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“The Universe is one great kindergarten for man.  

Everything that exists has brought with it its own peculiar lesson.”  

Orison Swett Marden 

 
 
 
 
 
 

 
 
 

 

 



 

 

ABSTRACT 
 

The soil nematode Caenorhabditis elegans is a popular host utilized to model 

bacterial virulence and microbial pathogenesis in vivo. This thesis explores the use of 

C. elegans for the study of host-pathogen interactions for two Gram-negative bacteria, 

Burkholderia thailandensis and Salmonella enterica.  

We conducted a RNA interference screen to identify host genes capable of 

modulating the infection outcomes of C. elegans infected with B. thailandensis. We 

discovered that during infection, the cell junction protein LIN-7 appeared to modulate 

the evolutionarily conserved DAF-2 insulin/IGF-1 signalling pathway, culminating on 

both the FOXO transcription factor DAF-16 and the heat-shock factor 1. Moreover, 

LIN-7 regulated nematode survival during infection with other Gram-negative bacteria. 

Tissue-specific experiments also revealed that this interaction between LIN-7 and the 

DAF-2 signalling pathway operated mainly in nematode tissues outside the intestine 

(Paper I). 

Through a forward genetics screen using ultraviolet light, we identified pt1 as a 

novel allele of the unc-7 innexin gene. We found that the pt1 mutant exhibited 

enhanced survival only when infected with Burkholderia spp. We further defined a 

specific subclass of unc-7 interacting genes, unc-9 and goa-1, in a unique pathway 

which probably involves calcium ion fluxes (Paper II). 

Next we characterized a new aspect of S. enterica virulence. We observed that 

S. enterica provoked oxidative stress in the hypodermal tissues of infected C. elegans 

even though there was no apparent invasion beyond the intestinal epithelium. Via 

chemical and mutational interference, we found this phenomenon to be deleterious to 

the host. Genetic inactivation of the bacterial thioredoxin 1 strongly abrogated 

pathogenicity of S. enterica as well as the emergence of oxidative stress, thereby 

suggesting a novel role for this virulence factor (Paper III).  

Finally, we investigated the combinatorial effects of the proton pump inhibitor 

omeprazole and the salicylidene acylhydrazide INP0010 during S. enterica infection. 

We observed disparate effects when they were used in combination and applied to 

different infection models including the epithelial and macrophage-like cell lines and C. 

elegans. The nematode can thus provide a platform for testing virulence inhibitors, 

allowing the elucidation of their mechanisms in the context of a whole organism (Paper 

IV). 
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1 INTRODUCTION 
 

1.1 HOST-PATHOGEN INTERACTIONS 
 

Despite remarkable progression in medical research and higher standards of sanitation 

into the 21st century, infectious diseases caused by bacteria, viruses, fungi and parasites 

continue to be one of the top major causes of death, disability, and social and economic 

disruption for millions of people each year [1]. In addition to a permanent background 

of existing pathogens with evolving abilities for transmission, pathogenesis and drug 

resistance, newly-emerging and re-emerging pathogens also greatly contribute to the 

global burden of infection. Strengthening basic and applied research to understand how 

pathogens interact with their hosts at the molecular and cellular level would enable us 

to place pathogenesis in different perspectives and thereafter develop more efficient 

diagnostics, vaccines and therapies. The interaction between the host and the pathogen 

is a continuous battle: on one end is the pathogen with expression of virulence factors 

to elicit direct tissue damage, evoke immunopathology or evade host responses; on 

the other is the host with defence pathways and effector molecules to restrict or 

eradicate the pathogen, or tolerate the damage caused by the pathogen or the induced 

immune response. Determining these mechanisms and the outcome of their 

interactions are crucial to understanding disease pathogenesis.  

 

1.2 IN VIVO INFECTION MODELS 
 

The use of animal models complements existing molecular and cellular approaches to 

study host-pathogen interactions and provide further insights into the various host and 

pathogenic components required for a successful infection at the whole organism 

level. In contrast to studies carried out on cultured cell monolayers, those using whole 

organism models have allowed us to understand the importance of spatial complexity 

and inter-tissue communication and signalling during infection. 

 

In vivo animal models are continuously being developed to understand disease 

pathogenesis and can also function as a system to assess the efficacy of antimicrobial 

compounds and virulence inhibitors. We should be cautious and aware that no single 

animal model can answer all scientific questions – selection of a suitable host model 
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can be based on the virulence trait or host infection response to be studied and the 

amount of available resources, physical space and time commitment. Alternatively, 

multiple host models can also be utilized in a study to complement each finding and 

observation [2]. 

 

Some pathogens such as the human immunodeficiency virus, hepatitis C and human 

malaria parasites are strictly host-specific and often cannot be tested on lower 

mammals. To some degree, these pathogens can infect non-human primates (NHPs) 

such as chimpanzees, macaques and baboons because of their genetic similarities with 

humans. However this approach poses serious ethical problems because of the 

increased likelihood that during scientific experiments, NHPs may experience pain 

and suffering in ways similar to humans [3].  

 

The murine model has been by far a popular mammalian host system but the lengthy 

reproduction time and the difficulties and financial expenses associated with 

obtaining and maintaining sufficient numbers of animals for experiments are 

discouraging. Moreover, approaches using mice to screen and discover new 

antimicrobial compounds and virulence inhibitors or conduct large mutagenesis 

screens for host infection factors, although not impossible, remain very laborious and 

extremely costly [4]. 

 

Hence, amidst persistent ethical considerations regarding the welfare of mammals 

used for experimentation and the need to have more tractable and cost-effective 

model systems to study host-pathogen interactions, non-mammalian models have 

gained significant attention over the past decade.  

 

1.2.1 Non-mammalian models  
 

1.2.1.1 Vertebrates  

 

The zebrafish, Danio rerio, been used to model infection for a number of human 

pathogenic bacteria, Listeria monocytogenes [5] and Streptococcus pyogenes [6], the 

zoonotic Mycobacterium marinum [7] and the human opportunistic fungal pathogen 

Candida albicans [8,9]. The small size and transparency of zebrafish larvae provide the 

unique possibility to image infection dynamics at the cellular level for both the host and 
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the pathogen. While the larvae only possess innate immunity, adult fish also has an 

additional adaptive arm [10,11]. Currently many more tools are still being developed 

for the use of zebrafish as an infection model, but transgenic larvae with fluorescing 

innate immune cells can already be used to identify specific cell types involved in 

infection. Modified anti-sense oligonucleotides or morpholinos are also used to knock 

down various host defence components [8,12].  

  

1.2.1.2 Invertebrates  

 

The short life cycle and simple anatomy of invertebrates make them useful and 

convenient models for the study of host-pathogen interactions. Invertebrates are also 

often cost-effective and generation of large numbers of individuals is relatively easy. 

Even though invertebrate models only possess innate immunity and lack higher 

adaptive immune systems of vertebrates, they are still highly attractive in the field as it 

is believed that the central concept of innate immunity is present throughout the animal 

kingdom, and that most importantly, successful strategies against pathogens have been 

conserved throughout evolution [2,13].  

 

The common fruit fly Drosophila melanogaster was first reported in 1972 to have an 

antibacterial defence system [14] but only emerged as a model organism to study 

host-pathogen interactions a couple of decades later [15,16,17]. The innate immune 

system in the fruit fly involves both cellular (specialized cells dedicated to 

encapsulating, engulfing and eliminating pathogens [18]) and humoral components 

(secretion of antimicrobial peptides into the hemolymph [19,20]). More importantly, 

the fruit fly was used to study how innate immunity against pathogenic 

microorganisms can be induced and sensed by the Toll receptor, the invertebrate 

counterpart to mammalian Toll-like receptor 4, and strongly demonstrates how 

successful defence strategies have been conserved from insects to mammals [19,20].   

 

More recently, the larvae of Galleria mellonella (Greater Wax Moth) have been 

utilized as infection models because similar to the fruit fly, the wax moth larvae also 

possess specialized innate immune cells. The greatest advantage is that the wax moth 

larvae can be infected at the physiological temperature for human infections and are 

cheap and easy to maintain and do not require feeding [21,22]. 
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The soil nematode Caenorhabditis elegans has been used extensively for the past 

decade for the study of host defence strategies and bacterial virulence mechanisms. 

This thesis describes the use of C. elegans for these studies and details of this system 

will be further elaborated in Section 1.3. 

