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ABSTRACT

The aryl hydrocarbon receptor (AHR), a multifunctional protein and a key regulator of
drug metabolizing enzymes, belongs to the basic-helix-loop-helix (bHLH)/PAS (Per-
Arnt-Sim) super-family of transcription factors. The AHR responds to exogenous and
endogenous chemicals by induction or repression of a large number of genes involved
in many physiological processes and normal development.

The diverse spectrum of AHR activators from well-known planar hydrophobic
halogenated aromatic hydrocarbons (HAHSs) to chemical compounds whose structure
and physicochemical properties are very different from classical AHR ligands suggests
that the AHR has a tremendously promiscuous ligand binding pocket. Due to the
absence of a 3D structure of the ligand binding domain, promiscuity of the AHR has
remained elusive. However, increasing experimental evidence indicate that the non-
typical AHR ligands might activate the AHR signaling pathway indirectly by inhibiting
the metabolic turnover of an endogenous ligand of the AHR. Therefore, the objective of
this thesis was to characterize the inhibition of degradation of 6-formylindolo[3,2-
b]carbazole (FICZ), the suggested natural high affinity AHR ligand, as a mechanism
that could explain the earlier described agonistic properties of structurally very diverse
AHR activators. The obtained results show that FICZ is a potent AHR agonist in vitro
and in vivo which can distribute to the body through systemic circulation and induce
cytochrome P450 1A1 (CYP1AL) the prototypical AHR target in various organs. The
studies presented in this thesis demonstrate that if the metabolic clearance of FICZ is
compromised, femtomolar concentrations of FICZ are sufficient to activate AHR
signaling.

The AHR signaling pathway seems to be sensitive to oxidative stress but the redox
regulation of AHR has not been well characterized. Studies on dioxin and other reactive
oxygen species (ROS) producing agents have demonstrated that the AHR is a mediator
of oxidative stress. Indeed, AHR works in close concert with the master regulator of
antioxidant responses, nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Multiple
sources of ROS appear to be involved in modulating AHR signaling and probably via
three major systems, microsomes, mitochondria and NADPH oxidase enzymes
(NOXs). Furthermore, it has been observed that many environmental pollutants,
including metals and other NOX-activators increase the levels of the diffusible
molecule hydrogen peroxide (H20O,) and change the cellular redox status and thereby
interfere with cell growth kinetics and the endogenous functions of the AHR. To
increase the understanding of downstream adaptive responses to oxidative stress,
including up-regulation of antioxidant genes and modulation of AHR signaling was
another objective of this work. The findings demonstrate that superoxide anion (O, ) or
H.O, produced by NOXs can negatively and positively modulate the AHR signaling
pathway. The importance of cellular redox levels which can influence endogenously
activated AHR signaling broadens our earlier knowledge and explains why many
oxidants behave both as AHR antagonists and agonists.

In summary, this thesis extends the mechanistic understanding of the promiscuity of
AHR and provides important information with regard to the redox regulation of AHR
endogenous signaling.
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1 INTRODUCTION

The presence of aryl hydrocarbon receptor (AHR) homologues in early animals
(about 570 million years ago) suggests that this protein family has ancient
evolutionary origins (Peterson and Butterfield, 2005). The AHR was first identified in
1976 by Allan Poland, a physician who was interested in the etiology of chloracne
among workers in a factory producing 2,4,5-trichlorophenol (Poland et al., 1976). The
most toxic man-made anthropogenic compound, dioxin, was documented by German
chemists as early as 1827 (reviewed in White and Birnbaum, 2009). The focus of
research was aimed at identifying the biochemistry of AHR in 1980s. The ligand
binding and DNA binding domains of the receptor were the most important findings
during this period. In the early 1990s, the aryl hydrocarbon receptor nuclear
translocator (ARNT), the nuclear partner of AHR, was identified. The crucial roles of
AHR in physiology and biology were discovered by using knockout animals in the
beginning of the 21th century (Gasiewicz and Henry, 2012). From current findings in
the field of the AHR, it has become clear that AHR is more than a xenobiotic-
interacting protein. The AHR turns out to be an important player in many
physiological processes including cell cycle regulation, tumor suppression and
immunity (reviewed by Barouki et al., 2007; Fujii-Kuriyama and Kawajiri, 2010).

The AHR can be activated by multitude of chemicals (Denison et al., 2011) and most
of them do not fit into the ligand-binding pocket of the AHR. This thesis aimed at
studying this claimed promiscuity of the AHR and to explain the earlier described
agonistic and antagonistic properties of structurally very diverse molecules.

There is a paucity of data regarding how stress, in particular oxidative stress, influences
the endogenously activated AHR signaling. It has been suggested that the AHR is a
mediator of cellular stress responses (Matsumura, 2003; Matsumura and Vogel, 2006)
and works in close concert with the Kelch-like ECH-associated protein 1 (Keapl)-
nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response elements (ARE)
pathway. Another aim of this study was therefore to fill this knowledge gap by studying
the mechanisms of interaction between oxidants and ligand-mediated AHR signaling.
The most interesting directions of future studies on the function of the AHR protein
are expected to be:
e To learn the biology and physiology of the AHR in more detail
e To understand thoroughly the AHR endogenous signaling
e To know which human diseases may have AHR-dependent etiology and how
to develop therapeutic treatments based on AHR modes of action
e To fully understand the molecular mechanism(s) of toxicity of 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD) and other xenobiotics



2 BACKGROUND
2.1 STRUCTURE OF THE AHR PROTEIN

AHR along with its nuclear partner, ARNT, the aryl hydrocarbon receptor repressor
(AHRR), the single-minded protein (Sim), the hypoxia inducible factors and many
other proteins with roles for example in sensing oxygen, light and nitric oxide belong to
the basic-helix-loop-helix (bHLH)/PAS (Per-Arnt-Sim) super-family of transcription
factors (Gu et al., 2000; Mclntosh et al., 2010). Among PAS proteins, only the AHR is
a ligand-dependent transcription factor (Furness et al., 2007) and the AHR is not able to
bind to a xenobiotic or dioxin response element (XRE/DRE) in the promoter region of
target genes without activation by a ligand. The AHRR has been described as an
inducible protein that competes with the AHR for dimerization with ARNT for binding
to DNA (Mimura et al., 1999). The AHRR binding to XRE/DRE has also been reported
to be independent from ARNT heterodimerization (Hahn et al., 2009).

As shown in figure 1, the N-terminal region of AHR comprises a bHLH domain
followed by PAS A and B motifs. The C-terminal region consists of a transactivation
domain (TAD) (Jain et al., 1994). AHR/ARNT heterodimerization, DNA binding and
recognition are mediated by the TAD domain (Reyes et al., 1992; Dolwick et al., 1993;
Swanson, 2002). A nuclear localization signal (NLS) and nuclear export signal (NES)
overlap with the DNA binding domain (lkuta et al., 1998). Another NES overlaps with
the PAS domain (Berg and Pongratz, 2001). Unmasking of NLS by the release of heat
shock protein (HSP90) is required for localization of AHR into the nucleus (lkuta et al.,
1998) and translocation of AHR is important for AHR mediated responses. Nuclear
export of AHR is also important for AHR proteasomal degradation (Pollenz et al.,
1999). Interaction with chaperones, ligand recognition and AHR/ARNT heterodimer
formation are mediated by the PAS domain. It consists of two regions of PAS A and B
with high sequence homology (Dolwick et al., 1993; Fukunaga and Hankinson, 1996;
Taylor and Zhulin, 1999; Gu et al., 2000). The TAD domain consists of three acidic,
glutamine-rich and prolin-serin-threonin sub-domains (Ma et al., 1995). Each sub-
domain has its own transactivation activity and all sub-domains show synergic
activities in combination (Whitelaw et al., 1994).An inhibitory domain (ID) between
the PAS-B domain and the TAD domain consisting of 81 residues was identified with
inhibitory effects on TAD domain in the absence of an agonist (Ma et al., 1995).

