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Nearly 14 billion years ago, it all started with the Big Bang...
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“messy” metabolism regulatory networks. This deep-sky object, about 40,000 light-
years away, is located in the constellation Libra, which symbolizes the metabolic
balance elucidated in Paper Il.
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ABSTRACT

Vascular endothelial growth factor B (VEGF-B) belongs to the VEGF family, which
constitutes of five mammalian members. VEGFs exert pivotal roles in the formation,
development and maintenance of the vascular and lymphatic vessels. Unlike VEGF-A,
the first VEGF discovered and a close homologue, VEGF-B is poorly angiogenic in most
tissues and not regulated by hypoxia. Gene regulation and physiological function of
VEGF-B remained obscure for more than a decade after its discovery.

We identified an unexpected high correlation of expression of Vegfb with a large
cluster of nuclear-encoded mitochondrial genes. This high correlation is not shared by
any other VEGF gene. Based on this finding, we were able to answer two fundamental
questions in VEGF-B biology in this thesis work: gene regulation and role of VEGF-B.

In Paper |, we identified an unexpected role of VEGF-B in tissue fatty acid (FA) uptake.
VEGF-B induces endothelial FA uptake through upregulation of two fatty acid
transporter proteins (FATPs), namely FATP3 and FATP4. This regulation is dependent
on the two known receptors for VEGF-B, VEGF receptor 1 (VEGFR1) and neuropilin 1
(NRP1), and it is uniqgue among the three VEGFR1 ligands. Genetically modified mouse
models that are deficient in VEGF-B signaling showed reduced lipid accumulation in
peripheral tissues. In Vegfb knockout mice, FA uptake capacity in heart, skeletal
muscle and brown adipose tissue was reduced. The resulted excess FA was diverted to
white adipose tissue for storage. As a consequence, the glucose uptake capacity in the
heart was drastically increased in Vegfb knockout mice.

In Paper Il, we demonstrated that Vegfb is regulated by peroxisome proliferator
activated receptor coactivator 1a (PGC-1a) through coactivation of estrogen-related
receptor a (ERRa). Vegfb was upregulated in parallel with Pgcla and mitochondrial
genes upon nitric oxide simulation and serum deprivation in cells. ERRa, together with
PGC-1a, strongly activated the Vegfb promoter in luciferase assay. It is known that
muscle creatine kinase PGC-la transgenic (MCK-PGC-1a TG) mice become insulin
resistant on a high-fat-diet (HFD). Vegfb deficiency in HFD-fed MCK-PGC-1a TG mice
greatly improved insulin sensitivity as well as other metabolic parameters. This
improvement may be attributed to the reduction in muscular lipid accumulation.

PGC-1a and ERRa are known major regulators of mitochondrial biogenesis. In this
thesis, we have elucidated that they also regulate VEGF-B expression and hence
endothelial FA uptake in parallel. The two pathways are tightly coordinated to
maintain a balance of FA B-oxidation and lipid homeostasis in the body. These findings
have opened up new horizons for finding therapeutic targets in treating metabolic
disorders such as type 2 diabetes.
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Gene regulation and role of VEGF-B

1 INTRODUCTION

During the 3.6 billion years history of life on Earth, several important specialized
systems gradually evolved. These evolution processes started about 1 billion years ago,
which helped the organisms to leap from single cellular to more complex multicellular
structures. The circulatory system in modern higher animals is among these crucial
systems. It supports transport of oxygen and nutrients, as well as carbon dioxide and
waste metabolites. Vascular endothelial growth factors (VEGFs) and their receptors
exert fundamental and crucial roles in the formation, development and maintenance
of the circulatory system.

Individual introductions are blended into the chapters below. In Chapter 3 (Paper ),
common fatty acid (FA) handling proteins and FA uptake hypotheses are introduced in
Section 3.1, followed by an introduction to the endothelial barrier (Section 3.2). In
Chapter 4 (Paper Il), regulations of VEGFs are introduced in Section 4.1, and the major
mitochondrial biogenesis regulator peroxisome proliferator-activated receptor vy
coactivator 1a (PGC-1a) is introduced in Section 4.2.1. Randle’s cycle and lipid-induced
insulin resistance are introduced in Section 4.3.1. In Chapter 5, the roles of VEGFs in
tumorigenesis are introduced in Section 5.1.4. Current treatments for insulin
resistance and type 2 diabetes (T2D) are introduced in Section 5.2.3. In this chapter,
the VEGF family and their receptors are introduced.

1.1 VEGFs and their receptors

There are currently five mammalian VEGFs in the family, namely VEGF-A, placenta
growth factor (PIGF), -B, -C and -D (Figure 1). There are also two non-mammalian
VEGFs, VEGF-E found in orf virus and VEGF-F discovered in snake venom. Three VEGF
receptors, together with the co-receptors neuropilins (NRPs) as well as heparan
sulfate proteoglycans (HSPGs) and integrins, master downstream VEGF signaling
pathwaysl’z.

VEGF homology domain

VEGF-A e
PIGF I B
| VEGF-B e

- - = e Em e Em Em Em m Em Em m Em Em E Em Em Em Em Em e e

VEGF-D [ T 1

Figure 1. Schematic illustration of the domain structures of the five known mammalian
VEGFs. The different domain structures include the VEGF homology domain (in red), the
heparin-binding domains at the C-terminal in some splice isoforms of VEGF, PIGF and
VEGF-B (in blue), the N-terminal propeptide domains (in yellow), and silk domain-
containing C-terminal propeptides in VEGF-C and D (in green). The domains are not drawn
in scale. Referenced and modified from Li et al., 20013,
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1.1.1 VEGF-A signaling through VEGFR2

VEGF-A, also known as VEGF, is the first identified member of the family4. Genetic
deletion of a single Vegfa allele is enough to cause embryonic lethality®, indicating its
fundamental and crucial functions during embryonic development. VEGF-A is
regulated primarily by hypoxia inducible factor 1a (HIF-1a) in responds to hypoxia®’. It
binds to VEGFR2 and induces phosphorylation of the tyrosine kinase domain. VEGFR2
signaling, induced by the binding of VEGF-A, is responsible for tip cell formation,
sprouting, migration, maturation and tube formation of endothelial cells during
normal and pathological conditions™? (Figure 2).

VEGF-F VEGF-C
PIEF VEGF-8 VEGF-A VEGF-E VEGE-D
1 ’/
1 /’ -"
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Figure 2. VEGF ligands and their receptors. Dotted arrows indicate that not all isoforms
bind the NRPs. Referenced and modified from Tammela et al., 2005

1.1.2 PIGF

PIGF, encoded by the PGF gene, was first isolated from a human placenta cDNA
library®. PIGF expression is found predominantly in the placenta, heart and lungs’. Pgf
knockout mice did not show any apparent pathological phenotype, indicating that
PIGF being dispensable during embryonic development™. By studying Pgf
knockout'®* and skin-specific transgenic'"*? mouse models, PIGF was shown to exert
important modifying roles in pathological angiogenesis during ischemia, inflammation,

wound healing and cancer.

1.1.3 VEGF-B

VEGF-B was the third VEGF family member to be discovered. Being a close homologue,
VEGF-B was expected to have similar and redundant functions to VEGF-A and PIGF
during angiogenesis™. As VEGF-B is the focus of this thesis, it deserves a separate
section below (Section 1.2).
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1.1.4 VEGFR1 and its ligands

VEGFR1 binds VEGF-A, -B and PIGF with high affinity (Figure 2). Unlike VEGFR2,
VEGFR1 shows very low tyrosine phosphorylation activity upon ligand binding™*, which
make its signaling cascade difficult to be captured and studied. When VEGFR1
dimerize with VEGFR2 however, the signaling properties are stronger than
homodimers of either receptor'. VEGFR1 expression is found primarily in endothelial
cells, although it is also seen in other cell types'. In Paper I, we found that Vegfr1
expression was restricted to the cardiac endothelium in mouse heart. Among the
three VEGFRs, only VEGFR1 was found to be induced by hypoxia via the HIF-1la
pathway™.

