. They can 

also be applied to images and video but require much more data and 

computational and economic resources than CNNs or RNNs. 

These three are the most widely encountered architectures today, but others 

exist, such as the multilayer perceptron, graph neural networks, generative 

adversarial neural networks (GANs), and autoencoders. 

1.3.3 Recent advances 

While the idea behind ANNs is not new, the current AI and DL innovation boom is 

relatively new. DL requires a lot of computational power, and only recent 

advancements in technology and algorithms have enabled it. Some examples are 
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improved software, utilizing the computational power of Graphics Processing 

Units (GPUs), and diving the problem into subproblems (distributed computing). 

Research has also evolved the solutions to the mathematical difficulties 

introduced by transferring theoretical mathematics to the constraints of the 

physical world. 

Allowing for technological advancements that enabled efficient training, the 

great revolutions in CNN have consisted of empirical trial and error and minor 

tweaks to algorithms. E.g., what activation functions we should use, how to use 

them, how to process the input to each neuron, and how we choose how much 

weight each neuron puts on each input. 

There are countless ML methods, but our studies are based primarily on CNNs. 

Therefore, we focus on these. The first genuinely successful CNN was LeNet-5, a 

seven-layer CNN 4. It could read handwritten characters and was intended for 

banks and the United States Postal Service to read bank checks and letters. 

However, due to technical limitations, CNNs did not achieve much further 

success for some time. 

In 2012, a DL CNN won the ImageNet pattern recognition challenge, 

outperforming contending approaches 61,62. In an instant, error rates fell from 25% 

to 10%. The most successful algorithm was the DL CNN AlexNet 101. Since then, AI 

and DL research has exploded. We mention some widely recognized milestones. 

An early milestone was the Network-in-Network (NIN) architecture 102, which built 

upon the ideas of AlexNet and added a small network within the network to allow 

for better information transference. 

Chatfield et al.103 designed VGG CNN S, an eight-layer CNN, in 2014. In the same 

year, Szegedy et al. 104 introduced the Inception network (GoogleNet), which has 

since been updated multiple times 105,106. Simoyan and Zisserman enhanced the 

VGG network with VGG-16 and VGG-19 CNNs, which were state-of-the-art at 

the time 107. 

LSTM networks 108 (a form of RNNs) use “gates” to allow some information to 

pass through the network relatively unchanged (extended memory) and some 

gates to pass information from layer to layer (short memory). The long memory 

connections inspired Highway networks 109. Highway networks took gated 

connections and introduced “skip connections” to allow the transfer of 
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information across the network. From the previous usable limit of 20 layers, 

Highway networks allowed 100 layers or more. 

ResNet 110 was built upon the ideas of Highway networks, improving performance 

and stability. DenseNet 111 tweaked ResNet by adding connections from every 

network layer to every other layer, improving performance with fewer 

parameters. 

There are countless more CNN architectures. Those mentioned are a few of the 

most important or popular. They often serve as a starting point or reference for 

developing new applications or testing data. 

1.3.4 AI in medicine 

An AI intervention is an intervention that relies on an AI or ML component to 

serve its purpose 89,90. Many interesting reviews examine AI and ML for various 

medical fields 112,113. Hosny et al., to make a case for the increased adoption of AI, 

describe how the increased availability and need for medical imaging leads to an 

increased need for interpreting medical imaging and some of the advances 

being made 113. Liu et al. performed a review and meta-analysis of pathology 

detection in medical imaging in 2019 114. They found that many DL studies 

reported results on par with healthcare professionals but that the level of 

reporting was generally poor and that results were difficult to verify.  

While there is much hype about AI and ML, it is essential to note that it is one 

tool among others. ML models can fail because the more parameters they have, 

the more data they require. This is true, especially for CNNs, which can have 

thousands or millions of parameters. AI is not always better than modeling with 

other tools. For example, a review of 71 ML models found that they did not 

perform better than logistic regression models and were more prone to bias 115. 

Oosterhoff et al. tried eight different algorithms to predict outcomes after 

orthopedic trauma. All were trained on the same data (one logistic regression 

and seven different ML algorithms). They found that their non-ML algorithm 

tended to perform better than the rest. However, the training of the models was 

not explained 116. 

Cary et al. looked at 30-day and 1-year mortality after hip fractures. They 

compared a multilayer perceptron (a form of ANN) and logistic regression on 

their dataset, and both performed similarly. Given that, they concluded that the 

logistic regression model was more accessible to clinicians to interpret and 
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required fewer computational resources. For that reason, it was the more 

reasonable tool 117. We fully concur.  

1.3.5 ML and ANNs in orthopedics 

Cabitza et al. provide a review of ML for orthopedics 118. The first paper in their 

review was from 2000 and used an ANN to control a trans-femoral prosthesis 119. 

In 2010, Pogorelc and Gam compared ANN to decision trees for gait analysis and 

found that ANN outperformed the other 120. Nair et al. also studied gait analysis in 

patients with rheumatoid arthritis versus hip osteoarthritis 121. Prasoon et al. 

studied MRI scans of knee cartilage using ANN and found better performance 

than the state-of-the-art methods at the time 122. Thong et al. used ANN for the 

3D reconstruction of an adolescent idiopathic scoliosis patient’s spine 123. Abidin 

et al. used ANN for chondrocyte pattern analysis to detect osteoarthritis in CT 

scans 124. Shim et al. detected rotator-cuff tears in MRI studies 125. To our 

knowledge, the first attempt to use ANN for fracture detection was by Al-Helo et 

al. 2013, who studied vertebrae fractures in CT scans with impressive accuracy 
126. The use of AI and ML has increased further.  

1.3.6 ML and ANN for outcome prediction in Orthopedics 

Dijkstra et al. conducted a systematic review of predictive ML models for 

orthopedic trauma and found 45 studies 127. Most models were derived for hip 

fracture patients. Mortality and hospital stay were the most predicted outcomes. 

Some were ANNs, but none appear to have been CNNs. However, they excluded 

studies reporting on models analyzing diagnostic imaging, which is this thesis's 

foundation. The Machine Learning Consortium studied ANNs to predict infection 

risk after operative treatment using ANNs. They also tested different ML 

algorithms and one ANN but provided scarce information about modeling details 
128. 

1.3.6.1 Mortality prediction after fracture using ANNs 

In Study IV, we examine, among other things, whether the patient died within one 

year of the study. This has mostly been done for hip fractures because they 

have the highest mortality and worst post-fracture recovery. Lin et al. studied 

mortality after hip fractures and compared a logistic regression and ANN model 

to predict 1-year mortality, resulting in an AUC of 0.95 for the ANN vs an AUC of 

0.78 for logistic regression 129. While interesting, the excellent performance was 

probably due to overfitting. In a similar study by Shi et al., the results were an 
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AUC of 0.87 for the ANN vs. an AUC of 0.73 for logistic regression on a much 

larger dataset and testing many different networks. 

Liu et al. systematically reviewed ML models for predicting mortality in hip 

fracture patients. For hip fractures, postoperatively, mortality is reported 

between 5% and 30% within one year. They found that ML models had an ideal 

mortality prediction after hip joint surgery. ANNs and random forest algorithms 

had the best performance and, in general, better accuracy than existing clinical 

scores 130. DeBaun et al. tried three models (LR, naive Bayes, and ANN) and found 

the ANN superior 131. 

In contrast, Oosterhoff et al., as mentioned previously, found no performance 

boost for ML algorithms over logistic regression 116. Cary et al. looked at 30-day 

and 1-year mortality. They compared an ANN and logistic regression and found 

similar performance 117. Chen et al. used an ANN to predict mortality after a hip 

fracture. They trained it on a national registry and found it worked better than 

Cox regression 132. Cao et al. used all hip fracture patients registered in Sweden 

between 2008-2013 to model predictive preoperative characteristics for 30-

mortality in traumatic hip patients after surgery. They cross-referenced with the 

Swedish National Board of Health and Welfare registers to get date of death and 

comorbidity data. Comparing logistic regression and ANN, the latter performed 

somewhat worse, but confidence intervals are not provided 133. 

1.4 Ethical considerations and methodological biases 

AI has many benefits and pitfalls, and we must consider its ethical implications. 

We elaborate on some common issues that clinicians should consider. The 

following discussion builds upon Olczak et al., 2021 86. 

Outcome imbalance: Medical outcomes are often heavily skewed towards 

some specific and commonly occurring ones. A negative outcome is the most 

likely outcome for most disease tests – as most people are healthy for what is 

tested. However, this is not true under certain circumstances. We are unlikely to 

find ankle fractures if we randomly examine people's ankles in the street. We are 

considerably more likely to find fractures examining ankles after trauma in the 

ER. Where there are multiple outcomes, individual outcomes become less likely. 

We are more likely to find any ankle fracture than a fracture of the medial 

malleolus and the posterolateral rim (Volkmann's fragment) – i.e., AO 44B3.3. 
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By emphasizing rare cases, we can alleviate the imbalance during training, also 

known as assigning weights to classes. We can also manipulate the images so 

that the network becomes less sensitive to particular features, known as data 

augmentation. This becomes more difficult during testing as the test examples 

are usually fewer than the training examples. We must also consider what 

algorithms we use in training and evaluating model performance depending on 

the dataset. 

Missing data: We need many examples of the outcomes we are searching for to 

train a model. A rare outcome is not likely present in the data or can be so 

infrequent that we cannot get a good training result. The algorithm cannot learn a 

pathology if it is not in the training data. While we could write rules for an 

algorithm to follow, it is impractical to write rules for all possible outcomes that 

occur in the real world. Fundamentally, this differs from humans, who can 

understand a thing before encountering it, e.g., a Pipkin fracture in the hip. Thus, 

we can have unknown gaps in our models. 

Overfitting: AI learns by studying examples. If the model learns the data too well, 

it learns training cases rather than the general features. An overfitted model will 

give a false sense of security and lead to a more biased model. This is a common 

concern in any form of statistical learning, and it is why data is split into at least a 

training and a test set, with no overlapping cases (e.g., patients). The test set 

contains examples the model never encounters during training and cannot learn. 

Another way is to compare the model to data from an independent location, i.e., 

external validation. 

Data and privacy:  ML models are powerful tools, but some are “data hungry.” 

ANNs can have hundreds, and sometimes millions, of parameters. They need a 

lot of data to optimize all parameters, learn the desired patterns, and capture 

unusual cases. Therefore, they thrive on large amounts of data during training, 

encouraging large-scale data collection. Large-scale data collection constitutes 

a risk to patient integrity and sometimes data ownership. Medical data cannot 

usually be shared due to its sensitive nature, which causes reproducibility, 

traceability, and reporting problems. It is also sometimes possible to extract the 

underlying training data from the ANN model, further complicating privacy and 

integrity. 

Bias and fairness: Bias comes from input data and design decisions during 

development. Biases are mapped to the output. This means that the AI model 
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will learn and reproduce prejudice in the data 134. Common confounders and 

biases are race, gender, and socioeconomic factors. For example, an AI 

melanoma detector was trained on a population dominated by fair skin and was 

shown to perform worse on dark-skinned patients 13,14. A study by Zech et al. 

studied chest radiographs from different sites and found that the CNN could 

implicitly learn where the data points came from and adjust predictions 

accordingly 135. In another study by the same research group, hip fractures from 

radiographs were studied with high accuracy. However, correcting for 

socioeconomic, logistical, and healthcare process data factors (e.g., different 

scanners, locations, age), they could show that their model performance fell to a 

random detector 136. Recognizing, reflecting, and examining biases in AI studies is 

essential 137. 

Informed consent and autonomy: AI risks autonomy (the right to self-

determination) and integrity. AI models return outcomes based on opaque 

datasets, and their results are difficult to explain to patients. There is also a risk 

that decision-making responsibility will be diverted from clinicians to algorithms 

that “perform superior to an expert.” Healthcare systems and clinicians might 

implicitly become forced to implement and follow AI recommendations, forcing 

patients to subject themselves to AI 138. 

Interpretability and safety: Transparency is crucial for clinical AI 

implementations, with the critical implications that can come with errors. The 

preferred option is to share data and as much information about the model as 

possible. A problem not unique to medicine is that data can be very sensitive. 

The data cannot always be legally shared. In addition, there are risks in releasing 

development and research models to the public, for example, for public scrutiny. 

They risk being used for other things than validating the model. This can cause 

considerable harm as an unfinished or unvalidated tool is used outside the 

intended context 139. 

AI models are often described as “black boxes.” The model's decision processes 

are largely unknown, and so is what happens inside. Enhanced transparency and 

interpretability of the algorithms could compensate for this. Understanding the 

inner workings of ML models is a field that is actively researched and is 

constantly evolving. However, we need to learn to interpret ML models, and some 

argue that we must create interpretable models from the start 140. For example, a 

popular attempt to understand CNN models is to visualize the regions that 
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activate the model toward a specific classification decision. One popular 

method is activation (or heat/saliency) maps that show what areas of an image 

the model reacted to. Another method bounds the region of interest into boxes. 

However, whether the incorrect or correct region is emphasized, neither explains 

why the model reacted to that region, and their ability to explain the model is 

incomplete 140. 

Responsibility and liability: How to allocate responsibility and liability for an AI 

intervention is unclear. A model that is 99% correct is wrong 1% of the time. Even 

excellent AI models fail in obvious cases. Suppose an AI recommendation was 

accurate, and not following it harmed the patient. Are clinicians responsible for 

not following the “black box” recommendation of the model? Suppose the AI 

recommendation was followed, which resulted in a critical error, constituting 

malpractice. Who is responsible? Who is liable? Both legally and morally? This 

fundamental issue must be resolved before AI decision-making replaces 

clinicians’ judgment: the creators of AI models need to accept legal 

responsibility for the outcomes of AI models. 

Reproducibility: Traditionally, machine learning has been presented to a non-

medical community, but as the research has moved into medicine, it poses new 

challenges. While reproducibility is fundamental to all sciences, there are 

differences in focus between reporting traditional ML and medicine – resulting in 

problems specific to AI interventions. 

The EQUATOR network 87 is the originator of evidence-based reporting 

guidelines for medical research. Well-known guidelines include SPIRIT 141, 

CONSORT 142, and STROBE 143. In recognition of the increasing prevalence of AI 

intervention research but poor reporting, the EQUATOR network has created the 

CONSORT-AI 89 and SPIRIT-AI 90 addendums 88. Both focus on clinical trials (trial 

protocols and trial reporting) containing AI interventions.  

Protocols for reporting on prognostic and diagnostic studies using ML and AI 

were published in 2024 via TRIPOD+AI 144,145, while STARD-AI is still in 

development 88. However, Olczak et al. 86 also examined the different aspects of 

research, implementation, and reporting of AI interventions. Similar checklists 

exist for reporting AI and ML in medicine. Such guidelines should help avoid 

common problems specific to the medical domain. 
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Overdiagnosis: There are risks with the probable over-availability of AI models, 

where we can upload any data and easily and cheaply get a result. Routinely 

using a cheap and fast model can lead to overdiagnosis, or even correct 

diagnosis, of benign conditions. This can lead to unnecessary psychological 

suffering, overuse of healthcare resources, and unnecessary treatments, which in 

turn can lead to complications and more suffering. 

1.5 Discussion and conclusion 

Orthopedic trauma is a considerable part of the global health burden, and with 

an aging population, this will increase. This thesis project envisions a system that 

can help clinicians and researchers on multiple levels. We strive towards an 

automated fracture classification system to improve interrater and intra-

observer reliability. It could allow for backward utility, i.e., application to previous 

data and studies, and forward utility, i.e., a clinical intervention as part of a 

computer-aided decision system. As such, we envision a system where we can 

predict patient outcomes, which could greatly improve patients' quality of care 

and aid in research.
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2 Research aims 
This thesis aimed to explore various facets of pathology detection and 

prediction using artificial neural networks. 

The specific aims of this thesis were to: 

1. Explore CNN for image analysis and classification in orthopedic medicine 

and transfer learning. 

2. Develop complex fracture classification, particularly for ankle fracture 

classification, according to the AO standard. 

3. Explore CNN model verification, transferability, and generalizability of an AI 

model to a clinical setting. 

4. Explore using neural networks for patient outcome prediction using PROM 

with the purpose of personalizing orthopedic medicine.
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3 Materials and methods 

3.1 Study design 

Studies I-III were cross-sectional studies, and Study IV was a cohort study. Study 

I and II were single-center studies, whereas Study III added an external validation 

site. Study IV was a multicenter study that used an additional external site for 

model evaluation. 

