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ABSTRACT

barrier consists of three layers: the slit diaphragm that bridges the interlocking foot pro-

cesses of the podocytes, the glomerular basement membrane and fenestrated endothelial
cells. The filtration barrier is permselective to plasma macromolecules based on size, shape, and
charge. The molecular makeup of the filtration barrier determines its permselectivity. Knowledge
about the molecular mechanisms of the glomerular filtration barrier has been gained with the
study of genes mutated in humans and animal models of glomerular kidney disease.

( : Lomerular kidney diseases are a major health care burden. The glomerular filtration

In the thesis work, we performed a proteome analysis of healthy glomeruli in mice using
two-dimensional gel electrophoresis coupled to mass spectrometry. A total of 232 unique proteins
were identified from 414 gel spots. This study provided a snapshot of the glomerular proteome
that can serve as reference for future glomerular protein biomarker studies.

We describe the expression and physiological function of the gene Gleci1 in zebrafish. His-
tological analysis of Gleci1 showed expression in podocytes and mesangial cells. In vivo and in
vitro studies demonstrated that Glccit expression is induced by glucocorticoids. Depletion of
Gleci1 by morpholino knockdown resulted in the development of pericardial edema and defects
in glomerular filtration. Our results suggest a role for Glcci1 in glomerular injury and proteinuria.

Knockdown experiments of the paralogs Plekhh1 and Plekhhz2 in zebrafish resulted in gross
morphological changes in the glomerulus, including thickening of the glomerular basement
membrane and disorganization of the podocyte foot processes associated with a defective filtration
barrier. These results suggest a role for Plekhh1 and Plekhh2 in regulating podocyte foot process
morphology in zebrafish. We further characterized Plekhh1 and Plekhh2 in knockout mouse
models. Single knockouts of Plekhh1 and Plekhh2 do not develop any apparent phenotype.
Plekhh1 and Plekhh2 deficient mice were intercrossed to produce mice lacking both genes.
This yielded fewer than expected number of double knockout offspring, suggesting functional
redundancy. Ultrastructural analysis of surviving double knockout mice did not reveal changes
in glomerular morphology suggesting that Plekhh1 and Plekhh2 are largely redundant for kidney
function in mice.

These results give insight into glomerular biology and pathomechanisms of kidney disease
that might provide a basis for translational research in the future.

Keywords: Kidney glomerulus, podocytes, slit diaphragm, proteinuria, zebrafish, knockout
mouse.
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Extended Summary



2 Chapter 1. Introduction

Introduction

1.1 Glomerular Filtration Barrier

The kidney glomerulus comprises the Bowman’s capsule and a tuft of intertwined capillaries,
which constitute the actual kidney blood filter. The main function of the kidney is to sieve small
molecular weight plasma waste products into the Bowman’s space to produce primary urine. The
primary urine is further modified in the tubular system to generate the final urine waste (Figure
1.1a and 1.2a). In one day, the two kidneys produce approximately 180 liter of primary urine, but
the final excreted volume is about 1.5 liter per day. In contrast to plasma, the urine is practically
devoid of proteins of the size of albumin or larger. Glomerular ultrafiltration occurs in a capillary
wall made up of fenestrated endothelial cells, glomerular basement membrane (GBM), and the
slit diaphragm of podocytes (Figure 1.1b and Figure 1.2b). The filtration barrier is permselective
to plasma macromolecules based on size, shape, and charge. The permselective properties of the
glomerular filtration barrier are dictated by pore sizes of the GBM and slit diaphragm and to
some extent charge selectivity. Defects and damage of components of the filtration barrier can
cause excessive leakage of protein into urine, a condition called proteinuria (Table 1 and Table 2).
Proteinuria is a major factor promoting the progression of kidney disease and a common feature
in most renal disorders.

1.2 Podocytes

Podocytes are highly differentiated epithelial cells that enwrap glomerular capillaries [7]. Podocytes
constitute a cell body and major cytoplasmic projections (primary processes) that divide into
secondary processes and subsequent foot processes. The foot processes are ordered in such a
way that processes of neighboring cells interdigitate like the fingers of a folded hand (Figure
1.1b). A specialized cell-cell junction termed slit diaphragm, bridges the interdigitating foot
processes. Like other epithelial cells, the podocytes are polarized and feature distinct apical and
basal domains. The slit diaphragm is the site of contact between neighboring foot processes and
forms the border dividing the podocyte foot process plasma membrane into an apical domain
facing the urinary space and a basal domain resting on the GBM (Figure 1.1c and 1.1d). The
different plasma membrane domains are interconnected through the cytoskeleton via a network
of protein-protein interactions, actin-filament and microtubules that maintain the distinctive cell
shape of the podocyte (Figure 1.3). In proteinuric diseases, a flattening of foot processes is often
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Figure 1.1: Glomerular filtration barrier. (a) The kidney glomerulus is a tuft of capillaries within the
Bowman'’s capsule. (b) The Glomerular filtration barrier is made up of three layers. Fenestrated endothelial
cells, glomerular basement membrane and podocytes with a cell body, primary processes and interdigitating
foot processes. (c) Glomerular filtration from blood to primary urine occurs through a layer of fenestrated
endothelium covered with a glycocalyx, the glomerular basement membrane (GBM) and the slit diaphragm
bridging podocyte foot processes. (d). Podocytes are polarized cells. The slit diaphragm (SD) divides the
podocyte foot processes into an apical membrane domain facing the urinary space and basal membrane
domain resting on the GBM.

observed, a phenomenon referred to as effacement [7, 8]. The whole podocyte flattens as a result
of retraction, a widening and shortening of the foot processes. This gives the appearance of a
continuous cytoplasmic sheet casing the glomerular capillary. Currently the detailed pathomecha-
nism of foot process effacement and its involvement in the development of proteinuria are not
well understood.

1.2.1 Slit Diaphragm

The slit diaphragm is a specialized cell-cell junction located immediately above the GBM (Figure
1.1c). Apart from proteins like cadherins and catenins, that are constituents of the most common
types of cell junctions, the slit diaphragm contains proteins that are specialized for carrying out
the ultrafiltration process. [9, 10]. Today, the slit diaphragm is considered to be the most critical
part of the glomerular filtration barrier [11]. A number of components of the slit diaphragm
are mutated in patients with nephrotic syndrome (Table 1) that is characterized by massive
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2 o

Glomerular baseme!

(a) Kidney glomerulus. (b) Glomerular filtration barrier.

Figure 1.2: Immunohistochemical staining of Nephrin in the kidney glomerulus. (a). A
continuous strong staining on the outside of glomerular capillary loops is observed. (b). Transmission
electron micrograph showing the three layers of the glomerular filtration barrier.

proteinuria.

Nephrin forms the backbone of the slit diaphragm and it was the first protein located in this
unique structure (Figure 1.2a and 1.3) [12]. Deleterious mutations in nephrin cause collapse of the
slit diaphragm and massive proteinuria already in utero in humans, and mice lacking nephrin
exhibit a similar severe phenotype (Table 1) [13, 14, 15, 11]. Nephrin is a transmembrane protein
with a short intracellular domain, an extracellular domain containing eight immunoglobulin-like
motifs and a fibronectin motif. The extracellular domains of Nephrin from neighboring foot
processes likely form homodimers spanning the uniformly wide slit diaphragm (Figure 1.3) [16].
Based on electron tomography results and Nephrin interaction studies, the Nephrin molecules
form a zipper-like structure that can act as a filter [17]. This kind of zipper-like structure has been
proposed earlier based on transmission electron microscopic studies [18].

NEPH1 possesses five immunoglobulin-like domains and is structurally related to Nephrin.
NEPH?1 localizes to the slit diaphragm where it forms homodimers with other NEPH1 molecules
and heterodimers with Nephrin [19]. Mice lacking NEPH1 develop massive proteinuria much
like Nephrin knockout mice [14]. Furthermore, disruption of the glomerular filtration barrier
has been recapitulated by morpholino knockdown of NEPH homologs in zebrafish [20]. Podocin
is an intramembrane protein with a hairpin like shape where both N- and C- termini face the
cytoplasm (Figure 1.3).

Podocin interacts directly with the CD2-associated protein, NEPH1 and Nephrin at the
slit diaphragm where it also forms homo-oligomers with other podocin molecules [21, 22,
23]. Mutations in podocin cause steroid resistant congenital nephrotic syndrome (Table 1) [24].
Mutated Podocin fails to localize to the slit diaphragm where it might have a scaffolding function
as the location of Nephrin is also affected [25]. Inactivation of podocin in mice mirrors the human
phenotype with heavy proteinuria, hypercholesterolemia and progressive renal failure [24, 26, 25,
27].
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Figure 1.3: Illustration of podocyte foot processes showing key components of the glomerular
filtration barrier. Mutations in the genes encoding these proteins have been linked to human disease and
a renal phenotype in animal models (Table 1). In the glomerular basement membrane mutations in all the
components of type IV Collagen have been linked to Alport Syndrome and mutations in Laminin B2 are
linked to nephrotic syndrome. Foot processes are basally anchored to the glomerular basement membrane
via Integrin a3 and CD151 both are linked to nephropathy with extra renal manifestations. Mutations in
the slit diaphragm proteins Nephrin and Podocin cause congenital nephrotic syndrome, like PTPRO that
is located at the apical surface of podocytes. Mutations in the actin cytoskeleton proteins CD2-associated
protein , B-actinin—4 and Myosin1E are associated with focal segmental glomerulosclerosis.
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Cadherins are transmembrane proteins that play an important role in cell adhesion. Two
cadherin proteins have been located to the slit diaphragm, the large protocadherin FAT1 and
vascular endothelial cadherin (CDHs) [28]. FAT1 is needed for the filtration barrier as FAT1
knockout mice and zebrafish develop severe proteinuria and pronephric cyst, respectively (Table
2) [29, 30, 31]. Renal abnormalities in CDH5 knockout mice have not been determined, as they
show complete embryonic lethality during organogenesis.

Cell polarity is fundamental for the proper function of most cell types. A complex of proteins
involved in cell polarity co-localize with Nephrin on the cytoplasmic side of the slit diaphragm.
This polarity complex is composed of Partitioning defective 3 (PARD3), Partitioning defective 6
(PARD6G) and Protein kinase C ¢ (PRKC) [32, 33]. PARD3 interacts with nephrin and NEPH1, and
recruits the PARD6G and PRKC to the slit diaphragm. The absence of PRKC: in podocytes causes
proteinuria in mice indicating that this cell polarity complex is important in regulating podocyte
cell polarity and a functional glomerular filtration barrier [32, 33]. Crb2b is a polarity protein
of the crumbs family that has been shown to affect localization of nephrin in podocytes. Crb2b
depleted zebrafish larvae show disrupted glomerular filtration associated with gross changes in
podocyte foot processes morphology mis-localization of nephrin to the podocyte apical surface
[34]. Crb2 knockout mice show compleate embryonic leathality before kidney organogenesis [35].

