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1 Abstract 
Previous studies from our group reported that pancreatic -cells express ryanodine receptors (RyRs) that 

can mediate Ca
2+

-induced Ca
2+

 release (CICR). The full consequences of the activation of RyRs on Ca
2+

 

signaling in these cells, however, remained unclear. An important open question was whether activation of 

the RyRs leads to activation of any Ca
2+

 channels in the plasma membrane, and thereby depolarizes 

membrane potential. One main aim of the thesis was to address this question. As a corollary, we have also 

looked for the existence of functional TRPV1 channels, and have elucidated the molecular mechanisms 

that underlie the [Ca
2+

]i-elevating effect of ADP ribose in these cells.  

We used methods such as measurement of the [Ca
2+

]i in single cells loaded with fura-2, patch 

clamp technique, Western blot analysis, immunohistochemistry, a variety of pharmacological tools, and a 

series of carefully designed protocols. In most experiments, we used S5 cells, derived from the rat 

insulinoma cell line INS-1E, but we also used primary -cells from mice, rat, and human. 
Activation of the RyRs by 9-methyl 5,7-dibromoeudistomin D (MBED) increased the [Ca

2+
]i with 

an initial peak, followed by a decline to a plateau phase, and regenerative spikes superimposed on the 

plateau. The initial [Ca
2+

]i increase was due to the activation of the RyRs in the ER, since it was abolished 

by thapsigargin, but was present when extracellular Ca
2+

 was omitted or when Ca
2+

 entry was blocked by 

SKF 96365. The plateau phase was due to Ca
2+

 entry across the plasma membrane, since it was abolished by 

omission of extracellular Ca
2+

, and blocked by SKF 96365. The plateau phase was not solely dependent on 

the filling state of the ER, since it was not abolished by thapsigargin. Inhibition of the voltage-gated Ca
2+

 

channels by nimodipine did not inhibit the plateau phase. Several agents that block TRP channels, e.g. La
3+

, 

Gd
3+

, niflumic acid, and 2-APB, inhibited the plateau phase. It was also inhibited by membrane 

depolarization. We conclude that the plateau phase was due to activation of some TRP-like channels. 

Activation of RyRs by MBED also induced membrane depolarization. The spikes required Ca
2+

 entry 

through the L-type voltage-gated Ca
2+

 channels, as they were abolished by nimodipine. The spikes resulted 

from CICR, since they were inhibited in a use-dependent way by ryanodine, and abolished after depletion of 

the ER by thapsigargin. Thus, activation of RyRs activated TRP-like channels, depolarized the plasma 

membrane, activated L-type voltage-gated Ca
2+

 channels and triggered CICR. 
During the course of this thesis we reported that TRPM2 is present in the INS1-E cells and the 

human -cells. We studied whether TRPM2 was involved in the Ca
2+

 entry triggered by the activation of 

RyRs. N-(p-amylcinnamoyl) anthranilic acid (ACA), an inhibitor of TRPM2, did not inhibit the MBED-

induced [Ca
2+

]i entry. ADP ribose (ADPr), when applied intracellularly, is an agonist of TRPM2. We found 

that extracellularly applied ADPr increased [Ca
2+

]i in the form of an initial peak followed by a plateau that 

depended on extracellular Ca
2+

. EC50 of ADPr was ~30 µM. NAD
+
, cADPr, a phosphonate analogue of 

ADPr (PADPr), 8-bromo-ADPr or breakdown products of ADPr did not increase [Ca
2+

]i. Inhibitors of 

TRPM2, e.g. flufenamic acid, niflumic acid, and ACA did not affect the ADPr-induced [Ca
2+

]i increase. 

Two specific inhibitors of the purinergic receptor P2Y1, e.g. MRS 2179 and MRS 2279 completely blocked 

the ADPr-induced [Ca
2+

]i increase. The [Ca
2+

]i increase by ADPr required activation of PI-PLC, since the 

PI-PLC inhibitor U73122 abolished the [Ca
2+

]i increase. The ADPr-induced [Ca
2+

]i increase was through the 

IP3 receptors, since it was inhibited by 2-APB, an inhibitor of the IP3 receptors. ADPr increased [Ca
2+

]i in the 

transfected human astrocytoma cells that expressed the P2Y1 receptors, but not in the wild type astrocytoma 

cells. We conclude that extracellular ADPr is an endogenous and specific agonist of P2Y1 receptors.  

Capsaicin and AM404, two specific agonists of TRPV1, increased [Ca
2+

]i in the INS-1E cells. 

Capsazepine, a specific antagonist of TRPV1, completely blocked the capsaicin-induced [Ca
2+

]i increase. 

Capsaicin elicited inward currents that were abolished by capsazepine. TRPV1 protein was detected in the 

INS-1E cells and human -cells by Western blot. However, no TRPV1 immunoreactivity was detected in 

the human islet cells and human insulinoma by immunohistochemistry. Capsaicin did not increase [Ca
2+

]i in 

primary -cells from rat or human. We conclude that INS-1E cells express functional TRPV1 channels.  

In summary, we have shown that (1) RyR activation leads to activation of TRP-like channels in the 

plasma membrane, membrane depolarization, activation of L-type voltage-gated Ca
2+

 channels and CICR. 

(2) ADPr is a specific and endogenous low affinity ligand for the P2Y1 receptors. (3) Functional TRPV1 

channels are expressed in the INS-1E cells, but not in the primary -cells.  

 

Keywords: Ca
2+

 signaling, signal transduction, islets of Langerhans,-cells,  ryanodine receptors, Ca
2+

-

induced Ca
2+

 release, TRP-channels, TRPV1, capsaicin, P2Y1 receptors, and ADP ribose.  
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2 Erratum 
 

Paper IA: page 302, paragraph 2, line 10: -40 mV, not -40 mM.  

 

Paper IB: page 4, line 38: -40 mV, not -40 mM, 

page 3, line 4; page 4, line 13; page 13, figure legend 1, line 6: Wistar rat, not Wister rat. 

 

Paper II: fig. 3C: The concentrations are in µM, not mM. 
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4 List of abbreviations 
    

ACA 

ADPr 

N-(p-amylcinnamoyl) anthranilic acid 

Adenosine diphosphate ribose 

AM Acetoxymethyl ester 

AM404 N-(4-hydroxyphenyl)-arachidonoylamide 

AMP Adenosine monophosphate 

ATP Adenosine triphosphate 

BSA Bovine serum albumin 

cADPr Cyclic adenosine diphosphate ribose 

cAMP Adenosine 3´5´-cyclic monophosphate 

CICR Ca
2+

-induced Ca
2+

 release 

DAG Diacylglycerol 

DMSO Dimethyl sulfoxide 

EGTA Ethylene glycol tetraacetic acid 

ER Endoplasmic reticulum 

GLP-1 

HBSS 

Glucagon-like peptide 

Hank’s balanced salt solution 

ICRAC 

IP3 

Ca
2+

 release activated Ca
2+

 current 

Inositol 1,4,5-trisphosphate 

IP3R Inositol 1,4,5-trisphosphate receptor 

KATP channel ATP-sensitive potassium channel 

KRBH Krebs Ringer bicarbonate HEPES buffer 

NAADP 

NAD
+ 

Nicotinic acid adenine dinucleotide phosphate 

Nicotinamide adenine dinucleotide 

NADP
+
 

Orai1 

P2Y1 

PIP2 

Nicotinamide adenine dinucleotide phosphate 

A pore forming subunit of the mammalian CRAC channel 

Purinergic receptor type 2Y1 

Phosphatidylinositol 4,5-bisphosphate 

PKA cAMP-dependent protein kinase 

PKC Protein kinase C 

PI-PLC Phosphoinositide-specific phospholipase C 

PMCA 

RPM 

Plasma membrane Ca
2+

 ATPase 

Revolutions per minute 

RPMI Roswell Park Memorial Institute medium 

RyR Ryanodine receptor 

SERCA Sarco(endo)plasmic reticulum Ca
2+

-ATPase 

SOCE 

STIM1 

TRP 

Store-operated Ca
2+

 entry 

Stromal interaction molecule 1 

Transient receptor potential 

TRPM2 Transient receptor potential melastatin 2 

TRPV1 Transient receptor potential vanilloid 1 
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5 Introduction and Background 
 

5.1 The islets of Langerhans  
 

The islets of Langerhans, named after the German pathologist Paul Langerhans, is a 

critical organ unique in that it is split into about a million units hidden in the pancreas. In 

1869 Langerhans described small, clearer areas in the pancreas that stained differently 

from the rest of the pancreas. He thought that these structures were lymphatic tissues. 

Others thought that these could be embryonic remnants. These were named “islets of 

Langerhans” by the French histologist Gustave-Edouard Laguesse 24 years later. He 

suggested that the structures formed the endocrine part of the pancreas with a possibility 

to produce a hormone with glucose-lowering effect (1).  

 

The islets have an essential role in regulation of the glucose homeostasis. The glucose 

concentration in the plasma is kept in a narrow interval irrespective of food intake or 

starving situation, by a fine-tuning system where the plasma glucose-lowering hormone 

insulin is antagonized by glucagon. The location of the islets is advantageous, since the 

hormones are secreted into the portal vein enabling direct control of the hepatic function. 

