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ABSTRACT

HIV-1 is characterized by a high genetic diversity which poses several challenges and
implications with regard to disease progression, drug resistance and outcome of antiretroviral
therapy (ART). HIV-1 subtype C (HIV-1C) is the most rapidly expanding subtype accounting
for half of the global disease and nearly all infections in Ethiopia, Southern Africa and India
which are the regions with the highest burden of HIV-1 infection. Molecular characteristics
of the virus in such epidemic success need to be explored to better understand this subtype.

In the thesis, we analysed plasma samples and patient data collected during 2009-2011 in a
large country-wide cohort, Advanced Clinical Monitoring of ART (ACM) which was
established to evaluate the longitudinal effectiveness of ART as practiced in real life in
Ethiopia. The overall aim was to investigate the molecular characteristics of HIV-1C and its
impact on first line ART outcome in Ethiopia. Both genotypic and phenotypic molecular
techniques were employed to characterize different regions of the viral genome. In papers |
and 11, population sequencing (PBSS) of the V3 loop of the HIV-1 envelope from therapy
naive, patients failing therapy, as well as HIVV-1C sequences from Ethiopia dated 1984-2003
was used to assess the molecular epidemiology of HIV-1C in different geographic regions
and the trend of viral tropism over the last decades. We also investigated the utility of
different genotypic tropism prediction tools and the impact of the predicted viral co-receptor
tropism on the outcome of standard first line ART. Our results showed that the Ethiopian
epidemic is still monophylogenetic, exclusively dominated by HIVV-1C, CCRS tropic viruses.
Furthermore, baseline tropism had an impact on outcome of standard first line ART. While
each tool predicted tropism with comparable frequency, there was yet a large discordance
between the tools. We elucidated this discordance further in paper 111 by employing an in-
house phenotypic tropism method compared with the prediction by bioinformatics tools used
in paper 11 as well as in vitro sensitivity of HIV-1Cgy, strains for the co-receptor antagonist
maraviroc. The results showed underestimation of R5 co-receptor usage by bioinformatics
tools and effectiveness of maraviroc in HIV-1C. Expanding the exploration further to pol
gene, we employed PBSS and next generation sequencing (NGS) to assess the prevalence of
surveillance drug resistance mutations (SDRM) to reverse transcriptase- and protease-
inhibitors as well as occurrence of DRM by NGS to the novel category of integrase strand
inhibitors. The results in paper 1V showed that NGS detected SDRM associated with RT-
and PI- inhibitors more often than PBSS and major INSTI DRMs were found in minor viral
variants. Furthermore, DRM identified before treatment was associated with a poorer
treatment outcome.

In conclusion, viral tropism and drug resistance mutations at baseline have an impact on
subsequent treatment outcome. Currently available genotypic tropism prediction tools need
further improvement for use in HIV-1C. The Ethiopian epidemic remains uniquely
dominated by R5 tropic HIV-1C since its introduction. Further investigations should be done
to delineate associated molecular and epidemiological factors contributing to its uniqueness.
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1 INTRODUCTION

1.1 THE HIV/AIDS PANDEMIC

Human immunodeficiency virus (HIV) was identified as the causative agent of the acquired
immunodeficiency syndrome (AIDS) in 1983 [1] and so far more than 70 million people have
been infected globally among whom nearly half have died. At the end of 2016, about 36.7
million were estimated to live with HIV. In the same year, the number of the global annual
new HIV infections was estimated to be 1.8 million while one million people died from
AIDS-related illnesses [2]. Globally, 53% of all people living with HIV were reported to have
access to antiretroviral therapy (ART).

According to recent regional HIV statistics by UNAIDS, the Eastern and Southern Africa
region, which includes 21 African countries, was the most heavily affected by HIV, where
19.8 million people were living with the virus in 2016 and thus accounting for 53.9% of the
global HIV burden. Although the estimated proportion of new infections showed a 29%
decline between 2010 and 2016 in the region, 790,000 new infections were estimated in
2016, accounting for 43% of global annual new HIV infections. Similarly, despite a 42%
decline in HIV related deaths between 2010 and 2016, yet this region accounted for 42% of
the global AIDS related deaths (with 420,000 cases) [2]. Such decline in new infections as
well as AIDS related deaths is attributed largely to the expanded access to ART in recent
years: 11.7 million people (60% of those living with HIV in this region) were accessing ART,
accounting for 60% of the global ART access in 2016.

1.2 THE HIV EPIDEMIC IN ETHIOPIA

Ethiopia, being one of the eastern African countries, is among the most seriously affected by
HIV. The first HIV case was reported in 1986 and in a recent report, it is estimated that
710,000 people are living with HIV/AIDS [3].

Recent estimates show that the Ethiopian HIV epidemic is generalized and heterogenic with a
high variation of prevalence between different regions, the highest being 5.2% (Gambella,
western) and the lowest 0.7% (SNNP, Southern) [4]. According to recent Ethiopian
Demographic and Health Survey (DHS) report, the national HIV prevalence is declining —in
2011 it was estimated to be 1.5% which dropped down to 0.9% in 2016 where females were
twice affected by HIV compared to males (1.2% versus 0.6%) [5].

ART started in 2003 in very few facilities on out of pocket basis followed by the scale up of
free ART services in 2005 and subsequent rapid expansion which resulted in the decline of
AIDS related deaths and HIV incidence since 2005 [6]. Annual AIDS related deaths declined
from 44,000 to 20,000 and new infections from 131,000 to 30,000 between 2007 and 2016

[3, 7]. By the end of 2016, about 420,000 (59% of those living with HIV) had access to ART.
However, a national report from 2014 indicated that only 70.3% of those who ever started
ART were on treatment at that time showing a significant number of patients lost to follow up
(LTFU) , suggesting challenges in retention of patients in ART care [6]. Thus, while rapid



expansion of ART access contributed much for both the decline in new HIV infections and
HIV related deaths, sub-optimal retention in care of ART exposed patients could serve as a
source of transmission of drug resistant virus in the community.

1.3 HIV-1BIOLOGY

1.3.1 HIV genetic diversity and phylogeny

The term “HIV” refers to a genetically diverse group of viral variants and consists of two
phylogenetically distinct types, namely HIV-1 and HIV-2, each resulting from cross-species
transmissions of the simian immunodeficiency viruses (SIV) [8]. While HIV-2 consists of
nine groups, A-1, only group A and B are represented in the epidemic [8, 9]. HIV-1 comprises
four distinct lineages, termed groups M, N, O, and P. Being discovered first among other
groups, Group M (major) represents the pandemic form and is responsible for 95% of all
HIV infections in virtually all countries of the globe [1, 10]. Group O is responsible for more
than 100,000 cases in West-Central Africa, Cameroon [11, 12], and in some European
countries with colonial ties to Cameroon; Group N is responsible for handful known cases
mainly in Cameroon, France and possibly Togo [11, 13-15], and Group P was identified in
2009 with only two known cases in Cameroon [16].

The major HIV-1 Group M is the most diversified genetically and further classified into nine
subtypes (or clades) A-D, F-H, J, and K. Subtypes A and F are again subdivided into sub-
subtypes, A1-A4, and F1 and F2 [8] based on phylogenetic analysis. Furthermore, inter-
subtype recombinant viruses are observed which, if documented in at least three individuals
without any evident epidemiologic link, will be classified as a circulating recombinant form
(CRF) or called unique (URF), if restricted in limited number of individuals without any
further spread [17]. Currently, there are about 90 CRFs such as AB, AC, AE, and AG etc.
and a steadily increasing proportion, accounting for nearly 20% of HIV-1 infections [13, 18],
showing intersubtype recombination as a substantial force in generating further diversity in
group M [18, 19].

Among the nine subtypes in Group M, subtype B predominates in North America and
Australia. Initially subtype B also dominated in Western Europe but with time the diagnosis
of non-B subtypes has increased substantially. However, it is in sub-Saharan Africa where
most of the viral diversity is observed accounting for 70% of the global disease burden. The
global HIV-1 Group M burden by subtype is: C (50%) followed by A (12%), B (10%), G
(6%), AE (5%) and D (3%) [20]. Genetic variation at the amino acid level has been estimated
at 8-17% within subtype and 17-35% between subtypes, dependent on the subtypes compared
and the location of the HIV-1 genome examined [13]. Such extensive genetic diversity of
HIV-1 poses several challenges and potential implications for viral diagnosis [21],
monitoring of the infection [22], development of drug resistance, disease progression [23],
viral transmission, response to ART, and effective vaccine development [22, 24, 25].

HIV-1C is the most prevalent variant among all other subtypes in group M due to its
predominance in highly affected regions mainly southern Africa, east Africa and India, and
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also to some extent Central Africa and Brazil [20]. It has also become the secondly most
common subtype in e.g. Sweden and some other European countries. The first report of
isolation of this subtype was in 1986 from an Ethiopian patient (HIV-1Cgy,) by Prof Anders
Sonnerborg and colleagues [26], with two genetically distinct strains designated C and C’
reported to co-circulate in nearly similar prevalence in later studies [27-29]. It has been
shown that one of the HIV-Cgy,-cluster is also found in other east African countries while C’
clade stands as an independent cluster associated to southern African strains [30]. Some
unique features of HIV-1C which might explain its predominance in the global epidemic will
be discussed later in this thesis.

While published studies (small studies, mainly from central and northern part of the country)
unanimously have shown that the Ethiopian epidemic is overwhelmingly dominated by HIV-
1C, a mix of different subtypes (A, C, D) as well as their recombinant forms with varying
proportion has been reported to co circulate in other Eastern African countries including those
neighbouring Ethiopia, namely Djibouti (subtype C (66%), CRF02_AG (20%), B (8.5%),
CRF02_AG/C (2.9% ) and K/C (2.9%) , Sudan (subtype A (46%), C (33%) and D (21%),
and northern Kenya (subtype A (50%), C (39%), and D (11%) [31]. Thus, as increased
human migration and mobility result in introduction of new subtypes and variants as well as
intermixing with existing subtypes, one could hypothesize that HIVV-1C dominated
distribution in Ethiopia might have changed currently, at least in the border regions.