TRPC6 is a transient receptor potential channel involved in the regulation of intracellular
calcium concentration. In podocytes, TRPC6 is located to the slit diaphragm region and mutations
in TRPC6 have been linked to familial focal segmental glomerulosclerosis (Table 1) [36, 37].
Despite this TRPC6 knockout mice have an intact glomerular filtration barrier [38, 39]. However,
overexpression of TRPC6 in transgenic mice results in a phenotype resembling focal segmental
glomerulosclerosis [40].

1.2.2 The Podocyte Apical Surface

Apically the podocytes face the urinary space of the Bowman’s capsule and the glomerular
filtrate (Figure 1.1c). The apical plasma membrane is covered with a glycocalyx made up from
negatively charged molecules. The negative charge of the apical surface is believed to be important
for repelling the plasma membrane of a neighboring foot process which in turn maintains a
space between foot processes, and podocytes and the Bowman'’s capsule. Podocalyxin is an O-
glycosylated and sialylated transmembrane protein that is the major component of the negatively
charged glycocalyx of podocyte foot processes [41]. Mice lacking podocalyxin have severe
podocyte malformations that hinder normal glomerular filtration and formation of primary urine
resulting in renal failure [42]. The negative charge of podocytes is neutralized in inducible models
of acquired podocyte disease in rodents such as those caused by puromycin and protamine sulfate,
resulting in a collapse of the slit and disruption of the highly ordered foot process architecture
with proteinuria as a result [41].

The transmembrane receptor tyrosine phosphatase PTPRO is located at the apical plasma
membrane of podocytes (Figure 1.3). PTPRO has a large extracellular domain containing multiple
fibronectin type III repeats and a single cytoplasmic phosphatase active site. Mutations in PTPRO
have been shown to be associated with nephrotic syndrome in humans (Table 1) [43]. Furthermore,
PTPRO deficient mice exhibit abnormal podocyte morphology, reduced glomerular filtration
rate, and are susceptible to high blood pressure (Table 1) [44]. Thus, PTPRO is necessary for
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the maintenance of normal podocyte structure and plays a role in the regulation of glomerular
filtration.

1.2.3 Podocyte Cytoskeleton

The cytoskeleton renders podocytes its distinctive shape and coherence and is essential for a
functional filtration barrier. The cytoskeleton of the podocyte cell body and primary processes
mostly contains intermediate filaments and microtubules, while actin filaments are predominant
in the foot processes that run lengthwise along their axis (Figure 1.3). Components of the
cytoskeleton receive and mediate signaling through cues from the extracellular environment that
can result in changes in cell shape. For example, during foot process development, Nephrin
molecules are phosphorylated which results in their binding to intracellular NCK proteins (NCK1
and NCK?2) that then interact with actin monomers which assemble into oligomers [45]. Also,
defects and injuries of podocytes are known to cause remodeling of the actin cytoskeleton
which can lead to foot process effacement that generally is accompanied by proteinuria [7, 8].
During repair of foot process and slit diaphragm damage and effacement, Nephrin molecules
are phosphorylated similarly as during development, which leads to reconstruction of the actin
cytoskeleton [46]. The NCK proteins bind to the cytoplasmic tail of Nephrin and recruit other
proteins involved in the regulation of actin dynamics. NCK protein mediated actin polymerization
and cytoskeletal reorganization through Nephrin is essential for the normal filtration barrier as
mice lacking both Nck proteins in podocytes develop massive proteinuria [45] The formation of
foot processes and effacement are dynamic processes that occur very fast after initial damage.
Loss of foot processes in effacement can be repaired quickly such as in many cases of minimal
change nephrosis, the most common cause of nephrosis in children.

Nephrin and the slit diaphragm are connected to the actin cytoskeleton via CD2-associated
protein (CD2AP) and NCK proteins [47, 48, 49]. CD2AP binds both nephrin and actin establishing
a link between the slit diaphragm and the actin cytoskeleton. This link is crucial for the filtration
barrier as CD2AP deficient mice exhibit massive proteinuria and foot process effacement. Like
other key constituents of the podocytes cytoskeleton mutations in CD2AP have been associated
with segmental scarring of the kidney glomerulus in humans, a condition referred to as focal
segmental glomerulosclerosis (FSGS) (Table 1) [49, 50].

Further insight into the regulation of actin dynamics has been gained through studies of the
actin modulating proteins Cofilin1 (CFL1) and Inverted formin FH2 WH2 domain containing
(INF2). Cofilint is part of the ubiquitous cofilin family of proteins that are essential for the
remodeling and disassembly of actin filaments [51]. Podocyte specific inactivation of Cofilin1 in
mice results in a loss of organized actin cytoskeletal architecture, susceptibility to podocyte injury,
proteinuria and gradually results in foot process effacement [52]. This implies that Cofilin1 is
an essential regulator of actin dynamics in podocytes. Furthermore, it has been demonstrated
in vitro that nephrin may play a role in the regulation of Cofilin1. INFz2 is highly expressed in
podocytes. (Figure 1.3) INF2 is a member of the heterogeneous diaphanous-related formin family
and it has been show to control actin polymerization as well as depolymerization. Mutations
in INF2 have been identified as a common cause of familial FSGS underlining the importance
of dynamic rearrangement of the podocyte cytoskeleton in maintaining a functional glomerular
filtration barrier [53, 54].
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Another actin binding protein linked to familial FSGS is a-actinin-4 (Figure 1.3) [55]. Interest-
ingly a podocyte specific expression of the most common disease causing a-actinin-4 mutation
in a mouse model mirrors the human disease phenotype [56, 57]. A complete disruption of
a-actinin-4 in a mice leads to detachment of podocytes from the GBM and proteinuria indicating
that a-actinin-4 is an essential part of the podocyte cytoskeleton [58, 56]. The actin-associated
protein Synaptopodin has been identified as a regulator of a-actinin-4 activity. Synaptopodin defi-
cient mice have normal kidney function and podocyte morphology. However, the Synaptopodin
knockout mice demonstrate impaired recovery after induction of podocyte injury [59].

The nonmuscle class I myosin MYO1E is highly enriched in podocytes. It is made up of
a motor domain; a regulatory domain and a long tail domain involved in cross-linking actin
filaments (Figure 1.3). MYO1E has been linked to a recessive form of FSGS [60]. Inactivation
of MYO1E in mice leads to proteinuria, podocyte foot process effacement, thickened GBM
and glomerulosclerosis [61]. A podocyte specific inactivation of MYO1E in mice mirrors this
phenotype emphasizing the role of MYO1E in podocyte actin cytoskeleton organization [62].

Another protein, worth mentioning here is Phospholipase ¢ € 1 (PLCE1). PLCE1 has been
associated with congenital nephrotic syndrome in humans and morpholino mediated gene
silencing in zebrafish results in disruption of the glomerular filtration barrier and disorganization
of foot processes (Table 1). Unlike other genes linked to nephrotic syndrome, PLCE1 is not a
structural protein. In contrast, it is an enzyme, a member of the phospholipase C superfamily [63,
64]. Mice with targeted mutations in PLCE1 do not however show a renal phenotype. The exact
role of PLCE1 in podocyte biology remains obscure.

1.3 Glomerular Basement Membrane

Basement membranes are a specialized form of extracellular matrix that underlies all epithelial,
and endothelial cells, and surrounds peripheral nerves as well as muscle and fat cells throughout
the body. The glomerular basement membrane (GBM) is a sheet of extracellular matrix that
separates the fenestrated endothelial cells from the podocytes (Figure 1.1c and 1.2b). Like other
basement membranes, the GBM contains laminin, type IV collagen, nidogen, and heparan sulfate
proteoglycans (HSPGs). However, the GBM is a structurally unique type of basement membrane.
It is thicker (240-370 nm) compared to most other basement membranes. This is due to the
fact that the GBM forms during glomerulogenesis by fusion of endothelial and pre-podocyte
basement membranes. In addition, the specific isoforms of laminins and collagen type IV present
in the GBM are different from those found in most other basement membranes. The GBM has
an important role in the formation and maintenance of the glomerular filtration barrier, and
mutations in components of the GBM are associated with hereditary human glomerular diseases.

The podocytes are anchored to the GBM through transmembrane receptors such as integrins
and tetraspanins (Figure 1.3). Integrins are heterodimeric proteins with alpha and beta subunits
that show differential expression between cell types and disease states. In podocytes, 351 integrin
is the major isoform and is necessary for the development of the glomerulus. Mutations in the
integrin B3 chain, have been associated with interstitial lung disease with nephrotic syndrome and
epidermolysis bullosa in humans (Table 1). Mice deficient for the integrin 83 chain in podocytes
develop massive proteinuria postnatally and show complete foot process effacement with severe
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defects of the GBM ultrastructurally (Table 1) [65, 66]. A similar phenotype is seen in mice
lacking the integrin B1 chain in podocytes [67]. Interestingly, Integrin-linked kinase (ILK) directly
interacts with integrin f1 and mediates integrin signal transduction. ILK has also been found
to interact with Nephrin linking integrin and slit diaphragm signaling [68]. Podocyte specific
inactivation of ILK causes mislocalization of Nephrin, severe proteinuria and kidney failure in
mice (Table 2)[68, 69]. This clearly underlines the importance of the #381 integrin isoform for the
development and maintenance of the glomerular filtration barrier. Tetraspanins are a multigene
family encoding four-transmembrane domain proteins that organize other membrane proteins
such as a3p1 integrin. The tretraspanin CD151 co-localizes with integrin a3 at the basal plasma
membrane of foot processes (Figure 1.3). CD151 knockout mice develop proteinuria and exhibit
severe thickening and splitting of the GBM that precede podocyte abnormalities mimicking the
phenotype of integrin a3 knockout mice (Table 1). This indicates a critical role for this protein in
the maintenance of the filtration barrier [66, 70].

Type IV collagen forms the structural framework of the GBM. The extensively cross-linked
GBM type IV collagen meshwork provides tensile strength to the glomerular capillary wall
(Figure 1.3). During development the triple-helical type IV collagen molecules of the GBM
are composed of a1 and a2 chains. However, after birth, this isoform is replaced by a3aqas
trimers that contain more disulfide crosslinks. Mutations in any of adult GBMs collagen chains
cause Alport’s syndrome (Table 1) [71, 72], a disease characterized by the distortion of the GBM
structure and a progressive renal hematuria disease that usually leads to renal failure [73]. A
similar phenotype is observed in corresponding mouse models lacking the a3a4a5 trimers and
in mice lacking the non-collagenous domain (NC1) of the a3 chain that specifically disrupts the
assembly of Type IV collagen [74, 75, 76, 77, 78]. The collagen network binds directly to laminin
in the GBM and is connected to podocytes via plasma membrane linker proteins such as integrin.