The three VEGFR1 ligands are found to exhibit distinct functions in various
physiological and pathological processesl’z. Binding of either PIGF or VEGF-A to
VEGFR1 induces phosphorylation of distinct tyrosine residues and hence regulates
different sets of genesle. In Paper I, we also showed a unique regulation of
downstream target genes by VEGF-B among all three VEGFR1 ligands (Section 3.3.5).
VEGF-A was recently shown to be regulated by the PGC-1a/ estrogen-related receptor
o (ERRa) pathway besides the canonical HIF-1a pathway” . In Paper I, we elucidated
that VEGF-B can also be regulated by the PGC-1a/ERRa pathway. The two VEGFR1
ligands, VEGF-A and -B, have distinct expression patterns (Paper 1), although both
being regulated by PGC-la/ERRa. The hypothesis of the regulatory mechanisms
behind this differential regulation is discussed in Section 4.2.3.

VEGFR1 binds VEGF-A with higher affinity in comparison to VEGFR2*! (Figure 2). In
angiogenic vasculature, VEGFR2 expression is more profound in the tip cell region
whereas VEGFR1 expression is more retained in the stalk cell region®”. PIGF deficiency
impaired VEGF-A signalinglo. Under certain pathological conditions, PIGF displaces
VEGF-A from VEGFR1 and thereby allows higher VEGF-A/VEGFR2 signaling activity23.
VEGF-A mutants engineered to bind VEGFR1 specifically do not exhibit mitogenic
signals in endothelial cells®. Furthermore, unlike embryonic lethality of Vegfrl
deletion due to vessel overgrowthzs'ze, mice lacking the VEGFR1 intracellular kinase
domain showed only minor defects in pathological angiogenesis, indicating that
VEGFR-1 might function as an inert decoy1°'27. All these findings point to the “sink”
theory that VEGFR1, without exhibiting significant downstream signals, competes the
binding of VEGF-A with VEGFR2 and hence modifies its signalingl’z'zg.

VEGFR1 encodes a soluble variant through alternative splicing, namely soluble VEGFR1
(sVEGFR1), which contains only the extracellular domains of VEGFR1%. Preeclampsia is
a pregnancy-specific syndrome of hypertension and proteinuria. Placenta-derived
SVEGFR1 has been shown to play an important role during the pathogenesis of
preeclampsia3°. Although these advance, the precise biological role of sVEGFR1
remains to be elucidated.

1.1.5 NRPs and HSPGs

NRP13'32 and NRP233* were isolated from neurons, and were shown to mediate

repulsive signals during neuronal axon guidance. Besides class 3 semaphorins®*,

3



Xun Wang

NRP1 binds VEGF-A, -B and PIGF while NRP2 binds VEGF-A, -C and PIGF** (Figure 2).
NRP1 acts as a co-receptor enhancing VEGFR2 signaling®, although NRPs does not
seem to show signal transduction properties upon VEGF-A binding®®. Later studies
have shown that the PSD-95/DIlg/Z0-1 (PDZ) binding domain, which consists of three
amino acids at the carboxyl-terminal of NRP1%, is crucial for its signaling®®. Genetic
deletion of Nrp1 is embryonic lethal due to vessel malformation, indicating that NRP1
plays roles in embryonic vessel formation, as well as nerve fiber guidance™.

HSPGs exist ubiquitously on the cell surface and extracellular matrix. HSPGs bind
longer VEGF-A isoforms and facilitate spatial gradient forming, which is crucial for the
angiogenesis processes like tip cell formation and sprouting®. The shorter VEGF-B
isoform, VEGF-B1¢, also binds HSPGs through its hydrophilic carboxyl-terminal™>*, but
the biological significance of this binding is poorly understood.

1.1.6 VEGF-C, -D and VEGFR3

Both VEGF-C and -D bind to and signal through VEGFR2 as well as VEGFR3? (Figure 2).
VEGF-C was shown to be required for sprouting of the first lymphatic vessels from
embryonic veins*?, indicating its pivotal role in lymphangiogenesis. VEGF-C was shown
to be responsible for supporting lymphangiogenesis, tumor growth and metastases in
various types of cancers™. Similar to VEGF-C, both in molecular structure and function,
VEGF-D can strongly induce angiogenesis and lymphangiogenesis, and also plays a
vital role in lymphatic metastasis in a variety types of cancers’. VEGFR3 was shown to
be important in both angiogenesis and lymphangiogenesis, as genetic deletion of
Vegfr3 in mice was not phenocopied by the double-deletion of Vegfc and Vegfd™.

1.1.7 VEGF-E, and -F

VEGF-E was found in a parapoxvirus, namely the orf virus. Although VEGF-E isoforms
show low amino acid sequence identity, they are structurally highly similar to VEGF-A,
and can strongly activate VEGFR2 phosphorylation with high binding affinities***
(Figure 2). VEGF-F is the most recently discovered VEGF member, found in snake
venom. Like VEGF-E, it binds specifically to VEGFR2 without heparin-binding
properties45 (Figure 2). Since VEGF-E and -F are the only two VEGFs that bind to
VEGFR?2 specifically, potential usage in clinical pro-angiogenic therapies was proposed?.
The existence of the non-mammalian VEGFs is a good example of parallel evolution,
which shows the power and beauty of natural selection.

1.1.8 Retrospective of the VEGFs

VEGF-A was identified already in 1983 as a VPF secreted by tumor cells®. In 1989, it
was first named as VEGF and its cDNA was cloned™. In 1992, VEGF-A was shown to
function as a hypoxia-inducible angiogenic factor®. Later in 1995, a 28-bp element
including HIF-1 consensus sequences in Vegfa promoter was identified, which was
sufficient to regulate Vegfa expression in response to hypoxia’. Genetic deletion of
Vegfa in mice was done in 1996. The study showed that deletion of a single Vegfa
allele (Vegfa+/') was enough to cause embryonic lethality’. Coming to the end of the
first decade of the 21* century, a few recent studies showed that VEGF-A can be
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induced by PGC-lo/ERRa in responds to hypoxia and nutrient deprivation,
independent of the canonical HIF-1a pathway*" .

In 1991, PIGF was first isolated and cloned shortly after the identification of VEGF-A2.
The knockout mice was generated in 2001 and showed no major abnormality under
normal conditions™.

VEGF-B was discovered in 1996 as a partial mouse cDNA clone encoding a VEGF-
related peptide®®. Two independent Vegfb knockout (Vegfb'/') mouse lines were
generated respectively in 2000’ and 2001*, which both showed a mild phenotype.
The search for the genuine physiological role of VEGF-B lasted more than a decade. In
2005, we found a tight correlation of expression of Vegfb with a mitochondrial gene
cluster, which is unique in the VEGF family. Subsequently in 2010, an unexpected role
of VEGF-B controlling endothelial FA uptake was finally discovered (Paper |). Following
this breakthrough finding, the role of VEGF-B in the pathogenesis of insulin resistance
and T2D was unveiled this year®. This role is further investigated in another high-fat
diet (HFD)-induced insulin resistance mouse model in Paper II.

VEGF-C and -D were both discovered in 1996. VEGF-C was purified as a VEGFR3 ligand
and had its cDNA cloned from human prostatic carcinoma cells®®. VEGF-D was isolated
from fibroblasts, named as c-fos-induced growth factor (FIGF) and was linked to tumor
malignancy at the very beginning of its discovery>’. Vegfc knockout mice were
generated in the same year and were shown to have severe edema and embryonic
lethality*?. Vegfd knockout mice were generated almost a decade later and showed
only minor lymphatic phenotypes, indicating it being dispensable during development
of the lymphatic system>?.

VEGF-E and -F were discovered in 1994* and 2004* respectively. A VEGF-like gene
was identified in the genome of orf virus in 1994™, In 1998, Ogawa et al. first named
the product of this gene as VEGF-E>2. Since these later VEGFs are not endogenous
mammalian VEGFs, only limited number of studies has been done in comparison to
other VEGF members.