Impaired function or destruction of the cells in the islets underlies pathogenesis of 

different forms of diabetes, which is a public health problem throughout the world.  

 

In humans, islets of Langerhans are spherical clusters of cells with a diameter 

between ~50-250 µm (2). The total number of islets varies depending on age, body 

mass index, size of the pancreas, and conditions such as pregnancy (3). They are in 

a higher number in the tail than in the head and body of the pancreas (4). The 

number of islets increases as the diameter of the islets decreases (5). Most of the 

islets are of small diameter, i.e. ~50-100 µm. However, medium sized islets with a 

diameter of ~100-200 µm contribute most to the total islet volume at all ages with 

the exception of the newborn, where it is the opposite (5). The islets of patients 

who have diabetes can be very large, up to ~350 µm in diameter, because of 

oedema and deposition of amyloid (2).  

 

There are three major types of cells in the islets, i.e. the -, -, and -cells. In addition, 

there are other minor cell types, e.g. the pancreatic polypeptide-secreting (PP)-cells, the -

cells, and the dendritic cells. Most of the cells (70-80%) in the adult human islets are 

insulin-secreting β-cells. Among the remaining are 15-20% glucagon-secreting α-cells, 5-

10% δ-cells, 1% -cells (6), and 1% PP-cells. -cells secrete somatostatin and possibly 

gastrin. -cells secrete ghrelin, which stimulates growth hormone release and apetite (7). 

In each islet there are 5-20 dendritic cells, which express class II antigen with 

phagocytotic capacity (8). In addition to insulin, the -cells secrete islet amyloid 

polypeptide (IAPP). However, all -cells do not secrete IAPP since only 54% of -cells 

stain for IAPP (2). 
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The islets coordinate their work even though they are structurally separated. A -cell 

communicates with another through paracrine mechanisms or via a local vascular system 

within the islet. There is electrical synchronization between -cells through gap junctions. 

Also, the -cells communicate with non--cells via gap junctions. The gap junctions are 

made of connexin36, which is important for the oscillation of insulin secretion (9;10).  

 

Today, there are about 285 million people in the world with overt islet failure (11). By the 

year of 2030, the number is likely to increase to 438 million. A gradual decrease in 

function of the islets takes place over years, and it is not until as much as 90% of the islets 

have stopped to function or are destroyed that any decline in health is noticed. 

 

 

5.2 Insulin secretion  
 

When studying -cells, it is common to assume that they have a resting state when they 

do not secret insulin, and a stimulated state when they do. However, under physiological 

conditions, large insulin secretion occurs even under the fasting state, and secretion 

increases after food intake. In human, about 75% of the insulin secretion occurs in the 

form of oscillations with an interpulse interval of about five minutes (12;13). The pulsatile 

pattern of insulin secretion, which has many physiological advantages, is lost in patients 

with type 2 diabetes. The insulin secretion is regulated by the amplitude rather than the 

frequency of insulin oscillation. The synchronization signals for insulin secretion from a 

large number of islets are unclear, but neural networks are thought to be important in this 

process. 

  

After a meal, the concentrations of nutrients including glucose, amino acids, and free fatty 

acids in the plasma increase, and the amplitude of insulin pulses increases. To trigger 

insulin secretion, glucose needs to be metabolized by glucokinase. Some mutations in the 

glucokinase gene can cause maturity onset diabetes of the young (MODY) (14). 

Metabolism of pyruvate and ATP production in the mitochondria are essential for 

glucose-stimulated insulin secretion. Several other factors generated from the 

mitochondria also potentiate insulin secretion. Some uncommon forms of diabetes are due 

to mutations or deletions in mitochondrial DNA.  

 

A [Ca
2+

]i increase is an essential trigger for insulin exocytosis. Insulin secretion is also 

regulated by neurotransmitters, and incretin hormones secreted from the gut. Glucagon 

like peptide 1 (GLP-1) is one important incretin hormone that augments insulin secretion, 

somatostatin secretion, and inhibits glucagon secretion. Furthermore, it promotes -cell 

survival and proliferation. These actions of GLP-1 are mediated by Ca
2+

 as well as cyclic 

AMP (cAMP), and other signaling pathways. Thus, the insulin secretion is a highly 

controlled process that involves multiple nutrients, neurotransmitters, and hormones. 
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5.3 Ca2+ signaling in the -cells 

The calcium of importance for intracellular signaling is the ionized form of calcium, Ca
2+

, 

inside the cell. Changes in the cytosolic free Ca
2+

 concentration ([Ca
2+

]i) induces signals 

for various cellular processes. Many Ca
2+

-binding proteins, membranes, channels, pumps, 

stores, and other organelles are involved in the generation, and shaping of the Ca
2+

 

signals. The Ca
2+

 signals in the -cells control exocytosis of insulin. In a “resting” -cell 

in vitro, the [Ca
2+

]i is ~ 20-100 nM, and outside the cells the Ca
2+

 concentration is 10 000 

times higher.  

 

To avoid toxicity, the [Ca
2+

]i must return to a resting level, and this is achieved by the 

plasma membrane Ca
2+

 ATPases (PMCA) that pumps out Ca
2+

 from the cytoplasm. Also, 

there are Na
+
/Ca

2+
 exchangers for lowering [Ca

2+
]i. The ATP-driven pumps have high 

affinity but low capacity, compared to the exchangers that take care of the large Ca
2+

 

loads. In Ca
2+

 signaling the [Ca
2+

]i increases, and returns to the resting level shortly after. 

The [Ca
2+

]i increase is likened to pressing the on-button, and a decrease in [Ca
2+

]i means 

that the off-button is pressed. 

 

Other molecules that are involved in Ca
2+

 signaling include Ca
2+

 binding proteins, Ca
2+

 

channels, Ca
2+

 mobilizing messengers, and Ca
2+

-sensing molecules. Calmodulin is a Ca
2+

 

binding protein present in almost all cells. It contains a single polypeptide chain of 150 

amino acids with four Ca
2+

 binding sites. Calmodulin constitutes about 1% of the total 

protein mass of the -cells. Besides [Ca
2+

]i regulation, calmodulin mediates many Ca
2+

 

regulated processes in the cell, and works as a multipurpose intracellular Ca
2+

 receptor. 

The binding of Ca
2+

 enables calmodulin to bind to various target proteins, and alter their 

activity. Ca
2+

/calmodulin binds to, and activates the PMCA that pumps Ca
2+

 out of the 

cell. Most effects of Ca
2+

/calmodulin are mediated by the Ca
2+

/calmodulin-dependent 

kinases.  

 

In the plasma membrane there are different Ca
2+

 channels: voltage-gated, receptor-

activated, and channels belonging to the “transient receptor potential” (TRP) family. 

Glutamate receptors and purinergic receptors of P2X type are examples of receptor-

activated channels that are present in many cells. IP3 is the most well characterized Ca
2+

 

mobilizing intracellular messenger. Others are cADPr and nicotinic acid adenine 

dinucleotide phosphate (NAADP). Together, all the molecules involved in Ca
2+ 

signaling 

in the -cells orchestrate the [Ca
2+

]i to fine-tune the insulin secretion.  
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Figure 1. The figure shows some of the molecules involved in Ca
2+

 signaling in the

-cell. The figure also shows a mechanism for Ca
2+

 induced Ca
2+

 release (CICR). DAG = 

diacylglycerol; ER = endoplasmic reticulum; Glu = glucose; GLUT = glucose transporter; 

IP3 = inositol 1,4,5-trisphosphate; IP3R = inositol 1,4,5-trisphosphate receptor; RyR = 

ryanodine receptor; SG = secretory granulae; PI-PLC = phosphatidyl inositol specific 

phospholipase C; PMCA = plasmamembrane Ca
2+

ATPase; ROC = receptor activated 

channel; SERCA = sacro(endo)plasmic reticulum Ca
2+

ATPase. 
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5.3.1 Ca2+ oscillations 

The [Ca
2+

]i increase often takes place in the form of oscillations. Low concentration of an 

agonist leads to a low frequency, whereas a higher concentration leads to a higher 

frequency of the oscillations. The advantage of Ca
2+ 

oscillations compared to 

continuously increased [Ca
2+

]i is that the cells are not damaged by Ca
2+

 when the [Ca
2+

]i 

oscillates. There is also a less likelihood of desensitization of the intracellular Ca
2+

 

sensors. The -cells interpret the Ca
2+

 signals by the degree of [Ca
2+

]i increase or the 

frequency of Ca
2+

 oscillations. It has been shown that Ca
2+

 oscillations increase the 

efficiency, and the information content of Ca
2+

 signals that lead gene expression. In -

cells, at least three different types of Ca
2+

 oscillation have been described (15). The 

mechanism involved in the formation and decoding of Ca
2+

 oscillations is an active 

research field. Perturbed oscillations may be a cause for impaired insulin release that is 

normally pulsatile possibly because of the Ca
2+

 oscillations (16). 