The heterotrimeric laminins are permanent features of all basement membranes where they
form a cross-linked meshwork with type IV collagen (Figure 1.3). During development, the GBM
laminin is laminin-521 containing the a5821 chains [79]. Mutations in the Laminin B2 chain are
associated with perinatal disease termed Pierson’s syndrome, which is characterized by massive
proteinuria and ocular abnormalities [80]. Mice lacking the Laminin B2 chain exhibit disorganized
GBM and massive proteinuria, which further underlines the importance of this laminin in the
glomerular filtration barrier (Table 1). Importantly, massive protein leakage through the filtration
barrier is detected in these mice before any abnormalities in podocytes and loss of Laminin 2
results in compensatory upregulation of Laminin 1 resulting in a structurally intact but defective
GBM that likely is the cause of proteinuria [81, 82, 83]. Laminin a5 (Lamas) knockout mice die
late during development as a cause of defects in basement membranes in various tissues including
the GBM [82, 84, 85]. A mouse model with a hypomorphic mutation in Lamas die as a result of
polycystic kidney disease and renal failure by four weeks of age [84]. Podocyte specific expression
of wiltype Lamas in the hypomorphic mutant mice prevents proteinuria and development of
kidney cysts. On the other hand, a podocyte specific inactivation of Lamas results in a thickened
and damaged GBM and podocyte effacement [85]. Nidogen1 is thought to be involved in the
assembly of the Collagen IV and Laminin network of the GBM. Inactivation of Nidogen1 does not
result in an obvious phenotype in mice. However, a deletion of the Nidogen interacting domain
of Lamininy1 (Lamaci) results in kidney agenesis emphasizing the important role of laminins in
the formation of the GBM [86]. Interestingly the @381 integrin isoform is a receptor of laminin-521
and it is likely that disruption of the integrin-laminin interaction results in detachment and loss
of podocytes. Heparan sulfate proteoglycans are made up of a core protein with one or more
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covalently attached glycosaminoglycans.

Three HSPGs have been identified within the GBM, agrin, perlecan, and collagen XVIII [87,
88]. HSPGs are believed to contribute to charge-selectivity of the ultrafiltration process since
removal of their negative charge after intravenous administration of heparanases is reported to
cause increased permeability of the filtration barrier in animal models [89]. However, the role of
HSPGs in glomerular filtration has been challenged, as mice lacking podocyte-derived agrin and
perlecan lacking heparin-sulfate side chains do not show exhibit proteinuria [90, 88]. On the other
hand, mice lacking collagen XVIII a1, the gene product of COL18A1, show mesangial expansion
and podocyte foot process abnormalities [87, 91, 92].

1.4 Fenestrated Glomerular Endothelium

Endothelial cells line the inner surface of the vascular tree throughout the body and form a barrier
between blood and tissues. Endothelial cells in various vascular beds have quite different structural
and functional properties. The glomerular endothelium is fenestrated and discontinuous with
large pores. Whereas some discontinuous endothelia are permeable to water and small solutes,
others, such as the brain capillary endothelium, are highly impermeable. In the glomerulus,
endothelial cells are an important part of the glomerular filtration barrier, although their direct
role in restricting the passage of macromolecules through the capillary wall is still debated.
Morphologically, there are two types of glomerular endothelial cells. Cells located near the hilus
of the capillary loop that do not have fenestrae and endothelial cells located in the peripheral
regions of the glomerular tuft that are flat and highly fenestrated. These fenestae of the plasma
membrane range from 70 to 100 nm in diameter, vastly bigger than the diameter of albumin. The
fenestrae constitute 30-50% of the glomerular capillary wall surface area. Unlike many other
fenestrae in endothelial cells, those present in the glomerulus lack diaphragms [93].

Intact glomerular endothelial cell fenestrae are essential for the normal hydraulic conductivity
of the glomerular capillary wall. In many human disorders, such as in pre-eclampsia and in
the hemolytic uremic syndrome, the integrity of glomerular endothelial cell fenestrae is lost.
These diseases are associated with reduced glomerular filtration rate. Similar findings have been
observed in animal models in which glomerular endothelial fenestrations are affected. Of note is
that VEGF-A has been shown to be a key factor in the formation and maintenance of glomerular
endothelial cell fenestrations [94, 95]. The glomerular endothelial cells are enveloped in an
extracellular surface layer, glycocalyx, mostly made up from negatively charged glycoproteins,
glycosaminoglycans and membrane associated proteoglycans (Figure 1.1c). The surface layer
might hinder the passage of albumin and other plasma proteins. This idea is supported by
studies in various experimental models where the permeability of the glomerular capillary wall is
increased after endothelial cell surface layer disruption.
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Table 1.1: Genes linked to glomerular kidney disease in humans.

11

Location Gene Sumbol Disease (OMIM ID)* Mouse Phenotypef Zebrafish Phenotypei Ref.
NPHS1 Nephrotic  syndrome, type 1 Proteinuria, podocyte foot process Glomerular filtration disrupted [15, 11, 96, 2]
(256300) effacement, absent podocyte slit
diaphragm
NPHS2 Nephrotic syndrome, type 2 Proteinuria,  glomerulosclerosis, Glomerular filtration disrupted [26, 25, 27, 97]
(600995) podocyte foot process effacement,
Slit diaphragm absent podocyte slit diaphragm,
abnormal  renal  glomerulus
basement membrane morphology
PLCE1 Nephrotic syndrome, type 3 Glomerular filtration disrupted, [63]
(610725) foot process effacement, disorgani-
zation of slit diaphragms
TRPC6 Glomerulosclerosis, focal segmen-
tal, 2 (603965)
LAMB2 Nephrotic  syndrome, type 5 Proteinuria,  fused  podocyte [81]
(614199) foot processes, increased renal
glomerulus basement membrane
thickness, abnormal glomerular
filtration barrier function
COL4A3 Alport syndrome, autosomal re- Proteinuria, hematuria, increased 75, 74, 771
cessive (104200, 203780) renal glomerulus basement mem-
brane thickness, podocyte foot
process  effacement, expanded
GBM mesangial matrix, renal glomeru-
lus fibrosis
COL4A4 Alport syndrome (203780) Proteinuria, hematuria, expanded [98]
mesangial matrix, glomeruloscle-
rosis
COL4As5 Alport syndrome,  autosomal Proteinuria, hematuria, dilated [76]
dominant, autosomal recessive glomerular capillary, podocyte
(301050) foot process effacement, abnormal
renal glomerulus basement mem-
brane morphology, glomeruloscle-
rosis, mesangial cell hyperplasia
CD151 Nephropathy with pretibial epi- Proteinuria, podocyte foot process [66, 70]
dermolysis bullosa and deafness effacement, absent podocyte slit
(609057) diaphragm, decreased podocyte
number, increased renal glomeru-
lus basement membrane thickness,
Basal surface glomerulosclerosis
ITGA3 Interstitial lung disease, nephrotic Proteinuria, podocyte foot process [65, 66]
syndrome, and epidermolysis bul- effacement, absent podocyte foot
losa, congenital(614748) process, increased renal glomeru-
lus basement membrane thickness,
glomerulosclerosis
Apical surface PTPRO Nephrotic  syndrome, type 6 abnormal podocyte foot process [44]
(614196) morphology, decreased renal
glomerular filtration rate
ACTNg Glomerulosclerosis, focal segmen- Proteinuria, glomerulosclerosis [58]
tal, 1 (603278)
INF2 Glomerulosclerosis, focal segmen-
Cytoskeleton tal, 5 (613237) .
MYO1E Glomerulosclerosis, focal segmen- Proteinuria, hematuria, podocyte [61]
tal, 6 (614131) foot process effacement, increased
renal glomerulus basement mem-
brane thickness glomerulosclero-
sis, expanded mesangial matrix
CD2AP Glomerulosclerosis, focal segmen- Proteinuria, abnormal podocyte Glomerular filtration disrupted [49, 50, 97]

tal, 3 (607832)

morphologyglomerulosclerosis,
expanded mesangial matrix

*Online Mendelian Inheritance in Man (OMIM).

*Mouse genome informatics (MGI).
+Zebrafish Model Organism Database (ZFIN).
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Table 1.2: Genes linked to glomerular kidney disease in mouse and zebrafish.

Location Gene Symbol

Mouse Phenotype§

Zebrafish Phenutype‘]1

Ref.

Neph1
Fat1

Slit diaphragm
phrag Prkci

Crb2

Proteinuria, abnormal renal glomerulus morphol-
ogy, expanded mesangial matrix

Fused podocyte foot processes, abnormal podocyte
slit junction morphology

Glomerulosclerosis, fused podocyte foot processes,
abnormal podocyte polarity, abnormal podocyte
slit diaphragm morphology

Glomerular filtration disrupted

Pronephric cysts

Glomerular filtration  disrupted,
podocyte slit diaphragm morphology

abnormal

[14, 20]
[29, 311

[33, 991

[34]

Itghl

Basal surface

Proteinuria,  increased podocyte apoptosis,
podocyte foot process effacement, abnormal renal
glomerulus basement membrane morphology,
dilated glomerular capillary

(671

lamacs

GBM
lamc1

Agrn

Col18a1

Proteinuria, hematuria, abnormal glomerular cap-
illary endothelium morphology, podocyte foot pro-
cess effacement, increased renal glomerulus base-
ment membrane thickness, glomerulosclerosis,
Abnormal renal glomerulus morphology, de-
creased renal glomerulus number, abnormal kid-
ney development

Increased renal glomerulus basement membrane
thickness

Podocyte foot process effacement, expanded
mesangial matrix

[82, 84, 85]

[86]

[90]

[91, 92]

Nck1, Nck2

Cflz

Cytoskeleton
Ik

Proteinuria, glomerulosclerosis, fused podocyte
foot processes, abnormal glomerular filtration bar-
rier function

Proteinuria, abnormal podocyte foot process mor-
phology, podocyte microvillus transformation
Proteinuria,  detached podocyte,  decreased
podocyte number, podocyte foot process ef-
facement, abnormal podocyte slit diaphragm
morphology, increased renal glomerulus basement
membrane thickness

Glomerular filtration disrupted,

[471

[52, 100]

[68, 691

Apical surface Podx]

Anuria, absent podocyte foot process, absent
podocyte slit diaphragm

Fenestrated endothelium Vegfa

Proteinuria, abnormal glomerular capillary en-
dothelium morphology, absent glomerular en-
dothelium fenestra, abnormal renal glomerulus
basement membrane thickness, glomerulosclerosis,
decreased renal glomerulus number

l95, 941

SMouse genome informatics (MGI).
1Zebrafish Model Organism Database (ZFIN).
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Aims of the Thesis

The objectives of this thesis work are part of a large systems biology approach to increase the
understanding of how glomerulus specific proteins are involved in biological and pathological
processes of kidney glomeruli. An initial and central part of the study has included isolation of
glomeruli from healthy mouse kidneys and characterization of their transcriptomes and proteomes.
The specific objectives of this thesis were to characterize the proteome of normal mouse glomeruli,
study the role of some proteins, Glcci1, Plekhh1 and Plekhh2, highly upregulated in glomeruli
using zebrafish and mouse as a model system.

