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ABSTRACT

The administrated dose of a drug is adjusted to give a therapeutic effect in patients
without causing side-effects or toxicity. Cytochrome P450 (P450) and UDP-
glucuronosyltransferase (UGT) enzymes, uptake and efflux transporters and nuclear
receptors regulating these enzymes, expressed in the liver and in other tissues, are all
important players in drug metabolism, disposition and elimination. Many drugs are
substrates and/or inhibitors of the same enzymes and may cause drug-drug interactions
(DDIs) in a patient that takes several drugs at the same time, which can result in loss of
therapeutic effect, side-effects or toxicity. The detection of major metabolites, reactive
metabolites, metabolizing enzymes and transporter proteins for all new drug candidates
is of high importance during preclinical evaluations. Reliable in vitro test systems of
the human liver are essential for a complete and accurate preclinical evaluation of a
new drug candidate. Primary human hepatocytes lose their hepatic functions within a
few hours or days when maintained in suspension or cultured in two-dimensions (2D).

In this work, important hepatic functions were investigated in the human hepatoma cell
line, HepaRG, and fresh human hepatocytes in suspension and in a dynamic three-
dimensional (3D) bioreactor system. Fresh human hepatocytes cultured in 3D retained
P450, UGT and OATP1B1 uptake activities for at least one week. Further, all major in
vivo metabolites of AZD6610 and diclofenac were detected in “fresh” human
hepatocytes after 6 days culture in 3D. Three P450 enzymes, CYP2J2, CYP4Al1 and
CYP4F3B, which are normally not involved in the metabolism of drugs, were
identified to take part in the hydroxylation of AZD6610. Furthermore, the UGT activity
was higher and the P450 and OATPI1BI1 activities were lower in HepaRG cells
compared to primary human hepatocytes, for the model substrates evaluated in this
study. The HepaRG cells maintained P450 activities for several weeks and UGT
activities for at least one week in the bioreactor culture. Moreover, effects of rifampicin
and ketoconazole on P450 activities in HepaRG cells cultured in the bioreactor
predicted well the effects observed in vivo. The primary human hepatocytes and
HepaRG cells were polarized in the bioreactor and formed tissue-like structures, which
resembled the human liver tissue. In addition, the detection of glucuronides in the
bioreactor medium indicated an active efflux of conjugated metabolites from 7 days old
primary human hepatocytes cultured in the bioreactor back to the circulating medium.
Knockdown of drug transporters in Caco-2 cells using short hairpin RNA (shRNA) was
shown to be a valuable tool to understand potential sites of transporter-mediated
pharmacokinetic interactions and the involvement of hepatic transporters in drug
disposition. This model clearly showed the involvement of P-gp but not of MRP2 in the
efflux of ximelagatran, hydroxy-melagatran and melagatran. The liver bioreactor using
either fresh human hepatocytes or HepaRG cells retained biotransformation and
transporter capacities for at least one week. This is a compelling feature of the 3D
model, which open up for long-term cultures required for detection of metabolites from
slowly metabolized drugs as well as induction, DDI and toxicity investigations.
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1 INTRODUCTION

1.1 GENERAL INTRODUCTION

Drugs available on the market aim to improve health and survival of patients
worldwide. However, changed efficacy, toxicity and side-effects may occur due to
polymorphic enzymes or in patients using several drugs at the same time.

Most drugs are taken orally and undergo first pass metabolism in the intestine and liver
before entering the systemic blood circulation. The metabolizing enzymes, uptake and
efflux transporters expressed in the tissues together with the physical chemical
properties of the drugs determine the pharmacokinetics of the drug including
absorption, distribution, metabolism and excretion (Curatolo, 1998). Knowledge and
identification of processes and certain enzymes involved in the pharmacokinetics of
new drug candidates, revealed during drug development, will increase the success rate
of drugs reaching the market and facilitate the design of relevant drug-drug interaction
(DDI) clinical studies, that are needed to appropriately label a drug for safe and
effective use (Giacomini et al., 2010).

The liver is a critical organ for the bioavailability and metabolism of drugs. Freshly
isolated human hepatocytes represent a good model of the liver since they are able to
perform the full range of in vivo drug biotransformation pathways and retain many of
the uptake and efflux functions of liver cells (De Bartolo et al., 2006). However, the use
of fresh human hepatocytes has several drawbacks such as scarce and unpredictable
availability, inter-donor variability and significant variation in cell functions, especially
cytochrome P450 (P450) activities (Luo ef al., 2002; Ohtsuki et al., 2012; Rogue et al.,
2012; Schaefer et al., 2012). The loss of liver specific functions in freshly isolated cells
may partly be explained by the rupture of the three-dimensional (3D) structure of the
tissue. In contrast, hepatoma cell lines can be cultured under longer periods of time and
are often used for detection of acute toxicity, whereas functions important for
investigation of in vivo relevant metabolites and chronic toxicities are absent.

Thus, preclinical drug metabolism, pharmacokinetic and safety research are lacking
reliable in vitro tools to predict the metabolic fate, DDIs and toxicity of drugs in the
liver. The limitation of the in vitro system described above is a major problem for the



pharmaceutical industry and can results in delayed deliveries and even withdrawal of
drugs from the market.

Three-dimensional cultures of human hepatocytes may help to establish an improved in
vitro tool for drug discovery and development. It has been shown that well-perfused
liver cells cultured in a 3D bioreactor retain in vivo like properties and form tissue like
structures, enabling liver specific functionality to be extended over at least two weeks
(Zeilinger et al., 2004; Schmelzer et al., 2009). Further, the human hepatoma cell line,
HepaRG, exhibits promising features expressing important functions for drug
disposition such as P450 enzymes, UDP-glucuronosyltransferase (UGT) enzymes,
nuclear receptors and transporter proteins that resemble those found in primary human
hepatocytes (Aninat et al., 2006; Le Vee et al., 2006; Kanebratt and Andersson,
2008b). Recently, HepaRG cells were evaluated as a valuable in vitro model for
prediction of P450 induction by drugs in vivo in human (Kanebratt and Andersson,
2008a).



1.2 LIVER STRUCTURE AND FUNCTION

The liver plays a central role in several essential processes in the body, including the
metabolism of cholesterol, carbohydrates, fatty acids and amino acids. The organ is
also of great importance in the protection against and detoxification of endogenous and
foreign substances (xenobiotics).

1.21 Cell types

The organ is composed of many different cell types, which are divided into
parenchymal cells (hepatocytes) and non-parenchymal cells. 80% of the liver tissue
volume consists of hepatocytes responsible for the uptake, metabolism and storage of a
great variety of substances, including drugs. The non-parencymal cells include
endothelial cells, hepatic stellate cells (fat-storing cells), biliary epithelial cells and
immune cells such as Kupffer cells (Figure 1) (Gumucio ef al., 1996).
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Figure 1. Overview of the liver structure: Hepatocytes and sinusoidal capillaries between the portal triad
(bile duct, portal vein and hepatic artery) and central vein in the hepatic lobule are shown in A. Further,
the bile canaliculi formed between the hepatocytes, the sinusoid between the hepatocyte cords as well as
endothelial cells, stellate cells and kupffer cells are present in B.

Figure 1A is adapted from Cunningham and Van Horn (2003) with permission from the publisher.

1.2.2 Structure

The hepatic lobule is the structural and functional unit of the liver (Rappaport et al.,
1954). The hepatocytes in the lob are arranged in radial cords from the peripheral part
to the centre and each hepatocyte is exposed to a mixture of venous blood (from portal



vein) and arterial blood (from hepatic artery) to provide sufficient oxygen and enabling
good transport of metabolites (Figure 1). The mixed blood flow from the vein and
artery to the central vein in the vascular channels, the sinusoids, formed in the space
between the hepatocyte cords. The endothelial cells form the walls of the hepatic
sinusoids and Kupffer cells are located in the sinusoids (Figure 1) (Rappaport et al.,
1954; Angelin et al., 1988; Ishibashi et al., 2009). This structure is important in
directing the excretion of the products of biotransformation out of the hepatocytes into
the bile and/or the blood. The hepatocytes secrete bile into the bile canaliculi formed
between the hepatocytes, which eventually ends up in bile ducts (Figure 1B).
Hepatocytes facing the blood side are located at different positions between the portal
vein/hepatic arteries and the central vein and are exposed to different concentrations of
oxygen and nutrients, which results in different gene expressions and distinct functional
capabilities (Rappaport et al., 1954; Allen et al., 2005).
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Figure 2. Overview of the processing of xenobiotics in the hepatocyte: P450s and other hepatic enzymes
such as conjugating enzymes, UGT and sulphotransferase (SULT) are important in the metabolism of
xenobiotics. The endoplasmic reticulum, where the enzymes are located, is shown in dark blue. Further,
the cellular membrane has many transporters, OATPs, OCTs and ABC transporters, which are important
for the transmembrane flux of many xenobiotics including the products of the conjugating enzymes
(Sevior et al., 2012). The figure is from Sevior ef al., 2012, with permission from the publisher.




1.2.3 General functions

One of the most important functions of the liver is the transformation of carbohydrates
from the diet and the storage of it as glycogen, which can be converted to glucose via
glycogenolysis when needed, thus regulating the level of glucose in the blood. New
glucose is also produced by converting glucose precursors such as lactate and glycerol
to glucose (gluconeogenesis). The glucose homeostasis is mainly regulated by insulin
and glucagon. Insulin increases the uptake of glucose to the liver and inhibits the
glycogenolysis and increase the synthesis of glycogen, whereas glucagon increases the
production of glucose in the liver (Angelin ef al., 1988). The liver also take up and
metabolize amino acids, which are used for biosynthesis of protein (e.g. clotting
factors, lipoprotein and albumin), with rest products such as glucose and urea. The
proteins are synthesized by ribosomes in the rough endoplasmic reticulum. The rough
and smooth endoplasmic reticulum constitute an extensive mesh in the cell where the
latter (Figure 2), incorporates many of the biotransformation enzymes, while others are
found in the cytosol (Sevior ef al., 2012).

The biotransformation enzymes P450s and UGTs and the membrane bound transporters
such as organic anion-transporting polypeptides (OATPs) in the hepatocytes, play an
important role in the first pass metabolism and bioavailability of drugs together with
gut wall enzymes and bacterial enzymes (Kato, 2008; Wu et al., 2011). The first pass
metabolism is a protective function of the body to prevent or reduce the entry of
xenobiotics. The foreign substances can be transported back into the gut or
biotransformed to more polar substances and excreted by transporters into bile or urine
(Figure 3). Thus, drug metabolizing enzymes and drug transporters are co-operating to
reduce the bioavailability and increase excretion of administrated drugs (Benet, 2009;
Wu, 2012). It is essential to understand which particular enzymes that interferes with a
certain drug to avoid DDIs, side-effects as well as complications with polymorphic
enzymes (Ingelman-Sundberg et al., 2007; Close, 2012). The expression and function
of drug transporters and metabolizing enzymes in animals used in preclinical
development do not always reflect the expression and functions in human (Cao et al,
2006; Katoh ef al., 2006; Li et al., 2009). Therefore, reliable human in vitro models are
desired for evaluation of drug metabolism and disposition in vivo in human.

1.3 DRUG METABOLISM

Drug metabolism takes place in several organs and tissues. The most important organ is
the liver followed by intestine (including intestinal microflora), kidney, lungs, brain,
skin, placenta, plasma and many more. Drug metabolism reactions are normally
classified as phase I and phase II reactions. Phase I reaction involves functionalization
and phase II reaction results in conjugation, of the drug or metabolite.



1.3.1 Phase | metabolism

The term functionalization implies the creation of a functional group or the
modification of an existing one and it includes all important redox reactions and
hydrolysis/hydrations. There are several oxidoreductases involved in xenobiotic
metabolism and the P450s is the far most significant enzyme family estimated to
metabolize approximately 70-90% of all drugs and drug candidates. Other important
enzymes are flavin-containing monooxygenases (FMOs), known to catalyze some
reactions in parallel with P450s, aldo-keto reductases, alcohol and aldehyde
dehydrogenases as well as hydrolases.

1.3.1.1 Cytochrome P450 (P450)

The evolution of P450 enzymes involved in drug metabolism appears to have been
driven by the need for versatile enzymes capable of coping with a variety of substrates.
P450 families 1, 2 and 3 mainly metabolize xenobiotics, whereas P450 families 4-51
are involved in essential physiological functions like oxidations of fatty acids,
biosynthesis of biliary acid as well as biosynthesis and metabolism of cholesterol and
steroid hormones (Testa and Kramer, 2008).

