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ABSTRACT 
Background: Somatostatin receptors (SSTRs) occur in cancer tissue, and 99mTc-depreotide is a 
labelled somatostatin receptor analogue, binding to SSTRs subtype 2, 3, and 5. 
 
Purpose: The general aim of the present thesis was to study somatostatin receptor scintigraphy 
(SSTRS) with 99mTc-depreotide in the diagnosis and characterization of cancers in the lung and 
oesophagus. 
 
Study I evaluated the diagnostic value of the SSTRS with 99mTc-depreotide in 99 patients with 
suspected lung cancer. The sensitivity to detect malignancy was 94%, and to detect lung cancer 
98%. The specificity was calculated on two sets of data. When all cases are used, the specificity 
was 52%. If the 12 pneumonias are excluded, the specificity was 77%. 
Study II was performed on 19 patients with histologically proven non-small-cell lung cancer 
(NSCLC), where the expression of SSTR subtype 2 was looked for and found by 
immunochemical methods. The quantitative evaluation of 99mTc-depreotide was performed 
using region-of-interest analysis and includes tumour counts/cm3, background counts/cm3, and 
the ratio between tumour and background counts. SSTR subtype 2 expression was positively 
correlated to the degree of the tumour’s differentiation (p < 0.05). 99mTc-depreotide uptake in 
tumour cells did not correlate with tumour grade or SSTR subtype 2, MIB-1, or p53 expression. 
Study III showed the feasibility of imaging oesophageal carcinoma with SSTRS with 99mTc-
depreotide and optimal time intervals for imaging. None of the 13 cancer-free Barrett’s 
oesophagus patients in this study showed an increased 99mTc-depreotide uptake. 
Study IV investigated the expression of SSTRs of subtype 2A, 2B, 3, and 5 in 28 patients with 
suspected oesophageal cancer, where expression was detected in small amount in 
adenocarcinoma and was absent in squamous cell carcinoma. There was no correlation between 
the 99mTc-depreotide uptake and the amount of SSTRs, and no correlation between the amount 
of SSTRs and the differentiation grade of the tumour. 
 
Conclusion: SSTRS with the labeled somatostatin receptor analogue 99mTc-depreotide has a 
very high sensitivity for detecting lung cancer. A negative scintigraphy strongly suggests a 
benign lesion, and the method is useful in decision making with respect to surgery. 
 
There is an expression of SSTRS subtype 2 in NSCLC with a positive correlation between 
tumour differentiation and presence of SSTR subtype 2. There is no correlation between  
99mTc-depreotide uptake compared to tumour differentiation, presence of SSTR subtype 2, p53, 
or MIB-1, and SSTRS cannot be used as a prognostic factor in patients with lung cancer. 
 
SSTRS with 99mTc-depreotide of oesophageal cancer is feasible, but not suitable, for either 
screening or primary diagnosis, because of the method’s modest sensitivity. However, this 
method has a high specificity. The majority of patients with adenocancer of the oesophagus 
have a low amount of SSTRs, while most of the patients with squamous cell cancer do not have 
any of SSTRs. 
 
Keywords: Lung cancer; oesophageal cancer; Barrett’s oesophagus; 99mTc-depreotide 
scintigraphy; prognostic factor; somatostatin receptor expression; immunohisto-
chemistry. 
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1 INTRODUCTION 
1.1 BACKGROUND 

Cancer arises through a variety of mechanisms resulting in uncontrolled cell division, 

which play an important role in tumour development and spread. By defining key 

pathways in those proliferative processes, the ambition has been to make it possible 

to target specific metabolic pathways’ or receptors’ steps, allowing tumour detection 

and collection of prognostic information relevant to diagnosis as well as treatment. 

Selective receptor-targeting radiopeptides have emerged as an important class of 

radiopharmaceuticals for molecular imaging and therapy of tumours that overexpress 

peptide receptors on the cell membrane. After such peptides labelled with gamma-

emitting radionuclides bind to their receptors, they allow clinicians to visualize 

receptor-expressing tumours non-invasively. Peptides labelled with beta-particle 

emitters could also eradicate receptor-expressing tumours. For evaluation of tumour 

receptor expression and to increase the value of cancer targeting using radiopeptides, 

researchers have introduced and evaluated different radiolabelled analogues of 

peptide families, such as somatostatin, cholecystokinin, gastrin, bombesin, substance 

P, vasoactive intestinal peptide, and neuropeptide analogues. The somatostatin 

receptors (SSTRs), which are overexpressed in a majority of neuroendocrine tumours, 

represent the first and best example of targets for radiopeptide-based imaging and 

radionuclide therapy. 

 

Somatostatin (SST) is a polypeptid which is primarily produced in the hypothalamus 

and pancreas and normally occurs in the nervous tissue, hypothalamo-pituitary 

system, and peripheral tissue like that of the gastro-intestinal canal, endocrine 

pancreas, kidneys, spleen, prostatic gland, and thyroid gland (1, 2). Two molecular 

forms of somatostatin, SST-14 and SST-28, have been identified (3, 4). In mammals 

these two peptides are encoded by a single gene that yields a peptide 

(preprosomatostatin) that is subsequently cleaved to generate SST-14 or SST-28. It is 

a modulator of neurotransmission, cell secretion, and cell proliferation (5). SST is 

also considered to be a neurotransmitter, a neurohormone, or a local hormone acting 

via autocrine or paracrine mechanisms (5). It is also an inhibitor of secretion of 

various hormones like neuroendocrine hormones, growth hormone, glucagone, 

insulin, and gastrin (6). Somatostatin and somatostatin analogues inhibit tumour 

growth (7, 8). SST has an inhibitory action through the mitogen-activated protein 

kinase (MAPK) pathways. This could be one effect of somatostatin signalling (9). 

MAPK activation is important for cell proliferation (10); therefore inhibition of 

MAPK is likely to contribute to the antiproliferative effect of SST. The role of SST in 

stimulating apoptotic mechanisms in SST2- or SST3-expressing cells (11, 12) is 

another notable antiproliferative mechanism. 
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SST could have two different actions against tumours, partly by direct mechanism 

such as the above mentioned, or by indirect mechanism, for example, by octreotide-

induced inhibition of pituitary growth hormone (GH) secretion, which reduces growth 

on GH-dependent tumours (13). Another indirect mechanism action against tumours 

could be SST analogues acting by inhibition of angiogenesis (14, 15). 

 

Somatostatin receptors (SSTRs) The SST acts by binding on protein-coupled 

receptors called somatostatin receptors (SSTRs). There are 6 subtypes of SSTRs: 

SSTR1, SSTR2A, SSTR2B, SSTR3, SSTR4, and SSTR5 (2, 5, 16). These 6 subtypes 

are encoded by different genes, except SSTR2A (5). SSTRs occur in some tumours in 

much higher concentrations than in normal tissue. High concentrations of SSTRs 

have been found, for example, in neuroendocrine tumours (17–19), gastroentero-

pancreatic tumours (20, 21), phaechromocytomas (22, 23) and to a lesser extent 

small-cell lung cancers (24). Other tumours that express SSTRs are lymphomas (25), 

renal cell cancers (26), mesenchymal tumours (27), gastric tumours (28, 29), and 

hepatocellular tumours (30, 31). 

 

There are 3 main ways to identify SSTRs in normal tissues and in cancer cells. One is 

by autoradiography with receptor binding with radioactive labelled SST analogues, 

different substances binding to the different somatostatin receptors SSTR1, SSTR2, 

SSTR3, SSTR4, and SSTR5 (32, 33). The second method is with receptor mRNA; 

human tumours often express multiple SSTRs subtype mRNAs, as reported first in 

pituitary adenomas (34, 35, 32) and gastroenteropancreatic tumours (32). The third 

method is receptor immunohistochemistry. This method has the advantage of a high 

cellular resolution. But the results depend on the quality, selectivity, and specificity of 

the applied antibodies. Even highly specific antibodies SSTR2A such as R2-88 can 

weakly cross-react with unrelated proteins (36). 

 
1.2 SOMATOSTATIN RECEPTOR SCINTIGRAPHY (SSTRS)  

The first radiolabelled SST analogue used for diagnostic purpose was an iodinated 
125I- or 123I-Tyr3-octreotide (36). By linking chelators DTPA (diethylenetriamino-

pentaacetic acid) or DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic 

acid), which are indispensable molecules, to accept certain types of metallic radio-

isotopes (37), this also improved the biodistribution profile with a shift from a 

gastrointestinal excretion pathway to a predominant renal excretion (36).  

 

Octreoscan (111In-DTPA-D-Phe1octreotide) is the most widely used radiopharma-

ceutical for SSTRS. The best and most consistent results are found in tumours 

expressing a high density of SSTRs, namely the majority of neuroendocrine tumours, 

but also meningiomas and medulloblastomas (38, 39). Successful scintigraphy has 

also been reported for other tumour types, with lower or non homogeneous SSTR 

density, such as breast cancer, lymphomas, or renal cell carcinomas (40–44). 
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Depreotide (P829) is an SST analogue, which is a cyclic synthetic peptide that can 

be labelled with Technetium-99m, yielding 99mTc-depreotide. It is known under the 

commercial names NeoTect (USA) and NeoSpect (Europe) (45, 36). Depreotide 

binds to SSTR2A, SSTR2B, SSTR3, and SSTR5, while Octreoscan binds to SSTR1, 

SSTR3, and SSTR5. There are some advantages 99mTc-depreotide  scintigraphy over 
111In-Octreoscan: besides the fact that 99mTc-depreotide has high affinity to the 

SSTR2 receptor, which occurs in many tumours,  99mTc-depreotide has a shorter half-

life, allowing the patient to be imaged the same day, and a lower radiation dose 

compared to 111In-Octreoscan. The disadvantage of imaging with 99mTc-depreotide is 

the relatively high abdominal background and the impossibility of performing 

delayed imaging due to the short half-life of the tracer, thus making it less suitable for 

the detection of abdominal tumours. 99mTc-depreotide was extensively applied to 

imaging of solitary pulmonary noduli (46–48). 

 

Tracers for Positron Emission Tomography (PET) The PET camera allows a 

higher spatial resolution compared to the gamma camera, which makes it possible to 

image tumours with an even higher accuracy. In fact, PET imaging of neuroendocrine 

tumours (NET) is a rapidly evolving field, closely connected to the development of 

novel radiopharmaceuticals. NET can be easily visualized on PET scans using an 

array of receptor-based tracers. More recently the labelling of SST analogues with 
68Ga, 64Cu, or 18F resulted in the development of specific PET tracers (DOTA-

peptides) that are currently employed in clinical trials in NET patients (68Ga-DOTA-

TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE) with very promising results, reported 

to be superior to other imaging modalities (computed tomography (CT), magnetic 

resonance tomography (MRT),or SSTRS (49–55). 

 
1.3 THERAPEUTIC USE OF SST  

Peptide receptor radionuclide therapy (PRRT) with radiolabelled SST analogues is a 

promising treatment option for patients with inoperable or metastatic neuroendocrine 

tumours. Symptomatic improvement may occur with all of the various 111In, 90Y, or 
177Lu–labelled SST analogues that have been used. Since tumour size reduction was 

seldom achieved with 111Indium-labelled SST analogues, radiolabelled SST 

analogues with beta-emitting isotopes like 90Y and 177Lu were developed. Reported 

anti-tumour effects of [90Y-DOTA(0),Tyr(3)]octreotide vary considerably between 

various studies: Tumour regression of 50% or more was achieved in 9 to 33% (mean 

22%) of patients. With [177Lu-DOTA(0),Tyr(3)]octreotate treatments, tumour 

regression of 50% or more was achieved in 28% of patients and tumour regression of 

25 to 50% in 19% of patients; stable disease was demonstrated in 35% and 

progressive disease in 18%. Predictive factors for tumour remission were high tumour 

uptake on SSTRS and limited amount of liver metastases. The side effects of PRRT 

are few and mostly mild, certainly when using renal protective agents. Serious side 

effects like myelodysplastic syndrome or renal failure are rare. The median duration 
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of the therapy response for [90Y-DOTA(0),Tyr(3)]octreotide and [177 Lu-DOTA(0), 

Tyr(3)]octreotate is 30 months and more than 36 months, respectively. Lastly, quality 

of life improves significantly after treatment with [177Lu-DOTA(0),Tyr(3)]octreotate.  

These data compare favourably with the limited number of alternative treatment 

approaches, like chemotherapy (36, 56–64). 

 

Another possibility for tumour treatment could be the use of unlabelled somatostatin 

coupled to cytotoxic agents. One of the most efficient compounds is AN-238, a potent 

cytotoxic radical 2-pyrrolinodoxorubicin linked to the somatostatin octapeptide RC-

121, (36, 65). However AN-238 has not yet been tested in clinical trials (36). 

 

Apart from patient selection for radionuclide therapy, other imaging applications of 

SSTRS include localization of primary tumours, detection of metastatic disease 

(staging/restaging), dosimetry (prediction of response and radiotoxicity), monitoring 

effects of surgery, radio(nuclide)therapy or chemotherapy, and detection of 

progression of disease or relapse (follow-up). 

 

 
1.4 LUNG CANCER 

Lung cancer is the second most common cancer in both men and women in the 

Nordic countries combined, with rates only superseded by prostate and breast cancer, 

respectively, while it is the most common cause of cancer death. The incidence of 

lung cancer per year in Sweden has increased since 1958, and during 1990–1994 was 

slightly over 2800 (66). While the incidence rates in males have been decreasing in 

Sweden since 1980, the incidence rates in females have increased. The mortality 

trends closely follow those of incidence, reflecting the very unfavourable survival of 

the patients in general (67). 

 

Histopathologically, there are two main groups of lung tumours: small-cell lung 

cancer (SCLC) and non-small-cell lung cancer (NSCLC). There are several 

subgroups of tumours among the NSCLC, with adenocarcinoma (Ac) the most 

common, followed by squamous cell cancer (SqCLC). Other forms of cancer in the 

lungs are bronchioloalveolar carcinoma and adenosquamous lung cancer, 

mucoepidermoid, and large-cell lung cancer. 

 

The 5-year survival rates are closely related to the disease stage at the time of 

diagnosis, which is illustrated in Table 1 (68). 
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Table 1. Comparison of overall survival between TNM classifications by using the sixth edition 

of TNM classifications. 

 

Sixth edition 

TNM 

Deaths/no. Median survival 

(mo) 

5-Year survival 

(%) 

P-value 

T1 120/830 53 78.7 – 

T2 166/525 46 60.9 <.0001 

T3 58/98 35 34.5 <.0001 

T4 38/79 33 36.9 .8373 

N0 192/1148 52 77.0 – 

N1 60/161 45 54.2 <.0001 

N2 122/212 32 28.4 <.0001 

N3 8/11 11 0.0 .0002 

M0 360/1497 50 68.2 – 

M1 22/35 24 27.1 <.0001 

Total 382/1532 49 67.3 – 

P-value: Significance value from log-rank test of survival hazard functions relative to preceding row. 

 

Improved radiologic imaging techniques have affected the clinical staging of lung 

tumours. Recent recommendations for revisions to the TNM classification and 

staging system for non-small-cell lung carcinoma attempt to incorporate these new 

data, with the intent of refining clinical groups to lead to more appropriate therapy for 

individual patients. Also, improvements in radiologic detection techniques have led to 

the discovery of smaller lesions, which may be successfully treated with less rigorous 

chemotherapeutic and surgical protocols. 

 

The radiological diagnostic procedures routinely applied in lung cancer diagnosis 

include plain X-ray of the lungs and computed tomography of the thorax and 

abdomen for diagnosing spread of the tumour. The most common manifestation of 

lung cancer is a solitary pulmonary nodule (SPN) smaller than 3 cm in diameter, 

which is usually found during CT, or a solitary pulmonary mass larger than 3 cm in 

diameter. Diagnostic evaluation of focal pulmonary lesions should be accurate and 

efficient to facilitate prompt resection of malignant tumours, when possible, but 

surgery should be avoided in cases of benign disease. 