ID domain
bH LHl PAS domain : Transactivation domain
AHR  nNH2| § || B B B COOH

7
NLSNES NES Ligandbinding
DNAbinding HSP 90 binding
HSP 90 binding

Figure 1. Functional domains of the AHR. Figure representing basic regions for DNA
and ligand binding, dimerization and transactivation.
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2.2 FUNCTIONS OF THE AHR PROTEIN
2.2.1 Involvement in metabolism of endogenous and exogenous chemicals

The AHR is involved in up-regulating a large number of xenobiotic metabolizing
enzymes including phase | and Il metabolizing enzymes and phase Il transporters in
response to noxious chemicals and numerous endogenous molecules. The cytochrome
P450 monooxygenase 1 proteins (CYP1s), glutathione S-transferases (GSTs) and UDP-
glucuronosyltransferases (UGTs) are examples of AHR-dependent metabolizing
enzymes. One role of bio-transformation is to terminate the biological or toxic effects
of lipophilic chemicals by incorporating a functional groups such as -OH, -NH, -SH or
-COOH in the molecule to make them more water soluble (Parkinson, 1996). Another
role is to form biologically active products such as arachidonic acid metabolites
(prostaglandins). However, in some cases oxidative metabolism of xenobiotics by CYP
enzymes may lead to the formation of reactive intermediates and increase the toxicity
(reviewed by Shimada, 2006). Involvement of CYPs in both detoxification of
xenobiotics and formation of reactive intermediates that is associated with toxicity,
mutagenesis and carcinogenesis has been investigated in knockout animal models.
CYP1AL1 (-/-) knockout mice exposed daily to benzo[a]pyrene (BaP) were dying within
30 days, whereas CYP1AL (+/+) wild type mice didn’t exhibit any signs of toxicity.
BaP- DNA adducts were higher in knockout animals compare to wild type mice (Uno
et al., 2004). The toxicity of oral BaP in double-knockout mice for both CYP1ALl and
1B1 was also higher than in the other genotypes investigated and the authors concluded
that CYP1Al mediates detoxification of BaP by speeding up the metabolism and
excretion (Uno et al., 2006).

The most common reactions catalyzed by CYPs are insertion of one oxygen molecule
into the lipophilic substrate (reviewed by Hollenberg, 2002). The reaction can be
summarized as follows: 1) binding of substrate to the active site of enzyme 2) reduction
of prosthetic heme iron from ferric (Fe*®) to ferrous (Fe*?) 3) binding of oxygen to
ferrous molecule 4) transferring electron from NADPH via cytochrome P450 reductase
to ferrous-oxygen-substrate complex 5) formation of activated oxygen intermediate and
water 6) insertion of activated oxygen intermediate into the substrate to make an
oxygenated product. In this reaction, several steps including steps number one, three
and six are more susceptible for inhibition by CYPs inhibitors. In general, chemicals
that can inhibit the reactions before the formation of ferrous-oxygen-substrate complex
are reversible inhibitors and are simply divided into competitive, noncompetitive and
uncompetitive inhibitors. Those inhibitors which act after the formation of ferrous-
oxygen-substrate complex are either quasi-irreversible or irreversible inhibitors. The
type of inhibition of quasi-irreversible or irreversible inhibitors is dose-time-dependent
whilst reversible inhibitors only show dose-dependent inhibition manner (reviewed in
Hollenberg, 2002).

In phase Il of bio-transformation conjugation with glucuronic acid, sulfate, or acetic
acid is catalyzed by UDP-glucuronosyl transferases (UGTS), sulfotransferases (SULTS)
and N-acetyltransferases (NATS) respectively (Negishi et al., 2001; Wells et al., 2004,
Sim et al., 2008; Omiecinski et al., 2010). The role of phase 11 is to transport drugs and
xenobiotics via membrane transporters such as ATP-binding cassette family (ABC) of
proteins across the cellular membranes (Omiecinski et al., 2010). Expression of ATP-
dependent transporters were shown to be induced by AHR ligands (Maher et al., 2006).

11



2.2.2 Physiological functions of the AHR

The abnormal phenotypes of AHR deficient animals clearly have shown that AHR is
an important protein for proper development of liver (Fernandez-Salguero et al.,
1995; Schmidt et al., 1996), ovaries (Benedict et al., 2000), heart (Fernandez-
Salguero et al., 1996; Mimura et al., 1997; Lahvis and Bradfield, 1998), as well as
cardiovascular (Lahvis et al., 2000; Vasquez et al., 2003; Lahvis et al., 2005) and
reproductive systems (Baba et al., 2005). The role of AHR in cell proliferation and
apoptosis is not well-known. In AHR-defective cells, the rate of cell growth seems to
be slower than those with normal phenotypes (Ma and Whitlock, 1996; Weiss et al.,
1996). The same observation has been made in mouse embryonic fibroblasts derived
from AHR null mice (Elizondo et al., 2000). The AHR may be involved in apoptosis
and cell death and it has been suggested that the AHR may bind to the transcription
factor E2F1 and inhibit apoptosis (Marlowe et al., 2008). In addition to the suggested
physiological role of AHR in cell cycle progression and normal development, AHR
plays important roles in the normal function of immune and endocrine systems,
circadian rhythm, skin physiology, hematopoiesis, and stem cell expansion (Schmidt
et al., 1996; Baba et al., 2005; Fritsche et al., 2007; Mukai and Tischkau, 2007; Esser
et al., 2009; Boitano et al., 2010; Casado et al., 2010).

2.3 ACTIVATION OF AHR SIGNALING

The unliganded AHR resides in the cytoplasm in complex with two molecules of
chaperons, HSP90, a low molecular weight AHR interacting protein (AIP) also called
XAP2 or ARA9 and p23. Interaction with HSP90 seems to be essential for ligand and
DNA binding of the receptor (Perdew, 1988; Wilhelmsson et al., 1990; Pongratz et al.,
1992; Carver et al., 1994; Ma and Whitlock, 1997). The AHR binds to the middle part
of HSP90 (amino acids 272-617) (Meyer and Perdew, 1999) and its interaction with
HSP90 and co-chaperones seems to be central to the stability of the AHR complex in
the cytoplasm (Song and Pollenz, 2002). On the other hand, protein-protein interaction
is a key component of the folding machinery. The chaperons make the receptor more
sensitive to its ligands (Carver and Bradfield, 1997; Carver et al., 1998; Kazlauskas et
al., 1999; Meyer and Perdew, 1999; Bell and Poland, 2000; Meyer et al., 2000). p23
enhances the ligand binding activity and transcription activity of AHR and increases the
ability of AHR to bind to XRE/DRE (Young et al., 2001; Cox and Miller, 2002; Shetty
et al., 2003). Upon ligand binding and activation, AHR translocates into the nucleus,
detaches from chaperons, and dimerizes with its nuclear partner ARNT (Carver et al.,
1994). Nuclear translocation is followed by a reduction in the size of the receptor,
which can be the result of detachment from chaperons and dimerization with ARNT
(McGuire et al., 1994). Studies on ARNT deficient mouse hepatoma Hepalc4 cells
showed that ARNT is required for AHR binding to specific response elements in DNA
(XRE/DRE) (Probst et al., 1993; Whitelaw et al., 1993). The AHR/ARNT heterodimer
complex binds to XRE/DRE and up-regulates a battery of genes involved in bio-
transformation of xenobiotic and endobiotic compounds and hundreds of other genes
(reviewed by Nebert and Dalton, 2006) (Figure 2).

12



AHR, AHRR,
CYPIAT, 142,
181...

Figure 2. Schematic structure of the AHR and molecular mechanism of AHR activation
by an AHR ligand (based on Fujii-Kuriyama & Mimura, 2005)

2.3.1 AHR ligands

The physiochemical properties of AHR ligands have been tested for more than 30
years. Structure-activity relationship studies suggest that hydrophobic and planar
compounds are well fitted to the ligand-binding pocket of AHR. According to
molecular modeling studies, the ligand-binding pocket of AHR doesn’t accept a ligand
bigger than 14x12x5 A (Waller and McKinney, 1995). However, a large number of
natural, endogenous and synthetic compounds that do not fit into the described pocket
can activate AHR signaling (reviewed in Denison et al., 2002). This suggests that the
AHR has a more promiscuous ligand binding pocket. Due to the absence of 3D
crystal/NMR/ X ray structure of the ligand binding domain (LBD) the promiscuity of
the ligand-binding pocket of AHR remains elusive.