 

1.3 C. ELEGANS AS AN INFECTION MODEL  
 

Sydney Brenner’s 1974 seminal paper introduced C. elegans as a model organism to 

study a variety of biological questions regarding cell division and differentiation, 

muscular assembly and function and the nervous system [23]. This came about from a 

deliberate search for a multicellular organism that could be analyzed with the ease and 

resolution similar to that of unicellular organisms. Biological events can also be 

dissected by means of genetic, cellular and molecular approaches at almost single-cell 

resolution in an intact whole organism.  

 

For the past decade, researchers have begun to exploit the soil nematode C. elegans as a 

host organism to model virulence and microbial pathogenesis in vivo [24,25,26,27]. 

Nearly 50 different microorganisms, including bacteria, fungi, viruses and 

microsporidia, have been shown to be pathogenic to C. elegans. This thesis explores 

the use of C. elegans for the study of human bacterial pathogens and the sections which 

follow will largely focus on discussing this model in the context of bacterial 

pathogenesis.  

 

Although the last ancestor between humans and C. elegans appeared more than five 

hundred million years ago, we share common susceptibilities to many human bacterial 

pathogens [28]. C. elegans, being a bacterivore, has also interacted and co-evolved with 

these microorganisms over a similar amount of time and virulence-related traits of 

bacterial pathogens may have evolved from both defensive and offensive mechanisms 

to avoid predation by C. elegans and other larger animals [13,29].  

 

Likewise, for C. elegans to survive the detrimental effects of ingesting harmful 

bacteria, host defence mechanisms must have been developed and executed. The most 

successful defence strategies are highly likely to be re-used and conserved across 

animal species [28]. In higher organisms the host defence mechanisms become more 

sophisticated with the recruitment of additional components to cope with more complex 
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network of cellular tissues and processes. In an essence, this hints that the basic 

mechanisms by which bacterial pathogens establish infections in C. elegans and 

higher organisms may be very similar. 

 

1.3.1 Features of the C. elegans system 
 

 

Figure 1. Life cycle of C. elegans [30] 

 

The C. elegans life cycle is simple and consists of 4 larval stages till the fertile adult 

nematode (Figure 1). Its short generation time of less than 3 days has greatly facilitated 

genetic analysis and generation of genetic crosses. C. elegans hermaphrodites 

reproduce by self-fertilization, allowing the production of nearly 300 genetically 

identical progeny and favouring new mutations to become homozygous automatically. 

The cost-effective soil nematode can be simply propagated and maintained on agar 

plates with non-pathogenic Escherichia coli as food source [23]. In addition, the ease 

and robustness to freeze C. elegans and recover them thereafter allow strains to be 

maintained indefinitely [31].  
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C. elegans is also the first multicellular organism to have its whole genome 

sequenced [32], thereby allowing extensive forward and reverse genetics screens to 

be developed. The entire cell lineage, from egg to adult, is also visible under the light 

microscope and has been defined precisely [33,34,35,36], meaning that any process 

involving the behaviours of individual cells in a multicellular context can be analyzed 

at the singular cell level.  

 

C. elegans is one of the more genetically tractable model organisms which would allow 

us to rapidly understand the impact of host genes on the outcome of an infection  – 

transgenic strains can be easily generated by microinjection or bombardment with DNA 

[37,38]; gene expression can also be conveniently knocked down by feeding nematodes 

with gene-specific double-stranded RNA (dsRNA) expressed by non-pathogenic E. coli 

[39]. Further development of this RNA interference (RNAi) technology in the 

nematode have now allowed tissue-specific gene knockdowns, making it easier to 

determine the spatial requirement for a specific gene and to study genes that have 

pleitropic effects in different tissues [40].  

 

Homologous features between the innate immune systems of C. elegans and 

mammals make the nematode an attractive host model. These similarities would be 

further discussed in Section 1.3.4.3. C. elegans only has an innate immune system and 

this allows the unprecedented elucidation of innate immune functions without 

confounding influences from the adaptive arm present in higher organisms [28].  

 

The relatively inexpensive and small-sized nematode system is amenable to the 

development and execution of automated high-throughput whole-animal assays and 

screens and thus enables compound screening from large chemical banks and libraries 

even with minute quantities of valuable leads [41].  

 

1.3.2 Readouts for host-pathogen interactions 
 

Using C. elegans as a host to model bacterial pathogenesis can generate a rich 

repertoire of data in various forms [28,42] and enable better delineation of the 

infection. Selected examples are described below:  
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The effectiveness of host defence mechanisms and pathogen virulence can be 

monitored by quantifying the survival of nematodes over time under controlled 

conditions, observing morphological and behavioural changes of the infected 

organisms and measuring the persistence of live pathogens in the nematode intestine.     

 

The transparency of C. elegans also allows for direct visualization of bacterial 

pathogens tagged with fluorescent proteins, and in combination with the many 

established transgenic nematode strains with specific fluorescent proteins as cell or 

tissue-specific markers, enables the direct observation of host-pathogen interactions at 

the cellular level (Figure 2).  

 

 
 

Figure 2. Examples of in vivo visualization of infection. (Left) Wild-type N2 

nematodes were fed S. Typhimurium 14028::GFP, intestinal autofluorescence was 

shown in blue; (Right) SU159 nematodes expressing AJM-1::GFP were infected with 

S. Typhimurium 14028::RFP. Images are adapted from Paper III [43].  

 

Host gene expression changes upon infection can be monitored using microarrays, 

quantitative polymerase chain reaction and specific reporter constructs in transgenic 

nematode strains which are easy to generate. Conversely, infecting nematodes with 

transgenic bacterial strains carrying reporter constructs can yield in vivo images of 

microbial gene expression in the infected host.  
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1.3.3 Limitations 
 

Here, several limitations of using C. elegans as a model organism to study host-

pathogen interactions should be considered.  

 

As C. elegans can be infected by simply replacing the normal E. coli food source with 

the specific bacterial pathogen [42], the precise inoculum or multiplicity of infection 

for each nematode at the start of the infection experiment cannot be precisely 

determined.  

 

The maximum growth temperature of C. elegans is 25oC. Hence there is a concern that 

certain virulence factors from human bacterial pathogens usually expressed at the 

physiological temperature of 37oC may not be optimally expressed in the nematode. 

Recently, an alternative nematode model, Panagrellus redivivus, has been proposed for 

human bacterial pathogens – P. redivivus is viable for several days at 37oC but does not 

reproduce at this temperature [44]. A need for continuous efforts to develop this model 

and hopefully recapitulate the established approaches for C. elegans is necessary. 

 

It is important to note that C. elegans appears to lack several characteristics of 

mammalian innate immunity:  

 

Due to the observations that phagocytic cells called coelomocytes of a larger 

nematode, Ascaris summ, are capable of phagocytosing invading organisms [45], it 

had been suggested that the six coelomocytes of the adult C. elegans hermaphrodite 

could also serve as scavenging immune cells akin to mammalian neutrophils, 

monocytes and macrophages [46]. However this has been proven not to be the case as 

C. elegans coelomocytes are not motile nor have been observed to phagocytose any 

pathogen [47].  

 

The Toll/NF-κB (nuclear factor-kappa B) signalling pathway has been shown to play 

a very critical role in innate immune responses of vertebrates and even the fruit fly 

[20,48]. However C. elegans appears to lack many components of this pathway in its 

genome [49]. For the few homologues present, they appear to be involved in 

independent host defence mechanisms divergent from the well-studied Toll/NFκB 

signalling [49,50].  
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In spite of these limitations, C. elegans remains as a very attractive model for 

studying host-pathogen interactions because previous studies are strongly suggestive 

of the existence of a very competent and efficient network of host defence 

mechanisms in the nematode even when lacking many classical features of 

mammalian innate immunity. Further understanding and delineation using C. elegans 

as a host model may reveal previously unrecognized aspects of host defences and add 

on to the rich knowledge pool for host-pathogen interactions. 