3.2 Data sources 

Studies I and II used data from a single site (Danderyd Hospital, Stockholm, 

Sweden). Study III used the same data source as studies I and II but added an 

external validation site (Flinders Medical Centre, Adelaide, Australia) as an 

external validation dataset (EVD). It used the test set of Study II as an internal 

validation dataset (IVD). Study IV used register data from the SFR and related 

imaging collected from major trauma hospitals in the Stockholm region of 

Sweden. We also collected imaging from Gotland, Sweden, for the EVD. 

3.2.1 Danderyd Hospital, Stockholm, Sweden (DS) 

IMAGING: Images were collected from DS PACS for all traumatic imaging at DS 

between 2002 and 2015. 

REPORTS: Radiology reports were collected from the RIS system. 

All data was anonymized upon collection. 

3.2.2 Flinders Medical Centre, Adelaide, Australia (FMC) 

IMAGING: We received 399 anonymous radiologic studies of post-ankle trauma 

emergency imaging. Studies were selected and provided by our research 

collaborators connected to Flinders University Medical Centre in Adelaide, 

Australia. We did not receive radiology reports or patient data. 

REPORTS: We had no radiologist reports for the Flinders data. 

All data was anonymized upon collection. 

3.2.3 The Swedish Fracture Registry (SFR) 

Data was collected on all fractures registered at the seven emergency hospitals 

in the greater Stockholm region between 2011-01-01 and 2019-06-30. We also 

collected data on all fractures from Region Gotland during the same period. 
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Data was pseudonymized upon collection, and the unique personal identification 

number (PID) of all patients was only used to ensure there was no overlap 

between different study populations and to associate imaging with patients and 

fractures. 

3.2.4 Region Stockholm (RS) 

Region Stockholm has a joint PACS database managed by “Bild och 

funktionstjänsten” (BFT) and SECTRA AB. We collected radiographic imaging of 

the fractures registered in the SFR during 2023. The seven major emergency 

hospitals in the Stockholm Region were included. 

1. Capio S:t Görans Hosptial 

2. Danderyd Hosptial 

3. Karolinska University Hospital, Huddinge 

4. Karolinska University Hospital, Solna 

5. Södersjukhuset Hospital 

6. Södertälje Hospital 

7. Tio Etthundra Norrtälje Hospital 

Data was pseudonymized after collection, and the PID of all patients was only 

used to associate imaging with pseudonymous SFR data. 

3.2.5 Region Gotland (RG) 

In December 2020, we collected the radiographic imaging of fractures in the SFR 

for Region Gotland. Imaging was collected for all registered fractures during the 

study period and one year forward. The eighth hospital in Study IV was thus: 

8. Visby Lasarett 

Data was pseudonymized after collection, and the PID of all patients was only 

used to associate imaging with pseudonymous SFR data. 

3.3 Neural networks 

3.3.1 Images and imaging 

The labeling evolved over the studies. When present, labels were extracted from 

the DICOM metadata. 

For Study I, the primary outcome was fracture (yes/no). We used an 

unsupervised ML technique called Latent Dirichlet (LDA), a form of natural 
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language processing (NLP), to extract report topics from the radiologist reports 
146,147. LDA is based on the idea that unique combinations of words are used in 

texts depending on topics. These topics create groups. We used these groups to 

create regular expressions that assigned class labels to studies based on the 

radiographic report. The fracture label was assigned for the entire study. 

The gold standard/test set was randomly selected from the training data based 

on these autogenerated labels. We aimed for a 50/50 split between fracture and 

no fracture. We used manual labeling by human reviewers to assign labels to the 

gold standard set. The reviewers first labeled the test set independently. We 

then held a consensus session to determine the labels for images where there 

was reviewer disagreement, with a majority vote deciding the final label. 

After the test set had been extracted, a subset of radiographs and labels in the 

training data were also manually reviewed. This was done to evaluate the 

automatic label generation and improve the labeling quality. We also held error 

review sessions, where we went through subsets of network classification errors 

that did not agree with the labels. 

The CNN outcome labels were based on each image rather than the entire study, 

in contrast with the automatic label generation for fracture, which labeled the 

study. The secondary outcomes body part, laterality, and exam view were 

extracted from the DICOM metadata. When available in the metadata, they were 

unique to each image.  

The labelers were a medical student, a resident radiologist, a senior consultant 

radiologist, one consultant orthopedic trauma surgeon, and two senior trauma 

consultants. 

For studies II and III, labels were based on the AO 2018 standard. A manual 

review of all radiographs and studies was required to assign classes. Labeling 

was performed using the Raiddex platform, an in-house-developed labeling tool. 

The gold standard set (“test set” in Study II and IVD in Study III) was randomly 

selected from the labels generated for Study I. The goal was to get a set with 

two-thirds “fracture” and one-third “no fracture.” After division into train and 

test sets, each set was independently labeled according to the AO ankle 

classification. 

For Study IV, labels were based on data in the SFR register. The primary 

outcomes were PROM1 or death within the study period. When possible, we 
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calculated the one-year change in PROM, PROMΔ. If the patient died during the 

study period, they could not have answered the PROM1 survey. 

One year change in PROM = PROM1 – PROM0 

The one-year change in PROM was derived from PROM0, which patients 

answered weeks post-trauma. We believed it was less reliable than PROM1 and 

had too many confounders that we could not correct for in this study. Therefore, 

we considered ΔPROMs as important secondary outcomes. Less important 

secondary outcomes were AO class, as reported in the SFR. When assigning 

images to fractures, we used the DICOM metadata to match images with 

fractures, as multiple fractures could be present in the same study. We selected 

all series that studied the fractured region within seven days of the trauma to 

capture post-intervention and immediate follow-ups. We only looked at lower 

extremity fractures, i.e., from the femur and distally. We also included adjacent 

imaging when available. However, we generally defined adjacent as the most 

proximal and distal segments to the fractured segment. The reason was that we 

wanted to capture more facets of the fractured region. 

3.3.2 Image transformations 

As CNNs can only learn to detect outcomes they have seen, having a wide range 

of data is essential. The goal is to make the activation general yet specific to the 

outcome. We want to change the information content of the image but keep the 

vital information the same. Transformed images were passed to the network with 

the same training labels as the original image. 

Rotation and reflections: By rotating and reflecting the image, we give the 

network different angles and perspectives of the same object or type of object, 

but the fundamental information remains the same. 

Jittering: Altering the pixel values by other proximal pixels is called jittering. 

Jittering can make the image look more “grainy” and less sharp, enforcing other 

features and training the network to look at less sharp images. 

Cropping or blocking: Cutting out smaller regions of images is a way to change 

the information content in the image. Usually, we hope that the relevant region 

remains, in our case, the fracture, but this is not guaranteed. But cropping is 

random; the same area will not be cropped, and often, the thing of most interest 

will remain. It could also enforce the learning of different class features, as the 
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most prominent feature might be hidden, and the network must depend on the 

less noticeable feature of the class. 

3.3.3 Convolutional neural networks 

For Study I, we evaluated a series of different neural networks (AlexNet, VGG 8, 

VGG-16, VGG-19, and Network In Network). For studies II through IV, we used the 

ResNet architecture. Similarly to Study I, we initially tested different network 

architectures (ResNet, DenseNet 148, and Inception 105,106) and found ResNet 

performed best for our task.  All network architectures were freely available, 

open-source networks. 

3.3.3.1 AlexNet (BVLC reference net) 

AlexNet 101 was the original neural network implementation that sparked the AI 

and CNN boom. It uses rectified linear units (ReLU) nonlinear functions instead of 

others that were popular when it was introduced. It has eight layers; the first five 

are convolutional, and the remaining three are fully connected. AlexNet was one 

of the CNNs studied in Study I. 

3.3.3.2 VGG 8, 16, 19 layers 

The Visual Geometry Group (VGG) S (8 layers) 103 and VGG-16 and VGG-19 

networks 107 are CNNs that improved upon AlexNet's architecture and 

performance by making the neural networks “deeper.” Sixteen and nineteen 

layers were the deepest that still allowed for proper training. Deeper networks 

were “too” deep as the training signal (the gradient) became too small for model 

training. VGG networks were evaluated in Study I. 

3.3.3.3 Network In Network 

Network in Network was an attempt to improve CNN's ability to study local 

image patches 102. It was evaluated in Study I. 

3.3.3.4 ResNet 

ResNet is built upon the VGG architecture with up to 50 or 100 neurons. It used 

skip connections for residuals, which allowed better network training as the 

gradient update could pass deeper down the network 149. 

While there are newer CNN architectures, these are robust and still widely used 

today.  



 

30 

3.3.3.5 Classification using one-hot encoding 

Classification evaluation was done using one-hot encoding. This means that 

each outcome is trained and tested independently of the others. In our models, 

fracture, 44A, 44A1, and 44A1.1 are four different and independently determined 

classes. Each study is evaluated against all possible classes. 

3.4 Statistics 

Evaluation metrics are important to model building, particularly in machine 

learning, where the model inputs and outputs are complex. Evaluation metrics 

tell us if a model does what it purports to do. Table 1 displays various 

performance metrics used in medicine and machine learning that were most 

relevant to our studies. As Olczak et al. 2021 86 discussed, we must balance our 

presentation between absolute correctness and the intended audience. We 

follow the recommendations therein. 

Table 1. Evaluation metrics. 

Measure Calculation or description 

Accuracy 
TP + TN

TP + FP + TN + FN
 

Recall, true positive rate (TPR), 
Sensitivity 

TP
TP + FN

 

Specificity 
TN

FP + TN
 

Youden J sensitivity + specificity – 1 

False positive rate (FPR) 
FP

FP + TN
= 1– specificity 

Precision, Positive predictive value 
(PPV) 

TP
FP + TP

 

Negative predictive value (NPV) 
TN

TN + FN
 

Model performance curves 
Receiver operating characteristic 
(ROC) curve 

sensitivity (y-axis) against (1–specificity) (x-
axis), i.e., TPR against FPR 

Precision-recall (PR) curve Precision (y-axis) against sensitivity (x-axis) 
Area under the curve (AUC) 
AUC of the ROC curve (AUROC) Statistic of model performance 
AUC of the PR-curve (AUPR) Statistic of model performance 
Regression or ordinal data modeling errors 

Standard deviation (SD) 1
1

samples − 1
∑(prediction − mean	value)!	 
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Table 1. Evaluation metrics. 

Measure Calculation or description 

Means squared error (MSE) ∑(true	value	 − 	prediction)!

number	of	cases
 

Root mean squared error (RMSE) √MSE 

Mean absolute error (MAE) 
∑|true	value	 − 	prediction|

number	of	cases
 

Multiple measurements 

Frequency weighted average 
∑ measurement"
#$%&'()"&*
"+, ⋅ n"

∑ n"
#$%&'()"&*
"+,

 

TP (True positive), FP (False positive), TN (True negative), FN (False negative). Table adapted from Olczak et 
al. 2021 86. 

3.4.1 Balanced vs. imbalanced problems 

If there are two outcomes to a model (e.g., fracture yes/no), the model is a binary 

classifier. We call it a multilabel classifier if we have more than two outcomes. It 

is common practice in classification tasks to reformulate a multilabel outcome 

as a binary task. If we have three classes, e.g., ankle fracture Weber A, B, and C, a 

classifier will often translate the problem into three separate tasks: Webber 

A/not A, Weber B/not B, and C/not C. As the number of outcomes increases, the 

“not” class will become more prevalent relative to the individual classes. A 

dataset can be both balanced and imbalanced at the same time. We can have a 

50/50 distribution for fracture yes/no, but a subgroup, e.g., Pipkin fracture, can 

be on in a ten thousand 150. 

3.4.2 Dataset size selection 

A random classifier should always be able to reach the accuracy of the most 

dominant class by simply guessing that outcome. Therefore, selecting a 50/50 

positive/negative outcome in the test set is customary. If the classifier obtained 

an accuracy of 40%, we could flip the labels and have 60% accuracy. Some 

argue that you should always select 50/50 data distribution, where one-half is 

no finding. This is not always possible or reasonable. For example, there is no 

default option in our Webber example where the outcomes are Webber A, B, and 

C. We should have a 33/33/33 test class split. If we were to add “no fracture” and 

make that 50% of the test, there would be a 17.5/17.5/17.5/50. Any model could 

always reach at least 50% accuracy by guessing no pathology, making a lower 

modeling accuracy unlikely. 

As the number of classes increases, this becomes more difficult, and as we work 

with real-world problems, this can become impractical, impossible, and perhaps 
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unethical. Studies II and III have approximately 40 possible outcomes for ankle 

classes. If we wanted to balance the training or test set, we would have had to 

peek at the dataset before selecting them – introducing bias and perhaps losing 

important information. Some outcomes are not presented at the necessary 

proportion, and some are not present at all. In addition, if we have many 

outcomes and want them represented, the amount of data separated for testing 

might further remove the few existing cases or fail to include any of the cases in 

the test set. For this reason, studies II and III aimed at 2/3 fractures, and the rest 

had no fracture in the test data. 

3.4.3 Accuracy 

Accuracy is commonly used to measure the proportion of correct guesses 

compared to all guesses. Each instance is equally important, including the TN. 

Accuracy can be misleading for imbalanced problems when the TN can 

dominate and is generally not recommended for imbalanced data 86. Take the 

AO ankle classification down to subgroup classification, as in studies II and III, in a 

perfectly balanced dataset (44A1.1 – 44C3.3 and no fracture, i.e., 27 outcomes). If 

we have a model that says no to whatever outcome, the classifier will have 

approximately 96% accuracy and perfect specificity (probability that the test 

returns negative if the thing tested is negative). However, sensitivity (the 

probability of a positive test result given that the condition is positive) would be 

zero. The expected random accuracy of a classifier with n classes is 

𝐴𝐶𝐶!"#$%& =% 𝑝'(
#

)*+
 

3.4.4 Precision and recall 

Unlike accuracy and specificity, precision and sensitivity (i.e., recall) do not 

consider TN, making them better suited to imbalanced problems. Precision and 

recall are defined in Table 1. Precision is the likelihood that a positive prediction is 

truly positive, while recall is the proportion of actual positives that are correctly 

identified. 

3.4.5 Area under the curve (AUC) 

Area under the curve (AUC) measures are a way to evaluate the overall 

performance of models and not specific instances of the model. When 

constructing a model, we must select a threshold (or cut-off) value (often a 

probability) at which the test returns positive or negative. We might, for example, 
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decide that the test will return positive if it is more than 50% likely true, i.e., p > 

0.5; otherwise, it will return negative. For a screening test, we usually prefer a 

lower threshold. We can get different performance metrics for the model 

depending on whether we set this probability high or low. Performance 

measures, such as specificity, sensitivity, accuracy, precision, etc., rely on this 

probability threshold and are threshold-dependent. Selecting a threshold can be 

arbitrary, based on experience, or one can try to optimize it as a parameter 

based on experiments. 

A way around this is to look at different thresholds and performances across a 

range of thresholds. Plotting the threshold-specific measures into a diagram for 

different thresholds will result in a curve. The area under the positive outcome 

guesses is the area under the curve (AUC). This is a summary statistic that 

speaks to overall model performance. However, it does not say anything about 

the specific components. It will not capture the actual best possible or worst 

possible performance but an average over the range of all thresholds. We need 

to look at the actual curves to understand each component properly. Also, we 

must decide on a particular threshold when implementing the model. 

3.4.6 Area under the receiver operating characteristic curve (AUROC) 

The area under the receiver operating characteristic curve (AUROC) looks at the 

true positive rate vs the false positive rate. It measures the overall performance 

of a model over all thresholds or independently of thresholds. The AUROC (often 

abbreviated as AUC in the literature) is widely used. AUROC measures the ability 

of the model to assign a higher probability to a randomly chosen true positive 

case than a true negative case. Random AUC is always 0.5, or 50%. It considers 

true negative instances equal to positives, making it poorly suited for 

imbalanced datasets. 

3.4.7 The area under the precision-recall curve (AUPR) 

A precision (positive predictive rate) and recall (sensitivity, the true positive 

rate) curve (PR curve) focuses on performance in the positive class. It ignores 

true negative cases, making it useful for imbalanced datasets. The area under the 

PR curve (AUPR) measures the trade-off between precision and recall across all 

thresholds. A random classifier will give the AUPR as the prevalence of the class 

in the data. 