2.3.1.1 Xenobiotic compounds

Environmental pollutants such as halogenated aromatic hydrocarbons (HAHs) and
polycyclic aromatic hydrocarbons (PAHSs) are known as synthetic ligands of the AHR
(reviewed in Denison et al., 2002; Denison and Nagy, 2003; Fujii-Kuriyama and
Mimura, 2005). Among xenobiotic compounds, TCDD (Figure 3) has the highest
affinity for binding and activation of the AHR. Among the described xenobiotic
ligands, TCDD has the highest toxicity and bio-accumulation with the half-life in
human of about 7.5 years (Whitlock, 1999; Van den Berg et al., 2006). Induction of
CYP1ALl by TCDD in the body is highly persistent due to the long halftime of TCDD
(Ma and Baldwin, 2000).
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Figure 3. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

2.3.1.2 Naturally-occurring compounds

In addition to synthetic ligands, numerous naturally occurring and endogenous
compounds are able to bind and activate the AHR (Denison and Nagy, 2003; Nguyen
and Bradfield, 2008). Indole-3-carbinol derivatives such as indolo[3,2-b]carbazole
(ICZ) (Bjeldanes et al., 1991; Chen et al., 1995), phytochemicals including alkaloids
and flavonoids and heme metabolites have been introduced as agonists of AHR (Gillner
et al., 1989; Gasiewicz et al., 1996; Adachi et al., 2001). Arachidonic acid products
(prostaglandins and lipoxins A4) (Schaldach et al., 1999; Seidel et al., 2001), and
tryptophan (Trp) derivatives (tryptamine, indole acetic acid, indigo and indirubin)
(Heath-Pagliuso et al., 1998; Adachi et al., 2001) are natural activators of AHR
signaling.

A large body of evidence has pointed to the role of an endogenous ligand of the
receptor for activation of AHR in the absence of exogenously added AHR ligands
(Paine, 1976; Hankinson et al., 1985; Sadek and Allen-Hoffmann, 1994; Singh et al.,
1996; Crawford et al., 1997; Chang and Puga, 1998; Chiaro et al., 2007). Most of the
suggested endogenous ligands for the AHR so far have exhibited low affinity for
binding and activation of the receptor. Among all tested compounds a photoproduct of
the amino acid Trp, 6-formylindolo[3,2-b]carbazole (FICZ), is receiving increasing
attention (Ma, 2011; Bock, 2012) (Figure 4). FICZ exerts several unique properties,
which make it a possible endogenous ligand of the receptor. It exhibits the highest
affinity for binding and activation of the receptor (Rannug et al., 1987; Nguyen and
Bradfield, 2008). FICZ can be formed in aqueous solutions containing Trp when
exposed to visible and UV light (Oberg et al., 2005; Diani-Moore et al., 2006; Wincent
et al., 2009) and FICZ has been found in human skin (Magiatis et al., 2013) and its
sulfate conjugates have been detected in human urine (Wincent et al., 2009).
Furthermore, FICZ is an excellent substrate for CYP1Al (Wincent et al., 2009) and
was suggested to contribute to the auto-regulatory feedback control of AHR signaling.
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Figure 4. 6-formylindolo[3,2-b]carbazole (FICZ)

24 REGULATION OF THE AHR

Because the AHR is a multifunctional protein that plays a fundamental role in normal
development and cell physiology, there are multiple mechanisms designed to suppress
sustained AHR activation. These include an AHR repressor, proteasomal degradation
of the AHR, inducible CYP1Al mediated degradation of ligands and epigenetic
mechanisms. This shows that tight regulation of AHR signaling pathway is very
important (Figure 5).
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Figure 5. AHR activation can be regulated by 1) AHR/CYP1A1/FICZ-dependent auto-
regulation 2) AHRR/ARNT complex formation 3) proteasomal degradation of AHR
(based on Fujii-Kuriyama & Mimura, 2005)
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2.4.1 AHR/CYP1A1l-dependent auto-regulation

The AHR induces the expression of metabolizing enzymes in particular CYP1AL, after
exposure to AHR ligands. CYP1A1l regulates AHR activity by elimination of the
ligands and thereby decreases the duration of exposure. In this way the AHR/CYP1A1l
auto-regulation feedback causes transient activation of AHR (Nebert and Dalton, 2006;
Chiaro et al., 2007).

2.4.2 Repression by the AHR repressor

The AHRR was first identified to repress the AHR activity by competing with the
AHR/ARNT heterodimer formation (Mimura et al., 1999; Baba et al., 2001). It is
becoming more apparent that the AHRR/ARNT heterodimer doesn’t competitively
displace the AHR protein from AHR/ARNT heterodimer and AHRR DNA binding
seems to be independent to ARNT (Hahn et al., 2009). AHRR plays important roles in
repression of AHR mediated responses in some cell lines such as human dermal
fibroblasts (Haarmann-Stemmann et al., 2007). However, expression of AHRR is cell-,
tissue-, and species specific. In addition, repression of AHR by AHRR in in vivo
studies remains elusive (Haarmann-Stemmann and Abel, 2006). Furthermore, AHRR
also can repress the activity of the other transcription factors such as estrogen receptor
alpha (Ohtake et al., 2003).

2.4.3 Regulation of AHR activity by modulation of receptor degradation

Levels of AHR can be regulated by the rate of expression and the rate of degradation of
the protein. Expression of AHR metabolizing enzymes and AHR protein is under the
control of the AHR signaling pathway and the keapl-Nrf2-antioxidant response
element (Shin et al., 2007). The half-life of liganded-AHR is much shorter than
unliganded-AHR, indicating that the ligand-activated AHR undergoes degradation after
activation and binding to DNA (Ma and Baldwin, 2000). The down regulation of AHR
through the 26S proteasomal pathway starts by labeling of the protein with a
polypeptide, ubiquitin, then, the protein is recognized by the 26S proteasome and is
degraded into short peptides (Davarinos and Pollenz, 1999). There seems to be a
regulatory feedback control between AHR transcriptional activity and degradation
(Davarinos and Pollenz, 1999; Roberts and Whitelaw, 1999; Pollenz, 2002; Song and
Pollenz, 2003).

2.4.4 Crosstalk between the AHR and other pathways

It has been observed that TCDD has anti-estrogenic effects (Kociba et al., 1978).
Crosstalk between the AHR signaling pathway and retinoic acid receptor (Wanner et
al., 1995; Lorick et al., 1998), estrogen receptor (Spink et al., 1990; Heimler et al.,
1998; Tian et al., 1998), growth factors and cytokine signaling (Haarmann-Stemmann
et al., 2009), transcription factor SP1 (Fisher et al., 1990) and nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-kB) (Tian et al., 1999; Kim et al., 2000)
has been reported. Several protein kinases such as protein kinase C (PKC) and protein
tyrosine kinase (PTK) have been implicated in the regulation of AHR by
phosphorylation of its C- terminal region (Gradin et al., 1994; Mahon and Gasiewicz,
1995). NF-kB activators such as bacterial endotoxins and pro-inflammatory cytokines
are reported repressors of CYP1A1. Other authors suggested competition for common
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co-activators (p300) to be a mechanism for suppression of CYP1AL by NF-kB (Tian et
al., 1999; Ke et al., 2001). The presence of multiple copies of XRE/DREs within the
promoters of human Nrf2 genes and induction of Nrf2 and Nrf2 target genes by TCDD
indicate that the AHR interacts with Nrf2 via two possible mechanisms. First, the AHR
ligands such as TCDD directly up-regulate expression of Nrf2 and phase Il
metabolizing enzymes and second, AHR/ARNT/Nrf2 engage in the mutual binding to
XRE/DRE (Ma et al., 2004; Yeager et al., 2009). Moreover, it has been shown that the
level of AHR mRNA in Keap-1 knockout mice is higher than in normal animals
suggesting a direct crosstalk between AHR and Nrf2 signaling pathways (Shin et al.,
2007).

2.4.5 Epigenetic effects on AHR target genes regulations

DNA methylation and chromatin remodeling by histone acetylation and de-acetylation
are epigenetic mechanisms shown to take part in regulation of human AHR target genes
after exposure to exogenous and endogenous chemicals. Histone acetylation and de-
acetylation modify the structure of chromatin to be accessible or inaccessible for the
transcription factors and co-activators/co-repressors. Recruitment of histone acetylase
(HAT), co-activators such as p300, and steroid receptor co-activator 2 (SRC-2) to the
enhancer and promoter of both CYP1A1 and CYP1B1 genes are required for proper
transcription activity (Taylor et al., 2009) . Also different patterns of DNA methylation
of AHR target genes provide valuable information with regard to the epigenetic
modification of AHR signaling. It has for example been observed that CpG
dinucleotides in the promoter and enhancer of the CYP1B1 gene exhibit DNA
methylation in some cell lines while CYP1A1 is not fully methylated and is inducible
(Han et al., 2006; Habano et al., 2009; Beedanagari et al., 2010).