 

The systematic literature review showed that dynamic CT with nodule enhancement 

yielded the promising sensitivity for identifying a malignant SPN (98 to 100%) with 
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less favourable and often poor specificity varying between 54 and 93%. In studies of 

CT-guided needle biopsy, non-diagnostic results were seen approximately 20% of the 

time, but sensitivity and specificity were excellent when biopsy yielded a specific 

benign or malignant result (69). 

 

MRT could be used in special situations to see the growth of the tumour to 

surrounding tissue, for example, overgrowth of Pancoast tumours to the spine with 

symptoms of nerve root compression or compression on the spinal cord. 

 

To investigate tumour spread, other diagnostic procedures could be used, such as 

ultrasonography of the abdomen or endoscopic examination of the oesophagus 

(oesophagoscopy) combined with endoscopic ultrasonography (EUS) and combined 

with needle biopsy and CT of the brain or bone scintigraphy. 

 

For staging purposes positron emission tomography with F18-Fluoro-deoxy-glucose 

(FDG-PET) is now a routine method (70–72). Imaging with FDG-PET is a sensitive 

method to detect pulmonary cancer, but as with CT, it has a limited specificity (71–

72). FDG-PET reflects the metabolic activity with glucose turnover and is not 

specific for the malignancies. Search for other, more tumour-specific imaging agents 

remains desirable. 

 
SSTRS with99mTc-depreotide  in patients with lung cancer 

A noninvasive functional imaging method based on the principle that malignant 

nodules have a higher level of somatostatin-avid receptors than benign nodules do 

was tested in several studies. 

 
99mTc-depreotide was extensively applied for imaging of solitary pulmonary noduli 

during last decade. This SST analogue is labelled with gamma-emitting 99mTc and 

thus could be easily imaged with a single-photon gamma camera, which is more 

widely available than PET/CT scanners. 

 

Single-site studies have reported promising results regarding diagnostic performance 

of 99mTc-depreotide (47, 73). And two large multicentre studies were conducted. In a 

United States multicentre study of 114 individuals, Blum et al. (46) reported that 
99mTc-depreotide scintigraphy correctly identified 85 of 88 lung cancers, resulting in 

96.6% sensitivity. Methods specificity, however, was lower (73.1%), with false-

positive uptake in granulomas and one hamartoma. 

 

In the European multicentre study of 118 patients (48) 99mTc-depreotide was positive 

in 65 of 73 patients with a malignant lesion and negative in 30 of 45 patients with a 

benign lesion, resulting in a sensitivity, specificity, and diagnostic accuracy of 89,67 

and 81%, respectively. 
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99mTc-depreotide  vs. FDG-PET in patients with lung cancer 

In the beginning of this century PET technology was available in only few large 

clinical centres in the United States and Europe, and it was of great importance to 

compare these two methods. The diagnostic performance between FDG-PET and 
99mTc-depreotide-SPECT in the European multicentre study appears comparable; and 

scintigraphy with 99mTc-depreotide is advantageous, since it can be performed with 

traditional nuclear medicine equipment (48). The results of examinations performed 

with 99mTc-depreotide suggest that this test has sensitivity and specificity similar to 

those of FDG-PET (72). 

 

In a study by Kahn et al. (71) 157 subjects with lung lesions were examined with both 

methods, and the sensitivities and specificities for detecting malignant disease of 

FDG-PET were 96% and 71%, and of 99mTc-depreotide were 94% and 51%, 

respectively. In the 139 subjects with available complete staging data, FDG-PET 

correctly staged 76 of 139 patients (55%), and 99mTc-depreotide correctly staged 63 of 

139 patients (45%). The authors concluded that the sensitivity for detection of lung 

cancer in the primary lesion is equally high for FDG-PET and 99mTc-depreotide, but 

the specificity is superior for FDG-PET. The staging accuracy of FDG-PET and 
99mTc-depreotide is similar, but when read with the chest CT, neither scintigraphic 

examination is sufficiently accurate to stage patients with non-small-cell lung cancer. 

Performing a meta-analysis to estimate the diagnostic accuracy of dynamic contrast 

enhanced CT and magnetic resonance imaging, FDG-PET, and technetium 99mTc-

depreotide single photon emission computed tomography (SPECT) for evaluation of 

solitary pulmonary nodules (SPNs), Croning et al. (74) found that all these non-

invasive methods are accurate in distinguishing malignant from benign SPNs, and 

differences among these tests are non-significant. 

 

The previous studies with 99mTc-depreotide in lung cancer patients from our group 

were in line with research published worldwide and showed promising results in the 

detection of primary lung cancer and regional lymph nodes (71–72, 75). However, the 

data on clinical application of this method are missing. 

 
Prognosis in patients with NSCLC 

The prognosis for patients with non-small-cell lung cancer depends on a number of 

factors, including the extent of disease, performance status, weight loss, and TNM 

staging. Unfortunately, these variables do not always provide a satisfactory 

explanation for differences in survival rates. Different biological markers may 

provide further explanations for differences in prognosis. Such biological markers 

could be p53 or Ki-67 with the corresponding antibody MIB-1. 

Prognostic biological markers: 
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P53 is a nuclear phosphoprotein whose function is classified as a tumour suppressor 

gene (76–83). Mutations in the p53 gene are currently regarded as the most common 

genetic alteration in human cancer, and forty different mutations have been identified 

(78). Mutations in the p53 gene are in some studies correlated to shortened survival in 

patients with cancer (79, 80), while other studies have shown a better prognosis  

(81, 82). Still other studies have not showed such correlation (78, 83). 

 

Ki-67 is an antigen that is a large protein and a marker for cell proliferation, that is, 

correlated to the proportion of cells in the S-phase in the cell proliferation cycle. The 

S-phase signifies the cells in mitosis, where the DNA in the cell nucleus is 

replicating. Molecular Immunology Borstel (MIB-1) is the antibody against Ki-67 

(84, 85). A majority of studies have shown a correlation between a higher expression 

of Ki-67 antigen and a worse prognosis in cancer patients (84, 85). 
 
1.5 CANCER OF THE OESOPHAGUS 

Cancer of the oesophagus is rare, representing only 0.8% of all new cases of cancer in 

Sweden 2004 (male: 1.1% and female: 0.4%) (86). Squamous cell carcinoma has long 

been the most common histological form of cancer in the oesophagus. For the past 

decade reports have shown a rising incidence of oesophageal adenocarcinoma in most 

of the western world. The incidence in Danish males has doubled since 1980, with 

more modest increases observed in the remaining Nordic countries. Among women, 

incidence has increased in Denmark, but remained stable in Sweden and Norway and 

declined in Iceland. The trends for mortality closely followed those of incidence. The 

age-standardized 5-year relative survival was at a low level throughout the period 

1964–2003, although it increased somewhat in more recent periods, particularly for 

Swedish men, where it reached 11% in 1999–2003, and for Swedish women, 14% 

(87). 

 

Esophageal cancer is an aggressive disease with surgery as an only chance for cure. 

The TNM classification system is traditionally used to stage oesophageal carcinoma. 

T1a lesions have less chance of nodal spread, with most series showing an incidence 

of nodal metastases of <10%, while about 30% of T1b lesions will have nodal 

metastases. In addition, the number of lymph nodes involved, histology, degree of 

differentiation, and location seem to have an impact on survival of patients with 

oesophageal cancer (88). Overall, more than 50% of patients have unresectable or 

metastatic disease at the time of presentation. The American Cancer Society’s Cancer 

2009 statistics state that the 5-year survival rate for all patients with oesophageal 

cancer is only 17%, with better survival for local (33.7%) or regional (16.9%) 

compared to distant (2.9%) disease at presentation (89). 
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Barrett’s oesophagus (BE) 

BE is characterized by replacement of squamous epithelium of distal oesophagus with 

specialized columnar epithelium with goblet cells, thought to be caused by damage 

from chronic acid exposure, or reflux oesophagitis. Oesophageal adenocarcinoma 

(Ac) develops in approximately 0.5% of patients with BE per year, and has a poor 

outcome unless diagnosed early. However, in 10–30% of patients with Ac, BE is not 

found. It is now generally accepted that Barrett’s epithelium can progress through a 

metaplasia-dysplasia-carcinoma progression but the natural history of dysplasia in 

Barrett’s oesophagus is not well defined. Identification of high-grade dysplasia 

(HGD) has been considered an indication for oesophagectomy or aggressive 

endoscopic treatment, since occult invasive cancer has frequently been identified at 

the time of resection. Without treatment, invasive cancer develops within 3 years in 

up to half of patients with HGD (90). 

 

The current clinical management of Barrett’s oesophagus is hampered by the lack of 

accurate predictors of progression. In addition, when patients develop cancer, the 

current staging modalities are limited to stratifying patients into different prognostic 

groups in order to guide the optimal therapy for an individual patient. Biomarkers 

have the potential to improve radically the clinical management of patients with 

Barrett’s oesophagus and oesophageal adenocarcinoma, but have not yet entered 

mainstream clinical practice. This is in contrast to other cancers like breast and 

prostate for which biomarkers are utilized routinely to inform clinical decisions. 
 

DIAGNOSIS OF OESOPHAGEAL CANCER 

Upper endoscopy is the gold standard for the diagnosis of oesophageal carcinoma. 

While the presence of a mass or a nodule is diagnosed via an upper endoscopy (and 

presence of cancer proven by biopsy), the depth of the tumour and lymph node 

involvement cannot be assessed with this modality. 

 

Computed Tomography. The sensitivity and specificity of CT in diagnosing 

locoregional nodal involvement are 84% and 67%, respectively. For distant organ 

metastases, the sensitivity is 81% and the specificity is 82% (91). CT has the 

limitation of diagnosing overgrowth of the tumour to adjacent organs, detecting small 

tumours of <1 cm and growth to different layers in the oesophageal wall. 

 

FDG-PET. This method has recently been introduced into oesophageal cancer 

staging and is more accurate than conventional CT imaging, particularly in the 

detection of distant metastases, and the combination of 18F-FDG-PET/CT is more 

accurate than CT alone with respect in diagnosing lymph node metastasis close to the 

tumour, and therefore staging (92). Despite the high sensitivity in detecting 

oesophageal cancer with 18F -FDG-PET/CT (92), these methods lack specificity; an 
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elevated 18F-FDG uptake could be seen in different non-malignant conditions, such as 

inflammation and Barrett’s oesophagus (46, 47, 71, 72, 93). 

 

A systematic review has shown a moderate sensitivity and specificity of 51% and 

84%, respectively, for the detection of locoregional lymph node metastases, and a 

sensitivity and specificity of 67% and 97%, respectively, for detection of distant 

metastases (94). 

 

Endoscopic ultrasound (EUS) is the most accurate non-invasive test for 

locoregional staging of oesophageal cancer (T and N classification), though 

distinguishing between early lesions (T1a and T1b) remains problematic. The overall 

accuracy of EUS for T classification is 84% (94). Rounded, sharply demarcated, 

homogeneous, and hypoechoic features of a lymph node on EUS indicate 

malignancy. The overall accuracy of EUS staging of locoregional nodal disease is 

77%. The addition of fine needle aspiration (FNA) to EUS further refines the staging 

of nodal disease, bringing the accuracy up to 85%, (95). EUS is superior to FDG-

PET/CT with respect to diagnosing the tumour growth through different layers in the 

oesophageal wall, overgrowth to adjacent organs, and lymph node metastasis close to 

the tumour (92, 96–98). 

 

Minimally invasive staging. The use of minimally invasive staging (laparoscopy or 

thoracoscopy) is not widely practised, because of the improving accuracies of 

noninvasive methods. Staging laparoscopy can be performed prior to performing a 

minimally invasive oesophagectomy or definitive resection. Laparoscopy is useful for 

detecting and confirming nodal involvement and distant metastatic disease that 

potentially would alter treatment and prognosis in patients with oesophageal cancer. 

Laparoscopy was reported to change the planned therapeutic approach in 10–17% of 

patients (99). 

 
SSTRS with 99mTc-depreotide in patients with oesophageal cancer 

We have previously used scintigraphy with 99mTc-depreotide for the diagnosis of lung 

cancer, and showed an accurate discrimination between benign and malignant lesions 

with conventional gamma cameras (46–48). There was a physiologically low 99mTc-

depreotide uptake in the thorax region. Therefore, visualization of overexpression of 

SSTRs in cancer types other than lung cancer should, theoretically, be feasible. 

Moreover, our previous results showed that this tracer accumulates both in squamous 

cancers and in adenocarcinomas (11), which is of clinical relevance in view of the 

almost exponential increase in the incidence of adenocarcinoma in the distal 

oesophagus. As of today there are no studies with SSTRS in patients with 

oesophageal carcinoma. 
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2 AIMS OF THE STUDY 
 

To establish the sensitivity and specificity of the somatostatin receptor scintigraphy 

with 99mTc-depreotide in patients with suspected lung cancer and to determine in 

which clinical settings it would be beneficial to use this method. 

 

To investigate whether there is an expression of SSTR2 in NSCLC estimated in vitro 

and to determine whether in vivo estimated 99mTc-depreotide uptake reflects the in 

vitro expression of SSTR2 in NSCLC. Also, to determine whether there is a 

correlation between 99mTc-depreotide uptake and the following prognostic factors in 

patients with NSCLC: tumour grade, presence of MIB-1, and p53. 

 

To evaluate whether oesophageal cancer could be detected scintigraphically with 
99mTc-depreotide and to determine the optimal imaging settings. Also, to investigate 

the uptake characteristics of 99mTc-depreotide of the main two cancer types of the 

oesophagus and relate that to patients with Barrett’s oesophagus. 

 

To investigate whether there is an expression of SSTR2A, SSTR2B, SSTR3, and 

SSTR5 in oesophageal cancer estimated in vitro and to determine whether in vivo 

estimated 99mTc-depreotide uptake reflects the in vitro expression of SSTR2A, 

SSTR2B, SSTR3, and SSTR5 in oesophageal cancer. 



 

12 
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3 MATERIAL AND METHODS 
The Ethics Committee at Stockholm Region and the Radiation Protection Committee 

at the Karolinska University Hospital, Huddinge, approved all studies. 

 
3.1 SUBJECTS 

3.1.1 Study I and Study II, lung cancer patients 

All patients referred to the Department of Respiratory Medicine and Allergy at 

Karolinska University Hospital, Huddinge, with suspected lung cancer between April 

2002 and January 2004 were asked to participate in the study. After informed 

consent, 128 consecutive patients were included. No confirmation of pathology was 

obtained in one patient and because of loss of follow-up he was subsequently 

excluded. Among the 127 patients, 28 patients were included in a pilot study from 

April 2002 to March 2003. The remaining 99 patients were evaluated in Study 1. 

There were 47 women and 52 men with a median age of 66 years (range between 31 

to 86 years). Sixty-seven patients were smokers, 18 were ex-smokers who had quit 

for more than one year, and 14 had never smoked. 

 

Among these 127 patients, 19 patients with non-small-cell lung cancer were operated 

on and tissues samples from the tumours were analysed in vitro with reference to 

histopathological classification according to the World Health Organisation. Besides 

standard staining, an immunohistochemical evaluation was performed and these 

patients are included in Study II. 
 

3.1.2 Study III and Study IV, oesophagus cancer patients 

Thirty-four patients suffering from dysphagia were referred to the Department of 

Surgical Gastroenterology at Karolinska University Hospital, Huddinge, and further 

examined with gastroscopy, EUS, and CT. Of these, 9 were females and 25 males 

with a median age of 63.5 years (range from 33 to 85 years). Among the 34 patients, 

21 had cancer of the oesophagus and 13 had Barrett’s oesophagus. The cancer 

diagnosis was established by histopathological examination of biopsy specimens in 

19 cases, and with EUS and cytological confirmation of diagnosis in 2 cases. All 

patients with Barrett’s oesophagus had the diagnosis made at endoscopy and 

subsequent multiple biopsies. 