 

 

5.4 Stimulus-secretion coupling in the -cells 

The main triggers for insulin secretion from the -cells are nutrient-induced [Ca
2+

]i 

increases. Glucose is transported into the -cell through a facilitative glucose transporter 

(GLUT1 and 3 in humans, and GLUT 2 in rodents) (17;18). Glycolysis, and metabolism 

in the mitochondria increases ATP/ADP ratio (19;20). The cytoplasmic ATP/ADP ratio 

acts as intracellular messenger that couples nutrient metabolism to electrical activity of -

cells. In this respect, the ATP-sensitive potassium channel (KATP channel) acts as a sensor 

of cellular metabolism. KATP channels of -cells consist of two subunits, the channel 

subunit KIR6.2, and the sulfonylurea receptor SUR1. These channels are inhibited by, and 

are targets for the insulin-lowering sulfonylurea drugs (21). The KATP channels can be 

activated by agents such as MgADP and diazoxide, by involvement of the two nucleotide 

binding folds (NBF) 1, and 2 of SUR1 (22). This leads to hyperpolarization of the plasma 

membrane. When plasma glucose concentrations are reduced, a decreased ATP/ADP ratio 

leads to opening of the KATP channels, and causes repolarization. In this way, insulin 

secretion, and hypoglycaemia is prevented. Closure of the KATP channels is an initial 

signaling event leading to membrane depolarization. It should be emphasized, however, 

that closure of the KATP channels alone is not sufficient to depolarize the cell. That needs a 

co-existing inward depolarizing current. These depolarizing currents through as yet 

unknown channels depolarize the plasma membrane when the KATP channels are closed. 

It has been suggested that some TRP channels may account for these currents. 

 

 

5.5 Transient receptor potential channels 

The TRP channels were discovered in the photoreceptor cells of blind fruit flies (23). The 

light-induced change of membrane potential in these cells was transient rather than 

sustained. This was due to a mutation of a channel, thus called the transient receptor 

potential channel. There are 28 (27 in human) TRP channels, and one or other TRP 

channels are present in almost all cells. They are diverse when it comes to the regulation 

and function. The TRP channels are tetrameric ion channels that may form both homo- 
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and heterotetramers, and this gives possibilities for formation of many different channels. 

TRP channels mediate many sensory functions. The channels are divided into two groups 

according to their molecular similarities. Group 1 has five subfamilies. There are seven 

TRP channels related to the classical or canonical channel (TRPC). These channels are 

the most related to the original TRP channels. There are six TRP channels related to the 

vanilloid receptor (TRPV), and eight TRP channels related to the melastatin subfamily 

(TRPM). There are also TRPA channels, with many ankyrin repeats, and TRPN channels 

(24).  

 

Group 2 TRP channels consist of two subfamilies: TRPP and TRPML. Mutations in the 

TRPP channels cause autosomal dominant polycystic kidney disease. Mutation in 

TRPML causes the neurodegenerative disorder mucolipidosis type IV. 

 

We studied the mechanisms of RyR-activated membrane depolarization. TRP channels 

are known to mediate membrane depolarization in many cells (25;26). Therefore, we 

studied whether TRP channels were involved in the RyR-activated membrane 

depolarization in the -cells. 

 

5.5.1  TRP channels in the -cells 

At the beginning of this thesis, there was scanty information in the literature about TRP 

channels in the -cells. During subsequent years, research from many groups has shown 

that many TRP channels are present in the -cells. These are TRPC1-6 (27-29), TRPM2-5 

(30-34), and TRPV1, 2, and 4 (35-37). Two of these have been dealt with in this thesis, 

and these will be discussed further. It is possible that some of the TRP channels mediate 

the inward depolarizing currents in the -cells. The depolarization leads to activation of 

voltage-gated Ca
2+

 channels, and influx of Ca
2+

.  

 

5.5.1.1 TRPM2 channels 

The type 2 melastatin-like transient receptor potential (TRPM2) is a chanzyme, forming 

a non-selective cation channel permeable to Na
+
, K

+
, and Ca

2+
 (38). The C-terminal of 

TRPM2 has an ADPr pyrophosphatase domain (38;39). TRPM2 expression is highest in 

the brain, but several peripheral cell types also express TRPM2 (40).TRPM2 functions 

as a cellular redox sensor, and TRPM2 activation leads to apoptosis and cell death 

(41;42).  

 

TRPM2 is also activated by ADP ribose, NAD
+
, nitric oxide, arachidonic acid, 

temperatures >35 ºC and Ca
2+

. TRPM2 can be activated by Ca
2+

 released from the 

intracellular stores (43). N-(p-amylcinnamoyl) anthranilic acid (ACA) is an inhibitor of 

TRPM2, but it is not so specific. Flufenamic acid, the antifungal agents miconazole and 

clotrimazole are also inhibitors of TRPM2 (44;45). Whether 2-APB inhibits TRPM2 is 

controversial (46;47) Our group has shown that in the human islets, there are at least two 

main isoforms of TRPM2 channels: one is the full-length form (TRPM2-L) and the other 

is a nonfunctional form because of C-terminal truncation (TRPM2-S) (48). TRPM2 is 

mainly located in the plasma membrane and allows Ca
2+

 entry. However, TRPM2 is also 

located on the lysosomal membranes Activation of TRPM2 releases Ca
2+

 from the 

lysosomes (49). We have shown that functional TRPM2 channels are present in the INS-

1E cells and the human -cells (fig. 2) (30).  
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Figure 2. Whole-cell currents induced by ADPr and H2O2 in INS-1E cells. The figure 

is reproduced from Bari et al 2009 with permission. The whole-cell configuration was 

attained at the point indicated with “w.c.”. Recordings were performed at room 

temperature and the holding potential was -60 mV. Bars indicate times where the standard 

bath solution was changed to a solution containing ACA, a TRPM2 inhibitor, or N-

methyl-D-glucamine (NMDG
+
), which is impermeable to TRPM2. Whole-cell current 

was recorded in the presence of intracellular ADPr. The pipette solution contained 0.6 

mM ADPr and 1µM Ca
2+

 (A). Whole cell currents recorded without ADPr and after 

application of 1-2 µl 30% H2O2 directly into the recording chamber. The estimated final 

concentration of H2O2 in the chamber was ~10 mM. The pipette solution contained 1 µM 

free Ca
2+

 (B). Current-voltage relationship of H2O2-induced currents as derived from (B), 

recorded during voltage ramps from -90 to +60 mV of 400 ms duration (C). 
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5.5.1.2 TRPV1 channels 

TRPV1 is a non-selective cation channel that mediates peripheral nociception and pain 

sensation. It is abundant in the trigeminal and the dorsal root ganglia. TRPV1 positive 

afferent neurons have been claimed to play a critical role in local islet inflammation in 

autoimmune diabetes pathoetiology (50). One group has reported that TRPV1 protein is 

expressed in the rat insulinoma cell lines RIN and INS-1 (35). Whether TRPV1 exists in 

the primary -cells remains controversial. TRPV1 immunoreactivity has been described 

in primary -cells of Sprague-Dawley rats by one group (35), but not in those of Zucker 

diabetic rats (51) or NOD mice (50). It is not known whether TRPV1 is present in the 

human -cells. 

 

Capsaicin, resiniferatoxin, temperature >43 ºC and low pH are some of the activators of 

TRPV1 (52). Capsaicin is the pungent component of chili pepper. It produces burning 

pain, desensitisation and degeneration of a specific subset of sensory fibres that are also 

sensitive to chemical irritants and noxious heat. This explains the burning sensation of 

chili pepper intake. Due to desensitization of nociceptive terminals, capsaicin also 

exhibits analgesic properties. Capsaicin is lipophilic and binds to the intracellular part of 

TRPV1 and thereby activates the TRPV1 channel (53;54).  

 

TRPV1 is expressed in nerve fibres in the islets of Langerhans of rats and mice (50;51). 

Akiba et al have reported that TRPV1 protein is expressed in the rat insulinoma cell 

lines RIN and INS-1, and that insulin secretion is increased by capsaicin in the RIN 

cells (35). We have studied whether TRPV1 activation leads to [Ca
2+

]i increase or 

induces currents in the -cells. 

 

We have used capsaicin and AM404 as agonists of TRPV1. The active metabolite of 

paracetamol, AM404 activates TRPV1 at analgesic doses of paracetamol (55;56). After 

ingestion, paracetamol is metabolized into, among others, p-aminophenol. AM404 is 

formed by conjugation of p-aminophenol and arachidonic acid. AM404 is formed in the 

brain by the action of fatty acid amide hydrolase (FAAH) (57). The TRPV1 antagonist 

capsazepine is a synthetic analogue that competitively inhibits capsaicin binding (58). It 

also blocks TRPV1 activation induced by low pH (59). We used capsaicin, AM404 and 

capsazepine as tools for identifying the TRPV1 channel in the -cells. 

 

It is not fully established whether TRPV1 exists in the primary β-cells. Therefore, we 

studied the effect of capsaicin on [Ca
2+

]i in primary rat and human primary β-cells. 

Immunohistochemistry was used to study the expression of TRPV1 protein in the human 

islet cells and the human insulinoma cells. 