Specific Aims

Paper 1
To identify proteins in normal mouse kidney glomeruli by two-dimensional gel electrophore-
sis and MALDI-TOF mass spectrometry.

Paper II
To determine the expression pattern, sub-cellular location and function of Glcci1 in the
kidney.
Paper III
To elucidate the in vivo function of the paralogous genes Plekhh1 and Plekhhz2 in zebrafish.
Paper IV

To determine the effect of double knockout of Plekhh1 and Plekhh2 on kidney function in
mice.
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Methodology

The methods applied in the thesis are described in further detail in the materials and methods
section of the appended papers (I-IV).

Glomerular isolation (Paper I-1V)
Mice were anesthetized and perfused through the heart with magnetic beads. The kidneys
were removed, minced and digested with DNasel. The digested tissue was pressed through
a cell strainer and washed several times. Finally, the glomeruli were collected with a magnet
and washed. The glomeruli were counted and the purity was controlled under a light
microscope. In paper II and III, glomeruli were micro-dissected from transgenic zebrafish
expressing enhanced green fluorescent protein under a podocin promoter.

Two-dimensional gel electrophoresis (Paper I)
A method of electrophoresis in which the first dimension is Isoelectric focusing according
to the electrochemical charge of the protein and the second dimension is separation by gel
electrophoresis according to molecular weight.

In-gel digestion (Paper I)
Gel pieces from two-dimensional gel electrophoresis were destained, reduced, alkylated
and digested with trypsin. Peptides were extracted, desalted and concentrated prior to
mass spectrometric analysis.

Mass spectrometry (Paper I)
The type of a mass spectrometry used was matrix-assisted laser desorption ionization
time-of-flight (MALDI-TOF). MALDI-TOF uses an electric field to accelerate peptides and
then measures the time they takes them to reach the detector. If the particles all have the
same charge they will have the same kinetic energy and the velocity will depend on their
mass. Lighter peptides reach the detector first. Identification of proteins was performed
using the ProteinProspector MS-Fit and Mascot search engines.

Western blotting (Paper II)
A method of detecting a specific protein in a tissue extract. Proteins are separated according
to molecular weight using one-dimensional gel electrophoresis. Proteins are then transferred
by blotting from gel to membrane. Specific proteins can be localized on the membrane
using antibodies.

Northern blotting (Paper II)
A method to detect specific mRNAs. RNA is separated on a gel and transferred to a
membrane by blotting. Specific mRNAs are detected using a radio-labeled anti-sense probe.



15

Southern blotting (Paper III)
A method of detecting a specific genomic DNA fragment. Restriction enzyme digested
DNA is separated on a gel and transferred to a membrane by blotting. Specific DNA
fragments are detected with anti-sense radio-labeled probes.

Zebrafish filtration assay (Paper II-1II)

In Paper II, a novel method was used to asses proteinuria in zebrafish larvae. Briefly,
morphant zebrafish larvae were collected at four dpf and kept in five ml of medium.
After 24 hours, four ml of medium were collected and proteins were precipitated from
the solution and concentrated in a smaller volume. Finally, proteins were separated using
one-dimensional gel electrophoresis and stained for the presence of protein. In Paper
III, a different method to asses proteinuria in zebrafish larvae was applied. Transgenic
zebrafish expressing vitamin-D binding protein fused to enhanced green fluorescent protein
(DBP-EGFP) were used to assess proteinuria. Morphant zebrafish were collected at four
days post fertilization and fixed in paraformaldehyde. Fixed embryos were embedded in
plastic and sectioned through the glomerulus. Sections were examined under a fluorescent
microscope for the presence of fluorescent protein in tubuli as a sign of proteins having
traversed the glomerular filtration barrier.

Quantitative and Real-Time RCR (Paper II-IV)
Quantitative Real-Time PCR (qPCR) was used to detect gene transcripts in total RNA
isolated from mouse glomeruli wild-type and knockout mice. Real-Time PCR (RT-PCR) was
used to characterize expression of genes using cDNA libraries from various adult mouse
tissues, isolated mouse and zebrafish glomeruli as template for RT-PCR.

Immuno-histochemistry (Paper (Paper II-IV)
Immuno-histochemistry staining was used to detect proteins in frozen- or paraffin-sections
of kidney glomeruli.

Histology (Paper II-IV)
Mouse kidneys and embryos were fixed, dehydrated and embedded in paraffin. Zebrafish
larvae were fixed, dehydrated and embedded in plastic. Thin sections were stained with
Periodic acid-Schiff’s staining (PAS) alternatively Hematoxylin and Eosin (H&E) staining.

Immunoelectron and transmission electron microscopy (Paper II-IV)
Kidney biopsies from mice and zebrafish larvae were prepared for ultrastructural analysis
by fixation, dehydration and embedding. For transmission electron microscopy, ultra-
thin sections were made, treated to enhance contrast and examined under a transmission
electron microscope. For immunoelectron microscopy, ultra-thin sections of kidneys were
incubated with antibodies and examined under a electron microscopy. Random images of
glomerular capillaries were taken for semi-quantification of protein expression.

Morpholino antisense oligonucletide and mRNA injecton in Zebrafish (Paper II-IV)
Zebrafish (D. rerio) embryos used in this thesis were derived from the AB strain. Zebrafish
embryos were microinjected with antisense morpholino oligonucleotides at the one to four
cell stage and monitored for a phenotype at two to four days post fertilization. Morpholinos
oligonucleotides were designed to Morpholino to block or alter mRNA splicing of Plekhh1
and Plekhh2. Rescue experiments were done by co-injecting in vitro transcribed mRNA
with morpholino oligonucleotiedes.

Knockout mouse models (Paper III-IV)
A Plekhh2 gene knockout construct was designed. The construct was electroporated
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into a 129sv derived embryonic stem cells that were used to generate a chimeric Plekhh2
knockout mouse line. The mice were backcrossed onto a C57BL6/NTac background for
nine generations. Plekhh1 knockout mice line was generated by order from the NIH
knockout Mouse project (KOMP). The Plekhh1 knockout mouse line used in this thesis was
created from B57BL6 derived ES cell line (JM8A3), obtained from the NCRR-NIH supported
KOMP Repository and generated by the Mouse Biology Program at the University of
California-Davis. Plekhh1 and Plekhh2 mice were intercrossed to generate double knockout
mice.
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Results and Discussion

The results of the papers included in this thesis are briefly summarized and discussed in the
following sections. For more details see appended papers I-IV.

4.1 Paperl

Glomerulus proteome analysis with two-dimensional gel electrophoresis and mass spectrometry

In this initial proteome analysis study, we applied two-dimensional gel electrophoresis and
MALDI-TOF mass spectrometry to identify proteins from murine kidney glomeruli to create a
snapshot of the glomerular proteome that could serve as a reference to identify biomarkers of
glomerular disease by proteome analyses. Kidney glomeruli were isolated from healthy wild-type
mice using a method developed by Takemoto et al. [101]. Quality and number of glomeruli
obtained was assessed by light microscopy showing glomeruli largely free from Bowman’s capsule
and tubuli contaminants. From a single mouse, about 20,000 glomeruli are normally obtained,
yielding ~100 pg of protein. For the first dimension of protein separation, glomerular protein
extracts were subjected to iso-electric focusing (IEF) using a range of immobilized pH gradients.
For the second dimension, proteins were separated in an 8-16 % linear gradient polyacrylamide
gel. After separation in two dimensions, proteins were visualized on gels with either silver or
coomassie brilliant blue (CBB) staining. Excised spots were digested with trypsin and analyzed
by MALDI-TOF mass spectrometry. Protein identification was performed by peptide-mass
fingerprinting using a minimum of four matching peptides and coverage of 12% of the length of
the query. Minimal expectation for valid identification was P<0.05. Candidate biomarkers were
validated by de novo peptide sequencing using liquid chromatography-tandem mass spectrometry
(LC-MS/MS). A total of 232 proteins were identified from 414 excised spots. Comparison to
similar proteomic studies of the kidney glomerulus revealed a surprisingly small overlap, only 53
out of the 232 identified proteins in this study [102, 103]. Different mass spectrometric methods
and quality of tissue preparations could be a plausible explanation for this observation. In this
context, it is noteworthy that previous proteomic studies of the kidney glomerulus have not
successfully identified proteins specific for the podocyte slit diaphragm. We were able to identify
a-actinin-4, integrin a3, CLIC5 and nephrin, all of which have been linked to glomerular disease
in humans [13, 55, 104, 105]. Furthermore, Cofilin1 was identified, shown to be important for
modulating cytoskeletal dynamics of podocytes in animal models [51]. However, the majority of
the proteins identified in this study were housekeeping and structural proteins and a comparison
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with proteins identified in proteome studies of endothelial and mesangial cells revealed a large
overlap [103, 106]. Furthermore, comparison between proteins identified in our study and a cDNA
library prepared from kidney glomeruli revealed that several proteins were not represented by
their corresponding ¢cDNA [101]. This highlights the importance of using different approaches to
characterize gene expression as mRNA and protein stability differ significantly from each other.

Two-dimensional gel electrophoresis is a very powerful technique and has been applied
with great success in resolving less complicated protein solutions like urine, blood and whole
proteomes of bacteria that harbor a genome encoding for ~3,000 proteins [107, 108, 109]. However,
when it comes to more complex proteins solutions with >10,000 proteins the technique starts to
reach its limits, the chance of proteins overlapping increases and poor resolution of hydrophobic,
very basic, large, and small molecular weight proteins becomes more evident. Improved and
more sensitive alternatives to classic two-dimensional electrophoresis are emerging and have to
a large extent replaced the method. As an example of a improved version of the technique is a
study by Miyamoto et al. were they analyzed proteins extracted from human kidney glomeruli
applying a novel approach [110]. First, proteins were pre-fractionated using one-dimensional
gel electrophoresis. This was followed by a two-dimensional separation using solution-phase
iso-electric focusing in the first dimension and gel electrophoresis in the second prior to de novo
peptide sequencing with LC-MS/MS. Applying this methodology Miyamoto et al. were able
to successfully identify ~3,000 proteins demonstrating that sample pre-fractionation prior to
mass spectrometry substantially increases peptide identifications. Despite its limitations two-
dimensional gel electrophoresis is a useful technique that continues to be used and is constantly
being improved and optimized [111, 112, 113].