 

All specimens were classified as well differentiated (grade = G1), moderately 

differentiated (G2), or poorly differentiated (G3). 
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3.2 METHODS 

3.2.1 Scintigraphy 

For the somatostatin receptor scintigraphy, 99mTc-depreotide (NeoSpect, GE 

Biosciences, Sweden) was prepared in accordance with the manufacturer’s 

instructions, and 740MBq 99mTc-depreotide was injected into an antecubital vein. For 

Study I and Study II an examination was performed with a double-headed gamma 

camera (Sopha Medical Vision Scandinavia AB, DST-XL, General Electric, 

Milwaukee, WI, USA) equipped with low-energy, ultra-high resolution, parallel-hole 

collimators. For Study I all patients were examined with whole-body scanning and 

SPECT of the thorax within 2 to 4 hours after injection. The patient’s arms were 

elevated during SPECT and placed alongside his or her body during whole-body 

scanning. SPECT was done at 64 angles using a 128 × 128 matrix with 40 seconds 

per angle. Transverse slices were calculated with an iterative algorithm (HOSEM 

iterative program; Hermes/NUD; Stockholm, Sweden) into a 128 × 128 matrix 

without attenuation correction. Images were post-filtered with 3D Fourier filter 

(Butterworth filter with a cut-off frequency of 0.65 cycles/cm order 5.00). In addition 

to the transversal images, coronal and sagittal 3 mm images of the thorax were 

reconstructed. 

 

At the time of Study III and Study IV new data were published suggesting a double-

phase procedure with SSTRS as increasing methods specificity (47). For that reason, 

Study III and Study IV SPECT was performed as a double-phase procedure with 

imaging of the thorax at 2 and 4 hours after injection. Three different gamma cameras 

were used. Most of the patients (25 of 34) in Study III and (20 of 28) in Study IV 

were examined with a double-headed gamma camera (E-Cam, Siemens, Erlangen, 

Germany) and low-energy, high-resolution parallel-hole collimators, using a 128 × 

128 matrix, 64 projections through 360º rotation, and an acquisition time of 40 s per 

projection. An additional 5 patients in both Studies III and IV were examined with a 

double-headed gamma camera (DST-XL; Sopha Medical Vision Scandinavia AB, 

Gif-sur-Yvette, France) and low-energy, ultra-high-resolution, parallel-hole 

collimators, using the same acquisition parameters as above. Finally, 4 patients (in 

Study III) and 3 patients (in Study IV) were examined with a three-headed gamma 

camera (Picker IRIX, Cleveland, OH, USA) and low-energy, high-resolution, 

parallel-hole collimators, using a 128 ×128 matrix, 60 projections through 360º 

rotations, and an acquisition time of 64 s per projection. Transverse slices were 

reconstructed with an iterative algorithm (HOSEM v 3.5 iterative program; 

Hermes/NUD, Stockholm, Sweden) and formatted as a 128 × 128 matrix without 

attenuation correction. Images were post-filtered with a three-dimensional Fourier 

filter (Butterworth filter) with a cut-off frequency of 1.1 cycles/cm (order 5.00). 
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3.2.1.1 Evaluation of scintigraphic images 

The scintigraphic images were evaluated both through visual assessment (Study I) 

and through quantitative calculations (in Studies II–IV). Two experienced 

radiologists, one of whom is also a nuclear medicine specialist, evaluated the 

scintigrams. The readers were not told of the final diagnosis but were given the 

radiological findings. The scintigrams were evaluated along with CT, since the 

reading of the scintigrams requires anatomical landmarks given at the CT 

investigation (100). 

 

Any visually observed focal accumulation of the 99mTc-depreotide in the lung 

parenchyma compared to that of a normal lung was considered as a pathological 

uptake in patients with suspected lung cancer (Study I and II). 

 

Focal accumulation of the 99mTc-depreotide in locations other than the lung 

parenchyma was also registered both with regard to the whole-body images and to the 

transversal, coronal and sagittal images of the thorax (Study I). 

 

For Studies III and IV any focal 99mTc-depreotide uptake in the region of the known 

oesophageal lesion was considered pathological. 

 

The quantitative measurements of the 99mTc-depreotide uptake (Study II–IV) were 

made on the SPECT transverse slice images with Hermes computer system by 

manually drawing a region of interest (ROI) around the lung tumour (Study II) or 

around the oesophageal tumour (Study III and IV) and by drawing one ROI with the 

average uptake on the patient’s lung parenchyma for background subtraction. The 

lung parenchyma was chosen as a reference region, as it is known that a normal lung 

parenchyma as well as brain and muscles show very low expression of SSTRs (101). 

A volume of interest (VOI) was obtained by adding all ROIs. In-house software, 

originally developed for volumetric measurements in magnetic resonance images and 

implemented on a Hermes workstation (Hermes Medical Solution AB, Stockholm, 

Sweden), was used to calculate the total counts and volume of the tumour and 

background VOIs, thus giving a count density [counts/cm3]. To produce a normalized 

tumour uptake, each patient was normalized to his or her own normal lung 

parenchyma using the formula   BBTU  , where U is the normalized uptake, T is 

the count density in the tumour, and B is the count density in the lung parenchyma. 

For patients with negative uptake (i.e. tumour count density lower than the lung 

background count density), the uptake was scored as zero (Study II–IV). 
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                         b) 

 

Figure 1. Evaluation of 99mTc-depreotide uptake in oesophageal carcinoma 2 (a) and 4 (b) 

hours after injection. 

 

To increase accuracy and to investigate the intra-observer variability (Study III and 

IV), evaluations were performed twice, 6 months apart, by the same radiologist, and 

the mean value of the two uptake values was used in further analysis. In addition,  

a second radiologist made individual evaluations in order to investigate the inter-

observer variability of the uptake values seen in images taken at 2 hours. 
 

3.2.2 Computed tomography (CT) 

CT of the thorax and upper abdomen was performed in all patients in this thesis as a 

part of routine examination. For Studies I and II all lung lesions (127 patients) were 

detected by CT, performed between April 2002 and January 2004. The median 

interval between CT and scintigraphy in Studies I and II was 4 four weeks. 
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The CT investigations were done both at our hospital (n = 79) and at external 

departments (n = 20). At our hospital, 46 scans were performed with the multi-slice 

spiral CT Somatom Volume Zoom (Siemens, Erlanger, Germany), slice thickness 4 × 

1 mm, pitch 1.5, and 33 scans with the spiral CT single-slice Tomoscan AVE1 

(Philips Medical Systems, Einthoven, the Netherlands) slice thickness 5 mm, pitch 

1.5. Images were reconstructed with 5 mm slices in the mediastinum and 10 mm in 

the lung from both CTs. Contrast media (120 mL) was injected intravenously, and all 

scans were done while the patients were holding their breath. The CT technology at 

the external hospitals was essentially the same as at our department. 

 

The CT/chest X-rays were evaluated by two experienced radiologists according to 

established criteria such as size, calcium and fat content, and the shape and borders of 

the pulmonary lesions. The age of the patient, smoking habits, and growth rate typical 

of cancer, as well as signs of invasiveness or metastatic spread, were noted (102). 

Based on this analysis the probability of lung cancer was graded on a scale from 1 to 

3 (Table 1), where a benign lesion was considered 1, indeterminate was considered 2, 

and a malignant lesion was considered 3. 

 
Table 2. (Study I) Criteria used for CT grading of the radiological probability of malignancy. 

 

Group Radiological findings 
 

Radiological diagnosis 

1  No solid lesion or infiltration resolved since 
previous chest radiography/CT.A lesion less than 
2 cm in size, fat containing, with popcorn-like 
calcifications, smooth margin, and a sharply 
defined edge located in upper lobe. No growth for 
more than 2 years when compared with previous 
examinations. 

Benign 

2 A single solid lesion with or without fat or 
calcifications, with or without cavitations, located 
anywhere in the lung. No enlarged lymph nodes, 
no coexisting lung lesions. No previous 
examinations exist or no growth during previous 
6 month. 

Indeterminate 

3 A solid lesion more than 2 cm in size, without fat 
or calcifications, irregular contour as well as 
speculated margin, cavitations with thick, 
irregular wall, located anywhere in the lungs. 
Lesion penetrating surrounding tissues, such as 
vessels and bone. Enlarged lymph nodes, multiple 
coexisting lung lesions in both lungs. Lesion 
growth during last 6 month when compared with 
previous examinations. 
 

Malignant 
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3.2.3 PET/CT 

Some patients in Study I and in Study III were investigated with PET/CT at 

Karolinska University Hospital, Solna using a Biograph 64 TruePoint PET/CT 

scanner (Siemens Medical Solutions, Erlangen, Germany). All patients fasted for at 

least 6 h before the examination. After 1 h rest, 4 MBq/kg bodyweight (bw) of [18F]-

2-fluoro-2-deoxy-D-glucose (FDG) was administered intravenously. One hour later,  

a PET/CT examination from the middle skull to the proximal thigh was initiated. 

 

Serum glucose levels were routinely measured to ensure that all patients had a normal 

serum glucose level at the time of examination (G7.0 mmol/L). Diabetic patients were 

generally instructed to keep their regular schedule of glucose-controlling drugs. The 

examination started with a low-dose CT without administration of contrast medium 

for correction of photon attenuation and scattering. Directly upon this, the PET 

examination was made using a full-ring dedicated scanner with an axial field-of-view 

of 21.5 cm. Acquisition was made during 3 min at each bed position during normal 

tidal breathing. Images were reconstructed with CT-based attenuation and scattering 

corrections using the iterative ordered subsets expectation maximum reconstruction. 

A full-dose CT with and/or without administration of intravenous contrast medium 

was performed directly afterward by a continuous spiral 64-slice technique with a 

voltage of 120 kV, a pitch of 0.8, a slice thickness of 1.2 mm, and a rotation speed of 

0.5 s per revolution. In the acquisitions made for photon attenuation and scattering 

correction, the current was 50 mA•s, while otherwise the tube current modulation 

routine was applied. Examination was made while breath holding at a mean 

inspiratory level. For contrast enhancement, Ioversol (Optiray® 350 mg I/mL, Tyco 

Healthcare Deutschland GmbH, Neustadt/Donau, Germany) was used. The dose was 

1 mL/kg bw. In patients 970 kg bw, 10 mL of contrast medium was added. The 

injection speed was 1.5–2.5 mL/s. 

 
3.2.4 EUS 

EUS was performed by way of gastroscopy with an ultrasound probe. All EUS 

procedures were accompanied with fine needle biopsy. There are two kinds of 

electronic echo endoscope, the radial and the linear. The radial gives an image in 360 

degrees that is perpendicular to the instrument, while the linear gives an image 

parallel to the axis of the instrument. Only the linear provides a guidance to biopsy. 

The frequencies used are higher than for ordinary transabdominal ultrasound; 

frequencies used are between 5 to 30 MHz. The higher the frequency, the higher the 

resolution will be with the lower penetration and vice versa. The patient fasts before 

the examination and the examination takes between 15 and 60 minutes to perform 

(103). 
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3.2.5 Immunohistochemistry 

For determining the somatostatin receptor 2A (SSTR2A) (Study II) we used an 

antiserum raised from the sequence of the C-terminal portion of this somatostatin 

receptor (Gramsch Laboratories, Schwabhausen, Germany). For MIB-1 receptor 

determination the monoclonal Mouse Anti-Human Ki-67 Antigen, clone MIB-1 

(DakoCytomation, Glostrup, Denmark) was used. For p-53 receptor determination the 

monoclonal Mouse Anti-Human p53 Protein, clone DO-7 (DakoCytomation, 

Glostrup, Denmark) was used. The antibody against SSTS2A was applied to tissue 

sections at a dilution of 1/20000. The anti-MIB-1 antibody was applied at a dilution 

of 1/80. The anti-p53 antibody was applied at a dilution of 1/40. The immuno-

peroxidase technique using the streptavidin-peroxidase kit (DakoCytomation) was 

used to reveal the immune reactions. 

 

For MIB-1 and p53, the number of positive nuclei was calculated on 10 randomly 

chosen areas of the tumour histological sections and the result expressed as 

percentage. 

 

To evaluate the positivity of SSTR2A, an image analysis method was used. Applying 

the HIS (hue, saturation, and intensity) model (Gonzales) the saturation of the 

immunoperoxidase stain was calculated (range 0–1), and SSTR2 expression was 

graded on a three-point scale, with one representing the lowest expression. To avoid 

bias due to background influence, the mean value calculated in the normal bronchial 

epithelium was subtracted from the value of the tumour positive areas. The algorithm 

was written by one of us (AC). 

 

The procedure was different in Study IV. For immunohistochemical assessment of 

the different SSTRs (2A, 2B, 3, and 5), the Bond system (Vision Bio Systems Ltd. 

Australian, Melbourne) was used. Tissue specimens of the oesophageal tumours and 

biopsy material from the patients with Barrett’s oesophagus were processed and 

prepared for immunostaining by use of monoclonal antibodies. The pretreatment to 

achieve the epitope was performed by heat treatment and with the enzyme pronase. 

The tissue sample was first treated with peroxidase. The antibody was diluted 1000 

times and the enzyme pronase was diluted 50 μL in 7000 μL. The tissue sample for 

SSTR2A and SSTR2B was pretreated with the diluted enzyme solution and with the 

enhancer for 10 min. The tissue sample for SSTR3 was pretreated with H1 = Citrate 

buffer pH = 6, without enzyme and without enhancer for 20 min, and the tissue 

sample for SSTR5 was pretreated with H2 = EDTA buffer pH = 9 without enzyme 

and without enhancer for 40 min. 

 

After this pre-treatment the samples were incubated with the antibodies for 30 min 

and the incubation temperature was between 37 and 100ºC. The development was 

then performed with diaminobenzidine (DAB) and then stained with hematoxylin. 
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The Bond Polymer Refine Detection System was a compact polymer system with 

high sensitivity where peroxide block, intensive DAB dyeing, and hematoxylin 

contrast dyeing was included. This gave the dyeing high intensity combined with a 

sharp definition, without the use of streptavidin and biotin. By this, it was excluded 

that non-specific dyeing occurs because of the presence of endogenous biotin, which 

occurs in large amounts in some tissues in the gastrointestinal channel. During testing 

of the antibodies, pancreas and skin were used as a positive control to exclude false 

positive results. Both positive and negative controls were used at the incubation and 

dyeing steps. 

 

SSTR2A/SS800 was the antibody against the SSTR2A, SSTR2B/SS860 was the 

antibody against SSTR2B, SSTR3/SS850 was the antibody against SSTR3, and 

SSTR5/SS890 was the antibody against SSTR5. The enhancer was a copper 

intensification. The buffers used were H1 = Citrate buffer pH = 6 and H2 = EDTA 

buffer pH = 9. 

 

The (SSTR) concentration was graded as no receptor presence = 0, small 

amounts = 1, moderate amounts = 2, and large amounts = 3. 
 

3.2.6 Statistics 

Study I. Sensitivity and specificity of SSTRS with 99mTc-depreotide in lung cancer 

diagnosis were evaluated in this study. Sensitivity is the number of true positive test 

results compared to all positives. Specificity is the number of true negative test results 

compared to all negatives. 

 

Study II. Extreme values may bias results when only two variables are being 

examined; relationships between tumour grade, 99mTc-depreotide uptake, SSTR2 

expression, MIB-1, and p53 receptors were therefore analysed using Spearman Rank 

order correlations. The resulting correlation coefficients with corresponding p-values 

were calculated, and the correlation coefficient was considered significant if the 

corresponding p-value was 0.05 or less. 

 

Study III. Due to the small number of patients in each group, a non-parametric test 

was chosen. A two-sided Mann-Whitney U test was used to investigate the difference 

in uptake between malign and benign tumours, implemented in Statistica 9.0 (StatSoft 

Inc., Tulsa, OK, USA). Data were analysed based on both the 2-hour and the 4-hour 

post-injection recordings. A difference in uptake was considered significant if the p-

value was less than 0.05. To assess intraobserver and interobserver variability, 

intraclass correlation coefficients (ICC) were determined. 
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Study IV. Because extreme values may bias results when only two variables are 

being examined, relationships between 99mTc-depreotide uptake, tumour grade, and 

amount of the different studied SSTRs were analysed using Spearman rank 

correlations. Corresponding p-values were calculated and considered significant if the 

p-value was less than 0.05. 
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4 RESULTS 
The findings from the different studies are summarized below. 