1.3.2 HIV-1 Genomic Organization and replication cycle

HIV-1 belongs to genus Lentivirus and family Retroviridae which are mainly distinguished
by the presence of a reverse transcriptase enzyme. Its genetic material consists of two diploid
strands of positive sense single-stranded RNAs, each approximately 10,000 nucleotides in
length. Fifteen viral proteins are encoded in nine overlapping open reading frames as shown
in figure 1 below.

Reading Frame

T fat
7 5-LTR pI7  p24  p7p6 _— I
2 [ J-LTR
3 prot P51 RT pls o3l int . gpl20 apdl
a 1000 2000 3000 4000 5000 6000 7000 8000 S000 9719
Base Pairs

Figure 1. The HIV-1 genome.

While gag, pol and env encode structural proteins as well as essential enzymes which are
common to all retroviruses, vif, vpr, tat, rev, vpu, and nef encode regulatory or accessory
proteins with the same names which are essential at various stages of the viral replication
cycle which starts with binding to the target cell through CD4 receptor and co-receptors [32]
(co-receptor usage is described in upcoming section).



The viral replication cycle consists of several steps as reviewed [33] and systematically
depicted in figure 2 below. Different viral proteins interact with host immune mechanisms
and play a decisive role at different steps for the successful completion of the replication
cycle and survival.
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Figure 2. Main steps in HIV-1 replication cycle including key host HIV restriction factors and viral antagonists
involved, and major class of antiretroviral drugs targeting various steps of replication cycle. Figure adapted from
[33] with permission (License humber 4343840892840). Details of antiretroviral drugs targeting various steps of
replication cycle will be presented in a separate section below.

The host restriction APOBEC3G is a powerful inhibitor of reverse transcription but its
inhibitory effect is antagonized by viral protein Vif [34] and Vpr [35], both mediating its
proteasomal degradation and thus maintaining productive reverse transcription. Integration
strongly favours transcriptionally active sections of the host genome [36] and once integrated,
the provirus may remain transcriptionally inactive for years in a fraction of infected cells, a
stage known as “latency” [37, 38]. Translated Nef and Vpr extensively modify the cellular
environment to ensure efficient viral replication and persistence which includes the down-
regulation of host cell-surface CD4 and HLA molecules by Nef [39, 40], and cell-cycle arrest
and induction of apoptosis by Vpr [41-43], while the reverse transcription process by itself
have been shown to induce apoptosis [43]. Budding is antagonized by host protein
tetherin/BST-2 which prevent the release of virions by tethering onto cell surface [44] and
shown to provide intrinsic herd immunity to group M HIV-1 epidemic [45], but it is
counteracted by viral VVpu [46, 47]. Thus, the virus antagonizes the host cell’s defence
strategies using an array of proteins and establishes lifelong infection.

1.3.3 Co-receptor tropism and switch

In addition to the CD4 receptor, successful entry of HIV-1 to the target cell requires
additional chemokine co-receptors, namely CCR5 and/or CXCR4. Some strains exclusively
use CCR5 and are hence classified as R5- tropic; others exclusively use CXCR4 and hence



are classified as X4-tropic [48]. Individual virus variants with ability of utilizing both co-
receptors (dual) and also a mixed viral population containing both R5- and X4-tropic strains
are termed “dual/mixed or D/M [49]. The phenotypes are clinically relevant mainly in terms
of the rate of disease progression [50].

1.3.3.1 Tropism in untreated infection (disease progression)

Transmission of both R5- and X4-tropic variants has been reported but the vast majority of
primary infections are R5-tropic strains regardless of transmission route [51]. For instance, a
French study (1996-2014) which determined co-receptor usage in primary infection showed
that 94% of the infections were by R5-tropic strains and the prevalence of X4-tropic strains
remained stable throughout the study period both in subtype B and non B infections [52]. A
somewhat elevated prevalence (nearly 15%) of X4/DM-tropic virus has been reported
recently in a large cohort of seroconverters, with the vast majority of subjects harbouring R5-
tropic virus [53]. Such R5-tropic dominance during primary infection has been shown also by
ultra-deep pyrosequencing, a method expected to detect X4-tropic minority variants [54].
Whether R5 dominance is due to its preferential transmission, availability of specific target
cells, biased immune pressures limiting X4 virus, is not established yet. Nevertheless, the fact
that in individuals with genetic CCR5 deficiency, where homozygosity is associated with
strong resistance to HIV infection, and heterozygosity with a slower disease progression [55,
56], supports the predominant transmission and more efficient establishment of infection by
R5-tropic viruses than X4-tropic ones. It should be noted that prevalence of X4-tropic virus
during primary infection vary depending on the method used to determine the tropism
(described separately in upcoming section below) where genotypic methods predict a higher
prevalence in general.

In studies that have attempted to determine the prevalence of X4-tropic viruses in chronic
HIV-1 infection, the results remain just a bit elevated than with primary infection, ranging up
to 25% [57-59]. Also, difference in prediction by different methods remains minimal in
chronic infection, both genotypic and phenotypic methods yielding comparable prevalence of
X4-tropic viruses.

With disease progression however, nearly 50% of HIV-1B infected individuals will
experience a tropism shift as increasing amounts of X4 virus emerge [60]. Studies have
observed that co-receptor usage switch from R5 to X4 during late stage disease is usually
associated with rapid CD4+ T cell depletion, rapid elevation of viral load (VL) (Figure 3) and
occurrence of AIDS defining illness [61, 62]. Nevertheless, the proportion of X4 infected
patients rarely exceeds 50%, even in patient cohorts of very advanced and final stage of
disease [57]. Whether such evolution towards increased X4 usage is caused by disease
progression or that increased usage of X4 leads to rapid disease progression, as well as the
underlying mechanism is not established yet.
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Figure 3. The three stages of HIV disease in relation to co-receptor usage: emergence of X4-tropic population
associated with accelerated viral load increase and rapid CD4 decline ( right panel) (Figure adapted from [57]
with permission (License number 4343840188812).

Tropism data on non B subtypes are limited. In earlier studies, X4 using viruses were
reported as rare in HIV-1C, even in late stages of disease [63, 64] including Ethiopia [65].
However, an increase in the incidence of X4-tropic HIV-1C has been reported recently in
patients with advanced HIV disease from South Africa and India [66, 67] as well as from
patients failing ART in Botswana [68] which might suggest a changing epidemiology and
ongoing evolution of X4 tropic HIV-1C in Africa.

1.3.3.2 Tropism under ART

Thus, the relationship between tropism and disease progression seems established, at least in
HIV-1B infections. Unfortunately, reports on viral tropism after initiation of standard first
line ART are relatively scarce and effect of standard ART on co-receptor usage appears
controversial. In some studies ART had no or a limited effect in the selection of X4 virus [69,
70]. In other studies preferential suppression of X4 viruses after ART has been reported [71,
72] while some other studies showed switch of tropism in both directions, R5 to X4 as well as
X4 to R5, a switch independently associated with disease progression [73, 74] and still other
studies reported switch during ART as rare [75].

Apart from their clinical relevance in terms of the rate of disease progression, studies also
attempted to explore possible impact of these env phenotypes on treatment outcome of first
line ART. Some claimed X4 tropism at baseline to differentially impact treatment outcome
including rate of viral load suppression and CD4+ T cell gain [76-79] while others show
similar rates between R5- and X4-tropic viruses at baseline [80, 81]. Difference in methods
used to detect tropism, study design, patient population etc. imped comparison between the



above mentioned studies leading to controversial findings which need to be explored further.
Moreover, most studies are based on HIV-1B and such data on HIV-1C is scarce.

1.3.4 HIV-1 subtype C (HIV-1C) unique features

In contrast to other subtypes in group M, HIV-1C is rapidly expanding, accounting for half of
global disease and nearly all infections in Ethiopia, Southern Africa and India which are
regions with a very high burden of HIV-1 infection. Such epidemic expansion of this subtype
suggests that there might be some factors unique to this virus affecting its replication and/or
transmission. Several studies have attempted to elucidate possible factors related to events
during viral entry and replication. As mentioned above, HIV-1C strains predominantly use
the CCR5 co-receptor, even in late infection [64, 65], and as CCR5 using virus are non-
syncytium-inducing and hence display less cytopathogenicity it has been speculated that this
might contribute to their rapid expansion and spread throughout the globe [82, 83]. Some
studies have demonstrated a relatively high transmission fitness of this subtype compared to
others in dendritic cells, increasing the frequencies of vaginal shedding and hence higher risks
of heterosexual and mother-to-child transmission [84]. Other studies using PBMC models
suggested similar transmission fitness but less fitness after transmission compared to other
subtypes [85, 86] which might imply slow disease progression, prolonged asymptomatic
infection and more opportunities for transmission favouring epidemic spread. This implies a
slower rate of evolution and lower probability of accumulation of mutations that might lead
to R5 to X4 transition. A study indeed showed that HIVV-1C requires accumulation of more
mutation in the env gene than other subtypes [87] in order to switch from R5 to X4 and a
more recent study identified two distinct mutations in the V3 loop unique to HIV-1C [88].