 

1.3.4 Host defence strategies   
 

1.3.4.1 Avoidance 

 

A host susceptible to infections can protect itself by avoidance, hence reducing the risk 

of pathogen exposure. C. elegans possesses a complex chemosensory system to sense 

and respond to a repertoire of chemicals including microbial products. This olfactory 

chemotaxis is mediated by G protein-coupled receptors and could result in either an 

attraction or an aversive behavior - some Gram-negative bacteria produce acylated 

homoserine lactone autoinducers to attract C. elegans [51] while Serratia marcescens 

produces serrawettin which C. elegans avoids [52]. In the case of acylated homoserine 

lactone autoinducers, both pathogenic and non-pathogenic Gram-negative strains have 

been reported to produce such molecules and the nematode can further associate the 

specific autoinducer with the experience it has (deleterious or not after ingestion) and 

learn to avoid the specific pathogen in the future [53]. The C. elegans single Toll 

receptor gene tol-1 was initially reported to aid recognition and avoidance of S. 

marcescens [49]. tol-1 loss-of-function mutants were defective in distinguishing wild-

type S. marcescens and mutant S. marcescens incapable of producing serrawettin but 

could not differentiate non-pathogenic E. coli spiked with or without serrawettin, 

suggesting that the nematode Toll receptor can probably function to integrate both 

attractive and repulsive stimuli from S. marcescens [52]. 

 

This avoidance behaviour exhibited by C. elegans is also being exploited by pathogenic 

bacteria. Bacillus nematocida produces food-like volatile organic compounds which 

attract nematodes even more than its usual food source but once ingested, B. 

nematocidal secretes toxic proteases to kill the nematode [54]. 
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1.3.4.2 Physical mechanisms  

 

The C. elegans epidermis (also known as the hypodermis) encapsulates the nematode 

and secretes an external collagenous cuticle which is relatively impermeable and 

prevents access to nematode cells and tissues [55]. The cuticle thus acts as the 

primary barrier against any pathogen it encounters and access beyond the cuticle can 

only be gained through the mouth, anus, vulva or sensory openings. The natural 

nematocidal fungal pathogen Drechmeria coniospora is able to bypass this primary 

barrier by attaching to the cuticle and forming penetration tubes which pierce through 

and transverse the epidermis to colonize the whole nematode [56].  

 

Pathogens entering via the mouth of the nematode next encounter the grinder of the 

pharynx which consists of contracting muscles and mechanically disrupts microbes as 

they pass to the intestine. Grinder-defective C. elegans mutants have been reported to 

be more susceptible to Pseudomonas aeruginosa [57,58]. 

 

1.3.4.3 Innate immune signalling  

 

In C. elegans, several innate immune signalling pathways, at least in part resembling 

that of higher organisms, may function as host defence mechanisms against bacterial 

pathogens. Three of them which are involved during infection with several pathogens 

are represented in Figure 3.  

 

One of the two well-studied transforming growth factor beta-like pathways in C. 

elegans, the Sma pathway, is involved in host defences against Serratia marcescens 

and P. aeruginosa. Mutants defective in dbl-1, the ligand of the Sma pathway, were 

highly susceptible to both pathogens. Several genes found highly induced after 

exposure to S. marcescens were also under the regulation of the dbl-1 ligand [59]. 

 

An important signalling cascade downstream of Toll-like receptors in insects and 

mammals involves the p38 mitogen-activated protein kinase (MAPK) module. Even 

though C. elegans lacks Toll receptors, a conserved p38 MAPK cascade, involving 

NSY-1, SEK-1 and PMK-1, was found to be functional in the nematode for host 

defences against multiple bacterial pathogens [57]. Activation signals and 

transcriptional outputs of this conserved p38 MAPK cascade are still not well 
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characterized but possible mechanisms are being revealed in recent and ongoing 

studies. During Enterococcus faecalis infection, studies suggested that cell-permeable 

reactive oxygen species (ROS) produced by the infected host may activate the p38  

 

 
Figure 3. Innate immune signalling pathways in C. elegans [28]. 

 

MAPK signalling pathway, resulting in phosphorylation and nuclear localization of 

transcription factor SKN-1. SKN-1 activates the transcription of genes with 

detoxification functions to neutralize host ROS produced during E. faecalis infection 

[60]. Another study reported that the pore-forming toxin Cry5B produced by Bacillus 

thuringiensis initiates the unfolded protein response in the endoplasmic reticulum to 

maintain cellular homeostasis during infection and this process requires the upstream 

activation of the p38 MAPK cascade [61]. 

 

The DAF-2 insulin/IGF-1 signalling pathway depicted on the rightmost of Figure 3 will 

be further described and discussed in Paper I [62]. 
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Mammalian innate immunity is often thought to be non-specific to different pathogens 

as it is constitutively present and ready to be mobilized upon infection. C. elegans relies 

solely on its innate immune system to execute host defence mechanisms. Despite being 

lower in complexity and lacking classical features of mammalian innate immunity, it 

has been shown in targeted and genome-wide studies that upon infection of C. 

elegans by different pathogens, both pathogen-specific responses and responses 

shared by several pathogens can be triggered and induced [63]. This indicates that the 

nematode is highly capable of recognizing and responding to different pathogens 

despite its simplicity.   

 

1.3.4.4 Infection resistance or tolerance 

 

Host defence strategies are classically understood to detect and eliminate pathogenic 

microorganisms per se. However, it is important to distinguish between two distinct 

and relatively independent mechanisms, resistance and tolerance, because accurately 

defining and describing each host-pathogen interaction in these contexts may 

influence our perception of understanding how both sides interact and further impact 

on the progression of therapeutic and prophylactic interventions. Resistance strategies 

reduce pathogen burden during infection by neutralizing, disabling or elimination of 

invading microbes while tolerance strategies do not necessarily affect pathogen 

burden but rather limit the effect of direct host damage inflicted by the pathogen or 

collateral host damage caused by immune responses [64].  

 

The summation of both resistance and tolerance would ultimately define the 

defensive capacity of the host. Resistance mechanisms have been well described but 

knowledge about tolerance strategies is still limited in the field. From an evolutionary 

perspective, resistance strategies are highly likely to place strong selective pressures 

on the pathogen, driving the latter to evolve and subvert host defences – we have 

already observed such dynamics with antibiotic-resistant pathogens. Conversely, host 

tolerance places less selective pressure on pathogens and drugs designed to increase 

host tolerance would less likely be subverted by the pathogen [65]. 

 

A striking example of host tolerance studied in C. elegans was demonstrated by 

Mohri-Shiomi and Garsin where they infected nematode strains carrying fluorescent 

aggregation-prone polyglutamine proteins [66]. The amount of polyglutamine protein 
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aggregation correlates with protein quality which is easily perturbed by changes in 

protein synthesis, trafficking or degradation [67] and accumulating such aggregates is 

detrimental to the host. During Entercoccus faecalis infection, ROS produced by host 

defence mechanisms cause protein aggregation in the intestine and reduction or 

prevention of this aggregation via expression of genes modulated by the DAF-2 

insulin signalling pathway and heat-shock factor 1 (HSF-1) appears to be 

advantageous to the infected host [66,68]. HSF-1 is a transcription factor regulating 

several heat shock proteins which can act as chaperones binding to and possibly 

clearing unfolded or damaged proteins [69]. The observations made during E. faecalis 

infection could be mediated independently by either DAF-2 signalling or HSF-1, or 

as a combinatorial effort since DAF-2 signalling can act upon HSF-1 as described in 

the context of aging by Chiang et al. [70].  
 

In Paper I [62], we attempt to discuss whether the observations made pertain to 

infection resistance or tolerance. Much further work is warranted to have a better 

insight into this. We are also cautious in Paper II not to use such terminology without 

sufficient evidence.  

 

1.3.5 Bacterial virulence mechanisms  
 

The C. elegans host model has been previously used to identify novel bacterial 

virulence factors and importantly, bacterial mutants exhibiting reduced virulence in 

nematodes also displayed attenuated virulence in murine models [25,71,72]. Bacterial 

pathogenesis in the nematode can occur via several mechanisms and a few selected 

ones will be briefly discussed in this section.  

 

1.3.5.1 Cuticle infection  

 

Yersinia pestis, the causative agent of bubonic plague, produces a polysaccharide-rich 

biofilm that attaches to the cuticle of C. elegans, especially on the head, and blocks the 

pharyngeal opening. Feeding is hence inhibited, thereby “starving” and killing the 

nematodes. This is similar to how Y. pestis in nature blocks feeding of its vector, the 

flea, in order to transmit to mammals [73] . 
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1.3.5.2 Intestinal infection  

 

A majority of the human bacterial pathogens colonizes and accumulates in the intestinal 

lumen as individual bacteria, ultimately leading to the death of infected C. elegans. 

Numerous bacterial mutants exhibiting reduced intestinal colonization and thus reduced 

virulence have been uncovered but the exact role of how these virulence factors 

mediate intestinal colonization and what modes of pathogenesis they elicit to cause 

nematode death remains to be largely elucidated [25].  