In humans, CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1
and CYP3A4 (Table 1) are of particular importance in the metabolism of drugs and a
universal and univocal nomenclature system is used to describe the different isoforms
and their evolutionary relationships. For example, the nomenclature of the CYP3A4
gene is, CYP (root), 3 (family), A (sub-family) and 4 (individual gene) (Nelson ef al.,
2004).

Structurally, P450s are containing a rigid heme-binding core and a highly flexible distal
side which is likely to be involved in substrate binding and product release, because the
majority of the access/egress active site channels identified to date are located in this
region. Experimental techniques and molecular dynamics simulations indicate that both
CYP3A4 and its substrate binding active site exhibit a remarkably high degree of
flexibility. In contrast, CYP1A2 and CYP2A6 are more rigid, while CYP2C9 and
CYP2D6 exhibit intermediate flexibility. This suggests that there may be a relationship
between active site flexibility and substrate promiscuity, because CYP3A4 is highly
promiscuous, while CYP1A2 and CYP2A6 are more selective in binding their
substrates (Otyepka et al., 2012).

Further, P450s are mainly located in the endoplasmic reticulum (Figure 2) (Edwards et
al., 1991) together with NADPH-cytochrome P450 reductase, NADH-cytochrome b5



reductase and cytochrome b5, which are components of the electron-transfer systems
(Masters and Marohnic, 2006). For many typical oxidative reactions, P450 enzymes
utilize O, and two electrons supplied by NADPH to catalyze the monooxygenation of
numerous exogenous and endogenous substrates (Hrycay and Bandiera, 2012).

Unexpected pharmacokinetic properties, efficacy and side-effects of drugs in patient
are often related to polymorphic P450 enzymes or interactions with co-administrated
drugs that are substrates, inducers or inhibitors of P450 enzyme(s) (Hisaka et al., 2010).
Especially elderly patients, taking several drugs at the same time, may suffer a
significant harm from DDIs and thus an increased risk for hospitalization (Hines and
Murphy, 2011). For example, CYP3A4, CYP2D6, CYP2B6 and CYP2C9 are often
recognized as potential sites of DDIs and the CYP3A4 inhibitor ketoconazole is known
to increase the area under the plasma concentration versus time curve (AUC) in vivo for
several CYP3A4 substrates (Hisaka et al., 2010). Further, the polymorphic nature of
CYP2B6, CYP2CS8, CYP2C9, CYP2C19, CYP2D6 and CYP3AS5 can affect the
therapy outcome and polymorphic P450 enzymes are estimated to influence 20-25% of
all drug therapies (Table 1) (Ingelman-Sundberg, 2004; Johansson and Ingelman-
Sundberg, 2011).

Table 1. In vivo P450 probe substrate, inhibitors, nuclear receptors, inducers and functional effects of
P450 polymorphisms.

P450 Isr; ;’svt:atzrg)be ilr’:h‘;’l:itoor(z) :lel::::;r Ii’:] ::r: or® Functional effects”
CYP1A2 Caffeine, theophylline Fluvoxamine AhR Tobacco smoke Rare

CYP2B6 Bupropion, efavirenz Clopidogrel CAR (PXR) Rifampicin Reduced drug metabolism
CYP2C8 Repaglinide, paclitaxel Gemfibrozil PXR (CAR) Rifampicin Reduced drug metabolism
CYP2C9 Celecoxib, warfarin Amidarone PXR (CAR) Rifampicin Very significant

CYP2C19 Omeprazole, S-mephenytoin Ticlopidine PXR (CAR) Rifampicin Very significant

CYP2D6 Dextromethorphan, pimozide Paroxetine None known Very significant

CYP3A4 Midazolam, quinidine Ketoconazole PXR(CAR)  Rifampicin No or small

(1) - (3) The information is a selection from tables present in the FDA Draft Guidance for Industry - Drug
Interaction Studies:
http://www.fda.gov/Drugs/GuidanceComplianceRegulatorylnformation/Guidances/default.htm

(4) Functional effects of polymorphic P450 enzymes. From Johansson and Ingelman-Sundberg, 2011
(Table 1).

1.3.1.2 Dehydrogenases/reductases

Alcohol dehydrogenases, aldehyde dehydrogenases, aldo-keto reductases, short-chain
dehydrogenases/reductases and quinone reductases are all enzyme families of
importance in drug metabolism (Oppermann and Maser, 2000), which are mainly found
in the cytoplasm. The enzymes are expressed in several tissues including the liver,
kidney and brain etc. (Penning et al., 2000; Belyaeva, 2003; Nishimura and Naito,
2006; Marchitti et al., 2010).


http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm

Interestingly, a recently identified enzyme in the outer mitochondrial membrane,
molybdenum cofactor sulfurase C-terminal containing 2 (MOSC2), has been recognize
to be direct involved in the amidoxime reductase activity. Thereby playing an important
role in the activation of prodrugs containing amidoximes, such as the direct thrombin
inhibitor ximelagatran (studied in Paper I) and its follow-up compound AZD0837
(Eriksson et al, 2003; Deinum et al, 2009), by reducing the prodrugs to the bioactive
amidines (Neve et al., 2012).

1.3.1.3 Hydrolases

Hydrolases take part in non-redox reaction involving H,O as a reactant and are of major
interest in the metabolism of drugs, prodrugs and other xenobiotics. The hydrolases
with major significant in drug metabolism are carboxylesterases, cholinesterases,
paraoxonase and epoxide hydrolases (Testa and Krédmer, 2008). They are expressed in
plasma, liver, brain, lung, small intestine etc. and located in the cytoplasm and
endoplasmic reticulum (McCracker et al., 1993a; McCracker ef al., 1993b).

1.3.2 Phase Il metabolism

Conjugation requires a suitable functional group in the substrate, which will serve as
the anchoring site for an endogenous molecule or moiety such as methyl, sulphate,
glucuronic acid or glutathione. The endogenous conjugating moiety is usually carried
by a cofactor and the reactions are in most cases catalysed by transferases bringing the
substrate and cofactor close enough to allow the reaction to proceed. The anchoring site
may already be present in the xenobiotics or created by the phase I reaction as
described above. The conjugation of xenobiotics has a protective function as it often
forms a less reactive product and enables excretion by increased hydrophilicity (Testa
and Kramer, 2010). However, some conjugations may cause toxicity since the products
are reactive or products are accumulated in the tissue as residues and reach toxic levels
(McCarver and Hines, 2002). Interestingly, it is believed that a co-evolution of
transferases and transporters have occurred, thus coupling the formation of polar
conjugates and their active excretion by drug transporters (Jeong et al., 2005).

The conjugation reactions can be divided into methylations, sulfonations,
phosphorylations, glycosidations including glucuronidations, acetylations, formations
of coenzyme A conjugates and glutathione conjugations. The glucuronidations and
formation of glutathione conjugates are common reactions in xenobiotics metabolism
(Testa and Kramer, 2010). There the glutathione and glutathione S-transfereases have
evolved as a major chemical protection against reactive xenobiotics and reactive



compounds produced during metabolism of endogenous and exogenous compounds
and play a critical role in cellular protection against oxidative stress and radiations
(Mitchell et al., 1988; Okada et al., 2011; Raza, 2011).

1.3.2.1 Glucuronidations

UDP-glucuronosyltransferases (UGTs) are known to catalyze the highly diverse
reactions of glucuronidation and facilitate the reaction by binding the substrate and
cofactor uridine-5’-diphospho-a-D-glucuronic acid (UDPGA). The glucuronic acid is
transferred from the cofactor to the substrate and attached to a nucleophile, forming O-,
N-, S- or C-glucuronides (Dutton, 1980). The human UGTs are the products of four
gene families, UGT1, UGT2, UGT3 and UGTS8 (Mackenzie et al., 2005) and are
located in the membrane of the smooth endoplasmic reticulum (Figure 2) (Meech and
Mackenzie, 1998). The UGTs are detected in different tissues including the liver,
kidney, gastrointestinal tract, reproductive organs and the skin (Peters and Janson,
1988; Ohno and Nakaji, 2009). The isoforms found in the liver are UGTI1Al,
UGT1A3, UGT1A4, UGTI1AS, UGT1A6, UGT1A7, UGT1A9, UGT2B4, UGT2B?7,
UGT2B10, UGT2B15 and UGT2B17 (Ohtsuki et al., 2012; Ohno and Nakaji, 2009;
Court, 2010) and some of the substrates are alcohols, phenols, carboxylic acids, amines,
amides, bile acids and bilirubin (Tephly et al., 1988). Similar to the CYP families,
polymorphisms have been reported in the UGT 1 and 2 families (Court, 2010).

AZD6610 and diclofenac, used as model substrates in Paper IV, formed acyl
glucuronides from carboxylic acids. The acyl glucuronides formed from carboxylic
acids are an important class of the O-glucuronides, since these metabolites are quite
reactive and may cause toxicity (Williams et al, 1992). Intermolecular reactions with
nucleophilic compounds include hydrolysis, transacylation with glutathione (Grillo et
al., 2003) and direct trans-acylation of protein (McGurk et al., 1996), leading to
proteins which may induce or interfere with an immune response. These reactions are
in competition with intra-molecular nucleophilic rearrangements, particularly internal
migration of the acyl moiety resulting in glucuronide isomers (Skordi et al., 2005).

1.3.2.2 CoA conjugation and p-oxidation

Mitochondrial B-oxidation is primarily involved in the oxidation of fatty acids and
provides energy to cellular processes. The first step in microsomal fatty acid oxidation
is o-hydroxylation at the terminus carbon, which takes place in the endoplasmic
reticulum by CYP4 enzymes and the resulting w-hydroxy fatty acid is then
dehydrogenated to a carboxylic acid in the cytosol. Carboxylic acids are converted to
carboxylic-CoAs for oxidation by the B-oxidation pathway and the chain is shortening
by removal of two carbon units (Mortensen, 1992; Fer ef al., 2008). Noteworthy, the



same oxidation pathway has been recognized to be involved in the metabolism of some
xenobiotics, including the PPAR o/y agonist, AZD6610, studied in Paper IV
(Hashizume et al., 2002; Kalsotra et al., 2004; Kalsotra and Strobel, 2006; Jin et al.,
2011; Zollinger et al., 2011)
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1.4 DRUG TRANSPORT

Transporter pharmacology is a rapidly emerging field in drug discovery and
development with challenges of overlapping substrate and inhibitor specificities across
transporters. Although more than 400 human transporters have been identified at the
molecular level, relatively few of these have, to date, been shown to be important in
drug disposition (Giacomini et al., 2010). Transporters are expressed in several tissues
including, but not limited to, intestine, brain, liver and kidney. Some transporters are
tissue specific, whereas others are detected in more than one tissue (Figure 3).

1.4.1 Nomenclature

Membrane transporters are divided into two main superfamilies, ATP-Binding Cassette
(ABC) (Schinkel and Jonker, 2003) and SoLute Carrier (SLC) (Hediger et al., 2004)
superfamily. The gene names reflect the superfamilies, e.g. ABCB11 and SLCO1BI,
whereas some protein names reflect the type of substrate being transported, e.g. BSEP
(Bile Salt Export Pump) and OATP1B1 (Organic Anion Transporting Polypeptide
1B1).

1.4.2 Function and location

Transporters consist of a number of transmembrane domains and one or more binding
domain(s) which facilitate the translocations of drugs over the cell membrane. The
transport is bi-directional and active, enabling transport against a concentration
gradient. However, many drugs undergo both passive diffusion and active transport.
The ABC transporters, also referred to as efflux transporters, are ATP-dependent and
pump the drugs out from the cell. The SLC transporters may work in both direction and
are driven by electrochemical gradients or gradients of counter-substrates or co-
substrates (Choudhuri and Klaassen, 2006; Endres et al., 2006)

Drug transporters are expressed throughout the body in all tissues and are detected both
on the apical and basolateral membrane of the cells (Figure 3) (Nishimura and Naito,
2005; Endres et al., 2006; Hilgendorf et al., 2007; Giacomini et al., 2010). The efflux
transporters, located on the apical membrane have a protective function. One example
is the most well known transporter, P-glycoprotein (P-gp, ABCB1/MDRI1), which
efflux the substrates into the gut or into bile and from brain capillary endothelial cells
into peripheral blood (being a part of the blood-brain barrier), preventing the substrate
to reach the blood circulation and/or sensitive organs (Figure 3) (Endres et al., 20006).
The SLC transporters are frequently associated with uptake of compounds from the
blood into tissue or organs such as liver and kidney or involved in absorption from the
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gastrointestinal tract or lung tissue into the peripheral circulation. Uptake and efflux
transporters can co-operate in order to eliminate xenobiotics (Endres et al., 2006).