2.5 MODULATION OF AHR SIGNALING BY OXIDATIVE STRESS

The dual function of reactive oxygen species (ROS) in biological systems is well
established for several years. Regulatory events for ROS production mainly by the
NADPH oxidase enzyme (NOX) family and maintenance of redox homeostasis by the
activation of redox sensitive transcription factors such as Nrf2, the activator protein 1
(AP-1) and NF-kB are key events in the normal physiology of living cells. Diffusible
H,0, can act as a fundamental signaling molecule in activation/inhibition of several
transduction signaling pathways. ROS sometimes play opposing roles in cellular
signaling. For instance, activation of extracellular signal-regulated kinase (ERK1/2) by
ROS can promote cell survival whereas activation of c-Jun N-terminal (JNK)/stress-
activated protein kinase can induce apoptosis (reviewed in Groeger et al., 2009).

The redox regulation of AHR signaling is not well characterized but it has been shown
previously that the sulfhydryl groups in the AHR complex and the DNA binding
domain of the AHR are sensitive to oxidative stress (Denison et al., 1987; Pongratz et
al., 1992; Ireland et al., 1995; Xu et al., 1998; Cumming et al., 2004).

2.5.1 Different sources of ROS

Superoxide anion (O, ) is a product of the one-electron reduction of an O, molecule. In
mammalian cells, ROS can be generated from different sources such as mitochondria
(mainly from complex | and I1II), endoplasmic reticulum (microsomes fractions),
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peroxisomes, NO synthases and lipoxygenases in cytosol and NOX enzymes in the
plasma membrane (Halliwell and Cross, 1994). ROS also can be produced by xanthine
oxidase in extracellular spaces (Brown and Borutaite, 2012).

2.5.1.1 NADPH oxidase

Activation of NOX enzymes in macrophages and phagocytes produces millimolar
concentrations of H,O, to kill bacteria and other pathogens (Rhee, 2006). In contrast,
activation and expression of NOXs in non-phagocytes is a highly regulated process that
Is involved in many cellular signaling pathways (reviewed in Droge, 2002). The acute
activation of NOX family members (NOX1-4, NOX5 and the dual oxidases DUOX1
and DUOX2) are regulated either by intracellular levels of calcium or phosphorylation
of regulatory subunits. Non-phagocyte NOXs can be activated by different stimuli such
as transforming growth factors a and p (TGFa and ), interleukin-1a and B (IL-1a and
B), epidermal growth factor (EGF), tumor necrosis factor a (TNFa)), mechanical forces
stimulation (in endothelial cells), changes in oxygen tension, hormones or local
metabolic changes (reviewed by Jiang et al., 2011). The glycosylated catalytic moiety
of NOX enzymes, gp91P"™* consists of a flavin-adenine dinucleotide (FAD) sequestered
in the cell membrane in association with its trans-membrane partner p22°" (Figure 6).
Complex formation with the p22°" subunit is needed for NOX activation (Sumimoto
et al., 1996; Ambasta et al., 2004; Martyn et al., 2006). This complex is referred to as
cytochrome b558. Phosphorylation of the P47°"™ subunit and recruitment of a small
Rho GTPase protein (Rac) result in release from auto-inhibition, translocation to the
membrane and binding to p22°"** (reviewed in Groeger et al., 2009). The N-terminal of
NOXs comprises six predicted a-helic regions for electron transferring (reviewed by
Lambeth et al., 2007). The maximal activity of NOXs can be determined by the
activation state of regulatory subunits and expression of NOX proteins. The highest
level of NOX1 protein is found in colon and to some extent in other tissues and cell
lines such as vascular smooth muscles and pulmonary epithelial cell line. NOX2 and
NOX3 are expressed in mature myeloid cells and in the inner ear respectively
(reviewed in Lambeth et al., 2007). Among NOX families, NOX4 is constitutively
active (reviewed by Droge, 2002) and can be activated by various types of activators.
Acute NOX4-dependent generation of ROS by stimulation with insulin (after five min)
and lipopolysaccharide (after 30 min) has been reported (Mahadev et al., 2004; Park et
al., 2004; Lambeth et al., 2007). Expression of NOX4 is predominantly observed in the
kidney and liver and moderate levels of NOX4 are expressed in other organs (Cheng et
al., 2001; Mahadev et al., 2004). High levels of NOX5 are expressed in spleen, testis
and vascular smooth muscle (reviewed in Lambeth et al., 2007). DOUX1 and DOUX2
are found in the thyroid (De Deken et al.,, 2002). A compensatory expression
mechanism between NOX4 and NOX2 has been observed in some cell lines (Petry et
al., 2006; Pendyala et al., 2009).
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Figure 6. Schematic representation of NOX1-4 protein structure (based on Groeger et.
al., 2009).

2.5.2 Cellular defenses against ROS

O, " is an unstable radical species with a very short half-life. It can be converted to non-
radical species such as H,O, enzymatically by superoxide dismutase (SOD) or
spontaneously in cells. H,O, in the presence of reduced transition metals can be
converted into the very reactive and harmful hydroxyl radical (HO). To neutralize and
use the advantage of ROS, antioxidants play important roles in living cells (Halliwell,
2007). Some cellular antioxidants are present at low levels but work with high
efficiency (catalase and glutathione peroxidase) and some are present in high levels but
work with low efficiency (free amino acids and proteins). Living organisms also use
nonenzymatic antioxidants such as vitamins and glutathione to scavenge ROS
(reviewed by Droge, 2002). In mammalian cells SOD, catalase and glutathione
peroxidase convert H,O, to water and oxygen.

2.5.2.1 Glutathione

The tripeptide y-L-glutamyl-L-cysteinylglycine or glutathione is an abundant non-
protein antioxidant present in all mammalian cells at 1-10 mM concentration.
Glutathione exists in both reduced (GSH) and oxidized (GSSG) form. More than 98%
of glutathione at normal physiological conditions is present in the reduced form
(Akerboom et al., 1982). Unusual linking between glutamate and cysteine (y-carboxyl
instead of a- carboxyl) makes it resistant to degradation by intracellular enzymes.
Glutathione is degraded by an extracellular enzyme, y-glutamyltranspeptidase (GGT),
on the surface of certain cell types (Meister and Anderson, 1983; Lu, 2012).
Glutathione is synthesized in two ATP-dependent reactions. First, formation of y-
glutamylcysteine by a glutamate cysteine ligase (GCL) and second, the addition a
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glycine amino acid to the y-glutamylcysteine by glutathione synthetase (GS) forms the
tripeptide, y-L-glutamyl-L-cysteinylglycine. GCL is composed of catalytic and
modifier subunits (GCLC and GCLM) and is a crucial enzyme in GSH homeostasis.
Glutathione synthesis can be limited by the availability of cysteine amino acid. It has
been shown that the reducing agent dithiothreitol is able to reversibly inactivate GCL
whilst oxidative stress facilitates the holoenzyme formation (Seelig et al., 1984;
Franklin et al., 2009). GSH plays several important functions in living cells including
1) detoxification of electrophiles enzymatically in a reaction catalyzed by glutathione-
S-transferases 2) scavenging of ROS in a reaction catalyzed by glutathione peroxidases
3) regulation of redox-dependent cell signaling pathways by redox-sensitive
transcription factors and 4) serving as a continuous source of cysteine (Meister and
Anderson, 1983; DelLeve and Kaplowitz, 1991; Lu, 2012). In the reaction catalyzed by
glutathione peroxidase, a sulfhydryl moiety of the cysteine residue of GSH donates a
reducing equivalent to neutralize H,O, to water. In this reaction two molecules of GSH
are oxidized to GSSG. GSSG can be reduced back to GSH by glutathione reductase
using NADPH as an electron donor.