 

Alegado and Tan found that during infection by Salmonella enterica serovar 

Typhimurium (S. Typhimurium), expression of two antimicrobial peptides are induced 

to limit bacterial proliferation and several virulence factors such as PhoP and the 

virulence plasmid are responsible to mediate resistance to the antimicrobial peptides, 

enabling continuous persistence in the intestinal lumen [74]. Still, how this persistence 

elicits death in the host is not understood.  

 

We attempt to show in Paper III [43] how a virulence-associated factor from S. 

Typhimurium manifests pathogenesis via inducing a host oxidative response that is too 

overwhelming and detrimental for the infected nematode [43]. 

 

Pathogen burden remain relatively high and killing rates remain consistent even in C 

elegans infected with S. Typhimurium for a few hours and thereafter transferred to non-

pathogenic E. coli [75]. But this does not occur during Staphylococcus aureus and 

Burkholderia pseudomallei infection [76,77], suggesting that certain bacterial 

pathogens like S. Typhimurium can probably adhere to specific receptors in the 

intestine in order to persist and colonize to a high degree. It would be interesting to 

further elucidate such interactions in the nematode system.   

 

1.3.5.3 Toxin-mediated killing 

 

Bacillus thuringiensis produces spores associated with pore-forming crystal toxins (Cry 

and Cyt) [78]. One of the nematocidal toxins widely characterized, Cry5B, binds to 

glycolipids on intestinal epithelial cells [79,80,81]. Subsequently, membrane pores are 

formed followed by cellular disintegration [82]. 
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When P. aeruginosa is cultured on specific media, several strain-dependent toxins 

capable of killing C. elegans are produced. P. aeruginosa strain PA14 produces small 

secondary metabolites of the phenazine pyocyanin class of toxins which generate ROS 

harmful to the nematodes [26] while P. aeruginosa strain PA01 produces volatile 

hydrogen cyanide to rapidly paralyze and kill nematodes [83,84]. 

Gram-positive bacteria such as Streptococci spp. [85,86,87] and anaerobically-grown 

Enterococcus faecium [88] are nematocidal via the production of hydrogen peroxide 

(H2O2). The ability to produce H2O2 and the amount of H2O2 produced was tightly 

correlated to the killing capacity of each specific bacteria strain. H2O2 production has 

been linked to several aspects of pneumococcal diseases including bacterial 

colonization, direct oxidative damage to brain and epithelial cells and growth inhibition 

of other competing organisms in the specific niche. Given that there are conserved 

programmed cell death pathways in both C. elegans and mammals, the nematode 

model could be useful to further elucidate the virulence mechanisms of human 

pneumococcal strains [85]. 
 

1.3.5.4 Suppression of host defence mechanisms  

 

Bacterial pathogens are also capable of evolving mechanisms to evade and overcome 

host defence mechanisms. This form of active virulence may involve inhibiting host 

defence signalling pathways or restricting the expression of antimicrobial effectors. The 

C. elegans platform can facilitate such studies as a large repertoire of molecular and 

cellular approaches have been developed to quantify and measure the relative 

effectiveness of host infection responses. One example was the finding that P. 

aeruginosa infection results in the suppression of a subset of DAF-16-regulated 

immune genes in the infected nematode. These observations are tightly linked to the 

fact that during P. aeruginosa infection, there is upregulation of INS-7 an insulin-like 

peptide agonist for the DAF-2 insulin/IGF-1 signalling pathway. This study also 

showed that the immune downregulation requires P. aeruginosa factors such as the 

two-component response regulator GacA and the quorum-sensing regulators LasR and 

RhlR [89]. 
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1.4 BACTERIAL PATHOGENS AS TOOLS TO PROBE THE SYSTEM 
 

1.4.1 Burkholderia pseudomallei and Burkholderia thailandensis 
 

The Gram-negative bacillus Burkholderia pseudomallei is an environmental saprophyte 

commonly isolated from wet soils and stagnant waters and is the causative agent of 

melioidosis in both humans and animals [90,91]. The bacterium can be acquired by 

inhalation, ingestion or skin penetration of contaminated soil or ground water. Person-

to-person transmission is very rare. [90].  

 

Melioidosis is endemic to a number of tropical regions (Figure 4) and disease incidence 

is particularly high in Southeast Asia, India and northern Australia [92]. The disease is 

particularly problematic in Thailand where it accounts for up to 20% of community-

acquired septicemias and causes a significant number of deaths despite vigorous 

antibiotic treatments [90]. Melioidosis is dubbed as the “Great Mimicker” as it presents 

a wide spectrum of clinical outcomes ranging from pneumonia, skin abscesses in 

internal organs and soft tissues to highly fatal septic shock and is even often  

 

 
Figure 4. Global distribution of melioidosis [92]. 

 

misdiagnosed as tuberculosis and other ailments [90,93]. Asymptomatic infections have 

also been recorded but many of them progress to acute melioidosis much later on. The 

disease has been shown to develop in human patients up to 62 years after exposure, 

indicating a remarkable capability of the bacterium to remain latent in the host [94]. 

Treatment of the disease with antibiotics is usually long and difficult because B. 
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pseudomallei is intrinsically resistant to a diverse group of antibiotics and cases of 

relapse are common even after initial successful treatments [95]. Currently, there is still  

no available vaccine. 

 

B. pseudomallei has also been implicated as a bioterrorism threat and classified by the 

Centers for Disease Control and Prevention as a category B biological agent [96].. 

Experimental manipulation of B. pseudomallei requires Biosafety Level 3 containment 

but unfortunately, many endemic regions do not have adequate facilities for research 

[97]. Due to the importance of melioidosis and the fact that B. pseudomallei is not well 

characterized, there has been an increased interest in the identification and 

characterization of bacterial virulence determinants and the molecular basis of its 

interaction with the host. 

 

B. thailandensis [98] is considered to supplement as a tractable model system for B. 

pseudomallei and by contrast, can be easily handled under Biosafety Level 1 conditions 

as it is considered avirulent and very rarely pathogenic to humans and animals 

[90,99,100]. It has been isolated from similar environments and regions as B. 

pseudomallei and prior to its classification, was often mistaken for B. pseudomallei, 

owing to similarities between their biochemical, morphological and antigenic 

profiles. 

 

In spite of a smaller genome size, the two chromosomes of B. thailandensis exhibit 

high degree of synteny with B. pseudomallei [101] and appear to share an extensive 

repertoire of genes involved in core metabolism, accessory pathways, structure-based 

superfamilies and even bacterial virulence factors including lipopolysaccharide 

(LPS), adhesion factors, virulence-associated Type II and III secretion systems and 

complex quorum-sensing systems [101,102,103]. Similar to B. pseudomallei, B. 

thailandensis can survive and replicate intracellularly within eukaryotic cell lines and 

polymerize host cell actin to facilitate intra- and intercellular spread [104,105,106].  

 

We and others have shown that C. elegans is susceptible to both B. thailandensis and 

B. pseudomallei [62,71,107]. More importantly, during a screen of B. pseudomallei 

mutants created via transposon insertion [108], mutants attenuated in their ability to 

kill C. elegans were also found to exhibit delayed and significantly reduced virulence 

in BALB/c mice [71], validating the use and relevance of C. elegans as an alternative 
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host for these pathogens. Hence given i) the high degree of genomic similarity 

between B. thailandensis and B. pseudomallei and ii) the synonymous infectivity of 

C. elegans by both pathogens, it raises the possibility that B. thailandensis can be 

used as a tool to study selected aspects of B. pseudomallei biology in the nematode 

model. 

 

Clinical and experimental observations suggest that host factors play important roles in 

determining the outcome of a B. pseudomallei infection – a significant proportion of 

infected individuals exhibit no apparent symptom or mild illness; infections by 

identical B. pseudomallei strains have also been shown to elicit distinct survival 

outcomes in different strains of mice [109]. Still, not much knowledge has been 

generated from this perspective.  

 

1.4.2 Salmonella enterica serovar Typhimurium 
 

Salmonella enterica serovar Typhimurium (S. Typhimurium) belongs to the bacterial 

genus Salmonellae, a group of Gram-negative bacilli capable of causing enteric disease 

in a wide range of different organisms ranging from humans and mice to nematodes, 

amoebae and plants [75,110,111,112]. S. enterica serovars, such as S. enterica serovar 

Typhi (S. Typhi) and S. Typhimurium, have the ability to infect mammals and be 

transmitted by the feco-oral route via contaminated food and water and ultimately result 

in salmonellosis ranging from mild gastroenteritis to life-threatening systemic 

infections including typhoid fever [113]. On a global scale, there is an annual 

estimation of 3 billion human infections and typhoid fever makes up 22 million of these 

cases, and is responsible for nearly 0.2 million deaths annually [114]. 