Brain

Brain capillary endothelial cells

| ueTs BLOOD-BRAIN

P450s
BARRIER
First pass metablism

D M
ol )
&5 |
— Blood
D LU
INTESTINE \
. drug (D) D
D Dy
pasos  UGTs H’ — ? # Blood
b ‘
@ B UGTs

|
| ‘drug D) — > drug-O-gluc. (M)
/

Oral administration
of drug (D)

‘
‘ lmsos l P4sos |

‘ UGTs J
‘w‘OH'd“’g (M) ———= OH-drug-O-gluc. (M) |
\

== =i LIVER

OSsT
Hepatocytes

P450s UGTs

Metabolite (M)

" \  Intestine
epithelia

D \
l Intestine \

Blood

Fecal excretion

TARGET t‘

TISSUE

M ] —
| — KIDNEY PROXIMAL
TUBULES

Therapeutic effect

Excretion to urine and reabsorption

Figure 3. Overview of selected human transport proteins, for drugs and endogenous substances,
expressed in intestine epithelia, brain capillary endothelial cells, hepatocytes and in the kidney proximal
tubules (Giacomini et al/, 2010) and the presence of P450 and UGT enzymes in the same tissue. After oral
administration of a drug, both transporters and metabolizing enzymes can take part in the first pass effect
influencing the bioavailability of the drug (D). The drug (D) and/or the metabolite (M) can leave the body

via excretion to urine, bile and faeces.
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1.4.3 Clinical relevant transporters

There are a limited number of transporters that seems to have an impact on drug
disposition, safety and efficacy. Researches within the academy and pharmacy industry
as well as regulatory agencies such as, Food and Drug Administration (FDA), have
formed the International Transporter Consortium (ITC) to draw up” to date” transporter
guidelines for drug development. The ITC members emphasize the importance of
dynamic guidelines, which will need to be modified regularly as the research front in
this area moves forward (Giacomini et al/, 2010). The transporters that are currently
proven to be clinically important are P-gp/MDR1, BCRP, OATP1B1, OATP1B3,
OCT2, OATI, OAT3, OCT1 and BSEP (Figure 3) (ITC, European Medicines Agency
(EMA) draft).

1.4.4 Transporter mediated drug-drug interactions

There are several clinical DDIs described in the literature that are believed to be
transporter mediated. Two examples are the 890% increase of pravastatin AUC when
co-administrated with cyclosporine and the 157% increase of digoxin AUC when co-
administrated with dronedarone probably due to inhibition of OATPs and P-gp,
respectively (Neuvonen et al., 2006; US Food and Drug Administration, 2006; Kiser et
al., 2008).

Clinical DDI studies may not elucidate the molecular mechanism for a certain
interaction but rather determines required dose adjustments. The mechanism for drug
interactions are often best studied using in vitro systems in preclinical investigations
(Giacomini et al, 2010).

1.4.5 Polymorphic transporters

Some drug transporters are polymorphic with non-synonymous mutations leading to
amino acid changes/deletions. These amino acid alterations may affect membrane
localization, function and capacity of the transporters (Shu et al., 2003; Niemi, 2007).
Transporters expressed in the liver, such as OATP1B1, OCT1 and BCRP are reported
to have clinical relevant genetic polymorphisms (Pasanen et al, 2006; Keskitalo et al,
2009; Zhou et al, 2009)
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1.5 METABOLISM AND TRANSPORT INTERPLAY

Both transporters and metabolizing enzymes may be involved in the elimination of the
same drug, which can complicate the evaluation and understanding of drug-drug
interactions studies in vitro and in vivo. A drug may be: 1) taken up into the hepatocyte
by uptake transporters, 2) metabolised by phase I and/or phase Il enzymes, 3) the parent
drug and/or the metabolite(s) may be transported back to the blood and/or into bile
(Figure 3). All these enzymes and transporters are potential sites of DDIs. There are
many examples of DDIs at the level of hepatic cytochrome P450, but changes in the
concentration of the drug in the cells or in the circulation can also occur by either
inhibition or induction of relevant transporter proteins in the liver (Wu and Benet,
2005; Shitara et al., 2003a).

1.5.1 Induction

Enzyme induction generally occurs at the transcriptional level and the most important
nuclear receptors for regulation of drug metabolizing P450s and transporters are the
aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR) and pregnane
X receptor (PXR). The transcription of several metabolizing enzyme and transporter
genes can be increased by the same inducer, caused by ligand binding to one or more
nuclear receptor(s). The activation of AhR induce CYP1A gene expression, whereas
CAR and PXR have been reported to induce the same genes by binding to DNA
response elements belonging to the CYP2B6, CYP2C, CYP3A4, ABCB1 and ABCC2
genes (Lin, 2006; Xie ef al, 2000; Martin et al., 2008; Pal et al., 2011). Further, it is not
unusual that the ligand binding to the transcription factors are substrates of products of
the induced gene (autoinduction).

1.5.2 Drug-drug interactions

Rifampicin both inhibits OATP uptake transporters and induces P450 enzymes. Zheng
and co-workers (2009) showed a clinical example where rifampicin interacted with the
OATP/P450 substrate glyburide. The first intravenous dose of rifampicin increased the
AUC of glyburide, most likely due to inhibition of OATP, whereas multiple doses of
rifampicin decreased the AUC of glyburide, probably due to induction of P450
enzymes. Further, Niemi et al. (2003) showed that repaglinide, a substrate of both
CYP3A and OATP, gave a 1.4-fold increase in AUC upon co-administration with
itraconazole (CYP3A inhibitor) and 8.1-fold increase in AUC with gemfibrozil (OATP
inhibitor). However, simultaneous inhibition of CYP3A and OATP resulted in a 19-
fold AUC increase of repaglinide, suggesting that enzyme-transporter interplay may
give rise to synergistic inhibitory effects.

14



1.6 LIVER N VITRO MODELS

Both in vitro tools and animal experiments are used in preclinical drug development to
evaluate the pharmacokinetic properties of new drug candidates. In addition, human
relevant tools are needed to investigate the formation of major drug metabolites, the
involvement of metabolizing enzymes and transporters in drug disposition as well as
the potential site of DDIs. Since the liver is the most important organ for drug
metabolism, in vitro models which reflect functions of the human liver are desired.

1.6.1 Identification of drug metabolizing enzymes

To find out if a new drug candidate or its metabolites are substrates of a certain
metabolizing enzyme, human recombinant P450 and UGT enzymes expressed in e.g.
Escherichia coli or baculovirus infected cells, can be used to investigate one enzyme at
a time (Zhao et al., 1996; Mano et al., 2004). The fraction of the metabolic clearance
via a certain enzyme is valuable information during drug development and in clinical
studies to understand the basis for pharmacokinetic variability and sensitivity as a
victim for drug interactions. Further, in vitro P450 inhibition studies are required to
evaluate whether a drug candidate may act as a perpetrator and thus pose a risk to affect
the kinetic profiles of co-administered drugs. The inhibition of CYP1A2, CYP2CS,
CYP2C9, CYP2C19, CYP2D6 and CYP3A4 by the drug candidate is routinely tested
in recombinant human P450s systems (Turpeinen et al., 2006).

1.6.2 Identification of drug metabolite profiles

The impact on efficacy and safety of drug metabolites formed and circulating in vivo
has to be evaluated in human. Comparisons of in vitro metabolite profiles across
species can provide an early indication if a new drug candidate has a different major
metabolic pathway in human than in animals used for safety evaluations (Wang et al.,
2010). Therefore, radiolabeled drug candidates are incubated in suspensions of
cryopreserved hepatocytes prepared from animals and humans to compare the
metabolite profiles. The standard incubation time is 2 h and the metabolites are
identified using liquid chromatography-high resolution mass spectrometry (LC/MS).
However, longer incubation times may be applied when slowly metabolized drugs are
evaluated.
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1.6.3 Identification of drug transporter enzymes

To evaluate the contribution of a single uptake transporter in drug or metabolite
disposition, human embryonic kidney 293 (HEK293) cells over expressing individual
transporters may be used. The study of efflux transporters is however more difficult.
First, the drug has to pass the cell membrane (excluding drugs and metabolites with
poor permeability), then the cells loaded with the drug have to be washed, before the
efflux can be measured. Therefore, inside-out membrane vesicles prepared from cells
over expressing a specific transporter are increasingly being used to study the function
of efflux transporters. In contrast to the cellular systems, the drug interacts directly with
the efflux transporter in the vesicles without the need to first permeate a cell membrane.
The kinetics of drug transporter interactions can thus be determined with higher
accuracy in a vesicle system than in a cellular system (Karlsson et al., 2010).
Unfortunately, this model is not suitable for lipophilic and highly membrane-permeable
drugs, which result in high passive uptake into the vesicles, masking the contribution of
active transport.

1.6.4 Hepatic efflux

Human epithelial Caco-2 cells (colorectal adenocarcinoma cells) can be used as a
model to study hepatic efflux transporter-mediated interactions. Caco-2 cells are
polarized and express drug efflux transporters such as P-gp, BCRP and MRP2, which
are also found in the canalicular membrane of hepatocytes. Caco-2 also express uptake
transporters and to some extent metabolizing enzymes. Confluent monolayer of Caco-2
cells on filters in transwell plates enables bi-directional transport studies. Co-
administration of two or more drugs acting as substrates or inhibitors of the same
transporter comprises the basis for transporter-mediated interactions (Choudhuri and
Klaassen, 2006). However, the inhibitors used to identify the involvement of a specific
transporter of a drug compound may not be selective and the in vitro concentrations
used in such experiments are often high. Thus, it cannot be excluded that these
inhibitors block the function of several other transporter proteins expressed in Caco-2
cells and thus the information from in vitro experiment, investigating the involvement
of specific transporters by inhibitors, may not be conclusive (Watanabe et al., 2005;
Wang et al., 2008).

RNA silencing leading to functional inactivation of the target gene is an attractive
method for down-regulation of the expression of specific genes. Short interfering RNA
(siRNA) can mediate strong and specific suppression of gene expression by sequence
specific cleavage of mRNA, thus blocking the translation into target protein (Watanabe
et al., 2005; Yue et al., 2009). SiRNA is a valuable tool to investigate the contribution
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of specific transporters in the transcellular transport of drug molecules and to predict
potential sites of pharmacokinetic interactions (Darnell et al. 2010 (Paper 1)).

1.6.5 Hepatic uptake

Although Caco-2 cells can be used as a model to study the hepatic efflux transport
interactions, the evaluation of uptake activity of important hepatic drug transporter such
as OATPIBI, OATPIB3 and OCT1 requires more liver like models or cell lines over
expressing these enzymes (Hilgendorf et al., 2007). Different hepatic in vitro assays
have been established to evaluate the uptake kinetic of drugs and the biliary efflux as
well as the loss of drugs from the incubation medium.

Primary hepatocytes express a complete set of metabolizing enzymes and transporters
involved in hepatic drug clearance and are recognized to best predict relevant in vivo
clearance parameters. However, an extensive decrease in OATP1B1/1B3 activity,
already after 6 h, has been reported in plated fresh human hepatocytes (Ulvestad et al.
2011). Therefore, it is important to perform uptake studies within a few hours after cell
isolation.

Alternatively, sandwich cultured human hepatocyte can be used if longer incubation
times are required. The culture of hepatocytes in a sandwich format between collagen
and matrigel allows the formation of intact canalicular networks and polarized
excretory function (Bi et al., 2006; Lee et al., 2010). Further, the transporter protein
levels are maintained for several days and both uptake and biliary efflux can be
accessed through modulation of calcium ions (Hoffmaster et al., 2004; Bi et al., 2006;
Lee et al., 2010).

However, the use of fresh human hepatocytes is limited by the availability and quality.
Fortunately, the activities of important hepatic drug uptake transporters OATP1B1/1B3
and to some extent also OCT1 have been reported to be present in cryopreserved
human hepatocytes, which is more convenient to use than fresh human hepatocytes
(Soars et al., 2009; Shitara et al 2003b; Umehara et al., 2007).