PIGF was shown to have modifying roles in pathological angiogenesis’®*?. Number of
publications related to PIGF was quickly overtaken by that related to VEGF-C, which is
known to exert important roles in lymphatic metastasis?. VEGF-D has drawn much
less attention in comparison to VEGF-C. This is probably due to the fact that VEGF-D is
genetically and functionally similar to VEGF-C**. Nonetheless, the number of
publications on VEGF-D still outnumbers that on VEGF-B with a relatively high margin.
This is a rough representation to the fact that the gene regulation and role of VEGF-B
remained elusive for more than a decade after its discovery (Figure 3).
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Figure 3. Accumulative annual publication numbers on PubMed in the field of VEGF
research. Search criteria: numbers for each VEGF, of which respective abbreviated or full
names appearing in the title or abstract in a publication, were counted. The number for
VEGF-A is not shown here since it is difficult to distinguish with VEGF or VEGFR in general.

1.2 VEGF-B

VEGF-B binds to VEGFR1 and NRP1>*, and has two mRNA splicing variants*’. The
shorter form VEGF-Bis; binds to the extracellular matrix and is the predominant
isoform under normal physiological conditions™. The longer form VEGF-Bgs, on the
other hand, is freely diffusible and was found to be upregulated in various forms of
tumors™. In Paper |, VEGF-B;gs was shown to induce higher fatty acid transporter
protein (FATP) expression and FA uptake than VEGF-Byg; in vitro. Abundant VEGF-B
expression was found in metabolic active tissues such as heart, skeletal muscle and
brown fat®. Vegfb'/' mice were generated with the hope to reveal its function. In
contrast to Vegfa, genetic deletion of Vegfb in mice resulted in a mild phenotype®”*®.

In the following years, the mystery of VEGF-B was unveiled piece by piece after
another. Unlike VEGF-A, VEGF-B is poorly angiogenic and not regulated by
hypoxia®°®*’. In a rabbit hindlimb ischemia model however, VEGF-B gene transfer
was shown to be beneficial®®. VEGF-B was also shown to stimulate neurogenesis59 and
have neuroprotective effects®®®. A more recent study showed that VEGF-B inhibits
apoptosis by suppression of BH3-only protein gene expression via VEGFR1 signaling63.
Heart-specific VEGF-B overexpression in mice was shown to alter cardiac ceramide
accumulation and it induces myocardial hypertrophy64. Although the advances, the
whole picture of VEGF-B biology was still like a huge jigsaw puzzle with only a few
pieces put in place. Even after the functions of the more recently identified VEGFs
were well established, the role and gene regulation of VEGF-B remained enigmatic
and controversial.

In Paper |, a number of published microarray data sets were pooled and analysed. The
original aim of the analysis was to identify sets of co-expressed genes, including new
mitochondrial genes. However, VEGF-B, a VEGF member was never thought to be
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correlated with mitochondrial functional, and it surfaced with an astonishing high
correlation coefficient (r = 0.90). In comparison, other VEGF family members showed
much lower or even no correlation at all (VEGF-A, r = 0.30; PIGF, r =-0.18; and VEGF-C,
r = -0.10). Early VEGF-B studies have already showed this once overlooked this
correlation as high expression of VEGF-B was found in tissues with high mitochondrial
content, such as heart, skeletal muscle, brown fat and kidney. This was the starting
point for the discovery of the function of VEGF-B. Following these initial findings, the
thesis work has answered two fundamental questions that remained unclear in VEGF-
B research: the physiological role (Paper I) and gene regulation (Paper Il) of VEGF-B.
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2 AIMS

The correlation of Vegfb expression with mitochondrial gene expression was
unexpected. Based on this finding, we have established the following aims:

To characterize the role of VEGF-B in tissue FA uptake and its signaling pathways
(Paper 1);

To phenotype Vegfb'/' mice in identifying the physiological consequences of genetic
deletion of Vegfb (Paper l);

To identify the molecular regulatory mechanism of Vegfb (Paper Il).
After identifying PGC-1a as a major regulator of Vegfb, we set yet another aim:

To characterize the physiological consequences of genetic deletion of Vegfb in a PGC-
la transgenic mouse model (Paper Il).

Cardiac or Skeletal Myocytes,
Brown Adipocytes, etc. Endothelium Blood Stream

Fatty Acids

Figure 4. Schematic illustration of the working hypothesis on gene regulation and role of
VEGF-B. VEGF-B is secreted in parallel with mitochondrial biogenesis upon activation of
ERRa coactivated by PGC-1a. VEGF-B then instructs the endothelium to upregulate FATPs
for an increase of FA influx from the blood stream via VEGFR1 and NRP1 signaling. As a
consequence, the increase in FA uptake matches elevated B-oxidation capacity in the
mitochondria to fulfill the higher energy demand in the tissue cell.
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3 PAPERI: VEGF-B CONTROLS ENDOTHELIAL FA UPTAKE

3.1 Current view and hypotheses of FA transport

Due to the bipolar nature of FA molecules, it was believed that FA transport across
mammalian cell membranes is a combination of passive flip-flop and protein-
mediated diffusion®>®®. Several membrane proteins associated with long-chain fatty
acid (LCFA) uptake have been identified including FATPs and CD36%.

Due to the intrinsic very long-chain acyl-CoA synthetase (VLACS) activity, it was
debated whether FATPs are also solute carriers®. Among the six FATPs identified,
FATP1 and 6 express in the heart, while FATP1, 3 and 4 express in the skeletal
muscle®. In Paper |, we have shown that Fatp3 expression is restricted in the cardiac
and muscular endothelium.

The transmembrane glycoprotein CD36 has been identified as a putative transporter
of LCFAs®2, Subsequent in vitro and in vivo studies have provided strong support for a
role of CD36 in FA transport®. Studies on various transgenic and genetic deletion
mouse models of Cd36 have confirmed the hypothesis that it facilitates a major
fraction of FA uptake in heart, skeletal muscle, and adipose tissues, where it is highly
expressed69.

Tight endothelial cell layer exists between the blood and the tissue cells in most of the
organs. Despite of this fact, the dominant consensus in the field of FA transport is that
the rate-limiting step of FA uptake occurs at the plasma membrane of the tissue cells,
with large ignorance of the endothelium.

3.2 Post-angiogenesis: the endothelial barrier

The process of vessel sprouting was documented as early as in the 17" century’. In

the late 1960s, a diffusible angiogenic factor derived from tumors was identified and
the term “tumor angiogenesis” was first coined’*. Blood vessels, which are composed
of endothelial cells and mural cells, support normal and tumor tissue with oxygen and
nutrient. This simple fact has led the field of vascular biology research focused on
studying the pure extension of the endothelium without considering phenotypical
changes at early years. In the early 1970s, Folkman proposed targeting angiogenesis
as a treatment for malignant tumors’?. Later studies on anti-angiogenesis therapies
have brought more attentions to vessel maturation after the initial growth, including
changes in endothelial cell junctions, pericyte coverage as well as functional changes
such as blood perfusion’®”>.

Except for the smallest molecules like oxygen, carbon dioxide and nitric oxide (NO),
the transport of most of molecules across the cell membranes are tightly controlled
processes. Even water molecules were found to be transported in a controlled manner
in certain tissues’*. With the notion of the endothelial barrier in mind, we
hypothesized that the transport of FA across the endothelial cell layer in most tissues
is also a tightly controlled mechanism.
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3.3 Physiological role of VEGF-B

3.3.1 The starting point and the working hypothesis

Two independent bioinformatic analyses of published data had pointed to the same
conclusion: VEGF-B, but not any other VEGFs, is highly correlated with mitochondrial
genes. Two additional gPCR analyses have also shown similar gene expression
patterns of Vegfb with two mitochondrial markers, Ndufa5 (encodes NADH
dehydrogenase (ubiquinone) 1 alpha subcomplex 5) and Cycs (encodes cytochrome c,
somatic), across a variety of mouse tissues and nutritional states. Genetic deletion of
Vegfb has no influence on mitochondria copy number in mouse heart. These findings
indicate that VEGF-B is closely related to mitochondrial function and there is no direct
feedback loop between Vegfb and mitochondrial gene expression.