GSH plays an important role in maintenance of the cellular redox state that is crucial
for regulation of signal transduction pathways and gene expression through activation
of transcription factors. The intracellular redox state of the cells is maintained by two
systems, the GSH/GSSG ratio that is present at millimolar and thioredoxin (Trx) at
micromolar concentrations. The steady-state balance of GSH and GSSG during
oxidative stress conditions is different. The redox state of cells is determined in a
reversible reaction catalyzed by thiol-transferase as follows (reviewed in Lu, 1999):

Protein-disulfide + 2 (GSH) == GSSG + Protein-(GSH),

A convenient expression has also been introduced for the calculation of GSH redox
potential according to the Nernst equation as follows:

Eh=E° + (RT/nF)In([acceptor]/[donor])

In the above equation, Eh (mV) at defined pH is calculated relative to a standard
hydrogen electrode. In this expression R, T, n and F are gas constant, absolute
temperature, the number of electrons transferred and Faraday’s constant respectively
(see a review by Jones, 2002). Extracellular and intracellular redox potentials provide
useful indicators in association with redox-dependent cellular signaling. For instance,
the intracellular GSH/GSSG potential redox is reduced during proliferation and
becomes oxidized in differentiation and apoptosis (from -260mV to -150mV). The
extracellular Cys/CySS redox follows the same pattern (Moriarty-Craige and Jones,
2004). While more than 98% of cellular glutathione under normal physiological
conditions is present in the reduced form (Akerboom et al., 1982), any changes in the
intracellular GSH level can be useful for predicting cellular signaling.

2.5.2.2 The Nrf2-ARE signaling pathway

Nrf2 is a redox sensitive transcription factor that controls the expression of a group of
enzymes protecting against reactive oxygen intermediates. Nrf2-deficient mice are
more susceptible to developing different types of cancer and chronic diseases (Ramos-
Gomez et al., 2001; Rangasamy et al., 2004; Khor et al., 2006). Under non-stress
physiological conditions, Nrf2 is sequestered by its cysteine-rich, Kelch domain-
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containing partner (Keapl) in the cytoplasm. The Keapl-Nrf2 complex is rapidly
degraded by the ubiquitin proteasome pathway after oxidation (Itoh et al., 2003). Both
the N-terminal Broad complex, Tramtrack and Bric-a-Brac (BTB) and intervening-
region (IVR) domains of Keapl are required for Nrf2 degradation and a subunit of E3
ubiquitin ligase (Cul3) interacts with the IVR domain of Keapl (Kobayashi et al.,
2004). Overexpression of Cul3 leads to rapid degradation of Nrf2 and this has been
shown to enhance the risk of breast cancer (Loignon et al., 2009). The Nrf2 pathway
can be activated not only by chemical compounds with the capacity to undergo
redox cycling or by reactive oxygen intermediates but also by compounds that
have the ability to react with sulfhydryl groups. Thus, alterations in the glutathione
cellular levels and the redox state of cells can trigger the Nrf2 signaling pathway
(Talalay et al., 2003). Modification of two cysteine (C273 and C288) residues in the
IVR domain by ROS and formation of intermolecular disulfide bridges leads to the
release of Nrf2 and its translocation to the nucleus (Dinkova-Kostova et al., 2002;
Kobayashi et al., 2004; Wakabayashi et al., 2004) where it dimerizes with Maf, one of
the small bZIP proteins. Activated Nrf2 binds to the antioxidant response element
(ARE) and causes ARE-dependent transcription of antioxidant genes such as GST,
NAD(P)H:quinone oxidoreductase 1(NQO1), heme oxygenase 1 (HO-1), ferritin, GCL,
glutathione reductase and aldehyde dehydrogenase (Hayes and McLellan, 1999;
Talalay et al., 2003; Kensler et al., 2007) (Figure 7). It has been suggested that Keapl
regulates Nrf2 activity but the mechanism of stabilization of Nrf2 activity is not well
known. Nrf2 has been found to be an unstable protein with a short half- life (t;, around
15 min). After activation with ROS, Cul3 targets Nrf2 for ubiquitin-dependent
degradation by the 26S proteasome (Nguyen et al., 2003; Nguyen et al., 2009).

GSTA2, NQO1T...

Figure 7. General scheme for the activation of the Keap1-Nrf2-ARE signaling pathway.
ROS disrupts the Keap1-Nrf2 association leading to formation of intermolecular
disulfide bridges and accumulation of Nrf2 in nucleuses where it dimerizes with small
protein Maf, binds to ARE and stimulates expression of ARE responsive genes.
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3 COMMENTS ON METHODOLOGY
3.1 ANIMALS

In order to determine whether FICZ can be distributed to the body through the systemic
circulation, experiments were carried out on female C57BL/6J mice (Paper I). The
experiment was conducted in accordance with the regulations for animal
experimentation at Karolinska Institutet and was preapproved by the Ethical Committee
on Animal Experimentation in Stockholm.

3.2 CELL LINES

The immortalized human keratinocyte cell line (HaCaT) was kindly provided by N. E.
Fusenig (DKFZ, Heidelberg, Germany). HaCaT cells were grown at a high density to
elucidate the AHR activation by different AHR activators and CYP1ALl inhibitors
(Paper I, 1l and IlI). Higher expression of differentiation markers (involucrin and
transglutaminase) and AHR protein was documented when HaCaT cells were grown at
high density (Paper 1).

The human hepatoma HepG2-derived cell line HepG2-XRE-Luc, containing a
pTX.DIR- luciferase reporter under the control of two XRE/DRE sequences of the rat
CYP1AL gene, was kindly provided by K. Gradin, Karolinska Institutet. HepG2-XRE-
Luc was used to investigate CYP1A1 reporter gene activation in response to different
types of AHR activators and CYP1AL inhibitors (Paper Il and IlI).

The human X chromosome-linked chronic granulomatous disease (X-CGD) derived-
PBL-985 cell line (X-CGD cells) carrying a mutated gp91°"™ gene (Zhen et al., 1993)
and the X-CGD cell line re-transfected with gp91”"™ (X-CGD-gp 91 P" cells),
originally constructed by M.C. Dinauer (Ding et al., 1996), were kindly provided by B.
Fadeel, Karolinska Institutet. The X-CGD and X-CGD-gp 91 P"* cells were used to
study cell growth and NADPH oxidase activation after treatment with several metal
and metalloid compounds (Paper I1I).

3.3 PRIMARY CELLS

Supplementary studies were performed on the primary human epidermal
keratinocytes (HEKa cells) (Paper ).

3.4 MATERIALS
3.4.1 AHR agonists

An indolocarbazole compound, FICZ (Figure 4) instead of the highly toxic compound
TCDD (Figure 3) was chosen to assess the biological functions of the AHR in order
to understand the intrinsic AHR signaling. TCDD is the prototype for a family of
persistent and structurally similar compounds with toxicological and biological
effects on human and experimental animals through activation of the AHR signaling
(Poland and Knutson, 1982; White and Birnbaum, 2009). The AHR high affinity
ligand FICZ was first described in 1987 by Rannug et al. as a photoproduct formed
after ultraviolet irradiation of Trp. Among AHR ligands, FICZ exhibits the lowest K4
(70 pM) for AHR binding of all compounds tested so far and it has been suggested as
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an endogenous signaling molecule (Rannug et al., 1987). FICZ is an excellent
substrate for CYP1AL (kea/Km Of 8.1 x 10’ M*s™). The catalytic efficiency for FICZ
seems to be close to the limit of diffusion and it is a 50 times better substrate compared
to the model CYP1A1 substrate 7-ethoxyresorufin (Wincent et al., 2009). However, the
pharmacokinetics and pharmacodynamics of FICZ has to be investigated in more
details in future studies. AHR activation by TCDD and FICZ was examined in Paper
l.

3.4.2 CYP1Al inhibitors

Different types of chemicals including oxidants, clinical drugs, endogenous and natural
substances, biochemical inhibitors, phytochemicals and metals have been shown to
inhibit the activity of CYP1A1 (Moorthy et al., 2000; Ueng et al., 2002; Bozcaarmutlu
and Arinc, 2004; Oliveira et al., 2004; Baliharova et al., 2005; Chaudhary and Willett,
2006; Mikstacka et al., 2007; Zhang et al., 2008; Sergent et al., 2009a). In most studies,
inhibition of 7-ethoxyresorufin-O-deethylase activity (EROD) was chosen to test the
inhibitory effects of chemicals on CYP1Al enzyme activity. Depending on the
structure different chemicals can act as a substrate, inhibitor or both substrate/inhibitor
of CYP1Al. A study with different types of flavonoids containing methoxy- and
hydroxyl-group substitutions suggests that compounds demonstrating high substrate
affinity for CYP1A1 might be stronger inhibitors of EROD activity (Androutsopoulos
et al., 2011). Shimida et al. suggested that the number and position of hydroxyl and
methoxy groups in the structure of flavones are important factors for inhibitory effects
of flavones on CYP1ALl (Shimada et al., 2010).