1.6.6 Predictions of hepatic clearance

The pharmaceutical industry aims to develop metabolic stable drugs, which in many
cases leads to a shift in drug elimination processes from metabolic, towards transporter-
mediated drug excretion. Today, the clearance of up to 20% new drug candidates is
under-predicted, probably due to an active uptake of drugs into the hepatocyte (Soars et
al., 2009). The clearance of new drug candidates is routinely assessed using
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suspensions of cryopreserved human hepatocytes, by measuring the disappearance of
the parent drug in a mixture of cells and medium. The transporter processes are not
properly evaluated in such assays and metabolic stable drugs are predicted to have
almost no clearance in vivo. However, the in vivo clearance can be high if the drug is a
substrate of hepatic drug transporters, which can enable fast elimination (e.g. via
excretion to bile). Soars and co-worker (2009) discuss two relatively new methods
which enables the measurement of hepatic uptake. The cells are centrifuged in
Eppendorf tubes or through a layer of oil and the loss of drug from the media is
measured in the supernatant. In addition, the appearance of the drug in the cells can be
assessed. These new in vitro methods, which include the hepatic drug uptake processes,
have improved the in vitro-in vivo drug clearance correlations. In addition, the method
can also be used to assess potential DDIs in the hepatic uptake by applying inhibitors to
the cell incubations (Soars ef al., 2009).

1.6.7 Induction

Metabolizing enzymes and transporters can be induced by xenobiotics and may cause
loss of effect due to sub-therapeutic concentrations or unwanted side-effects due to
changed concentrations of the drug or metabolite in plasma and tissue. Reporter gene
assays, immortalized cell lines and cultured primary human hepatocytes have been used
to evaluate the induction of P450 enzymes (e.g. CYP1A, CYP2B6, CYP2C and
CYP3A4) by new drug candidates (Abadie-Viollon et al. 2010). Recently, the human
hepatoma cell line, HepaRG, has been documented to provide reliable prediction of
P450 drug induction in vivo in human (Kanebratt and Andersson, 2008a) and can be
used as a new model to evaluate the P450 induction potential of drug candidates.

1.6.8 Tissue like in vitro model of the human liver

As described above, primary human hepatocytes are used in most liver in vitro studies
in drug development, since they are able to perform the full range of known in vivo
drug biotransformation pathways and retain many of the uptake and efflux functions of
liver cells (De Bartolo et al., 2006). However, a high variability of P450 and transporter
activities between different donors is usually observed, which can be caused by both
inter-donor differences and variation in cell quality (Tostdes et al., 2011). The majority
of liver cell culture studies have been performed using conventional two-dimensional
(2D) cell culture systems, which are convenient and easy to use (Goral ef al., 2011).
Nevertheless, both fresh and cryopreserved hepatocytes have a rapid loss of liver
specific functions over time in culture, which may partly be explained by the rupture of
the 3D structure of the tissue, low oxygen supply and the absent of shear stress from the
blood-flow (Tilles et al., 2001; Rodriguez-Antona et al., 2002; Wang et al., 2010; Vinci
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et al., 2011). Recently, unexpected plasticity of mature hepatocytes to dedifferentiate
into progenitor cells, when cultured in 2D, was reported by Chen and co-workers
(2012). The study revealed that hepatocytes rapidly transformed into liver progenitor
cells within one week through a transient oval cell-like stage when maintained in 2D,
thus explaining the loss of liver specific functions (Chen et al., 2012).

Several attempts to provide physiologically relevant conditions that preserve in vivo-
like phenotype and biological activity of hepatocytes have been published. Microfluidic
platforms, co-cultures, flow based hollow fiber bioreactors and spheroids have been
used to mimic the situation in the liver (De Bartolo et al., 2006; Dittrich et al., 2006;
Khetani and Bhatia, 2008; De Bartolo et al., 2009; Schmelzer et al., 2009; Leite et al.,
2011; Prot et al., 2011). Some of these new culturing approaches enable a 3D structure,
cell-cell contact and also a constant medium flow and oxygen supply that all are
important for the intracellular functions and the maintenance of cell polarity (Tilles et
al., 2001; Zeilinger et al., 2004; Schmelzer et al., 2009; Vinci et al., 2011). It has
previously been shown that fresh human hepatocytes can retain their liver specific
functions such as urea and albumin synthesis, glucose metabolism and P450 activities
for at least two weeks in 3D cultures (Zeilinger et al., 2002; Zeilinger et al., 2011
(Paper I)).

The bioreactor technology enables prolonged incubation times and may enable the
prediction of clearance, metabolite profiles as well as interaction profiles of metabolites
formed from slowly metabolized drugs, which are not detectable in other human in
vitro systems. Thus, the bioreactor can be used to avoid selection of drug candidates
with human unique metabolites, which are not formed in animals. Such metabolites
may be formed and identified after prolonged incubation times in human in vitro
systems before entering clinical studies.

Another important application of the bioreactor for the pharmaceutical industry is to

predict human hepatic toxicity, which is not always revealed by the preclinical models
used today (Leite et al., 2011)
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2 AIMS

The overall research aim for my thesis was to evaluate the use of several in vitro
techniques to predict drug metabolism, drug transport and drug-drug interactions in
vivo. Special attention was directed towards long-term cultures in a dynamic three-
dimensional bioreactor culture system using HepaRG cells and primary human
hepatocytes.

The following studies were performed:
e Knockdown of drug efflux transporters in Caco-2 cells using short hairpin RNA
to identify the involvement of efflux transporters in drug transport and to

predict potential sites of transporter-mediated pharmacokinetic interactions.

e Measurement of P450 activities over time in fresh human hepatocytes cultured
in a dynamic 3D bioreactor.

e Investigation of the maintenance, induction and inhibition of P450 activities in
HepaRG cells cultured in a dynamic 3D bioreactor compared to in vivo data.

e Evaluation of the major human in vivo metabolic pathways of two model
substrates in HepaRG cells, fresh and cryopreserved human hepatocytes using

cell suspension and a dynamic 3D bioreactor system.

e Investigation of the functionality of OATP1B1 in fresh human hepatocytes and
HepaRG cells using suspension and a dynamic 3D bioreactor system.
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3 METHODOLOGICAL CONSIDERATIONS

3.1 TRANSPORT STUDIES IN CACO-2 KNOCKDOWN CELLS

Usually, the detection of transporter-mediated interactions is achieved by co-
administration of a compound of interest with other substrates or inhibitors that bind to
and/or interact with the same transporter (Choudhuri and Klaassen, 2006). In Paper I,
RNA interference was used to knockdown efflux transporters in Caco-2 cells to detect
transporters responsible for the efflux of drug substances that may be involved in drug-

drug interactions in vivo.

3.1.1 siRNA knockdown

RNA interference is a natural cellular process that effects post-transcriptional gene
silencing in eukaryotic cells. SIRNA molecules are the key intermediaries in this
process which can inhibit or silence the expression of any given target gene by
degradation of mRNA in a sequence-specific manner. SIRNA can be exogenously
delivered to cells as synthetic duplexes or endogenously expressed as short hairpin
RNA (shRNA), following transfection of plasmid or viral siRNA expression vector
constructs. SIRNA causes only transient knockdown of target genes, whereas stable
knockdown is established by using shRNA (Celius et al., 2004; Yue et al., 2009).

In Paper I, Caco-2 cells were transfected with Lentivirus plasmid vectors containing
shRNA inserts targeting human P-gp (GenBank accession number NM_000927) or
MRP2 (GenBank accession number NM_000392) genes (Sigma-Aldrich, St. Louis,
MO) at Absorption Systems LP (Exton, Pennsylvania) to establish cell lines with stable
knockdown of transporters (Figure 4A). As a transduction control, parental Caco-2
cells were also transduced with a lentivirus plasmid vector containing shRNA that does
not match any known human genes (Sigma-Aldrich), and the transduction procedures
were identical to those used to establish P-gp and MRP2 knockdown.

The P-gp and MRP2 mRNA expression, protein expression and transporter activity

using probe substrates (Table 2) were compared in vector control cells and P-gp and
MRP2 knockdown cells. In addition, the mRNA expression of several transporters,
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metabolizing enzymes and transcription factors were measured in the three different
cell lines to detect nonspecific effects, which can depend on both knockdown of
nontarget mRNA (Jackson et al. 2006) or compensatory effects causing up-regulation
of other genes (Chen et al., 2005). The only changes observed were the 2-fold higher
mRNA expression of UGT2B7 in P-gp knockdown cells and of transthyretin in MRP2
knockdown cells compared to control vector cells (Darnell et al 2010 (Paper I)). These
nonspecific effects are not likely to interfere with the transport of ximelagatran and its
metabolites investigated in Paper 1.

3.1.2 Bi-directional transport studies

Caco-2 cells cultured on filters in transwell plates form a monolayer with tight
junctions which separate the apical and basolatera chamber (Figure 4B). This system
enables bi-directional transport studies. The knockdown of efflux transporters mimics
the situation in vivo, when the efflux transport of the drug of interest is reduced duo to
co-administration of a drug, which is a substrate or inhibitor of the same transporter.

Decreased efflux of P-gp/MRP2 substrates

TransfectionI Caco-2 with stable

MDR1/MRP2 knockdown
Anti-MDR1/MRP2 shRNA.
encoding viral vector U

Apical chamber

Monolayer
Filter y

Basolateral chamber

Figure 4. (A) Stable knockdown of P-gp and MRP2 in Caco-2 cells
using shRNA. (B) Culture of Caco-2 cells in transwell plates to
study the bi-directional transport of drugs.
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3.2 PRIMARY CELLS AND CELL LINES
3.2.1 Fresh human hepatocytes

Primary human liver cells used in Paper IV and V were isolated from the liver tissue
remained after partial resection by qualified medical staff following ethical and
institutional guidelines at Karolinska University Hospital (Huddinge, Sweden). The
isolated fresh human hepatocytes were transported from Karolinska University Hospital
to AstraZeneca R&D (Mdlndal, Sweden) in a cold package at the same day as tissue
surgery and cell isolation.

Primary human liver cells in Paper II were isolated from donor organs excluded from
transplantation due to organ injury or from liver tissue remained after partial resection
at the Charité University Hospital (Berlin, Germany). Cells were isolated from whole
organs or tissue pieces in accordance with European and national regulations and with
the approval by the local ethics committée.

It is well known that hepatocytes suffer a rapid loss of liver specific functions after cell
isolation. Therefore, the cell suspension experiments, in Paper IV and V, were
performed the same day as the tissue surgery and hepatocyte isolation to evaluate the
functional properties of the hepatocytes shortly after cell isolation. In addition, the
hepatocytes, in Paper II, IV and V, were inoculated into the bioreactor the same day as
tissue removal and cell isolation to attain as good quality of the hepatocytes as possible.

3.2.2 Cryopreserved human hepatocytes

A considerable improvement of hepatocyte cryopreservation protocols has been
achieved during recent years allowing storage, transport and scheduling of experiments
(Li et al., 2008). In Paper, IV and V, pooled cryopreserved human hepatocytes from
three different batches (IRK, UMJ and PHL), each containing hepatocytes from ten
donors, were used. Cryopreservation and pooling of human hepatocytes were
conducted at Celsis In Vitro Technologies (Brussels, Belgium) using a controlled
freezing protocol according to in-house procedures. The P450s, UGTs and drug
transporters activities were well characterized and 10 different donors were selected to
be included in the same batch to receive a good balance of drug metabolizing enzyme
and transporter activities. Thus, avoiding the drawbacks of high inter-donor variability
observed when using primary human hepatocyte from few donors.
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3.2.3 HepaRG cells

The HepaRG cells were developed from a human hepatocellular carcinoma and were
purchased from Biopredic International (Rennes, France). In vitro, proliferating
HepaRG cells differentiate toward hepatocyte-like and biliary-like cells at confluence.
However, maximum cell differentiation is reached after two weeks with 2% DMSO
exposure. Hepatocyte-like cells exhibit a phenotype close to that of human hepatocytes,
with functional bile canaliculus-like structures as evidenced by fluorescein excretion
(Cerec et al., 2007). In addition, HepaRG cells exhibit important functions for drug
metabolism and disposition such as P450, UGT and transporter activities (Aninat et al.,
2006; Le Vee et al., 2006; Kanebratt and Andersson, 2008a; Hart et al., 2010). If
hepatocyte-like cells are selectively isolated and cultured at high cell density, they
proliferate and preserve their differentiation status. However, when plated at low
density, they transdifferentiate into hepatocytic and biliary lineages through a bipotent
progenitor (Cerec et al., 2007).

In Paper III, the cells were first proliferated in 2D flasks to gain sufficient cells (80 x
10° cells) for culture in a bioreactor with a cell compartment of 2 ml. Then the HepaRG
cells were further proliferated in the bioreactor to reach confluence followed by two
weeks differentiation with DMSO. The DMSO containing medium was washed out and
the experimental phase was started nine weeks after the HepaRG cells were received
from Biopredic. To shorten the experimental period, cryopreserved differentiated
HepaRG cells were applied in Paper IV and V. The experiments could start already 2
days after inoculation. A two layer bioreactor with a smaller cell compartment of 0.5
mL was applied, thus reduced the number of cells needed.