We then hypothesized that in the most energy demanding tissue cells, while
mitochondrial biogenesis is underway, VEGF-B is secreted in parallel to instruct the
endothelium for more FA transport from the blood stream. In this way, increased FA
uptake matches up with higher mitochondrial content in the tissue cells for elevated
energy production.

3.3.2 VEGF-B controls endothelial FA uptake in vitro

We first tested if VEGF-B regulates FA handling genes in endothelial cells in vitro. Both
VEGF-B isoforms increased mRNA and protein levels of several FATPs across a number
of endothelial cell lines. Pre-incubation of respective neutralizing antibodies with the
endothelial cells prior to addition of VEGF-B unveiled that this effect is dependent on
VEGFR1 and NRP1, but not VEGFR2. In contrast, neither VEGF-A nor PIGF, the other
VEGFR1 ligands, can upregulate these FATPs. Furthermore, applying VEGF-B to a
fibroblast cell line (NIH/3T3) did not induce FATP expression, indicating endothelial-
cell-specific signaling pathway and/or transcription machinery being involved. A kinase
inhibitor screening unveiled that the induction of FATP expression by VEGF-B is
dependent on phosphatidylinositol-3-OH kinase (P13K) pathways.

Since the exact mechanism of cellular FA uptake by FATPs is debated65'67, we
examined whether VEGF-B can induce LCFA accumulation through FATPs in cells, with
a fluorophore-labeled LCFA analogue as the marker. By overexpressing (transient
transfection) or silencing (using siRNA) Fatp3/4 in endothelial cells, with or without
addition of VEGF-B, we have shown that this LCFA uptake is VEGF-B-dependent via the
FATPs. Interestingly, similar experiments done on HL-1 cells, a cardiomyocyte cell line,
did not alter LCFA uptake. This gives more evidence that the induction of FA uptake by
VEGF-B via FATPs is endothelial-cell-specific.

To closer mimic in vivo FA transport across the endothelium, we utilized cell culture
inserts. Cultured endothelial cells can form a tight monolayer which creates two
isolated liquid compartments. VEGF-B treatment increased 14c.oA transport across
the endothelial cell layer in a NRP1-dependent manner, indicating VEGF-B controls
trans-endothelial LCFA transport.
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3.3.3 VEGF-B controls endothelial FA uptake in vivo

To determine whether VEGF-B signaling is endocrine or paracrine manner, we isolated
endothelial cells from mouse heart. In Vegfb'/' heart, only endothelial expression of
Fatp3 and Fatp4 was decreased, indicating that VEGF-B signals in a paracrine fashion.
Adenoviral administration of VEGF-B in mouse heart increases Fatp expression
whereas genetic deletion of Vegfb in mice decreased it. Intracellular lipid
accumulation was reduced in Vegfb'/' heart, soleus and brown adipose tissue (BAT)
compared to the wildtype (WT) counterparts. A similar decrease of Fatp expression
and lipid accumulation was also found in tamoxifen-treated EC-SCL-Cre-ER'-positive
Nrplﬂ/ﬂ (endothelial-cell-specific Nrp1 knockout, Nrpl-EC/') mice. Overexpressing
VEGF-B by systemic adenoviral infection in Vegfb'/' mice rescued Fatp expression and
lipid accumulation, in but not Nrpl-EC/' mice. These results indicate that VEGF-B
regulates endothelial FA uptake in vivo in a NRP1-dependent manner.

3.3.4 Phenotyping of the Vegfb'/' mice

Vegfb'/' mice showed less lipid accumulation in energy demanding tissues and were 15%
heavier compared to WT littermates at 16 to 18 weeks of age. We then tested kinetics
of tissue FA uptake with oral gavage of radio-labeled LCFA. Two hours after the gavage,
less 1*C-OA accumulation was seen in Vegfb'/' heart, soleus and BAT comparing to the
WT counterparts while the accumulation in white adipose tissue (WAT) remained the
same. However, after 24 hours, **C-OA accumulation in Vegfb'/' WAT increased
drastically and was significantly higher than in the WT. Magnetic resonance imaging
(MRI) analysis also showed a higher body fat percentage in Vegfb'/' mice compared to
WT. These findings indicate that excess fat in Vegfb'/' mice is shunted to WAT for
storage.

Back in 1963, Randle et al. have proposed a mechanism that glucose and FA competes
for substrates in metabolic processes, named the Randle’s cycle’’®. Randle’s cycle is
one of the most important metabolic processes during the development of insulin
resistance and T2D”>”%. The involvement of Randle’s cycle in lipotoxicity-induced
muscular insulin resistance will be discussed in more details below (Section 4.3.1).

In @ micro positron emission tomography (micro-PET) scan analysis, Vegfb'/' mice
accumulated significantly more ['®FIFDG, a glucose homologue, within 60 min in heart
compared to WT mice. This finding indicate that genetic deletion of Vegfb results in
the reduction of FA uptake in tissues, and in turn induces a metabolic shift towards
more glucose usage. Except for the VEGF-B-mediated pathway, there are more
regulatory pathways controlling FA uptake in various tissues, which will be discussed
in Paper Il. Despite of these facts, inactivation of a single gene Vegfb alone, is enough
to alter whole-body fat distribution and tissue preferences for energy molecules.
These findings hinted that VEGF-B also plays a role in insulin resistance induced by
muscular lipid accumulation and pathogenesis of T2D. We have further tested this
hypothesis in one of our recent studies™ as well as in Paper II.

11
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3.3.5 Unique downstream effects of VEGF-B via VEGFR1

Among all the VEGFR1 ligands tested, only VEGF-B upregulated Fatps in endothelial
cells in vitro and in vivo. Ten times molar excess of PIGF did not even attenuate this
effect in vitro. Furthermore, adenoviral administration of PIGF into mouse heart did
influence Fatp expression. These results indicate differential receptor binding sites
and/or structural variants. Recruitment of unidentified unique co-receptors is another
intriguing hypothesis. These findings are in line with the notion that the three VEGFR1
ligands activate distinct signaling pathways and induce different downstream effects.

3.4 Conclusion

In conclusion, we elucidated a VEGFR1- and NRP1-dependent FA uptake in endothelial
cells controlled by VEGF-B via FATPs. This regulation of FA uptake is unique to VEGF-B
in contrast to VEGF-A and PIGF. Vegfb'/' mice had less FA uptake in the most energy-
demanding tissues but shunted the excess FA to WAT. Vegfb'/' mice had a metabolic
shift towards more glucose usage in the heart compared to WT mice. Our study here
has established a direct link for two research fields, angiogenesis and metabolism.
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4 PAPER II: Vegfb IS REGULATED BY PGC-1a

4.1 Gene regulation of VEGFs

VEGF-A is known to be regulated by the traditional “hypoxia - HIF-1a” pathways'7 as
well as the recently found “hypoxia/nutrient deprivation - PGC-1a/ERRa” pathway™’°.
VEGF-A can also be induced by a number of cytokines including interleukins (ILs),
insulin-like growth factor 1, basic fibroblast growth factor, epidermal growth factor
and transforming growth factors (TGFs)”. PIGF is readily upregulated in pathological
conditions by stimuli such as hypoxia, NO, inflammatory cytokines (IL-1 and tumor
necrosis factor a, TNFa), oncogenes (HRAS) and growth factos (VEGF-A and TGFB)SO.
Pro-inflammatory cytokines were shown to regulate Vegfc expression®. Putative
nuclear factor-kappa B (NF-kB) binding sites were further identified in Vegfc
promoter®. This finding indicates that the induction of Vegfc by TNFa and IL-1 may be
NF-kB-mediated®. VEGF-D expression has been shown to correlate with lymphatic
metastasis across a variety of tumors™, but its gene regulatory mechanism is still
poorly understood.