3.4.2.1 Oxidants

H.O, and UVB were chosen to evaluate the inhibitory effects of oxidants on CYP1A1l
gene expression and enzyme activity (Paper 1). For UVB exposure, HaCaT cells were
exposed to UVB light in dishes containing PBS. UVB lamps consisting of six (Philips
TL20W/12RS lamp) or two (Philips PL, 36W, UV240 DT, IP20) UV tubes were used
to obtain 5-20 mJ/cm? doses of UVB (280-320nm). After irradiation, the PBS was
removed and fresh medium was added to the dishes.

3.4.2.2 Polyphenols

AHR activation by the polyphenols, 3’-methoxy-4'-nitroflavone MNF (Paper ),
quercetin (QUE), resveratrol (RES) and curcumin (CUR) (Paper Il) was investigated
(for chemical structure see Figure 8-10). It has been reported that polyphenols are
potent inhibitors of CYP1A1 (Chaudhary and Willett, 2006; Mikstacka et al., 2007).
Polyphenols have been claimed to exhibit both agonistic and antagonistic effects on
AHR signaling (Ciolino et al., 1998a; Ciolino et al., 1998b; Casper et al., 1999; Ciolino
etal., 1999; Zhang et al., 2003; Pohl et al., 2006; Sergent et al., 2009Db).

23



AR
[’ \T
~

\ly
Ho ="y
l4y \\J
T T T
I N i
H H

Figure 10. (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione
(curcumin)
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3.4.2.3 Metals and metalloids

AHR activation by metals and metalloids was investigated in Paper Ill. Arsenic (As),
cadmium (Cd), mercury (Hg) and nickel (Ni) were chosen to investigate the mechanism
of AHR activation by compounds that are not typical AHR ligands. To investigate the
oxidative interaction of metals with AHR signaling was another purpose of this study.

3.5 METHODS
3.5.1 Experimental designs

Dose-response and time course studies were carried out in cells exposed to CYP1Al
inhibitors alone or in combination with FICZ. In all experiments excluding studies with
UVB, cells were exposed to fresh medium containing compounds of interest without
adding FBS. The treatments were terminated by removing the medium and rinsing the
cells with PBS (Paper I, 1l and I11). In UVB experiments, cells were exposed in dishes
containing PBS (Paper 1). Data were collected and normalized according to the protein
content.

In the preconditioning studies, cells were pre-treated with the compounds of interest in
the FBS free medium for 5 hours. The pre-treatments were terminated by removing the
medium, rinsing the cells with PBS and adding new medium with 10% FBS for 24
hours. After recovery time, second treatments were performed by changing the medium
to new medium containing DMSO or FICZ for up to 48 hours (Paper IlI).

3.5.2 CYP1ALl inhibition assays

Human recombinant CYP1A1 + NADPH-450 reductase supersomes were used to
investigate inhibitory effects of chemicals on pure human CYP1Al by using 7-
ethoxyresorufin as a standard substrate (Paper 1, Il, and II1).

3.5.3 Analyses of cellular FICZ content

A HPLC method was used to quantify the levels of FICZ in HaCaT cells exposed to
FICZ alone or in combination with CYP1A1l inhibitors. A solid-phase extraction
column coupled to a reverse-phase C18 column (Alltech Alltima; 250 mm x4.6 mm)
and a mobile phase consisting of acetonitrile and water were used. FICZ was detected
by fluorescence at excitation and emission wavelengths of 390 and 525 nm (Paper I, 11
and IlI).

3.5.4 AHR activation assays

Several types of assays have been established to investigate AHR activation by
different AHR ligands and CYP1ALl inhibitors. In order to quantify AHR activation at
the transcriptional levels either gqRT-PCR or luciferase reporter assays were used.
CYP1A1 enzyme activity was quantified by the EROD assay (Paper I, 1l and I1I).

3.5.4.1 AHR activation in commercial and purified medium

In order to find out whether AHR activation by CYP1ALl inhibitors is due to the
presence of FICZ in the cell culture media, experiments were performed in a
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commercial medium or in a Trp-free medium which was supplemented with fresh and
re-crystallized Trp before each use (Paper I, Il and 111).

3.5.5 Detection of oxidative stress
3.5.5.1 NADPH oxidase activity

Superoxide anion or H,O, produced by NOXs activation was determined by increased
lucigenin activity as described previously (Smith et al., 2001). Chemiluminescence was
measured on a Genios Pro plate reader after addition of NADPH and lucigenin (Paper
).

3.5.5.2 GSH assay

The level of GSH was determined spectrophotometrically after reaction with 5-5'-
dithiobis[2-nitrobenzoic acid] (DTNB) at 405 nm utilizing a Genios Pro plate reader
(Paper 111).

3.5.5.3 Up-regulated antioxidant genes

Expression of HO-1, CYP1A1 and AHR were determined by RT-qPCR after exposure
of HaCaT cells to As. In parallel, adaptive responses to oxidative stress induced by As
were determined by predesigned multiple RT-PCR array plates (Stress & Toxicity
PathwayFinder PCR Array, PAHS-003Z, SABioscience) consisting of 84 genes
involved in 6 biological pathways including oxidative stress, osmotic stress, DNA
damage, inflammation, hypoxia and heat shock proteins/unfolded proteins (Paper Il1).

3.5.6  NOX4 and Nrf2 silencing

A SMART pool sSiGENOME NOX4 siRNA consisting of four small interfering NOX4
RNA sequences and siRNA against Nrf2 were used to silence NOX4 and Nrf2
pathways. SIRNA complexes were formed in antibiotic- and serum-free DMEM
medium, using DharmacoFECT transfection reagents (Paper Il1).

3.5.7 Cell proliferation assay

The CyQUANT NF cell proliferation assay kit was used to assess cell proliferation in
PLB-985 and HaCaT cells treated with different concentrations of metals alone or
together with diphenyleneiodonium (DPI). Dye binding to DNA (fluorescence) was
measured at excitation/emission wavelengths 492/535 nm (Paper I11).
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4  AIMS OF PRESENT STUDY

The overall aim of the work included in this thesis was to improve current knowledge
regarding the redox regulation of AHR signaling. A particular objective was to study
AHR activation in the absence of exogenously added AHR ligands. The project
includes characterization of enzymatic breakdown of a metabolizable natural AHR
ligand, FICZ.

The specific aims were:

» To explore the effect of some compounds, known to activate AHR without
being good ligands for the receptor

» To investigate if the effect of these compounds is caused by the presence of
FICZ in the cell culture medium

» To evaluate inhibition of CYP1A1 mediated degradation of the natural AHR
ligand FICZ

» To clarify the influence of ROS-generating compounds on AHR signaling
pathways
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5 RESULTS AND DISCUSSION
51 FICZISAPOTENT CYP1A1 INDUCER IN VITRO AND IN VIVO

Among AHR agonists known to date, FICZ exhibits the highest affinity to bind and
activate AHR signaling (Rannug et al., 1987; Fritsche et al., 2007; Jonsson et al., 2009;
Wincent et al., 2009). In contrast to TCDD the effects of FICZ on AHR signaling are
transient (Wei et al., 1998; Wincent et al., 2009). The ability of FICZ to distribute in the
body through systemic circulation and induce CYP1AL gene expression in peripheral
tissues was determined by administration of 10 ng FICZ on one ear of female
C57BL/6J mice (Paper I). The results of this experiment showed that FICZ, in spite of
its rapid metabolism (Wincent et al., 2009), can be distributed in the body through the
systemic circulation and induce CYP1Al gene expression in several tissues. In our
study, the expression of CYP1A1 gene in liver and adipose tissues was transient and a
prolonged induction was observed at the site of application. Sustained induction of
CYP1AL at the site of application can be explained by pharmacokinetic parameters of
FICZ and presence of FICZ at high concentrations at the site of application. The
inhibitory effects of FICZ on its own metabolism by CYP1ALl has been previously
reported (Wincent et al., 2009). Therefore, studying pharmacokinetics parameters
including absorption, distribution, metabolism and excretion from the body might
provide valuable information in order to understand the intrinsic physiology of AHR.

Next, we examined the potential of FICZ as an inducer of CYP1AL gene expression in
vitro. The ECs value (half maximal effective concentration) of FICZ was found to be
at picomolar concentration which is lower than the ECsy value earlier described for
TCDD (Denison et al., 2002).

Taken together, this study showed that FICZ is a potent inducer of CYP1ALl in vivo and
in vitro. FICZ can distribute in the body through the systemic circulation and induce
CYP1AL1 in various organs.