26



3.3 3D CULTURE SYSTEM

3.3.1 Bioreactor prototypes

The bioreactor consists of three interwoven capillary bundles, each made of multiple
hollow fiber capillaries for counter-current medium perfusion (red and blue) and gas
supply (yellow), which allows decentralized nutrient and oxygen/CO, exchange with
low gradients (Figure 5A, B).

Figure 5. (A) Smallest capillary unit with two medium capillaries that are independently perfused (red
and blue) and one gas capillary (yellow); cells are cultured within the extra-capillary space (cell
compartment). (B) The hollow fiber capillaries. (C) Down-scaling of the clinical-scale bioreactor
prototype with a cell compartment volume of 800 mL resulting in a cell compartment volume of § mL
and a further down-scaled model with a cell compartment volume of 2 mL. From Zeilinger et al., 2011,
Figure 1 (Paper II).
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In Paper II, the three-dimensional multicompartment hollow fiber bioreactor proven to
function as a clinical extracorporeal liver support system was scaled down in two steps
from a cell compartment of 800 mL to 8 mL and 2 mL (Figure 5C, 6). A smaller
number of fresh human hepatocytes or HepaRG cells are required in bioreactors with
reduced cell compartments, increasing the utility of bioreactors as a tool in preclinical
studies.

In Paper III, a 2 ml bioreactor was used and in Paper IV and V, an even smaller
bioreactor prototype was used with a cell compartment of 0.5 ml made of only two
layers of capillaries with oxygenation and medium capillaries in the same layer. This
prototype was developed to increase the throughput of experiment and enabling
experiments in three parallel bioreactors in the same perfusion system.

Figure 6. The photograph shows the clinical-scale 800 mL bioreactor (left) and two laboratory-scale
variants with a cell compartment volume of 8 mL (middle) or 2 mL (right). The scale bar corresponds to
10 cm. In the background, the perfusion device for bioreactor operation can be seen. The device disposes
of pump heads for medium recirculation and medium substitution with automated pressure control, an
electronically regulated heating unit, rotameters for regulation of the flow rates for air, oxygen, CO2, and
for the total gas mixture, and a display for digital monitoring and regulation of system parameters. From
Zeilinger et al., 2011, Figure 2 (Paper II).
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3.3.2 Perfusion system

The bioreactors are operated by means of an electronically controlled perfusion device
allowing two to three bioreactors to be run in parallel. Temperature, medium feed and
medium recirculation rates are monitored and regulated via a connected computer. A
valve-controlled gas mix unit is used for air/oxygen/CO, supply. Bioreactors and tubing
are sterilized before use and rinsed with phosphate buffered saline and medium before
cell inoculation. The sampling port enables substance injection and sampling (Figure
7).

Bubble trap
Bioreactor

o= H
Sampling port

Outflow bottle
Recirculation Feed pump
pump

Medium bottle

Figure 7. Bioreactor perfusion system with sampling port and tubing for medium recirculation, feeding
and outflow. From Darnell ef al., Figure 1, (Paper IV).
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3.3.3 Bioreactor culture

In Paper II, IV and V, the medium used for the long term culture of fresh human
hepatocyte was enrichment with amino acids, free fatty acids and trace elements.
Medium containing 5-10 times higher amino acid concentrations compared to most
standard media are superior for the maintenance of cell survival, preserving cellular
protein levels and liver-specific functions (Jauregui et al., 1986; Sawada et al., 1987).
Higher levels of amino acids have been suggested to aid in the recovery of hepatocytes
following collagenase digestion, arrest lysosomal protein degradation (Jauregui et al.,
1988), and inhibit RNA degradation while stabilizing the activity of some liver-specific
enzymes (Balavoine et al., 1992; Lee et al., 1992).

In Paper II, the hepatic functionality and cell quality were assessed during the culture
period by measuring the daily production of glucose, urea and albumin and the release
of aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) in the
recirculating and outflow medium. The production of urea, glucose and albumin are
important functions of the liver in vivo and the detection of these products in the
bioreactor medium indicate maintenance of hepatocyte functions. Further, the leakage
of AST and LDH into the culture medium indicates hepatocellular toxicity or tissue
break down. AST and LDH are normally high in the beginning of the culture due to
stress after cell isolation, but a low level is usually obtained within a few days.

3.4 DRUG-DRUG INTERACTIONS IN HEPARG CELLS CULTURED IN
BIOREACTOR

In Paper III, the P450 activity over time was accessed in HepaRG cells cultured in
bioreactors by measuring metabolites formed from a cocktail of P450 probe substrates
including phenacetin, midazolam, bupropion and diclofenac (Table 2). Further, to
evaluate the prediction of DDIs, the effect of the model P450 inducer rifampicin and
inhibitor ketoconazole were sequentially investigated in the same bioreactor culture
(Table 2). The change in metabolite formation rates was calculated to enable the
comparison with in vivo data from the literature.

3.5 METABOLITE PROFILING

The metabolite profiles of two model substrates were evaluated in Paper IV in
cryopreserved human hepatocyte, fresh human hepatocyte and in HepaRG cell
suspensions on day 0 and in bioreactors on culture day 5 and 6. The same procedure as
used within the pharmaceutical industry was conducted for metabolite profiling in
suspension. The suspension experiment was performed in 96-well plates and
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metabolites were analyzed from both the medium and lysed cells. However, only the
medium was analysed in the bioreactor experiments. The levels of metabolites retained
in the cells cultured in the bioreactor were not analyzed and the metabolite profile may
be different from that detected in the medium. In future studies, a centrifugation step
could be included in the suspension experiments to facilitate the measurement of
metabolites in the medium, which would be more comparable to the bioreactor
experiments.

3.6 TRANSPORTER UPTAKE ACTIVITY

In Paper V, the OATP1BI1 activity was evaluated in cell suspension and in bioreactor
using the same cells as in Paper IV. To study a transporter-mediated drug uptake in cell
suspension, either the loss of drug from the medium or the accumulation of drug in the
cells can be measured. In this study, both the intracellular accumulation and the
concentration in the medium were assessed in the same experiment at different time
points. Several washing and centrifugation steps were performed to enable the
separation of the cells from the medium. In the bioreactor, the cells and the medium are
already separated and medium samples were easily removed via the sampling port to
measure the loss from medium (Figure 7). To assess the OATP1B1-mediated uptake of
estradiol-17pB-D-glucuronide (E17BG) and atorvastatin (Table 2), the experiments were
performed with and without 30 uM estrone-3-sulfate (E3S), which selectively inhibit
OATPI1BI1-mediated uptake with little effect on OATP1B3 (Ishiguro et al., 2006).

Table 2. In vitro probe substrates, inhibitors and inducers of metabolizing enzymes and transporters.

Compound Function Enzyme Metabolite Conc. [uM] Paper
Midazolam Substrate CYP3A 1'-hydroxymidazolam 3 II, 11l
Bupropion Substrate CYP2B6 Hydroxybupropion 100 II, 11l
Phenacetin Substrate CYP1A1/2 Paracetamol 26 I,
Diclofenac Substrate CYP2C9 4'-hydroxydiclofenac 9 II, 11l
Diclofenac Substrate UGT2B7/1A3/1A9 Diclofenac acyl glucuronide 10 \Y
Digoxin Substrate P-gp 10 |
Bromosulfophthalein  Substrate MRP2 0.027 |
Atorvastatin Substrate OATP1B1/CYP3A4  Hydroxyatorvastatin 5 \%
E17B8G Substrate OATP1B1/1B3 1 \%
Ketoconazole Inhibitor CYP3A4 3 ([
Estrone-3-sulfate Inhibitor OATP1B1 30 \%
Rifampicin Inducer CYP3A4/2B6/2C 20 [l

3.7 LC/MS/MS ANALYSIS

In Paper I, II, Il and V LC/MS/MS analysis was conducted to measure the
concentration of substrates of transporters and metabolizing enzymes as well as the
formed metabolites in suspensions, 2D and 3D cultures. Standard curves with known
concentration of the substrates and metabolites were included in each run and used for

31



quantification. Ximelagatran, hydroxyl-melagatran, ethyl-melagatran and melagatran
and the co-eluted respective isotope-labeled internal standards were measured in the
same injection. Moreover, the P450 cocktail metabolites, 1’-hydroxymidazolam,
hydroxybupropion, paracetamol and 4’-hydroxydiclofenac, were analyzed at the same
time in one injection and the same procedure was used for atorvastatin and its
metabolites. However, different sample dilutions were required to measure both the
substrate and the metabolites in the linear range of the standard curve.

3.8 Q-TOF LC/MS ANALYSIS

In Paper IV, the metabolite profiles of two model substrates were assessed using Q-ToF
LC/MS analysis. The instrument enables the detection of several protonated molecules
in the same injection, with a mass accuracy up to four decimals. Radiolabeled
substrates were used to facilitate the quantification of the formed metabolites. Detection
of metabolites was based on the full-scan MS acquisition, corresponding retention
times for the MS peak and a peak in the radiochromatogram and the absence of the
potential metabolite peak in the MS chromatogram of the 0 min sample. To facilitate
identification of metabolite M6 of AZD6610, MS and retention times were compared
to the authentic standard.

Some metabolites co-eluted with other metabolites and could not be separated in the
radiochromatogram. To estimate the contribution of each metabolite in %, the MS peak
area in the extracted ion chromatogram for the respective protonated molecule was
used. The calculation of metabolite proportions in the radiochromatographic peak is
based on the assumption that the MS responses of all metabolites are equal. While the
MS response is in fact unknown for all metabolites, the proportions calculated should
be regarded as estimates, but nonetheless useful in the comparison of metabolite
profiles between the different cell systems investigated.
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4 RESULTS AND DISCUSSION

4.1 PAPER | - PREDICTION OF HEPATIC TRANSPORTER INTERACTION
IN VIVO

The human in vivo interaction between ximelagtran and erythromycin was suggested to
be mediated by inhibition of hepatic efflux transporters (Figure 8A) (Eriksson et al.,
2006). In Paper I, Caco-2 cells were used as a model to study drug efflux transporters
expressed both in the intestine and in the liver. Stable knockdown of P-gp or MRP2 in
Caco-2 cells were used to evaluate the involvement of these drug efflux transporters in
the disposition of ximelagatran and its metabolites.

In the Caco-2 cell monolayers, ximelagatran was metabolized to its intermediate
metabolites, hydroxy-melagatran and ethyl-melagatran, and its active end product
melagatran. The appearance rates of ximelagatran, hydroxyl-melagatran and
melagatran on the basolateral side (Apical-to-Basolateral direction) were significant
higher (p < 0.01) in P-gp knockdown cells compared to control vector cells and MRP2
knockdown cells (Figure 8B). In addition, the accumulated amount of the metabolites
was highest in the P-gp knockdown cells. The in vitro results mimic the effects
observed in vivo, where the plasma concentrations (“basolateral/blood side”) of
melagatran, hydroxy-melagatran and ximelagatran were higher after ximelagatran was
co-administrated with the P-gp inhibitor erythromycin compared to administration of
ximelagatran alone (Eriksson ef al., 2006).

Thus, the results indicated a clear involvement of P-gp but not of MRP2 in the efflux of
ximelagatran, hydroxy-melagatran and melagatran. P-gp-mediated efflux can therefore
be concluded to be important for the biliary secretion of ximelagatran and its
metabolites. However, this study does not rule out the possibility that other hepatic
transporters, e.g., breast cancer resistance protein, bile salt export pump, and multidrug
and toxic extrusion 1 may be of importance in the disposition of ximelagatran and its
metabolites.
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Figure 8. (A) The figure shows the hepatic clearance of ximelagatran (ximel.) and its metabolites in vivo
via metabolism and secretion into bile and (B) a higher appearance rate of ximelagatran and the
metabolites on the basolateral (blood) side due to less efflux on the apical (bile) side in P-gp knockdown
Caco-2 cells. Each bar represents mean + S.D.; n=3; ** p <0.01; *** p < 0.001. From Darnell et al.,
2010, Figure 2 and 7B (Paper I).

Results from in vitro and in vivo studies may not easily identify which enzymes or
transporters that cause a specific interaction by another drug due to the plethora of
possible interactions (Choudhuri and Klaassen, 2006). Thus, a more specific strategy,
where the target enzyme or transporter have been specifically knocked down or
knocked out in vitro or in animals may be applied or, where possible, studies in healthy
volunteers with changed activity due to polymorphism of a specific enzyme or
transporter can be performed (Schinkel et al., 1995; Pasanen et al, 2006; Yue et al.,
2009).