Although quite a few studies have explored Vegfb expression in different contexts, its
molecular regulatory mechanism remained enigmatic. Not long after its discovery, it
has already been shown that, unlike VEGF-A, VEGF-B is not regulated by hypoxia’.
Early tissue expression studies have hinted a correlation of VEGF-B with metabolism™.
Several studies have implied this correlation: a microarray study in the aim of
identifying potential peroxisome proliferator-activated receptor y (PPARy) target
genes has shown an upregulation of Vegfb by rosiglitazone, a PPARy agonist in mouse
aorta®®; another microarray study showed that Vegfb was downregulated by
experimental type 1 diabetes and attenuated by long-term endurance training84; a
more recent study showed that muscle-specific loss of nuclear receptor corepressor 1
in mice could induce mitochondrial function in parallel with Vegfb expressionss; two
independent muscle-specific PGC-1a transgenic mouse lines have been shown to have
elevated Vegfb expression levels in the muscle®®®’. Furthermore, in Paper |, we
identified a tight correlation of Vegfb with a large cluster of mitochondrial genes. All
these findings point to a regulation of VEGF-B in parallel with mitochondrial biogenesis.

4.2 PGC-laregulates Vegfb and mitochondrial biogenesis

4.2.1 PGC-1a and mitochondrial biogenesis

PGC-1a, a major regulator in mitochondrial biogenesis, coactivates a number of
transcription factors including PPARs, ERRa and nuclear respiratory factors (NRFs).
ERRa is a ligand-independent orphan nuclear receptor which exerts vital roles in
various physiological conditions such as exercise and cold adaptation. The PGC-
1a/ERRa transcription complex is a known regulator of mitochondrial biogenesis®®*®
and in Paper |, Vegfb expression was found to be tightly correlated with mitochondrial
genes. We then tested the hypothesis that Vegfb is co-regulated with mitochondrial
genes by ERRa when coactivated by PGC-1a (Figure 5).
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Figure 5. PGC-1a and mitochondrial biogenesis. Physiological stimuli such as cold, fasting
and exercise drive the expression of PGC-1a, which then upregulates a set of downstream
genes through coactivation of a number of transcription factors including PPARs, ERRa
and NRFs. There are positive feedback loops for the expression of PGC-1a and some of
the transcription factors. Subsequently, mitochondrial biogenesis is initiated. We wanted

to test if VEGF-B is regulated in parallel. NRs, nuclear receptors; UCP, uncoupling protein;
COX, cytochrome c oxidase; mtTFA, mitochondrial transcription factor A.

4.2.2 PGC-1la regulates Vegfb through coactivation of ERRa in vitro

NO is known to trigger PGC-1a-mediated mitochondrial biogenesis in cells, which was
dependent on cyclic guanosine monophosphate (cGMP)*. By applying an NO donor
on C2C12 myotubes, we were able to activate this pathway and induce Vegfb as well
as mitochondrial genes. The expression of Vegfa and Pgf, however, remained
unchanged after the treatment. This differential expression pattern of Vegfb vs.
Vegfa/Pgf is in line with our previous findings in Paper |. But at first look, PGC-1a failed
to regulate Vegfa expression, which is seemingly contradictory to a previous finding®’.
We focused on chronic effect of NO (days) like Nisoli et al. tested”, while Arany et al.
tested Vegfa expression by PGC-la upregulation in a short-term setup (hours)'.
Whether Vegfa is upregulated within hours of NO stimulation in the myotubes or not,
remains to be tested.

In a time course study, we saw an initial downregulation of Vegfa in C2C12 myotubes
and the expression returned to basal level after 16 hours of serum deprivation. Again,
this finding seemingly does not come in line with what Arany et al. have found®’. This
can be explained by: 1) different choice of cell lines: we chose C2C12 myotubes, since
its in vivo counterpart is a primary source of VEGF-B expression, while Arany et al.
chose 10T% as a natural VEGF-A expressing cell line. 2) other experimental conditions:
serum deprivation alone in comparison to that in combination with hypoxia. Hypoxia
does not regulate VEGF-B expression and hence is not the focus of this paper.

ERRa recognizes the consensus DNA sequence AGGTCA'®. Mutation of the putative
ERRa binding site “AGGTCC” at 566 base pair upstream of Vegfb greatly attenuated,
instead of abolishing, the induction of luciferase activity in the reporter assay. ERRa
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itself has been shown to bind to specificity protein 1 (Spl) and to activate thyroid
hormone receptor a (TRa) through an Spl binding site’®; moreover, ERRa has
recently been shown to induce the expression of Sp1'®. ERRa has also been shown to
activate PPARa gene expression via direct binding to the PPARa promoter1°3. PPARa
binds to the same response element as PPARy”. In this paper, we also show that
PPARy, without additional ligands other than the free FA and lipid metabolites
presented in the serum, modestly induced the Vegfb promoter in the luciferase assay.
Taken these findings together, it can at least partially explain the remaining promoter
activity with the absence of the functional ERRa binding sites in respective Vegfb
promoter and intron constructs. Chromatin immunoprecipitation (ChIP) assay could
confirm whether PGC-1a/ERRa transcription complex binds to the putative ERRa

respond element.

4.2.3 Differential regulation of Vegfb and Vegfa

VEGF-A-mediated angiogenesis is vital for tissue remodeling in response to exercise
training'®*'% and cold adaptation®. In response to these physiological stimuli, PGC-1a
regulates mitochondrial genes, Vegfb as well as Vegfa'***° through co-activation of
ERRa. These findings point to a co-regulation of VEGF-A and VEGF-B in parallel with
mitochondrial biogenesis. This suggestion is, however, contradictory from what we
found in Paper |, where Vegfb has a tight correlation with mitochondrial gene cluster
but not Vegfa.

After a single bout of intensive exercise, Vegfa mRNA needs to be downregulated to
basal level after the initial peak to avoid exceeded angiogenic respond'®. VEGF-B, on
the other hand, modulates physiological function other than growth of the
endothelium, which may partially explain why modest Vegfb upregulation can only be
observed after long-term endurance training84. Furthermore, mitochondrial
biogenesis is a nutrient- and energy-demanding and hence time-consuming biological
process, with which VEGF-B expression should be synchronized. We believe this
differential regulation of VEGF-B and VEGF-A is crucial for tissue remodeling in
response to various physiological stimuli. It is known that VEGF-B is not regulated by
hypoxia®’. One hypothesis is that under hypoxic conditions, certain transcription
factors, other than ERRa, regulate Vegfa expression when coactivated by PGC-1a.
Variation in Erra expression pattern in response to hypoxia and/or nutrient
deprivation could also play a key role in the putative differential regulation of the two
VEGFs (Figure 6).
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Figure 6. A schematic illustration of the differential regulation of VEGF-B and VEGF-A in
the context of tissue remodeling. The unknown components underlying the differential
regulation of the VEGFs by hypoxia are marked in red. The gray dotted line indicates a
possible link between VEGF-B expression and muscle fibre type switching described in

Paper Il. Referenced and modified from Arany et al. 2010". MEF2, myocyte enhancer-
binding factor 2.

4.3 VEGF-B mediates insulin resistance in MCK-PGC-1a TG mice

4.3.1 Randle’s cycle, muscular lipid accumulation and insulin resistance

Substrate competition for respiration in animal tissues has been known for almost a
century’®. In 1963, Randle proposed a “Glucose Fatty Acid Cycle” theory, also known
as the Randle cycle, which is a metabolic process involving substrate competition of
glucose and FA in respiratory oxidation””. FA oxidation inhibits glucose catabolism and
stimulates gluconeogenesis and glucose storage, while glucose oxidation inhibits FA
oxidation and promotes storage for both fuel substrates’®. In the original publication,
Randle already hypothesized an important role of the cycle in the pathogenesis of

insulin resistance and T2D, even though the inferred underlying molecular mechanism
was later proven wrong’”.