4.2 PaperlIl

Glcciz deficiency leads to proteinuria

This study describes the expression and physiological function of the gene Glcci1 (glucocorticoid
induced transcript 1) that previously was shown to be upregulated in kidney glomeruli in a
transcriptome study [101]. Immuno-histochemistry and expression analysis using RT-PCR and
northernblotting further confirmed the expression of Glccit in kidney glomeruli. To determine
the expression of Glccit within glomeruli in more detail, we carried out immunogold electron
microscopy that revealed localization of gold particles mainly in podocytes and mesangial cells.
Expression studies of Glecit using RT-PCR showed expression in a wide range of tissues in
accordance with our northern blot results. In a previous study it was shown that expression
of Glccit is induced by glucocorticoids in mouse thymocytes [114, 115]. This observation leads
us to the hypothesis that the glucocorticoid dexamethasone might induce expression of Glccit
in podocytes. Using immortalized mouse podocytes in culture we demonstrated increased
expression of Gleci1 in podocytes treated with dexamethasone. Furthermore, we showed that this
induction of gene expression might be mediated through the glucocorticoid receptor. To confirm
these results in vivo, we treated mice with dexamethasone. Glomeruli isolated from these mice
indeed showed an increase in Glcci1 expression as compared with control mice. These results
prompted us to carry out functional studies in zebrafish larvae. To confirm the expression of
Glcci1, we carried out immuno-staining with an anti-Gleci1 antibody showing specific immuno-
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reactivity in glomeruli of five day old zebrafish larave. Expression of Glecit was further analyzed
in glomeruli micro-dissected from transgenic zebrafish expressing green fluorescent protein
under the podocin promoter confirming our previous observation. Next, we applied morpholino
mediated gene inactivation in zebrafish larvae to get insight into the physiological function of
Glecit. Morpholino oligonucleotides were designed to block the translation initiation site of the
Glcci transcript or to interfere with RNA splicing. Gene specific targeting of the splice blocking
morpholinos, designed to interfere with splicing of the acceptor and donor sites of exon 2, was
demonstrated with RT-PCR and sequencing. Depletion of Glcci1 by specific morpholino injection
resulted in development of a pericardial edema, curvature of the dorsal body axis and short stature
at four days post fertilization. This was not observed in embryos injected with standard control
morpholinos at the same concentration. To further establish specificity of the gene inactivation,
we co-injected full-length zebrafish Glccit mRNA along with Gleci1 splice blocking morpholinos.
This greatly reduced the penetrance of the phenotype from 79% to 15%, indicating that the effects
of the morpholino mediated gene inactivation are specific to Glcci1. Histological analysis of Glccit
morphant zebrafish larvae showed dilated glomerular capillary loops and expanded Bowman'’s
space. Transmission electron microscopy revealed partial effacement of podocyte foot processes.
To determine the integrity of the glomerular filtration barrier, we applied a novel glomerular
filtration assay. Briefly, three day old wild-type and Glccit morphant zebrafish larvae were
incubated in equal volumes in cell culture plates. After 24 hours, the medium was collected and
proteins were precipitated from the solution and analyzed by gel electrophoresis. Medium from
Glecit morphant embryos showed two bands of approximately 70 and 150 kilodaltons. Bands of
the same size were also observed in medium from nephrin morphant larvae that served as positive
controls. Both bands were excised and were subjected to de novo sequencing by mass spectrometry.
This revealed that both bands originated from zebrafish vitellogenin that is a transport protein
highly abundant in the yolk and blood of zebrafish larvae. Furthermore, we observed decreased
glomerular Glcci1 expression in mouse models of adriamycin and lipopolysaccharide of acute
kidney injury, as well as in a diabetic mouse model (db/db) indicating that Glcci1 expression
might be generally down-regulated following podocyte injury.

In summary, our results suggest that Glcci1 plays an important role in the maintenance to the
glomerular filtration apparatus. Interestingly, shortly before our study was published, Tantisira et
al. showed in a genomewide association study that variants in the promoter region of human
GLCClI1 could be linked to glucocorticoid responsiveness in patients with asthma [116]. These
findings combined with the results of our study spurred Cheong et al. to examine whether variants
in GLCCI1 could predict glucocorticoid responsiveness in patients with nephrotic syndrome.
No statistically significant differences were noted in the rather small cohorts of glucocorticoid
responsive and non-responsive patients [117]. This needs to be studied in a larger cohort of
patients to determine if genotyping variants in GLCCI1 has a value as a diagnostic parameter
for patients with nephrotic disease. Independently, Glecit was identified as a candidate within a
quantitative trait locus (QTL) on Chromosome 6 associated with proteinuria based on expression
differences between a proteinuria resistant and proteinuria prone inbred mouse strains [118].
This QTL in mice is concordant with a proteinuria QTL on chromosome 7 in humans detected
in European Americans as part of the Family Investigation of Nephropathy and Diabetes (FIND)
study [119]. These studies further suggest a possible link between Gleci1 and glomerular disease.
On this note, it is tempting to speculate that Glcciz might play a role in the modulation of
glucocorticoid response in patients with nephrotic disease. To date, Glccit has not been studied
in the context of knockout mice. Generation of a Glcci1 knockout mice line could give insight
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into the role of Gleci1 in the pathogenesis of glomerular disease. Generation of a Glcci1 knockout
mice line could give insight into the role of Gleci1 in the pathogenesis of glomerular disease.

4.3 Paper III

Zebrafish Plekhh1 and Plekhh2 are involved in organization of foot processes and normal kidney function

The primary aim of this study was to characterize the physiological role of Plekhh2 which
we previously identified as a highly upregulated protein in podocytes of normal mice [101].
Furthermore, it was demonstrated using immunogold electron microscopy that Plekhh2 has
reduced expression in podocytes in a mouse model of adriamycin induced nephrosis, as well
as in patients with focal segmental glomerulosclerosis (FSGS) and minimal change nephrotic
syndrome [120, 121]. To further investigate the role of Plekhhz in the kidney and disease, we
generated a knockout mouse line deficient for Plekhh2 that was backcrossed for nine generations
onto a C57BL6/NTac background. However, analysis of Plekhh2 deficient mice revealed that all
Plekhh2~ knockokut mice were born at expected Mendelian ratios and were apparently normal.
Plekhh27~ knockout mice did not develop proteinuria for up to eight months of age, nor did
they show abnormalities in kidney morphology. The mutation was also backcrossed for four
generations onto 129/SvOla and DBA /2] background to exclude potential sub strain differences.
The lack of phenotype of Plekhh2 deficient mice led us to hypothesize that the paralog of Plekhh2,
Plekhh1, might compensate for the loss of Plekhh2 function. Gene expression analysis using
gqPCR showed that Plekhh1 was indeed two-fold up-regulated in glomeruli of Plekhh2~~ mice,
suggesting that up-regulated Plekhh1 might redundantly compensate for Plekhh2. Both Plekhh1
and Plekhh2 show expression in kidney glomeruli. Immuno-histochemistry with anti-Plekhh1
and Plekhh2 antibodies shows linear staining following the capillary loops of the glomerulus in
human kidneys. Furthermore, we were able to determine the cellular location of Plekhh1 and
Plekhh2 within the glomerulus to podocyte foot processes using immunogold electron microscopy.
To further study the in vivo function of the paralogs Plekhh1 and Plekhhz2 in the glomerulus, we
applied antisense morpholinos to inactivate gene expression in zebrafish larvae. RT-PCR was
used to confirm expression of Plekhh1 and Plekhh2 in micro-dissected zebrafish glomeruli. Using
an anti-Plekhh1 antibody, we were also able to localize immunoreactivity to the glomerulus on
cross-sections of four days post fertilization zebrafish larvae. No immunoreactivity was observed
using an anti-Plekhh2 antibody in zebrafish. We designed non-overlaping translation inititation
site (ATG) and splice blocking antisense morpholino oligonucleotides against each gene. As a
specificity control mutated versions of the splice blocking morpholinos containing five random
mutations were designed. All morpholinos were injected at the one to four cell stage and the
phenotype was scored at four days post fertilization. Both ATG and splice blocking morpholinos
against Plekhh1 and Plekhh2 resulted in pericardial edema, a typical sign of kidney failure in
zebrafish embryos. Larvae injected with mismatched splice morpholinos showed no significant
penetrance of the phenotype. Histological analysis of the morphant embryos showed gross
changes in glomerulus morphology. The Bowman’s space was enlarged and the number of
podocytes was reduced, exposing large, bare capillary loops. Transmission electron microscopy
of the pronephric glomerulus revealed disorganized podocyte foot processes and thickening of
the glomerular basement membrane (GBM) in both Plekhh1 and Plekhh2 knockdown zebrafish
larvae. The effect of Plekhh1 and Plekhh2 knockdown on the integrity of the glomerular filtration
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barrier was tested using transgenic zebrafish expressing a fusion-protein made up from vitamin-
D binding protein (DBP) fused with enhanced green fluorescent protein (EGFP) in the blood
circulation. The DBP-EGFP fusion-protein should not traverse the filtration barrier in healthy
zebrafish. Passage of DBP-EGFP fusion-protein through the kidney filter was monitored from
cross sections of pronephric filtration apparatus. In Plekhh1 and Plekhh2 morphant larvae the
passage of DBP-EGFP was seen as endocytic vesicles reabsorbed into the tubular epithelia, this
was not observed in larvae injected with standard control morpholino.

Taken together, although the Plekhh2 knockout mice exhibits no phenotype depletion of
Plekhh1 or Plekhh2 gene expression by morpholino injection in zebrafish results in disorganization
of podocyte foot processes, thickening of the GBM and proteinuria. This suggests a role in the
organization of podocyte foot process architecture and the formation of a functional renal filter in
zebrafish. Future studies examining double knockout mice will likely be needed to fully elucidate
the contribution of Plekhh1 and Plekhhz2 for the integrity of the filtration barrier.

4.4 PaperlIV

Analysis of Plekhh1 and Plekhh2 knockout mice reveal redundancy of the paralogs in kidney function

To determine the compensatory roles of Plekhh1 and Plekhh2 in kidney function we decided
to generate a knockout of Plekhhi. Plekhh1 knockout mice were generated by replacing exons
11-14, which encode for tandem PH domains, with a lacZ expression cassette. In heterozygous
Plekhh1*/~ mice B-galactosidase activity was detected in several tissues including brain, spinal
cord, lung and kidney’s. Heterozygous Plekhh1*/~ mice were intercrossed to generate Plekhh1/~
knockout mice. Plekhh1”~ knockout mice are born at expected Mendelian ratios, are both viable
and fertile, and have no morphological kidney abnormalities as observed by transmission electron
microscopy. Likewise, the observation that Plekhh2 knockout mice do not develop a kidney
phenotype suggests that the lack of phenotype of single knockouts of Plekhh1 and Plekhhz2 is
caused by functional compensation. We were, therefore, interested in determining the impact of
deleting both Plekhh1 and Plekhh2 on kidney function. To address this question, we intercrossed
Plekhh1 deficient mice with previously described Plekhh2 mutant mice to produce mice lacking
both genes. This yielded fewer than expected number of double knockouts offspring, as well
as Plekhhi ~/Plekhh2'~ mice. These results suggest a redundant function for Plekhh1 and
Plekhh2. Surprisingly, the surviving double knockout mice did not show abnormalities of the
kidney on histological and ultrastructural examination. However, at the ultrastructural level,
changes were observed in Plekhh1™~/Plekhh2"~ mice. Despite this, surviving double knockout
and 177 /Plekhh2*~ mice did not develop proteinuria for up to six months of age.