 

 

5.6 The role of the endoplasmic reticulum in Ca2+ signaling 

Like many other cells,the-cells have several Ca
2+

 stores. Among these, the endoplasmic 

reticulum (ER) is the best characterized. The ER is best known for its role in the protein 

synthesis, but it is also a sophisticated instrument for Ca
2+

 signaling. The Ca
2+

 

concentration in the ER of resting -cells is high, about 250 µM. On the ER membranes, 
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there are Ca
2+

 channels and Ca
2+

 pumps that regulate the luminal [Ca
2+

]i. ER is filled with 

Ca
2+

 by sarcoendoplasmic reticulum Ca
2+

 ATPase (SERCA). There is a large amount of 

Ca
2+

 binding proteins in the ER. Calsequestrin is one such Ca
2+

 binding protein in the ER 

lumen. It has a high capacity and low affinity for binding Ca
2+

. Thus, the ER has many 

important players that regulate the [Ca
2+

]i inside the lumen and release Ca
2+

 in response to 

various signals. 

 

  

5.7 Ca2+ channels in the ER 

 

5.7.1 Activation of RyRs and IP3Rs 

There are two main families of Ca
2+

 channels in the ER: the inositol 1,4,5-trisphosphate 

receptors (IP3Rs), and the RyRs. The latter name is derived from the plant alkaloid 

ryanodine, which binds to the receptor with nanomolar affinity, and activates the channel. 

Whereas submicromolar concentrations of ryanodine lock the channel in a long-lived 

open state, micromolar concentrations inhibit the channel. Insulin secretion is stimulated 

by low concentrations (~1 nM) of ryanodine (60). While IP3 activates the IP3 receptor, the 

ryanodine receptor is activated by several mechanisms. Fructose 1,6 diphosphate, 

arachidonic acid, cyclic adenosine diphosphate ribose (cADPr), long chain Acyl CoA, and 

ATP are some of the activators or positive modulators of RyRs (61-63). Caffeine is a 

widely used pharmacological activator of RyRs (64). But caffeine has many non-specific 

effects. Our group has shown that caffeine inhibits the KATP channels, elevates the cAMP 

concentration, and inhibits the L-type voltage-gated Ca
2+

 channels (65). Caffeine also 

inhibits store-operated Ca
2+

 entry (66).  

 

5.7.2 MBED 

Instead of caffeine, we have used 9-methyl 5,7-dibromoeudistomin D (MBED) as a RyR 

activator. MBED is derived from the natural product eudistomin D, isolated from the 

marine tunicate Eudistoma olivaceum (67). MBED has caffeine-like properties, but it is a 

more specific, and more potent activator of RyRs, and is thus more suitable for 

mechanistic studies of these channels (68). It has been suggested that MBED binds to a 

different site than ryanodine on the RyRs, since MBED does not inhibit ryanodine 

binding to the receptor (68). The effects of MBED on RyRs have been known for about 

20 years, and so far no non-specific effect has been reported. We have reported that 

MBED does not inhibit cAMP-phosphodiesterases, IP3Rs, voltage-gated Ca
2+

 channels or 

KATP channels in the -cells (69).  

 

 

5.7.3 Isoforms of RyRs and IP3Rs 

Both IP3Rs and RyRs are present in many cells, and are regulated by positive feedback, 

whereby the released Ca
2+

 can bind to the channel, and increase the Ca
2+

 release. There 

are three isoforms of both channels. The rat insulinoma cell line INS-1 express mRNA for 

IP3R1, IP3R2, and IP3R3, and IP3R1 is in abundance (70). mRNA for all the three 
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isoforms is also found in rat pancreatic islets, rat insulinoma RINm5F cells, and mouse 

insulinoma HC9 cells, but in these cells IP3R1 is in greater abundance (71).  

RyR1 and RyR2 are mainly expressed in the skeletal muscles and heart, respectively, 

while the RyR3 is expressed in the brain, the smooth muscles and the epithelial cells (72). 

All the three isoforms of RyRs, i.e. RyR1, RyR2, and RyR3, are present in human islets 

(73). RyR2, but not RyR1 has been detected by RT-PCR in INS-1 cells, and rat islets 

(29). The RyR2 is mainly located on the ER/SR membranes (74). One group has shown 

that the RyR2 is also expressed on the plasma membrane in the -cells (75).  

 

 

5.8 Store-operated Ca2+ entry 

Store-operated Ca
2+

 entry (SOCE), also called capacitative Ca
2+

 entry, is a process 

whereby the Ca
2+

 entry across the plasma membrane is closely coordinated with the 

depletion of ER Ca
2+

 stores (76). It is conserved from lower organisms such as yeast, 

worms, and flies to human. SOCE has been described in -cells (77). In -cells, as in 

many other cells, an important molecule involved in SOCE is the stromal interaction 

molecule 1 (STIM1) that acts as the Ca
2+

 sensor in the ER. Mammals also have a related 

gene that encodes STIM2. STIM2 is also a Ca
2+

 sensor, but with a different sensitivity for 

the ER Ca
2+

 concentration than STIM1 (78). An intraluminal EF-hand domain of STIM1 

senses the Ca
2+

 concentration in the ER lumen. STIM1 is transported to the plasma 

membrane upon ER Ca
2+

 pool depletion. Orai1, also called CRACM1, is the pore-

forming subunit of a store-operated Ca
2+

 channel in the plasma membrane. This channel 

conducts a highly Ca
2+

-selective, non voltage-gated, inwardly rectifying current, called 

Ca
2+

 release activated Ca
2+

 current (ICRAC) (79). According to one report, ICRAC is 

inhibited when the RyRs are inhibited (80). It is unknown whether STIM1 interacts with 

Orai1 in the -cells. Interaction between STIM1, Orai1, and TRPC might be of 

importance in SOCE (81). One study has shown a connection between the IP3Rs and 

some TRP channels in the plasma membrane (82). Thus, multiple mechanisms may 

underlie different forms of SOCE. 

 

 

5.9 Voltage-gated Ca2+ channels 

In -cells, the most important Ca
2+

 channels are the ones that are activated upon plasma 

membrane depolarization. Ca
2+

 entry through voltage-gated Ca
2+

 channels triggers 

exocytosis of insulin (83). There are ten voltage-gated Ca
2+

 channels coded by three gene 

families: The Cav1 family has electrical properties of L-type, i.e. they require high voltage 

for activation, and are open for a longer period (“Large and Long”). These channels are 

inhibited by dihydropyridine antagonists. Glucose-induced insulin release is inhibited to 

80-100% by dihydropyridine antagonists (84;85). The main form of L-type voltage-gated 

Ca
2+

 channels in the -cells is Cav1.3 (1D). It is activated at a lower membrane potential 

(~-55mV) compared to Cav1.2 (1C). 

 

The Cav2 family mediates currents of N-, P/Q- or R-type. The P/Q-type Ca
2+

 channels are 

also coupled to insulin secretion, and account for 45% of integrated whole-cell Ca
2+

 

current in human -cells. R-type Ca
2+

 channels are not present in human -cells (85), but 



TRP channels and intracellular Ca
2+

 channels of -cells 

 

22 

may be involved in insulin secretion through central neurons or GLP-1-producing L-cells 

in the gut (86). There is also the Cav3 family of ion channels that is activated by low 

voltage and have electrical properties of T-type, with smaller and shorter lasting currents 

(“tiny and transient”). The T-type current in human -cells is mediated by Cav3.2 (1G), 

and is involved in insulin release induced by 6 mM but not by 20 mM glucose (85). 

Neither Cav2 nor Cav3 are blocked by dihydropyridine antagonists. We have shown that 

L-type voltage-gated Ca
2+

 channels are activated by membrane depolarization after RyR 

activated Ca
2+

 entry. 

 

  

5.10  Ca2+-induced Ca2+ release 

Ca
2+

-induced Ca
2+

 release (CICR) is an intracellular signaling phenomenon, where a 

[Ca
2+

]i increase triggers Ca
2+

 release from the ER. CICR was first described in the heart 

muscle cells, where a small Ca
2+

 entry trough the L-type voltage-gated Ca
2+

 channels 

caused a large Ca
2+

 release from the SR. This phenomenon takes place in many excitable 

cells, e.g. muscle cells, nerve cells, and the -cells. CICR induces synchronous, transient 

rises in the [Ca
2+

]i that amplifies the Ca
2+

 signals. Both IP3Rs and RyRs are Ca
2+

-gated 

Ca
2+

 channels in the ER (87). In the -cells, activation of RyRs or IP3Rs amplifies Ca
2+

-

dependent exocytosis of insulin by CICR (88;89). GLP-1, a blood-glucose-lowering 

incretin hormone, increase the cAMP in the cytoplasm of the -cells, and facilitates CICR 

by cAMP-dependent phosphorylation of the RyRs (90;91). CICR is also stimulated by 

activation of RyRs by cAMP-regulated guanine nucleotide exchange factors (Epac) in the 

human -cells (92). 

 

 

5.11 Pyridine nucleotide-derived molecules and Ca2+ signaling 

Several reports have demonstrated that glucose elevation increases cyclic ADPr (cADPr) 

and NAADP concentration in the -cells. cADPr is known to stimulate insulin secretion 

in -cells by Ca
2+

 release from the intracellular Ca
2+

 stores, and has also been shown to 

activate the TRPM2 channels (31). NAADP releases Ca
2+

 from acidic Ca
2+

 stores, and 

from insulin secretory vesicles (74). A group of voltage-gated ion channels called two-

pore channels (TPCs) are located on the lysosomal membranes, and are activated by 

nanomolar concentrations of NAADP, while micromolar concentrations of NAADP 

inhibit them (93).  