AUPRrandom = number of cases for the class/total number of cases 
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A random classifier should give AUPR 0.2 for a class that makes up 20% of the 

data. Anything above is better than chance 151. 

Deciding how to measure model performance can be challenging. There are 

different schools of thought, and there is no best way for all situations, but it is 

an active field of research. We prefer AUC performance measures for model 

development, but once you intend to deploy a model, you need to decide on a 

decision threshold. There are ways to extract the “optimal threshold” for both 

curves, but the optimal performance is not always the desired outcome.  

3.4.8 Bootstrapping confidence intervals (CI) 

Bootstrapping is a statistical sampling procedure often used to generate 

probability distributions, such as ninety-five % confidence intervals (95% CI) 
152,153. Bootstrapping consists of randomly sampling data points from the dataset 

with replacement. We generate a distribution by repeatedly sampling the same 

number of points as our original dataset. Repeating this many times allows us to 

assess variability and derive confidence intervals. Therefore, we can estimate 

how representative our outcome is compared to chance. We used 

bootstrapping to calculate confidence intervals. 

3.4.9 Top-N performer 

Top-N performer means that, for a multilabel classifier, we look at the N most 

likely outcomes, and if your outcome is one of those, you are partially correct. 

We only looked at the top-1 performers, i.e., the most likely (highest probability) 

outcomes in our studies. 

3.4.10 Weighted average 

There are different ways to calculate aggregate average performance for a 

multilabel classifier. Averaging the performance metric over the number of 

classes (i.e., the arithmetic mean or macro average) gives equal weight to all 

outcomes. A rare class performing exceedingly well or poorly will have a 

disproportionate influence. In an imbalanced set, this can matter a lot. If we 

instead weigh the outcome based on the number of instances in the class, we 

get the micro average, also known as the frequency-weighted average. 

frequency-weighted average =
∑ ⋅  n,-./ ⋅ measure,-./0-.1
,-./*+

∑ n,-./0-.1
,-./*+

, 

where n is the number of cases 86. 
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3.5 Data and population 

3.5.1 Study I 

3.5.1.1 Study population 

The data represented a random subset of patients who had ankle, foot, wrist, or 

hand fractures and were radiographically examined at DS between 2002 and 

2015. Pediatric patients, i.e., having open physes, were excluded. All data was 

collected anonymously, and there was no way to identify patients or derive 

population statistics. 

3.5.1.2 Images, radiology reports, and labels 

The primary labeling outcome was the presence or absence of a visible fracture 

in the radiograph (fracture yes/no). Fracture classification labels were first 

generated from the radiologist reports associated with each study. LDA is a form 

of unsupervised machine learning for NLP, i.e., text analysis 154–157. The radiology 

reports were analyzed using LDA to generate report topics. These topics were 

manually refined and used to extract labels from radiologist reports 146,147. 

Secondary outcomes – side/laterality, body part, and exam view – were 

extracted from the DICOM image metadata. 

3.5.1.3 Training data 

The original data consisted of 256,458 radiographs. We divided the patients into 

an 80/20/10 train/training validation/test split. The training and validation data 

were used for model training. 

3.5.1.4 Test data/gold standard 

A random test set of 400 images (from the same number of patients) was 

selected from the patient test dataset. Two senior orthopedic consultants 

independently reviewed and labeled the radiographs. The radiographs were 

reviewed at the same resolution as the network (256x256 pixels), with all 

available views and the radiologist’s report. Afterward, a consensus session was 

held for all radiographs on which the reviewers disagreed, resulting in a 

fracture/no fracture gold standard. The review process was inspired by Audigé 

et al. 46,61 
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3.5.1.5 Network performance review 

We tested multiple CNNs, as described below. After the best-performing 

network for the fracture detection task had been determined, a network error 

review was conducted. We selected 200 radiographs where the CNN had 

misclassified the exam view, 200 radiographs where it had misclassified the 

laterality, and all radiographs where the body part had been incorrectly 

classified. We manually reviewed all these images for the respective category. All 

images were also examined for fracture presence. A senior radiologist consultant 

reviewed the exam view outcome alone, whereas JO (medical student) and MG 

(consultant orthopedic trauma surgeon) reviewed fracture, body part, and 

laterality. 

3.5.2 Study II 

3.5.2.1 Study population 

The study population was a subset of the same collected dataset as in Study I, 

i.e., the population of patients from DS between 2002 and 2015 without any 

population parameters or identifiable information. Only ankle imaging was 

included, and studies with open physes were excluded. 

3.5.2.2 Images, radiology reports, and labels 

Study II only included ankle-level imaging. Pediatric images (i.e., open physes) 

were excluded because they are classified differently from adult fractures 55,59,158. 

As in Study I, initial study labeling (fracture/no fracture) was performed with 

automated text analysis based on radiology reports. Studies were then 

separated into training and test sets before AO classification. 

Reviewers looked at the full-resolution images and labeled the entire study using 

all images. Labelers had access to the radiologist’s report during labeling. 

Radiologist reports never contained the AO classification; however, sometimes, 

the location was mentioned according to the Danis-Weber classification (infra, 

trans, or supra syndesmotic) 55. To the extent that tibia or fibular fractures were 

visible, they were also labeled according to the AO 2018 classification standard. 

If fractures were visible in the foot, these fractures were labeled according to 

bone location (e.g., os talus, os calcaneus, os cuboid, etc.). 

Primary outcomes were AO ankle fractures (i.e., segment 44). Other fractures 

were secondary outcomes, e.g., fibula (4F2), tibia (42 or 43), etc.). During image 
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classification and training, studies were labeled using a purpose-built labeling 

platform Raiddex created in-house. 

3.5.2.3 Training data 

Study II only examined fractures visible in ankle imaging. Compared to Study I, 

ankle fracture data was expanded with additional ankle studies. The training data 

was labeled by a group of five reviewers consisting of a senior consultant 

orthopedic trauma surgeon (AS), a consultant orthopedic trauma surgeon (MG), 

an emergency medicine specialist (TA), a junior doctor (JO), and a fifth-year 

medical student (FE). TA, JO, and FE were specially trained for the labeling task 

and labeled between 2000 and 4000 exams each. 

At least two out of five reviewers reviewed each study included in the training 

set. If there were any discrepancies between reviewers, MG reviewed the exam 

and decided on the final class. The training set included only outcomes with at 

least five cases. 

3.5.2.4 Test set/gold standard 

The test set consisted of 400 randomly selected patients to ensure no overlap 

between the training and the test set. To accommodate the large number of 

classes and the non-specificity of the initial automated labeling, 2/3 of the 

studies were selected to have a fracture label. All studies (409) of the selected 

patients were included in the test set. 

Two orthopedic trauma surgeons (MG and AS) independently reviewed all 

studies in the test set. For cases where the reviewers disagreed on labeling, a 

consensus session was held to decide the classification. 

3.5.3 Study III 

3.5.3.1 Study population 

We used the same data set, and thus the general population, from DS for training 

and modeling, as in studies I and II. Study II, like Study III, only examined ankle 

fractures. Additionally, 399 ankle exams of random patients from Flinders 

Medical Centre in Adelaide, Australia, were included as EVD. As population data 

did not exist for the DS dataset, the dataset from Flinders was provided 

anonymized and without any population data or radiologist reports. 
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3.5.3.2 Images, radiology reports, and labels. 

Study III used the same datasets as Study II, but additional studies were included 

in the training dataset. The Flinders data was labeled similarly to the DS test data, 

except it was provided without radiologist reports. 

3.5.3.3 Training data 

The same training data as in Study II was extended with 2664 additional labeled 

studies. At least two reviewers reviewed all newly included studies: MG (senior 

consultant orthopedic trauma surgeon), JO (medical doctor), and FW (medical 

student). As part of active learning, described later, many studies in the original 

training dataset from Study II were re-reviewed. 

3.5.3.4 Internal validation data 

Study III used the gold standard derived in Study II as an IVD. 

3.5.3.5 External validation data 

Three hundred ninety-nine studies were obtained from Flinders. Four orthopedic 

trauma surgeons (MG, JD, FIJ, and EA) independently classified images according 

to the AO 2018 standard. Two surgeons classified the entire dataset, and two 

surgeons classified half of the data each. Once classification was performed 

independently, a consensus session was held. During the consensus session, 

disagreements in classification between reviewers were resolved by a majority 

vote. The result was the EVD. 

3.5.4 Study IV 

Figure 3 shows the data collection and design of Study IV. 

3.5.4.1 Study population 

All fractures registered in the SFR by one of the emergency hospitals in the 

greater Stockholm Region from the start of the SFR (2011-01-01) until 2019-06-

30 were eligible for inclusion. The seven hospitals included were Danderyd 

Hospital, Karolinska University Hospital in Solna and Huddinge, Norrtälje Hospital, 

S:t Göran Hospital Södersjukhuset Hospital, and Södertälje Hospital. Visby 

Hospital in Gotland, Sweden, was included as a control or external validation site. 

Inadvertently, a subset of the patients in the previous Danderyd dataset (studies 

I-III) were included in this study. However, we could not say which patients were 

reintroduced as that data was anonymous. 
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Figure 3. Schematic overview of data sources, retrieval, exposures, and study 
outcomes. Data was collected on each fracture from the SFR. All radiographs 
visualizing a fractured and adjacent segments within seven days of trauma were 
collected from various PACS systems. Variables and imaging studies were merged. 3) 
The AI model was trained to predict outcomes and individual PROM scores one year 
after the trauma from the merged data. 
PACS – Picture Archiving and Communications Systems. PROMs – self-reported 
patient-reported outcome measures. SFR – Swedish Fracture Registry. PROMΔ – one 
year change in PROM. 
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Included were all patients where there was a PROM1 registered or who died 

within one year of the fracture date. If both were missing, the patient was 

excluded. In addition, fractures were excluded if there was no initial radiographic 

imaging of the fracture (i.e., no radiographic imaging within <7 days). Only 

fractures of the lower extremities were eligible for inclusion, i.e., proximal 

femur/hip and distal. Pelvic/acetabular fractures were not included. Any patients 

with any fracture or treatment registered at any Stockholm site and Gotland 

were excluded to ensure no patient overlap between training and test data. 

3.5.4.2 Images, radiology reports, and labels. 

Imaging was collected independently from the PACS of Region Stockholm and 

Region Gotland. Studies were matched to the SFR fracture using DICOM 

metadata. As described above, all studies possibly visualizing each fracture were 

mapped to the fracture.  

Outcomes were collected from the SFR. The primary outcomes were PROM1 

outcomes. Secondary outcomes were fracture segment, AO class (as per the 

SFR), and the change in PROM. We intended to predict complications 

(reoperation and infections); however, these were difficult to derive reliably from 

the SFR. It would require a manual review of all imaging (including MRI and CT) of 

the fractured area within one year of the trauma for all fractures. 

3.5.4.3 Training data and validation data 

We split the Stockholm dataset 80/20 between training and training validation 

data. Due to too few data points, we did not create a local test set (IVD). Instead, 

we used an EVD with patients from Gotland as test data. 

3.5.4.4 Test data – external validation data 

As stated, the test data consisted entirely of the Gotland EVD. 

3.6 Modelling 

3.6.1 Study I 

3.6.1.1 Outcomes 

The primary outcomes were 1) the top-performing neural network on fracture 

detection and 2) fracture detection accuracy (fracture yes or no) in terms of 

accuracy. Secondary outcomes were prediction accuracy on extremity (hand, 

foot, ankle), side (left or right), exam view, and previous/old fracture (yes/no). A 
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secondary outcome was also to assess if transfer learning was a reasonable 

strategy for training on orthopedic trauma. While ascertaining if transfer learning 

worked was of primary interest, it was a secondary outcome. We did not 

extensively compare training from scratch to transfer learning. 

3.6.1.2 Modeling and neural networks 

Study I compared five network architectures: BVCG reference net (“AlexNet”) 101, 

VGG 8/16/19-layers 107, and Network In Network 159. We used pre-trained 

networks, i.e., trained for other tasks, and they were then retrained for the 

fracture prediction task. The idea was that the network had learned a set of 

primary properties and shapes, which could then be remodeled and adapted for 

fracture detection. This is called “transfer learning”. Transfer learning helped 

these networks to manage more with the limited data set we provided. 

After training, the best-performing network on the primary task (fracture 

detection) was selected for final evaluation on the gold standard. Performance 

was evaluated using top-1 accuracy. 

3.6.2 Study II 

3.6.2.1 Outcomes 

The primary outcome was ankle fracture classification according to the AO 2018 

ankle fracture classification 55 in terms of AUROC. Secondary outcomes were 

fracture detection (yes/no), fibular and tibial fractures (AO 2018 classification), 

and foot fractures (bone localization). IRR was also a secondary outcome. 

3.6.2.2 Modeling and neural networks 

We used the ResNet neural network architecture 149, and training details are 

described in Table 2. 

Table 2. Neural network architecture and training strategies for Study II. 

Layer type Blocks Kernel size Filters Group 
ResNet block 1x2 5x5 32 Image 
ResNet block 1x2 3x3 64 Image 
ResNet block 4x2 3x3 64 Core 
ResNet block 2x2 3x3 128 Core 
ResNet block 2x2 3x3 256 Core 
ResNet block 2x2 3x3 512 Core 
Image max 1 - - Pool 
Convolutional 1 1x1 72 Classification 
Fully connected 1 - 4 Classification 
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Table 2. Neural network architecture and training strategies for Study II. 

Fully connected 1 - 4 Classification 
Session Epochs Internal learning 

rate 
Noise Teacher-student 

pseudolabels 
Initialization 70 0.025 None No 
Noise 80 0.025 5% No 
Teacher-student 40 0.005 5% Yes 
Regularization 20 0.025 10% No 
SWA 20x5 0.01 5% No 
Overfitting strategy Description 

Image jittering Each image was randomly flipped, cropped and rotated during 
training. 

Random noise A denoising autoencoder was employed to regularize the visual 
representation manifold. The encoder and decoder have 
identical layers and parameters. 

Teacher-student 
network using 
alternate data 

Semi-supervised training where a co-existing teacher network 
learned the labels from both the report and image. This allowed 

us to use the teacher’s labels when images had none. As these 

labels were less certain than the manually labeled images, the 
teacher label’s loss was reduced by 10%. During the teacher-
student session the data set was augmented unlabeled exams 
using a ratio of 1:2. During all sessions we switched between the 
ankle dataset and a similarly labeled dataset with wrist images 
that consisted of 17,511 exams. These were also augmented with 
unlabeled images with the same proportion between unlabeled 
as labeled in the ankle dataset 160. 

Stochastic weight 
averaging (SWA) 

A cosine function was used for decreasing the learning rate. It 
was reset between each section of training. Once the learning 
rate leveled off, we trained for 5 series using stochastic weight 
averaging 161. In Study III we had five series of 20 epochs. 

Active learning Poorly performing categories, during training, were actively 
reviewed. We also added more training examinations to further 
improve accuracy, more examinations were added to improve 
those categories. Highest entropy over predictions was used as 
the sampling strategy for active learning. I.e., we selected the 
cases that were closest to 50% probability for an outcome and 
focused on labeling those. This also called uncertainty sampling 
162–165. 

Adapted from Olczak et al. 2021 2. 
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3.6.3 Study III 

3.6.3.1 Outcomes 

The primary outcome was model performance (AUPR and AUROC) on 1) the 

external validation set and 2) the internal validation set. Secondary outcomes 

were fracture detection (yes/no), fibular and tibial fracture classes (according to 

AO 2018 classification), foot fractures (bone localization), and IRR. 

As we concluded in Study II, the data was imbalanced with many possible 

outcomes. For that reason, we followed the recommendations of Olczak et al. 

2021 86 and focused on other performance measures (AUPR), which are better 

suited to imbalanced data. However, we also reported AUROC as it is more 

widely used. 

3.6.3.2 Modeling and neural networks 

While the network was not pre-trained, other anatomies and outcomes were 

included during training. This was done to introduce noise and randomness, 

hoping the model would be perturbed sufficiently to find a better optimum. 

However, the network’s training data is expanded with other features that can be 

transferable to the actual task. We have seen this enhance network performance, 

and it is related to the transfer learning concept in Study I. Unlike Study II, we did 

not use teacher-student augmentation during training. Other than that, the 

modeling parameters are described in Table 2. 

3.6.4 Study IV 

3.6.4.1 Outcomes 

The primary outcome was model performance at predicting the PROM1 or 

prediction of death within the study period on the EVD. Secondary outcomes 

were the one-year change in PROM and fracture classification according to the 

AO classification used in the SFR. 