 
4.1 STUDY I  

This study was conducted after the results of our pilot study showed the rationale of 

the use of 99mTc-depreotide in patients with suspected lung cancer. The sensitivity of 

SSTRS with 99mTc-depreotide was 94% to detect malignancy and 98% to detect lung 

cancer. The specificity was calculated on two sets of data - when all cases are used, 

the specificity is 52%. If the 12 pneumonias are excluded, the specificity is 77%. The 

diagnostic accuracy of the method in different settings is presented in Table 3. 

 

Of the total of 66 malignancies, 62 were positive on 99mTc-depreotide scintigraphy, 

thus true positive n = 62, yielding a sensitivity of 94%. Of the 58 lung malignancies, 

57 were positive on 99mTc-depreotide scintigraphy, yielding a sensitivity of 98%. 

Among the other 8 malignancies with origin other than the lungs, 5 were positive on 
99mTc-depreotide scintigraphy: these were 2 lymphomas, 2 malignant melanomas, and 

1 breast cancer metastasis. 

 

Only one lung cancer was negative on 99mTc-depreotide scintigraphy, this one a 1 cm 

bronchioloalveolar carcinoma situated in the apex of the left upper lobe. Three of the 

malignancies with origin other than the lungs were negative on 99mTc-depreotide 

scintigraphy. These were a rectal cancer metastasis, an adenoid cystic cancer 

metastasis, and the rib chondrosarcoma case). A chondrosarcoma is not a lung 

tumour, but it occurred in the thorax and was mistaken for one, which is why it was 

still retained for the assessment of the method. Thus there were false negative n = 4. 

There was no focal 99mTc-depreotide uptake in 17 of 33 patients with benign diseases, 

true negative n = 17. These were all 10 hamartomas, 1 pneumonia, 1 pleuritis,  

1 sarcoidosis, 1 granuloma, 1 granulomatous inflammation, and 2 benign lesions 

which were probably hamartomas. 

 

There was 99mTc-depreotide uptake in 11 of the 12 pneumonias, in 1 fibrosis, in 2 

round atelectases, 1 pleural fibrosis, and 1 pneumoconiosis. Thus false positive 

n = 16. 
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Table 3. Diagnostic accuracy of scintigraphy with 99mTc-depreotide. 

 Whole study 
population 

N = 99 in % 

Lung cancer and 
benign lesions 
N = 91 in % 

All lesions except 
pneumonias 
N = 87 in % 

 

Sensitivity 94 98 94 

Specificity 52 52 77 

Accuracy 80 81 89 

NNP 91 94 81 

PPV 79 77 93 

NPV = negative predictive value. PPV = positive predictive value. 

 

4.1.1 Correlation between CT and scintigraphy with 99mTc-depreotide 

All 51 cases radiologically graded as ‘malignant’ showed 99mTc-depreotide uptake 

(i.e. 50 were true positives and 1 was a false positive). More than 1/3 of all lesions in 

this study were graded as radiologically ‘indeterminate’ (n = 39). Among these 

lesions, 16 were malignant, and 99mTc-depreotide uptake was found in 12 of them. It 

was absent in 3 patients with metastatic disease and in a patient with 

bronchioloalveolar carcinoma. In the group of radiologically ‘indeterminate’ lesions 

23 were benign and 99mTc-depreotide uptake was absent in 13 of them (i.e. true 

negatives), while 10 cases showed 99mTc-depreotide uptake and were classified as 

false positives. Among these 10 cases, 8 were pneumonias, 1 was pleural fibrosis, and 

1 pneumoconiosis. If pneumonias are excluded, the number of false positives falls to 

two. Of nine ‘probably benign’ lesions, five (3 pneumonias and 2 round atelectasis) 

showed 99mTc-depreotide uptake and were false positives. 

 
4.1.2 Extra pulmonary 99mTc-depreotide uptake 

There was 99mTc-depreotide uptake in 204 regional lymph node stations, in patients 

with both malignant and benign lesions with a sensitivity of 99%, and a negative 

predictive value of 98% in determining metastatic lymph node involvement. These 

data were evaluated separately and are not included in this thesis (75). There was also 

a focal uptake in locations other than the lung or the mediastinum in 21cases. 

Depending on the clinical situation, some of these findings were further evaluated. 

Four patients with lung cancer showed uptake in supraclavicular lymph nodes, 

diagnosed by fine-needle aspiration as metastases from adenocarcinoma (n = 2) 

or/and squamous cell lung cancers (n = 2). Focal uptake in the bones represented 

morphologically verified metastases (n = 2), large osteophytes (n = 2), or 

degenerative changes (n = 2) on CT. There was uptake in the thyroid in one case of 

Hashimoto’s thyreoiditis and in another case of well-substituted hypothyreosis. One 
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case with an adenocarcinoma of the lung had two focal uptakes in the brain, one 

representing a metastasis and the other a meningioma. In one case of small-cell-lung 

cancer there were multiple small brain metastases on the CT, but no depreotide 

uptake was detected in the whole body images. Metastases in the liver, adrenals, and 

kidneys are difficult to detect because of a physiological high 99mTc-depreotide 

uptake in these regions. This was the case in four patients with proven metastasis in 

the adrenals and one patient with liver metastasis. Neither was a 2 cm metastasis in 

the pancreas detected. A 4 cm fibroadenoma of the breast had no uptake. As 

previously described, there was an unspecific 99mTc-depreotide accumulation in 

axillary sweat glands, not to be mistaken for metastasis (104). 
 

4.2 STUDY II 

Correlation between 99mTc-depreotide uptake and immunohistochemically analysed 

surgical specimens for SSTR2, p53, and MIB-1 was performed in 19 patients with 

non-small-cell lung cancer (Table 4). 

 

The level of SSTR2 expression was positively correlated with the degree of tumour 

differentiation (i.e. the higher the level of SSTR2 expression, the more G1 tumours or 

well-differentiated tumours). This correlation was significant (p < 0.05), correlation 

coefficient (CC) = 0.81.There was no correlation between p53 expression and tumour 

grade and no correlation between p53 expression and 99mTc-depreotide uptake. 

 

In contrast, MIB-1 expression was negatively correlated with tumour grade, (i.e. the 

higher the level of MIB-1 expression, the fewer G1 tumours or well-differentiated 

tumours). This correlation was significant (p < 0.05), CC = −0.46. There was also a 

slight but significant negative correlation between SSTR2 and MIB-1 expression (p < 

0.05), CC = –0.57). 

 

There was no correlation (p > 0.05) between tumour grade, SSTR, MIB-1, or p53 

expression, either absolute or relative to background 99mTc-depreotide uptake in 

tumour cells. 
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Table 4. Histological parameters versus 99mTc-depreotide uptake in 19 patients with  

non-small-cell lung carcinoma. 
 

Patient 

number 

Diagnosis Diff. 

grade 

MIB-

1 

P53 SSTR2 Total 

uptake (T) 

Counts/cm3 

Background 

(B) 

Counts/cm3 

T-

B/B 

1 Ac 1 3 5 3 1,216,309 517,013 1.353 

2 Ac 2 8 25 2 553,900 339,950 0.629 

3 Ac 1 4 0 3 917,689 484,209 0.895 

4 Ac pap 1 3 0 2 935,053 449,801 1.079 

5 Ac pap 1 78 0 1 930,637 409,165 1.274 

6 Ac 3 92 80 1 871,396 442,596 0.969 

7 Ac muc 3 70 42 1 1,752,289 521,677 2.359 

8 Ac 2 50 95 2 525,631 249,345 1.108 

9 Ac LC 3 63 70 1 645,724 319,381 1.022 

10 Ac 1 12 0 2 551,742 381,868 0.445 

11 Sq 2 16 84 2 384,114 219,341 0.751 

12 Sq 2 75 93 2 796,728 419,504 0.899 

13 Ac 2 64 99 2 1,090,793 520,498 1.096 

14 Ac 3 6 11 1 1,255,699 245,327 4.118 

15 Sq 3 87 0 1 401,167 168,640 1.379 

16 Ac LC 3 18 71 1 409,694 314,048 0.305 

17 Ac 3 10 0 1 565,961 348,891 0.622 

18 Neu 3 70 0 1 561,902 364,039 0.544 

19 Ac bac 1 10 0 3 289,120 145,225 0.991 
SSTR2 are somatostatin receptors subtype 2, and the amount of these receptors are graded as 0 to 3, 
where 0 is no presence and 3 is the highest amount. Differentiation grade is differentiation of the tumour, 
graded from 1 to 3, where 3 is the lowest differentiation, that is, the most malignant tumour. Diagnoses: Ac 
= adenocarcinoma, acinar type; Ac pap = adenocarcinoma, papillary; Ac muc = adenocarcinoma, 
mucoepidermoid; Ac LC = adenocarcinoma, large-cell carcinoma; sq = squamous cell carcinoma; neu = 
neuroendocrine pulmonary carcinoma, mixed type; and Ac bac = adenocarcinoma, non-mucinous 
bronchioloalveolar carcinoma. 

 
 

4.3 STUDY III 

This study showed that it is feasible to image oesophageal cancer with labelled 

somatostatin analogue. Among 34 patients with oesophageal lesions, 21 had cancer 

and 13 were benign. Of these 21 patients, 16 had pathological uptake of 99mTc-

depreotide (true positive 76%) and 5 were negative (false negative 24%) on visual 

assessment. Six of the 8 patients with SqCC and 5 of the 11 patients with Ac showed 

a pathological 99mTc-depreotide uptake. The remaining 5 patients had false negative 

uptake of 99mTc-depreotide (Table 5). The sensitivity of 99mTc-depreotide scintigraphy 

in the detection of oesophageal cancer was thus 76%. 
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a) 

 

b) 

  

c) 

Figure 2. Cancer in the upper part of oesophagus: transversal slice on CT, (a) FDG-PET/CT 

(b), and 99mTc-depreotide SPECT (c). 

 

There was no 99mTc-depreotide uptake in the columnar metaplastic mucosa in any of 

the 13 Barrett’s patients, irrespective of the presence of low- and high-grade dysplasia 

in the metaplastic epithelium on visual assessment. The specificity of 99mTc-

depreotide scintigraphy in this cohort of patients was thus 100%.  

 

There was no significant difference in uptake of 99mTc-depreotide between 2 hours 

and 4 hours ROI delineation and quantitative measurement. A corresponding second 

ROI delineation and quantification, performed 6 months later, gave consistent results. 

Both intraobserver and interobserver variability was low, with ICC = 0.97 when 

comparing the evaluations by the same radiologist (intra-observer), and ICC = 0.96 

when comparing the evaluations made by the two radiologists (inter-observer). 
 

A statistically significant difference (p < 0.005) was found between 99mTc-depreotide 

uptake in malignant lesions compared to that in benign or premalignant lesions 

(Figure 3), both 2 and 4 hours after injection. The absolute 99mTc-depreotide uptake 

value was also higher in all malignant lesions after 2 compared to 4 hours. There was 

no difference in uptake between Ac and SqCC. 
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Table 5. Tumour type, size, and location; CT result; and 99mTc-depreotide uptake  
in 21 oesophageal cancer patients. 

 

N Diagnosis 
Tumour size  

in mm 
Location CT 

99mTc-
depreotide 

1 Sqcc 5 Middle Neg. Neg. 
2 Ac 17 × 45 Distal Pos. Pos. 
3 Sqcc 55 × 40 Proximal Pos. Pos. 
4 Ac in B 65 × 55 × 13 Distal Pos. Pos. 
5 Ac 90 × 75 × 25 Distal Pos. Pos. 
6 Imc and B 12 × 9 Distal Neg. Neg. 
7 Sqcc 30 × 10 Middle Pos Pos 
8 Ac 20 × 90 Middle Pos. Pos. 
9 Ac 60 × 25 × 9 Distal Pos. Pos. 
10 Sqcc 50 × 45 Distal Pos. Pos. 

11 
Small-cell 

cancer 
110 × 24 Middle Pos. Pos. 

12 Ac in B 60 × 65 Distal Pos. Pos. 
13 Ac 25 × 15 Distal Neg. Pos. 
14 Ac in B 20 × 25 Distal Pos. Pos. 
15 Sqcc 60 × 10 Proximal Pos. Pos. 
16 Sqcc 15 × 55 Distal Pos. Pos. 
17 Ac 15 × 50 Distal Pos.  Pos. 

18 Ac 15 × 15 distal Neg. Neg. 

19 Ac in B 20 × 25 Distal Neg. Neg. 

20 Sqcc 14 × 5 Middle Neg. Pos. 

21 Sqcc 23 × 38 × 12 Distal Pos. Neg. 
Ac = adenocarcinoma, Sqcc = squamous cell carcinoma, B = Barrett’s oesophagus, Imc = intramucosal 
cancer. 99mTc-depreotide uptake classified as negative or positive based on visual assessment. CT pos = 
tumour is visible on the CT images. CT neg = tumour is not visible on the CT images. 

 

The absolute 99mTc-depreotide uptake value was also higher in all malignant lesions 

after 2 compared to 4 hours. There was no difference in uptake between Ac and 

SqCC. 
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Figure 3 (Study III). 99mTc-depreotide uptake measured 2 hours after injection in patients with 

oesophageal cancer and Barrett’s oesophagus. 

 

Although this study was not designed to compare the 99mTc-depreotide scintigraphy 

with 18F-FDG-PET, we found it of more general interest to make such a comparison. 

Unfortunately, the number of patients who performed both images was not sufficient 

for any reliable statistical evaluation, especially of patients without malignancy, and 

these data were not included in our paper III, but are presented here. Besides, this data 

would not answer the main question of our study: Is it feasible to detect oesophageal 

cancer by SSTRS? 

 

Among the 34 patients in this study only 17 were also examined with PET/CT, of 

whom 15 had cancer and 2 had dysplasia in Barrett’s oesophagus without cancer. 

Among the 15 cancer patients examined with 18F-FDG-PET, uptake was found in 13. 

False negative results were found in intramucosal cancer in a case of Barrett’s 

oesophagus (12 × 9 mm) and a 5 mm SqCC. Both were missed with SSTRS with 
99mTc-depreotide, as well. 

 

There were 2 discordant results between these tracers, where SSTRS with 99mTc-

depreotide was less sensitive in 2 more cancers, both located in the distal part of the 

oesophagus: a 23 × 38 × 12 mm SqCC and a 20 × 25 mm Ac (Barrett’s). 
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Table 6. Head-to head comparison of results of SSTRS with 99mTc-depreotide 
and FDG-PET/CT. 

 

Diagnosis Depreotide uptake FDG PET 

Adenocarcinoma Barrett’s + + 

Adenocarcinoma Barrett’s + + 

Adenocarcinoma Barrett’s + + 

Adenocarcinoma Barrett’s - + 

Adenocarcinoma + + 

Adenocarcinoma + + 

Adenocarcinoma + + 

Squamous cell carcinoma - - 

Squamous cell carcinoma + + 

Squamous cell carcinoma + + 

Squamous cell carcinoma + + 

Squamous cell carcinoma + + 

Squamous cell carcinoma - + 

Intramucosal cancer, Barrett’s - - 

Cancer of small cell + + 

Dysplasia, Barrett’s - - 

Dysplasia, Barrett’s - - 

 

 

Our results in the detection of loco-regional lymph node metastases were 

unsatisfactory. Only 5 of 13 patients with metastases seen with EUS and confirmed 

by histological examination were clearly detected by 99mTc-depreotide scintigraphy. 

 
4.4 STUDY IV 

One radiologist measured values for 99mTc-depreotide uptake in April 2009 and 

October 2009, and a second radiologist measured these uptake values in November 

2010. Both intra-observer and inter-observer variability for the quantitative 

assessment of 99mTc-depreotide uptake in the oesophageal lesions were low, with the 

ICC being 0.97 and 0.96, respectively. 

 

Immunohistochemical detection and semiquantitative assessment of the different 

SSTRs in 11 patients with Ac are present in Table 7, and the 11 patients with 

Barrett’s oesophagus without cancer in Table 8. Among the 6 patients with SqCC 

only one patient displayed SSTR5 and the remaining 5 patients were devoid of 

SSTRs. Among the Ac patients, the majority expressed low amounts of SSTRs; one 
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patient had none, a few had moderate amounts, and only one patient expressed high 

amount of SSTR5 (Figure 4). 

 
Table 7. Histopathological and immunohistochemical analyses of adenocancer of the 

oesophagus. 
 

Patient 
no. 