 

ADPr is formed from -NAD
+
, and NAADP is formed from NADP

+
 by ADP ribosyl 

cyclases, including CD38 (94). CD38 and its homologues have NADase, ADP-ribosyl 

cyclase, and cADPr hydrolase activities
 
(95). ADPr constitutes more than 99% of the 

products produced by the action of CD38 (96-98). ADPr is also produced by hydrolysis of 

cADPr, and from NAD
+
 by NAD glycohydrolases, (95). Furthermore, poly (ADPr) 

glycohydrolase can produce ADPr from poly (ADPr) (99;100). 

 

Since CD38 is located with its catalytic site oriented extracellularly in the plasma 

membrane (101;102), ADPr produced by CD38 and related enzymes is likely to be 

released extracellularly. Extracellular release of ADPr has been shown in cortical 
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astrocytes (103). Synaptosomes have been reported to have NADase activity, giving rise 

to speculations that ADPr could be a neurotransmitter (104). ADPr is shown to be 

released during nerve stimulation (105).  

 

CD38 and related enzymes are also present in the -cells, and they are thought to play 

some roles in mediating insulin secretion (106). The role of CD38 in insulin secretion is 

generally attributed to RyR activation by cADPr and NAADP (107). It remains unclear 

whether extracellular ADPr can signal by acting on cell surface receptors or whether it 

must enter into the cell. The entrance of ADPr is thought to be via CD38, but the transport 

rate is slow, and this mechanism is not universal (108;109). Ecto-nucleotide 

pyrophosphatases degrade ADPr to AMP (110;111). The conversion of ADPr to AMP 

can also be catalysed by apyrase, and AMP is further metabolized to adenosine by 

5´nucleotidase (112;113). Extracellular ADPr is thus a well-suited nucleotide for 

signaling by activating cell surface receptors. Our studies show that ADPr increase [Ca
2+

]i 

by activation of purinergic receptors of type P2Y1 in the INS-1E cells as well as in the rat 

and human -cells. 

 

 

5.12  Purinergic receptors 

Receptors for purine nucleotides and nucleosides are present in numerous tissues. The 

purinoceptors are classified into P1, which are more specific for adenosine and AMP than 

for ADP and ATP. The adenosine/P1 purinoceptors are in turn divided into A1, A2a, 

A2b, and A3 (114). The A1 and A3 subtypes inhibit adenylate cyclase, while the A2 

subtypes activates adenylate cyclase (115;116).  

 

The P2 purinoceptors are, in contrast, more specific for ATP and ADP than for adenosine 

and AMP. They are divided into P2X and P2Y subtypes, which can be discriminated by 

their response profiles to different ATP-analogues (117). P2X receptors are intrinsic ion 

channels (not G-protein coupled) permeable to Na
2+

, K
+
, and Ca

2+
 (118). P2X receptors in 

the -cells are of subtype P2X1, P2X3, P2X4, P2X6, and P2X7 (119-122). 

 

There are eight human P2Y receptors: P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, 

P2Y13, and P2Y14 (123-125). The missing numbers in the sequence are receptors that are 

cloned from non-mammalian vertebrates or receptors under characterization. The P2 

receptor subtypes in -cells are P2Y1, P2Y2, P2Y4, P2Y6, and P2Y12 (126). The P2Y1 

receptor has been shown to be involved in insulin secretion, but both stimulation of 

insulin secretion and inhibition of secretion have been reported (127). Some studies have 

claimed that P2Y purinoceptors can constitute new targets for antidiabetic drugs 

(128;129). P2Y receptors are G-protein coupled, and often activate the PI-PLC pathway 

leading to IP3 production (130). 
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5.13  The signaling enzyme PI-PLC  

Phosphatidylinositol specific phospholipase C (PI-PLC) constitutes a family of key 

enzymes in the Ca
2+

 signaling. There are eleven isoforms of PI-PLC, and they are divided 

into four families: , , , and . G-protein coupled receptors activate PI-PLC and 

receptor protein-tyrosine kinases activate PI-PLC. Thus, there are many growth 

factors that activate PI-PLCγ. PI-PLC is activated by Ca
2+

, and PI-PLC is activated by 

GTP-Ras (132). PI-PLC is involved in activation of the GLP-1-receptor-induced 

facilitation of CICR (133). 

 

The PI-PLC enzymes cleave phosphatidyl inositol 4,5-biphosphate (PIP2) to inositol 

1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 is a second messenger that binds 

to the IP3 receptor in the ER, and triggers release of Ca
2+

 into the cytoplasm. DAG has 

two signaling roles: it can be cleaved to release arachidonic acid that either works as a 

messenger in its own right, or is used in the synthesis of eicosanoids, such as 

prostaglandins, prostacyclins, tromboxanes, and leukotrienes. DAG activates protein 

kinase C (PKC), and the activation is usually Ca
2+

 dependent (134;135). When the [Ca
2+

]i 

increases, PKC translocates from the cytosol to the cytoplasmic face of the plasma 

membrane, where it is activated by Ca
2+

, DAG, and negatively charged membrane 

phospholipids such as phosphatidylserine. 
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6 Aims of the thesis 
 

The aims of this thesis were to study: 

 

1. the consequences of activation of RyRs on [Ca
2+

]i in pancreatic -cells. 

 

2. whether functional Ca
2+

 permeable TRP-like channels operate in the -cells. 

 

3. whether activation of the RyRs leads to the activation of plasma membrane ion 

channels, and depolarization of the membrane potential. 

 

4. the molecular mechanisms by which ADPr increases [Ca
2+

]i in the insulin-secreting 

cells. 

 

5. whether functional TRPV1 channels are present in the insulin-secreting cells. 
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7 Methods 

7.1 Cells 

In most of the experiments, we used the rat insulinoma cell line INS-1E (subclone S5). 

INS-1E cells are widely used as a model for -cells. The S5 cells were derived from INS-

1E cells in our laboratory, and they differ from the INS-1E cells in that they are adjusted 

to grow in 2.5% FBS while they require a higher concentration of -mercaptoethanol. 

The advantage of using insulinoma cell lines instead of primary -cells is that the cell 

lines consist of pure insulin-secreting cells, whereas cells prepared from islets contain a 

mixture of cells, which cannot be easily identified under microscope. For the 

experiments, cells of round shape that looked like differentiated -cells were chosen. 

Such cells constitute only about 10-20% of the cells in the microscope field. The handling 

of the cells is described in the methods section of each paper. 

 

The use of primary -cells and human islets for experiments was approved by local ethics 

committee. Primary -cells were prepared from the Wistar rat islets. Primary -cells from 

CD1 mice of 12-16 weeks of age were used for insulin secretion studies. The procedures 

for isolation of islets and preparation of -cells are described in the attached papers. 

Human islets were obtained from islet transplantation programmes, and single cells were 

prepared as described in the papers. In paper II, we used 1321N1 human astrocytoma cells 

that stably overexpress human recombinant P2Y1 receptors, and wild type (WT) 

astrocytoma cells that do not express any P2Y1 receptors. 

 

 

7.2  Chemical tools used 

Compound Effects Side effects Used 

concentration 

Paper 

ADP Activates 

purinergic 

receptors 

 30 µM II 

ADP ribose (ADPr) Activates 

TRPM2  

 30 µM II 

2-aminoethoxy-

diphenyl borate  

(2-APB) 

Inhibits ICRAC 

and activates 

TRPV1-3 

Inhibits IP3R and 

some TRP 

channels, 

including 

TRPC1,3-6 

Inhibits 

SERCA (136) 

30 µM I 

Arachidonic acid Activates many 

TRP channels 

and RyRs 

 5 µM III 
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8-Bromo-ADPr  ADPr antagonist  30 µM II 

cADPr Activates RyR 

(?) 

Activates 

TRPM2 

30 µM II 

Capsaicin Activates 

TRPV1 

 300 nM III 

Capsazepine Inhibits TRPV1  10 µM III 

Carbachol (cch) Muscarinic 

agonist 

 
10-100 µM I, II, III 

2-chloro N6-

methyl-(N)-

methanocarba-2-

deoxyadenosine- 

3,5-bisphosphate 

(MRS 2279) 

Inhibits P2Y1 

receptor  

Not reported 10 µM II 

2´Deoxy-N6-

methyladenosine 

3,5-bisphosphate 

(MRS 2179) 

Inhibits P2Y1 

receptor  

Inhibits P2X1 

receptor (137)  

1-10 µM II 

Diazoxide Opens KATP 

channels 

 100 µM I 

Gadolinium 

chloride (GdCl3) 

Blocks several 

TRP channels, 

including 

TRPC1,3,6, 

TRPM3,4, 

TRPV4, TRPP1, 

TRPML1 

Inhibits 

voltage-gated 

Ca
2+

 channels 

and stretch-

activated 

channels 

(138;139) 

10 µM I 

Lanthanium 

chloride (LaCl3) 

Blocks several 

TRP channels, 

including 

TRPC3-7, 

TRPV2,4-6, 

TPRM4,7, 

TRPP1, 

TRPML1 

Activates 

TRPC3 and 5 

in µM 

concentrations. 