Lipid accumulation in skeletal muscle and liver may be a result of increased uptake
and/or synthesis of FA when total energy intake exceeds the storage capacity of the
adipose tissue. Acquired or inherited mitochondrial dysfunction may also lead to

muscular lipid accumulation’’. This pathological accumulation will in turn promote
development of insulin resistance and T2D.
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The molecular mechanisms underlying the lipid-induced insulin resistance has been
studied intensively for the past two decades although still not fully understood. Early
observations revealed a negative correlation of insulin resistance with plasma FA
concentrations and intramyocellular lipid content”’. Lipid infusion studies pointed to
the theory that defects in glucose transport, but not impaired glycolysis as
hypothesized by Randle, was underlying the insulin resistance induced by high plasma
FA concentrations'®”’. Glucose transporter 4 (GLUT4) is highly expressed in adipose
tissue and skeletal muscle'®. It is acutely translocated to the cell membrane upon
stimulation of insulin signaling and increase cellular glucose uptake. This translocation

was found to be compromised in T2D patients'®.

Later studies indicated a role of diacylglycerol, a metabolite from triglyceride, in lipid-
induced insulin resistance. In both mice and human subjects, it was shown that insulin
resistance was associated with high intramyocellular diacylglycerol but not triglyceride
accumulation'”. Now the common consensus is that diacylglycerol-induced
malfunction in insulin signaling and hence insulin resistance is via activation of novel
protein kinase C (PKC) serine-threonine kinases'?’. Inflammatory signals in WAT*'® and
impaired GLUT4 translocation induced by muscular lipid droplet accumulation'*! have
also been linked with lipid-induced insulin resistance.

4.3.2 The paradox of PGC-1a overexpression and insulin resistance

Choi et al. have identified a paradoxical effect of increased expression of PGC-1a on
muscle mitochondrial function and insulin-stimulated muscle glucose metabolism™2.
They originally hypothesized that muscular PGC-1a overexpression would prevent
against HFD-induced insulin resistance in mice, since two microarray studies have
implicated decreased PGC-1a expression in T2D patient samples'*2. But paradoxically,
they found decreased insulin sensitivity in the muscle creatine kinase PGC-la

transgenic (MCK-PGC-1a TG) mice compared to WT mice when fed a HFD.

In Paper |, we showed an increased cardiac glucose uptake capacity in Vegfb'/' mice.
This was the first indication that VEGF-B deficiency could be beneficial in insulin
resistance. Our recent study has further shown that VEGF-B inactivation in various
diabetes animal models reduced lipid accumulation in muscle and halted the
development of T2D*. Based on these findings, we hypothesized that in HFD-fed
MCK-PGC-1a TG mice, lipid accumulation exceeds mitochondrial B-oxidation capacity
due to VEGF-B hyperactivity, and hence promotes insulin resistance. We were then
interested to test Vegfb inactivation in the context of HFD-induced insulin resistance
in MCK-PGC-1a TG mice.

4.3.3 Vegfb: the missing link which solves the paradox

We crossed Vegfb'/' with MCK-PGC-1a TG mice to create the MCK-PGC-1a TG //
Vegfb'/' strain. After 15 weeks on a HFD, insulin resistance and glucose intolerance
were ameliorated in these mice. The levels of plasma glucose, insulin and triglyceride
were also normalized, or nearly-normalized, to lean WT levels. These phenotypes
could be attributed by decreased lipid accumulation in the MCK-PGC-1a TG // Vegfb'/'
muscle compared to the MCK-PGC-1a TG counterpart.
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At the time Choi’s study was published, the “PGC-1a/ERRa. — VEGF-B — fatty acid
uptake” regulatory axis has not been revealed. If taken this regulatory axis into
account, the findings by Choi et al. are not paradoxical anymore: under a normal diet,
not only mitochondrial biogenesis is upregulated by the PGC-1a overexpression in the
muscle but VEGFB-mediated FA uptake is upregulated in parallel; when the two arms,
mitochondria and FA uptake, are both induced, the balance of B-oxidation will still be
even (Figure 7). When MCK-PGC-1a TG mice are fed a HFD, similarly as in WT mice,
insulin sensitivity will decrease due to lipid accumulation in the muscle exceeding the
B-oxidation capacity in the mitochondria. But when VEGF-B is absence in the muscle,
even under a double challenge of HFD and PGC-1a overexpression, FA uptake still
matches the capacity of mitochondrial B-oxidation. This balance will in turn attributes
to the ameliorated insulin sensitivity.
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Figure 7. PGC-1a balances the two arms of B-oxidation (same as Figure 6a in Paper Il).

4.4 Conclusion

In conclusion, we elucidated a new “PGC-1a/ERRa — VEGF-B — fatty acid uptake”
regulatory axis. Adding VEGF-B in the knowledge of the complex metabolic regulatory
network leads to a better understanding of the balance of B-oxidation and lipid
homeostasis in the body. Genetic deletion of Vegfb in MCK-PGC-1a TG mice reduced
muscular lipid accumulation but did not influence postprandial blood glucose or
glucose tolerance under normal diet (ND). Under a HFD however, deletion of Vegfb
under the muscle-specific PGC-1a transgene normalized postprandial blood glucose,
drastically reduced plasma triglyceride and insulin, as well as restored glucose
tolerance and insulin sensitivity. These improved metabolic characteristics are likely
attributed to reduced muscular lipid accumulation. Our findings provided new
evidence showing the vital role of VEGF-B in HFD-induced insulin resistance and
pathogenesis of T2D. Targeting VEGF-B as a therapeutic approach in treating insulin
resistance and development of T2D has promising clinical implications.
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5 FUTURE PERSPECTIVES

5.1 Role of VEGF-B in other contexts

Mitochondrial biogenesis is induced upon various physiological stimuli, such as in
skeletal muscle after exercise and in brown adipose tissue after cold exposure®. It is
then logical to explore the role of VEGF-B upon these stimuli. The cell type that has
the highest mitochondrial content in mammals is the acid-secreting parietal cell (PC) in
the stomach mucosa'®®. Since VEGF-B is also highly expressed in PC, we have
investigated whether it has a role in this type of cells. The role of VEGF-B in
tumorigenesis is also discussed here.

5.1.1 Role of VEGF-B in endurance running

Exercise training is known to induce mitochondrial biogenesis”. We hypothesized that
Vegfb is upregulated after long-term endurance training together with mitochondrial
genes and Vegfb'/' mice have reduced running capacity. After training for 28 days (10
m/min, 48 min per day), we could not detect any difference in running capacity
between WT and Vegfb'/' mice (unpublished data). In quadriceps, when comparing
trained WT mice to sedated littermates, Vegfb was downregulated together with
Hadh, the gene coding for a key B-oxidation enzyme, hydroxyacyl-coenzyme a
dehydrogenase (unpublished data). This result indicates that the running speed was
insufficient to induce an endurance training stimulus, since the muscle is known to
primarily utilize glucose in long-term low-intensity running or high-intensity sprint’®.
Vegfb was found to be upregulated following a long-term endurance running protocol
in mice®. Therefore, optimizations of our current running protocol are needed for
further testing of our hypothesis.

5.1.2 Role of VEGF-B in cold adaptation

Mitochondrial biogenesis plays a key role in brown fat activation during cold
adaptation in mice”. To test the role of Vegfb in cold adaptation, we subjected mice
to 4°C for 28 days. We found no difference in body temperature adaptation between
WT and Vegfb'/' mice, but surprisingly, there was a delayed body weight increase in
the Vegfb'/' mice compared to WT littermates (unpublished data). This finding
indicates that Vegfb-mediated FA uptake in the brown adipocytes could be a rate-
limiting step for brown fat development upon cold stimulation. Further analyses of the
tissue need to be performed for testing this hypothesis.