 

S. Typhi is the aetiologic agent responsible for invasive typhoid fever which is 

characterized by high fever, great discomfort and abdominal pain [113]. It has no 

animal reservoir and is transmitted from human to human. The strict adaptation to the 

human host limits the studying of S. Typhi to NHPs such as chimpanzees. S. Typhi is 

not virulent to lower primates and non-primate vertebrates [115]. On the other hand, S. 

Typhimurium infection of mice is commonly used as a model to study the 

pathogenesis of S. Typhi infection in humans as S. Typhimurium causes a systemic 

disease in mice, much resembling human typhoid fever [116,117]. However, S. 

Typhimurium causes only gastroenteritis in humans.  



 

19 
 

During invasive salmonellosis in humans and mice, S. enterica invades the Peyer’s 

patches of the small intestine via M cells [118,119]. M cells are specialized epithelial 

cells which transcytose Salmonella antigens to phagocytic immune cells, initiating 

inflammation. S. enterica also acts as a facultative intracellular pathogen and replicates 

in macrophages and dendritic cells [120,121,122] for subsequent dissemination to the 

mesenteric lymph nodes and eventually to the liver and spleen [123]. By persisting in 

the mesenteric lymph nodes, bone marrow and gall bladder, S. enterica infects 

chronically and may occasionally reseed via the bile ducts or lymph nodes (Figure 5). 

 

 
Figure 5. Pathogenesis of S. Typhi in humans or S. Typhimurium in mice [124] 

 

This pathogenesis relies on several sets of virulence genes, many of which are 

contained on horizontally acquired genetic inserts called Salmonella pathogenicity 

islands or SPIs [125]. SPI1 and SPI2 code for two separate type III secretion systems 

(T3SS) essential for virulence in mammals. The T3SS on SPI1 is needed for invasion 

of the intestinal barrier and initiation of enteropathogenesis [126]. 13 effectors secreted 

via the SPI1 T3SS have been identified – three of them, SipB, SipC and SipD are 

postulated to form a complex in the host cell membrane to facilitate translocation of the 

other effectors into the host cell cytoplasm. These effectors rearrange the actin 

cytoskeleton, causing membrane ruffling and internalization of the bacteria into 

epithelial cells [127]. Following invasion into host cells, S. enterica resides in acidified 
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membrane-bound Salmonella-containing vacuoles (SCV) and effector proteins secreted 

by the SPI2 T3SS manipulate vesicular trafficking and delay apoptosis, allowing the 

bacteria to replicate intracellularly in the SCV [128]. A spv gene cluster carried on the 

virulence plasmid of S. enterica has also been shown to be essential in the systemic 

phase of the infection and promotes replication in liver and spleen macrophages [121]. 

Besides these, S. enterica also contains defence mechanisms against antimicrobial host 

strategies – for example, detoxification of harmful substances such as ROS and reactive 

nitrogen species, repair of damage caused by these substances and manipulation of host 

responses to facilitate intracellular survival and replication.  

 

Importantly, S. Typhimurium uses many of its virulence factors, originally defined in 

murine infection models and thought to be specifically targeted towards mammalian 

hosts, to infect C. elegans as well [72,75,111]. Using the nematode model system, it has 

been observed that S. Typhimurium intestinal colonization results in an accelerated 

level of ced-3- and ced-4-mediated cell death in the gonad [129]. Consequently, ced-3 

and ced-4 mutants were killed significantly faster by S. Typhimurium. But how 

germline cell death protects the host from the pathogen is still not clear. Another study 

shows that autophagy, an evolutionarily conserved lysosomal degradation pathway, 

plays an important role during S. Typhimurium infection – when autophagic genes 

were knocked down, the few bacteria which can invade the intestinal epithelial cells but 

are usually efficiently targeted to the lysosomal pathway, could now establish an 

intracellular replicative niche leading to death [130]. However, the mechanisms by 

which S. Typhimurium elicits death in C. elegans have not been fully clarified nor well 

understood. 
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2 SCOPE OF THESIS 
 

This thesis aims to characterize the mechanisms by which the model host C. elegans 

protects itself from invading bacterial pathogens and by which the pathogen mounts an 

in vivo infection.  

 

2.1 SPECIFIC AIMS 
 
Paper I:  

We identified the specific route used by B. thailandensis during infection of C. elegans 

and thereafter, used the RNAi feeding library to conduct a targeted screen of host genes 

expressed along this route. We verified that this reverse genetic approach was capable 

of identifying C. elegans genes important in modulating host infection outcomes. Using 

in silico analyses, genetic and biochemical methods, we also further delineate how a 

positive hit from the screen modulates host infection outcomes.  

 

Paper II:   

We performed a forward genetic screen to identify host genes relevant to melioidosis 

and identified a new allele of a known gap junction gene which has previously never 

been implicated during host-pathogen interactions. We attempt to use our genetic 

findings and observations to postulate how such junctions may play an important role 

in influencing disease susceptibility in higher eukaryotes. 

 

Paper III:   

S. Typhimurium infection of C. elegans does not seem to involve the traditional 

invasive and intracellular phenotype of the pathogen. We sought to clarify the 

mechanisms by which S. Typhimurium elicits death in the nematode and delineate the 

pathogenic factors which may be involved.  

 

Paper IV:   

In combination with other infection models, we investigated the combinatorial effects 

of two small-molecular virulence inhibitors. Using C. elegans as a whole organism 

model, we attempt to use some preliminary findings to suggest that the nematode can 

be useful in elucidating mechanistic activities of such inhibitors.  
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3 EXPERIMENTAL PROCEDURES 
 

3.1 SURVIVAL ASSAYS 
 

Unless specified otherwise, pathogenic strains or E. coli strain OP50 were grown 

overnight in LB at 37°C and lawns were prepared by spreading overnight culture on 

modified NGM agar. Stage-synchronized nematodes were added to each lawn and 

infected as per described [42]. Nematodes were placed down on bare agar before 

transferring to pathogen-containing lawns to minimize the transfer of E. coli. No 

visible E. coli growth on pathogen-containing lawns was observed at locations where 

nematodes were added nor was there any crowding of nematodes at such locations. 

To further test for E. coli contamination, nematodes were removed 24 h post 

infection; pathogen-containing lawns were harvested, diluted appropriately in M9 

buffer [23] and tested for E. coli by plating on neat LB agar and LB agar 

supplemented with an appropriate antibiotic for the specific pathogen. No 

contamination on pathogen-containing lawns had been observed. Nematode survival 

was scored at 24°C and nematodes were considered dead upon failure to respond to 

gentle touch by a platinum wire. Each survival curve is representative of three 

independent experiments, each with three plates per strain. Survival curves were 

analysed using the PRISM (version 5.0) software and Kaplan-Meier survival curves 

with p values < 0.05 were considered significantly different from the control.  

 

For experiments involving chemicals or antibiotics, modified NGM agar was 

impregnated with each compound to ensure maximum exposure to the nematodes.  

 

3.1.1 Liquid infection assays  
 

Pathogenic strains or E. coli strain OP50 were grown overnight in LB at 37oC. The 

overnight culture was washed and resuspended in S Basal liquid media [23] and 800 µl 

of the suspension was aliquoted into each well of a 48-well flat-bottomed plate. When 

necessary, 190 U of catalase was added into each well and mixed thoroughly. L4-

staged N2 nematodes were transferred to each well and incubated at 24°C for 24 h. 

Subsequently, nematodes were examined with a light microscope and considered dead 

when neither body twitching nor pharyngeal pumping could be observed. Nematodes 
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were also transferred to bare agar to verify the phenotype. Results are representative of 

three independent assays, each with triplicates. 

 

3.2 IMMUNOFLUORESCENCE ASSAYS 
 

Infected nematodes were prepared for immunohistochemical staining using a freeze-

crack method [131] and fixed using 50% methanol and 50% acetone. After washing, 

slides were blocked in 5% bovine serum albumin in antibody buffer, followed by 1 h 

primary antibody incubations. Secondary antibody incubations were performed at a 

dilution of 1:500 for 4 h. All incubations were performed at 24°C. Slides were mounted 

in anti-photobleaching media with 4',6-diamidino-2-phenylindole (DAPI).  