The siRNA gene silencing technique, used in this study, has a great potential in
transport-mediated DDIs studies for elucidating the function of specific transporters in
drug disposition.
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42 PAPER 1 - MAINTENANCE OF HEPATIC FUNCTIONS IN
BIOREACTOR CULTURES

In Paper II, a three-dimensional multicompartment hollow fiber bioreactor proven to
function as a clinical extracorporeal liver support system was scaled down in two steps
from 800 mL to 8 mL and 2 mL bioreactors. The fresh human hepatocytes showed
maintained and comparable liver specific functions, such as glucose and urea
production, over 2 weeks, when cultured in the three different bioreactor prototypes
(Figure 9A).

In addition, the 2 ml bioreactor preserved the activity of major drug metabolizing P450
enzymes up to 23 days (Figure 9B). A P450 substrate cocktail was injected to the
bioreactor medium and the initial formation rates of paracetamol (CYP1A1/2),
4-hydroxydiclofenac (CYP2C9), and 1’-hydroxymidazolam (CYP3A4) were
maintained at 43%, 8%, and 35%, respectively, in the late culture phase (day 10-23) as
compared to values from the early culture time (day 3-5). Metabolism rates varied
between cell preparations from different donors, which probably reflect human
variation in drug metabolism due to human phenotypes and/or genotypes as well as
differences in the quality of liver tissue and cells after isolation (Goyak et al., 2008;
LeCluyse, 2001).

Moreover, hepatocytes and nonparenchymal cells formed tissue-like structures between
the capillary fibers in the small-scale bioreactor. Biliary cells characterized by
cytokeratin (CK) 19 immunoreactivity formed channel-like structures that were similar
in size to those found in intact liver tissue (Figure 9C). Further, the localization and
distribution of hepatic efflux transporter proteins, such as MRP2 and P-gp/MDRI, to
one side of the plasma membrane, revealed that the hepatocytes were polarized in the
bioreactor (Figure 9C). Furthermore, the P-gp/MDR1 and MRP2-positive sides of the
hepatocytes were facing each other, thus forming bile canaliculi-like structures similar
to those found in the human liver tissue used as a control (Figure 9C). The finding of
hepatocytes after two weeks culture in 3D (Paper II), is in sharp contrast to the total
lack of hepatocytes, due to dedifferentiation into liver-derived progenitor cells, after
two weeks culture of primary rat hepatocytes in 2D (Chen et al., 2012).

Many new drug candidates have been selected on the basis to be slowly metabolized by
the liver for a suitable pharmacokinetic profile. However, the experimental models
available today do not function over a period sufficient to be able to properly
investigate critical metabolic parameters and toxicity and do not provide the complexity
of the liver tissue. The preserved liver specific functions, the liver-like tissue and the
reduced number of cells required for the small scale 2 ml bioreactor, evaluated in this
study, open up for new and useful application within pharmaceutical research. The
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results suggest that the system could be used for studies requiring long-term
performance of cultures, for example, to study kinetic profiles, slowly metabolized
drugs, DDIs, induction of drug metabolism, and toxicity.
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Figure 9. The figure shows (A) the retained urea production and glucose production/uptake in the 2 mL,
8 mL and 800 mL bioreactors and (B) the maintained CYP1A1/2, CYP2C9 and CYP3A4 activities in the
2 mL bioreactor with fresh human liver cells. In addition, (C) the immunohistochemical characterization
of fresh human liver cells cultivated in the 2 mL bioreactor over 2 weeks (C, right lane) showed polarized
cells with hepatic efflux transporters MRP2 and P-gp in the cell membrane as well as biliary cells (CK19
positive) and Kupffer cells (CD68 positive). Staining of intact human liver is shown for control (C, left
lane). Magnification: 200-fold (bioreactor culture, CK19) or 400-fold. From Zeilinger et al., 2011, Figure
3,4 and 5 (Paper II).
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4.3 PAPER IlIl - PREDICTION OF P450 INDUCTION AND INHIBITION
USING BIOREACTOR CULTURED HEPARG CELLS

To evaluate an alternative cell source to fresh human hepatocytes for bioreactor culture,
the stability of P450 activity and prediction of in vivo relevant DDIs were investigated
in HepaRG cells cultured in the 2 ml bioreactor. We showed that the CYP1A1/2,
CYP2C9, CYP2B6, and CYP3A4 activities were maintained over several weeks by
measuring the formation of paracetamol, 4’-hydroxydiclofenac, hydroxybupropion and
1’-hydroxymidazolam from a cocktail of P450 probe substrate (Table 2).

Further, the co-administration of ketoconazole with midazolam reduced the CYP3A4
activity by 69% in HepaRG cells cultured in the bioreactor (Figure 10A), which
reflected well the 85% reduction of midazolam clearance in human when
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Figure 10. The inhibition of CYP3A4 activity (A) in bioreactor cultured HepaRG cells, before (solid
line) and during (dotted line) ketoconazole treatment and the induction of CYP3A4 (B) and CYP2B6 (C)
activities in bioreactor cultured HepaRG cells before (solid line) and directly after (dotted line) rifampicin
treatment. Results are given as means + S.D, n = 3 bioreactors. Immunohistochemical staining (brown) in
HepaRG bioreactor tissue showed bile canaliculi-like structures, where both P-gp (D) and MRP2 (E)
were located to one side of the hepatocyte-like cells. The metabolic enzyme CYP3A4 was also present
(F). The distribution of the HepaRG cells between two capillaries is shown in D. From Darnell et al.,
2011, Figures 3, 7 and 8 (Paper III).
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co-administrated with ketoconazole (Tsunoda et al., 1999; Tham et al., 2006; Yong et
al., 2008; Krishna et al., 2009).

Furthermore, the 6-fold increases of CYP3A4 and CYP2B6 activities (Figure 10B, C;
Paper III) after 60 h treatment with the P450 model inducer rifampicin were within the
induction range observed in vivo in human, where rifampicin increased midazolam
clearance (CYP3A) by 1.4 to 7.4-fold (Gorski et al., 2004) and the hydroxybupropion
formation rates (CYP2B6) by 3 to 5-fold (Kharasch et al., 2008). A larger variation in
the induction range (0 to 21-fold) of CYP3A and CYP2B6 was reported in 2D cultured
primary human hepatocytes (Abadie-Viollon et al. 2010) compared to in vivo and
HepaRG cells cultured in 3D (Paper III). Thus, the range of CYP3A and CYP2B6
induction in vivo in human was better represented by HepaRG cells in bioreactor
culture than by human hepatocytes in 2D cultures. The larger variation in the induction
response observed in 2D cultured hepatocytes may be caused by variation in cell
quality and the erratic loss of liver-specific functions resulting in low basal levels of
P450 enzymes before exposing the cells to potential inducers (Luo et al., 2002).

Confluent HepaRG cells are known to differentiate into both hepatocyte-like and
biliary-like cells (Aninat ef al., 2006; Guillouzo et al., 2007) , which was clearly shown
also in the bioreactor where tissue-like cell aggregations between the capillaries in the
bioreactor contained both cell types (Paper III). The hepatocyte-like cells were
polarized as revealed by the location of the transporter proteins P-gp and MRP2 to one
side of the membrane. The P-gp and MRP2-positive sides of the cells were also facing
each other (Figure 10D, E), which resembles the histology of the primary human
hepatocyte cultured in the same bioreactor prototype described in Paper II as well as the
situation in vivo. In addition, CYP3A4 was found to be expressed in the hepatocyte-like
cells (Figure 10F) and strand-like formations of CK19-positive cells indicated the
formation of biliary structures (Darnel et al., 2011 (Paper III)).

The HepaRG cells have previously been shown to maintain P450 activities in 2D
cultures for several weeks (Jossé et al., 2008; Antherieu et al., 2010). In addition, the
HepaRG cells have been documented to provide reliable prediction of P450 drug
induction and drug clearance in vivo in human (Kanebratt and Andersson, 2008a;
Zanelli et al., 2012). In this study, we showed that HepaRG cells cultured in 3D also
have a stable P450 activity over several weeks and that the induction and inhibition of
P450 activities predicted well the magnitude of changes observed in vivo (Gorski ef al.,
2004, Kharasch et al., 2008). In addition, polarity of transporter expression and
formation of tissue-like structures including bile canaliculi were demonstrated by
immunohistochemistry.
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The long-lasting bioreactor system using HepaRG cells thus provides a promising and
stable liver-like in vitro model for continuous investigations of the hepatic kinetics of
drugs and DDIs, which well predict the situation in vivo in human.

4.4 PAPER IV - IN VIVO DRUG METABOLIC PATHWAY IN HEPATIC IN
VITRO SYSTEMS

To investigate the metabolite profile in HepaRG cells compared to primary human
hepatocytes and human in vivo data, AZD6610 and diclofenac, showing both phase I
and phase II metabolism, were used as model substrates. The metabolite profiles were
evaluated in suspension, on day 0, and in bioreactor culture 6-7 days after cell
isolation/thawing (Paper IV).

One of the model substances, AZD6610, is mainly metabolized via hydroxylation to
Mo, followed by further oxidation to M5 and M3, while low levels of the glucuronide
M10 are detected in human in vivo (unpublished results; Figure 11). In Paper IV, all
major human in vivo relevant AZD6610 metabolites were detected in fresh and
cryopreserved human hepatocyte suspensions and the hydroxylation pathway was
found to be the major route of metabolism. In HepaRG cells, a high level of the
glucuronide M10 was detected, whereas the level of metabolites in the hydroxylation
pathway was low or absent. Thus, the main difference between primary human
hepatocytes and HepaRG cells was the balance between the hydroxylation route, which
was favoured in human hepatocytes, and the glucuronidation route, which was favoured
in HepaRG cells (Figure 11). Three P450 enzymes, which are normally not involved in
the metabolism of drugs, were identified to take part in the hydroxylation of AZD6610
to M6. The lower expression of two of these enzymes, CYP2J2 and CYP4Al1, in the
HepaRG cells compared to primary human hepatocytes, may be the reason for the
difference in the capacity to produce the major in vivo metabolites in the hydroxylation
pathway in the two cell systems. Further, the much higher expression of UGT1A6 in
HepaRG cells as compared to primary human hepatocyte may explain the efficient
glucuronidation pathway in the HepaRG cells. Moreover, the metabolite profiles of
AZD6610 in fresh human hepatocytes and in HepaRG cells cultured in the bioreactor
for 6 days were similar compared to the metabolite profile in suspension on day 0,
although the relative levels of the metabolites in the bioreactor were lower.
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Figure 11. Overview of tentative structures and suggested major metabolic pathways of AZD6610. The
hydroxylation pathway was major in vivo in human and in primary human hepatocytes, whereas the
glucuronidation pathway was major in HepaRG cells. Enzymes involved in the hydroxylation and
glucuronidation of AZD6610 are shown in the figure. The asterisk denotes the position of the "*C label.
From Darnell et al., Figure 4 (Paper IV).

Diclofenac is a carboxylic acid metabolized by both P450s and UGTs. The main human
in vivo metabolites reported are 4-hydroxydiclofenac, diclofenac acyl glucuronide and
4-hydroxydiclofenac acyl glucuronide (Riess et al., 1978; Stierlin et al., 1979; Stierlin
and Faigle, 1979). The initial hypothesis was that the clearance of diclofenac in vivo
in human was dominated by the formation of 4-hydroxydiclofenac catalyzed by
hepatic CYP2C9 (Stierlin and Faigle, 1979; Transon et al., 1995; Kumar et al.,
2006b; Kumar et al., 2006a). However, more recent studies revealed that the
diclofenac acyl glucuronide was hydroxylated via CYP2CS8 in vitro (Kumar et al.,
2002). Thus, the excreted 4-hydroxydiclofenac acyl glucuronide may be formed via
two separate pathways in vivo and the glucuronidation pathway might play an
important role in the clearance of diclofenac (Figure 12B).

In Paper 1V, a clear difference was observed when comparing the metabolic pathways

of diclofenac in HepaRG cells and primary human hepatocytes. The diclofenac acyl
glucuronide level was high in HepaRG cell suspension but absent in human hepatocyte
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suspension. Previous studies have shown that CYP2C8 mRNA expression correlated
well with CYP2C8 activity (Ohtsuki et al., 2012). Therefore, the low mRNA
expression of CYP2CS8 in differentiated HepaRG cells (Kanebratt and Andersson,
2008b; Antherieu et al., 2010) may results in a low capacity to hydroxylate the
diclofenac acyl glucuronide. In contrast, the higher expression of CYP2C8 in human
hepatocytes may result in depletion of diclofenac acyl glucuronide, the intermediate
metabolite, in human hepatocytes. Although notable higher level of hydroxydiclofenac
was observed in human hepatocytes compared to HepaRG cells in Paper IV, the
hydroxydiclofenac acyl glucuronide was detected at similar levels in HepaRG cells and
human hepatocytes, which may be explained by the two different pathways, which both
end up in hydroxydiclofenac acyl glucuronide.