We used the RMSE vs. the SD to evaluate model performance on ordinal and 

numerical outcomes. The RMSE needed to be lower than the SD for the model to 

be helpful. If RMSE was greater than or equal to the SD, we could have guessed 

the most frequent outcome (mode) or the mean, and our expected error would 

be approximately the SD. If RMSE was equal to, or very close to, the SD, this 

suggested that the model has learned the mode or mean – i.e., it was considered 

a sign of overfitting.  
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For non-ordinal classification tasks, we used accuracy if they were balanced and 

binary. We used AUROC and AUPR as performance measures for complex and 

imbalanced classification. 

3.6.4.2 Modeling and neural networks 

Study IV is an experimental study that, like Study I, consisted of multiple 

experiments to obtain the best model for predicting patient outcomes. We used 

a ResNet-based model with the same design as in Study III but experimented 

with many different hyperparameters. The model was trained sequentially on all 

tasks. There were three types of training tasks: classification (fracture AO class, 

sex), ordinal scale prediction (most PROM outcomes), and regression tasks (age, 

PROM indices, VAS score, etc.). Primary outcomes were included in all models, 

and secondary outcomes depending on the experiment. 

For this study, we want to predict PROM1, a patient-centric measure. Therefore, 

we experimented by including adjacent radiographic imaging within seven days 

of the trauma. The idea is that we have a patient and not just a fracture. Our 

initial approach is to look at each study separately, even where there should not 

be a fracture but pass the same training PROM0 or death within 1 year. We hope 

the model will “overfit” and recognize that it is the same patient. Other 

experiments will include combining all imaging into one patient/training case, as 

Study II combined all radiographs in one study, whereas Study I looked at 

individual radiographs. Other experiments will only look at the actual fracture 

location imaging and ignore other imaging for the patient, except if the patient 

has multiple fractures. 

 Classification 

During our training, we learned that a model that trains on various outcomes 

tends to perform better at individual outcomes. The model becomes richer and 

learns more patterns. Therefore, we included classification tasks as secondary 

outcomes. Also, classifications were taken from the SFR and not generated by us. 

Ordinal classification 

Ordinal parameters have an order, but the steps are not necessarily evenly 

spaced. For example, a scale with “bad,” “neutral,” “good,” and “best.” The 

distance between “good” and “best” is arbitrary, but “best” is always better. We 

implemented the rank-consistent ordinal regression (CORN) loss 133 as in the 

coral-pytorch package 166 for ordinal outcomes. Nearly all PROM1 outcomes are 
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ordinal, except for indices, and we additionally construct the one-year change in 

PROM, i.e., PROMΔ, outcomes, which are ordinal or numerical, depending on the 

parameters they were derived from. 

The CORN Loss uses binary classification (comparing two outcomes) to check if 

the outcome is greater than the previous class. For example, is the outcome ≥0, 

≥1, ≥2, etc., where 0, 1, 2, … are the ordered outcomes? 

We also experiment with modifications to the CORN Loss, in line with the Focal 

Loss introduced by Lin et al. in 2018 167. The Focal Loss was introduced into an 

object detection scenario with extreme class imbalance. It introduced a 

modulating factor 𝑓(𝛾, 𝑝2) = (1 − 𝑝2)3 to the Cross-Entropy Loss, commonly 

used in object detection. Here, pt = p if we are looking at the correct (“true”) 

class, and pt = 1 – p otherwise, where p is the predicted probability of the class. γ 

is a focusing parameter that downweighs easy examples. The more likely a class 

is, i.e., p→1, the smaller (1 − 𝑝2)3 will get, as long as γ≥1. The easier classes will 

influence the loss and training less.  

We experiment with an implementation of the modulating factor with the CORN 

Loss as 

𝐹𝑜𝑐𝑎𝑙	𝐶𝑂𝑅𝑁	𝐿𝑜𝑠𝑠 = 𝑓(𝛾, 𝑝2) ⋅ 𝐶𝑂𝑅𝑁(𝑋, 𝑦), 

where γ and pt are as before, and CORN(X,y) was defined as in Cao et al 133. 

Linear regression 

We had previously found regression modeling of parameters, like distance and 

positions in radiographs, difficult with MSE loss. This is likely because CNNs have 

difficulty retaining spatial information 168. However, we were not looking to model 

spatial relationships. Therefore, we experimented with alternate loss functions to 

see if we could train the network to perform better at regression tasks. 

For regression outcomes, we experimented with MSE loss and robust general 

loss 169. The robust general loss was implemented using the robust_loss_pytorch 

package 170. We chose whichever performed best and did not report the other. 

Experiments 

We conducted several experiments varying: 

• Image size 
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• “Study” vs. “patient” data combinations 

• Loss functions 

• Optimizers 

• Model input (secondary parameters) 

• Various regularizers, such as L2 regularization, drop out 

Testing and model evaluation 

To avoid model selection and presentation bias, we test only the best-

performing model from the experiments on the EVD after all experiments are 

concluded.
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4 Results 

4.1 Study I 

4.1.1 Primary outcome – Fracture detection 

We trained five pre-trained neural network models on a dataset of 256,458 

radiographs, of which 56% had been labeled as having a fracture (See Table 3). 

Table 3. Image and label data. 

Table 3a  Table 3b 
Label n (%) *  Label error n (%) 

 Fracture  
No 111,275 (43)  Correctly classified  276 (69) 
Yes 143,183 (56)  Misclassified 124 (31) 
Missing 2,000 (1)    

 Laterality  
Left 120,377 (47)  Correct laterality 52 (26) 
Right 132,511 (52)  Misclassified 8 (4) 
Missing 3,570 (1)  Marker missing  140 (70) 

 Exam body part  
Finger 390 (0.2)  Correct body part 17 
Thumb 76 (0)  Related body part 51 
Scaphoid 27,962 (11)  Unrelated body part 15 
Hand 5,614 (2)  Invalid image 3 
Wrist 65,264 (25)    
Ankle 98,002 (38)    
Missing 59,150 (23)    

 Exam view  
Distal 7,136 (3)  Correct view 110 (55) 
AP 55,916 (22)  Misclassified 90 (45) 
Oblique 44,962 (18)   Unrelated view 12 (6) 
Proximal 6,776 (3)   Closely related view 78 (39) 
Radial 6,946 (3) 

   

Ankle: mix-up between AP and 
mortise 22 (11) 

Lateral 67,465 (26) 

   
Ankle: mix-up between oblique 
and lateral 23 (12) 

Ulnar 7,014 (3) 

   
Scaphoid: mix-up between 
supination and pronation 14 (7) 

Missing 60,243 (24) 

   
Scaphoid: mix-up between 
distal and proximal 7 (4) 

     Miscellaneous 12 (6) 
3a shows raw image and label data and 3b the results of the manual review of classifications and labels. 
These were labels from the training set. Olczak et al. 2017 1. 
* 70% were reserved for training, 20% for validation, and 10% for testing.  
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56% of images were labeled as having a fracture, and 43% as not having one. 

Only 1% of radiographs could not be labeled. Ankles were the most studied body 

part (38%), followed by wrists (25%). 23% of images were missing information 

about the body part, and 24% lacked information on the exam view. 

The VGG-16 model performed best in training validation for the primary 

outcome, and we selected it as our evaluation model. VGG-19 was a close 

second, and the differences in performance for the two models were minimal. All 

networks performed excellently for the exam body part and similarly for the 

exam view. Laterality had the most significant spread between the networks. See 

Figure 4. 

 

Figure 4. Performance of the five networks during validation. The best performer at 
fracture detection, VGG-16, was selected for further analysis. Image from Olczak et al. 
2017 1. 

VGG-16 had a fracture detection accuracy of 83% (95%CI 80-87%) on the gold 

standard. This was on par with the accuracy of human reviewers, who were 82% 

(95%CI 78-86) accurate for reviewer 1 and 82% (95%CI 78-85) for reviewer 2 

(see Table 4). 
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Table 4. Outcomes compared between observers. 

Observer Label a Network b Reviewer 1 Reviewer 2 Gold standard 
Label a – 80 (0.6) 76 (0.5) 74 (0.5) 83 (0.7) 79-87 
Network b 80 (0.6) – 84 (0.7) 86 (0.7) 83 (0.7) 80-87 
Reviewer 1 76 (0.5) 84 (0.7) – 90 (0.8) 82 (0.6) 78-86 
Reviewer 2 74 (0.5) 86 (0.7) 90 (0.8) – 82 (0.6) 78-85 
Gold standard 83 (0.7) 83 (0.7) 82 (0.6) 82 (0.6) – 
Performance is the % of outcomes where both observers agree reported as accuracy % (kappa) 95% CI. 
Olczak et al. 2017 1. 
a Four of the radiographs were missing and were excluded from the analysis for this category. 
b VGG-16, the best performing network during training and validation. 

4.1.2 Secondary outcomes 

The best model's performance was impressive for the secondary outcomes. The 

accuracy of identifying the exam body part was near perfect, 100%. The 

accuracy of determining the exam view was >95%, and for identifying the 

laterality, it was 90%. These results underscore the reliability and robustness of 

our model. A subsection of misclassifications and images was manually studied 

for causes of error. For fracture misclassification, the study was often labeled as 

a fracture, but a fracture was not visible in that view. In 69% of cases, the model 

correctly classified the radiographs, while the label was incorrect. For the exam 

views, the view was frequently mistaken for a similar view. It was also clear that, 

for example, scaphoid images were often taken in non-standard views. See Table 

3b for details. 

4.2 Study II 

Out of 5495 radiographic ankle exams, 400 patients (409 exams) were assigned 

to the test set. The remaining 5086 examinations were used for model training 

and validation. No patients were present in the test and training sets. As studies 

had been vetted in Study I, none were excluded now. See Figure 5. 

Table 5. Case distribution in training and test set. 

 Train (n=4,941)  Test (n=409) 
 Yes  Maybe  No  Yes  Maybe  No 
Fracture 2,156 (44)  121 (2)  2,664 (54)  306 (75)  13 (3)  90 (22) 
Malleolar (44) 1,696 (34)  63 (1)  3,182 (64)  210 (51)  6 (1)  193 (47) 
Tibia distal (43) 254 (5)  6 (0)  4,681 (95)  63 (15)  2 (0)  344 (84) 
Fibula (4F2-3) 129 (3)  3 (0)  4,809 (97)  37 (9)  0 (0)  372 (91) 
Tibia diaphyseal 
(42) 

88 (2)  0 (0)  4,853 (98)  27 (7)  0 (0)  382 (93) 

Other bone 210 (4)  47 (1)  4,684 (95)  35 (9)  5 (1)  369 (90) 
“Other bone” generally indicates a visible fracture of the foot. It was possible for an examination to have 
multiple fracture labels. Percentages of dataset in parenthesis. Table from Olczak et al. 2021 2. 
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Figure 5. Combined Study II and III flowchart. The dashed line demarcates the data 
used in Study II. The data outside the demarcations are the extensions made for 
Study III. Image adapted from Olczak et al. 2024 3.  

The training set had 44% fractures and 54% without, whereas the test set had 

the desired distribution of 75% fractures. However, only 210 (51%) were malleolar 

fractures; the rest were fractures of the tibia, fibula, and foot bones. See Table 5. 

The distribution of fractures according to the AO 2018 ankle classification for the 

training and test sets is displayed in Figure 6 and Table 6. All types of ankle 

fractures were represented in the training set except for A3.2 and only one A2.2 

in the entire data. Type B fractures were twice as many as type A fractures, and 

the training set had twice as many type C fractures as type B fractures. The test 

set had mostly type B fractures, with more type C than type A fractures. 

The network could detect a malleolar fracture with an AUCmalleolar 0.92 (0.89-

0.95). However, the weighted mean AUC (wAUC) was wAUCmalleolar 0.90, with 

wAUCA 0.84, wAUCB 0.90, and wAUCC 0.87. These, along with individual AO 

outcomes, are presented in Table 7.  We only reported outcomes (32 out of 39) 

with ≥2 cases, the minimum for computing confidence intervals. 
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Table 6. Distribution of AO outcomes in the malleolar fracture data. 

AO type Train (n=4,941) Test (n=409) 
44A (483 train & 31 test cases) 
    A1.1 78 (22) 6 
    A1.2 165 (46) 7 
    A1.3 114 (32) 9 
    A2.1 105 (93) 5 
    A2.2 1 (1) - 
    A2.3 7 (6) 2 
    A3.1 11 - 
    A3.3 2 2 
44B (1,015 train & 136 test cases) 
    B1.1 385 (74) 39 
    B1.2 132 (25) 26 
    B1.3 6 (1) 2 
    B2.1 99 (44) 20 
    B2.2 105 (47) 16 
    B2.3 19 (9) 2 
    B3.1 76 (28) 12 
    B3.2 152 (57) 13 
    B3.3 41 (15) 6 
44C (255 train & 47 test cases) 
    C1.1 85 (67) 17 
    C1.2 20 (16) 5 
    C1.3 22 (17) 2 
    C2.1 30 6 
    C2.2 21 3 
    C2.3 39 9 
    C3.1 10 3 
    C3.2 9 1 
    C3.3 19 1 
% of the AO group is reported in parenthesis after the count, if there were more than 100 cases in the group.  Olczak 
et al. 2021 2. 
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Figure 6. Distribution of AO classes in the malleolar fracture data. Diagram from Olczak 
et al. 2021 2. 

Figure 7 and Figure 8 illustrate examples of classification errors the model 

performs. 

Figure 7. Type A fractures the network incorrectly classified as a type C fracture. Image 
from Olczak et al. 2021 2. 
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Table 7. Modeling outcomes for AO ankle (44) fractures in the test set. 

AO 
Cases 

(n=409) 
Sensitivity 

(%) 
Specificity 

(%) 
Youden’s J a AUC (95% CI) 

Malleolar  216 86 90 0.76 0.92 (0.89–0.95) 

44A 32 73 81 0.54 0.81 (0.72–0.88) 

  1 22 88 75 0.63 0.87 (0.77–0.94) 

    1.1  6 75 93 0.68 0.87 (0.70–0.98) 

    2.1  7 80 83 0.63 0.79 (0.54–0.94) 

    3.1  9 75 88 0.63 0.84 (0.70–0.95) 

  2 7 100 74 0.74 0.91 (0.83–0.97) 

    2.1  5 100 74 0.74 0.89 (0.80–0.97) 

  3 2 100 86 0.86 0.90 (0.83–0.96) 

44B 137 89 88 0.77 0.93 (0.90–0.95) 

  1 67 90 88 0.77 0.93 (0.88–0.96) 

    1.1  39 87 84 0.71 0.89 (0.85–0.93) 

    2.1  26 92 85 0.77 0.90 (0.81–0.96) 

  2 38 82 84 0.65 0.87 (0.80–0.92) 

    2.1  20 100 72 0.72 0.87 (0.83–0.92) 

    2.2  16 88 74 0.62 0.82 (0.68–0.91) 

    2.3  2 100 98 0.98 0.99 (0.97–1.00) 

  3 32 78 90 0.68 0.90 (0.85–0.94) 

    3.1  12 83 75 0.58 0.79 (0.63–0.90) 

    3.2  13 92 82 0.74 0.91 (0.84–0.96) 

    3.3  6 100 91 0.91 0.96 (0.93–0.98) 

44C 47 74 90 0.65 0.86 (0.79–0.92) 

  1 24 75 79 0.54 0.83 (0.72–0.91) 

    1.1  17 76 85 0.61 0.86 (0.74–0.94) 

    1.2  5 80 92 0.72 0.89 (0.77–0.97) 

    1.3  2 100 88 0.88 0.92 (0.86–0.97) 

  2 18 100 72 0.72 0.91 (0.86–0.95) 

    2.1  6 83 93 0.76 0.91 (0.79–0.98) 

    2.2  3 100 88 0.88 0.96 (0.88–1.00) 

    2.3  9 100 77 0.77 0.88 (0.84–0.92) 

  3 5 100 88 0.88 0.95 (0.90–0.98) 

Weighted mean AUC 

A 0.84 

B 0.90 

C 0.87 
Malleolar b 0.90 
a Criterion based on Youden’s Index 171–174 defined as 𝑌𝐼(𝑐) = 𝑚𝑎𝑥!(𝑆𝑒(𝑐) + 𝑆𝑝(𝑐) − 1). This is maximizes the 
sum of Sensitivity and Specificity 175,176 and to the criterion that maximizes concordance, which is a 
monotone function of the AUC. Adapted from Olczak et al. 2021 2. 
b Weighted mean of malleolar classes in the table. 
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Figure 8. The fracture is a malleolar type C fracture. The network predicted a type B 
fracture. Image from Olczak et al. 2021 2. 