Studies have further attempted to dissect the viral genome searching for an explanation of
HIV-1C’s unique epidemic spread and success. Analysis of LTR in earlier studies revealed
the presence of three instead of two or less NF-«xB binding sites in HIVV-1C than within other
subtypes in group M [89, 90]. The extra NF-xB binding site may enhance viral gene
expression, conferring highest transcriptional activity in HIV-1C [91] and hence higher
replication and transmission capability. A recent study on Ethiopian HIV-1C isolates also
revealed presence of three NF-kB binding sites irrespective of coinfection [92] and an earlier
Indian study even demonstrated HIV-1C strains with multiple (four) NF-kB binding sites
associated with higher plasma viral load when compared to isolates with three or less NF-xB
binding sites and hence presumably more infectious [93]. Other studies observed a 5-amino-
acid insertion in Vpu that could modulate its function and affect the virulence of HIV-1C
viruses [94].

Furthermore, Nef sequences from HIV-1C display reduced ability of down-regulating CD4
and HLA-I compared to HIV-1B, a phenomena related to an escape mutation ‘S88G’ which
is relatively more prevalent in HIV-1C [39]. The above mentioned molecular characteristics
ought to result in enhanced viral replication, yet HIV-1C viruses displayed lesser replication
fitness in vitro compared to other subtypes [85]. Such observations suggest presence of some
other components of HIV-1C that might reduce the overall replication level without altering



an enhanced capacity of transmission. Analysis of pol gene products from HIV-1B and HIV-
1C on overall viral replication suggested that the reverse transcription in HIV-1C results in a

reduced accumulation of reverse transcripts and reverse transcription complexes compared to
HIV-1B, which may lead to reduced viral replication [95]. Thus, further studies are needed to
elucidate molecular basis of HIVV-1C difference from other predominant HIV-1 subtypes.

1.4 SEQUENCING TECHNOLOGIES FOR CHARACTERIZATION OF HIV-1

Currently, two major sequencing technologies are in use for characterization of HIV, mainly
focused on clinical HIV-1 drug resistance and tropism testing.

1.4.1 Sanger sequencing

Population-based Sanger sequencing (PBSS) has been the most used due to its relatively low
cost and fast turnaround time. For the purpose of sequencing plasma-derived HIV-1 RNA, it
is generally preceded by a reverse transcription with a gene-specific primer, which may be
followed by a second-round “nested” PCR. The resulting library of double stranded PCR
amplicon is the template for the sequencing reaction. This library is heterogeneous and
contains a representation of the circulating HIV-1 quasispecies within a sample, which may
be biased as a result of primer selection [96]. It is generally agreed that PBSS lacks sensitivity
to detect minority variants that are less than 20% prevalent [97]. Conversely, minority drug
resistance species and non-R5 viruses may have important impact on therapy outcome.
Studies have shown that low prevalent drug resistance variants are associated with increased
risk of treatment failure and are rapidly selected to represent the major virus population
within weeks after starting ART [98-100], and patients with >2% non-R5 tropic variants have
been reported to be associated with poorer maraviroc response [101]. Thus, a more sensitive
sequencing approach could be beneficial for better clinical management, calling for the
implementation of next generation sequencing (NGS) technology in the field of HIV
research.

1.4.2 NGS/High throughput sequencing

To improve the sensitivity of detection of drug resistant variants, researchers have examined
deep sequencing technologies such as NGS as an alternative to PBSS, where usually
thousands of templates per sample from PCR amplification are clonally sequenced to obtain
high depth coverage with thousands of reads per sample [102]. Due to their supreme
sensitivity, platforms such as MiSeq (Illumina) can detect HI\V-1 minority variants down to
about 1% prevalence as well as reverse transcription and PCR errors caused by enzyme
misincorporation. Using analysis of clonal samples and standard PCR conditions, Di
Giallonardo et al. estimated such error rates at 0.08-0.16% [103]. Comparison of this method
with conventional PBSS showed > 99% nucleotide concordance (sensitivity, 97.4%;
specificity, 99.3%) [102]. Oversampling or redundant sampling of sequence variants derived
from a low input copy numbers of HIV-1 RNA/DNA templates is a potential issue in all NGS
methods [104], and the need for multidisciplinary team (wet-lab and in silico) is another
bottleneck for implementation of NGS [100]. Despite the shortcomings, high throughput



NGS have been shown to be a promising approach for widespread individual drug resistance
testing as well as surveillance in resource limited settings (RLS), with an added advantage of
cost-effectiveness [100, 102, 105] and its application to multiple HIV subtypes [102]. Thus,
we chose MiSeq (Illumina) for analysis of minority drug resistance variants in this thesis.

1.5 ANTI-HIV-1 DRUGS AND MONITORING OF ART

1.5.1 ART regimens

The discovery of drugs that suppress the HIV-1 replication has transformed the infection
from a fatal to a chronic manageable disease [106]. Currently, there are 27 anti-HIV-1 drugs
approved for clinical use and classified into six drug classes (NRTIs, NNRTIs, Pls, INSTIs,
fusion inhibitor, CCR5-antagonist) among which 16 are more commonly used [107]:
nucleoside or nucleotide analogue reverse transcriptase inhibitors (NRTIs) was the first drug
class discovered and inhibits reverse transcription. The NRTIs mimic and compete with
natural nucleotide substrates of RT and inhibit viral DNA synthesis. Commonly used NRTIs
in RLS include: lamivudine (3TC), emitricitabine (FTC), stavudine (d4T), zidovudine (AZT),
and tenofovir disoprovil fumarate (TDF) [108, 109]. Non-nucleoside reverse transcriptase
inhibitors (NNRTISs) also inhibit reverse transcription by allosteric binding of RT in non-
competitive manner resulting in conformational changes and deactivation. Among the
NNRTIs, efavirenz (EFV), and nevirapine (NVP), are the most commonly used in RLS,
being the main and alternative first line agents, respectively [107, 110]. Protease inhibitors
(PIs) inhibit Gag and Gag-Pol polyprotein cleavage by the protease enzyme. This class of
drug was for many years part of the standard first line ART in high-income countries while it
is reserved for second line in RLS where either lopinavir (LPV), atazanavir (ATV), or
darunavir are used [111, 112]. Integrase strand transfer inhibitors (INSTIs) inhibit specifically
the strand-transfer activity of the INT enzyme. Currently there are four INSTIs approved for
HIV-1 treatment, namely raltegravir, elvitegravir, dolutegravir (DTG) and bictegravir (BIC)
[113] and, the DTG is considered nowadays as a drug of choice among initial ART regimens
because of the high efficacy and limited toxicity [114]. In 2017 World Health Organization
(WHO) recommended that all first-line regimens should include the INSTI DTG if the
pretreatment drug resistance (PDR) rate is >10% in a geographical region [115]. The only
approved fusion inhibitor enfuvirtide T-20 is a gp41 inhibitor that binds to gp41 and inhibits
host-viral membrane fusion [116]. It is indicated for treatment of therapy experienced patients
not responding to other drugs despite ongoing therapy but is today hardly used [117]. The last
drug class, CCR5-antagonists, targets the CCR5 receptor and specifically blocks the
attachment of viruses which use CCR5 as a co-receptor for entry but does not affect viruses
that use CXCR4 [108]. Maraviroc (MVC) is the only one approved in this class [116] and is
used as an option for treatment of R5-tropic virus infection in high resource countries [118].
During the development of this PhD project, maraviroc’s rollout to RLS was expected and
thus study on the utility of this agent for HIVV-1C was included as part of the project. Co-
receptor tropism testing in connection with using this agent is discussed below.



In high-income countries, first-line standard ART combines two NRTIs with one of NNRTI,
one boosted PI or one INI [119]. Subsequent regimen decisions are guided by routine VL
testing, drug resistance monitoring and/or tolerability [120]. Since a few years the use of
combination ART consisting of 2NRTI and DTG has increased substantially. In contrast,
neither routine VL testing, drug resistance testing, tropism testing are usually available in
RLS where non-subtype-B HIV-1 predominates. Also several drug options are lacking. Thus,
WHO has until recently recommended a public health approach of ART using standardized
first-line (NNRTI+ dual NRTI) and second line (boosted P1 (LPV or ATV) + dual NRTI)
regimens in RLS [112, 120]. The new WHO guidelines from 2017 recommend the use of the
second generation INSTIs- DTG combined with 2 NRTIs as an alternative first line in RLS
[115]. Clinical criteria and CD4+ count (see below for detailed discussion of CD4) are the
main strategy for monitoring of ART in these setting which could result in switching to
second-line therapy which might not be necessary as well as continuing on an already failed
first-line ART, and consequently it might lead to an increased number of resistance mutations
[121].

In Ethiopia, first line ART consisted for many years of two nucleoside analogues (AZT, 3TC,
d4T and/or TDF) combined with either EFV or NVP [122, 123]. However in the last years
d4T is avoided due to severe side effects. Patients are followed up on a monthly basis in the
first three or more months of ART, until they show clinical stability and good adherence.
Afterwards, the follow-up is scheduled on every three months basis, or as clinically required.

1.5.2 CDA4+ cell count

The standard level for treatment initiation was recently updated to any CD4+ cell count
instead of the previous of 500 cells/ul; this recommendation will eliminate CD4 count as a
criteria for ART enrolment and allow initiation of ART for all people living with HIV [112,
124], while giving priority for those with CD4 cell count below 350 cells/ul. However, CD4+
count level is also useful for treatment efficacy monitoring in a setting lacking VL
measurement. Flow cytometry counting with fluorescently labelled monoclonal antibodies is
the conventional and most widely accepted choice for enumeration [124, 125] with the only
challenge coming from the large machinery and high instrumental cost, which make its use
difficult in RLSs.