SSTR2A SSTR2B SSTR3 SSTR5 Grade of 
differentiation 

Barrett’s 

2 1 1 1 1 intermediate - 

4 0 0 0 0 low yes 

5 1 0 1 1 low - 

6 1 1 1 1 high yes 

11 0 0 1 1 low - 

12 1 0 1 1 low - 

13 1 1 1 1 low yes 

14 1 1 1 1 high - 

15 1 1 1 3 low yes 

16 1 2 2 2 high yes 

17 2 2 2 1 intermediate yes 

SSTR expression was graded as none = 0, small amounts = 1, moderate amounts = 2  
and large amounts = 3. 

 
 
 
 
 
 

 
a) 

 
b) 

 
Figure 4. Strongly positive SSTR3 staining in well-differentiated Ac (a); negative SSTR3 

staining in poorly differentiated Ac of signet ring cell type (b). 
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Table 8. Immunohistochemical analyses of 11 Barrett’s patients without cancer. 

 

Patient no. SSTR2A SSTR2B SSTR3 SSTR5 

7 1 1 3 1 

8 1 1 3 - 

20 1 1 2 3 

21 1 - 1 - 

22 1 2 1 2 

23 0 0 0 1 

24 - 0 0 - 

25 1 1 1 2 

26 0 0 0 - 

27 1 0 1 1 

28 2 2 2 2 

SSTR expression was graded as none = 0, small amounts = 1, moderate amounts = 2, 
 and large amounts = 3. 

 

No correlation was revealed between the differentiation of the tumour and the 

expression of different SSTRs, either for the Ac or for the Sqcc. With the exception 

of a significant (p ≤ 0.05) correlation (r = 0.70) between the presence of SSTR2B and 

the grading of the Ac, the higher the amount of SSTR2B, the higher the grading of 

the tumour. 

 

Overall, the observed levels of SSTR2A, SSTR2B, SSTR3, and SSTR5 in Sqcc were 

significantly lower compared to Ac (p = 0.001, p = 0.019, p = 0.0002, p = 0.047, 

respectively). 

 

The majority of the patients with Barrett’s oesophagus expressed SSTRs in their 

columnar epithelium. The semiquantitative scoring on the abundance of SSTR did not 

reveal any difference in separation of epithelium between those with dysplastic 

morphological changes and those without. 

 

No correlation between the 99mTc-depreotide uptake and the expression of any of the 

examined SSTRs in the 17 patients with cancer of the oesophagus was found. As well 

as with lung cancers, there was a tendency for poorly differentiated tumours to have 

higher 99mTc-depreotide uptake compared to well-differentiated Ac tumours, but this 

difference did not reach statistical significance. 
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The SqCC seemed to express lower 99mTc-depreotide uptake compared to the 

adenocarcinoma, but this difference could not be statistically substantiated. 

Cases showing positive uptake with the scintigraphic method but negative results in 

the immunohistological analysis displayed no remarkable degree of inflammation on 

histopathological examination of the tissue specimens. Neither did we observe an 

SSRT immunostaining of the inflammatory cells present in the specimens. Not even 

the non-inflammatory cells (stroma cells, vessels, and others) did so. 

 

Among the patients with Barrett’s oesophagus, five had either high or low grade of 

dysplastic changes in the columnar epithelium. There was a tendency towards higher 
99mTc-depreotide uptake in the epithelium with dysplasia than in that without 

dysplasia, but this difference could not be statistically verified. 
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5 DISCUSSION 
The main objective of this thesis was to explore the value of somatostatin receptor 

scintigraphy with 99mTc-labelled analogue in patients with suspected lung or 

oesophageal cancer. 

 
5.1 LUNG CANCER 

The specificity in diagnosing lesions in the lungs is limited with the currently used 

methods; therefore surgery is performed on numerous patients with benign lesions. 

Previous studies with 99mTc-depreotide have shown promising results in 

differentiating malignant from benign lesions in the lungs (46, 47, 105, 106). To 

establish the role of scintigraphy with 99mTc-depreotide, a selected group of patients 

with a high probability of lung cancer was studied. 

 

In our Study I the sensitivity in detecting malignancy was 94%, and in detecting lung 

cancer, 98%. Thus, all lung cancers but one showed 99mTc-depreotide uptake. The 

exception was a 10 mm small bronchioloalveolar carcinoma. A false negative 

scintigraphic finding can be explained by factors such as size, location, and type of 

the tumour. 

 

A tumour of this size could be missed, if the difference in uptake between the tumour 

and the uptake in the surrounding tissue is small, and if the tumour is small the uptake 

will be diluted in a larger pixel volume, with lowering of the uptake due to partial 

volume effect. The lower spatial resolution the larger pixel volume. The spatial 

resolution with the SPECT method is 2 cm. In a European multicentre trial the 

sensitivity for this method was 93% for lesions >1.5 cm and dropped to 75% when 

the lesions were ≤1.5 cm (48). 

 

Another reason for false negative results could be the location of the tumour, for 

example, tumours situated caudally in the lower lobes close to the liver or spleen 

where the uptake could be hidden by physiological tracer uptake in the liver or spleen 

(46, 47, 48, 71, 105, 106, 107). 

 

A third possibility for false negative results could be the biological nature of the 

tumour, that is, the absence of SSTRs. In a study by Martinez et al. (47), the only 

missed lung carcinoma was of the same size and histological type as in our study, and 

in a study by Kahn et al. (71) two of the missed tumours were also of the same nature 

( e.g. bronchioloalveolar carcinoma) and related size. 

 

The specificity in our study was in the first calculation rather low, 52%, because of 

accompanying pneumonia. Therefore, we calculated the specificity after exclusion of 

the 12 pneumonias, which yielded a specificity of 77%. 99mTc-depreotide uptake in 
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inflammatory processes has been described (46, 47, 71, 48, 107) and may be the 

result of tracer uptake in activated lymphocytes and macrophages (46). Both in 

infectious and non-infectious granulomatous processes somatostatin receptors have 

been identified in epithelioid cells. Their presence may cause the false positive 99mTc-

depreotide uptake in round atelectasis (105, 108), granulomas (46, 106), and 

sarcoidosis (105). 

 

In our study scintigraphy with 99mTc-depreotide showed a high negative predictive 

value (94%) for excluding malignancy, which is almost as high as in the study by 

Rasmussen et al. (107). Our results comport with a study (46) where the sensitivity 

was 96% and specificity was 73% for malignant lesions in the lungs; it also comports 

with an FDG-PET study (109) and with a study that compared FDG-PET with 99mTc-

depreotide scintigraphy (72) in a small group of 29 patients. The later study showed a 

greater sensitivity, but the difference was not statistically significant. Therefore, we 

concluded that 99mTc-depreotide scintigraphy is a good diagnostic alternative for 

centres where PET is not available. 

 

We consider 99mTc-depreotide scintigraphy as a complementary method in patients 

with suspected lung carcinoma, applied after routine examinations. Based on the 

results of our Study I, the following strategy for use of 99m Tc-depreotide 

scintigraphy in the clinical work-up of patients with suspected lung cancer is 

suggested: If the radiological diagnosis is malignant, 99mTc-depreotide scintigraphy 

will not add valuable information. If the radiological diagnosis is indeterminate and 

pneumonia is excluded, the 99mTc-depreotide scintigraphy is of value both in 

malignant and in benign lesions. Because of the high negative predictive value of 
99mTc-depreotide scintigraphy, a negative result will rule out malignancy. This is 

valuable for avoiding unnecessary surgery. If the radiological diagnosis is benign, 
99mTc-depreotide scintigraphy will not add any new information. 

 

In our study more than one third of the pulmonary lesions were classified as 

indeterminate after CT examination. This is a great problem in clinical practice and is 

also reported by Rasmussen et al. (107), using high-resolution CT (HRCT). 

Rasmussen et al. (107) showed that there is no need for further investigations or 

follow-up examinations in patients with indeterminate findings on HRCT and 

negative results in 99mTc-depreotide scintigraphy. 

 

Even though the study from our group of 99mTc-depreotide uptake in the regional 

lymph nodes in patients with lung cancer is not included in this thesis, the results are 

still important. Absence of 9mTc-depreotide uptake on scintigraphic imaging can 

exclude regional lymph node involvement with a high degree of probability and may 

be useful in clinical practice. 
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So, lung cancer could be imaged using SSTRS with 99mTc-depreotide, and this 

method, by definition, is based on expression of somatostatin receptors (SSTRs) in 

cancer tissue. Such an expression is a known phenomenon for small-cell lung cancer. 

The situation with NSCLC at the time we conducted this study was unclear. Despite 

NSCLC often producing positive results in imaging with 99mTc-depreotide (48), 

previous studies (110) have failed to detect the expression of SSTR in NSCLC, while 

more recently published studies demonstrate an expression (111–113). 

 

Our study showed with immunohistochemical methods that all 19 NSCLC tumours 

expressed SSTR2. A reason for the contradictory results could be the different 

analytic methods used by different authors. 

 

In our study, SSTR2 expression correlated significantly with tumour differentiation; 

the higher the expression of SSTR2, the higher the differentiation of the tumour. 

However, further studies should be conducted to establish the role of SSTR2 in 

determining staging and prognosis. This observation might be used for selection of 

patients for targeted therapy with cytostatic drugs or radio-emitting agents attached to 

somatostatin receptor analogues. 

 

Surprisingly, no significant correlation between 99mTc-depreotide uptake determined 

in vivo and SSTR2 expression determined in vitro was found. One explanation may 

be that SSTRs are also expressed in leukocytes and proliferating neuroendocrine cells 

around the tumour (114), or in infiltrating lymphocytes (115). Neither lymphocytes, 

leukocytes, nor proliferating neuroendocrine cells around the tumour were evaluated 

in this Study II. We consequently performed this evaluation in our later study on 

oesophageal carcinoma. Another explanation may be that 99mTc-depreotide is known 

to bind to SSTR subtypes 2, 3, and 5. In Study II we measured only SSTR2 

immunohistochemically, and even this point we kept in mind in planning our next 

study on oesophageal carcinoma. We found 99mTc-depreotide uptake in all tumours, 

and the uptake in tumours was often higher in G3 tumours compared with G1 

tumours, but with some variations, and this correlation were therefore not significant. 

A study in which semi-quantitative tumour-to-normal lung ratio uptake of 99mTc-

depreotide was compared with different histological types of NSCLC showed that the 

ratio was highest in SqCC, lower in Ac, and lowest in large-cell carcinoma, but no 

data about tumour grade were present (116). In our sample 15 tumours are Ac and 

only 3 are SqCC and 1 neuroendocrine tumour. This may influence the result both for 
99mTc-depreotide uptake and expression of SSTR2 receptors. 

 

Determination of proliferative activity with the monoclonal antibody MIB-1, which 

binds Ki-67, a nuclear antigen, has been demonstrated to provide prognostic 

information (84, 85). We did not find a significant correlation between MIB-1 and 
99mTc-depreotide uptake. But we did find a significant negative correlation, that is, the 
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higher the MIB-1 expression in vitro, the lower the differentiation grade of the 

tumour. We also found a significant negative correlation, that is, the higher the MIB-

1, the lower the SSTR2 expression. However, the clinical application of this result is 

not clear. 

 

The role of p53 is instrumental to the regulation of G1 to S phase transition of the cell 

cycle. There was no correlation (p > 0.05) between p53 and either tumour 

differentiation or 99mTc-depreotide uptake. As previously described, some studies 

found mutations of p53 in more aggressive tumours (77), but others have not found 

such a correlation (78, 83). Few studies have found a negative prognosis with mutated 

p53 (79, 80), while other studies have found a better prognosis (81, 82). One study 

has identified 40 different mutations of p53 (78). In our study, we measured only 

expression of non-mutant p53, which may explain the lack of correlation. Whether 

this depends on the type of p53 mutation or is due to factors other than p53 that 

influence prognosis, such as other genes regulating cell growth or environmental 

factors, is still unclear. 

 

The results of our studies, however, should be considered in a wider perspective, 

where PET/CT has an established position in diagnosis in patients with suspected 

lung cancer. Since the beginning of this century an FDG-PET/CT has been 

considered to have a major impact on the management of lung cancer patients. Its 

value has been demonstrated by many publications, meta-analyses, and 

European/American/Japanese recommendations. Nowadays it is unquestionable that 

PET combined with CT provides useful information regarding the diagnosis and 

staging of lung cancer and allows for the delivery of adaptive radiotherapy. In its 

more common uses, PET/CT has been shown to be cost effective. With the 

widespread use of new radiotracers, PET/CT will play an increasing role in the 

evaluation of response to treatment. 

 

During the past two years PET/CT availability in Europe and in Sweden, particularly, 

is changing, with new scanners installed in several centres. The somatostatin receptor 

scintigraphy with gamma-photon-emitting isotopes was initially meant for the 

diagnosis of primary lung cancer. Even if the sensitivity of SSTRS with 99mTc-

depreotide in the diagnosis of primary tumour is close to that of FDG-PET/CT (71, 

72), the latter has several advantages, of which the facility for staging is one. The 

initial cost-benefit of SSTRS is no longer of great value, as it has risen and is now of 

the same value as FDG-PET. 
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5.2 OESOPHAGEAL CANCER 

As with lung cancer, the specificity in diagnosing lesions in the oesophagus by means 

of non-invasive radiological methods is limited. Despite the high sensitivity in 

detecting oesophageal cancer with 18F -FDG-PET/CT (92), these methods lack 

specificity; an elevated 18F-FDG uptake could be seen in different non-malignant 

conditions, such as inflammation and Barrett’s oesophagus (46, 47, 71, 72, 93). 

 

As SSTRS is based on a mechanism other than FDG-uptake in malignancies, it was 

of interest to find out whether this method could be useful to differentiate between 

malignant and benign lesions in the oesophagus. As no one before us had used 

SSTRS in patients with suspected oesophageal cancer, it was first necessary to 

determine whether it was feasible. We had a hypothesis that it was feasible to image 

oesophageal cancer by means of somatostatin receptor scintigraphy with 99mTc-

depreotide. Our hypothesis was based on two facts: first, that the physiological 99mTc-

depreotide uptake in the thorax is low. Therefore, this could be a suitable area for 

tumour detection in most cases. Second, we hypothesized that oesophageal cancer has 

the same main histopathological types as lung cancer, such as Ac and SqCC. As 

scintigraphy with 99mTc-depreotide is useful for lung cancer detection, this second 

fact suggested that it could also be applied in oesophageal cancer. 

 

The results of Study III support this hypothesis, and imaging of oesophageal 

carcinoma by means of SSTRS with 99mTc-depreotide is feasible. The majority of 

tumours (16 of 21) displayed a significant uptake of the tracer, which could be clearly 

distinguished from that in the surrounding tissue. It was not unexpected that tumours 

under or near 10 mm in size were missed in the scintigraphic images. The detection 

limit of the conventional gamma camera due to poor spatial resolution is well known, 

and according to widespread consensus, scintigraphic methods are not suitable for 

screening purposes for any cancer types. Another observation is that even larger 

tumours in the distal part of the oesophagus, 4 of 13 in the present study, could be 

missed with this method. Uptake of 99mTc-depreotide in lung cancers located in the 

lowest part of the right low lobe (71), and even in oesophageal cancers located at the 

level of the diaphragm and lower in the abdomen, could be obscured because of the 

high physiological tracer uptake in the liver. 

 

Our sensitivity figure of 76% is only an approximate value, due to the small number 

of patients in this study. Still, this is somewhat lower than both the sensitivity for 

detecting lung cancers (46, 47, 71, 72) with the same tracer and that for detecting lung 

cancer with FDG-PET (71, 72). While 18F-FDG uptake reflects a metabolic activity of 

the lesion and is not specific to tumours (71, 72), over-expression of somatostatin 

receptors on tumour cells could give another valuable piece of information regarding 

tumour properties. 
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As a control group, we used patients with Barrett’s oesophagus. Barrett’s oesophagus 

refers to an abnormal change (metaplasia) in the cells in the lower end of the 

oesophagus. It is thought to be caused by damage from chronic acid exposure, or 

reflux oesophagitis. This metaplasia confers an increased risk of adenocarcinoma. 