4.3 Study III 

Study III initially contained the same data distributions as Study II (see Figure 5 

and Table 5). We added 2,664 training cases for 7,750 training and validation 

cases, focusing on type A fractures, for active training but do not report the 

resulting training distribution. 

There were considerable differences between the IVD and EVD. The EVD had 

three projections, whereas the EVD had ≥4. The EVD was focused on lateral 

malleolus fractures with a higher proportion of type A fractures (94 out of 274 

malleolar fractures in the EVD vs 32 out of 216 in the IVD). The EVD included one-

week follow-ups and weight-bearing studies, which are not immediate studies at 

the ER, as all were in the IVD. The exclusion criteria for the EVD were images or 

views of poor quality and severely displaced fractures, whereas none had been 

excluded from the training data or IVD. This amounted to less severe fractures in 

the EVD, i.e., a higher proportion of type A1 and B1 fractures. See Table 8 for 

details. 
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Table 8. Properties of the IVD and EVD. 

Dataset properties IVD  EVD 
Cases  409   399 
Projections  ≥4   3 
Focus Ankle study  Lateral malleolar fracture 

Timing Initial imaging  
Initial imaging, one-week follow-

up, weight-bearing 
Implants & casts  Yes   No 
Open physes  No   No 

Excluded on 
imaging quality 

 None 
 Insufficient quality views  

Poor quality images 
Severely displaced fractures 

      
Fracture Cases Percent (%)  Cases Percent (%) 
Base 253 61,9%  277 69,4% 
  Malleolar  216 52,8%  274 68,7% 
  Fibula * 37 9,0%  3 0,8% 
Previous 
fracture/other* 134 32,8%  15 3,8% 
  Foot* 57 13,9%  2 0,5% 
Numbers are based on ground truth labelling by reviewers after the consensus session. The IVD is the 
internal validation dataset and the EVD the external validation dataset. Table from Olczak et al. 2024 3. 
* Denotes fractures and outcomes that were flagged as fractures during study selection but are not 
malleolar fractures but secondary outcomes. 

 

4.3.1 Flinders data (EVD) 

Type A fractures were the second most numerous, and all but one (dropped) 

were type A1. Only for type A1.1 did performance not exceed chance, but the 

decrease was not statistically significant. Type B fractures performed well, but 

three cases did not perform better than a random classifier. Type C fractures 

were either C1.1 or C2.1, and the classifier performed well on both. Figure 9 shows 

an incorrectly classified type B fracture with network activation. Figure 11 

illustrates examples of type A fractures where the network classified them 

incorrectly, where one is shown in Figure 10 with an activation map.  

An AUROC of 0.83 is good for fracture detection, and an AUPR of 0.93 is 

excellent. The change in wAUC for the EVD after active learning was +0.06 to 

wAUC 0.83, and wAUPR was +0.07 to 0.64. Twenty-one outcomes were 

represented in the EVD, and 17 were statistically significantly better than chance. 

Type C fractures decreased performance (ΔAUPR -0.06), resulting from the 

network losing understanding of type C2.1 fractures (ΔAUPR -0.38). The model 

could perform better than random for all outcomes with>5 test cases. For 

classes with fewer cases, except B2.2, the 95% CI could not be bounded to 



 

56 

indicate that the performance was significantly better than chance. Table 9 

shows model performance and improvement on the EVD. 

Table 9. Flinders external validation dataset (EVD) performance. 399 Cases. 

 AO Cases AUC (95% CI) ΔAUC AUPR (95% CI) ΔAUPR 

Malleolar 274 0.86 (0.82-0.89) 0.03 0.93 (0.91-0.96) * 0.00 

44A 94 0.74 (0.68-0.80) 0.12 0.52 (0.43-0.61) * 0.20 

  1 93 0.75 (0.69-0.81) 0.14 0.57 (0.46-0.64) * 0.25 

    1.1 5 0.63 (0.33-0.94) -0.07 0.04 (0.00-0.16) * 0.02 
    1.2 28 0.78 (0.69-0.87) 0.15 0.26 (0.11-0.39) * 0.14 
    1.3 60 0.68 (0.61-0.76) 0.08 0.30 (0.21-0.42) * 0.10 
44B 142 0.90 (0.87-0.93) 0.03 0.84 (0.78-0.88) * 0.03 
  1 116 0.84 (0.80-0.88) 0.03 0.68 (0.60-0.76) * 0.07 
    1.1 87 0.80 (0.75-0.85) 0.05 0.47 (0.37-0.57) * 0.06 
    1.2 27 0.80 (0.72-0.88) 0.02 0.19 (0.11-0.31) * 0.03 
    1.3 2 0.60 (0.17-1.02) -0.30 0.01 (0.00-0.02) * -0.01 
  2 21 0.85 (0.75-0.94) 0.10 0.32 (0.18-0.49) * 0.19 
    2.1 18 0.85 (0.75-0.95) 0.12 0.33 (0.16-0.56) * 0.24 
    2.2 3 0.93 (0.88-0.99) 0.00 0.05 (0.01-0.16) * -0.03 
  3 5 0.82 (0.61-1.04) -0.06 0.19 (0.01-0.47) * 0.11 
    3.1 5 0.82 (0.63-1.02) -0.05 0.12 (0.01-0.30) * 0.07 
44C 38 0.89 (0.82-0.96) 0.04 0.63 (0.45-0.77) * -0.06 
  1 28 0.90 (0.84-0.96) 0.08 0.42 (0.26-0.62) * 0.07 
    1.1 27 0.90 (0.84-0.97) 0.07 0.44 (0.22-0.64) * 0.10 
  2 9 0.92 (0.82-1.01) -0.04 0.19 (0.04-0.37) * -0.40 
    2.1 9 0.90 (0.79-1.02) -0.04 0.16 (0.05-0.31) * -0.38 

   
Weighted mean 

AUC 
Δ 

Weighted mean 
AUPR 

Δ 

   0.83 +0.06 0.64 +0.07 
Performance reported with the area under the receiver operating characteristic curve (AUC) and the area 
under the precision-recall curve (AUPR). 95% confidence intervals (CI) were computed using 
bootstrapping. Outcomes with ≤1 instance were not reported. ΔAUC and ΔAUPR was the difference in AUC 
and AUPR comparing the actively trained network to the pre-active training network. Δ	Implies a change 
or difference. Table modified from Olczak et al. 2024 3. 
* Indicates that the AUPR with 95% CI exceeded random AUPR.  

4.3.2 Danderyd (IVD) 

Performance was adequate for type A fractures, but only four classes were 

shown to be significant. See Table 10 for model performance on the IVD after 

active learning. Type B and type C fractures were overall better than chance. 

The network had an AUC of 0.95 and an AUPR of 0.96, both excellent. The wAUC 

improved by +0.04 to 0.93, and the wAUPR improved by +0.08 to 0.65. wAUC 

differed by 0.10 between the EVD and IVD (0.83 vs. 0.93), but the wAUPR for the 
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EVD and IVD were similar (0.64 vs. 0.65). Thirty-four outcomes and 26 were 

statistically significantly better than chance, except for one type B outcome. 

Once again, all performance seemed substantially better than chance, but the 

lack of cases made bounding the errors difficult. 

  

Figure 9. Activation heatmap of a type 44B1.2 fracture, incorrectly classified as a type 
C fracture. The activations show what the model reacts to when classifying fractures. 
Study from the external validation dataset and Olczak et al. 2024 3. 

 

 

Figure 10. Activation heatmaps where a type 44A1.3 fracture is incorrectly classified as 
a type B fracture. The activations show what the model reacts to in the radiograph. 
Study from the external validation data and Olczak et al. 2024 3.  
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 Options (%)  

Row no. A B C  Max True categories 
1 1 86 21  B A1.3 
2 2 5 89  C A1.3 
3 2 2 37  C A1.3 
4 3 4 5  C A1.3 

 

Figure 11. Incorrectly classified cases where the network failed to detect Type A, sorted 
from lowest probability to highest. Studies from taken from the EVD. Table and images 
from Olczak et al. 2024 3. 
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Table 10. Danderyd internal validation dataset (IVD) performance. 409 cases.	

  Cases AUC (95% CI) ΔAUC AUPR (95% CI) ΔAUPR 

Fracture 216 0.95 (0.94-0.97) 0.03 0.96 (0.94-0.97) * 0.03 
44A 32 0.84 (0.76-0.92) 0.04 0.46 (0.11-0.61) * 0.23 
  1 22 0.84 (0.76-0.92) -0.03 0.37 (0.15-0.56) * 0.19 
    1.1 6 0.88 (0.79-0.97) -0.01 0.04 (0.01-0.10) 0.00 
    1.2 7 0.84 (0.69-1.00) -0.02 0.30 (0.01-0.61) 0.22 
    1.3 9 0.82 (0.69-0.96) 0.03 0.18 (0.01-0.45) 0.11 
  2 7 0.99 (0.97-1.00) 0.15 0.52 (0.04-0.75) 0.28 
    2.1 5 0.99 (0.97-1.00) 0.09 0.41 (0.00-0.65) 0.15 
    2.3 2 0.99 (0.99-1.00) 0.14 0.25 (0.00-0.50) 0.23 
  3 2 0.95 (0.86-1.04) -0.02 0.08 (0.03-0.17) * 0.01 
44B 137 0.96 (0.93-0.92) 0.04 0.92 (0.88-0.95) * 0.05 
  1 67 0.95 (0.93-0.98) 0.05 0.77 (0.67-0.86) * 0.14 
    1.1 39 0.90 (0.87-0.94) 0.07 0.37 (0.25-0.51) * 0.06 
    1.2 26 0.94 (0.91-0.97) 0.07 0.40 (0.22-0.60) * 0.15 
    1.3 2 0.96 (0.90-1.02) 0.04 0.06 (0.01-0.23) * 0.03 
  2 38 0.86 (0.80-0.92) 0.01 0.40 (0.25-0.56) * 0.04 
    2.1 20 0.91 (0.85-0.97) 0.05 0.37 (0.20-0.55) * 0.14 
    2.2 16 0.88 (0.77-1.00) -0.01 0.35 (0.15-0.53) * 0.13 
    2.3 2 0.87 (0.68-1.07) -0.05 0.03 (0.00-0.11) * 0.00 
  3 32 0.92 (0.89-0.96) 0.06 0.50 (0.27-0.59) * 0.03 
    3.1 12 0.90 (0.83-0.97) 0.04 0.18 (0.06-0.34) * 0.02 
    3.2 13 0.92 (0.88-0.96) 0.08 0.20 (0.08-0.35) * -0.04 
    3.3 6 0.96 (0.93-0.99) 0.02 0.16 (0.03-0.30) * 0.06 
44C 47 0.93 (0.89-0.97) 0.05 0.73 (0.61-0.82) * 0.20 
  1 24 0.90 (0.84-0.97) 0.05 0.42 (0.27-0.63) * 0.18 
    1.1 17 0.93 (0.87-0.99) 0.03 0.39 (0.21-0.60) * 0.16 
    1.2 5 0.86 (0.75-0.97) -0.01 0.05 (0.01-0.12) 0.01 
    1.3 2 0.93 (0.83-1.02) 0.02 0.04 (0.01-0.14) * 0.02 
  2 18 0.93 (0.90-0.97) -0.02 0.40 (0.16-0.58) * -0.05 
    2.1 6 0.86 (0.74-0.99) -0.08 0.22 (0.01-0.51) 0.07 
    2.2 3 0.99 (0.99-1.00) 0.08 0.32 (0.00-0.62) 0.28 
    2.3 9 0.92 (0.88-0.96) 0.03 0.11 (0.04-0.21) * 0.00 
  3 5 0.98 (0.97-1.00) 0.07 0.29 (0.02-0.67) * 0.21 
    3.1 3 0.96 (0.90-1.03) 0.29 0.16 (0.00-0.50) 0.15 

  
Weighted mean 

AUC 
Δ 

Weighted mean 
AUPR 

Δ 

  0.93 +0.04 0.65 +0.08 
Performance reported with the area under the receiver operating characteristic curve (AUC) and the area 
under the precision-recall curve (AUPR). 95% confidence intervals (CI) were computed using 
bootstrapping. Outcomes with ≤1 instance were not reported. ΔAUC and ΔAUPR was the difference in AUC 
and AUPR comparing the actively trained network to the pre-active training network. Δ	Implies difference.  
Table modified from Olczak et al. 2024 3. * Indicates that the AUPR with 95% CI exceeded random AUPR. 
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4.4 Study IV 

The SFR had 41,043 unique fractures from Stockholm and Gotland during the 

study period and 41,004 after excluding patients that overlapped both regions. 

After exclusion and inclusion, we had 297 fractures (275 patients) in the EVD 

(Gotland in Study IV) and 6,161 fractures (5,430 patients) remaining from the 

seven clinics in the Stockholm training data. No fractures were excluded due to 

missing imaging. See Figure 12 for a flowchart and Table 11 for more details. 

 

Figure 12. Data flowchart of Study IV, with the number of unique fractures reported. 
Numbers in parenthesis is the number of unique patients. 
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Table 11. Population statistics for fractures in the training and test sets. 

Parameter Train (Stockholm) Test (Gotland) 
Unique patients 4344 275 
Unique fractures 4952 297 
Died in study period 1591 89 
PROM0 * 3658 128 
PROM1 * 3367 208 
Gender female/male (%) 64.5% / 34.5% 61.3% / 35.7% 
Age (min: mean±sd: max; 
median; mode) 

14: 71.2±18.9: 108; 75; 89 18: 70.3±17.8: 102; 72; 90 

Number of AO classes 149 75 
* Not necessarily complete PROM. 

Table 12 lists training parameters derived from the SFR for classification 

outcomes and regression variables, and Table 13 gives the same for ordinal 

variables. Both tables show the training data from Stockholm. 

Table 12. Classification and regression outcomes in the Stockholm data.  

CLASSIFICATION Nfractures Noutcomes Mode    
Died in study period 1,591 2 No    
Injury sex 4,952 2 Female    
Body part * 4,952 6 -    
Segment * 4,952 17 -    
AO Class * 4,952 149 -    
REGRESSION VARIABLES N Mean SD Median Min Max 
PROM1 EQ5D index 2781 0.68 0.31 0.73 -0.6 1.00 
PROM1 Daily activity index 3306 28.86 31.18 15.00 0 100 
PROM1 Emotional index 3296 31.07 21.83 28.57 0 96.4 
PROM1 Arm-hand function 
index 

3302 11.83 21.15 0.00 0 100 

PROM1 Mobility index 3303 27.80 24.79 22.22 0 100 
PROM1 Function index 3304 24.86 23.09 17.65 0 100 
PROM1 Bother index 3141 23.26 22.52 16.67 0 100 
For scores, a higher number means more decrease in function or more problems, except for EQ5D Index 
where the reverse is true. N is the count of the parameter. 
 * Secondary outcome. Primary and secondary outcomes are treated identically by the network. 

 

Table 13. Ordinal outcomes in the Stockholm training data. 

ORDINAL VARIABLES N Mean SD Median Min Max Mode 
PROM0 Recovery expected 1747 1.51 0.96 1 1 5 1 
PROM0 Smoker 3367 1.71 0.87 2 1 4 1 
PROM1 EQ5DAnxiety 2832 1.39 0.57 1 1 3 1 
PROM1 EQ5DPain 2825 1.75 0.56 2 1 3 2 
PROM1 EQ5DUsualAct 2816 1.45 0.67 1 1 3 1 
PROM1 EQ5DSelfCare 2837 1.23 0.53 1 1 3 1 
PROM1 EQ5DMobility 2827 1.55 0.55 2 1 3 2 
PROM1 EQ5DVAS * 3296 2.01 1.13 2 1 5 1 
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Table 13. Ordinal outcomes in the Stockholm training data. 