National guidelines recommended CD4 monitoring of ART in Ethiopia every six months
after initiation of therapy or when it deems necessary [122]. As availability of infrastructure
and instruments is limited to ART centers located in urban areas, implementation has been
attempted by establishing sample referral network where ART centers lacking CD4
enumeration instrument are linked to the nearby center with flow cytometry instrument.
However it should be noted that there are bottlenecks in the implementation such as poor
reagent supply chain, frequent breakage of equipment and, shortage of trained manpower and
parts to maintain the instruments. Most recent Ethiopian guidelines (2017) recommend CD4
count assessment for patients on ART when indicated only [123].
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1.5.3 HIV Viral Load

In high income countries, VL measurement is the gold standard for monitoring patients on
ART [126]. VL monitoring is associated with favourable outcome compared to CD4 based
monitoring to have a better early detection of treatment failure in RLS [127]. The most
widely used method so far is the nucleic acid based assay. However, this assay is expensive
and unsustainable, and is conducted centrally and occasionally in most of RLS as it requires a
sophisticated laboratory infrastructure, highly skilled manpower and well established logistics
[128]. Nevertheless, WHO hopes for availability of new point of care viral load
measurement technologies and thus new WHO guidelines recommend routine VL monitoring
at six month, 12 months, and every 12 months thereafter given that the patient remains
clinically stable [112, 128].

VL monitoring facilities in Ethiopia are established at regional level where the regional
laboratories are linked to referral hospitals in the region. Patients suspected of treatment
failure are invited to visit referral hospitals where they are evaluated and sampled for VL
measurement [129]. Samples are then transported to the regional laboratory where VL
measurement is performed periodically, with turnaround time of several months.
Furthermore, such approach is cumbersome given the rapid rollout of ART to remote areas of
the country, with lack of infrastructure and resources. Thus, gaps in monitoring approaches
might facilitate unnoticed development and spread of drug resistance to commonly used ART
regimens, a scenario that necessitates drug resistance testing.

1.5.4 HIV-1drug resistance testing

Assays for HIV-1 drug resistance are either phenotypic or genotypic.

Phenotypic assays measure the drug concentration that inhibits viral replication by 50%
(ICsp) in cell cultures [130] compared to wild type control strains. Usually it requires
production of recombinant virus by cloning of PCR amplified segment of HIV-1 gene of
interest from a patient sample into a backbone of wild type clone lacking the gene of interest
which is resource and labour-intensive as well as time-consuming. Thus, it is mostly reserved
for drug development and resistance research [107]. Therefore, genotypic assays have
become the preferred method over phenotypic assays.

Genotypic drug resistance testing depends on the detection of known drug-resistance
mutations (DRMs), usually by PBSS of the pol region covering the 297 nucleotides of PR,
and the 5’ polymerase coding region of RT (amino acid positions 40—240), where most of
NRTI- and NNRT I-resistance mutations are found [130]. DRMs are usually unfit under
natural conditions and arise as a result of selective drug pressure under suboptimal drug
concentration. A mutation could be a primary directly reducing susceptibility to a given drug
or accessory which enhance fitness of primary resistance variants or further reduce
susceptibility [107].
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Due to the varying impact and interactions among mutations, the genotypic method relies on
the correct interpretation of the mutations detected. Among the several interpretation
algorithms developed, Stanford HIV database is the most widely used one and provides
scores for the mutations [131], which will be converted to various levels of susceptibility
based on literature and expert's opinion [130, 131]. These algorithms were developed based
on HIV-1B data. A recent study assessed the concordance between three interpretation
methods and found significant discordances including subtype related differences, calling for
a critical need for further development and improvement of the existing interpretation
algorithms as ART and HIV genotyping becomes available in many African and Asian
countries in connection with aiming at the new WHO 90-90-90 goals [132]. A version of
Stanford HIVdb, calibrated population resistance tool (CPR), provides a standard list of
surveillance drug resistance mutations (SDRMs) as indicator of transmitted drug resistance
(TDR) which is based on the criteria that: i) the mutation should be recognized as causing or
contributing to resistance; ii) being non-polymorphic and not appearing in polymorphic
positions, and iii) applicable to eight common HIV-1 subtypes. This list is based on WHO’s
2009 sDRM list [133]. The CPR tool was used to identify pre-treatment drug resistance
mutations in this PhD project. There is no recommendation yet to use drug resistance testing
as a monitoring tool of individuals on ART in RLS [134]; its availability is limited to
regional or national reference laboratories due to its very high cost.

1.5.5 HIV-1tropism testing

As mentioned in the tropism section above, HIV-1 tropism is related to disease progression
but it has also been claimed to have an impact on treatment outcome of standard ART.
Moreover, it affects response to the only currently licensed entry inhibitor targeting CCR5,
maraviroc, where presence of X4-tropic viruses must be excluded prior to treatment with this
drug. Both genotypic as well as phenotypic methods can be used to test for HIV-1 tropism.

1.5.5.1 Genotypic tropism testing

Genotypic tropism testing (GTT) offers a quicker and less expensive option and generally
involve nucleotide sequencing of the gp120 third variable (V3) loop which is characterized
by high variability including insertions, deletions and mutations [135]. Studies have shown
that even a single change among the V3 loop amino acids could result in a tropism shift [136]
and X4-tropic sequence characteristics include higher charge, increased genetic diversity and
sequence length [135, 137]. These characteristics of X4-tropic sequences allow genotypic
algorithms to draw sequence features for prediction of co-receptor usage [135]. The simplest
prediction model has been the 11/25 charge rule where positively-charged amino acid
residues at V3 loop codons 11 and 25 such as arginine (R) and lysine (K) have been strongly
associated with a CXCR4-tropic phenotype [138]. However, positions outside 11 and 25 are
also known to be associated with tropism [139] and as a result, bioinformatics approaches are
required. Raymond et al developed a simple genotypic prediction combining 11/25 rule and
the net V3 charge [140, 141]. There are also several bioinformatics based algorithms
developed including position specific scoring matrix (PSSM) [142], geno2pheno (G2P)
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[143], and the most recent, PhenoSeq [144]. These algorithms were designed to infer
phenotypic assay results from V3 loop nucleotide sequences using statistical techniques to
weigh the prevalence of amino acid variants in each position. A score that estimates the
probability of being associated with R5 phenotype is generated for amino acid variants in the
V3 loop. In the case of G2P, this score is further transformed into a predicted false positive
rate (FPR) [145] which indicates likelihood of falsely predicting a given V3 loop sequence as
X4 using. To convert the spectrums of likelihood scores into a binary inference of tropism
(i.e. “R5” or “non-R5”), appropriate cut-0ffs should be established. For instance, a G2P cut-
off of 5.0% FPR is 92.6% specific and 67.4% sensitive against the original Trofile assay for
detecting non-R5 [146]. As mentioned above, some clinical parameters, like CD4+ count and
VL, are shown to be associated with co-receptor usage in chronic HIV infection. A clinical
version of G2P has been developed and includes clinical parameters such as CD4 count and
VL to improve the prediction [147].

Yet, there is a speculation that genetic determinants outside the V3 loop of HIV-1 env may
affect the ability of GTT tools to precisely predict tropism [148-151]. Moreover, discordant
prediction by genotypic algorithms arises because of different statistical models employed,
the way of handling changes in the loop like insertions, deletions, and ambiguous amino-acid
positions [152]. Also, GTT methods do not allow discriminating between pure X4 and
dual/mixed R5X4 viruses [153].

Performance of the algorithms is influenced by the training data including the subtype of the
V3 sequence used and most GTT methods have been developed using genetic data from
HIV-1B [154] posing a question as to whether they have capacity to predict tropism in non-B
HIV-1 subtypes. Studies that attempted to validate these utilities in different clinical setups
and subtypes have shown a limited sensitivity of detecting X4-tropic strains as well as
differences between subtypes [155] using phenotypic assays as gold standard even though
95% specificity of G2P has been reported for predicting X4-tropism in HIV-1C [156]. One
recent study using a phenotypic assay reported an overestimation of X4 virus by G2P fyr10%
when compared with PSSM as well as commercial and non-commercial phenotypic assays in
a cohort of acutely HIV-1 infected patients [152]. Thus, despite their ease of use and lesser
expense, there are unresolved issues with GTT methods and hence, calls for more studies
which evaluate further the utility of tropism tests in different subtypes and settings. The
abovementioned genotypic tools were used in this thesis to predict tropism in HIV-1C and
impact of the predicted tropism on the outcome of standard ART.

1.5.5.2 Phenotypic tropism assays

The oldest phenotypic assay to assess HIV tropism was the MT-2 assay which, based on the
ability to induce formation of multinucleated giant cells, “syncytia”, classified HIV into
syncytium-inducing (SI) or non-syncytium-inducing (NSI) phenotypes [157]. NSI viruses are
generally associated with CCR5 co-receptor usage, whereas Sl viruses are generally
associated with CXCR4 usage [158]. Over the last decade, various commercial phenotypic
assays have been developed to measure tropism based on recombinant viruses, such as the
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Enhanced-Sensitivity-Trofile-Assay (ESTA) [159], the Virco phenotypic test [160], the
Phenoscript test [161] and the Toulouse Tropism Test [153]. Non-commercial assays utilizing
recombinant particles or pseudovirions have been also shown to be good in measuring
tropism [162-164] and has been claimed to even be able of differentiating between the dual-
tropic viruses and a mixture containing both R5- and X4-tropic strains [165], which is one of
the shortcomings of commercial assays. However, factors including higher cost and longer
turn-around time made their usage in clinical setup limited although the non-commercial
assays are relatively less expensive. In this thesis, an in house phenotypic assay was
employed and compared with predictions by genotypic methods.

1.6 OUTCOMES OF ART

According to the US department of health, the goal of ART is “to achieve maximum and
durable suppression of plasma HIV RNA,; restoring and preserving immunological functions;
reducing HIV-related comorbidities and prolonging and improving quality of life; and
preventing transmission of the virus” [166]. Viral suppression indicates treatment success and
lesser potential of transmitting the virus.

1.6.1 Definitions

According to WHO guidelines for RLS (2016), ART failure in adults and adolescents may be
defined as clinical, immunological or virological.