None of the 13 cancer-free Barrett’s oesophagus patients in this study showed an 

increased 99mTc-depreotide uptake. Meanwhile, only 3 of 5 patients with both cancer 

and Barrett’s oesophagus showed an increased 99mTc-depreotide uptake, leaving 2 

false negative results. The specificity of 100% for the applied method is high, but 

should be used with caution, as the number of patients was relatively low and the 

spectra of different benign conditions in the oesophagus were not fully represented in 

this pilot study. 

 

Our results in the detection of loco-regional lymph node metastases were 

unsatisfactory. Only 5 of 13 patients with metastases seen with EUS and confirmed 

by histological examination were clearly detected by 99mTc-depreotide scintigraphy. 

This was probably caused by the close location to the primary tumour, where a high 

depreotide uptake cannot be separated from the uptake in the metastatic lymph nodes. 

It was disappointing to note that very few of the local, metastatic lymph nodes could 

be detected by this method. Through this pilot observation it can be envisioned that 

this technology cannot add to the available methods, such as EUS, in determining the 

node status in oesophageal cancer during the diagnostic and therapeutic work-up.  

 

As this study is the first of its kind, we considered it important to explore whether the 

quantitative assessment was reliable between different investigators and over time. 

Both intraobserver and interobserver variability was very low, meaning that the 

applied calculations have good reliability. 

 

We applied a somatostatin receptor scintigraphy with 99mTc-depreotide in a 

previously non-explored cancer type where the optimal acquisition time was 

unknown. We used the same starting point for the imaging session as for the standard 

procedure in the detection of lung cancer, that is, 2 hours after injection (47). During 

the last decade there has been a trend of performing a double-phase registration in 

order to increase specificity. The double-phase registration is based on assumptions 

that the relative tracer uptake in benign lesions decreases with time, while uptake in 

malignant lesions remains high, or even increases with time (47, 117–120). This 

approach is now routine for parathyroid scintigraphy, and its use has also been 

suggested for scintimammography, tumour imaging with FDG-PET, and somatostatin 

receptor scintigraphy with 99mTc-depreotide in lung cancer patients (117–120). In 

order to optimize the imaging procedure from the very beginning, we performed 

double-phase registrations with imaging 2 and 4 hours after injection. Our results 

showed that in the majority of patients the absolute uptake decreased more rapidly in 

the background (i.e. the normal lung parenchyma compared to the malignant lesions 
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in the oesophagus), resulting in a higher relative uptake in cancer over time. As both 

the 2-hour and the 4-hour quantitative evaluations showed a statistically significant 

difference (p < 0.005) between 99mTc-depreotide uptake in malignant lesions and in 

lesions without cancer, the 4-hour imaging seems unnecessary, and thus could be 

omitted for practical reasons. 

 

Although future immunohistochemical studies would explore the density, 

distribution, and localization of somatostatin receptors in the SqCC and Acs, our data 

from Study III indicate that there is no major difference as reflected by the similarity 

in tracer accumulation between these two major tumour types. It is, however, of 

particular interest that in patients with Barrett’s oesophagus, no accumulation of 

tracer was observed either in those with or in those without dysplastic 

histomorphologic changes in the columnar epithelium. Since there is no 

corresponding pre-neoplastic condition, concerning the SqCC development, it can be 

hypothesized that the somatostatin receptor expression reaches far higher levels in 

infiltrative neoplastic growth than in the intraepithelial neoplastic disease states. If so, 

this observation may be potentially very important and offer unique clinical 

opportunities, for example, when PET/CT or somatostatin receptor scintigraphy with 
99mTc-depreotide technologies are applied. 

 

What could the future clinical application of our results be? Obviously, the method is 

not suitable for either screening or primary diagnosis, because of the method’s 

modest sensitivity. Could the uptake of 99mTc-depreotide be related to the prognosis 

of the oesophageal tumour? 

 

To answer this question we continued to explore in Study IV the tissue correlate to 

these in vivo observations by immunostaining of different somatostatin receptors in 

the respective tumours, and even in a precancerous condition. One important 

prerequisite for the potential implementation of the scintigraphy technology was the 

high level of intra- as well as interobserver agreement in the assessments. However, 

coming back to the originally formulated issues, the following statements seem to be 

justified: 

 

(1) SSTRs are expressed in oesophageal carcinoma, and more abundantly so in 

adenocancer specimens; (2) in vivo 99m Tc-depreotide uptake does not obviously 

correlate with the immunohistochemical detection of SSTR receptors of different 

subtypes in oesophageal carcinoma; (3) there is a questionable and clinically 

irrelevant correlation between the expression of these SSTRs and the grading of 

adenocancer; and (4) finally, we found that Barrett’s columnar epithelium contains 

these receptors, which can be displayed by 99m Tc-depreotide scintigraphy . 
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Based on the fact that the columnar epithelium of the stomach harbours substantial 

amounts of somatostatin cells (D-cells), it did not come as a surprise that we found 

SSTRs in adenocancers—in Barrett’s oesophagus but not in Sqcc. The variability 

among tumours and patients was unpredictable, and therefore, it can be assumed that 

our initial theory of introducing the idea that SSTRs are involved in key pathways for 

the development of these neoplastic processes cannot be supported by the present 

findings. The robustness and strength of these observations are reinforced by the fact 

that we carefully investigated many of the other subtypes of SSTR not previously 

determined for patients with NSCLC, such as SSTR2B, SSTR3, and SSTR5. 

Moreover, we were unable to find a clear correlation between the SSTR expression 

and the dysplasia scorings of the Barrett’s cases. The present observation that in 

adenocancers there might be an association between the grading of the tumour and 

the intensity of the somatostatin receptors to be stained, can either be a finding 

obtained by chance or be logically based on the reasonable assumption that the more 

differentiated the tumour is, the closer it resembles the ‘normal’ columnar epithelium, 

where the D-cells are quite abundant. 

 

The expression of SSTRs of different subtypes in the presently investigated patients 

with oesophageal carcinoma did not correlate with the 99mTc-depreotide uptake on the 

scintigraphic imaging. This is in accord with our previous study on patients with 

NSCLC. Attempts have been made to explain and understand why tumours with high 

uptake of labelled somatostatin receptor analogue 99mTc-depreotide in scintigraphic 

images do not regularly express SSTRs on immunohistochemical examination of 

relevant tissue specimens. Kwekkeboom (114) et al. and Machac et al. (115) have 

suggested that the 99mTc-depreotide uptake on scintigraphic images may be due to the 

presence of accompanying leucocytes or activated neuroendocrine cells around the 

tumour cells (114) or in the surrounding granulomatous tissue (115). We tried to 

clarify this option by examining thoroughly the blocks from every one of our patients 

concerning signs of inflammation and the content of inflammatory cells, stroma cells, 

and vessels. By doing that, we could not observe any deviation in a direction that 

could explain the lack of correlation between uptake and the SSTR density. What 

other explanations for these findings can be considered? Is it possible that 99mTc-

depreotide scintigraphy is more sensitive to detecting SSTRs than the corresponding 

immunohistochemical methods used? Does 99mTc-depreotide bind nonspecifically to 

other structures or receptors on the cell surface than those residing in the D-cells? Is 

expression of SSTRs a dynamic or stable process, and which of these is picked up by 

the scintigraphic technology? Many questions remain to be answered before this 

method could be implemented into clinical practice. 

 

We noted a tendency for poorly differentiated tumours to have higher 99mTc-

depreotide uptake and this could be caused by nonspecific binding to areas of the cell 

surface, which could be more common on tumour cells with poor differentiation 
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compared to high differentiation. This corresponds to our previous observations in 

NSCLC, where poorly differentiated tumours had a higher 99mTc-depreotide uptake. 

However, this tendency was not statistically significant, either. In order to explore 

corresponding relationships in more detail much larger study cohorts are required. 

Patients without cancer but with a precancerous condition were enrolled, since it 

would be of special value to have a tool that could aid in the early detection of those 

who will subsequently develop neoplasia. Although we found somewhat higher 
99mTc-depreotide uptake in patients with dysplasia compared to those without, the 

overlap was substantial. Even in the immunohistochemical analysis the tendency was 

there to show that those with dysplasia more often expressed SSTRs (16 of 17) 

compared to those without dysplasia (13 of 21). The clinical value of these findings 

has to be further explored and substantiated in larger patient samples and with 

longitudinal evaluation. 
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6 FUTURE ASPECTS 
 

This thesis is based on the use of a single-photon-emitting tracer, but the results 

should be applicable or even better with positron-emitting tracers. Use of PET/CT 

cameras combines a better spatial resolution of functional PET imaging with detailed 

anatomical information, leading to a higher sensitivity. A multitude of new PET 

analogues are applied, whereas [68Ga-DOTA0, Tyr3] octreotide (DOTATOC) (56), or 

[68Ga-DOTA0, Tyr3] octreotate DOTATATE (33) are likely to become the new 

standard for somatostatin receptor imaging with PET. This is because these analogues 

have a high affinity for the somatostatin receptor subtype 2, and because 68Ga is a 

generator product with a relatively simple labelling (63). Another somatostatin 

analogue used for PET is DOTANOC, which has been useful for neuroendocrine 

tumours. This analogue binds to somatostatin receptors 2, 3, and 5 (51, 52). This 

analogue is also coupled to 90Y or 177Lu, forming 90Y- or 177Lu-labelled DOTANOC, 

which is used for peptide receptor radionuclide therapy (PRRT). It seems desirable 

that peptide used in diagnostic imaging mimics the peptide used later for therapy. 

 

After the successful visualization of somatostatin receptor–positive tumours, a logical 

next step would be to use radiolabelled somatostatin analogues as a treatment of these 

patients. Such attempts were undertaken in patients with inoperable and or/metastatic 

neuroendocrine tumours. While the objective responses for chemotherapy with the 

median time to progression is reported to be less than 18 months, PRRT with 90Y-

octreotide (DOTATOC) or 177Lu-octreotate (DOTATATE) performs considerably 

better with a median time to progression of 30 and 40 months, respectively (63), and 

significantly improves quality of life (64). 

 

Are there any questions of clinical use that could be further explored with SSTRS? 

Among the patients with lung neoplasms, 25% are represented by neuroendocrine 

tumours, whereas 2% are represented by typical carcinoid and 0.2% by atypical 

carcinoid (121). About 25% of patients with lung carcinoid are asymptomatic, so that 

bronchial carcinoids are found incidentally. 

 

 When imaged with FDG-PET/CT, these types of malignancies cause diagnostic 

difficulties. The FDG uptake could be absent, reflecting low metabolism of bronchial 

carcinoids. Carcinoid in the abdomen, as a subtype of neuroendocrine tumour, is 

successfully imaged with SSTRS and consequently treated with radiolabelled SSTR 

analogues. Even though in each published study, concerning imaging with SSRTS of 

patients with lung cancer, there are only a few carcinoids included, the dedicated 

studies of carcinoid in the lung are missing and could be conducted in the near future. 
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Concerning patients with oesophageal lesions, a study of whether uptake of SSTR 

analogues on scintigraphy could predict the natural history of Barrett’s oesophagus 

and its malignization is obviously the next step in the direction of future research. 
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7 CONCLUSION 
 

Study I. 99mTc-depreotide uptake has a very high sensitivity for lung cancer. It also 

has an acceptable specificity when pneumonias are excluded. Negative scintigraphy 

strongly suggests a benign lesion. This method is very useful in establishing the 

benign nature of hamartomas. It can be recommended clinically in decision making 

with respect to surgery. 

 

Study II. There is an expression of SSTR in NSCLC. The degree of tumour 

differentiation correlates positively with SSTR2A concentration. No significant 

correlation between SSTR2 scintigraphy with 99mTc-depreotide, MIB-1, and p53 

expression, and tumour grade was found. We found a significant negative correlation 

between MIB-1 expression, SSTR2A expression, and tumour grade. No correlation 

was found between p53 and tumour grade, or 99mTc-depreotide uptake. 

 

Study III. Scintigraphic examination with 99mTc-depreotide is feasible for imaging 

oesophageal cancer, but the method is not suitable either for screening or primary 

diagnosis, because of the method’s modest sensitivity. Our first results showed high 

specificity, which should be used with caution, as the number of patients was 

relatively low. Acquisitions starting 2 hours after injection are optimal, and suffice for 

imaging. 

 

Study IV. The majority of patients with Ac do express a low amount of SSTRs, while 

those are absent in the majority of patients with Sqcc. There was no correlation either 

between the 99m Tc-depreotide uptake and the amount of SSTRs or between the 

amount of SSTRs and differentiation grade of the tumour. There is somewhat higher 
99mTc-depreotide uptake and expression of SSTRs in the immunohistochemical 

analysis in patients with Barrett’s oesophagus and dysplasia compared to those 

without dysplasia. 

 
 

 

 



 

48 



 

  49 

8 ACKNOWLEDGEMENTS 
These studies were carried out at the Department of Clinical Science, Intervention 

and Technology, at Karolinska Institutet, Division of Medical Imaging and 

Technology, Stockholm, Sweden, and the Department of Radiology, Karolinska 

University Hospital, Huddinge; the Division of Nuclear Medicine, Karolinska 

University Hospital Huddinge; the Department of Respiratory Medicine and Allergy 

at Karolinska University Hospital, Huddinge and Solna; the Department of Surgical 

Gastroenterology at Karolinska University Hospital, Huddinge; and the Division of 

Pathology, Karolinska University Hospital Huddinge. 

 

I wish to express my sincere gratitude to all who helped me to complete these studies.  

 

Especially, I wish to thank: 

 

Rimma Axelsson for her excellent leadership and guidance through all these studies, 

with her superior competence, and for her brilliant annotations and points of view, for 

her engagements, interest, and enthusiasm for all these works. 

 

Peter Aspelin for his manuscript reading, comments, constructive criticism, 

engagement, and enthusiasm, which have been of great value in publishing these 

articles. I also wish to express my gratitude for his great generosity, patience, and 

friendliness; his giving of plenty of time for working with these studies; for his 

confidence in me and these works; and his optimism. 

 

Lars Lundell for his manuscript reading and manuscript writing, which have been of 

very great value in publishing these articles; for his points of view and ideas, which 

have been of great value; and his excellent clinical competence and comments from a 

clinical point of view in the expressing of these articles on the oesophagus. I also 

wish to acknowledge his providing of patients in the two oesophagus studies. 

 

Karl Gustaf Köhlbeck for his valuable points of view and providing of patients in the 

two pulmonary studies. 

 

Åke Öst for his analyses of the somatostatin receptor concentrations in one of the 

oesophagus studies and for his great clinical competence, points of view, and 

contributions to the oesophagus study. 

 

Arrigo Capitanio for his analyses of the concentration of p53, MIB-1, and 

somatostatin receptor 2A in one of the pulmonary studies. 

 



 

50 

Leif Svensson for his statistical calculations and production of diagrams in these 

studies, his great knowledge of statistics, his help in illustrating images in these 

articles and also for his friendliness, generosity, and valuable points of view. 

 

Lars Ideström for his statistical calculations and production of diagrams in these 

studies, his great knowledge of statistics, his help in illustrating images in these 

articles and also for his friendliness, generosity, and valuable points of view. 

 

Paul Menzel for his measurements of the 99mTc-depreotide uptake in the pulmonary 

lesions in one of the pulmonary studies. 

 

Annelie Hansson for her preparing of the pathological specimens with sections and 

staining in the somatostatin receptor analyses in one of the oesophagus studies, and 

for the description of the method of somatostatin receptor analyses. 

 

Inger Olausson for all her help in finding the patients for these studies in the 

Pathology Department. 

 

Margareta Bååth for her contributions to the pulmonary studies. 

 

Anders Höög for valuable discussion, comments, and points of view in the 

somatostatin receptor analyses. 

 

Helena Forssell for her assistance and advice in courses, in sending articles to 

journals, and in helping with publication of these articles; also for all her help in my 

dissertation process with the Karolinska Institutet and for her friendliness and great 

generosity. 

 

Maj-Britt Stäring for helping me to register in courses and conferences, buying tickets 

for travel and paying for hotels, and for her friendliness and great generosity. 

 

Karin Kjellsdotter for her assistance with the computer and the layout of one of the 

pulmonary articles. 