ORDINAL VARIABLES N Mean SD Median Min Max Mode 
PROM1 DifficChair 3289 1.62 1.08 1 1 5 1 
PROM1 DifficOpenMedBottle 3289 1.62 1.08 1 1 5 1 
PROM1 DifficShop 3272 1.85 1.34 1 1 5 1 
PROM1 DifficStairs 3287 2.30 1.28 2 1 5 1 
PROM1 DifficTightFist 3273 1.35 0.80 1 1 5 1 
PROM1 DifficShower 3284 1.86 1.20 1 1 5 1 
PROM1 DifficComfortSleep 3290 1.68 0.94 1 1 5 1 
PROM1 DifficBendKneelDown 3291 2.61 1.40 2 1 5 1 
PROM1 
DifficUseButtonsZippers 

3294 1.52 1.00 1 1 5 1 

PROM1 DifficCutFingernails 3290 1.56 1.14 1 1 5 1 
PROM1 DifficDressYourself 3282 1.56 0.98 1 1 5 1 
PROM1 DifficWalk 3280 2.10 1.15 2 1 5 1 
PROM1 DifficGetMoving 3267 2.06 1.02 2 1 5 1 
PROM1 DifficGoOutYourself 3282 1.82 1.38 1 1 5 1 
PROM1 DifficDriveCar 3248 2.03 1.53 1 1 5 1 
PROM1 
DifficCleanAfterBathroom 

3291 1.38 0.91 1 1 5 1 

PROM1 DifficUseHandle 3290 1.36 0.87 1 1 5 1 
PROM1 DifficWriteType 3298 1.42 0.96 1 1 5 1 
PROM1 DifficTurning 3294 1.59 0.97 1 1 5 1 
PROM1 
DifficPhysRecreaActivity 

3282 2.62 1.42 2 1 5 1 

PROM1 DifficUsualLeisureAct 3283 2.00 1.26 1 1 5 1 
PROM1 DifficSexAct 3032 2.18 1.61 1 1 5 1 
PROM1 DifficLightHousework 3300 1.76 1.23 1 1 5 1 
PROM1 
DifficHeavyHousework 

3294 2.52 1.55 2 1 5 1 

PROM1 DifficUsualWork 3288 2.11 1.41 1 1 5 1 
PROM1 OftenLimp 3253 2.64 1.45 2 1 5 1 
PROM1 
OftenAvoidUsingPainful 

3274 2.17 1.24 2 1 5 1 

PROM1 OftenLegLock 3261 1.80 1.03 1 1 5 1 
PROM1 
OftenProblConcentration 

3269 1.92 1.07 2 1 5 1 

PROM1 OftenOverworkAffect 3260 2.57 1.29 2 1 5 1 
PROM1 OftenActIrritable 3283 1.98 0.96 2 1 5 1 
PROM1 OftenTired 3290 2.90 1.11 3 1 5 3 
PROM1 OftenFeelDisabled 3283 2.55 1.41 2 1 5 1 
PROM1 
OftenAngryFrustrated 

3293 2.45 1.27 2 1 5 1 

PROM1 
BotherUseHandArmLeg 

3292 2.39 1.19 2 1 5 2 

PROM1 BotherUseBack 3266 1.72 1.06 1 1 5 1 
PROM1 BotherWorkHome 3283 1.98 1.21 1 1 5 1 
PROM1 BotherPersonalCare 3293 1.70 1.12 1 1 5 1 
PROM1 BotherSleepRest 3293 1.76 1.03 1 1 5 1 
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Table 13. Ordinal outcomes in the Stockholm training data. 

ORDINAL VARIABLES N Mean SD Median Min Max Mode 
PROM1 
BotherLeisureRecreAct 

3274 2.56 1.39 2 1 5 1 

PROM1 BotherFriendsFamily 3286 1.41 0.86 1 1 5 1 
PROM1 BotherThinkConcRem 3293 1.70 1.01 1 1 5 1 
PROM1 BotherAdjustCope 3287 1.94 1.11 2 1 5 1 
PROM1 BotherUsualWork 3276 1.97 1.27 1 1 5 1 
PROM1 BotherFeelDepend 3297 1.82 1.21 1 1 5 1 
PROM1 BotherStiffPain 3286 2.41 1.18 2 1 5 2 
PROM1 Recov 2516 2.56 1.36 2 1 5 2 
PROM1 Reoperated 3240 0.18 0.38 0 0 1 0 
For scores, a higher number means more decrease in function or more problems, EQ5D VAS where the 
reverse is true. N is the count of the parameter. The mode is the most common (highest frequency) value. 
* VAS can be treated as numerical or ordinal variable, and some sources argue that it acts more like an 
ordinal than continuous variable 177. 

Table 14 and Table 15 lists parameters of the Gotland data for comparison. 

Table 14. Classification and regression outcomes in the Gotland set. 

CLASSIFICATION Nfractures Noutcomes Mode    
Died in study period 89 2 No    
Injury sex 297 2 Female    
Body part * 297 6 -    
Segment * 297 17 -    
AO Class * 297 75 -    
REGRESSION VARIABLES N Mean SD Median Min Max 
PROM1 EQ5D index 158 0.72 0.29 0.80 -0.17 1.0 
PROM1 Daily activity 
index 

207 22.05 29.49 8.33 0 100 

PROM1 Emotional index 207 25.98 21.12 21.43 0 82.14 
PROM1 Arm-hand 
function index 

205 10.42 19.86 0.00 0 96.875 

PROM1 Mobility index 205 22.10 24.14 13.89 0 100.0 
PROM1 Function index 205 19.93 22.17 12.50 0 95.59 
PROM1 Bother index 196 17.79 20.54 8.33 0 87.5 
For scores, a higher number means more decrease in function or more problems, except for EQ5D Index 
where the reverse is true. N is the count of the parameter. The mode is the most common (highest 
frequency) value. 
 * Secondary outcome. Primary and secondary outcomes are treated identically by the network. 

 

Table 15. Ordinal outcomes in the Gotland set. 

ORDINAL VARIABLES N Mean SD Median Min Max Mode 
PROM0 Recovery expected 120 1.53 0.93 1 1 5 1 
PROM0 Smoker 123 1.71 0.80 2 1 4 2 
PROM1 EQ5DAnxiety 161 1.27 0.47 1 1 3 1 
PROM1 EQ5DPain 162 1.70 0.57 2 1 3 2 
PROM1 EQ5DUsualAct 162 1.33 0.59 1 1 3 1 
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Table 15. Ordinal outcomes in the Gotland set. 

ORDINAL VARIABLES N Mean SD Median Min Max Mode 
PROM1 EQ5DSelfCare 163 1.20 0.51 1 1 3 1 
PROM1 EQ5DMobility 161 1.47 0.55 1 1 3 1 
PROM1 EQ5DVAS * 180 76.56 19.02 80 10 100 90 
PROM1 DifficChair 203 1.80 1.06 1 1 5 1 
PROM1 DifficOpenMedBottle 205 1.60 1.08 1 1 5 1 
PROM1 DifficShop 205 1.60 1.18 1 1 5 1 
PROM1 DifficStairs 205 1.97 1.21 2 1 5 1 
PROM1 DifficTightFist 204 1.42 0.86 1 1 5 1 
PROM1 DifficShower 205 1.61 1.04 1 1 5 1 
PROM1 DifficComfortSleep 205 1.56 0.85 1 1 5 1 
PROM1 DifficBendKneelDown 205 2.33 1.40 2 1 5 1 
PROM1 
DifficUseButtonsZippers 

205 1.51 1.04 1 1 5 1 

PROM1 DifficCutFingernails 203 1.43 0.99 1 1 5 1 
PROM1 DifficDressYourself 203 1.42 0.86 1 1 5 1 
PROM1 DifficWalk 205 1.84 1.08 1 1 5 1 
PROM1 DifficGetMoving 205 1.80 0.93 2 1 5 1 
PROM1 DifficGoOutYourself 205 1.60 1.23 1 1 5 1 
PROM1 DifficDriveCar 201 1.74 1.41 1 1 5 1 
PROM1 
DifficCleanAfterBathroom 

204 1.26 0.76 1 1 5 1 

PROM1 DifficUseHandle 204 1.24 0.69 1 1 5 1 
PROM1 DifficWriteType 204 1.42 0.93 1 1 5 1 
PROM1 DifficTurning 203 1.49 0.91 1 1 5 1 
PROM1 
DifficPhysRecreaActivity 

205 2.24 1.40 2 1 5 1 

PROM1 DifficUsualLeisureAct 203 1.73 1.17 1 1 5 1 
PROM1 DifficSexAct 190 1.94 1.58 1 1 5 1 
PROM1 DifficLightHousework 206 1.54 1.09 1 1 5 1 
PROM1 
DifficHeavyHousework 

206 2.21 1.50 2 1 5 1 

PROM1 DifficUsualWork 206 1.87 1.31 1 1 5 1 
PROM1 OftenLimp 202 2.45 1.45 2 1 5 1 
PROM1 
OftenAvoidUsingPainful 

205 1.88 1.14 1 1 5 1 

PROM1 OftenLegLock 204 1.62 0.95 1 1 5 1 
PROM1 
OftenProblConcentration 

206 1.82 1.01 1 1 5 1 

PROM1 OftenOverworkAffect 205 2.32 1.25 2 1 5 1 
PROM1 OftenActIrritable 207 1.79 0.97 1 1 5 1 
PROM1 OftenTired 207 2.70 1.06 3 1 5 3 
PROM1 OftenFeelDisabled 207 2.20 1.32 2 1 5 1 
PROM1 
OftenAngryFrustrated 

207 2.20 1.20 2 1 5 1 

PROM1 
BotherUseHandArmLeg 

206 2.12 1.05 2 1 5 2 

PROM1 BotherUseBack 205 1.63 1.01 1 1 5 1 
PROM1 BotherWorkHome 202 1.68 1.04 1 1 5 1 
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Table 15. Ordinal outcomes in the Gotland set. 

ORDINAL VARIABLES N Mean SD Median Min Max Mode 
PROM1 BotherPersonalCare 206 1.48 0.95 1 1 5 1 
PROM1 BotherSleepRest 205 1.67 1.00 1 1 5 1 
PROM1 
BotherLeisureRecreAct 

205 2.15 1.31 2 1 5 1 

PROM1 BotherFriendsFamily 205 1.20 0.62 1 1 5 1 
PROM1 BotherThinkConcRem 205 1.64 1.00 1 1 5 1 
PROM1 BotherAdjustCope 204 1.67 0.97 1 1 5 1 
PROM1 BotherUsualWork 204 1.66 1.02 1 1 5 1 
PROM1 BotherFeelDepend 204 1.63 1.13 1 1 5 1 
PROM1 BotherStiffPain 204 2.25 1.09 2 1 5 2 
PROM1 Recov 205 2.31 1.28 2 1 5 1 
PROM1 Reoperated 205 0.14 0.34 0 0 1 0 
For scores, a higher number means more decrease in function or more problems, except for EQ5D VAS 
where the reverse is true. N is the count of the parameter. The mode is the most common (highest 
frequency) value. 
* VAS can be treated as numerical or ordinal variable, and some sources argue that it acts more like an 
ordinal than continuous variable 177. 

Table 16 and Table 17 reports the PROMΔ data, secondary outcomes, for the 
training set. We see that all scores, on average, show a decrease in function, 
whether they are directly associated with lower extremities or not. Examples are 
PROMΔ DifficOpenMedBottle or PROMΔ DifficWriteType. However, even the most 
affected SFMA parameter, PROMΔ OftenLimp, does not, on average, increase one 
step on the scale. I.e., the mean change is <1 for all ordinal values except EQ5D 
VAS. 

Table 16. PROMΔ regression outcomes in the Stockholm training data. 

REGRESSION VARIABLES N Mean SD Median Min Max 
PROMΔ EQ5DIndex 2,672 -0.10 0.30 -0.07 -1.2 1.4 
PROMΔ DailyActIndex 3,213 9.76 21.18 5 -100 100 
PROMΔ EmotionalIndex 3,200 9.40 20 7.14 -82 79 
PROMΔ ArmHandFuncIndex 3,238 3.01 12.74 0 -100 94 
PROMΔ MobilityIndex 3,244 11.99 19.02 8.33 -72 89 
PROMΔ FunctionIndex 3,243 8.56 15.67 5.88 -85 85 
PROMΔ BotherIndex 2,949 9.82 18.71 6.25 -83 88 
For scores, a higher number means more decrease in function or more problems, except for EQ5D Index 
where the reverse is true. N is the count of the parameter. The mode is the most common (highest 
frequency) value. PROMΔ is the one-year change in PROM. 

	

Table 17. PROMΔ ordinal outcomes in the Stockholm training data. 

ORDINAL VARIABLES N Mean SD Median Min Max 
PROMΔ EQ5D VAS * 2,393 -8.75 22.24 -5 -100 98 
PROMΔ EQ5D Anxiety 2,761 0.07 0.59 0 -2 2 
PROMΔ EQ5D Pain 2,765 0.29 0.69 0 -2 2 
PROMΔ EQ5D Usual Act 2,737 0.12 0.66 0 -2 2 
PROMΔ EQ5D SelfCare 2,785 0.05 0.46 0 -2 2 
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Table 17. PROMΔ ordinal outcomes in the Stockholm training data. 

ORDINAL VARIABLES N Mean SD Median Min Max 
PROMΔ EQ5D Mobility 2,770 0.23 0.56 0 -2 2 
PROMΔ DifficChair 3,229 0.42 0.97 0 -4 4 
PROMΔ DifficOpenMedBottle 3,207 0.12 0.80 0 -4 4 
PROMΔ DifficShop 3,185 0.27 1.02 0 -4 4 
PROMΔ DifficStairs 3,209 0.56 1.03 0 -4 4 
PROMΔ DifficTightFist 3,201 0.07 0.71 0 -4 4 
PROMΔ DifficShower 3,203 0.32 1.00 0 -4 4 
PROMΔ DifficComfortSleep 3,208 0.26 0.95 0 -4 4 
PROMΔ DifficBendKneelDown 3,224 0.59 1.18 0 -4 4 
PROMΔ 
DifficUseButtonsZippers 

3,227 0.13 0.71 0 -4 4 

PROMΔ DifficCutFingernails 3,214 0.12 0.80 0 -4 4 
PROMΔ DifficDressYourself 3,205 0.21 0.73 0 -4 4 
PROMΔ DifficWalk 3,210 0.52 0.98 0 -4 4 
PROMΔ DifficGetMoving 3,184 0.49 0.92 0 -4 4 
PROMΔ PROMΔ 
DifficGoOutYourself 

3,209 0.26 0.99 0 -4 4 

PROMΔ DifficDriveCar 3,142 0.29 1.09 0 -4 4 
PROMΔ 
DifficCleanAfterBathroom 

3,216 0.10 0.68 0 -4 4 

PROMΔ DifficUseHandle 3,209 0.11 0.69 0 -4 4 
PROMΔ DifficWriteType 3,222 0.09 0.68 0 -4 4 
PROMΔ DifficTurning 3,224 0.17 0.79 0 -4 4 
PROMΔ 
DifficPhysRecreaActivity 

3,175 0.75 1.32 1 -4 4 

PROMΔ DifficUsualLeisureAct 3,169 0.38 1.11 0 -4 4 
PROMΔ DifficSexAct 2,784 0.20 1.16 0 -4 4 
PROMΔ DifficLightHousework 3,193 0.20 0.93 0 -4 4 
PROMΔ DifficHeavyHousework 3,183 0.43 1.16 0 -4 4 
PROMΔ DifficUsualWork 3,160 0.37 1.10 0 -4 4 
PROMΔ OftenLimp 3,134 0.93 1.51 1 -4 4 
PROMΔ 
OftenAvoidUsingPainful 

3,142 0.53 1.30 0 -4 4 

PROMΔ OftenLegLock 3,153 0.33 1.04 0 -4 4 
PROMΔ 
OftenProblConcentration 

3,169 0.22 0.98 0 -4 4 

PROMΔ OftenOverworkAffect 3,143 0.63 1.34 0 -4 4 
PROMΔ OftenActIrritable 3,172 0.12 0.97 0 -4 4 
PROMΔ OftenTired 3,187 0.34 1.12 0 -4 4 
PROMΔ OftenFeelDisabled 3,181 0.69 1.27 0 -4 4 
PROMΔ OftenAngryFrustrated 3,184 0.54 1.24 0 -4 4 
PROMΔ 
BotherUseHandArmLeg 

3,202 0.85 1.29 1 -4 4 

PROMΔ BotherUseBack 3,176 0.18 0.98 0 -4 4 
PROMΔ BotherWorkHome 3,185 0.35 1.02 0 -4 4 
PROMΔ BotherPersonalCare 3,210 0.23 0.92 0 -4 4 
PROMΔ BotherSleepRest 3,192 0.12 1.04 0 -4 4 
PROMΔ BotherLeisureRecreAct 3,159 0.70 1.39 0 -4 4 
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Table 17. PROMΔ ordinal outcomes in the Stockholm training data. 