Clinical failure is defined as ‘‘a new or recurrent clinical event indicating severe
immunodeficiency (WHO clinical stage 4 conditions) after six months of effective treatment.
The condition must be differentiated from immune reconstitution syndrome (IR1S), which
occurs after initiation of ART”’ [112, 166].

Immunological failure is a situation when <°’CD4 count falls to or below the baseline or
persistent CD4 levels below 100 cells/mm. However, the event should be without

concomitant or recent infection which may cause a transient decline in the CD4 cell count™’.

Virological failure is defined by a “’persistently detectable viral load exceeding 1000
copies/mL (that is, two consecutive VL measurements within a three-month interval with
adherence support between measurements) after at least six months of starting a new ART
regimen’’ [112].

1.7 THE ADVANCED CLINICAL MONITORING OF ART (ACM) PROJECT IN
ETHIOPIA

Incepted in 2005 as a compendium of 10 national (Federal Ministry of Health, FHAPCO,

EHNRI, and seven hospitals affiliated with medical universities in Ethiopia) and two

international institutions (Johns Hopkins University — Bloomberg School of Public Health

(JHU) and the United States Centers for Disease Control & Prevention (CDC), the ACM

project in Ethiopia is a longitudinal cohort study designed to evaluate the effectiveness of the
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national free ART program at the participating hospitals in diverse geographical locations
(figure 4).

Established by considering age during the consent process, the ACM included an adult and
adolescent cohort (age >= 14years), and a paediatric cohort (age < 14 years), each consisting
of a database (retrospective data before enrolment) and repository (prospective data at
enrolment and thereafter) sub cohorts. For the adult and adolescent sub-cohort, plasma
samples were collected every six months at each study site, stored temporarily at -20°C, and
transported regularly to EHNRI for storage at -80 °C [167]. From January 1, 2005 to August
31, 2013, a total of 4339 participants were enrolled to the project among which 982
participants were enrolled from the multi-site adult and adolescent repository cohort between
September 2009 and August 31, 2013 [167].
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Figure 4. Study sites of the Advanced Clinical Monitoring (ACM) cohort: The Tikur Anbessa hospital is
situated in the capital city, Addis Ababa. The clinical caring for the Armed Forces, the “Mobile Group”, is also
situated in Addis Ababa.

Although ACM project was terminated thereafter because of the discontinuation of funding
from the donor (CDC), it is among the larger cohort studies in Africa, which included more
than 4,000 patients. Such cohort studies have been critical in nourishing understanding of
HIV and effectiveness of ART in a real-world setting. This thesis took an advantage of such
research platform created by ACM and accessed adult and adolescent repository cohort
specimens as well as associated data to achieve the aims which are described below.
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2 OBJECTIVE AND AIMS

2.1 OBJECTIVE OF THE THESIS

Overall objective of the thesis was to investigate the molecular characteristics of HIV-1C and
the impact on first line antiretroviral therapy (ART) outcome in Ethiopia.

2.2 SPECIFIC AIMS

Paper |

To assess the molecular epidemiology of the Ethiopian HIV-1C epidemic in different
geographic regions of Ethiopia and the trend of viral tropism over the last two decades.

Paper 11

To investigate the utility of genotypic co-receptor tropism prediction tools and evaluate the
impact of the predicted viral co-receptor tropism on the outcome of non-maraviroc containing
standard first line ART in Ethiopia.

Paper 111

To analyse the phenotypic tropism of HIV-1Cgy, strains in comparison with the genotypic
prediction by five bioinformatics tools and compare the in vitro sensitivity of pure R5-tropic
and dual-tropic HIV-1Cgy strains for the co-receptor antagonist maraviroc.

Paper IV

To assess the prevalence of surveillance drug resistance mutations (SDRM) to reverse
transcriptase- and protease-inhibitors by population-based Sanger sequencing as compared to
next-generation sequencing and evaluate their impact on first line ART outcome as well as
analyse the occurrence of DRM by NGS to the novel category of integrase strand inhibitors.
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3 MATERIAL AND METHODS

3.1 STUDY SUBJECTS

The samples and data used in this thesis have been mainly obtained from HIV-1 infected
patients recruited to the ACM project, both at baseline (treatment-naive) and/or at follow-up
points- months six and twelve (treatment-experienced). Through October 2009 to December
2011, a total of 874 ART naive patients were recruited to the ACM repository sub cohort, and
started ART, as per the national guideline [122]. The subjects were from seven universities
[167, 168] distributed geographically all over the country (figure 4): Tikur Anbessa
Specialized Hospital in Addis Ababa- Central region; Gondar— Northwest; Jimma— West;
Mekelle— North; Harrar— East; Hawassa— South; the Army unit providing service to mobile
military staff and family, which is located in Addis Ababa (Figure 4). Plasma samples were
temporarily stored at -20°C and transported thereafter to the central laboratory of the
Ethiopian Health and Nutrition research institute (EHNRI) and stored at -80°C. Historical
sequence data were obtained from online databases for comparative analysis employed in
some papers as described below.

In Paper I and 11, plasma samples were obtained from 420 treatment-naive patients of whom
41 also contributed with plasma while failing ART. In addition, a total of 387 historical V3
loop sequences from HIV-1Cgry dated from 1984-2003 were downloaded from the Los
Alamos database (accessed on 23" January 2015) for Paper |I.

For Paper 111, plasma samples were obtained from 58 treatment-naive subjects, who were
selected based on a discordant co-receptor usage (n=42), a concordant CCR5 co-receptor
usage (n=10) or a concordant CXCR4 co-receptor usage (n=6), as predicted by the five GTT
tools in paper II.

For Paper 1V, the study was conducted on 490 subjects (age >14 years), randomly selected
after stratifying by study sites (70 from each site). In addition, baseline samples of 109
patients with virologic treatment failure (n=71) or with virologic suppression (n=38) patients
were analysed by NGS.

3.2 CDA4+ CELL COUNT AND VIRAL LOAD MEASUREMENT

CD4+ count was determined from patients’ uncoagulated whole blood at laboratories within
the participating health facilities using BD FACSCalibur machines (Becton Dickinson, San
Jose, USA). Plasma VL was measured in the national reference laboratory at the Ethiopian
Public Health Institute (EPHI) using NucliSENS easyQ® HIV-1 Nucleic Acid Sequence-
Based-Amplification (NASBA) assay (BioMérieux Diagnostics).

3.3 RNA EXTRACTION

A summary of the experiments in the thesis is depicted in figure5 below. HIV-1 RNA was
extracted from plasma by QlAamp Viral RNA kit (Qiagen, Hilden, Germany) 140ul of
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plasma was used for patients having VVL> 10,000 copies/ml, while 1ml of plasma was
centrifuged at high speed to concentrate the virus for patients with VVL.< 10,000 copies/ml.

G2Peclin, G2Pclon, Genotypic
PSSM, PhenoSeq, tro pism
Raymond

Infectivity and Comparison of
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Figure 5: Summary of experiments in the thesis.

3.4 REVERSE TRANSCRIPTION AND NESTED PCR

In Paper I, 11 and IV cDNA was synthesized from extracted RNA using RevertAid H-minus
reagents (Life technologies, UK) followed by subsequent amplification and nesting in two
rounds by using the Applied Biosystem PCR system reagents and Tag-polymerase enzyme.

In Paper 111 cDNA was synthesized from extracted RNA using using SuperScript® 11
Reverse Transcriptase (Invitrogen/Life Technology) with Oligo (dT)18 primer (Thermo
Scientific) followed by subsequent amplification and nesting using KAPA HiFi HotStart
ReadyMix PCR kit (Kapa Biosystems, US). Table 1 below lists primers used for
amplification and sequencing.

3.5 DNA PURIFICATION AND SEQUENCING

For Paper I-111, the amplicons were purified by QIAquick kit (Qiagen) and sequenced in
automated sequencer (ABI 3130xI Genetic Analyser, Applied Biosystems). Sequences were
aligned, edited, and analysed by the BioEdit software v. 7.0.9. The V3 loop sequence was
derived by a gene cutter program (http://www:.hiv.lanl.gov/content/sequence
/IGENE_CUTTER/cutter.html).

In Paper 1V, the amplified fragments were purified (QIAquick PCR Purification Kit, Qiagen,
Hilden, Germany) and sequenced with PCR primers JA204F-C and JA205R-C plus PR2R
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and RTO7. Sequences were aligned, edited and analysed using the BioEdit software version
7.2.6.1 (http://lwww.mbio.ncsu.edu/bioedit/bioedit.html)

Table 1: List of primers used for amplification and sequencing in each constituent paper.

Primer 1D Sequence HXB2 Used for Used in paper
Position

ED5-1F 5-ATGGGATCAAAGCCTAAAGCCATGTG-3' 65566581 1st PCR Paper I-11
ED12-1R 5-AGTGCTTCCTGCTGCTCCCAAGAACCCAAG-3' 7822-7792 1st PCR Paper I-11
ES7-2F 5-TTRTTAAATGGTAGTATAGC-3' 7001-7020 2nd PCR, sequencing Paper I-11
ES8-2R 5-CACTTCTCCAATTGTCCCTCA-3' 7667-7647 2nd PCR, sequencing Paper I-11
5550F 5’-AGARGAYAGATGGAACAAGCCCCAG-3’ 5550-5574 1st PCR Paper 111
9555R 5’-TCTACCTAGAGAGACCCAGTACA-3’ 9555-9533 1st PCR Paper 111
6433F 5’- CYACCAACGCGTGTGTACCCACAGA-3’ 6433-6457 2nd PCR, sequencing Paper 111
8329R 5’-CCCTGCCGGCCTCTATTYAYTATAGAAA-3’ 8356 — 8329 2nd PCR Paper 111
JA203F-C 5’-GAA AGA CTG TAC TGA GAG ACA GGC-3’ 2058-2081 1st PCR Paper IV
JA204F-C 5’-TTCAGAGCAGACCAGAGCCAACAG-3’ 2135-2158 2nd PCR, sequencing Paper IV
JA205R-C 5*-TTTTCCCACTAACTTCTGTATATC-3’ 3338-3315 2nd PCR, sequencing Paper IV
JA206R-C 5’-TTA ATC CCT GGG TAA ATC TGACTT-3’ 3373-3350 1st PCR Paper IV
RTO7 5’-AAGCCAGGAATGGATGGCCCA-3 25862606 Sequencing Paper IV
PR2R 5’-GGATTTTCAGGCCCAATTTTTG-3’ 2691- 2713 Sequencing Paper IV

3.6 SUBTYPING AND PHYLOGENETIC ANALYSIS

Subtyping was done by the REGA subtyping tool v2.0 [169], the RIP 3.0
(http://www.hiv.lanl.gov/content/sequence /RIP/RIP.html, and the COMET HIV [170].