5.1.3 The most “energetic” cell type in the body

The acid-producing PC in the stomach mucosa is one of the cell types with the highest
level of energy consumption. This type of cells are filled with mitochondria and can
develop a proton gradient of more than one million-fold across the membrane of the
secretory canaliculus. Similarly to brown adipocytes, cardiac- and skeletal myocytes,
which all have high level of VEGF-B expression and mitochondrial content, PCs also

mainly use fatty acids as energy source™.
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A study has found that Vegfb was among a number of genes that were not previously
reported to be expressed in PC'*%. Vegfb has even been identified as a PC-specific
marker'™®. Upon Helicobacter pylori (Hp) infection, Vegfb expression was highly
upregulated™®®. These findings indicate potential roles of Vegfb in gastric-acid
secretion and pathogenesis of stomach ulcer and gastric cancer, which are known to
be closely linked with Hp infection™*>**®.

The apical membrane of the parietal cell contains an H'/K*-ATPase, which is the
primary H" pump and also a marker for PC'**. Our unpublished data have both shown
that VEGF-B and H/K*-ATPase are co-localized and restrictedly expressed in PCs in the
stomach mucosa. Another study also confirmed this co-localization'**. We could not
detect any difference in the vascular networks between WT and Vegfb'/' gastric
mucosae. Based on this observation, we then hypothesized that in the gastric mucosa,
Vegfb is highly expressed in PC to coordinate FA uptake and mitochondrial B-oxidation,
rather than regulating or maintaining the vasculature. Further examinations of gastric-
acid secretion and experimental gastric ulcer induction in Vegfb'/' mice will help us to
have more insights to the potential role of VEGF-B in gastric mucosa.

5.1.4 Role of VEGF-B in tumorigenesis

Angiogenesis is a crucial step during tumor progression. The roles of the VEGFs in
tumorigenesis were studied rather intensively throughout the yearsz. VEGF-A, was
first identified as a growth factor secreted by tumor cells®. It is upregulated in many, if
not all, human solid tumors'. These findings marked the starting point of the
following intensive research on anti-VEGF-A treatments of solid tumors'’. It was
shown that PIGF expression correlates with disease progression and patient survival
and may be used as a prognostic indicator for colorectal cancer**®. Implication of PIGF
being a therapeutic target in Ewing’s sarcoma was proposedllg. Anti-PIGF treatment of
various kinds of tumors was proposed followed by some controversial results?%*%,
Since sVEGFR1 can sequester VEGF-A, -B and PIGF, sVEGFR1-based traps have been
developed, along with VEGFR1 inhibitors and antibodies, as anti-angiogenesis agents
8 Gene transfer of sVEGFR1 has recently been proposed as a new anti-angiogenic
cancer therapy'*. Both VEGF-C and -D were linked to tumor malignancy and
lymphatic metastasis in cancers since the beginning of their discoveryl'z.

The freely-diffusible longer VEGF-B isoform, VEGF-B1gs, was shown to be upregulated
in mouse and human tumor cell lines and primary tumors>. But in contrast to other
VEGFs, very few studies have explored the role of VEGF-B in the context of
tumorigenesis. Among them, one study by Albrecht et al. is noteworthy. They have
investigated the function of VEGF-B in tumorigenesis by the generation of two mouse
models of pancreatic cancer. Beta-cell-specific overexpression of VEGF-B in the
pancreatic islet carcinoma mouse model retarded tumor growth. Conversely, the
same mouse model deficient for Vegfb presented with larger tumors. These results
led to the questioning of indiscriminate blocking of VEGF signaling in anti-angiogenesis

therapies'”.
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In order to investigate the functional role of the VEGF-B during tumorgenesis, we
generated tumor cells that overexpress either the soluble or the heparin-binding
isoform of VEGF-B. We observed that cells overexpressing VEGF-Bis; gave rise to
tumors that grow at similar kinetics as cells with endogenous VEGF-B levels. In
contrast, tumors originated from cells with VEGF-Bi;g¢ oOverexpression grow
significantly faster. These tumors have also an elevated capacity to recruit
macrophages. In another tumor model, cells with Vegfb deletion attracted
macrophages less efficiently to the tumor site compared to the cells with endogenous
VEGF-B levels. However, the growth rate of the tumor xenografts in nude mice is
similar. These findings indicate that VEGF-B is directly or indirectly involved in
attracting macrophages to the tumor site. Tumor associated macrophages play an
important role in promoting tumor progression, e.g. in the processes of neo-
angiogenesis and/or immuno-suppression. The tumor promotion function of
macrophages has also become a target for cancer therapy'?®. Blocking VEGF-B
function by e.g. an antibody-based approach might interfere with the tumor
promoting capacity of tumor associated macrophages.

Most cancer cells are known to predominantly produce energy by a high rate of
glycolysis rather than oxidation of pyruvate in mitochondria as in most normal cells.
This is known as the “Warburg Effect”, which helps promoting the fast-growth of
cancer cells'*’*?, In Paper |, we have demostrated a role of VEGF-B in FA uptake. In
the cell, glucose and FA competes for substrates in metabolic processes, known as the
Randle’s cycle75'76 (described in Section 4.3.1). Taken all aforementioned knowledge
together, it is not difficult to infer that VEGF-B can inhibit tumor growth by
downregulation of glycolysis through inducing FA uptake. Careful selection of tumor
models is crucial for testing this hypothesis due to the complex nature of metabolism
in cancerous tissues.

5.2 The significance of our research

5.2.1 Is VEGFB a thrifty gene?

In C. elegans, a lower animal devoid of a vascular system, a family of four receptor
tyrosine kinases that are structurally related to VEGFRs were identified™®. This
evolutionary legacy is a historical reproduction of the beginning of VEGFRs’ evolution.
Although it is difficult to investigate the exact evolution paths of each individual VEGF,
possible history of VEGF evolution can still be cautiously hypothesized based on a
phylogenetic tree of VEGF/platelet-derived growth factors (PDGF) family members
(Figure 8).
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Figure 8. Phylogenetic relationship among the human VEGF/PDGF family members
generated with a multiple sequence alignment tool, Clustal Omegam. Splice variants of
VEGF-A, PIGF and VEGF-B are also shown.

Genome duplications, recombinations as well as genetic mutations create
opportunities for speciation and evolution to occur, whereas natural selection
pressures keep vital gene functions preserved. VEGF-B is highly conserved in mammals
(Figure 9). This is an indication that VEGF-B has unique and important roles preserved
under selection pressures. VEGFB promoter could be derived from a mismatched
genome recombination which introduced regulatory elements from a mitochondrial
gene. Further genome duplications and mutations could have separated VEGF-B from
VEGF-A and PIGF early in the VEGF evolution history. At a certain time point, an
ancient VEGF that had similar physiological function to the modern VEGF-B could have
evolved, which allowed the organism to make better use of FA to match the
respiratory oxidation capacity in the mitochondria. This evolutionary selective
advantage could have kept mammalian VEGF-B highly conserved ever since.
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Figure 9, Homology analysis of mammalian VEGF-B genomic sequences by ECR
browser'*>. The two mRNA splice variants of human (Homo sapiens) VEGF-B are shown
on the top. Percentage of sequence homology in each species compared to the human
sequence is shown under. Only the ranges of 50% to 100% are shown. From top to
bottom: opossum (Monodelphis domestica), rat (Rattus norvegicus), cow (Bos taurus),
mouse (Mus musculus), dog (Canis familiaris), rhesus monkey (Macaca mulatta) and
chimpanzee (Pan troglodytes). Blue: exon sequences; pink: intron sequences; green:
repetitive sequences; yellow: sequences in untranslated regions.

Comparing to the evolution timeline of modern humans, easy food access, proper
housing and clothing availability for the majority of people in the world has a relatively
short history. For millions of years, evolution has favored the individuals with genes to
store as much energy as possible in the preparation of temporary food shortages.
Energy intake and expenditure for modern human beings have changed dramatically
during the past a few hundreds, especially the past a few dozens of years. Relatively
long reproductive cycle and life span have made human’s evolution impossible to
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catch up with the pace of changing life style. This phenomenon was well summarized
in the early 1960s by Neel, who proposed the “thrifty gene hypothesis”**®. VEGFB,
hypothesized as a selection advantage throughout most of the mammalian
evolutionary history, has now become an unwanted shortcoming that promotes
metabolic disorders in modern humans. It is rational to hypothesize that VEGFB is one
of the thrift genes that promotes lipid storage in heart and skeletal muscle as energy
reservoirs.