This study demonstrates a genetic interaction between Plekhh1 and Plekhh2. Both Plekhh1 -/
Plekhh2"- double knockouts and Plekhhi ~/Plekhh2*~ mutant mice show reduced perinatal
survival, indicating functional redundancy between Plekhh1 and Plekhh2. Previous observations
indicate that Plekhh2 localises to the actin-rich lamellipodia of cultured human podocytes and
interacts with B-actin and the cytoskeletal protein Hic-5 [121]. This is interesting in light of the
fact that cytoskeletal changes in podocytes are associated with foot process effacement [122].
This is consistent with the finding that podocytes of Plekhhi~~/Plekhh2*~ mice show changes
in ultrastructural organization of the podocyte foot process morphology, suggesting a possible
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role of Plekhh1 and Plekhh2 in the maintenance of the podocyte cytoskeleton. Surprisingly,
B-galactosidase activity was not detected in glomeruli of adult mice. In the kidney B-galactosidase
activity was restricted to tubular cells. This is in contrast to our previous data that demonstrates
expression of Plekhh1 in both mouse and zebrafish glomeruli using RT-PCR and in human
glomeruli with immuno-histochemistry. The cause of this discrepancy is somewhat unclear. One
explanation can be missing regulatory information in the sequence deleted in Plekhh1 knockout
mice or decreased stability of the LacZ transcript as an alternative explanation.

The generation of Plekhh1/Plekhh2 deficient mice is the initial step in the understanding
of the in vivo role of Plekhh proteins in mammals. For future studies, these mice will have to
be analyzed under physiological stress conditions in order to determine the definitive in vivo
function of Plekhh1 and Plekhha2.
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Conclusions

Techniques allowing for the isolation of pure kidney glomeruli have facilitated the study of the
molecular makeup of the kidney glomerulus using different “omics” approaches [123]. Others
and we have been involved in characterizing both the transcriptome and proteome of the kidney
glomerulus with the aim of gaining knowledge about the patho-mechanism of glomerular disease
[101, 110, 124, 113, 125].

In paper I of this thesis, we applied two-dimensional gel electrophoresis and mass spectrom-
etry to identify proteins in glomeruli isolated from healthy mice. The aim was to gather data
to get a snapshot of the healthy glomerular proteome to serve as a reference for future work
on disease models. The technique chosen for this work was two-dimensional gel electrophore-
sis, which is a widely used technique capable of resolving a complex mixture of thousands of
proteins. However, the technique has limitations that are reflected in the rather limited number
of proteins identified in our study. A conclusion that might be drawn from our work is that
two-dimensional gel electrophoresis is not sufficient to characterize the whole proteome of a
complex mini-organ such as the kidney glomerulus. However, the glomerular proteome will
not be defined by a single method. Our study is one of the first attempts to catalog the protein
components of the kidney glomerulus and it can be seen as a small step towards defining the
glomerular proteome. Proteomic techniques are still developing rapidly and future studies will
give us a deeper understanding of the glomerular proteome.

The main objective of this thesis is to validate the functional importance of putative candidate
genes emerging from our transcriptome studies with the aim to reveal novel gene function with
generation and analysis of animal models. The conservation of genes and genetic networks
across species is one of the biggest conceptual advances of the genomic revolution. This has
provided credence for using diverse animal models to study disease processes. We have chosen
to use both zebrafish and mice as animal models. The optical clarity and rapid development of
zebrafish embryos combined with morpholino mediated gene inactivation allows swift assessment
of candidate genes and the mouse model provides a good approximation of human biology
[126, 127]. The combination of these powerful models provides a way to functionally validating
putative candidate genes. Using this strategy we have followed up a number of genes through
functional studies. Two of them are presented in this thesis, Glcci1 and Plekhh2.

In paper II, we describe the functional characterization of the glucocorticoid-induced transcript
1 (Glccit) in zebrafish. This work demonstrates the usefulness of zebrafish as a model for kidney
disease. In this study, we were able to demonstrate expression of Glccit in podocytes and
mesangial cells in glomeruli. Furthermore, morpholinos targeting Glcci1 induced morphological
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changes in foot processes associated with a defective filtration barrier. These results and those
of others have spurred some interest in Gleci1 [116, 117, 118]. Further studies of knockout mice
and human patients will likely yield interesting discoveries regarding the function of Glecii.
Furthermore, in this study we have introduced new techniques to support phenotyping glomerular
disease in zebrafish that will be valuable for researchers in this field. Measuring proteinuria is an
important tool in kidney research to directly measure the permeability of the glomerular filtration
barrier. Since zebrafish live in water, a trivial task like measuring proteinuria becomes difficult.
Developing a robust reproducible method to easily screen for proteinuria in zebrafish would
facilitate large-scale mutagenesis screens in zebrafish to identify genes essential for glomerular
filtration.

In the work described in paper III of this thesis, we study the in vivo function of Plekhh2
and its paralog Plekhh1 in zebrafish. Knocking out Plekhh1 and Plekhh2 in zebrafish caused
a penetrant phenotype which was not the case in knockout mice of the same genes. This
could reflect physiological differences between the mouse and zebrafish models. Physiological
differences should be taken into consideration when studying the same gene in different animal
models. Furthermore, the method of gene inactivation should be kept in mind when interpreting
phenotypic outcomes. When using morpholinos to inactivate gene expression off-target effects
are a cause of concern. These are effects caused by morpholinos influencing things other than
the target sequence. This has to be addressed by putting in place proper controls, the morphant
phenotype should be recapitulated with a second non-overlapping morpholino against the
same transcript, morpholinos containing random mutations can be designed and the observed
phenotype should be rescued by co-injecting a rescue mRNA (morpholino controls paper).

In study IV of this thesis, we demonstrate functional redundancy between Plekhh1 and
Plekhh2 in mice. The classic knockout/knockdown approach to evaluate gene function gives
insight into necessity but can be complicated by functional redundancy. Genes are likely to gain
redundant copies for backup purposes by duplication events during the course of evolution. In
the selection of candidates for functional validation the presence and similarity of homologous
genes should be taken into account. However, as often is the case in biology, compensatory effects
of homologous genes is difficult to predict.

The knowledge produced by our work on validating potential candidate genes of glomerular
disease will provide a basis for translational studies. The limits of our strategy are that with
a powerful technique like transcriptomic profiling the number of candidate genes accumulates
faster than what can be functionally validated in detail. In the future, humans will increasingly be
used as models to study human disease. With the advent of population-scale genome sequencing
in combination with extensive phenotype information, the direct characterization of deleterious
mutations in humans by association mapping is possible [128]. This will complement the use of
animal model by identifying genes linked with disease and quantitative traits, leading to more
targeted use of animal models . Importantly, this approach will also help exclude functionally
redundant genes and thus will reduce the number of animal experiments needed.



25

References

[11]

[12]

Sam Tryggvason et al. Glomerulus proteome analysis with two-dimensional
gel electrophoresis and mass spectrometry. Cell Mol Life Sci 64.24 (Dec. 2007),
3317-3335.

Yukino Nishibori et al. Glccil deficiency leads to proteinuria. Journal of the
American Society of Nephrology : JASN 22.11 (Nov. 2011), 2037-2046.

Asmundur Oddsson et al. “Zebrafish Plekhhl and Plekhh2 are involved in
organization of foot processes and normal kidney function”. manuscript. May
2013.

Asmundur Oddsson et al. “Analysis of Plekhhl and Plekhh2 knockout mice
reveal redundancy of the paralogs in kidney function”. manuscript. May 2013.
Jaakko Patrakka et al. Expression and subcellular distribution of novel glomerulus-
associated proteins dendrin, ehd3, sh2d4a, plekhh2, and 2310066E14Rik. Journal
of the American Society of Nephrology : JASN 18.3 (Mar. 2007), 689-697.

Lwaki Ebarasi et al. Zebrafish: a model system for the study of vertebrate renal
development, function, and pathophysiology. Curr Opin Nephrol Hypertens 20.4
(July 2011), 416-24.

C Faul et al. Actin up: regulation of podocyte structure and function by compo-
nents of the actin cytoskeleton. English. Trends in cell biology 17.9 (Sept. 2007),
428-437.

P Mundel and ] Reiser. Proteinuria: an enzymatic disease of the podocyte?
English. Kidney international 77.7 (Apr. 2010), 571-580.

Jaakko Patrakka and Karl Tryggvason. New insights into the role of podocytes
in proteinuria. English. Nature reviews. Nephrology 5.8 (Aug. 2009), 463-468.
Jaakko Patrakka and Karl Tryggvason. Molecular make-up of the glomerular
filtration barrier. English. Biochemical and biophysical research communications 396.1
(May 2010), 164-169.

Yuki Hamano et al. Determinants of vascular permeability in the kidney glomeru-
lus. Journal of Biological Chemistry 277.34 (Aug. 2002), 31154-31162.

Jaakko Patrakka and Karl Tryggvason. Nephrin-a unique structural and signaling
protein of the kidney filter. English. Trends in molecular medicine 13.9 (Sept. 2007),
396—403.



26

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Chapter 6. References

M Kestila et al. Positionally cloned gene for a novel glomerular protein-nephrin—
is mutated in congenital nephrotic syndrome. English. Molecular cell 1.4 (Mar.
1998), 575-582.

D B Donoviel et al. Proteinuria and perinatal lethality in mice lacking NEPH1,
a novel protein with homology to NEPHRIN. English. Molecular and Cellular
Biology 21.14 (July 2001), 4829-4836.

H Putaala et al. The murine nephrin gene is specifically expressed in kidney,
brain and pancreas: inactivation of the gene leads to massive proteinuria and
neonatal death. English. Human molecular genetics 10.1 (Feb. 2001), 1-8.

J Khoshnoodi et al. Nephrin promotes cell-cell adhesion through homophilic
interactions. English. The American journal of pathology 163.6 (Dec. 2003), 2337—
2346.

Jorma Wartiovaara et al. Nephrin strands contribute to a porous slit diaphragm
scaffold as revealed by electron tomography. English. The Journal of clinical
investigation 114.10 (Nov. 2004), 1475-1483.

R Rodewald and M ] Karnovsky. Porous substructure of the glomerular slit
diaphragm in the rat and mouse. English. The Journal of cell biology 60.2 (Feb.
1974), 423-433.

P Gerke et al. Homodimerization and heterodimerization of the glomerular
podocyte proteins nephrin and NEPH1. English. Journal of the American Society of
Nephrology : JASN 14.4 (Apr. 2003), 918-926.

E Neumann-Haefelin et al. A model organism approach: defining the role of
Neph proteins as regulators of neuron and kidney morphogenesis. Hum Mol
Genet 19.12 (June 2010), 2347-2359.