Maximum likelihood phylogenetic analysis was performed using Molecular Evolutionary
Generics Analysis version 7.0 (MEGA 7) software.
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3.7 CELL CULTURE

TZM-bl, 293T, GHOST (GFP-expressing Human Osteo Sarcoma T4) (3) CXCR4+, and
GHOST (3) CCR5+ Cells (Hi-5) cells were used in Paper I11. TZM-bl and 293T cells were
propagated in Dulbecco's Modified Eagle Medium (DMEM) (Sigma, US), supplemented
with 10% Fetal Bovine Serum (FBS) and 2mM L-glutamine while GHOST cells were
propagated in high glucose DMEM supplemented with 10% FBS.

3.8 CLONING AND RECOMBINANT VIRUS PRODUCTION

In Paper 111, QIAquickGel Extraction Kit (Qiagen, USA) was used for gel purification of
PCR fragments and the purified products were cloned in pMN-K7-Luc-IRESs-NefAgp120
plasmid following digestion with restriction enzymes NgoMIV and Mlul-HF (New England
Biolab, US) , ligation with T4 DNA ligase, transformation into competent

DH>5alpha E.coli cells (Invitrogen, Life Technologies, MA, USA) and subsequent colony
screening + plasmid isolation. Recombinant viruses were produced by transfecting the
plasmids using FUGENE® HD Transfection Reagent (Promega, US) in 293T cell line,
incubation for 48 hours and lysing the cells followed by centrifugation to get cell free
supernatants and stored at -80°C if not used immediately. Infectivity of the recombinant
viruses generated from individual clones was tested by infecting 10* TZM-bl cells with Env-
recombinant viruses in DMEM containing 20ug/ml of DEAE-dextran and cultured for 48
hours, after which luciferase activity was measured using the Luciferase Bright Glo™ assay
system (PROMEGA, USA). All infections were done in triplicate. Recombinant viruses were
considered infective if the luciferase read were no less than 2.5x the background as described
previously for TZM-bl cells [171].

3.9 TROPISM TESTING

Both genotypic (GTT) and phenotypic (PTT) methods were used to determine viral tropism
in this thesis as described below.

3.9.1 Genotypic methods

In Paper | G2P clonal and clinical algorithms were used for prediction of tropism based on
the V3 loop while in Paper Il three additional bioinformatics tools- PhenoSeg-C, C-PSSM
and Raymond’s algorithm - were used for prediction of tropism based on the V3 loop. For
GTT of cloned env in Paper 111, same tools as in paper Il were employed.

3.9.2 Phenotypic method

For phenotypic tropism testing in Paper 111, GHOST indicator cells- GHOST (3) CXCR4+,
and GHOST (3) CCR5+ Cells (Hi-5) were infected with viruses generated from individual
clones in DMEM containing 10ug/ml polybrene and luciferase activity was measured using
the Promega Luciferase assay kit as described above under recombinant virus production.
Viruses were interpreted as R5 or X4-tropic if the luciferase read was more than 2.5x the
background and dual tropic if luciferase read more than 2.5x in both GHOST cell lines.

22



3.10 MARAVIROC DRUG SENSITIVITY ASSAY

TCIDsowas determined for each recombinant virus as described elsewhere,[172] in
hexaplicate, and using Spearman Karber formula [173]. The drug sensitivity of the
recombinant viruses was measured by adding serial dilutions of drug spanning 10 uM to
1x10°° uM, in 96-well plates containing TZM-bl cells in complete DMEM media followed by
infection with reference virus (R5-tropic, MJ4 and X4-tropic, NL4-3) or the patient derived
recombinant viruses, at a multiplicity of infection (MOI) of 0.01 IU/cells using 10ug/ml of
DEAE-dextran and incubated for 48 hours. Luciferase activity was measured as described
above. Dose response data was analysed using GraphPad Prism version 7.00 for Windows,
GraphPad Software, La Jolla California USA.

3.11 GENOTYPIC DRUG RESISTANCE TESTING (PAPER IV)

Sequences generated from PBSS were aligned, edited and analysed using the BioEdit
software version 7.2.6.1 (http://www.mbio.ncsu.edu/bioedit/bioedit.ntml). Primary DRM
were identified using calibrated population resistance tool (http://cpr.stanford.edu/cpr.cgi) at
Stanford HIVDR Database. DRMs associated with NRTI-, NNRTI-, and PI- drug classes are
considered in this assay. For NGS, Gag-pol fragment (HXB2: 790 — 5096) was amplified, gel
purified, and fragmented on the Coveris S200 followed by library preparation using
NEBNext UltraTM DNA library Prep Kit. Forty-eight libraries were then pooled at
equimolar (10nM each) and run on Illumina HiSeq 2500. The FASTQ file was demultiplexed
and the consensus sequence was created for each sample followed by realignment again with
the consensus sequence as input. The variant calling was performed at amino acid (AA) level.
Only AA covering 5000X per position was considered quality passed. Based on the error
calculation generated by PCR and NGS, any mutation >1% was considered. WHO list of
DRM for surveillance of TDR was used to interpret SDRM for NRTIs, NNRTIs, Pls, and the
Stanford drug resistance summaries for INSTIs (hivdb.stanford.edu).

3.12 STATISTICAL METHODS AND APPROACHES USED

We used descriptive statistics (mean, median, standard deviation, and percentiles for
numerical variables, frequencies and percentages for categorical variables) to summarize
sociodemographic, clinical, immunological, and virological parameters. Chi-square test or
Fisher’s Exact Test were used to test differences between categorical variables. Differences
of numerical variables between two or more categories were assessed using Independent t-
test, Mann-Whitney, Anova and Kruskal-Wallis test.

In Paper | & 11, we used both intention-to-treat (ITT) and on-treatment (OT) analysis to
assess treatment outcomes. ART failure was defined as either detectable VL (>1000
copies/ml), died or LTFU in the ITT analysis while only patients having VL data at a given
follow up time point were included In the OT analysis. Logistic regression models were used
for the multivariable analysis of virological responses to compare differences between R5 and
X4 infected patients as tropism predicted by different methods, adjusting by age and gender,
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baseline CD4+ T-cell count and VL. Results from regression models were presented using
Odds Ratios (OR), 95% Confidence interval and p-values.

In Paper 111, sensitivity, specificity, positive predictive value (PPV), negative predictive
value (NPV) and Cohen Kappa coefficient (k) were calculated for the results obtained by the
GTT methods using the in house phenotypic assay as a gold standard.

In Paper 1V, the impact of pretreatment SDRM (RTI, PI) detected by PBSS and NGS assays
on virologic treatment outcome at month six and 12 was assessed by using a multivariable
logistic regression model testing for different confounding factors including gender, age,
WHO clinical stage, functional status, TB, CD4 cell count, baseline VL, and NRTI regimens.

In all of the papers, p-value <0.05 was considered statistically significant. Data analysis was
performed using STATA software 14 (Stata Corp. College Station, Texas, USA).
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4 RESULTS

The overall aim of the thesis was to investigate the molecular characteristics of HIV-1C and
its impact on first line antiretroviral therapy (ART) outcome in Ethiopia. We described the
env (Paper I-111) and pol regions (Paper 1V) using PBSS, NGS, as well as the functional
characteristics of the env in a cloning based phenotypic assay, as described in the methods
section, to characterize the virus and correlate with ART outcome. In this section, main
results from the studies will be presented and summarized.

41 PAPERI

This paper described our attempt to analyse, using the countywide multi-site cohort, the
current status of the Ethiopian HIV-1 epidemic which was the first HIV-1C epidemic
reported globally and described by our group in 1980’s. From 420 patients included in this
study, sequencing was successful in 352 of the patients. Furthermore, 387 historical sequence
data (dated 1984-2003) was included for comparison.

Subtyping and genotypic tropism prediction

Using the three subtyping tools, HIVV-1C was found in 350 (99.4%) and Al in two (0.6%) of
the 352 patients. In addition to determining the subtype, we also analysed the predicted
genotypic tropism of the 352 baseline VV3-nucleotide sequences using the G2P bioinformatics
tools. The G2P clinical model fpr10%, predicted the following: R5 - 285 (81.0%); X4 - 60
(17.0%); mixed (R5/X4) 7 (2.0%) (Figure 2a, Paper 1). The G2P clonal model predicted: R5 -
291 (82.7%); X4 - 50 (14.2%); R5/X4 - 11 (3.1%) (Figure 2b, Paper 1).

Altogether, 266 (75.6%) of the 352 predictions were concordant between the two models at
fpr10%. No association was found between the predicted baseline tropism and age, gender or
VL. There was no difference in occurrence of R5-virus across the geographical regions.