100 µM I 

9-methyl 5,7-

dibromoeudistomin 

D (MBED) 

RyR activation Not reported 50 µM I 

Nimodipine Blocks L-type 

voltage-gated 

Ca
2+

 channels 

 5 µM I 

NAD
+
 Activates 

TRPM2 through 

conversion to 

ADPr 

 

 30 µM II 
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Niflumic acid Inhibits TRP 

channels, 

including 

TRPC4,6, 

TRPM2,3, and 

TRPV4 

(140;141) 

 50 µM I 

Nimodipine Blocks L-type 

voltage-gated 

Ca
2+

 channels 

 5 µM I 

N-(4-

hydroxyphenyl)-

5,8,11,14-

eicosatetraenamide 

(AM404) 

Activates 

TRPV1 

 5 µM III 

N-(p-amylcinna-

moyl) anthranilic 

acid (ACA) 

Inhibits TRPM2 Inhibits 

TRPM8 and 

TRPC6 (142) 

20 µM II 

N-propargyl-

nitrendipene  

(MRS 1845) 

Blocks SOCE  5 µM I 

O-acetyl adenosine 

diphosphate 

ribose (OAADPr) 

Actylated 

analogue of 

ADPr, activates 

TRPM2 (143) 

 10 µM II 

PADPr Stable analogue 

of ADPr 

 100 µM II 

p-aminophenol Metabolite of 

paracetamol 

 5 µM III 

 

Potassium chloride 

(KCl) 

Depolarization of 

plasma 

membrane 

 25 mM I, II, III 

Ruthenium red 

(RR) 

Blocks RyRs and 

TRP channels, 

including 

TRPC3, TRPV1-

6, TRPM3,6, and 

TRPA1 

Many 

nonspecific 

effects 

10 µM I 

Ryanodine Activates (nM) 

and inhibits 

(µM) RyR 

 50 µM I 

SKF 96365 Inhibits several 

TRP cannels 

including 

TRPC6, 7 and 

TRPV2.  

Inhibits 

voltage-gated 

Ca
2+

 channels 

and SOCE. 

10 µM I 
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Thapsigargin Inhibits SERCA   125-500 nM I, II, III 

U73122 Inhibits PI-PLC  10 µM II 

 

 

7.3 Measurements of [Ca2+]i by microfluorometry  

It is nowadays common to use fluorescence techniques to measure [Ca
2+

]i in single living 

cells in real time. The measurement is done by use of a variety of fluorescent Ca
2+ 

indicators. For measurement of [Ca
2+

]i, fura-2 is the most commonly used indicator. The 

fluorescence ratio between the free and the Ca
2+

-bound forms of fura-2 enables one to 

calculate the [Ca
2+

]i. Since fura-2 is cell-impermeant, an acetoxymethyl (AM) ester is 

coupled to the carboxylate groups of fura-2 to enable penetration through the cell 

membrane. Once inside the cell, the AM-group is hydrolyzed by the intracellular 

esterases, and fura-2 becomes Ca
2+

-sensitive.  

 

The fluorescence of fura-2 at 340 nm increases about threefold and at 380 nm decreases 

about tenfold upon Ca
2+

-binding. The emission maximum of fura-2 is at 510 nm. [Ca
2+

]i is 

calculated from F340/F380 according to Grynkiewicz et al (144). Rmax and Rmin were 

determined in our studies by using external standards containing fura-2 free acid and 

sucrose (2 M) (145). The method is described in detail in paper I, II, and III. 

 

 

7.4 Electrophysiology 

Patch clamp-recordings enable measurement of the electrical potential or the electrical 

current across the cell membrane. It is possible to isolate currents through a specific class 

of channels by adjustment of the ionic composition of the extracellular and intracellular 

solutions, application of pharmacological inhibitors etc. There are several modes of patch 

clamp, depending on whether single channels or a group of channels are going to be 

studied. 

 

All patch clamp experiments start in the cell-attached patch mode. A tight contact 

between the recording pipette and the cell is accomplished by light suction to the pipette 

interior. A high shunt resistance (> 1 gigaohm) is produced. This is called a giga-seal. The 

cell is still intact. We used the pore-forming agent amphotericin B to perforate the cell 

membrane. This is called perforated patch whole-cell configuration. Physical contact with 

the cell interior is thus established. The advantage of the perforated-patch whole cell 

method is that there is no washout of intracellular compounds, since the pores only allow 

passage of small monovalent ions but not larger molecules or ions such as Ca
2+

 (146). In 

this way, it is a more physiological configuration than the standard whole-cell 

configuration, where the membrane rupture is achieved by a pulse of negative pressure by 

gentle suction. 

 

For current measurements, we used a fully automated patch clamp workstation (Port-a-

patch, Nanion, Munich, Germany) equipped with an HEKA EPC 10 amplifier (HEKA, 

Lambrecht/Pfalz, Germany). The planar patch clamp glass chip containing a micron sized 
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aperture was primed by adding 5 µl of internal and external solution to the respective 

sides of the chip. The PatchControl software (Nanion Technologies, Munich, Germany) 

applied a suction protocol to automatically capture a cell, obtain a giga-seal between the 

glass substrate and the cellular membrane, and eventually obtain whole cell voltage 

clamp configuration. Details are written in the respective papers. 

 

 

7.5  Measurement of insulin secretion 

The use of islets from mice was approved by the local ethics committee. Islets from mice 

pancreas were isolated as described by Kelly et al (147). After 24 h incubation and 

recovery from the isolation procedure, the cells were dispersed by trypsin (0.25%) for 8 

min to obtain single cells. Total separation of the cells was verified microscopically, and 

the cells were transferred to multi-well plates (2×10
5
 cells/well). For attachment, the cells 

were incubated for 24 h in 11 mM glucose. A washing procedure repeated three times 

with KRBH containing 3.3 mM glucose, and 15 min of preincubation in 3.3 mM glucose 

preceded the stimulation. According to the different treatments tested, the wells were 

divided into 4 groups. Group 1 was incubated with 3.3 mM glucose, group 2 with 16.7 

mM glucose, group 3 with 3.3 mM glucose and 80 µM ADPr, and group 4 was incubated 

with 16.7 mM glucose and 80 µM ADPr. Insulin concentration in the collected samples 

was measured by ELISA using a commercial kit (Crystal Chem Inc).  

 

 

7.6  Whole-blood flow cytometric assays 

The experiments were approved by local ethics committee. We tested blood from three 

individuals between the ages of 24 and 42. Venous blood was collected by venepuncture. 

Within 5 min of blood collection, the blood samples were processed for flow cytometric 

measurements. We used whole-blood flow cytometry to evaluate the effect of ADPr on 

platelet shape change, aggregability (fibrinogen binding), and secretion (P-selectin 

expression). Whole-blood flow cytometric assays of platelet P-selectin expression and 

fibrinogen binding have been described previously (148). Platelets were gated by their 

characteristic light scattering signals, and the gated cells were confirmed with fluorescein 

isothiocyanate (FITC) conjugated anti-CD42a (GPIX) monoclonal antibody (MAb) Beb1 

(Becton Dickinson, San Jose, CA, USA). Please see details in paper II on how the 

platelet shape change was monitored. Platelet shape change was expressed as percentage 

calculated according to the following formula: % of platelet shape change=100×((platelet 

counts within the innergate after stimulation-platelet counts within the innergate before 

stimulation)/(platelet counts within the inner gate before stimulation)). 

 

 

7.7 Western blot analysis 

Western blot was used to study the expression of TRPV1 protein in the INS-1E cells and 

in the human islets. The primary anti-TRPV1 antibody used was affinity-purified rabbit 

polyclonal IgG antibody (BIOMOL international, U.K., BML-SA564-0050, Lot # 

P9604a, cat. no. SA-6564). The antibody was directed against the peptide sequence 

DASTRDRHATQQEEV, which represents the amino acid residues 824-838 in the C-
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terminal region of the rat TRPV1. The specific blocking peptide antigen (TRPV1 

blocking peptide, BIOMOL international, U.K., BML-SA564-0050, Lot #P9604a, SA-

564) was used to test the specificity of the antibody. Please see detailed information of 

the procedures in paper III.  

 

 

7.8 Immunohistochemistry 
 

Immunohistochemistry was used to detect TRPV1 protein in the human islet cells and the 

human insulinoma cells. Human pancreas resection specimens were collected from the 

Laboratory of Pathology at the Uppsala University Hospital, Sweden. They were from 

surgical specimens that were stored in the biobank after approval from the local ethics 

committee. The samples were fixed in formalin and embedded in paraffin wax. Sections 

from the tissue microarray blocks were cut at 4 μm thickness and immunostained. 

Primary antibodies and a dextran polymer visualization system (UltraVision LP HRP 

polymer®, Lab Vision) were incubated for 30 min each at RT. Diaminobenzidine (Lab 

Vision) was used as chromogen, and slides were developed for 10 min. For details of the 

immunostaining procedures, please see paper III.  

 

We used eight different antibodies that were affinity purified rabbit polyclonal IgG 

antibodies raised against synthetic peptides corresponding to either the C-terminus or the 

N-terminus of TRPV1. The antibodies were from: 1. Biosensis (cat. no. R-076-100), 2. 