K Schwarz et al. Podocin, a raft-associated component of the glomerular slit
diaphragm, interacts with CD2AP and nephrin. English. The Journal of clinical
investigation 108.11 (Dec. 2001), 1621-1629.

T B Huber et al. Molecular basis of the functional podocin-nephrin complex: mu-
tations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains.
English. Human molecular genetics 12.24 (Dec. 2003), 3397-3405.

L Sellin et al. NEPH1 defines a novel family of podocin interacting proteins.
English. The FASEB Journal 17.1 (Jan. 2003), 115-117.

N Boute et al. NPHS2, encoding the glomerular protein podocin, is mutated
in autosomal recessive steroid-resistant nephrotic syndrome. English. Nature
genetics 24.4 (Apr. 2000), 349-354.

A Philippe et al. A missense mutation in podocin leads to early and severe renal
disease in mice. English. Kidney international 73.9 (June 2008), 1038-1047.
Séverine Roselli et al. Early glomerular filtration defect and severe renal disease
in podocin-deficient mice. English. Molecular and Cellular Biology 24.2 (Feb. 2004),
550-560.

Géraldine Mollet et al. Podocin inactivation in mature kidneys causes focal
segmental glomerulosclerosis and nephrotic syndrome. English. Journal of the
American Society of Nephrology : JASN 20.10 (Oct. 2009), 2181-2189.



[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]
[36]
[37]
[38]

[39]

[40]

[41]

[42]
[43]

[44]

27

Jaakko Patrakka and Karl Tryggvason. Molecular make-up of the glomerular
filtration barrier. English. Biochemical and biophysical research communications 396.1
(June 2010), 164-169.

Lorenza Ciani et al. Mice lacking the giant protocadherin mFAT1 exhibit renal
slit junction abnormalities and a partially penetrant cyclopia and anophthalmia
phenotype. English. Molecular and Cellular Biology 23.10 (June 2003), 3575-3582.
M ] Moeller et al. Protocadherin FAT1 binds Ena/VASP proteins and is necessary
for actin dynamics and cell polarization. English. The EMBO journal 23.19 (Oct.
2004), 3769-3779.

K Skouloudaki et al. Scribble participates in Hippo signaling and is required for
normal zebrafish pronephros development. Proc Natl Acad Sci U S A 106.21 (May
2009), 8579-8584.

M Simons, B Hartleben, and T B Huber. Podocyte polarity signalling. English.
Current opinion in nephrology and hypertension 18.4 (July 2009), 324-330.
Tomonori Hirose et al. An essential role of the universal polarity protein, aP-
KClambda, on the maintenance of podocyte slit diaphragms. English. PloS one
4.1 (2009), e4194.

L Ebarasi et al. A reverse genetic screen in the zebrafish identifies crb2b as a
regulator of the glomerular filtration barrier. Dev Biol 334.1 (Oct. 2009), 1-9.

Z Xiao et al. Deficiency in Crumbs homolog 2 (Crb2) affects gastrulation and
results in embryonic lethality in mice. Dev Dyn 240.12 (Dec. 2011), 2646-2656.

J Reiser et al. TRPC6 is a glomerular slit diaphragm-associated channel required
for normal renal function. English. Nature genetics 37.7 (July 2005), 739-744.

M P Winn et al. A mutation in the TRPC6 cation channel causes familial focal
segmental glomerulosclerosis. English. Science 308.5729 (June 2005), 1801-1804.
A Dietrich et al. Increased vascular smooth muscle contractility in TRPC6-/-
mice. English. Molecular and Cellular Biology 25.16 (Aug. 2005), 6980-6989.

C E Perez-Leighton et al. Intrinsic phototransduction persists in melanopsin-
expressing ganglion cells lacking diacylglycerol-sensitive TRPC subunits. English.
Eur | Neurosci 33.5 (Mar. 2011), 856-867.

P Krall et al. Podocyte-specific overexpression of wild type or mutant trpcé in
mice is sufficient to cause glomerular disease. English. PloS one 5.9 (2010), €12859.
J S Nielsen and K M McNagny. The role of podocalyxin in health and disease.
English. Journal of the American Society of Nephrology : JASN 20.8 (Aug. 2009),
1669-1676.

R Doyonnas et al. Anuria, omphalocele, and perinatal lethality in mice lacking
the CD34-related protein podocalyxin. English. ] Exp Med 194.1 (July 2001), 13-27.
F Ozaltin et al. Disruption of PTPRO causes childhood-onset nephrotic syndrome.
English. American journal of human genetics 89.1 (July 2011), 139-147.

B L Wharram et al. Altered podocyte structure in GLEPP1 (Ptpro)-deficient mice
associated with hypertension and low glomerular filtration rate. English. The
Journal of clinical investigation 106.10 (Nov. 2000), 1281-1290.



28

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Chapter 6. References

Nina Jones et al. Nck adaptor proteins link nephrin to the actin cytoskeleton of
kidney podocytes. English. Nature 440.7085 (Apr. 2006), 818-823.

R Verma et al. Nephrin ectodomain engagement results in Src kinase activation,
nephrin phosphorylation, Nck recruitment, and actin polymerization. | Clin
Invest 116.5 (May 2006), 1346-1359.

Nina Jones et al. Nck adaptor proteins link nephrin to the actin cytoskeleton of
kidney podocytes. English. Nature 440.7085 (May 2006), 818-823.

R Verma et al. Nephrin ectodomain engagement results in Src kinase activation,
nephrin phosphorylation, Nck recruitment, and actin polymerization. English.
The Journal of clinical investigation 116.5 (May 2006), 1346-1359.

N Y Shih et al. Congenital nephrotic syndrome in mice lacking CD2-associated
protein. English. Science 286.5438 (Oct. 1999), 312-315.

Jeong M Kim et al. CD2-associated protein haploinsufficiency is linked to
glomerular disease susceptibility. English. Science 300.5623 (June 2003), 1298—
1300.

B Teng, A Lukasz, and M Schiffer. The ADF/Cofilin-Pathway and Actin Dynam-
ics in Podocyte Injury. Int | Cell Biol 2012 (2012), 320531.

Puneet Garg et al. Actin-depolymerizing factor cofilin-1 is necessary in main-
taining mature podocyte architecture. English. The Journal of biological chemistry
285.29 (July 2010), 22676-22688.

E ] Brown et al. Mutations in the formin gene INF2 cause focal segmental
glomerulosclerosis. English. Nature genetics 42.1 (Jan. 2010), 72-76.

O Boyer et al. INF2 mutations in Charcot-Marie-Tooth disease with glomeru-
lopathy. English. The New England journal of medicine 365.25 (Dec. 2011), 2377—
2388.

J M Kaplan et al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial
focal segmental glomerulosclerosis. English. Nature genetics 24.3 (Mar. 2000),
251-256.

J L Michaud et al. Focal and segmental glomerulosclerosis in mice with podocyte-
specific expression of mutant alpha-actinin-4. English. Journal of the American
Society of Nephrology : JASN 14.5 (May 2003), 1200-1211.

J L Michaud et al. Mice with podocyte-specific overexpression of wild type
alpha-actinin-4 are healthy controls for K256E-alpha-actinin-4 mutant transgenic
mice. English. Transgenic research 19.2 (Apr. 2010), 285-289.

C H Kos et al. Mice deficient in alpha-actinin-4 have severe glomerular disease.
English. The Journal of clinical investigation 111.11 (June 2003), 1683-1690.

K Asanuma et al. Synaptopodin regulates the actin-bundling activity of alpha-
actinin in an isoform-specific manner. English. The Journal of clinical investigation
115.5 (May 2005), 1188-1198.

C Mele et al. MYO1E mutations and childhood familial focal segmental glomeru-
losclerosis. English. The New England journal of medicine 365.4 (July 2011), 295—
306.



[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

29

Mira Krendel et al. Disruption of Myosin le promotes podocyte injury. English.
Journal of the American Society of Nephrology : JASN 20.1 (Feb. 2009), 86-94.
Sharon E Chase et al. Podocyte-specific knockout of myosin le disrupts glomeru-
lar filtration. English. American journal of physiology Renal physiology 303.7 (Oct.
2012), F1099-106.

B Hinkes et al. Positional cloning uncovers mutations in PLCE1 responsible for a
nephrotic syndrome variant that may be reversible. English. Nature genetics 38.12
(Dec. 2006), 1397-1405.

J A Jefferson and S J Shankland. Familial nephrotic syndrome: PLCE1 enters the
fray. English. Nephrol Dial Transplant 22.7 (July 2007), 1849-1852.

J A Kreidberg et al. Alpha 3 beta 1 integrin has a crucial role in kidney and
lung organogenesis. English. Development (Cambridge, England) 122.11 (Nov. 1996),
3537-3547.

Norman Sachs et al. Kidney failure in mice lacking the tetraspanin CD151.
English. The Journal of cell biology 175.1 (Oct. 2006), 33-39.

Ambra Pozzi et al. Betal integrin expression by podocytes is required to maintain
glomerular structural integrity. English. Developmental biology 316.2 (May 2008),
288-301.

Chunsun Dai et al. Essential role of integrin-linked kinase in podocyte biology:
Bridging the integrin and slit diaphragm signaling. English. Journal of the American
Society of Nephrology : JASN 17.8 (Aug. 2006), 2164-2175.

Chiraz El-Aouni et al. Podocyte-specific deletion of integrin-linked kinase results
in severe glomerular basement membrane alterations and progressive glomeru-
losclerosis. English. Journal of the American Society of Nephrology : JASN 17.5 (June
2006), 1334-1344.

Rosa M Baleato et al. Deletion of CD151 results in a strain-dependent glomerular
disease due to severe alterations of the glomerular basement membrane. English.
The American journal of pathology 173.4 (Oct. 2008), 927-937.

D F Barker et al. Identification of mutations in the COL4A5 collagen gene in
Alport syndrome. English. Science 248.4960 (June 1990), 1224-1227.

T Mochizuki et al. Identification of mutations in the alpha 3(IV) and alpha 4(IV)
collagen genes in autosomal recessive Alport syndrome. English. Nature genetics
8.1 (Sept. 1994), 77-81.

B G Hudson et al. Alport’s syndrome, Goodpasture’s syndrome, and type IV
collagen. English. The New England journal of medicine 348.25 (June 2003), 2543—
2556.

J H Miner and ] R Sanes. Molecular and functional defects in kidneys of mice
lacking collagen alpha 3(IV): implications for Alport syndrome. English. The
Journal of cell biology 135.5 (Dec. 1996), 1403-1413.

D Cosgrove et al. Collagen COL4A3 knockout: a mouse model for autosomal
Alport syndrome. English. Genes &amp; development 10.23 (Dec. 1996), 2981-2992.
M N Rheault et al. Mouse model of X-linked Alport syndrome. English. Journal
of the American Society of Nephrology : JASN 15.6 (June 2004), 1466-1474.