5.2 CYP1Al INHIBITORS TURN INTO AHR ACTIVATORS
5.2.1 Metabolic clearance of FICZ is inhibited by CYP1AL inhibitors

The potential ability of different groups of chemicals such as H,O, MNF (Paper I),
polyphenols (Paper 11) and metals (Paper Il1) to inhibit human recombinant CYP1A1
was evaluated in this thesis. H,O, at 200 uM and MNF at 2.5 uM concentrations gave
approximately 90% and 80% inhibition of microsomal CYP1A1 activity, respectively.
The half maximal inhibitory concentration (ICs, value) of the other chemicals tested in
the experiments was determined by constructing dose-response curves. According to
the ICsp values, their potencies to inhibit human recombinant CYP1ALl can be ranked
as follows:

QUE (1.2 uM)> CUR (7.3 puM)> RES (11.8 uM)

Hg (0.16 uM) > Cd (1.70 uM) > Ni (14.70 uM) > As (16.02 uM)

Our results are consistent with earlier studies, which have shown that the polyphenols
QUE, RES, and CUR are able to inhibit the catalytic activity of CYP1Al enzyme
(Oetari et al., 1996; Ciolino et al., 1998a; Chun et al., 1999; Chaudhary and Willett,
2006). In studies performed with human recombinant CYP1Al both K, and Vpax
changed with increasing doses of QUE and RES suggesting a mixed type of inhibition
by QUE and RES (Chaudhary and Willett, 2006; Mikstacka et al., 2007). Metals and
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metalloids have also earlier been shown to be able to inhibit the activity of CYP1A1l
enzyme (Anwar-Mohamed et al., 2009). Metals inhibit the function of CYP1Al
enzymes by interfering with the heme moiety at the catalytic site (Gonzalez, 1988;
Vernhet et al., 2003; Kaminsky, 2006). Metals also are able to generate ROS and ROS
may oxidize thiol groups in the cysteine residues of proteins (Bogdan, 2001). The
inhibition of CYP1A1l by metals seems to be through reversible inhibition. These
inhibitors exhibit only dose-dependent inhibition pattern (Hollenberg, 2002). CYP1Al
inhibition by metals can be reversed by addition of GSH or antioxidant (Bozcaarmutlu
and Arinc, 2004; Oliveira et al., 2004) suggesting that in addition to interfering with the
heme moiety of CYP1A1, generation of ROS is also involved in the inhibition of
CYP1ALl by metals.

The effects of CYP1A1 inhibitors on metabolic degradation of FICZ were evaluated by
HPLC in HaCaT cells. The cells were treated with FICZ alone or in combination with
different doses of H,O,and MNF (Paper 1), QUE, RES and CUR (Paper Il), As, Cd, Hg
and Ni (Paper IlIl) for different lengths of time. All tested compounds were able to
inhibit the metabolic degradation of FICZ. Among the three polyphenol compounds
tested in this thesis, QUE was the most potent inhibitor of human recombinant
CYP1A1 and QUE was also a strong inhibitor of FICZ metabolism in HaCaT cells.
Among the metals tested, Hg was the most potent inhibitor of CYP1AL while no major
differences in efficacy of metals to inhibit FICZ degradation were observed. It can be
speculated that the pharmacokinetics of FICZ can be influenced by co-treatments with
metals. Heavy metals not only interfere with the normal function of metalloproteins
such as CYP1AL but also they are able to disrupt the normal functions of cellular
carriers and transporters.

5.2.2 CYP1Al inhibitors activate AHR indirectly

It has been shown that commercial media contain FICZ and can activate AHR
signaling especially if the media had been exposed to light (Oberg et al., 2005).

The ability of AHR agonists such as FICZ and TCDD and several CYP1ALl inhibitors
including oxidants, clinical drugs, endogenous and natural substances, and compounds
used as biochemical inhibitors (Paper 1), polyphenols (Paper 11) and metals (Paper I11)
to activate AHR signaling in the absence of the high affinity ligand FICZ was tested by
exposing the cells in a commercial DMEM and a Trp-free DMEM which was
supplemented with freshly re-crystallized Trp before each use. The results obtained in
the medium lacking FICZ were significantly different from the experiments performed
in commercial DMEM.

Next, the background levels of FICZ were quantified in commercial batches of media
to find out how much of FICZ is sufficient to activate AHR signaling. The level of
FICZ was determined by HPLC and a series of experiments were performed in the
purified medium by adding different concentrations of FICZ. The concentration of
FICZ in commercial DMEM was found to be in the order of 0.1 pM (Paper 1) and this
level of FICZ was sufficient to activate AHR signaling as determined in the EROD
assay (Paper ).
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Based on our studies with different groups of CYP1AL1 inhibitors (paper I, Il and 111),
previously established AHR activation by aNF (Wincent et al., 2009), and a wide range
of CYP1ALl inhibitors listed in the supplementary table of Paper | (Figure 11) we
suggest that an indirect mechanism for AHR activation explains the findings of AHR-
induction by compounds that do not fit into the ligand binding pocket of the AHR.
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Figure 11. Examples of CYP1ALl inhibitors that are also AHR activators

5.3 OXIDATIVE STRESS MODULATES AHR SIGNALING
5.3.1 Oxidative stress antagonizes AHR activation

Temporal inhibition of CYP1A1 transcription activity at the early time of incubation
was seen in HaCaT and HepG2 cells treated with FICZ together with oxidants (Paper
1), polyphenols (Paper | and Il) and metals followed by an up-regulation of both
CYP1AL1 transcription and enzyme activity (Paper I11). An obvious correlation between
AHR activation and intracellular levels of reduced glutathione was suggested by the
results presented in Paper IlI.

Up-regulation of CYP1A1l required relatively reducing conditions as shown by
measurement of cellular GSH in parallel with CYP1ALl induction in HepG2 cells. We
further confirmed this hypothesis by using a precursor of glutathione, N-Acetyl-L-
cysteine (NAC), and a depletory agent of glutathione, buthionine-(S,R)-sulfoximine
(BSO) in CYP1ALl induction experiments. In HepG2-XRE-Luc cells co-treated with
BSO the attenuation of CYPL1A1 transcription activity caused by the metals was
potentiated, while NAC treatments efficiently reduced the inhibitory effects.
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The effects of polyphenols on CYP1AL transcription activity were biphasic (Figure
12). FICZ-stimulated AHR transcription was potentiated by low concentrations of
polyphenols and inhibited in a dose-dependent manner by high concentrations. It can be
speculated that polyphenols at low concentrations act as antioxidants and increase the
antioxidant capacity of cells. Phenolic compounds have been suggested to interfere
with the oxidation of macromolecules in the cells by donating a hydrogen atom to free
radicals. However, under certain conditions polyphenols may act as pro-oxidants
(Shahidi and Wanasundara, 1992; Bravo, 1998). It seems plausible that the inhibition of
AHR reporter activity that was only observed with uM concentrations was explained
by the pro-oxidative effects of the polyphenols.

2501 = FlcZ+QUE
200 -~ FICZ+RES
- FICZ+CUR
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Figure 12. Biphasic effects of polyphenols on the transcription activity of AHR

It is well known that metals induce oxidative stress and cause depletion of GSH by
binding to sulfhydryl groups of proteins (Kaminsky, 2006; Jomova and Valko, 2011).
Down-regulation of CYP1AL by oxidants and depletion of GSH has been reported in
several studies (Morel and Barouki, 1998; Xu et al., 1998). The AHR protein and the
DNA-binding of many transcription factors were earlier shown to be sensitive to
oxidative stress (Denison et al., 1987; Pongratz et al., 1992; Droge et al., 1994;
Cumming et al., 2004). We hypothesize that the sulfhydryl groups in the chaperone
protein HSP90 in the AHR complex and DNA-binding of AHR may be the sensitive
targets to oxidative stress.

FICZ, TCDD and some other high affinity AHR ligands function as potent agonists and
activators of AHR in vitro and in vivo. Conversely, a-naphthoflavone, MNF and the
most potent AHR inhibitor described so far i.e. CH223191 are compounds used as
specific antagonists of AHR (Lu et al., 1995; Gasiewicz et al., 1996; Kim et al., 2006;
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Zhao et al., 2010). However, most of the AHR antagonists exert partial agonistic
activity at high concentrations as shown by their capacity to compete with a high
affinity AHR agonist, in most cases [*H]TCDD, for binding to the receptor and inhibit
agonist activated AHR-ARNT complex to bind and activate XRE/DRE-dependent
transcription. We have shown that the agonistic properties of some AHR activators to
some extent can also be attributed to the presence of the AHR high affinity ligand FICZ
in the cell culture media.