Alomone (cat. no. ACC-03), 3. Sigma (cat. no. V2764), 4. and 5. Santa Cruz 

Biotechnologies (cat. no. Sc-20813 and Sc-28759), 6. and 7. Chemicon (cat. no. AB5889 

and AB5370P) and 8. the human protein atlas project (HRPK2180179, not published in 

the Protein Atlas, yet). 

 

 

7.9 Statistical analysis 

The data were expressed as means ± SEM. When comparison between two groups was 

made, Student’s unpaired t-test was used, and when comparison was made within groups 

paired t-test was used. The p-value was considered as significant when <0.05. The 

concentration-response curves were made by using Graph Pad software. 
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8 Results and discussion 
 

The detailed results of experiments and discussions of their interpretation and importance 

are in the two published papers and one manuscript that constitute this thesis. In the 

following paragraphs, I shall briefly mention only the results of some of the key 

experiments.  

 

8.1 RyRs operate activation of TRP-like channels 

RyRs amplify Ca
2+

 signals by CICR and thereby increase insulin secretion 

(63;74;89;149). However, any possible role of RyRs in triggering Ca
2+

 entry through the 

plasma membrane remained unknown. Many groups have used caffeine to activate RyRs, 

but caffeine inhibits many ion channels, enzymes, and receptors. It also inhibits KATP 

channels, voltage-gated Ca
2+

 channels, and store operated Ca
2+

 channels (65;66). We used 

a more specific agonist of RyR, namely MBED, to study the consequences of RyR 

activation in the -cells. 

 

In paper I, we showed that MBED activated RyRs in the -cells and elicited a pattern of 

[Ca
2+

]i increases that could be divided into three distinct components. First, there was an 

initial peak, which declined to a plateau phase with regenerative spikes superimposed on 

the plateau (fig. 3). We found that the different phases of [Ca
2+

]i increases were due to 

different underlying mechanisms. The initial peak was present even when the 

extracellular Ca
2+

 was omitted, but was abolished when the ER Ca
2+

 pools were depleted 

by thapsigargin, a specific inhibitor of the SERCA (150). Thus, the initial peak was due to 

a transient Ca
2+

 release from the ER caused by RyR activation. These results were in 

accordance with earlier studies (69;151).  
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Figure 3. Activation of RyRs elicited a characteristic pattern of [Ca
2+

]i changes. 

The figure is reproduced from Jabin Gustafsson et al 2004. MBED activated the RyRs 

in INS-1E cells, which resulted in a characteristic pattern of changes in [Ca
2+

]i. After 

addition of MBED (50µM) in the presence 10 mM glucose, there was an initial rapid 

rise of [Ca
2+

]i, which declined to a plateau. A series of large [Ca
2+

]i spikes were 

superimposed on the [Ca
2+

]i plateau. 

 

 

 

 

 

The plateau phase was the most important finding in this study. It was abolished by 

omission of extracellular Ca
2+

, and by SKF 96365, an inhibitor of SOCE and several TRP 

channels (152;153). Hence, we concluded that RyR activation also led to a prolonged 

[Ca
2+

]i increase that was due to Ca
2+

 entry through some TRP-like Ca
2+

 channels in the 

plasma membrane. In comparison to the carbachol-induced capacitative Ca
2+

 entry 

(SOCE), the RyR-operated Ca
2+

 influx was much larger. When the cells were treated with 

thapsigargin, there was still a [Ca
2+

]i plateau after stimulation by MBED. This suggests 

that the Ca
2+

 influx through the plasma membrane was not entirely dependent on the 

filling state of the ER. Instead, protein-protein interactions and conformational coupling 

could possibly be the link between activation of RyRs in the ER and the activation of 

Ca
2+

 channels in the plasma membrane. Such gating of the putative TRP channels by 

RyRs has previously been reported in other systems (154;155).  
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Figure 4. LaCl3, niflumic acid, and 2-APB inhibited the [Ca
2+

]i plateau that 

followed the activation of RyRs. The figures are reproduced from Jabin Gustafsson et 

al 2004. Activation of RyRs by MBED (50 µM) in the continued presence of LaCl3 

(100 µM) (B) or niflumic acid (50 µM) (C) caused the initial rise of [Ca
2+

]i, but the 

plateau phase of [Ca
2+

]i increase was inhibited. The plateau phase was also inhibited by 

2-APB (30 µM) (D). 
 

 

 

 

 

More recently, Rosker et al have reported that the Ca
2+

 entry in the plateau phase is 

mediated by RyR2 located on the plasma membrane (75). However, the reported currents 

do not mimic any earlier reported currents of RyRs (156;157). It has been suggested that 

the channels described by Rosker et al, may represent a novel, non-selective ion-channel 

(158). In our study, the Ca
2+

 entry was blocked by SKF 96365, a compound that does not 

block RyRs. Therefore, it is unlikely that the Ca
2+

 entry was due to RyR in the plasma 

membrane. To rule out whether the plateau phase was due to activation of voltage-gated 

Ca
2+

 channels, nimodipine was used. But nimodipine did not inhibit the Ca
2+

 plateau. 

La
3+

, Gd
3+

, SKF 96365, niflumic acid, and 2-APB are non-selective inhibitors of different 

channels including several TRP channels (159;160), and they all inhibited the Ca
2+

 

plateau. These results suggest that the plateau phase was due to activation of some Ca
2+

 

channels belonging to the TRP family. 
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The third pattern of changes in [Ca
2+

]i was the regenerative spikes that were superimposed 

on the plateau phase. Our results demonstrated that after activation of the RyR, the plasma 

membrane was depolarized to about -40 mV as a result of Ca
2+ 

entry through the putative 

TRP-like channels. Such depolarization in turn activated the L-type voltage-gated Ca
2+

 

channels. Since the spikes were inhibited by nimodipine, they required Ca
2+

 entry through 

the L-type voltage-gated channels. Also, the spikes were caused by CICR through the 

RyRs, as evidenced by the fact that high concentrations of ryanodine inhibited the spikes.  

 

After the paper was published, we studied whether the plateau phase was due to the 

activation of TRPM2 or TRPV1, two TRP channels that we identified in the INS-1E cells. 

But neither ACA, a specific inhibitor of TRPM2, nor capsazepine, a specific inhibitor of 

TRPV1, were able to inhibit the plateau phase (data not shown). Thus, the identity of the 

TRP-like channels that mediate the Ca
2+

 entry in response to the activation of the RyRs 

remains unclear. Transcripts for several TRP channels have been found in the -cells. 

Also, the possibility of different types of TRP forming homo- and heterotetramers yields 

many optional channels (161). 

 

Under physiological conditions, the glucose metabolism is sensed by RyRs through 

molecules such as cADPr and fructose 1,6 diphosphate, among others. When the RyRs 

are activated, this will lead to [Ca
2+

]i increase by activation of the putative TRP channels, 

membrane depolarization, and activation of L-type voltage-gated Ca
2+

 channels. The 

[Ca
2+

]i increase will trigger exosytosis of insulin (fig. 5). It is of great importance that the 

role of TRP channels in Ca
2+

 signaling in the -cells is elucidated and its physiological 

importance further investigated.  
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Figure 5. Schematic diagram of hypothesized involvement of RyRs and TRP-like 

channels in Ca
2+ 

entry and membrane depolarization in -cells. The figure is 

reproduced from Jabin Gustafsson et al 2005: The cartoon illustrates a sequence of 

events, whereby activation of RyRs (A) leads to the activation of TRP-like channels 

(B), an initial -membrane depolarization to about -40 mV (C), activation of the L-type 

voltage-gated Ca
2+

 channels (D), CICR (E), and exocytosis of insulin (F). 
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8.2 Extracellular ADPr activates P2Y1 receptors  

 

Our study on the effect of ADPr on [Ca
2+

]i in the -cells was a side track from the main 

focus of this thesis. During our search for TRP channels in the -cells we used ADPr as a 

tool to activate TRPM2, and to our surprise we found that extracellular ADPr increases 

[Ca
2+

]i in the -cells. This effect of ADPr was so obvious that we decided to identify the 

cell surface receptor involved in mediating the [Ca
2+

]i response. ADPr increased [Ca
2+

]i in 

a concentration-dependent manner (EC50 of ~ 30 µM). The [Ca
2+

]i increase was observed 

in the INS-1E cells, as well as in the primary rat and human -cells. Our first suspicion 

was that commercially available ADPr might contain ADP as a contaminant, which could 

elicit the observed [Ca
2+

]i increase. Therefore, we synthesized highly purified ADPr that 

was free from ADP, but still similar [Ca
2+

]i increase by ADPr was observed. The 

concentration of ADPr required for [Ca
2+

]i increase in our experiments was much higher 

than that of ADP, the cognate agonist of P2Y1 receptors. The EC50 for ADP-induced 

activation of the P2Y1 receptor is 1 µM (162). However, ADPr concentrations in the 

range of 30 µM have been used in the past to demonstrate biological effects of ADPr in 

different tissues (112;163-166). It is possible that the concentration of ADPr at its local 

sites of actions is in the micromolar range, but we do not have any proof for that. 

 

NAD
+
, cADPr or breakdown products of ADPr did not increase [Ca

2+
]i. Neither PADPr, a 

phosphonate analogue of ADPr, nor 8-bromo-ADPr, increased [Ca
2+

]i. Non of them 

altered the ADPr-induced [Ca
2+

]i changes.  