30

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

Chapter 6. References

Valerie LeBleu et al. Identification of the NC1 domain of alpha3 chain as critical
for alpha3alpha4alpha5 type IV collagen network assembly. English. The Journal
of biological chemistry 285.53 (Dec. 2010), 41874-41885.

Carrie N Arnold et al. Rapid identification of a disease allele in mouse through
whole genome sequencing and bulk segregation analysis. English. Genetics 187.3
(Apr. 2011), 633-641.

A Domogatskaya, S Rodin, and K Tryggvason. Functional diversity of laminins.
English. Annu Rev Cell Dev Biol 28 (2012), 523-553.

M Zenker et al. Human laminin beta2 deficiency causes congenital nephrosis
with mesangial sclerosis and distinct eye abnormalities. English. Human molecular
genetics 13.21 (Nov. 2004), 2625-2632.

P G Noakes et al. The renal glomerulus of mice lacking s-laminin/laminin beta
2: nephrosis despite molecular compensation by laminin beta 1. English. Nature
genetics 10.4 (Aug. 1995), 400-406.

J H Miner, ] Cunningham, and ] R Sanes. Roles for laminin in embryogenesis:
exencephaly, syndactyly, and placentopathy in mice lacking the laminin alpha5
chain. English. The Journal of cell biology 143.6 (Dec. 1998), 1713-1723.

G Jarad et al. Proteinuria precedes podocyte abnormalities inLamb2-/- mice,
implicating the glomerular basement membrane as an albumin barrier. English.
The Journal of clinical investigation 116.8 (Aug. 2006), 2272-2279.

M Brendan Shannon et al. A hypomorphic mutation in the mouse laminin alpha5
gene causes polycystic kidney disease. English. Journal of the American Society of
Nephrology : JASN 17.7 (July 2006), 1913-1922.

Seth Goldberg et al. Maintenance of glomerular filtration barrier integrity re-
quires laminin alpha5. English. Journal of the American Society of Nephrology : JASN
21.4 (May 2010), 579-586.

Michael Willem et al. Specific ablation of the nidogen-binding site in the laminin
gammal chain interferes with kidney and lung development. English. Develop-
ment (Cambridge, England) 129.11 (July 2002), 2711-2722.

A Utriainen et al. Structurally altered basement membranes and hydrocephalus
in a type XVIII collagen deficient mouse line. English. Human molecular genetics
13.18 (Sept. 2004), 2089-2099.

S Goldberg et al. Glomerular filtration is normal in the absence of both agrin
and perlecan-heparan sulfate from the glomerular basement membrane. English.
Nephrol Dial Transplant 24.7 (July 2009), 2044-2051.

Y S Kanwar, A Linker, and M G Farquhar. Increased permeability of the glomeru-
lar basement membrane to ferritin after removal of glycosaminoglycans (heparan
sulfate) by enzyme digestion. English. The Journal of cell biology 86.2 (Aug. 1980),
688—693.

Scott ] Harvey et al. Disruption of glomerular basement membrane charge
through podocyte-specific mutation of agrin does not alter glomerular permse-
lectivity. English. The American journal of pathology 171.1 (July 2007), 139-152.



[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]
[101]

[102]

[103]

[104]

[105]

31

Joseph R Bishop et al. Deletion of the basement membrane heparan sulfate pro-
teoglycan type XVIII collagen causes hypertriglyceridemia in mice and humans.
English. PloS one 5.11 (2010), e13919.

Aino I Kinnunen et al. Lack of collagen XVIII long isoforms affects kidney
podocytes, whereas the short form is needed in the proximal tubular basement
membrane. English. The Journal of biological chemistry 286.10 (Apr. 2011), 7755—
7764.

Borje Haraldsson, Jenny Nystrom, and William M Deen. Properties of the
glomerular barrier and mechanisms of proteinuria. English. Physiological reviews
88.2 (May 2008), 451-487.

Vera Eremina et al. Glomerular-specific alterations of VEGF-A expression lead
to distinct congenital and acquired renal diseases. English. The Journal of clinical
investigation 111.5 (Apr. 2003), 707-716.

Virginie Mattot et al. Loss of the VEGF(164) and VEGF(188) isoforms impairs
postnatal glomerular angiogenesis and renal arteriogenesis in mice. English.
Journal of the American Society of Nephrology : JASN 13.6 (July 2002), 1548-1560.
Maija Rantanen et al. Nephrin TRAP mice lack slit diaphragms and show fibrotic
glomeruli and cystic tubular lesions. English. Journal of the American Society of
Nephrology : JASN 13.6 (July 2002), 1586-1594.

D M Hentschel et al. Rapid screening of glomerular slit diaphragm integrity in
larval zebrafish. Am | Physiol Renal Physiol 293.5 (Nov. 2007), 1746-1750.

C N Arnold et al. Rapid identification of a disease allele in mouse through whole
genome sequencing and bulk segregation analysis. English. Genetics 187.3 (Mar.
2011), 633-641.

Tobias B Huber et al. Loss of podocyte aPKClambda/iota causes polarity defects
and nephrotic syndrome. English. Journal of the American Society of Nephrology :
JASN 20.4 (May 2009), 798-806.

S Ashworth et al. Cofilin-1 inactivation leads to proteinuria-studies in zebrafish,
mice and humans. PLoS One 5.9 (2010).

M Takemoto et al. Large-scale identification of genes implicated in kidney
glomerulus development and function. The EMBO journal (2006).

Yutaka Y Yoshida et al. Two-dimensional electrophoretic profiling of normal
human kidney glomerulus proteome and construction of an extensible markup
language (XML)-based database. Proteomics 5.4 (Feb. 2005), 1083-1096.

Barbara Sitek et al. Novel approaches to analyse glomerular proteins from
smallest scale murine and human samples using DIGE saturation labelling.
Proteomics 6.15 (Aug. 2006), 4337—-4345.

J C Edwards. What’s a CLIC doing in the podocyte? Kidney Int 78.9 (Nov. 2010),
831-833.

C Has et al. Integrin alpha 3 mutations with kidney, lung, and skin disease. N
Engl ] Med 366.16 (Apr. 2012), 1508-1514.



32

[106]

[107]
[108]
[109]

[110]

[111]
[112]
[113]

[114]

[115]
[116]

[117]

[118]

[119]

[120]

[121]

Chapter 6. References

Daniel Hirschberg et al. Identification of endothelial proteins by MALDI-MS
using a compact disc microfluidic system. The protein journal 23.4 (May 2004),
263-271.

G Candiano et al. 2D-electrophoresis and the urine proteome map: where do we
stand? | Proteomics 73.5 (Mar. 2010), 829-844.

S O Curreem et al. Two-dimensional gel electrophoresis in bacterial proteomics.
Protein Cell 3.5 (May 2012), 346-363.

O Trifonova et al. Application of 2-DE for studying the variation of blood
proteome. Expert Rev Proteomics 7.3 (June 2010), 431-438.

Masahito Miyamoto et al. In-depth proteomic profiling of the normal human
kidney glomerulus using two-dimensional protein prefractionation in combina-
tion with liquid chromatography-tandem mass spectrometry. Journal of proteome
research 6.9 (Sept. 2007), 3680-3690.

T Rabilloud et al. Two-dimensional gel electrophoresis in proteomics: Past,
present and future. | Proteomics 73.11 (Oct. 2010), 2064-2077.

M Moche et al. The new horizon in 2D electrophoresis -new technology to
increase resolution and sensitivity. Electrophoresis (Mar. 2013).

Z Cui et al. Profiling and annotation of human kidney glomerulus proteome.
Proteome Sci 11.1 (Apr. 2013), 13-13.

M S Chapman et al. Isolation of differentially expressed sequence tags from
steroid-responsive cells using mRNA differential display. Mol Cell Endocrinol
108.1-2 (Feb. 1995), 1-7.

M S Chapman et al. Transcriptional control of steroid-regulated apoptosis in
murine thymoma cells. Mol Endocrinol 10.8 (Aug. 1996), 967-978.

K G Tantisira et al. Genomewide association between GLCCI1 and response to
glucocorticoid therapy in asthma. N Engl | Med 365.13 (Sept. 2011), 1173-1183.
H I Cheong, H G Kang, and ] Schlondorff. GLCCI1 single nucleotide polymor-
phisms in pediatric nephrotic syndrome. Pediatr Nephrol 27.9 (Sept. 2012), 1595-
1599.

J Thaisz et al. Genetic analysis of albuminuria in collaborative cross and multiple
mouse intercross populations. Am | Physiol Renal Physiol 303.7 (Oct. 2012), 972—
981.

S K Iyengar et al. Genome-wide scans for diabetic nephropathy and albuminuria
in multiethnic populations: the family investigation of nephropathy and diabetes
(FIND). Diabetes 56.6 (June 2007), 1577-1585.

Fredrik Dunér et al. Permeability, ultrastructural changes, and distribution of
novel proteins in the glomerular barrier in early puromycin aminonucleoside
nephrosis. Nephron Experimental nephrology 116.2 (2010), e42-52.

Ljubica Perisic et al. Kidney International - Plekhh2, a novel podocyte protein
downregulated in human focal segmental glomerulosclerosis, is involved in
matrix adhesion and actin dynamics. English. Kidney international 82.10 (Nov.
2012), 1071-1083.



[122]

[123]

[124]
[125]
[126]
[127]

[128]

33

P Mundel and ] Reiser. Proteinuria: an enzymatic disease of the podocyte?
English. Kidney international 77.7 (Apr. 2010), 571-580.

Minoru Takemoto et al. A new method for large scale isolation of kidney
glomeruli from mice. English. The American journal of pathology 161.3 (Sept. 2002),
799-805.

Maja T Lindenmeyer et al. Systematic analysis of a novel human renal glomerulus-
enriched gene expression dataset. English. PloS one 5.7 (2010), e11545.

M Boerries et al. Molecular fingerprinting of the podocyte reveals novel gene
and protein regulatory networks. Kidney Int (Jan. 2013).

G J Lieschke and P D Currie. Animal models of human disease: zebrafish swim
into view. Nature Reviews Genetics (2007).

Y Gondo. Trends in large-scale mouse mutagenesis: from genetics to functional
genomics. Nat Rev Genet 9.10 (Oct. 2008), 803-810.

Unnur Styrkarsdottir et al. Nonsense mutation in the LGR4 gene associates with
several human diseases and other traits. Nature (Apr. 2013).



	Abstract
	Acknowledgements
	Abbreviations
	Publications
	Contents
	I Extended Summary
	Introduction
	Glomerular Filtration Barrier
	Podocytes
	Slit Diaphragm
	The Podocyte Apical Surface
	Podocyte Cytoskeleton

	Glomerular Basement Membrane 
	Fenestrated Glomerular Endothelium 

	Aims of the Thesis
	Methodology
	Results and Discussion
	Paper I
	Paper II
	Paper III
	Paper IV

	Conclusions
	References

	II Appended Papers I–IV