 

Lars Sundqvist for his contributions to one of the oesophagus articles. 

 

I would like to express my gratitude to the staff of the Department of Nuclear 

Medicine, Karolinska Institute at Huddinge, for their excellent technical assistance. 

 

Bo Persson, Henry Lindholm, and Maria Kristoffersen Wiberg, my former and 

present head of the Radiology Department at Huddinge, who was very generous in 

supporting me with time in fulfilling these works. 



 

  51 

 

Eva Gröndahl for planning the clinical schedule, which made it possible to fulfill 

these works. 

 

All my colleagues at the Radiology Department for their generosity and willingness 

to share my part of the clinical work, while I was occupied with my research work. 

 

My lovely wife, my children, and my mother-in-law, who supported me in these 

works and with their love. 

 

My father and my mother for their previous support and belief in me during their 

lifes. 

 

The support of parts of these works by GE Healthcare Biosciences Sweden. 

 

The SMILE medical imaging laboratory at Karolinska University Hospital, 

Stockholm, Sweden. 

 

Proper English for correcting the English language in this work. 



 

52 

 
 
 



 

  53 

9 REFERENCES 
1. Reisine T 1995 Somatostatin. Cell Mol Neurobiol 15:597–614. 

2. Reisine T, Bell G I 1995 Molecular biology of somatostatin receptors. Endocrinol 
Rev 16:427–42. 

3. Schally AV, Coy DH, Meyers CA 1978 Hypothalamic regulatory hormones. Annu 
Rev Biochem 47:89–128. 

4. Brazeau P, Vale WW, Burgus R, Ling N, Butcher M, Rivier J Guillemin R 1973 
Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary 
growth hormone. Science 179, :77–79. 

5. Patel YC 1999 Somatostatin and its receptor family. Front Neuroendocrinol 20:157–
98. 

6. Florio T, Rim C, Hershberger RE, Loda M, Stork PJS 1994 The somatostatin receptor 
SSTR1 is coupled to phosphotyrosine phosphatase activity in CHO-K1 cells. Mol 
Endocrinol 8: 1289–97. 

7. Moody TW, Chan D, Fahrenkrug J, Jensen RT 2003 Neuropeptides as autocrine 
growth factors in cancer cells. Curr Pharm Des 9:495–509. 

8. Schally AV 1988 Oncological applications of somatostatin analogs. Cancer Res 
48:6977–85. 

9. Cattaneo MG, Amoroso D, Gussoni G, Sanguini AM, Vicentini LM 1996 A 
somatostatin analogue inhibits MAP kinase activation and cell proliferation in human 
neuroblastoma and in human small cell lung carcinoma cell lines. FEBS Lett 
397:164–68. 

10. Seger R, Krebs EG 1995 The MAPK signaling cascade. FASEB J 9:726–35. 

11. Guillermet J, Saint-Laurent N, Rochait P, Levade T, Pradayrol L, Buscail L, Susini C, 
Bousquet C 2002 Somatostatin SST2 receptor sensitizes pancreatic cancer cells to 
death ligands-induced apoptosis. Gastroenterology 122(Suppl):A-22. 

12. Sharma K, Srikant CB 1998 Induction of wild-type p53, Bax, and acidic 
endonuclease during somatostatin-signaled apoptosis in MCF-7 human breast cancer 
cells. Int J Cancer 76:259–66. 

13. Pollak MN, Schally AV 1998 Mechanisms of antineoplastic action of somatostatin 
analogs. Proc Soc Exp Biol Med 217(2):143–52. 

14. Patel PC, Barrie R, Hill N, Landeck S, Kurozawa D, Woltering EA 1994 Postreceptor 
signal transduction mechanisms involved in octreotide-induced inhibition of 
angiogenesis. Surgery 116(6):1148–52. 

15. Barrie R, Woltering EA, Hajarizadeh H, Mueller C, Ure T, Fletcher WS 1993 
Inhibition of angiogenesis by somatostatin and somatostatin-like compounds is 
structurally dependent. J Surg Res55(4):446–50. 

16. Hoyer D, Bell GI, Berelowitz M, Epelbaum J, Feniuk W, Humphrey PP, O'Carroll 
AM, Patel YC, Schonbrunn A, Taylor JE, et al. 1995 Classification and nomenclature 
of somatostatin receptors. Trends Pharmacol Sci 16(3):86–8. 



 

54 

17. Reubi JC, Landolt AM. 1984 High density of somatostatin receptors in pituitary 
tumors from acromegalic patients. J Clin Endocrinol Metab 59:1148–1151. 

18. Reubi JC, Heitz PU, Landolt AM 1987 Visualization of somatostatin receptors and 
correlation with immunoreactive growth hormone and prolactin in human pituitary 
adenomas: evidence for different tumor subclasses. J Clin Endocrinol Metab 65:65–
73. 

19. Moyse E, Le Dafniet M, Epelbaum J, Pagesy P, Peillon F, Kordon C, Enjalbert A 
1985 Somatostatin receptors in human growth hormone and prolactin-secreting 
pituitary adenomas. J Clin Endocrinol Metab 61:98–103. 

20. Reubi JC, Häcki WH, Lamberts SWJ 1987 Hormone-producing gastrointestinal 
tumors contain a high density of somatostatin receptors. J Clin Endocrinol Metab 
65:1127–34. 

21. Reubi JC, Kvols LK, Waser B, Nagorney D, Heitz PU, Charboneau JW, Reading CC, 
Moertel C 1990 Detection of somatostatin receptors in surgical and percutaneous 
needle biopsy samples of carcinoids and islet cell carcinomas. Cancer Res 50:5969–
77. 

22. Epelbaum J, Bertherat J, Prevost G, Kordon C, Meyerhof W, Wulfsen I, Richter D, 
Plouin P 1995 Molecular and pharmacological characterization of somatostatin 
receptor subtypes in adrenal, extraadrenal, and malignant pheochromocytomas. J Clin 
Endocrinol Metab 80:1837–44. 

23. Reubi JC, Waser B, Khosla S, Kvols L, Goellner JR, Krenning E, Lamberts SWJ 
1992 In vitro and in vivo detection of somatostatin receptors in pheochromocytomas 
and paragangliomas. J Clin Endocrinol Metab 74:1082–89. 

24. Sagman U, Mullins J, Ginsberg R, Kovacs K, Reubi JC 1990 Identification of 
somatostatin receptors in human small cell lung carcinomas. Cancer 66:2129–33. 

25. Reubi JC, Waser B, van Hagen M, Lamberts SWJ, Krenning EP, Gebbers J, Laissue 
JA 1992 In vitro and in vivo detection of somatostatin receptors in human malignant 
lymphomas. Int J Cancer 50:895–900. 

26. Reubi JC, Kvols L 1992 Somatostatin receptors in human renal cell carcinomas. 
Cancer Res 52:6074–78. 

27. Reubi JC, Waser B, Laissue JA, Gebbers J-O 1996 Somatostatin and vasoactive 
intestinal peptide receptors in human mesenchymal tumors: in vitro identification. 
Cancer Res 56:1922–31. 

28. Reubi JC, Waser B, Schmassmann A, Laissue JA 1999 Receptor autoradiographic 
evaluation of cholecystokinin, neurotensin, somatostatin, and vasoactive intestinal 
peptide receptors in gastrointestinal adenocarcinoma samples: where are they really 
located? Int J Cancer 81:376–86. 

29. Miller GV, Farmery SM, Woodhouse LF, Primrose JN 1992 Somatostatin binding in 
normal and malignant human gastrointestinal mucosa. Br J Cancer 66:391–95. 

30. Kouroumalis E, Skordilis P, Thermos K, Vasilaki A, Moschandrea J, Manousos ON 
1998 Treatment of hepatocellular carcinoma with octreotide: a randomised controlled 
study. Gut 42:442–47. 



 

  55 

31. Reubi JC, Zimmermann A, Jonas S, Waser B, La¨derach U, Wiedenmann B 1999 
Regulatory peptide receptors in human hepatocellular carcinomas. Gut 45:766–74. 

32. Schaer JC, Waser B, Mengod G, Reubi JC 1997 Somatostatin receptor subtypes sst1, 
sst2, sst3, and sst5 expression in human pituitary, gastroenteropancreatic and 
mammary tumors: comparison of mRNA analysis with receptor autoradiography. Int 
J Cancer 70:530–37. 

33. Reubi JC, Schär JC, Waser B, Wenger S, Heppeler A, Schmitt JS, Mäcke HR 2000 
Affinity profiles for human somatostatin receptor subtypes SST1–SST5 of 
somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J 
Nucl Med 27:273–82. 

34. Miller GM, Alexander JM, Bikkal HA, Katznelson L, Zervas NT, Klibanski A 1995 
Somatostatin receptor subtype gene expression in pituitary adenomas. J Clin 
Endocrinol Metab 80:1386–92. 

35. Panetta R, Patel YC 1995 Expression of mRNA for all five human somatostatin 
receptors (hSSTR1–5) in pituitary tumors. Life Sci 56:333–42. 

36. Reubi JC. 2003 Peptide receptors as molecular targets for cancer diagnosis and 
therapy. Endocr Rev 24(4):389–427 doi: 10.1210/er.2002–0007. 

37. Heppeler A, Froidevaux S, Eberle AN, Maecke HR 2000 Receptor targeting for 
tumor localisation and therapy with radiopeptides. Curr Med Chem 7:971–94. 

38. Schmidt M, Scheidhauer K, Luyken C, Voth E, Hildebrandt G, Klug N, Schicha H 
1998 Somatostatin receptor imaging in intracranial tumours. Eur J Nucl Med 25:675–
86. 

39. Müller HL, Frühwald MC, Scheubeck M, Rendl J, Warmuth-Meth M, Sörensen N, 
Kühl J, Reubi JC 1998 A possible role for somatostatin receptor scintigraphy in the 
diagnosis and follow-up of children with medulloblastoma. J Neurooncol 38:27–40. 

40. van Eijck CHJ, Krenning EP, Bootsma A, Oei HY, van Pel R, Lindemans J, Jeekel J, 
Reubi JC, Lamberts SWJ 1994 Somatostatin-receptor scintigraphy in primary breast 
cancer. Lancet 343:640–643.  

41. Albérini JL, Meunier B, Denzler B, Devillers A, Tass P, Dazord L, Le Simple T, 
Laissue JA, de Jong R, Le Cloirec J, Reubi JC, Bourguet P 2000 Somatostatin 
receptor in breast cancer and axillary nodes: study with scintigraphy, histopathology 
and receptor autoradiography. Breast Cancer Res Treat 61:21–32.  

42. Lugtenburg PJ, Lowenberg B, Valkema R, Oei HY, Lamberts SW, Eijkemans MJ, 
van Putten WL, Krenning EP 2001 Somatostatin receptor scintigraphy in the initial 
staging of low-grade non-Hodgkin’s lymphomas. J Nucl Med 42:222–29.  

43. Edgren M, Westlin JE, Kalkner KM, Sundin A, Nilsson S 1999 [111In-DPTA-D-
Phe1]-octreotide scintigraphy in the management of patients with advanced renal cell 
carcinoma. Cancer Biother Radiopharm 14:59–64.  

44. Flamen P, Bossuyt A, De Greve J, Pipeleers-Marichal M, Keuppens F, Somers G 
1993 Imaging of renal cell cancer with radiolabelled octreotide. Nucl Med Commun 
14:873–77.  

45. Płachcińska A, Mikołajczak R, Kozak J, Rzeszutek K, Kuśmierek J 2006 
Comparative analysis of 99mTc-depreotide and 99mTc-EDDA/HYNIC-TOC thorax 



 

56 

scintigrams acquired for the purpose of differential diagnosis of solitary pulmonary 
nodules. Nucl Med Rev Cent East Eur 9(1):24–9. 

46. Blum J, Handmaker H, Lister-James J, Rinne N 2000 A multicenter trial with a 
somatostatin analog (99m) Tc depreotide in the evaluation of solitary pulmonary 
nodules. Chest 117(5):1232–8. 

47. Martins T, Lino JS, Ramos S, Oliveira L 2004 99mTc-depreotide scintigraphy in the 
evaluation of indeterminate pulmonary lesions: clinical experience. Cancer Biother 
Radiopharm 19(2):253–9. 

48. Naalsund A, Maublant J 2006 The solitary pulmonary nodule--is it malignant or 
benign? Diagnostic performance of Tc-depreotide SPECT. Respiration 73(5):634–41.  

49. Srirajaskanthan R, Kayani I, Quigley AM, Soh J, Caplin ME, Bomanji J 2010 The 
role of 68Ga-DOTATATE PET in patients with neuroendocrine tumors and negative 
or equivocal findings on 111In-DTPA-octreotide scintigraphy. J Nucl Med51(6):875–
82.  

50. Kayani I, Bomanji JB, Groves A, Conway G, Gacinovic S, Win T, Dickson J, Caplin 
M, Ell PJ 2008 Functional imaging of neuroendocrine tumors with combined PET/CT 
using 68Ga-DOTATATE (DOTA-DPhe1,Tyr3-octreotate) and 18F-FDG. Cancer 
112(11):2447–55. 

51. Ambrosini V, Tomassetti P, Castellucci P, Campana D, Montini G, Rubello D, Nanni 
C, Rizzello A, Franchi R, Fanti S 2008 Comparison between 68Ga-DOTA-NOC and 
18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-
endocrine tumours. Eur J Nucl Med Mol Imaging 35(8):1431–8. 

52. Ambrosini V, Campana D, Bodei L, Nanni C, Castellucci P, Allegri V, Montini GC, 
Tomassetti P, Paganelli G, Fanti S 2010 68Ga-DOTANOC PET/CT clinical impact in 
patients with neuroendocrine tumors. J Nucl Med 51(5):669–73. 

53. Hofmann M, Maecke H, Börner R, Weckesser E, Schöffski P, Oei L, Schumacher J, 
Henze M, Heppeler A, Meyer J, Knapp H 2001 Biokinetics and imaging with the 
somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur J 
Nucl Med 28(12):1751–7. 

54. Al-Nahhas A, Win Z, Szyszko T, Singh A, Nanni C, Fanti S, Rubello D 2007 
Gallium-68 PET: a new frontier in receptor cancer imaging. Anticancer Res 
27(6B):4087–94. 

55. Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, 
Kovacs P, Von Guggenberg E, Bale R, Virgolini IJ 2007 68Ga-DOTA-Tyr3-
octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor 
scintigraphy and CT. 48(4):508–18. 

56. Van Essen M, Krenning EP, De Jong M, Valkema R, Kwekkeboom DJ 2007 Peptide 
Receptor Radionuclide Theraphy with Radiolabelled somatostatin analogues in 
patients with somatostatin receptor posiyive tumours. Acta Oncol 46(6) :723–34. 

57. Stolz B, Weckbecker G, Smith-Jones PM, Albert R, Raulf F, Bruns C 1998 The 
somatostatin receptor-targeted radiotherapeutic [90YDOTA-DPhe1, Tyr3]octreotide 
(90Y-SMT 487) eradicates experimental rat pancreatic CA 20948 tumours. Eur J 
Nucl Med 25: 668–74. 



 

  57 

58. de Jong M, Breeman WA, Bernard BF, Bakker WH, Visser TJ, Kooij PP, van 
Gameren A, Krenning EP 2001 Tumor response after [(90)Y-
DOTA(0),Tyr(3)]octreotide radionuclide therapy in a transplantable rat tumor model 
is dependent on tumor size. J Nucl Med 42:1841–46. 

59. Waldherr C, Pless M, Maecke HR, Haldemann A, Mueller-Brand J 2001 The clinical 
value of [90Y-DOTA]-d-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of 
neuroendocrine tumours: a clinical phase II study. Ann Oncol 12:941–45. 

60. Paganelli G, Zoboli S, Cremonesi M, Bodei L, Ferrari M, Grana C, Bartolomei M, 
Orsi F, De Cicco C, Macke HR, Chinol M, de Braud F 2001 Receptor-mediated 
radiotherapy with 90Y-DOTAd-Phe1-Tyr3-octreotide. Eur J Nucl Med 28:426–34. 