 

ADPr increased [Ca
2+

]i in the form of an initial peak followed by a plateau that depended 

on extracellular Ca
2+

. Such biphasic [Ca
2+

]i increase resembles the [Ca
2+

]i changes upon 

activation of receptors coupled to PI-PLC. When the ER Ca
2+

 pool was depleted by 

thapsigargin, the [Ca
2+

]i increase was abolished, indicating that the [Ca
2+

]i rise was due to 

release of Ca
2+

 from the ER. Furthermore, this [Ca
2+

]i increase was abolished by the PI-

PLC inhibitor U73122, and by 2-APB, which inhibits the IP3 receptor. These results 

suggest that the ADPr-induced [Ca
2+

]i increase was due to activation of the PI-PLC-IP3 

pathway.  

 

When Ca
2+

 was omitted from the extracellular medium, the plateau phase of the ADPr-

induced [Ca
2+

]i increase was abolished, indicating that this phase was due to Ca
2+

 entry 

from outside the cell. The plateau phase was not inhibited by inhibitors of TRPM2, 

namely flufenamic acid, niflumic acid, and ACA. Inhibition of the L-type voltage-gated 

Ca
2+

 channels also did not inhibit the plateau phase. These results indicate lack of 

involvement of both TRPM2 channels and L-type voltage-gated Ca
2+

 channels in 

mediating the Ca
2+

 entry. 

 

The most important findings in this study were that MRS 2179 and MRS 2279, two 

specific inhibitors of the purinergic receptor P2Y1 (167;168), completely blocked the 

ADPr-induced [Ca
2+

]i increase (fig. 6). MRS2279 only inhibits P2Y1, but MRS2179 also 

inhibits P2X1 and P2X3 (137). These results are strong evidence for the involvement of 

the P2Y1 receptor in the ADPr-induced [Ca
2+

]i increase. 
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To further establish that we were dealing with P2Y1 receptors, we used 1321N1 human 

astrocytoma cells that stably overexpress human P2Y1 receptors. ADPr increased [Ca
2+

]i 

in these cells, but did not increase [Ca
2+

]i in the wild type astrocytoma cells that do not 

express P2Y1 receptors. Biological effects of ADPr-induced [Ca
2+

]i increase were tested 

in the platelets, which express native P2Y1 receptors. ADPr induced platelet shape 

change as a result of [Ca
2+

]i increase through P2Y1 activation. 

 

The role of P2Y1 in insulin secretion is controversial. Depending on experimental 

conditions, cell types used, choice of P2Y1 agonist and its dosage, P2Y1 activation can 

either increase or inhibit the insulin secretion (169-172). The [Ca
2+

]i increase leading to 

the insulin secretion is mainly due to Ca
2+

 entry through the voltage gated Ca
2+

 channels 

(85). In our study ADPr did not alter the basal or glucose-induced insulin secretion. We 

conclude that ADPr is a novel endogenous and specific agonist of P2Y1 receptors that 

increases the [Ca
2+

]i in the insulin-secreting cells (fig. 7). The physiological importance of 

this finding needs further investigations. 
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Figure 6. ADPr-induced [Ca
2+

]i increase was due to the activation of P2Y1 receptors. 
The figure is reproduced from Jabin Gustafsson et al 2011. The INS-1E cells were 

incubated for 10 min with either MRS 2179 (1 and 10 µM) (B) or MRS 2279(10 µM) (C). 

The inhibitors were also present in the perfusion during the experiment. Both MRS2179 

and MRS2279 completely inhibited the [Ca
2+

]i increase by ADPr (10 µM). Fig. A is a 

control experiment that shows ADPr-induced [Ca
2+

]i increase in the absence of the 

inhibitors. MRS2179 and MRS2279 did not block the carbachol- induced [Ca
2+

]i increase. 

The traces are representatives of at least three experiments each.  
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Figure 7. Schematic figure of ADPr as a ligand of the P2Y1 receptor. Extracellular 

ADPr activates the P2Y1 receptor (P2Y1R) and the PI-PLC, leading to the formation of 

IP3 produced from PIP2. The IP3R is activated, and Ca
2+

 is released from the ER.  
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8.3 INS-1E cells express functional TRPV1 channels 

In paper III, we studied whether -cells have functional TRPV1 channels. We tested 

whether TRPV1 activation leads to [Ca
2+

]i increase. Capsaicin, a specific agonist of 

TRPV1, increased [Ca
2+

]i in the INS-1E cells in a concentration-dependent manner. The 

[Ca
2+

]i increase was dependent on extracellular Ca
2+

.These results indicated that we were 

dealing with Ca
2+

 channels in the plasma membrane. AM404, another known TRPV1 

agonist, also increased [Ca
2+

]i in the INS-1E cells. However, the precursors p-aminopenol 

and arachidonic acid did not increase [Ca
2+

]i. Capsazepine, a specific inhibitor of TRPV1, 

completely blocked both the capsaicin-induced and the AM404-induced [Ca
2+

]i increase. 

These results together suggest that TRPV1 channels are located in the plasma membrane 

in the INS-1E cells, and causes Ca
2+

 entry and [Ca
2+

]i increase upon activation. 

 

Capsaicin elicited inward currents in the INS-1E cells, and the currents were inhibited by 

capsazepine. Since the permeability of TRPV1 is higher for Ca
2+ 

than for Na
+
 

(PNa
+
/PCa

2+
 = 1:9) (24), Ca

2+
 was probably the main carrier of the current in our 

experiments. This is consistent with microfluorometry experiments where capsaicin 

induced robust increase in [Ca
2+

]i. 

 

The expression of TRPV1 protein in the INS-1E cells and the human islets was detected 

by Western blot analysis. The bands that were seen at ~94 kDa in the INS-1E cells and at 

~96 kDa in the human islets were compared with the expected molecular weight of 

TRPV1 estimated from the mRNA. According to the comparison, the bands represented 

TRPV1. Our results were also in accordance with several earlier studies (173-177).  

 

The existence of TRPV1 in primary -cells is debated. Akiba et al have demonstrated 

TRPV1 immunoreactivity in primary β-cells from Sprague-Dawley rats, but they did not 

report the effect of capsaicin in these cells (35). Gram et al reported TRPV1 

immunoreactivity in the nerve fibres in the islets, but not in the β-cells (51). In our study, 

we used primary β-cells from Wistar rat, but capsaicin did not induce any [Ca
2+

]i increase 

in these cells. These results suggest that primary -cells do not have TRPV1 channels. 

 

The existence of TRPV1 in human β-cells is questionable. In our study, capsaicin did not 

increase [Ca
2+

]i in human β-cells. Also, no TRPV1 immunoreactivity was detected in the 

human islets or human insulinoma cells. We used eight different antibodies that all 

detected TRPV1 immunoreactivity in the dorsal root ganglion cells, which were used as 

controls. Thus, TRPV1 is not expressed in the human β-cells, at least not at as high level 

as in the dorsal root ganglion cells. We conclude that functional TRPV1 channels are 

expressed at high level in the INS-1E cells, but not in the primary -cells from rat or 

human. 
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Figure 8. Effect of capsaicin and capsazepine on [Ca
2+

]i in the INS-1E cells. The 

figure is reproduced from Jabin Fågelskiöld et al 2011. Capsaicin (300 nM) increased 

[Ca
2+

]i (A). In the presence of capsazepine (10 μM), capsaicin failed to increase [Ca
2+

]i 

(B).  
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9 Conclusions 

 

1. The activation of RyRs induces a series of distinct signaling events, which include 

release of Ca
2+

 from the ER, activation of putative Ca
2+

-permeable TRP-like channels in 

the plasma membrane, membrane depolarization, Ca
2+

 entry through the voltage-gated 

Ca
2+

 channels, and regenerative CICR. 

  

2. Extracellular ADPr increases [Ca
2+

]i in the insulin-secreting cells by activation of the 

P2Y1 purinergic receptors. 

 

3. Functional Ca
2+

 permeable TRPV1 channels are present in the INS-1E cells, but not in 

the primary rat or human -cells or the human insulinoma cells. 
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10   Future perspectives 
 

It is important to identify which TRP channels are present and functional in the -, -, 

and -cells of the islets. Several TRP channels have already been identified in the -cells 

and their role in the Ca
2+

 signaling and stimulus-secretion coupling needs to be studied in 

detail. The TRP channels might play an important role in mediating the depolarizing 

currents that lead to depolarization to the threshold for activation of the voltage-gated 

Ca
2+

 channels. Diverse physical second messengers like heat, swelling, stretch, and 

chemical factors like arachidonic acid, cAMP, PIP2, and Ca
2+

 could act as links between 

insulin-secretagogues and activation of the TRP-channels. One of the challenges in the 

future will be to investigate the quantitative contribution of different second messengers 

and different TRP channels in stimulus-secretion coupling in the -cells under different 

physiological and pathological conditions. The availability of more specific 

pharmacological tools and use of TRP channel knock-out mice models will hopefully give 

answers to many of the remaining questions. Eventually, some of these TRP channels 

may turn out to be molecular targets for the development of drugs for the treatment of 

impaired insulin secretion in diabetes.   
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