Temporal trend of viral tropism (1984-2011)

We assessed the temporal trend of viral tropism during the last two decades using 387
historical V3 loop sequences from HIV-1Cgry dated from 1984-2003 (1984-1993: n= 91;
1994-2003: n= 296), and sequences from our study (2009-2011). The proportion of X4-
tropic/ mixed (R5/X4)-tropic virus increased from 5.6% (1984-1993), 7.1% (1994-2003), to
17.3% (2009-2011) (p<0.001) (Figure 6).

4.2 PAPERII

In Paper 11, we analysed the sequences from Paper | further by employing more
bioinformatics tools as there was a large discordance in tropism prediction between the
methods used in Paper I. The aim was to investigate the utility of different bioinformatics
prediction tools and evaluate impact of the predicted viral co-receptor tropism on the outcome
of standard first line ART.
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Figure 6. Temporal trend in the proportion of X4 tropic virus among Ethiopian HIV-1 isolates by Geno2Pheno
clonal model (1984-2011).

R5 prediction at baseline

The proportion of patients predicted to harbour R5-tropic virus varied between the methods
by 12.5%, (90.6%, Raymond’s Vs 78.1%, PhenoSeq-C) as shown in Table 1 of Paper II.
Altogether, only 205 (58.2%) of the predictions were concordant by the five tools used (Table
2 of Paper II).

Impact of baseline tropism on ART outcome

We assessed whether tropism as predicted by each method at baseline had an impact on
treatment outcome both by OT and ITT analysis (as shown in table 3 and 4 of Paper Il
respectively). No difference was observed between R5 and X4 infected patients at months six
and 12 in multivariable OT analysis. Tropism as predicted by C-PSSM had an impact on
month 12 in multivariable ITT analysis, with patients harbouring R5 tropic virus at baseline
having 2.47 higher odds to achieve VL suppression compared to those with X4 virus (p=0.04,
OR 2.47, 95% CI 1.05-5.79) (Table 5 in Paper II).

Tropism switch at months six and 12

At month six, virological failure occurred in 37 of the 352 patients and seven additional
patients who were included only for the study of co-receptor switch. Paired plasma samples
were available for 41 patients out of which V3 sequencing was successful in 34 patients. The
most frequent rate of tropism switch (7/34; 20.6%) was predicted by C-PSSM (R5 to X4:
4/26; X4 to R5: 3/8; p=0.017), while 4/34 strains switched each (two R5 to X4 and two X4
to R5) as predicted by PhenoSeq-C and G2P clonal tools, and 4/34 strain switched (R5 to X4:
3/30; X4 to RS: 1/4) as predicted by Raymond’s algorithm.
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At month 12, virological failure occurred in 22 subjects in whom V3 sequencing was
successful in 19. In most patients, tropism predicted at baseline was maintained at the month
12 prediction.

4.3 PAPERII

As a high discordance was observed between the genotypic tropism prediction tools used in
previous papers, we moved next to employ a phenotypic assay and compare with the
predictions obtained by the GTT tools.

Amplification of envgp120 was successful in 41 out of 58 (70.7%) and cloning in 35 of the
41 (85.4%) patients from which one-hundred-twenty clones were screened and 79 (65%)
were infectious. Tropism was determined for all of the infectious clones by the phenotypic
assay, while V3 sequencing for GTT prediction was managed in 70 of the clones.

Correlation between the phenotypic and genotypic methods

By the phenotypic assay, 73 out of the 79 clones were R5 tropic, six were dual tropic, and
none were pure X4 tropic. A genotypic prediction was obtained for 70 of the infectious
clones. The phenotypic results were compared with the genotypic predictions, obtained with
the five algorithms as shown in Table 2 of Paper I11. Only 30 out of 64 (46.9%) pure
phenotypic R5 clones were predicted as R5 by all GTT tools.

Maraviroc drug sensitivity assay

The EC50 values for the six dual tropic and the six R5 tropic viruses are shown in Table 3
and the inhibition curves in Figure 1 of Paper Ill. There was no significant difference
between the EC50 values of dual tropic and R5 tropic viruses (p=0.201).

44 PAPER IV

In order to explore a further region of the viral genome, we analysed the pol gene using PBSS
and NGS with the aim to assess the prevalence of SDRM and evaluate their impact on first
line ART outcome as well as analyse the occurrence of DRM by NGS to the novel category
of integrase strand inhibitors.

Baseline sSDRM detected by PBSS and impact on treatment outcome

At baseline, samples from 461 (94%) patients were successfully sequenced among which
sDRM was detected in 18 (3.9%). (NRTI: n=9; NNRTI: n=7; PI: n=2) as shown in Figure 1
and Table 2 of Paper IV.

Patients harbouring baseline RTI-sDRM had higher odds of virologic failure considering both
cut-offs (VL >150 copies/ml and VVL> 1000 copies/ml) at month six (respectively OR (95%
Cl): 3.6 (1.2-11.1); and 9.00 (1.9-43.3)) as well as month 12 (respectively OR (95% CI): 6.5
(2.1-20.3); and 7.4 (1.5-35.0) compared to those without RTI-sDRM. In the ITT analysis,
patients harbouring RTI-sDRM showed a significantly higher odds of treatment failure s at
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month six, considering both viral failure cut-offs, than those without mutations (OR (95%CI):
2.9 (1.0-7.9) and 3.8 (1.4-10.5), respectively).

Baseline DRM detected by NGS

Baseline sequences were obtained from all of the 109 patients included for NGS. DRM was
detected in 28 patients (Table of paper IV). NGS detected RTI or PI SDRM more often
(23.9%) than PBSS (6.4%) (p<0.0001). The NGS DRMs were found in 32.4% of the 71
virologic failure patients at month six and/or 12 (>1000 copies/ml) (Table 3 of paper 1V). In
addition, INSTI DRMs-E138K, Q148R, Q148H, and T661- were detected by NGS (Table 3
of Paper IV).

Impact of baseline DRM detected by NGS and correlation with PBSS

NGS detected any RTI sDRM significantly more often (28.2%; 20/71) than PBSS (8.54%;
6/71) (p=0.004) from baseline samples of ART failing patients (Table 3 Paper 1V). Patients
who failed ART with >150 copies/ml at month six and/or 12 had higher odds to have one or
more NRTI, NNRTI and/or PI SDRM by NGS at baseline compared to the virologic
suppressors (OR: 6.4; 95% CI: 1.6 — 26.4 adjusted for NRTI regimens and CD4 cell counts)
(Table 3 Paper V).
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5 DISCUSSION

HIV-1 is characterized by extensive genetic variability dependent on the location of the
genome examined [13]. Such extensive genetic diversity of HIV-1 pose several challenges
and implications for viral diagnosis [21], monitoring of the infection [22], development and
patterns of drug resistance, disease progression [23], viral transmission, response to ART, and
effective vaccine development [22, 24, 25]. HIV-1C is the most rapidly expanding subtype
accounting for half of global HIV disease and nearly all infections in Ethiopia, Southern
Africa and India which are the regions with the highest burden of HIV-1 infection. The
molecular characteristics of this subtype success need to be explored to better understand
such epidemic.

In Paper | we attempted to describe the current status of the Ethiopian HIV epidemic which
was the first HIV-1C epidemic reported globally. Studies have since then consistently
described the Ethiopian epidemic as predominated (97%-100%) by HIV-1C [27, 28, 174-
176]. As these studies were from limited regions of the country, and as various studies
reported circulation of mixed subtypes in neighbouring countries including Djibouti (subtype
C (66%), CRF02_AG (20%), B (8.5%), CRF02_AG/C (2.9%) and K/C (2.9%) [177], Sudan
(subtype A (46%), C (33%) and D (21%), and northern Kenya (subtype A (50%), C (39%),
and D (11%) [31], we hypothesized that regional differences may exist in the Ethiopian
epidemic as a consequence or mirror of the situation in the neighbouring countries. We
therefore investigated the subtype distribution in different geographical regions of Ethiopia.
Results of our current study showed that the Ethiopian HIV-1 epidemic is still
monophylogenetic, exclusively dominated by HIV-1C, even though its first introduction was
estimated to have been four decades back, around 1970 [178]. Our finding calls for further
molecular and epidemiological studies to unravel such uniqueness despite changing
epidemiology in the neighbouring countries.

Viral tropism at baseline is of clinical relevance mainly in terms of disease progression and it
has been claimed to impact standard first line ART [76, 79]. Again, the few old published
studies from Ethiopia were conducted in limited geographical regions. Furthermore, recent
studies from South Africa and India, countries where the epidemic is dominated by HIV-1C,
have claimed an increase in the proportion of X4 viruses [66, 179]. Thus, we also analysed
the temporal trend of co-receptor usage of HIV-Cery. We chose the G2P clonal and clinical
models among several other tools available for genotypic tropism prediction (see below) as
95% specificity of G2P have been reported for predicting X4-tropism in HIV-1C [156].
Moreover, it is the most widely used one and the European Guidelines recommend its use
[180]. In our study, both tools predicted R5 tropism at a comparable frequency yet with much
discrepancy between the predicted tropisms. Although such prediction discrepancy could be
declared as a potential shortcoming which we tried to address further in Paper 11, in general,
our results described an epidemic dominated by R5 tropic virus and yet an increasing trend in
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X4 tropic strains over the last decades, in agreement with other studies from South Africa and
India where the epidemics are dominated by HIV-1C. However to investigate the prediction
discrepancy by G2P models, we decided to analyse the sequences using more prediction tools
in Paper 1.