ORDINAL VARIABLES N Mean SD Median Min Max 
PROMΔ BotherFriendsFamily 3,189 0.09 0.91 0 -4 4 
PROMΔ BotherThinkConcRem 3,201 0.11 0.92 0 -4 4 
PROMΔ BotherUsualWork 3,161 0.41 1.18 0 -4 4 
PROMΔ BotherFeelDepend 3,197 0.24 1.11 0 -4 4 
PROMΔ BotherStiffPain 3,187 0.54 1.26 0 -4 4 
For scores, a higher number means more decrease in function or more problems, except for EQ5D VAS 
where the reverse is true. N is the count of the parameter. The mode is the most common (highest 
frequency) value. PROMΔ is the one-year change in PROM. 
* VAS can be treated as numerical or ordinal variable, and some sources argue that it acts more like an 
ordinal than continuous variable 177. 

Below, we report the training and validation of RMSE for some outcomes. Figure 

13 shows changes in the RMSE for two models. We look at the curves in general 

and do not focus on individual models. We compare the RMSE to the SD from 

Table 13. The validation error for OftenAvoidUsingPainful approached an RMSE of 

1.25 vs. SD 1.24. OftenFeelDisabled had RMSE 1.45 vs. SD 1.41, whereas 

OftenProblemConcentration had RMSE 2.00 vs. SD 1.07 for the best model. 

OftenLimp is decreasing towards RMSE 1.55 vs. SD 1.45. OftenLegLock at best 

performs at RMSE 2.40 vs SD 0.95. 

 

Figure 13. Comparing the root mean squared error (RMSE) for PROM1 parameters. The 
x-axis is batch iterations, and the y-axis is the RMSE. 

We find the same pattern for the outcomes in Figure 14, which also reports 

additional variables. In Figure 14, we also find that the best model's prediction 

accuracy for “Died in study period” was 67.5% on average, which is the 

percentage of people who did not die in the study period. We see a similar 
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pattern for “Injury Sex.” For most parameters, we saw training performance 

tapering off and little additional benefit from additional training. 

Figure 15 shows that the one-year change in PROM, PROMΔ, outcomes deviated 

considerably for these same models. The graphs are representative of PROMΔ 

training performance. Preliminary results show that after seven epochs, the Focal 

CORN Loss (with ⍺=1 and γ=2.0) seems to perform better than other losses. 

However, we started to see the network clipping the losses, i.e., the losses are so 

small that they are set to zero and ignored to prevent exploding gradients – but 

these cases do not contribute to learning. 
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Figure 14. The performance for some PROM1 outcomes and classification tasks 
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Figure 15. Training RMSE for PROMΔ parameters. The Focal CORN Loss (green) seven 
epochs compared to models using MSE and robust adaptive loss at approximately 50 
epochs. 
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5 Discussion 

5.1 Fracture detection using CNNs 

The kind of fracture detection from radiographs, as concerns this thesis, is a 

relatively recent phenomenon. In Olczak 2017 (Study I), we applied artificial 

intelligence to fracture detection using CNNs 1. We built upon the ideas of Shin et 

al. 178 and Tajbakhsh et al. 179, who used transfer learning on medical images of 

chest radiographs. Both used pre-trained CNN and retrained them to classify 

chest radiographs. We applied a similar strategy to orthopedic trauma 

radiographs of hands, wrists, and ankles. We reached orthopedic surgeons’ 

detection performance for several different outcomes; however, these were on 

the downscaled image 1,147. An additional feature, only implicitly stated in the 

original article, was that unsupervised learning with natural language 

processing (NLP) – language and text analysis – was used to derive the labels. 

NLP is another form of ML, and the goal was to create a workflow from report to 

label to classification – as there were over 250,000 radiographs. However, the 

NLP method caused problems with label and classification accuracy 1,146,147. Kim 

and MacKinnon also used the transfer learning approach to study radiographs of 

distal radius fractures. They performed better than our study on a much smaller, 

more curated, and less clinically relevant dataset 180.  

Urakawa et al. studied intertrochanteric hip fractures and achieved high 

performance in fracture detection 181. Gale et al. predicted the presence of hip 

fractures with expert-level accuracy 182. Still, the results were not peer-reviewed, 

and no peer-reviewed version has been presented. However, Badgeley et al., 

from the same research groups, presented results from a study of hip fractures, 

which reached a very high accuracy. However, they could also show that their 

accuracy was random once they accounted for logistic and healthcare 

parameters 136. In essence, the model overfitted to other data parameters than 

fracture detection. Nicolaes, in turn, studied vertebrae fractures and were able to 

localize fractures in a CT scan 183. 

The described papers illustrate essential pathology detection. Just detecting a 

fracture (e.g., fracture is present or not) is not always a clinically relevant task. It 

is something most doctors can quickly learn. This triviality is also suggested by 

the excellent AUC values that many studies report. We believed that it is more 

relevant to determine the properties of the fracture, whether we need to do 

something about the fracture, and what that intervention should be. As 
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discussed, the commonly used criteria for selecting interventions are, for 

example, Neer’s classification for humerus fractures or the Lauge-Hansen or the 

AO classification for ankle fractures. These are more complex classification tasks 

than just detecting the fracture, and the results are more complicated to learn 

and present to the end user. 

Qi et al. trained a CNN to detect and classify femoral radiographs according to 

the AO classification and to place bounding boxes around the fracture location 
184, i.e., the region of interest (ROI). They attained an area under the receiver-

operating characteristic curve (AUC) of 0.71 for the double task 185, which is not 

considered useable in a clinical context. It was also unclear if the ROI, the 

classification, or the combined task attained that level of accuracy. In 2021 

(Study II) 2, we studied ankle fractures, classifying them according to the AO 2018 

classification without drawing an ROI. We reached a weighted AUC of 0.90 for all 

classes. We also approached prediction differently. Qi et al. approached 

classification in order of severity, i.e., C3 to A1. If the algorithm detected a 

positive outcome (>50% likely) in one class, it stopped, and later classes were 

ignored - even if that class would be more correct. Instead, we predicted all 

outcomes simultaneously and selected the most likely outcome. We also 

examined the complete study – i.e., where the fracture might be visible in one 

projection but not another, whereas Qi et al. studied individual 

images/radiographs. Gan et al. examined the presence or absence of distal 

radius fractures and located the ROI but did not classify the fractures further 186.  

Chung et al. studied humerus fractures according to Neer’s classification 187, 

whereas Heimer et al. used cadaveric CT scans to study skull fractures 188. Choi 

et al. studied fracture detection in pediatric elbows 189. Blüthgen et al. studied 

wrists 190. More complex outcomes also occur. Dreizin et al. studied CT slices of 

pelvic studies to classify fractures according to the AO standard 191. Lind et al. 

classified knee fractures 19, Qi et al. identified femur fractures 184, Tanzi et al. 

identified hip fractures 98, and Akbarian et al. studied hip fractures according to 

the AO 2018 system 22. 

While these studies use CNNs to study fractures, other outcomes are also 

explored. For example, Jang et al. used a CNN to predict osteoporosis from 

radiographs 192, Magnéli et al. studied glenohumeral osteoarthritis and avascular 

necrosis, and Olsson et al. classified knee osteoarthritis according to the 

Kjellgren-Lawrence system 20. 
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We see that tradeoffs need to be made during algorithm creation and 

implementation. Some consider a bounding box (i.e., ROI prediction) highly 

valuable. In contrast, others consider it a risk that will draw attention to the ROI 

but cause reviewers to miss the whole picture. The idea behind these studies is 

that if we can classify fractures and medical image data accurately and 

consistently, we can use that information to agree upon treatment. As we saw, 

the critique of many classification systems is their (a) difficulty of application 

and (b) questions about their reproducibility between observers, leading to their 

(c) poor utility. The development of consistency, reproducibility, and reliability 

will produce utility. In addition, any system can be trained to report the class of 

several models, allowing for comparison and usage of what best serves the 

situation. 

None of the mentioned studies examined outcome prediction from imaging 

using CNNs. 

5.2 Imaging-based patient outcome prediction 

While studies exist that use image-based CNNs to predict outcomes, these are 

usually for chest radiographs, chest CT, or skull imaging. They derive predictions 

for COVID-19, pneumonia, ICU admission, etc. 193–197. Shin et al. 197 built a model to 

predict pneumonia outcomes on an existing imaging data analysis platform. A 

clinical software model examined chest radiographs and calculated a severity 

score. This severity score was then part of a multivariate Cox-regression model 

to predict pneumonia outcome. Kim et al. used a similar approach but trained 

the image analysis CNN themselves. They used a pre-trained CNN on chest 

radiographs to predict 30-day mortality from the radiographs and compared it 

to a clinical score. The CNN performed better, but not significantly better. Then, 

similarly to Shin, they combined the CNN output with the clinical score in a 

logistic regression model and used the score output instead of the clinical score 

components. The combined model performed significantly better than the 

clinical score or CNN alone 196.  

Pease et al. developed a model for predicting outcomes after traumatic brain 

injury from CT scans. They created a separate linear discriminant analysis model 

and combined the models using an ensemble stacking model to create a 

superior model 195. Gordeau et al. 194 trained a network to predict mechanical 

ventilation outcomes in COVID-19 patients. Instead of ensemble stacking, they 

used a similar feature enhancement approach. They pre-trained a model and 
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then selected the (two out of 1024) most distinctive features of the classifier. 

They used those features and the linear model output that predicted mortality 

to train various classifiers. Kwon et al. taught a CNN to predict COVID-19 

outcomes. Unlike the other models, they added clinical variables as input to the 

last fully connected layer, i.e., the classification layer 193. We have found no 

imaging-based outcome predictor for orthopedic trauma. The closest was 

Alfraihat et al., who used radiographic features to predict future radiographic 

features. They used features of the images but not the actual imaging 198. 

5.3 Study I 

5.3.1 Discussion of results 

We showed that the CNN could classify radiographs on par with human 

reviewers regarding the presence or absence of fractures. The most common 

errors were due to image ambiguity or missing data. “Fracture” was a label for 

the entire study, whereas the network looked at individual images. This confused 

the training and performance assessment we concluded in our manual review. 

We showed that CNNs trained for other tasks could be retrained to detect 

fractures. In addition, they could be retrained to detect exam views, body parts, 

and laterality in a skeletal radiograph. This had previously been tested for other 

medical domains, such as lung nodules in chest radiographs 199, spine MRI 200, and 

CT slices 178,179,201. However, this was the first study to show this for skeletal trauma 

radiographs. 

We also showed that deeper layered models, with more features and nodes, 

outperformed shallower models, which indicated that the extra computational 

effort to train them was worthwhile. Neither did we see tendencies toward 

overfitting the data during training. We believed this was because we had a large 

data set, that training and validation sets were resampled at each epoch, and 

perhaps the automatic labeling created noise in the data. Overfitting means the 

model learns the individual data points, e.g., recognize the image and label rather 

than the features that define the label. 

Surprisingly, the best networks could capture laterality better than the others. As 

training images were randomly mirrored and rotated, laterality effects from the 

scanner—e.g., the right hand appearing to the left—should be largely eliminated. 

Our interpretation was that the network captures other indicators that we did 

not. Perhaps the dominant hand's bone structure or tissue differs from the non-
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dominant hands. This indicates that ML models can find patterns and predictors 

of which we are unaware. For example, an automated algorithm found that the 

stroma around breast cancers had value in prognosis 202. 

5.3.2 Strengths 

We used a large dataset of 256,000 radiographs, which we believe assisted it in 

not overfitting. 

With excellent performance on secondary outcomes, many of which have 

multiple possible outcomes, we showed that the ML model learned to interpret 

the data. 

5.3.3 Limitations 

The primary outcome, fracture, was automatically extracted from radiologist 

reports, though the extraction criteria had been manually coded via key phrases. 

Trained specialists with many years of experience generated the reports. The 

language was not always easy to interpret, and the same report could refer to 

different fractures or features in the same exam. We concluded that radiologist 

reports were unsuitable for labeling orthopedic trauma radiographs. 

The classification, fracture/no fracture, has limited utility. Improved extraction 

using improved natural language processing might provide more helpful 

information. 

Radiologist reports have limitations. They answer specific questions in the 

referral. Since we did not have access to referrals, the reports were taken out of 

context. Information in the image might have been omitted, which limits their 

utility. 

The fracture was labeled for the study, whereas the network looked at individual 

images. While a fracture might be visible in one projection, it could be hidden in 

another. However, the network and gold standard studied each radiograph 

independently and did not consider this. 

We did not have population data for the dataset, so we could not infer how 

general the results were. 
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5.4 Study II 

5.4.1 Discussion of results 

We classified fractures according to the AO standard for ankle fractures using AI, 

with better than random performance. Unlike Study I, we did not use a pre-

trained network for Study II. In addition, unlike Study I, the network in Study II 

looked at the entire examination, including all images and projections. 

One of our stated limitations with Study I was that we believed that classification 

needed to be more complex than just detecting fracture. For that reason, we 

implemented the AO 2018 ankle classification. As implemented in our study, we 

used the AO classification down to the subgroup level. We looked at type, group, 

and subgroup independently. Theoretically, but unlikely, a study could be 

classified as type 44A, group 44B2, and subgroup 4F2C3.3. We looked at all the 

images in the study for all possible outcomes and selected the most likely 

outcome. Some outcomes could co-occur, such as fracture yes/no, and other 

types of fractures, such as foot and tibia fractures. A different approach, chosen 

by Qi et al., was to select a priority order for the network. While they were only 

classified into the AO group, they looked sequentially at the fractures in order of 

severity, i.e., 44C3 > 44C2, 44C1, 44B3, etc. If 44C3 was positive, the model 

stopped and never checked if another, less “serious” injury group had a higher 

probability 184. 

A problem we encountered with our classification, which became more 

pronounced the more finely granular the class, was missing data and imbalanced 

data. As we saw in Table 6, some outcomes are not represented in the training or 

testing data (such as 44A3.2) or are very rare in the training data and not 

present in the test data (e.g., 44A2.2). The model will thus never be able to 

detect a 44A3.2 fracture and is highly unlikely to learn what is specific for a 

44A2.2 fracture. In addition, 44A2.2 occurs once in the entire dataset of 409 

studies. Several other outcomes are about nearly as rare. These outcomes pose 

a problem when measuring performance. We cannot compute statistics for non-

present classes or reliable statistics for classes with too few cases. In addition, 

as we saw in our discussion of accuracy and AUROC, accuracy can be over-

optimistic. 
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5.4.2 Strengths 

Our complex and granular model meaningfully and comprehensively represented 

the AO classification for lower extremity trauma. We focused our reporting on 

the primary outcome of malleolar fractures. The article supplement reports 

performance for secondary outcomes for fibular, tibial, and foot fractures and 

IRR.  

5.4.3 Limitations 

The model performance was difficult to assess, with few cases for many 

outcomes. Even while significant training had occurred, the actual utility of the 

classifier was challenging to determine. Many classes were missing or had very 

few training cases. This introduced classes similar to a more prevalent class but 

gave a tiny training signal. Excluding rare cases from training might give better 

model learning for remaining outcomes. 

We did not perform external validation, so it was not possible to assess how 

representative the model was in different clinics or scenarios. 

The training and test sets were not extensive enough to fully capture all possible 

malleolar fracture outcomes. 

5.5 Study III 

5.5.1 Discussion of results 

The study aimed to validate a fracture classification model externally and to 

study strategies to deal with the difficulties that arise from the change in 

environment – dataset shift. Despite having very few training cases for some 

outcomes, the model appeared to perform better than chance at all individual 

outcomes. However, it was sometimes impossible to show due to low 

prevalence. As expected, the model appeared to perform better for the IVD. 

Comparing our classifier to other classifiers was difficult, as model external 

validation is rare and even rarer for complex classifiers. 

5.5.1.1 Model training 

ML training often comes down to learning hidden factors, and ML models are 

usually considered “black boxes.” Hopefully, the parameters learned are related 

to the appearance of the actual pathologies. As mentioned previously, the study 

by Badgeley et al. found that healthcare and logistic parameters were often 

responsible for prediction, i.e., a form of overfitting. Correcting their models for 
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those factors, the performance of a well-performing classifier fell to that of a 

random classifier 136. Exposing an ML model to a dataset from a different location 

subjects it to a different distribution – also called a dataset shift 203. It helps to 

correct for logistic factors. While data is not readily available, external validation 

should be integral to the more mature model training and development stage. If 

a model only performed well on the data it was trained on or from one hospital, 

we could quantify this and seek ways to amend it. 