61. Otte A, Herrmann R, Heppeler A, Behe M, Jermann E, Powell P, Maecke HR, Muller 
J 1999 Yttrium-90 DOTATOC: first clinical results. Eur J Nucl Med 26:1439–47. 

62. Krenning EP, de Jong M, Kooij PP, Breeman WA, Bakker WH, de Herder WW, van 
Eijck CH, Kwekkeboom DJ, Jamar F, Pauwels S, Valkema R 1999 Radiolabelled 
somatostatin analogue(s) for peptide receptor scintigraphy and radionuclide therapy. 
Ann Oncol10:S23–S29. 

63. Kwekkeboom DJ, Kam BL, van Essen M, Teunissen JJ, van Eijck CH, Valkema R, 
de Jong M, de Herder WW, Krenning EP 2010 Somatostatin-receptor-based imaging 
and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer 
17(1):R53–73. 

64. Teunissen JJ, Kwekkeboom DJ, Krenning EP 2004 Quality of life in patients with 
gastroenteropancreatic tumors treated with [177Lu-DOTA0,Tyr3]octreotate. J Clin 
Oncol 22(13):2724–9. 

65. Nagy A, Schally AV 2001 Targeted cytotoxic somatostatin analogs: a modern 
approach to the therapy of various cancers. Drugs Future 26:261–70. 

66. Myrdal G, Lambe M, Bergström R, Ekbom A, Wagenius G, Ståhle E 2001 Trends in 
lung cancer incidence in Sweden with special reference to period and birth cohorts. 
Cancer Causes Control 12(6):539–49. 

67. Hakulinen T, Engholm G, Gislum M, Storm HH, Klint A, Tryggvadóttir L, Bray F 
2010 Trends in the survival of patients diagnosed with cancers in the respiratory 
system in the Nordic countries 1964–2003 followed up to the end of 2006. Acta 
Oncol 49(5):608–23. 

68. Kameyama K, Takahashi M, Ohata K, Igai H, Yamashina A, Matsuoka T, Nakagawa 
T, Okumura N 2009 Evaluation of the new TNM staging system proposed by the 
International Association for the Study of Lung Cancer at a single institution. J 
Thorac Cardiovasc Surg 137(5):1180–4. 

69. Wahidi MM, Govert JA, Goudar RK, Gould MK, McCrory DC, American College of 
Chest Physicians 2007 Evidence for the treatment of patients with pulmonary 
nodules:When is it lung cancer? ACCP evidence-based clinical practice guidelines, 
2nd ed. Chest 132(3 Suppl):94S-107S. 

70. Seltzer MA, Yap CS, Silverman DH, Meta J, Schiepers C, Phelps ME, Gambhir SS, 
Rao J, Valk PE, Czernin J 2002 The impact of PET on the management of lung 
cancer: the referring physician's perspective. J Nucl Med 43(6):752–6. 



 

58 

71. Kahn D, Menda Y, Kernstine K, Bushnell D, McLaughlin K, Miller S, Berbaum K 
2004 The utility of 99mTc depreotide compared with F-18 fluorodeoxyglucose 
positron emission tomography and surgical staging in patients with suspected non-
small cell lung cancer. Chest 125(2):494–501. 

72. Ferran N, Ricart Y, Lopez M, Martinez-Ballarin I, Roca M, Gámez C, Carrerea D, 
Guirao S, Leon AF, Martin-Comin J 2006 Characterization of radiologically 
indeterminate lung lesions: 99mTc-depreotide SPECT versus 18F-FDG PET. Nucl 
Med Commun 27(6):507–14. 

73. Grewal RK, Dadparvar S, Yu JQ, Babaria CJ, Cavanaugh T, Sherman M, Jacobstein J 
2002 Efficacy of Tc-99m depreotide scintigraphy in the evaluation of solitary 
pulmonary nodules Cancer J 8:400–4. 

74. Cronin P, Dwamena BA, Kelly AM, Carlos RC 2008 Solitary pulmonary nodules: 
meta-analytic comparison of cross-sectional imaging modalities for diagnosis of 
malignancy Radiology 246(3):772–82. 

75. Danielsson R, Bååth M, Svensson L, Forslöv U, Kölbeck KG 2005 Imaging of 
regional lymph node metastases with 99mTc-depreotide in patients with lung cancer. 
Eur J Nucl Med Mol Imaging 32(8):925–31. 

76. Cheng YL, Lee SC, Harn HJ, Chen CJ, Chang YC, Chen JC, et al. 2003 Prognostic 
prediction of the immunohistochemical expression of p53 and p16 in the resected non 
small cell lung cancer. Eur J Cardiothorac Surg 23: 221–8. 

77. Murakami I, Hiyama K, Ishioka S, Yamakido M, Kasagi F, Yokosaki Y 2000 p53 
gene mutations are associated with shortened survival in patients with advanced non 
small cell lung cancer: an analysis of medically managed patients. Clin Cancer Res 
6:526–30. 

78. Greatens TM, Niehans GA, Rubins JB, Jessurun J, Kratzke RA, Maddaus MA, et al. 
1998 Do molecular markers predict survival in non-small-cell lung cancer? Am J 
Respir Crit Care Med 157:1093–7. 

79. Quinlan DC, Davidson AG, Summers CL, Warden HE, Doshi HM 1992 
Accumulation of p53 protein correlates with a poor prognosis in human lung cancer. 
Cancer Res 52:4828–31. 

80. Mitsudomi T, Oyama T, Kusano T, Osaki T, Nakanishi R, Shirakusa T 1993 
Mutations of the p53 gene as a predictor of poor prognosis in patients with non-small-
cell lung cancer. J Natl Cancer Inst 85:2018–23. 

81. Lee JS, Yoon A, Kalapurakal SK, Ro JY, Lee JJ, Tu N, et al. 1995 Expression of p53 
oncoprotein in non-small-cell lung cancer: a favorable prognostic factor. J Clin Oncol 
13:1893–1903. 

82. Passlick B, Izbicki JR, Haussinger K, Thetter O, Pantel K. Immunohistochemical 
detection of P53 protein is not associated with a poor prognosis in non-small-cell lung 
cancer. J Thorac Cardiovasc Surg 109:1205–11. 

83. Apolinario RM, van der Valk P, de Jong JS, Deville W, van Ark-Otte J, Dingemans 
AM, et al. 1997 Prognostic value of the expression of p53, bcl-2, and bax 
oncoproteins, and neovascularization in patients with radically resected non-small-
cell lung cancer. J Clin Oncol 15: 2456–66. 



 

  59 

84. Shiba M, Kohno H, Kakizawa K, Iizasa T, Otsuji M, Saitoh Y, et al. 2000 Ki-67 
immunostaining and other prognostic factors including tobacco smoking in patients 
with resected non small cell lung carcinoma. Cancer 89:1457–65. 

85. Pence JC, Kerns BJ, Dodge RK, Iglehart JD 1993 Prognostic significance of the 
proliferation index in surgically resected non-small-cell lung cancer. Arch Surg 
128:1382–90. 

86. Falk J, Carstens H, Lundell L, Albertsson M. 2007 Incidence of carcinoma of the 
esophagus and gastric cardia. Changes over time and geographical differences. Acta 
Oncol 46(8):1070–4. 

87. Klint Å, Engholm G, Storm HH, Tryggvadóttir L, Gislum M, Hakulinen T, Bray F 
2010 Trends in survival of patients diagnosed with cancer of the digestive organs in 
the Nordic countries 1964–2003 followed up to the end of 2006. Acta Oncologica 49: 
578–607. 

88. Altorki NK, Zhou XK, Stiles B, Port JL, Paul S Lee PC, et al. 2008 Total number of 
resected lymph nodes predicts survival in esophageal cancer. Ann Surg 248(2):221–6. 

89. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ 2009 Cancer statistics, 2009. CA 
Cancer J Clin 59(4):225–49. 

90. Shahbaz Sarwar CM, Luketich JD, Landreneau RJ Abbas G. Esophageal cancer: An 
update. Int J Surg 2010, 8(6):417–22. 

91. Erasmus JJ, Munden RF 2007 The role of integrated computed tomography positron-
emission tomography in esophageal cancer: staging and assessment of therapeutic 
response. Semin Radiat Oncol 17(1):29–37. 

92. Kim TJ, Kim HY, Lee KW, Kim MS 2009 Multimodality assessment of esophageal 
cancer: preoperative staging and monitoring of response to therapy. Radiographics 
29(2):403–21. 

93. Kwekkeboom DJ, Krenning EP 2002 Somatostatin receptor imaging. Semin Nucl 
Med 32(2):84–91. 

94. Imdahl A, Hentschel M, Kleimaier M, Hopt UT, Brink I 2004 Impact of FDG-PET 
for staging of oesophageal cancer. Langenbecks Arch Surg 389(4):283–8. 

95. Puli SR, Reddy JB, Bechtold ML, Antillon D, Ibdah JA, Antillon MR 2008 Staging 
accuracy of esophageal cancer by endoscopic ultrasound: a meta-analysis and 
systematic review. World J Gastroenterol 14(10):1479–90. 

96. Savides TJ 2009 Endosonography: new developments. Curr Opin Gastroenterol 
25(5):428–32. 

97. Sabbagh LC. Esophageal cancer 2009 Gastrointest Endosc  69(2 Suppl):S93–6. 

98. Attila T, Faigel DO 2009 Role of endoscopic ultrasound in superficial esophageal 
cancer. Dis Esophagus  22(2):104–12. 

99. Espat NJ, Jacobsen G, Horgan S, Donahue P 2005 Minimally invasive treatment of 
esophageal cancer: laparoscopic staging to robotic esophagectomy Cancer J 
11(1):10–17. 



 

60 

100. Shih WJ, Hirschowitz E, Bensadoun E, Woodring J, Ryo YU, Kraman S 2002 
Biodistribution on Tc-99m labeled somatostatin receptor-binding peptide 
(Depreotide, NeoTec) planar and SPECT studies Ann Nucl Med 16:213–19. 

101. Prasad V, Baum RP 2010 Biodistribution of the Ga-68 labeled somatostatin analogue 
DOTA-NOC in patients with neuroendocrine tumors: characterization of uptake in 
normal organs and tumor lesions. Q J Nucl Med Mol Imaging 54(1):61–7. 

102. Marten K, Grabbe E 2003 The challenge of the solitary pulmonary nodule. Diagnostic 
assessment with multislice spiral CT Clin Imaging 27:151–61. 

103. Thorlacius H, Toth E, Vilmann P 2009 Endoskopiskt ultraljud inom 
gastroenterologin. Teknik och kliniska indikationer. Läkartidningen  47: 3152–9. 

104. Danielsson R, Bååth M, Kölbeck KG, Klominek J, Svensson L 2003 Accumulation of 
Tc-99m depreotide (NeoSpect) in axillary sweat glands. Clin Nucl Med 28(9):789–90. 

105. Bååth M, Kolbeck KG, Danielsson R 2004 Somatostatin receptor scintigraphy with 
99m-Tc-depreotide (NeoSpect) in discriminating between malignant and benign 
lesions in the diagnosis of lung cancer. A pilot study. Acta Radiol 45:833–9. 

106. Grewal RK, Dadparvar S, Yu JQ, Babaria CJ, Cavanaugh T, Sherman M, Jacobstein J 
2002 Efficacy of Tc-99m depreotide scintigraphy in the evaluation of solitary 
pulmonary nodules. Cancer J 8(5):400–4. 

107. Rasmussen K, Madsen HH, Rasmussen F, Rasmussen TR, Baandrup U, Pilegaard 
HK, Pedersen U, Palshof T, Rehling M 2006 The value of HRCT and Tc-depreotide 
in the evaluation of pulmonary lesions. J Thorac Oncol 1(4):296–301. 

108. Thomas LP, Balingit AG, Morison DS, Gilman MD 2003 False-positive technetium 
99m depreotide scintigraphy resulting from round atelectasis. J Thorac Imaging 
18(2):97–9. 

109. Goldsmith SJ, Kostakoglu L 2000 Nuclear medicine imaging of lung cancer. Radiol 
Clin North Am 38(3):511–24. 

110. O’Byrne KJ, Carney DN 1993 Somatostatin and the lung. Lung Cancer 10:151–72. 

111. Virgolini I, Leimer M, Handmaker H, Lastoria S, Bischof C, Muto P, et al. 1998 
Somatostatin receptor subtype specificity and in vivo binding of a novel tumor tracer, 
99mTc-P829. Cancer Res 58:1850–9. 

112. Fujita T, Yamaji Y, Sato M, Murao K, Takahara J 1994 Gene expression of 
somatostatin receptor subtypes, SSTR1 and SSTR2 in human lung cancer cell lines. 
Life Sci 55:1797–806. 

113. O'Byrne KJ, Halmos G, Pinski J, Groot K, Szepeshazi K, Schally AV, et al. 1994 
Somatostatin receptor expression in lung cancer. Eur J Cancer 30:1682–7. 

114. Kwekkeboom DJ, Kho GS, Lamberts SW, Reubi JC, Laissue JA, Krenning EP 1994 
The value of octreotide scintigraphy in patients with lung cancer. Eur J Nucl Med 
21(10):1106–13. 

115. Machac J, Krynyckyi B, Kim C 2002 Peptide and antibody imaging in lung cancer. 
Semin Nucl Med 32(4):276–92. 



 

  61 

116. Shih WJ, Samayoa L 2004 Tc-99m depreotide detecting malignant pulmonary 
nodules: histopathologic correlation with semiquantitative tumor-to-normal lung 
ratio. Clin Nucl Med 29(3):171–6. 

117. Shinya T, Rai K, Okumura Y, Fujiwara K, Matsuo K, Yonei T, Sato T, Watanabe K, 
Kawai H, Sato S, Kanazawa S 2009 Dual-time-point F-18 FDG PET/CT for 
evaluation of intrathoracic lymph nodes in patients with non-small cell lung cancer. 
Clin Nucl Med 34 (4):216–21. 

118. Chen YK, Shen YY, Kao CH 2004 Dual-phase F-18 FDG PET cannot increase the 
diagnostic accuracy to differentiate solitary pulmonary nodules. Clin Nucl Med 29 
(4):281–3. 

119. Sukan A, Reyhan M, Aydin M, Yapar AF, Sert Y, Canpolat T, Aktas A 2008 
Preoperative evaluation of hyperparathyroidism: the role of dual-phase parathyroid 
scintigraphy and ultrasound imaging. Ann Nucl Med  22(2):123–31. 

120. Chen CJ, Lee BF, Yao WJ, Cheng L, Wu PS, Chu CL, Chiu NT 2008 Dual-phase 
18F-FDG PET in the diagnosis of pulmonary nodules with an initial standard uptake 
value less than 2.5. AJR Am J Roentgenol 191(2):475–9. 

121. Rekhtman N 2010 Neuroendocrine tumors of the lung: an update. Arch Pathol Lab 
Med 134(11):1628–38. 

 


	1 INTRODUCTION
	1.1 BACKGROUND
	1.2 SOMATOSTATIN RECEPTOR SCINTIGRAPHY (SSTRS) 
	1.3 THERAPEUTIC USE OF SST 
	1.4 LUNG CANCER
	1.5 CANCER OF THE OESOPHAGUS

	2 AIMS OF THE STUDY
	3 MATERIAL AND METHODS
	3.1 SUBJECTS
	3.1.1 Study I and Study II, lung cancer patients
	3.1.2 Study III and Study IV, oesophagus cancer patients

	3.2 METHODS
	3.2.1 Scintigraphy
	3.2.1.1 Evaluation of scintigraphic images

	3.2.2 Computed tomography (CT)
	3.2.3 PET/CT
	3.2.4 EUS
	3.2.5 Immunohistochemistry
	3.2.6 Statistics


	4 RESULTS
	4.1 STUDY I 
	4.1.1 Correlation between CT and scintigraphy with 99mTc-depreotide
	4.1.2 Extra pulmonary 99mTc-depreotide uptake

	4.2 STUDY II
	4.3 STUDY III
	4.4 STUDY IV

	5 DISCUSSION
	5.1 LUNG CANCER
	5.2 OESOPHAGEAL CANCER

	6 FUTURE ASPECTS
	7 CONCLUSION
	8 ACKNOWLEDGEMENTS
	9 REFERENCES