In the bioreactor experiments, 6 days after cell inoculation, hydroxylated and
glucuronidated metabolites were detected in both fresh human hepatocyte and HepaRG
bioreactors but the clearance of diclofenac and formation rates of metabolites were
lower compared to suspension experiments (Figure 12A). In addition, diclofenac acyl
glucuronide, which was not detected in human hepatocyte suspension, was detected in
human hepatocyte bioreactor. The high level of diclofenac metabolites detected in 7
days old “fresh” human hepatocytes cultured in bioreactors in Paper IV is in sharp
contrast to the decrease of hydroxydiclofenac in human hepatocytes, by approximately
90%, after 3 days culture in 2D, when compared to fresh hepatocytes (Rodriguez-
Antona et al., 2002). Furthermore, glucuronides are generally too polar to pass
membranes via passive diffusion (Zamek-Gliszczynski et al., 2006; Lagas et al., 2010),
thus, the detection of glucuronides in the bioreactor medium indicated an active efflux
of conjugated metabolites from 7 days old human hepatocytes cultured in the bioreactor
back to the circulating medium.

Metabolism in the liver is one of the important determinants of the overall disposition
of drugs and metabolites formed can have an impact on efficacy and safety in humans.
Comparisons of in vitro metabolite profiles across species can provide an early signal if
new drug candidates could have different major metabolic pathways in human than in
the animal species used for safety evaluations. Thus, liver in vitro systems that reliably
can predict human in vivo metabolic pathways are highly desired.

Freshly isolated human hepatocytes are known to rapidly lose liver phenotypic
functions including drug metabolism capacity in vitro (Rodriguez-Antona et al., 2002).
The liver bioreactor using both fresh human hepatocytes and HepaRG cells retained
biotransformation capacity for at least one week, which is a compelling feature of the
3D model enabling detection of metabolites from slowly metabolized drugs.
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Figure 12. (A) The retained P450 and UGT activities in “fresh” human hepatocytes on culture day 6 in
bioreactors compared to fresh human hepatocytes in suspensions on day 0. The results are given as
percent of total detected radioactivity and the data points are mean values £ SD, n=3. (B) Major
metabolic pathways of diclofenac in HepaRG cell and human hepatocyte suspensions and in vivo in
human. The main P450 and UGT enzymes (Kumar et al., 2002; Sakaguchi et al. 2004; Kuehl et al., 2005;
Kumar et al. 2006a) involved in the biotransformation and the relative level of metabolites detected in
each system are presented in B. From Darnell et al., Figure 6 and 7 (Paper IV).
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45 PAPERYV - OATP1B1 AND CYP3A4 ACTIVITIES IN 3D HEPATOCYTE
BIOREACTORS

In Paper V, the OATP1B1 and CYP3A4 protein expression and activities were
evaluated in up to 9 days old “fresh” human hepatocytes and cryopreserved
differentiated HepaRG cells cultured in a bioreactor. The OATP1B1-mediated transport
was assessed by measuring the time-dependent loss from media of E17BG, an OATP1BI
substrate, with and without E3S, which is an OATP1BI1 inhibitor. A significant loss of
E17BG from the bioreactor media was observed in fresh human hepatocytes on culture
day 2 (p <0.05) (Figure 14). On day 7, two out of three donors showed an OATP1BI-
mediated loss from media of E178G (p > 0.05). In HepaRG cells, a significant
OATP1B1-mediated loss from media was observed on culture day 2 (p < 0.05), but the
results showed no OATP1BI1 activity on day 7 (p > 0.05) (Figure 14).

Human hepatocytes HepaRG cells

CYP3A4

and

Figure 13. Immunohistochemical staining (brown) of the basolateral uptake transporter OATP1B1 and
the metabolic enzyme CYP3A4 in bioreactor tissue of fresh human hepatocytes from donor 3 (A and C)
and HepaRG cells (B and D) cultured for 9 days. OATP1B1 is evenly distributed throughout the whole
cell membrane in the bioreactor tissue. Magnification: 40-fold. From Ulvestad et al., Figure 8 (Paper V).
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Figure 14. Time-dependent loss from media of *H-E17BG in fresh human hepatocytes (A and B) and
HepaRG cells (C and D) without (m; solid lines) and with (o; dotted lines) co-incubation of E3S at day 2
and day 7 in bioreactor culture. The medium concentration is expressed as % of start concentration
E17BG. Each point represents the mean +/- S.D., n = 2-3. Where the vertical error bars are not shown, the
S.D. values are within the limits of the symbols. From Ulvestad et al., Figure 4 (Paper V).

The activity data were in agreement with immunohistochemical staining, which
showed that OATP1BI1 protein expression was preserved for at least 9 days in fresh
human hepatocytes cultured in 3D (Figure 13A), while OATPI1BI1 protein expression
was almost absent in HepaRG cells on culture day 9 (Figure 13B). The maintained
OATPIBI activity and protein expression in fresh human hepatocytes is in sharp
contrast to the extensive decrease in OATP1B1/1B3 activity and protein expression in
plated (2D) fresh human hepatocytes, when cultured for more than 2 hours (Ulvestad et
al,2011).

Further, a significant OATP1B1-mediated uptake of E17BG was observed in HepaRG
cells, fresh and cryopreserved human hepatocytes in suspension on day 0 (Figure 15A-
C). However, the OATP1B1-mediated transport was significantly higher in fresh and
cryopreserved human hepatocytes than in HepaRG cells. The OATP1B1 activity data
are consistent with the mRNA expression of OATP1BI in cell suspensions showing a
significantly lower gene expression in HepaRG cells than in both fresh and
cryopreserved human hepatocytes. These data are in agreement with studies comparing
transporter activity in fresh and cryopreserved human hepatocytes (Badolo et al., 2011),
and shows the improved functions and properties of cryopreserved cells (Li, 2008).
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Figure 15. The graphs show a much higher OATP1B1-mediated
uptake in suspension of fresh human hepatocytes (A), and
cryopreserved human hepatocytes (B) compared to HepaRG cells
(C). Each point represents the mean + S.D., n = 3. From Ulvestad et
al., Figure 3, (Paper V).

Atorvastatin is a substrate of OATP1B1 and CYP3A4 and has previously been shown
to induce CYP3A4 expression (Kocarek et al., 2002; Monostory et al., 2009). In Paper
V, inhibition of atorvastatin uptake by E3S in both fresh and cryopreserved human
hepatocyte suspension resulted in a significant decreased loss of atorvastatin and
decreased formation of atorvastatin metabolites.

In the bioreactor, atorvastatin actually increased CYP3A4 expression over time, which
resulted in an autoinduction in metabolism and increased metabolite formation in the
consecutive atorvastatin plus E3S experiment (Paper V). Induction of CYP3A4 in
HepaRG cells in bioreactor culture have previously been demonstrated as discussed in
Paper III. In Paper V, an induction response by atorvastatin was observed in both
primary human hepatocytes and HepaRG cells cultured in the bioreactor for 4 days
after hepatocyte isolation or HepaRG thawing. Further, the CYP3A4 mRNA expression
and activity in suspension on day 0, the CYP3A4 activity on culture day 3 and the
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CYP3A4 protein expression (Figure 13C, D) on culture day 9 in the bioreactor were at
similar levels in fresh human hepatocytes and HepaRG cells (Paper V).

The study in Paper V indicates that fresh human hepatocytes cultured in a 3D
bioreactor system retain both OATP1B1 transporter and CYP3A4 metabolizing
activities and protein expression longer than in currently available in vitro models. The
rapid loss of transporter and enzyme activities in 2D cultures of human hepatocytes are
a major concern when studying drug uptake, metabolism and extrusion from cells in
vitro, and prevents reliable long-term studies to be performed (Richert et al., 2006;
Rodriguez-Antona et al., 2002; Ulvestad et al., 2011). For OATP1BI1 substrates, uptake
transport activities may have important implications for cellular drug concentrations,
which also effect drug metabolism and possible toxic effects. The 3D bioreactor system
allows long-term preclinical studies on drug uptake and metabolism, which are
especially important for slowly metabolized drugs.
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5 GENERAL DISCUSSION - FUTURE PERSPECTIVES

Scientists within the field of pharmaceutical research are continuously exploring and
validating new in vifro methods to establish reliable assays, which predict the fate of
the drug in the human body. High throughput methods are required at an early stage,
whereas the reduced numbers of drug candidates, in the later drug development phase,
allow the use of more complex models. The main aim of this thesis was to characterize
the following in vitro models of the human liver:

e (Caco-2 cells
e HepaRG cells
e 3D culture of fresh human hepatocytes and HepaRG cells

5.1 CACO-2 CELLS

Caco-2 cells are polarized cells expressing drug efflux transporters such as P-gp, BCRP
and MRP2, which are also found in the canalicular membrane of hepatocytes. The
Caco-2 cells can be used as a model to study hepatic transporter-mediated DDIs of new
drug candidates. The inhibitor used to block a certain efflux transporter may inhibit
several other transporters expressed in the Caco-2 cells (Watanabe et al., 2005; Wang
et al., 2008). The siRNA gene silencing technique, used to knockdown P-gp and MRP2
in Caco-2 cells in Paper I, was shown to have a great potential in transport-mediated
DDIs studies to elucidate the function of specific transporters in drug disposition.

5.2 HEPARG CELLS

Primary human hepatocytes are the gold standard for hepatic drug metabolism and
disposition investigations. Due to the restrictions and difficulties involved in the use of
fresh human hepatocytes, attempts to replace these cells are continuously ongoing.
Pooled cryopreserved primary human hepatocytes are of good quality, convenient to
use and provide an average activity of important hepatic enzymes from several donors
in the same experiment. Anyhow, hepatic immortalized cell lines, human embryonic
and induced pluripotent stem cell derived hepatocytes would be the ultimate cell system
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for pharmaceutical research, provided that these cells exhibit all important functions
found in fresh human hepatocytes. A highly reproducible platform and continuous
supply of material with maintained hepatic functions over long period of time are
highly needed. Unfortunately, hepatoma cell lines such as HepG2, C3A and Huh7 cells
and stem cell derived hepatocytes do not yet fully attain important hepatic functions
and their utilities and applications within drug development research are limited.
However, the highly differentiated human hepatoma cell line, HepaRG, has attracted
great attention after its introduction 2002 (Gripon ef al., 2002). The HepaRG cells have
been extensively evaluated the last decade and the cells exhibit several important
hepatic functions. The HepaRG cells provide reliable prediction of P450 drug induction
and drug clearance in vivo in human (Kanebratt and Andersson, 2008a; Zanelli ef al.,
2012) and maintain P450 activities in both 2D and 3D culture for several weeks (Jossé
et al., 2008; Antherieu et al., 2010; Darnell ez al., 2011 (Paper III)).

However, the UGT phase II enzyme activity and detailed studies of metabolite profiles
of drugs in HepaRG cells needed further investigations (Aninat et al., 2006; Jossé et al.,
2008; Antherieu et al., 2010). In Paper IV, we showed that cryopreserved
differentiated HepaRG cells exhibit UGT activity both in suspension on day 0 and in
3D culture for at least one week. The proportion between relevant hydroxylation and
glucuronidation biotransformation pathways of the two model substrates in Paper IV
was clearly different in HepaRG cells compared to hepatocytes. The glucuronidation
pathways were favoured in HepaRG cells, whereas the hydroxylation pathways were
favoured in primary human hepatocytes. These findings reflects the different mRNA
expression levels, in HepaRG cells and primary human hepatocytes, of the P450 and
UGT enzymes involved in the metabolism of the model substrates used in Paper IV.