 

For live imaging, fluorescent pathogenic or E. coli lawns were prepared by spreading 

overnight LB culture on modified NGM agar. Nematodes were added to these lawns 

and infected as described in 3.1. At each time point, live nematodes were harvested 

and mounted for microscopy in phosphate buffered saline (PBS) with 25 mM sodium 

azide (NaN3). 

 

All slides were visualized on a LEICA DMRE microscope and images were analyzed 

by GNU Image Manipulation Program (version 2.6.3). Images are representative of at 

least 20 nematodes from 3 independent assays. 

 

3.3 RNA INTERFERENCE ASSAYS  
 

Unless specified otherwise, RNAi assays were carried out at 20°C by feeding 

nematodes with parental E. coli HT115 (DE3) strain or E. coli HT115 clones 

expressing gene-specific dsRNA [39]. Each clone identity was verified by direct 

sequencing using specific oligonucleotides targeting the L4440 vector [132]. RNAi 

assays were performed by growing each clone for 8 h in LB supplemented with 

ampicillin and seeding on isopropyl β-D-1-thiogalactopyranoside (IPTG)-containing 

modified NGM agar. Nematode embryos, generated by hypochlorite treatment, were 

propagated on these seeded plates until the L4 stage. Nematodes were subsequently 

transferred to pathogen-containing lawns (Figure 6).   
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For experiments involving sterile nematodes, embryos were exposed to cdc-25.1 

dsRNA at late embryogenesis till day 1 adult stage, before transferring them to 

pathogen-containing lawns. Under such conditions, cdc-25.1 RNAi resulted in 

nematodes with an Emb phenotype [133,134]. 

 
Figure 6. Schematic diagram of RNAi coupled to infection assays. 

 

3.3.1 Tissue-specific RNA interference assays 

 

 
 

Figure 7. Principles of tissue-specific RNAi [135]. 

 

rde-1 encodes a member of the Argonaute protein family, whose expression is 

necessary to initiate RNAi in a cell-autonomous manner [136]. Using rde-1 (ne219) 

mutants, tissue-specific RNAi was achieved by expressing in these mutants the wild-

type rde-1 transgene under the control of tissue-specific promoters: the intestine-

specific promoter pnhx-2 [137] or the hypodermis-specific promoter plin-26 [40]. 
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When these nematodes were fed E. coli HT115 clones expressing gene-specific 

dsRNA, they are RNAi-proficient only in the tissue where wild-type rde-1 was 

expressed (Figure 7). Tissue specificity of RNAi in these two strains was confirmed 

by feeding them with unc-22 dsRNA. As unc-22 expression is restricted to the 

muscles [138], neither strain showed the characteristic unc-22 twitching phenotype as 

seen in wild-type nematodes. Control RNAi clones relevant to the downstream assay 

were also included to further confirm the tissue specificity of gene knockdown.   

 
3.4 INTESTINAL BACTERIAL LOADS 
 

Nematodes were infected as described in Section 3.1. At 24 h post infection, infected 

nematodes were harvested and set down on bare agar before transferring to M9 buffer 

to minimize the contamination of uningested bacteria. Nematodes were washed thrice 

with M9 buffer, followed by 1 h incubation in M9 buffer containing trypsin-EDTA to 

remove bacteria present on the exterior of the nematode. Nematodes were then 

washed thrice with M9 buffer alone to remove trypsin-EDTA, and subsequently lysed 

by vortexing with silicon-carbide sharp particles and 0.2% sodium dodecyl sulfate. 

Lysates were diluted appropriately in M9 buffer and plated on LB agar supplemented 

with the appropriate antibiotic to select for the specific pathogenic strain. After 1 to 2 

days of incubation at 37°C, amount of live bacteria per nematode was determined by 

colony-forming units (cfu) counts. At least 25 nematodes were harvested per set and 

experiments were performed in triplicates. 

 

3.5 DETECTION OF REACTIVE OXYGEN SPECIES 
 

2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) is used to visualize 

intracellular ROS in nematodes. 2 mM stock aliquots of H2DCFDA were prepared in 

dimethyl sulfoxide and stored in the dark at -80oC. Nematodes were infected as 

described in Section 3.1. At each time point, infected nematodes were harvested into 

tubes and washed twice with M9 buffer. Nematodes were subsequently incubated 

with 25 µM H2DCFDA in M9 buffer, in the dark for 30 min in a 20oC water bath. 

After staining, nematodes were washed thrice with M9 buffer and mounted for 

microscopy in PBS with NaN3 and visualized as described in Section 3.2.  
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4 RESULTS AND DISCUSSIONS 
 

4.1 PAPER I 
 

At the beginning, we set out to perform a reverse genetic screen in C. elegans to 

identify novel factors modulating host infection outcomes to B. thailandensis. There are 

16 256 E. coli clones in the Ahringer RNAi feeding library [139] and we chose to adopt 

a targeted approach and screen for genes expressed in the intestine where colonization 

of B. thailandensis was observed (Figure 1). We discovered that RNAi knockdown of 

lin-7, coding for a cell junction protein, resulted in enhanced C. elegans survival after 

infection with B. thailandensis (Figure 2). This study highlighted the advantages of an 

RNAi screen over classical mutagenesis approaches. We would not have found lin-7 as 

a potential candidate if we have chosen the latter approach because the vulvaless lin-7 

hermaphrodite would not have outlived the wild-type nematode during infection due to 

matricidal hatching [140]. Using RNAi has allowed us to partially reduce lin-7’s 

activity down to 40% (Sem et al., unpublished) before pathogen exposure and without 

any confounding influence from vulval developmental defects. This extent of gene 

silencing was sufficient to generate an infection phenotype with B. thailandensis 

(Figure 2).  

 

We verified the positive hit from the RNAi screen with various loss-of-function genetic 

mutants of lin-7 and similar infection phenotypes were also observed when testing loss-

of-function mutations in lin-2 and lin-10. LIN-7 physically associates with LIN-2 and 

LIN-10 to form a tripartite complex regulating the function of signalling receptors in 

both mammals and nematodes [141,142,143,144]. Potential confounding factors 

including aberrant lifespan and the matricidal nature of lin-7 hermaphrodites were also 

investigated and they did not deviate from the initial observations. We also observed 

that the pathogen burden in lin-7 mutants did not differ significantly much from that in 

the wild-type (Figure 2).   

 

Previous studies have shown that the LIN-2/7/10 complex modulates the localization 

and activity of LET-23 receptor tyrosine kinase (RTK), a regulator of vulval 

development in C. elegans vulval epithelial cells [141,142]. This is mediated by LIN-

7’s PDZ domain binding to the C-terminus of LET-23. Considering these previous 
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observations, we carried out in silico predictions and highlighted DAF-2, the 

insulin/IGF-1 RTK as a potential signalling receptor which could be regulated by the 

LIN-2/7/10 complex (Figure 3). Supporting this, yeast two-hybrid assays confirmed 

that the LIN-2 PDZ domain indeed physically binds to the DAF-2 C-terminus. 

Subsequently, we used a combination of genetic mutations, RNAi knockdowns and 

nuclear localization/egression kinetics to show that during infection, lin-7 may be 

acting upstream of daf-2 in the insulin/IGF-1 signalling pathway and that the 

infection phenotype exhibited by the lin-7 mutant is likely to be, at least in part, 

dependent on daf-16 and hsf-1 activity (Figures 4 and 5).  

 

Although our initial RNAi screen focused on genes expressed in the nematode 

intestine, we found that silencing lin-7 in the hypodermis, but not the intestine, was 

protective against infection (Figure 6). When previous studies expressed a LIN-

7::GFP full-length translational fusion protein in the lin-7 mutant, they did not detect 

any LIN-7 expression outside the intestine [142]. Despite this, they did not exclude 

the possibility that LIN-7 was also expressed outside the intestine in vivo as they were 

able to rescue the vulvaless phenotype of lin-7 mutants. This indicated that although 

LIN-7::GFP expression in these cells was not high enough to give detectable 

fluorescence, it was sufficient to provide cell-autonomous wild-type LIN-7 and hence 

LET-23 activity. Similarly, our tissue-specific RNAi experiments implicated the 

hypodermal expression of lin-7 as a key factor in influencing infection outcomes. 