5.2.2 Insulin resistance and adiposity

Adipose tissue exerts pivotal roles in energy storage and metabolism in animals.
Obesity has become one of the prevailing health threats worldwide in modern
societies. Severe forms of obesity are linked to reduced mobility, increased risks of
metabolic syndrome, T2D, cardiovascular disease and other medical complications.
These facts promoted the impression in the general public that the fat tissue is a “bad
tissue”.

Lipodystrophy is a medical condition characterized by abnormal or degenerative
conditions of the adipose tissue. Some forms of familial lipodystrophies are linked to
deficiency in the genes that are crucial in adipocyte differentiation. Patients with these
types of lipodystrophy usually have little or no adipose tissue in the body and develop
severe hepatic steatosis and diabetes, since the excess lipid all goes to the liver and
skeletal muscle. Without proper treatment, these patients hardly live through
teen®®****, These findings showed strong evidences proving that adipose tissue is
indispensable in whole-body fat metabolism.

In Paper |, we demonstrated an increased cardiac glucose uptake capacity despite an
elevated body fat content in Vegfb'/' mice. In other words, when VEGF-B is absent,
insulin sensitivity is decoupled with adiposity. This finding is in line with the hypothesis
that ectopic muscular lipid accumulation, as a consequence of adiposity, but not
excess body fat per se, is linked to the development of insulin resistance and

diabetes™®.

5.2.3 Current treatments for insulin resistance and T2D

Already in the early 20" century, regular exercise was proposed to be an important
approach for managing T2D". Increasing energy expenditure by exercising results in
reduced muscular lipotoxicity, which in turn ameliorate insulin resistance in T2D"°.
Medical treatments need to be developed due to the difficulty of implementing life

style interventions in patients.

Insulin has been used in treatment of diabetes for a relatively long period of time.
Unlike insulin-synthesis/secretion-impaired type 1 diabetes, relatively large doses are
necessary to overcome the insulin resistance in treatment of T2D. Insulin treatment is

also known to induce weight gain and is associated with the risk of hypoglycemia®3.

PPARy is expressed predominantly in the adipose tissue and plays vital role in
adipogenesis'®. It is a ligand-dependent nuclear receptor that binds a variety of fatty
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acids and lipid metabolites. The lipid-sensing nature of PPARy has led to the
development of synthetic PPARy agonists as anti-diabetic drugs**®**!. These
compounds reduce plasma glucose and triglyceride levels, accompanied with a rise in
high-density lipoprotein (HDL) cholesterol through activation of PPARy**’. One group
of these compounds, thiazolidinediones (TZD), was shown to improve insulin
sensitivity through reduction of intramyocellular diacylglycerol content'*?. Although
once being a favored anti-diabetes drug, some of the TZD were revoked from the
market due to side effects such as cardiac and hepatic complications™>%*,

As of 2010, metformin (a biguanide) and glibenclamide (a sulfonylurea) are the only
two oral antidiabetics in the World Health Organization Model List of Essential
Medicines'*. Metformin is the most commonly prescribed anti-diabetic drug
worldwide. It improves hyperglycemia primarily by suppressing hepatic glucose
production’®. Glibenclamide, on the other hand, acts on pancreatic B-cells and
stimulates insulin release. The combination oral administration of the two drugs was

also proven to be more effective than monotherapy of either drug*°.

Glucagon-like peptide-1 (GLP-1) belongs to a group of gastrointestinal hormones, the
incretin hormone family. It is used as an anti-diabetic drug for its beneficial effects in
blood glucose, B-cell function and insulin sensitivity. It is secreted upon the presence
of nutrients in the lumen of the small intestine and stimulates insulin secretion in
pancreatic B-cells through activation of G protein-coupled receptors'*’. GLP-1 has
gastrointestinal side effects like nausea and diarrhea®. Not all patients receive GLP-1

can be expected to reach normoglycemia®’.

5.2.4 VEGF-B as the new therapeutic target

The hypothesis that enhancing fat burning will reduce adiposity has led to studies on
manipulations of FA oxidation'*">?. However, a recent study has shown that acute or
chronic upregulation of mitochondrial FA oxidation has no net effect on whole-body
energy expenditure or adiposity™>. Ironically, to some extent, this has already been
predicted by Randle in 1960s”>7°. The physiological balance of FA and glucose
oxidation has made it difficult to achieve long-term metabolic benefits by altering only
a few molecular pathways within the complex metabolic regulatory network.

Current treatments for T2D are mainly focused on reducing plasma glucose and
triglyceride levels, as well as stimulate insulin secretion, without concentrating on the
root of the disease, which is lipid-induced insulin resistance. Our studies of VEGF-B,
however, indicate that manipulation of net energy input into the system by altering
tissue FA uptake may be the effective way out for treating insulin resistance induced
by muscular lipid accumulation. Combinations of the above mentioned therapies
might become the “ultimate treatment” for metabolic disorders such as obesity,
insulin resistance and T2D.
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ONE MORE THING.. ..

The title of this sub-chapter is a small tribute to Steve Jobs, former Apple CEO, for his
characteristic and usually entertaining “one more thing...” sections in Stevenotes.

Quoting from his famous speech at Stanford University in 2005:
“You've got to find what you love”; “Stay hungry, stay foolish”.

Although it is obvious to some readers, | should still emphasize that this sub-chapter is
NOT a scientific manuscript. This is special thanks for the people who made it possible
and documentation for what have been done.

Data security and network communications in an academic research
environment

Xun Wang™#, Chad Tunell”, Maarten Vanwildemeersch™#, Mats Anderling” and UIf Eriksson™*

“Tissue Biology Group, Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-
171 77 Stockholm, Sweden.

“Ludwig Institute for Cancer Research Ltd, Stockholm Branch, Karolinska Institutet, Box 240, SE-171 77 Stockholm, Sweden.

There are three inevitable things in life: tax, death and hard drive failure.

We’ve built a file and mailing list server. It’s based on a Mac Mini early 2009 model
with OS X Lion Server 10.7.5. An external hard drive is used for primary data storage.
The data and boot drive are both daily and incrementally backuped to a Drobo 2 Gen
disk array using Time Machine for multi-level data redundancy. The headless server
is managed remotely through native VNC support by Mac OS X. All the network
communication ports are open to the local department ethernet while KI-VPN
connection must be established if accessing from outside of the department.

The file server supports AFP for Macs and SMB for Windows PCs. AFP works
seamlessly with Mac computers. But since Apple has replaced SMB with an in-house
version of SMBX starting in Lion due to changes in SMB licencing, SMB support for
Windows-based computers became poor. The Offline Files function under various
versions of Windows became incompatible after upgrading to Lion from Snow
Leopard. It is probably due to the changes in Oplocks capability in SMBX. SMB
authentication became slower as well. These changes cause problems with opening
and saving Microsoft Office and Adobe PDF files. A quick trial under Mountain Lion
indicates that the kernel codes of SMBX haven’t been improved to fix the
aforementioned bugs.

Each user has his/her own user account and folder with full accessibility. A user can
only read data from other users in the same group, while there’s no data accessibility
across the groups. A common guest account and temporary folders are also available
for easy data exchange.

The mailing list server is based on a series of Gmail addresses and the default Mail
program in Lion. An email is sent to a Gmail address, the Mail program will then
redirect, rather than forward, according to a set of rules to the corresponding
recipients. There is a master address for sending to all the research groups. This
address points to the addresses for each group, and then the each group address points
to individual recipients. The user addresses and groups are maintained using Address
Book in Lion. A combination of groups or specialized groups of addresses like “Cell
Culture” or “Starget” was realized by setting up corresponding rules in Mail.
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