Although the P-gp and MRP2 efflux activities are high in HepaRG cells, one of the
most important hepatic uptake function of drugs, the OATP-mediated uptake, was low
in 2D cultured HepaRG cells (Le Vee ef al., 2006). In Paper V, we showed that the
OATPIBI activity in cryopreserved differentiated HepaRG cells in suspension on day
0 and in 3D culture on day 2 was present, but low compared to primary human
hepatocytes. The low OATP-mediated uptake in HepaRG cells may affect drug
clearance, induction, metabolism and toxicity predictions, if the drug is dependent or
partly dependent of active uptake to enter the cell. Thus, an improved OATP-mediated
uptake in HepaRG cells would probably increase the applications and improve the in
vivo predictions in preclinical studies.
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5.3 3D CULTURE OF FRESH HUMAN HEPATOCYTES AND HEPARG
CELLS

The high throughput capacity of the conventional 2D cell culture systems and
suspension experiments is of high importance early in the preclinical phase of drug
development, when selecting drugs with the right properties for further evaluations.
However, the selection of metabolic stable drugs requires in vitro systems with
preserved uptake processes and increased incubation times, which facilitate the
prediction of clearance and metabolite profiles of slowly metabolized drugs. In
addition, maintained hepatic functions and co-culture with all relevant cells in the liver

tissue open up for long term toxicological investigations.

The multicompartment bioreactor evaluated in Paper II, III, IV and V retained hepatic
functions important for drug metabolism and disposition in the human liver. The P450
and UGT activities were preserved in fresh human hepatocytes and HepaRG
bioreactors for at least one week. In addition, the OATP1BI1 protein expression and
uptake activity were detected in fresh human hepatocytes after one week culture in the
bioreactor. This is to be compared with the rapid loss of P450 and OATP1B1/1B3
activities reported previously in 2D cultured hepatocytes (Rodriguez-Antona et al.,
2002; Ulvestad et al., 2011). However, although metabolism and transporter functions
were maintained, the activities decreased with time. Thus, further development and
improvement of the bioreactor culture may result in even higher enzyme activity and
prolonged incubation times. The development may include further medium
optimization, coating of capillaries and co-culture with other cell types. Furthermore,
the quality of the fresh human hepatocyte preparations is important for the preservation
of hepatic functions in the bioreactor. In Paper VI and V, the initial release of AST and
ALT was much higher in donor 2 compared to donor 1 and 3, which resulted in lower
metabolism and uptake activity in the bioreactor culture. Immortalized cell lines, such
as HepaRG cells, provide a more reliable and stable quality, but do not exhibit as high
P450 and OATP1BI1 activities in the bioreactor as the human hepatocytes.

Moreover, in Paper III a different protocol for the culture and differentiation of
HepaRG cells in the bioreactor was applied as compared to Paper IV and V. In Paper
III, the cells were proliferated and differentiated in the bioreactor, whereas
cryopreserved differentiated HepaRG cells were directly inoculated at high density in
the bioreactors used in Paper IV and V, to shorten the experimental period. Only
hepatocyte-like cells seems to be selected in the cryopreservation of HepaRG cells and
previous studies have revealed that no or few biliary-like cells are detected when
hepatocyte-like cells are seeded at high density (Aninat et al., 2006; Cerec et al., 2007).
Thus, the co-culture of hepatocyte-like and biliary-like cells seen in the bioreactor in
Paper III, when undifferentiated cells were proliferated and differentiated in the
bioreactor, may not have been present in Paper IV and V, where cryopreserved
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HepaRG cells were inoculated at high density. The co-culture of the two cell types in
3D may be important for the functionality of the HepaRG cells, which should be further
investigated.

In addition to the evaluation of the retained hepatic function in the bioreactors, the
prediction of DDIs was investigated. 3D cultured HepaRG cells predicted well the
P450 inhibition and induction observed in vivo. Further, OATP1B1 inhibition and
CYP3A4 autoinduction were observed in both fresh human hepatocytes and in
HepaRG cells cultured in the bioreactor in Paper V.

However, there are other promising 3D culture systems, besides the hollow fiber
bioreactor investigated in this thesis, which retain important hepatic functions for drug
metabolism and toxicity investigations (Domansky et al., 2010; Wang et al., 2010;
Leite et al., 2011; Tostoes et al., 2011).

Tostdes et al. (2011) showed that alginate encapsulated primary rat hepatocyte
spheroids cultured in controlled stirred bioreactors with perfusion and constant pH,
temperature, and oxygen levels maintained urea, albumin synthesis and P450 activity
for 3 weeks. The same culture system was used to culture primary human hepatocytes,
which maintained gene expression of phase I and phase II drug metabolizing enzymes
as well as albumin and urea synthesis for two weeks, although the urea synthesis was
decreased with time (Tostdes et al., 2012). Further, immunostaining showed that
CYP3A enzymes and bile canaliculi function were retained in human hepatocyte
spheroids after 2 weeks culture (Tostdes et al., 2012). Leite et al. (2011) showed that
co-cultures of freshly isolated rat hepatocytes with mouse embryonic fibroblast in
spheroids in bioreactors improved the albumin secretion rate and the phase I and phase
IT enzymatic activities compared to monocultures of hepatocytes in an identical
bioreactor.

Furthermore, Domansky and co-workers (2010) described a perfused liver cell culture
in a multiwell plate format suitable for higher throughput applications. Immunostaining
of the formed 3D microtissue units showed albumin in rat hepatocytes on day 7 and the
presence of Kupffer cells and stellate cells on day 13. Further, the retention of the liver
sinusoidal endothelial cell phenotype up to day 13 was dependent on the flow rate and
the oxygen concentration in the perfused multiwell system.
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In addition to the 3D systems reported in the literature, there are a number of
companies that have developed liver 3D systems, which are commercially available.

Cellasic'”

, a company in California, present a high throughput microfluidic perfusion
array capable of maintaining liver-specific activity in cultured primary hepatocytes for
over 12 days after plating. Microfabricated “endothelial-like” barriers are separating the
cords of cultured hepatocyte from the continuous medium flow in micro-capillary
channels and the P450 activity and inducibility were maintained over time. (Lee ef al.,

2010, Poster®).

Moreover, InSphero™, a company in Switzerland, offer a static 3D rat liver microtissue
(rLiMT) system with hanging drop formations, which retains albumin secretion and
CYP3A4 induction up to three weeks. Moreover, immunofluorescence imaging of the
hanging drop showed bile canalicular networks. In addition, co-culture of primary rat
hepatocytes with Kupffer cell enabled the detection of a toxicological effect in
lipopolysaccharides (LPS)-treated cultures. Another static 3D system, that offers
functional human liver tissue over a long period of time, is provided by Regenemed™.
Co-cultures of liver cells are grown in a transwell system and long term toxicity can be
assessed.

Some of the 3D in vitro liver systems available today for culture of primary hepatocyte
provide a controlled environment, oxygen supply, a perfused 3D culture, cell-cell
contact and co-culture with other cell types. Parameters that seem to be important for
the retention of urea and albumin synthesis, phase I and phase II activities, in vivo-like
tissue formation and detection of drug toxicity. However, the localization and function
of important drug transporters need further investigations and validation of the 3D
systems to predict DDIs and toxicity is still required.

The 3D bioreactor used in this thesis, together with other available 3D culture systems,
open up for long-term cultures required for detection of metabolites from slowly
metabolized drugs as well as induction, DDI and toxicity investigations. Hopefully, the
use of liver 3D culture system within the pharmaceutical research will contribute to a
more effective drug development program, which results in safer drugs for the patients.

(1) www.cellasic.com

(2) Lee P, Allen M, and Hung P. (2010) Microfluidic Hepatocyte Array for Long Term Drug. Exposure Screening.
(3) www.insphero.com

(4) www.regenemed.com
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6 CONCLUSIONS

In this thesis, the presence and stability of important hepatic functions of the human
liver were evaluated in HepaRG cells and in primary human hepatocytes using both
suspension and a dynamic three-dimensional bioreactor system. In addition, in vivo
relevant drug-drug interaction predictions in the bioreactor and in P-gp and MRP2
Caco-2 knockdown cells were investigated. The following conclusions can be drawn
from the results:

e P450, UGT and OATPIBI activities were maintained for at least one week in
fresh human hepatocyte cultured in bioreactors.

e CYPIA1/2, CYP2B6, CYP2C9 and CYP3A4 activities were retained in
HepaRG bioreactors over several weeks allowing the performance of long term,
sequential studies using the same system.

e Effects of rifampicin and ketoconazole on P450 activities in HepaRG bioreactor
predicted well the effects observed in vivo.

e UGT activity was present in cryopreserved differentiated HepaRG cell
suspension and retained for at least one week in HepaRG bioreactor.

e The proportion between relevant hydroxylation and glucuronidation
biotransformation pathways of the two model substrates in Paper IV was clearly
different in HepaRG cells compared to hepatocytes. The glucuronidation
pathways were favoured in HepaRG cells, whereas the hydroxylation pathways
were favoured in primary human hepatocytes.

e OATPIBI protein expression and activity were lower in HepaRG cells
compared to primary human hepatocytes.

e Immunohistochemical characterization of fresh human liver cells and HepaRG
cells cultivated in bioreactors over two weeks showed formation of tissue-like
structures and a co-culture of hepatocytes and biliary cells. The hepatocytes
were polarized and resembled the histology of human liver tissue.
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Knockdown of drug transporters using shRNA is a valuable tool to predict
potential sites of transporter-mediated pharmacokinetic interactions and the
involvement of hepatic transporters in drug disposition.

The 3D model is a compelling feature, which open up for long-term cultures
required for detection of metabolites from slowly metabolized drugs as well as
induction, DDI and toxicity investigations.



7 POPULARVETENSKAPLIG SAMMANFATTNING

Syftet med ldkemedel &r att forbattra hélsa och 6ka overlevnad hos patienter vérlden
over. Lakemedel kan dock ge biverkningar, toxiska effekter samt for lag terapeutisk
effekt, sérskilt ndr patienter tar manga ldkemedel samtidigt. Kroppen har en
skyddsmekanism for att avldgsna frimmande och potentiellt giftiga &mnen, dér levern,
kroppens reningsverk, utgdér en viktig roll. Det &r samspelet mellan
lakemedelstransportdrer och metaboliserande enzymer 1 levern, tarmen, njurarna och 1
andra védvnader som mojliggdr att likemedel tas upp, omvandlas eller bryts ner
(metaboliseras) till mer littlosliga produkter som lattare utsondras 1 galla och urin.
Manga likemedel transporteras av samma transportorer och metaboliseras av samma
enzymer, vilket kan orsaka likemedelsinteraktioner nir en patient far tva eller fler
lakemedel samtidigt. Interaktioner intrdffar exempelvis ndr kroppen bryter ned tva
lakemedel pd samma sitt med hjdlp av samma leverenzym eller ndr flera likemedel
utsondras via samma transportor, vilket kan medfora att koncentrationener av lakemedlet
blir for hoga i blod och véivnader. For hoga likemedelskoncentrationer kan leda till
biverkningar och toxicitet. For att forutsdga och studera samspelet mellan dessa
komplicerade processer behovs ett testsystem som bevarar leverns funktioner. Eftersom
lakemedelsmetabolism skiljer sig at mellan djur och méanniskor ar det viktigt att
anvinda humana celler. Problemet &r att leverceller forlorar sin forméga att
metabolisera och transportera ldkemedel inom négra fa timmar eller fi dagar efter det
att levercellerna har overforts frdn sin naturliga miljo i levern till en odlingsplatta.
Likemedelstester 1 leverceller som har minskad eller forlorad funktion kan leda till
felaktiga slutsatser som kan medfora risker for patienter som tar likemedlet samt orsaka
att lakemedelsprojekt stoppas sent i utvecklingen eller dras tillbaka frdén marknaden.

En idé for att bevara levercellernas funktioner ar att odla cellerna i en miljé som
efterliknar levern sa mycket som mdjligt. I mitt projekt har vi odlat humana priméra
leverceller och en levercellinje (HepaRG) i1 en bioreaktor som mojliggdr en
tredimensionell odling. Bioreaktorn dr uppbyggd av kapilldrer dir medium och luft
cirkulerar for att forse cellerna, som ir placerade mellan kapilldrerna, med energi och
syre, samt transportera bort slaggprodukter. Mellan kapillarerna bygger cellerna upp en
vévnadslik struktur. Cellerna far da den viktiga cell-cell kontakten som behdvs for att
bevara viktiga funktioner och uttrycker likemedelstransportorer i cellmembranen. Vi
har sett att levercellerna i bioreaktorn transporterar och metaboliserar likemedel 1 minst
en vecka till skillnad fran négra timmar till ndgra dagar 1 odlingsplattor. Det var ocksa
mdjligt att forutse likemedelsinteraktioner som tidigare upptickts nir patienter tagit
flera likemedel samtidigt. Bioreaktorn Sppnar upp for langtidsstudier av langsamt
metaboliserande ldkemedel som kréver langa inkubationstider samt studier av
induktion, ldkemedelsinteraktioner och kronisk toxicitet, vilket kan bidra med viktig
information for att kunna utveckla ett sikert ladkemedel som anvénds pa rétt sétt.
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