Additionally, this suggests that even though the host-pathogen interface is primarily 

localized to the intestine, tissues outside the intestine (in this case, the hypodermis) 

clearly can respond and contribute to the overall infection outcome.  

 

The infection phenotype exhibited by lin-7 mutants probably encompasses, as least in 

part, increased levels of HSF-1 activity and decreased levels of DAF-16 activity in 

the hypodermis: Elevated HSF-1 levels could help counter infection-induced protein 

aggregation [66,68] and suggest a form of infection tolerance in these tissues; DAF-

16 regulates genes with antimicrobial activities such as lysozymes (lys-7), catalases 

(ctl-1, ctl-2), saposins (spp-1, spp-12) and superoxide dismutases (sod-3) [145] but it is 

also a double-edged sword and needs to be tightly regulated to prevent its activity from 

reaching an undesired threshold [146], and lin-7 mutants may have the ability to 

maintain advantageous levels of DAF-16 in the hypodermal tissues and this confers 

protection to the whole nematode.  
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Finally, consistent with the DAF-2 pathway being a defence mechanism against 

multiple pathogens [147], lin-7 mutants also exhibited enhanced survival upon 

infection by P. aeruginosa and S. Typhimurium. 

 

4.2 PAPER II 
 
We performed a forward genetic screen to identify host genes relevant to melioidosis 

and identified a mutant, pt1, which exhibited enhanced survival when exposed to 

multiple Burkholderia spp., but not to other Gram-negative pathogens such as P. 

aeruginosa and S. Typhimurium (Figures 2 and 3). In contrast to the infection 

phenotype exhibited by the lin-7 mutant in Paper I [62], the infection phenotype 

exhibited by pt1 is pathogen-specific and thus, as discussed in Section 1.3.4.3, provide 

further evidence that the nematode is highly capable of recognizing and responding to 

distinct pathogens. We show that pt1 has a loss-of-function mutation in the unc-7 

innexin, a member of an evolutionarily conserved class of gap junction genes (Figure 

4). In addition, our observations suggest that unc-7 and two of its interacting genes, 

another innexin unc-9 and a G protein alpha subunit goa-1 (Figure 5), may function in 

an interconnected pathway modulating host infection outcomes to Burkholderia spp.  

 

All these three genes are expressed in the neurons [148,149,150]. Interestingly, recent 

studies in C. elegans have started to unravel and delineate the molecular mechanisms 

by which the nervous system influences host defence mechanisms [151,152]. Given the 

complexity of the nervous and immune systems of mammals, the precise mechanisms 

by which the two systems influence each other remain understudied and the nematode 

thus provides an excellent platform to study these relationships. Our study also hints 

at a possible neuronal involvement in host defence.  

 

We postulate, in Figure S6, that B. thailandensis infection results in the dissemination 

of a tissue-damage signal in the neurons. When unc-7 or unc-9 is mutated, the rate of 

signal spread is reduced, resulting in enhanced survival. Conversely, goa-1 mutations 

seem to accelerate or increase neurotransmission of the signal, leading to accelerated death. 

This is reminiscence of the study by Kawli and Tan where they showed that during P. 

aeruginosa infection, loss of goa-1 resulted in increased exocytosis and neurotransmission 

of the insulin-like neuropeptide, INS-7, from dense core vesicles [152]. INS-7 subsequently 
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acted, in a non-cell-autonomous manner, to hyperactivate the DAF-2 insulin signalling 

pathway in the intestine, leading to nuclear egression of DAF-16 which when 

transcriptionally active, usually protects the nematode against P. aeruginosa. As a result, 

the nematode was hypersensitive to infection. goa-1 is likely to be involved in regulating 

neurotransmission of more than one molecule since the proposed unc-7/unc-9/goa-1 

pathway in this study is specific to Burkholderia spp. and is not involved in P. aeruginosa 

infection (Figure 3). In addition, goa-1 has been proposed as a negative regulator of 

calcium channels [149] while innexins are known to facilitate intercellular calcium ion flux 

[153,154], suggesting that the dissemination of the proposed tissue-damage signal may be 

correlated with the establishment of calcium ion gradients. 

 

4.3 PAPER III 
 

The mechanisms by which S. Typhimurium elicits death in C. elegans have not been 

fully clarified. Similar to previous studies, we observed that S. Typhimurium 

pathogenesis in the nematode did not involve the classical invasive or intracellular 

phenotype of the pathogen (Figure 2). Our results show that pathogenicity of S. 

Typhimurium in C. elegans involves, at least in part, a specific S. enterica-induced 

emergence of ROS in the nematode hypodermal tissues (Figure 3). The production of 

ROS appeared initially as independent foci and finally culminated together in the 

hypodermis, despite the lack of any detectable S. enterica at these sites. Exposure of 

nematodes to non-pathogenic E. coli and another nematocidal pathogen, B. 

thailandensis, did not result in such a pathogenesis (Figures 3 and 4). 

 

Production of ROS is one of the most primitive defense mechanisms against many 

invading microbes [155,156,157]. Even in higher organisms with more specific 

adaptive immune systems, lack of an efficient phagocytic NADPH oxidase-mediated 

oxidative burst sensitizes mammals to infections with Salmonella spp. [158]. C. 

elegans also has the ability to mount oxidative responses mediated by NADPH 

oxidases [68]. However, when we added ascorbic acid or catalase in our infection 

experiments, the emergence of ROS was abrogated and the treatments extended rather 

than shortened the lifespan of infected nematodes (Figure 5). All these strongly imply 

that the S. enterica-induced ROS mediated the infection pathogenesis. This resembles 

septic shock in mammals where overwhelming ROS production has been implicated 

as a crucial pathological effector [159]. 
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We could furthermore implicate the bacterial redox enzyme thioredoxin 1 (TrxA) [160] 

as being essential in evoking this pathogenic ROS emergence (Figures 6 and 7). As E. 

coli also possesses an identical TrxA, the virulence input by TrxA during S. 

Typhimurium infection relies on some Salmonella-specific factors. In mammalian cells, 

it is well-established that TrxA is co-induced with SPI2 and needed for the proper 

activity of SPI2 during infection [161]. Essentially, virulence of the trxA mutant is 

attenuated similarly to a SPI2 mutant in the murine infection model. However, in C. 

elegans, the same SPI2 mutant, deficient in a T3SS apparatus protein SsaV, did not 

exhibit the same infection phenotype as the trxA mutant (Figure 6) nor was there any 

additional effect when both trxA and ssaV were mutated (Sem et al., unpublished). This 

suggests that with regards to the pathogenesis in C. elegans, TrxA was functionally 

connected to other Salmonella-specific factor other than SPI2. 

 

We are critical to note that the  disseminated oxidative stress is not the only mechanism 

mediating pathogenesis in S. enterica-infected nematodes as the trxA mutant was still 

more virulent than non-pathogenic E. coli, abrogation of ROS rescued infected 

nematodes only by a certain extent and a LPS O-antigen-deficient mutant still evoked 

the ROS response despite being attenuated in virulence. Hence, we have identified a 

new mechanism by which pathogens, specifically S. enterica, mediate lethality in C. 

elegans and our findings also suggest a novel and unique aspect of bacterial TrxA. 

 
4.4 PAPER IV 
 

For the past two decades, S. enterica started to show multidrug resistance and now pose 

a serious public health problem [162], reiterating the need to search for compounds 

which, in contrast to antibiotics, interfere with the expression or functionality of 

bacterial virulence factors [163]. Somewhat similar to the discussion in Section 1.3.4.4, 

such compounds would perhaps place a lesser amount of selective pressure on the 

pathogen. As such, one of the strategies is to conduct high-throughput screens of 

chemical compounds. From such screens, it was shown previously that two small-

molecular virulence inhibitors, the salicylidene acylhydrazide INP0010 and the 

proton pump inhibitor omeprazole, reduced SPI2-mediated intracellular replication of 

S. Typhimurium in murine macrophage-like RAW264.7 cells without affecting in 

vitro bacterial growth or the viability of the host cells [161,164]. Here, we observed 

disparate effects when they were used in combination and applied to different infection 
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models including epithelial MDCK cells, macrophage-like RAW264.7 cells and C. 

elegans.  