Several genotypic bioinformatics algorithm based tools have been developed for prediction of
tropism following the discovery of maraviroc, the only co-receptor antagonist licensed so far.
These algorithms were designed to infer phenotypic results from V3 loop nucleotide
sequences using statistical techniques to weigh the prevalence of amino acid variants in each
position. A score that estimates the probability of being associated with R5 phenotype is
generated for amino acid variants in the V3 loop. Performance of the GTT tools is influenced
by the training data set employed and most have been developed using HIV-1 B data [154],
although PhenoSeq-C and C-PSSM have been trained on HIV-1 C as well [142, 144]. In our
study, each of the GTT tool predicted a somewhat similar prevalence of R5-tropic viruses
(ranging from 78.1-90.6%), in agreement with several previous studies which claimed a
reliable performance of GTT tools [159, 181, 182], with no one clearly showing better
performance than the other [183] although the comparison in these studies was with
phenotypic assays. However, studies comparing concordance between GTT tools are limited.
A large discordance between the five bioinformatics tools in our study could be explained by
difference in statistical models employed by each tool, and different approaches to handle
changes in a given V3 sequence [152]. By most of the prediction tools we used, there was a
bidirectional switch of tropism at therapy failure, X4 to R5 being more frequent than R5 to
X4. HIV-1 tropism switch under ART pressure in HIVV1B have been reported in previous
studies [73, 184, 185] with no dominance in either of the directions. Such viral switch during
rebound seemingly occurring biased towards R5-virus and whether it is a phenomenon that
occurs only in HIV-1C patients remain to be established. In both cases, fewer number of
patients analysed at follow-up could be a possible limitation to draw conclusions.

Published studies reporting impact of baseline tropism on standard first line ART outcome
are scarce. While some studies showed patients harbouring X4 strains at baseline associated
with poorer VL suppression or CD4+ T cell gain [76-79], few others reported similar rates
[80, 81]. In our attempt to correlate the predicted tropism at baseline with outcome of
standard ART at month six and 12, we did not find any significant association co-receptor for
most comparisons. Thus, our study suggests that the clinical value for predicting outcome of
ART by viral tropism as predicted by GTT is limited in an Ethiopian setting. We
hypothesized that lack of a gold standard to compare with, which is usually a phenotypic test,
could be a possible limitation of this study. We therefore decided to employ a phenotypic
assay to compare with GTT predictions in Paper I11.

Results of our phenotypic assay showed that more than 90% of the tested isolates were RS
tropic while no pure X4 tropic isolate was detected. When we compared the phenotypic
results with GTT prediction by each of the five methods employed in previous paper, we
found a varying degree of concordance. Moreover, early phenotypic studies reported that
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HIV-1Cgy, strains are almost exclusively R5, even in patients with advanced
immunodeficiency [65, 83], in contrast to our results in Paper | and 11, which are based on
prediction by GTT methods. Thus, results from Paper 111 suggest that these GTT tools have a
suboptimal performance in describing the co-receptor usage of HIV-1Cgy, strains. Our result
in Paper | might therefore have overestimated the increase in X4-tropic strains in the last two
decades. Such overestimation is also supported by recent studies comparing GTT predictions
with phenotypic results [152, 186]. Hence, available GTT algorithms need to be adapted
further using larger phenotypic/genotypic data-set of HIV-1C to improve tropism prediction.

It has been suggested that the CCR-co-receptor antagonist maraviroc could be a suitable
alternative in HIV-1C dominating countries, but the above reported increase in proportion of
X4 using HIV-1C strains argues against that. In order to elucidate this further, we attempted
to analyse, whether there was a difference in sensitivity to maraviroc in vitro between pure
R5 tropic and the dual tropic viruses. Our result demonstrated a dose response similar to the
MJ4 isolate, a prototype for R5 using viruses, showing maraviroc’s in vitro effectiveness
against R5 and dual-tropic HIV-1Cgy, isolates. Our finding is supported by a previous study
which also demonstrated maraviroc’s effectiveness in vitro against viruses with dual-
characteristics, suggesting that the CCR5-antagonists may be a therapeutic-option in patients
with dual/mixed-tropic viruses [49]. We acknowledge that small number of isolates included
in our comparison could be a shortcoming to derive such conclusion. Yet, it should be noted
that only six clones were found to be dual tropic and we compared maraviroc sensitivity of
those samples with equal number of R5 tropic samples and tried to match source sample (the
patient from which a given clone was derived) whenever possible. Thus, our limited data on
the in vitro activity of maraviroc in dual tropic viruses could support the use of maraviroc as
an alternative regimen, where available, as the vast majority of HIVV-1Cgy, isolates are R5
tropic and also dual tropic isolates showed sensitivity to this drug.

Published studies showed TDR as a factor contributing to consequent virological failure
[187-189], limiting first line treatment options. This is especially of concern after rapid
rollout of ART in RLS. Although there are few published data from Ethiopia on the level of
TDR, they are from small regional studies and countrywide data is lacking. We therefore
attempted analysis of TDR, from patients enrolled to a first large nationwide ART cohort in
Ethiopia [167, 168], employing both PBSS and NGS. Our results by PBSS using samples
collected after six years of ART rollout (2005) showed a low TDR rate, with no difference
between geographical regions. As the patients were recruited in 2009-2011, current situation
of TDR may have been changed as prevalence of TDRMs has been shown to be directly
correlated with length of ART availability in the area in question [190]. WHO’s recent report
indicated that TDR in RLS is increasing over time [191] and TDRMs are of public health
concern mainly in RLS as ART is initiated mostly at CD4 counts lower than 350 cells/uL in
these settings. At such delayed initiation of ART, those mutations might already become
minority variants, constituting less than 20% of virus population [190], which could be
detected only by sensitive methods such AS-PCR or NGS. As most of the patients in our
cohort (ACM study) had a low CD4 level at start of ART, the TDR rate might be
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underestimated by PBSS. Earlier smaller studies from limited regions of Ethiopia using PBSS
have reported low frequencies, 3.3% in 2003 and 0% in 2005 [192], which somewhat
increased in later studies, 5.6% in 2008 [193], and 7.2% in 2010 [194]. However, our result
from a larger nation-wide Ethiopian ACM cohort did not suggest an increasing trend of TDR.

As mentioned above, most of our patients had a low CD4 during initiation of ART. Also, our
earlier study based on sensitive allele-specific PCR detected NNRTI TDR at higher rate
(6.5%) of in patients from one of the study sites for current study, Addis Ababa [195]. Hence,
we decided to investigate for occurrence of minority variants by employing NGS in selected
group of patients. As expected, higher number of SDRM was identified, where additional
DRMs were detected in 17 patients. We acknowledge that selection of the patients included
for NGS was biased. Yet, the observed discrepancy between PBSS and NGS indicates that
NGS facilitates detection of SDRMs in RLS and reveals a higher prevalence of TDR to the
same or lower cost [196].

Since integrase strand transfer inhibitors (INSTIs) are planned to be used in some African
countries recently, we analysed our NGS data and major INSTI mutations (T661, E138K,
Q148R, and Q148H) were found in five patients. During the period when samples were
collected (2009-2011), and until now, INSTIs are not an integrated part of the ART regimens
in Ethiopia. Furthermore, no clustering of those strains with INSTIs DRM could be revealed
by the phylogenetic analysis (figure 2, paper 1V). Rather, the patients were from five different
ACM study sites, rendering possible transmission of these strains from INSTI treated subjects
unlikely. One explanation for this occurrence could be that wild-type HIV-1C strains might
harbour low abundance of INSTI DRMs. Hence, this phenomenon needs further investigation
of minor quasispecies with regard to INSTI DRMs in RLS.

Studies attempted to elucidate the impact of pre-existing INST1 DRMs on treatment outcome,
where low abundance INSTI DRMs had no impact in earlier studies [197, 198], while the
E157Q mutation has been reported in 1.7%- 5.6% of ART-naive patients in recent studies,
depending on subtype[199] and been implied to affect treatment response [200]. However,
those earlier studies used AS-PCR with the sensitivity to detect a significantly lower
proportion of mutants than our NGS method with 1% cut-off. Therefore, a potential clinical
impact of our findings still remains to be evaluated.

In summary, this thesis provides key information about HIV epidemic in Ethiopia, where the
most prevalent and successful HIV-1 subtype in terms of global spread, HIV-1 C, was
described for the first time three decades back. Moreover, it correlates molecular
characteristics of the virus, mainly co-receptor tropism and drug resistance mutations, at
baseline with treatment outcome of standard ART. Although the thesis is based on analysis of
samples and patient data from HIV-1C infected Ethiopians, the findings are of global
importance as HIV-1C is rapidly spreading throughout the globe and changing the
epidemiology in many countries, especially western countries previously dominated by HIV-
1B as a result of recent migrant influx.
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6 CONCLUSIONS AND FUTURE PERSPECTIVES

Main conclusions of the thesis are:

VI.

After its estimated introduction to Ethiopia in 1970’s, the HIV-1 epidemic is still
monophylogenetic in all geographical regions of Ethiopia, almost exclusively
comprised of HIV-1C, and dominated by R5-tropic virus, even in patients with
advanced immunodeficiency.

Each of the commonly used GTT tools predicted co-receptor usage with
comparable frequency nonetheless with large discordance between the methods
underestimating the presence of R5 and overestimating X4 strains compared to a
phenotypic assay. Available GTT algorithms need to be thus adapted further using
HIV-1C phenotypic/genotypic data set to improve prediction.

Baseline tropism predicted by C-PSSM method showed an impact on outcome of
standard first line ART at month 12 and hence could be possibly used for
prediction of ART outcome in HIV-1C infected Ethiopians.

Maraviroc has an in vitro activity against most HIVV-1C viruses and could be
considered as an alternative regimen in HIV-1C infected individuals if afforded.

NGS detected SDRM more often than PBSS and major INSTI DRMs were
identified in minor viral variants.

Pre-treatment DRMs were associated with a poorer treatment outcome. The high
rate of TDR and the identification of pre-existing INSTI DRMs at baseline by
NGS highlights the importance of TDR surveillance in RLS and shows added
value of high-throughput NGS.
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