In this study, the EVD had properties other than those of the IVD. There were 

three times as many type A fractures in the EVD. All EVD studies had three 

images compared to Danderyd, which had at least four views. The CNN had 

never been exposed to follow-ups during training, but such follow-up studies 

were present in the EVD, as signaled by “weight-bearing.” A human reviewer who 

sees a non-displaced "weight-bearing" fracture understands this as less 

alarming. The network was not trained to recognize this signal. AI models are 

rarely validated. This makes it difficult to assess how transferable or general they 

are. It also made it difficult to determine what performance we could expect in 

our study or whether our results were good or bad. For the three external 

validation studies, Oliveira e Carmo et al. found that performance was not 

dramatically affected by the EVD 204 (see Table 18a.) Those studies evaluated 

models with just a few outcomes. Our classifier had 40 outcomes for ankle 

fractures – not all mutually exclusive. The review found two similarly complex 

classifiers 19,20 (see Table 18b) with model-wide AUC on the internal validation 

data, similar to our model. However, they were not externally validated and are 

from the same dataset as the ankle subsets in Study II and Study III (radiographs 

from Danderyd Hospital between 2002 and 2016) were taken from. 

We were dissatisfied with the model during external validation and wanted to try 

ways to improve model performance without overfitting data. Increasing image 

resolution during training, on its own, did not affect EVD performance. Dropping 

views in the exams to make the training data resemble the EVD more was 

ineffective. We believed that type A fractures only provided a discrete training 

signal for the network. We therefore concentrated on active training (i.e., 

additional data for training that focused on the problematic class and on 

predicting edge cases for that class). In combination with improved resolution, 

we saw improved performance. However, performance did not improve beyond 

400x400px.  
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Table 18. Comparable studies to Study III. 

Study Anatomy Outcomes Exclusion Performance 
18a External validation studies 

Choi 
2020 189 

Elbow 
Supracondylar/ 
no fracture 

Dislocation, 
not 
supracondylar 
fracture, bone 
dysplasia 

IVD: AUC 0.98 
EVD: AUC 0.99 

Blüthnge
n 2020 190 

Wrists Intact/defect – 
IVD: AUC 0.93 
EVD: AUC 0.80  

Zhou 
2020 205 

Ribfractures 
CT-slices 

Old, healing, and 
fresh 

No fracture 

IVD: mean F1-
score 0.84 
EVD: F1-score 
0.73 

18b Complex classifiers 
Dreizin 
2021 191 

Pelvic, CT-
scans 

AO Type A-C 
No. outcomes: 3 

Any operative 
treatment 

ACC 56-85% 

Lind 2021 
19 

Knee 
AO knee 
No. outcomes: 
49  

– 

AUC 0.87 for 
proximal tibia; 
0.89 for patella; 
0.89 distal femur 

Qi 2020 
184 

Femur 
AO femur 
No. outcomes: 11 

Any 
disagreement 
between 
reviewers 

ACC 72% 

Tanzi 
2020 206 

Hip 
AO  
No. outcomes: 5 

Type B and C AUC 86% 

Yoon 
2020 207 

Inter-
trochanteric 
3D CT 

AO type A 
No. outcomes: 10 

No separation 
of patients 
between 
training and 
test 

ACC 97% and 
90% 

Lee 2020 
208 

Femur 
AO A1-B3 
No. outcomes: 9 

Type C (too 
rare) 

AUC 0.87, F1-
score 0.86, vs 
AUC 0.75, F1-
score 0.5 
depending on 
configuration 

Olsson 
2021 20 

Osteoarthritis 
Kellgren & 
Lawrence 
No. outcomes: 5  

– AUC 0.92 

Chung 
2018 187 

Shoulder 
Neers’ 
No. outcomes: 5 

Reviewer 
disagreement 

ACC 65-86%; 
AUC 0.90-0.98 

The IVD is from the original training data location. The EVD is any data from a different site. Table 18a 
compares external validation studies found by Oliveira e Carmo et al. 2021. Table 18b compares studies 
that evaluate complex classifiers with many outcomes (multinomial classifiers) comparable to our 
study, where none is externally validated. ACC is accuracy. F1 is the F1-score. AUC is the area under the 
receiver-operator characteristic curve (AUROC). Table from Olczak et al. 2024 3. 
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External validation ensures the model's generality. However, we believe that 

reversing a model's generalization process in a clinical application can be 

desirable. We could gain a more locally accurate model by actively retraining the 

externally valid model to be more specific with data from the clinic or scanner 

where it will be used, like the transfer learning we studied in Study I. 

We need to be careful when applying an algorithm to a new setting. Lim et al. 

concluded that many common orthopedic procedures had poor evidence-

based medicine support and were unnecessary 209.  Audgé et al. found that many 

fracture classification schemes used in the clinic were not validated 46,61. Oliveira 

e Carmo et al. found that many ML models were not externally validated 204. As 

far as we know, this was the first study to raise the question of what we can 

expect from such a complex fracture classification model in terms of external 

validity. Comparing our model to other multinomial classifiers, it transferred well 

(see Table 18b) 19,20,184,187,191,206–208. Tools like our model and its improved iterations 

could be part of the solution toward a more evidence-based and stringent form 

of medicine. 

5.5.2 Strengths 

This was an external validation study, which is rare in orthopedic ML. We found 

no external validation study of such a broad classification scheme. 

The EVD differed from the IVD but still focused on the same problem. 

Introducing new problem domains (weight-bearing, one-week follow-ups) 

strengthens the reliability of the results. Even after active training, there was no 

real risk of model overfitting. 

5.5.3 Limitations 

We did not have population data for the IVD dataset, so none was collected for 

the EVD. Having an external validation dataset compensated for this, 

compensated for this somewhat. 

Since we found no similarly complex classifiers to be externally validated, we had 

nothing against which to compare and assess our classifier. 

Though there was considerable learning, and practically all outcomes were 

better than chance, many were too rare and difficult to bound. This made model 

performance challenging to assess for rare outcomes.  
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As with all CNN models, we do not know the actual decision algorithm and 

cannot know why it works/does not work. While we can use heatmaps—or 

activation maps—they do not provide rules or guides for improving the model. 

5.6 Study IV 

5.6.1 Discussion of results 

Using imaging data and registry parameters, we have modeled patient outcomes 

after a fracture in the lower extremities. Compared to previous studies, Study IV 

shifted the focus to modeling numerical and ordinal outcomes. Therefore, we 

returned to the experimental trial approach of preceding studies, such as Study I, 

and related studies, such as the one documented in Olczak 2024 146,147. We 

studied 154 different PROM (primary and secondary) outcomes. At a 95% 

confidence level, we expect approximately eight outcomes to appear as good 

fits randomly. This is less likely to be a random chance if the same outcome 

performs well during training and external validation. 

The validation performance, i.e., our proxy of model performance until all 

experiments are trained, showed learning of PROM1 parameters but less so for 

PROMΔ. Initially, our best-performing models, just under 50% of outcomes, 

showed learning in PROM1 but very few in PROMΔ. The changes in PROM over the 

year were small. We, therefore, experimented with different loss functions. The 

robust general loss was designed to deal robustly with outliers, i.e., to smooth 

them out, and there were tendencies to underperform compared to the 

standard MSE loss. However, after we implemented the Focal CORN Loss, we 

also started seeing learning in PROMΔ. The goal of implementing the Focal Loss 

was to capture uncommon and incorrectly classified examples that deviate from 

the mean and mode, i.e., to increase the importance of the outliers. It can be that 

we are pushing the model to rely less on the images and even more on the SFR 

data, and that is why we are overfitting further. 

As discussed in the literature review, we found orthopedic studies that used 

imaging directly to predict patient outcomes, nor had they been reported as 

failures or successes. The closest was Alfraihat et al., who used radiographic 

features derived from the radiograph to predict future radiographic features but 

did not use the actual imaging 198. Pease et al. developed a CNN for predicting 

outcomes after traumatic brain injury from CT scans. Their model predicted 

mortality or the value on a brain injury outcome scale 195. Like the approach in 

Study IV, Kwon et al. trained a CNN to predict COVID-19 outcomes using patient 
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parameters and imaging. Unlike our model, they passed the clinical variables as 

input to the last fully connected layer, i.e., the classification layer, along with the 

CNN image data 193. Many studies combine the output of CNNs with regression 

models to improve performance. Shin et al. 197 used an existing CNN tool to 

predict a severity score for pneumonia, and this severity score was funneled into 

a regression model. Kim et al. used a similar approach but trained the network 

themselves to predict 30-day mortality. They combined the CNN output with 

the clinical score in a logistic regression model 196. Gordeau et al. trained a 

network to predict mechanical ventilation outcomes. They pre-trained a model 

and then selected the (two out of 1024) most distinctive features of the image 

classifier (i.e., most variable nodes in the last layer before the classification layer). 

For each prediction, they passed those features to a linear model, and that 

output was to train other models. We have found no imaging-based outcome 

predictor for orthopedic trauma 194. Pease et al. used their CNN outcomes as 

input to a regression model to improve predictions 195. 

Study IV was a pilot study to determine the feasibility of using a combination of 

radiographs and patient parameters to predict patient outcomes. We provide 

some considerations for improving the modeling in the future. 

Kwon et al. combined different patient parameters with the imaging, as we did. 

They passed the clinical variables and the image data as input to the 

classification layer. Missing values were imputed 193. In this study, given the many 

PROM parameters, the different anatomies and injuries, and the possibility of 

several inputs missing simultaneously, creating a linear model for imputation 

would require several different imputation models. We would have had to 

develop different imputation strategies for various types of fractures, possibly 

with fewer cases than there are parameters to model. Therefore, we ignore 

missing values and train each outcome separately. However, value imputation 

could improve modeling in future studies as it could strengthen the relationship 

between variables. 

We experimented with predicting complications, such as reoperation and 

infection, within one year. While some complications are registered in the SFR, 

they are not complete or well-defined. In addition, it would have required us to 

manually study and label all imaging for each fracture within one year of the 

trauma, including MRI and CT scans, from all possible locations the patient might 

have visited during that year. We would have to look for signs of reoperation, 
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infections, and other signs of a complication. This was beyond the scope of this 

study. In addition, we did not attain sufficient quality in our primary outcomes to 

focus on secondary outcomes. 

Our network examined each series individually, and each study associated with 

the injury got the same patient parameters. The model received the same PROM 

parameters in some experiments for different studies. For example, a hip 

fracture with multiple adjacent studies, e.g., long femur and knee imaging, could 

get the same PROM. However, if there were no fractures in the knee, that imaging 

would look uncomplicated, giving confusing signals to the model. A different 

strategy would have been to combine all imaging from the same time interval 

into a single series for a complete picture. This would have been similar to how 

we went from looking at single images in Study I to looking at complete series in 

later studies. 

Our study focuses on studying multiple fracture types in one model, including all 

the lower extremities. We did this in part because of the low PROM answer rate. 

It could have been better to focus on one segment. In the Stockholm data, hips, 

wrist, and third ankle fractures were the most common, two of which we 

captured in this study. We can hypothesize that lower extremity injuries will 

affect patients similarly for many PROMs. A wrist fracture will affect patients very 

differently and would likely not make the model learn better.  

We used a standard ResNet. Other CNN architectures, or indeed transformer 

networks, could have been used. We could have experimented with different 

architectures, similar to the approach in Study I, to select the best suited. 

However, unlike Study I, we did not have a clear-cut outcome to determine the 

“best” model. In addition, it was a good strategy to start with (or calibrate on) a 

known architecture and see what performance we could reach there. The risk is 

that ResNet is insufficient to capture the relationships well, as for Network In 

Network compared to VGG-16 in Study I. 

5.6.2 Strengths 

Our patient data comes from the SFR, a large, validated national register that 

includes non-operatively treated fractures. 

This is a multi-center study with external validation. 



 

84 

5.6.3 Limitations 

The data's biases and limitations correspond with the selection bias generally 

expected from registries and PROMs. However, there are indications that non-

responders in the SFR are much like responders regarding PROM. 

The switch from EQ5D-3L to 5L limits the generalization and prospective power 

of EQ-5D outcomes until a validated mapping between the two is established. 

We did not have information on the patient’s other health parameters, which are 

known to affect outcomes, such as smoking, diabetes, cardiovascular health, etc. 

Co-morbidities are essential in recovery, in deciding treatment and overall 

outcomes.  
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6 Conclusions 

6.1 Study I 

We showed the utility of artificial neural networks in detecting the presence or 

absence of fractures in trauma radiographs and various anatomies with high 

accuracy. We also showed the viability of transfer learning for orthopedic 

fracture detection. We also found that we could detect other features from 

radiographs, such as body parts, exam views, and laterality. In part, this was due 

to better labels from which to train. 

6.2 Study II 

We developed a fracture classifier for the AO 2018 ankle classification system to 

classify fractures to the subgroup level (44A1.1-44C3.3). Performance fell with 

complexity. For example, the AO type was more accurate than the group. This 

was expected as the task was difficult for human reviewers to perform on a 

radiograph. 

6.3 Study III 

In Study III, we underscored the critical need for external validation of AI models, 

as it is a crucial factor in assessing their utility. Our exploration of external 

validation revealed that our initial model did not perform as desired on external 

data. This was highlighted by the impact of unexpected logistic factors that 

reflected different clinical practices. We refined our model using active learning 

and concluded that while AI models should be trained to be general, they will 

later benefit from being honed for the specific task and setting to which they are 

applied. 

6.4 Study IV 

In Study IV, we conducted a multicenter study to train a CNN to predict patient 

outcomes using fracture radiographs and patient-reported outcomes. After 

focusing on classification tasks in previous studies, Study IV shifted towards 

modeling numerical, categorical, and ordinal variables, usually the domain of 

regression models. We experimented with different ways to construct models. 

We found that the network could learn to predict PROM1, but the indications 

were that it had learned the mode. We found a low response rate to the SFR, 

which caused problems with both the training and external validation set and 

data size.
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7 Points of perspective 
• Since the beginning of the projects that amounted to this thesis, new 

technologies have been introduced for AI and ML. Attention networks and 

transformers are powerful image analysis tools. They are the foundation of 

the generative pre-trained transformers (GPT) models in vogue today. During 

the thesis process, using transformers for this research was contemplated. 

However, the amount of data, processing power required, and potential 

ethical implications were prohibitive. While still a computationally massive 

undertaking, it is now feasible with the growth of computational power and 

resources available. 

• The tasks that CNN and AI models perform for the user must be more 

comprehensive and practical. However valuable, identifying the presence of a 

fracture is not an exceedingly challenging task. The ultimate goal would be to 

have an AI model that reliably and coherently gives properties of the fracture, 

which could be tuned and honed as the knowledge of the field changes. In our 

studies, we have chosen the AO standard as an imperfect proxy. If we can 

create a model to predict the outcome after a fracture, we could attempt to 

reverse engineer a “classification” scheme that finds predictive features in 

the fracture appearance of which we were unaware. 

• Even more, using ML, CNNs, and other types of ANNs to predict long-term 

outcomes after a fracture from imaging and patient data would be a step 

along personalized precision medicine in orthopedics. We can imagine an 

enhanced model that takes the imaging, patient parameters such as 

comorbidities and PROM at injury – and accurately predicts the most likely 

outcomes for the patient conditioned on different treatment options. No 

single option might give perfect outcomes for all functions, but we could 

select the one that optimizes the patient’s desired outcome. Given the 

nature of ANNs, they can be retrained and updated as time goes on, 

treatment evolves, and the model impacts future patients. 
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9 Declaration about the use of generative AI 
The author has authored the comprehensive summary/”kappa” and all papers 

without generative AI. The author has used generative AI for the following 

purposes: 

- ChatGPT models 3, 4, 4o, 4o mini, and Google Bard, assisted with language, 

such as proofreading self-authored texts, detecting inconsistencies in 

passages, and helping with formulations. They were also used to screen, 

clarify, understand, and translate texts and journal papers. 

- ChatGPT models 4 and 4o and Github Copilot have been used to generate, 

improve, and analyze software code. 

- Spell correction software (Grammarly) has been used to proof the text.
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