 

When both INP0010 and omeprazole were applied during S. Typhimurium infection 

of macrophage-like cells, an antagonistic rather than synergistic combined effect on 

bacterial intracellular growth inhibition was observed (Figure 1). Interestingly, 

INP0010 and omeprazole did not reduce bacterial intracellular replication in epithelial 

cells, suggesting that these small-molecular virulence inhibitors may also have the 

ability to modulate host immune responses. Indeed, the antagonistic effect exerted by 

both compounds was correlated with similar patterns observed in levels of inducible 

nitric oxide synthase expression and nitric oxide (NO) production from compound-

treated and infected macrophage-like cells (Figure 2). Epithelial cells, on the other 

hand, do not produce detectable amounts of NO. 

 

When analyzing either ROS production in infected macrophage-like cells (Figure 3) or 

survival (non-paralysis) of infected C. elegans (Figure 6), we observed that omeprazole 

alone exerted a small enhancement of the parameters measured. This time, it acted in 

synergy with INP0010, which alone already significantly increased the ROS production 

and nematode survival to a larger extent. On the contrary to mammalian cells, we 

observed that the compounds reduced induction of ROS in infected nematodes (Sem et 

al., unpublished), in accordance to Paper III [43] where we showed that oxidative 

stress is detrimental to C. elegans during S. Typhimurium infection. Nevertheless, 

these observations strongly illustrated that when used in combination, INP0010 and 

omeprazole may converge upon certain oxidative pathways, giving rise to different 

effects in different host models used. Our results also suggest that these small 

molecules, initially selected for their abilities to inhibit specific virulence 

determinants of the pathogen, can also modulate host immune responses to enhance 

survival of the infected host.  

 

Hence, in addition to being amenable for high-throughput whole-animal assays for 

chemical compound screening, the C. elegans system is also useful to elucidate 

mechanistic activities of positive hits. In conjunction with Paper III [43], our 

observations also open up the possibility to use C. elegans to screen pharmaceutical 

regimens to control overwhelming ROS responses during sepsis. 
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5 EPILOGUE 
 

5.1 “IN THE BEGINNING WAS SYDNEY BRENNER” 
 

C. elegans has a low number of cells – hermaphrodites have 959 somatic cells while 

males have 1031. In contrast to Drosophila and higher animals, nematode cells also do 

not move much during development. Hence the fate of every cell in the adult nematode 

from the moment the egg hatched was easily mapped out during early work by John 

Sulston and H. Robert Horvitz [34,35]. C. elegans embryos are also transparent and this 

has allowed tracking of the fate of all 671 embryonic cells that are born, and the 113 

which die during early growth [36]. With the C. elegans cell lineage completed, 

researchers are now able to map a cell's predecessors and successors by tracing the tree.  

 

“In the beginning was the worm” - I quote here the title of the 2009 Genetics paper 

[165] authored by Sydney Brenner, who is the nematode’s main man and instrumental 

in establishing this novel experimental system in the 1970s; “In the beginning was 

Sydney Brenner” - all C. elegans research essentially originated from him and many 

scientists working with the model organism share a close connection, having either 

worked in his lab or in the lab of someone who previously worked with him and so 

forth. Using information adapted from the WormBase, I attempt to map out the “cell 

lineage” related to this thesis (Figure 8).  

 

5.2 C. ELEGANS I SVERIGE 
 

Sweden has played a significant role in paying homage to C. elegans and honouring the 

work done in this field. The award-winning scientists are highlighted with asterisks in 

Figure 8. 

 

In 2002, the Nobel Assembly at KI awarded the Nobel Prize in Physiology or Medicine 

jointly to Sydney Brenner, H. Robert Horvitz and John Sulston for their discoveries on 

the genetic regulation of organ development and programmed cell death [23,35,166]. 

They developed C. elegans as a novel model organism and identified key genes 

regulating these processes. Sydney Brenner in his Nobel lecture crowned C. elegans as 

the “4th winner of the Nobel Prize” that year, given that the nematode has been 



 

33 
 

"Nature's gift to Science". And hence the quote at the beginning of this thesis: “The 

Universe is one great kindergarten for man. Everything that exists has brought with it 

its own peculiar lesson.” – referring not just to C. elegans but also to the microbes.  

 

In 2006, KI awarded the Nobel Prize in Physiology or Medicine jointly to Andrew Fire 

and Craig Mello for their discoveries of RNAi in C. elegans using dsRNA [167]. 

Without their discoveries and further developments, one quarter of this thesis would not 

have been possible.  

 

In 2008, the Royal Swedish Academy of Sciences awarded the Nobel Prize in 

Chemistry jointly to Osamu Shimomura, Martin Chalfie and Roger Tsien for their 

discoveries and development of the green fluorescent protein. Martin Chalfie worked 

on GFP in C. elegans [168]. These discoveries have greatly accelerated microscopic 

studies in living organisms.  

 

 
 

Figure 8. Highlights of the thesis “cell lineage" 
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5.3 C. ELEGANS RNAI CLONE LOCATOR 
 

During my second year, I signed up for a “Practical programming for scientists” course 

#2215, organised by Sten Linnarsson, MBB. The course aimed to teach the C# 

programming language in a practical context for solving problems in research. I learnt 

how powerful and helpful programming can be but was not too ambitious to become an 

expert after this. Initially I was very excited and satisfied after completing some small 

application exercises on the .NET platform. But as we advanced further into the course 

and started working on the assignment, I found it an extremely taunting experience to 

learn this new language as well as meet the assignment deadline. Learning Swedish, on 

the other hand, seemed relatively much easier even though I’m still nowhere near 

proficient; similarly the rich repertoire of European languages embracing my stint at KI 

appeared less intimidating as well. At the end of the course, we each submitted a 

functional application relevant to our research or domain of expertise. Here in my 

thesis, I would like to share this little application which greatly facilitated my 

experiment planning and execution for the remaining of the PhD journey – certainly 

living up to the definition of “practical”.  I would like to thank the instructor and 

several programming friends for their technical advice and patient coaching.  

 

The problem: A total of 16 256 E. coli clones in the Ahringer RNAi feeding library 

[139] were stored as glycerol stocks in 384-well plates. A robotics platform has 

systematically arrayed these plates into independent copies of 96-well plates. Each time 

I need to retrieve a RNAi clone from the library, I had to manually search for its 

location in the 384-well library and translate it into a 96-well library location using 

different worksheets in an Excel file. Often this is tedious and highly prone to human 

error, especially when I may need to retrieve many clones at one time for screening 

purposes. Thus I would like to write an application which allows me to computationally 

retrieve these locations in the most accurate and efficient method. These RNAi clones 

are identified by their GenePairs Name and I would need to translate their 

corresponding GeneService Location (position in the original 384-well library, Figure 

9) to an output which is more useful to me (their new position in the 96-well library).    

 

The components of the GeneService Location (384-well library location) are broken 

down here, explaining how they are individually translated to the final 96-well library 
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plate and well location. For the gene lin-7, the 384-well library location is II-9I09 and 

the 96-well location is 0209021-E5. 

 

 
Figure 9. List of GeneService / 384-well library locations of each E. coli clone 

 

 
Figure 10. Each E. coli clone is systemically arrayed into 96-well plates. 

 

“II” corresponds to the chromosome on which the gene exists. The five autosomes (I, 

II, III, IV, V) and one X chromosome translate to the first two digits of the 96-well 

plate identity (01, 02, 03, 04, 05) and (10) respectively. The “9” after the 

chromosome number and hyphen, indicates the 9th arrayed 384-well plate in this 

chromosome series and thus gives the next two digits “09”. “02” is always, by 

default, the 5th and 6th digit in the final 96-well location output as the 96-well libraries 
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were gridded from the “2nd” 384-well library copy stamped by the robotics system. 

The final digit for the 96-well library identity is deciphered as I09 is the original 

position in the 384-well library and this is represented in the pink quadrant A or 1 

(Figure 10). Finally, I09 corresponds to E05 in the 96-well library quadrant 1.  

 

The application “C. elegans RNAi clone locator”: Using C# programming, this tedious 

process is now automated by various scripts and presented as an executable program 

shown in Figure 11. Instructions in chronological order are shown in red.  

 

 
Figure 11. The C. elegans RNAi clone locator. 

 

Bugs to fix when time allows: 

• While clearing all text boxes for a new search (“Click for new search”), the web 

browser should also return to an empty page to reduce confusion. 

• If a space was included behind the GenePair input (this occurs frequently while 

copying and pasting), the program was not able to find this value and would 

show “Not present in RNAi library!” 

• Hope to query a list of gene names and obtain as output a list of 96-well library 

locations.   

• Application depended on internet connection to find the GenePair; hope to 

integrate with the sequenced genome, enabling offline usage.  
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