CH223191 (Figure 13) has not been reported to activate AHR and is therefore
suggested to be a pure and potent AHR antagonist. CH223191 also inhibited the
AHR-activation in HepG2-XRE-Luc cells in our studies (Figure 14). However, the
antagonistic effects of CH223191 on FICZ stimulated AHR activation could, to some
extent, be reversed by addition of the potent antioxidant NAC (Figure 14), which
suggest that CH223191 is an oxidant which like other oxidants can lower the levels of
GSH and thereby cause a temporal inhibition of AHR regulated responses. This result
suggests that like the commonly used AHR antagonists a-naphthoflavone and MNF,
also CH223191 can work as an oxidant and inhibit AHR signaling by this mechanism.
The sensitivity of AHR complex to oxidants has been further confirmed by results
showing the ability of the reducing agent dithiothreitol to restore the displacement of
[*H]TCDD from AHR complex by the sulfhydryl-modifying reagent, Hg (Denison et
al., 1987).

Figure 13. Structure of the potent AHR antagonist 2-methyl-N-[2-methyl-4-[(2-
methylphenyl)diazenyl]phenyl]pyrazole-3-carboxamide (CH223191)
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Figure 14. Effects of NAC on AHR inhibition by CH223191

5.3.2 Oxidative stress up-regulates antioxidant genes

In response to As treatment we observed a substantial (1000-fold) up-regulation of HO-
1 and more than 2 fold induction of 16 genes related to oxidative stress, osmotic stress,
DNA damage, inflammation, hypoxia and heat shock proteins/unfolded proteins (Paper
I11). In parallel with up-regulation of the modifier subunit and the catalytic subunit of
GCL we observed that the level of GSH increased during the time of incubation. The
common mechanisms for up-regulation of antioxidant genes are mainly mediated by
activation of redox-sensitive transcription factors. Low intensity of ROS activates the
Keapl/Nrf2 pathway system to up-regulate genes encoding antioxidant enzymes such
as the GCL. Intermediate intensity of ROS activates NF-kB and MAP-kinases
pathways to induce antioxidant genes and inflammation responses and high levels of
ROS lead to apoptosis and necrosis which is mainly mediated by mitochondria-
dependent death cascades (Gloire et al., 2006; Lushchak, 2011).

5.3.3 Preconditioning with oxidants leads to super-induction of CYP1Al

Preconditioning with H,O, or metals significantly elevated the level of GSH in
HepG2-XRE-Luc cells. In accordance with these results the AHR transcription
machinery induction by endogenous ligand FICZ was very effective, when cells were
in a highly reduced form, (Paper III).

The steady-state level of CYPs mRNA is a result of mRNA synthesis and mRNA
degradation. Among CYPs mRNAs, CYP1ALl possesses a short half-life (2.4-4.4 h)
(Lekas et al., 2000; Suzuki and Nohara, 2007). After translation of CYPs mRNA to
protein, the level of enzymes can be regulated by post-translational modifications
(Aguiar et al., 2005; Oesch-Bartlomowicz and Oesch, 2005). This suggests that ROS-
mediated increases of antioxidant enzymes change the redox levels of the cells so that
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the AHR transcriptional machinery or the half-life AHR-regulated RNAs or proteins
are prolonged. Accordingly, overexpression of antioxidant enzymes such as
superoxide dismutase or catalse in mouse aortic endothelial cells (MAECS) has been
shown to increase the induction of CYP1A1 mRNA and protein after benzo[a]pyrene
treatment (Wang et al., 2009; Tang et al., 2010).

Since the AHR protein has a considerably short half-life, stabilization of the protein
could be another explanation for super-induction of CYP1AL.

54 NADPH OXIDASE HAS A CENTRAL ROLE IN REGULATING CELL
GROWTH AND ARYL HYDROCARBON RECEPTOR SIGNALING
5.4.1 NOXs stimulate cell growth

NOXs can be activated by metals as documented in our studies (Paper I11) and with
other stimuli (Chou et al., 2004; Rockwell et al., 2004; Cuypers et al., 2010; Furieri et
al., 2011). Superoxide anion or H,O, produced by NOX enzymes are known to play a
crucial role in stimulation of cell proliferation (Sturrock et al., 2006; Chan et al.,
2009). We observed that administration of a NOX inhibitor or using a mutant X-CGD
cell line lacking a functional gp91°™* inhibited the stimulation of cell growth that was
caused by exposure to low levels of metals. This clearly showed that NOX-derived
superoxide anion or H,O, was responsible for the growth stimulation by As and the
other metals. Stimulation of cell growth at low concentrations and inhibition at high
concentrations of metals as observed in this study has also been reported in other
studies with inorganic chemicals (Calabrese and Baldwin, 2003).

5.4.2 NOXs have biphasic effects on AHR signaling pathway

The mechanism of down-regulation of CYP1Al by oxidants is not well known.
Another approach of this study was therefore to evaluate the interference of NOX
activation on the AHR signaling pathway. It has been reported that several NOX
activators such as H,0,, oxidized low density lipoporoteins (oxLDL), TGFa, and B, IL-
la and B, EGF, TNFa and INFy are repressors of CYP1AL (Hohne et al., 1990; Ballou
et al., 1992; Abdel-Razzak et al., 1993; Barker et al., 1994; Muntane-Relat et al., 1995;
Muller et al., 2000; Thum and Borlak, 2004; Hollingshead et al., 2008). All metals
tested in this study were able to activate NOXs and inhibit the activity of CYP1Al
(Paper I11). The inhibitory effects of metals on FICZ-stimulated AHR activation were
transient. We found that the temporal inhibition of CYP1A1 was attenuated by SiRNA
against NOX4 or administration of DPI a pharmacological inhibitor of NOXs,
suggesting an important role for NOX-derived ROS in down-regulation of CYP1AL.

Temporal inhibition of CYP1AL1 was followed by a prolonged and sustained induction
of CYP1AL at later incubation times. This late induction of CYP1A1 was abolished by
silencing of the Nrf2 pathway (Paper IlI) indicating that Nrf2 gives up-regulation of
antioxidant genes and increasing the level of GSH and thereby increasing the efficacy
of the AHR as was seen in the cases of pre-conditioning with metals and H,O,. NOX-
derived ROS or H,O, seems to be important signals for activation of the keapl/Nrf2
complex and up-regulation of antioxidants and phase Il genes through the antioxidant
response element (Chan et al., 2009; Brewer et al., 2011; Jiang et al., 2011; Schroder et
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al., 2012). Taken together, oxidative stress can negatively and positively modulate the
AHR signaling pathway. Therefore, FICZ/AHR/CYP1 auto-regulation is highly
influenced by oxidative stress and this might have potentially harmful consequences.
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6 CONCLUDING REMARKS AND FUTURE PERSPECTIVES

The inhibition of metabolic turnover of the endogenous ligand FICZ was found to be a
mechanism for activation of AHR signaling by several oxidants, metals and
phytochemicals. This finding explains how compounds can activate AHR indirectly. In
many studies the AHR-activating capacity of natural and synthetic molecules has been
established in the presence of the high affinity AHR ligand FICZ (commercial media
which contain FICZ) and it can be assumed that the background levels of FICZ have
contributed to the results of such experiments.

We found that redox-active compounds regulate the catalytic turnover of the
endogenous AHR activator FICZ by inhibiting and inducing AHR-mediated
transcription of CYP1A1 and the catalytic efficiency of the CYP1A1 protein. We can
conclude that the FICZ/AHR/CYP1 auto-regulation is highly influenced by changes in
the redox status of cells. The current in vitro studies thus can explain why many
oxidants behave both as AHR antagonists and agonists. To further confirm these
findings, additional in vivo experiments and mechanistic studies are needed.

We also found that the induction of AHR target genes such as CYP1A1l by the AHR
endogenous ligand FICZ is transient and suggest that prolonged induction of AHR
activity by CYP1AL inhibitors might have potentially harmful consequences and lead
to developmental and physiological disorders.

Most often, humans are exposed to a mixture of toxic chemicals. Co-exposure to
synthetic chemicals and heavy metals may enhance the risk of cancer as well as non-
cancerous diseases in human. Due to the persistence of heavy metals, PAHs and other
AHR activators in the environment, drinking water and food supplies interaction of
these compounds with the endogenously activated AHR signaling pathway can be of
considerable importance.
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