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               Dedicated to my grandfather...  
                                                                       Gone though you have, I heard your voice today, 

                                                              I tried to make out what the words might mean,  

                                                                 Like something seen half-clearly on a screen,         

                                                                Gone since you have, grief too in time will go,  

                                                                      Or share space with old joy; it must be so, 

Rest then in peace, but spare some elation,  

Death cannot put down every conversation,  

Over and out, as you once used to say, 

Not on your life. You're in these lines to stay. 

                                                                              (With permission from, The Guardian*) 

 



ABSTRACT 
The Ras subfamily of Rho GTPases plays an important role in myriads of cell 

processes, such as actin cytoskeleton dynamics, membrane trafficking and cell 

migration. Additionally, they also participate in diverse signal transduction pathways 

that regulate gene transcription, cell survival and cell growth. The ability of these 

proteins to function as a signaling molecule depends on their capacity to cycle between 

an active GTP-bound conformation and an inactive GDP-bound conformation. Till 

date, three Rho family members namely, RhoA, Rac1 and Cdc42 have been well 

studied as compared to other Rho family members. 
This thesis highlights a less studied Rho GTPase, RhoD, which together with Rif 

constitutes a separate subgroup of the Rho GTPases. Ectopic expression of RhoD and 

Rif has a dramatic effect on the organization of the actin filament system observed as 

long flexible filopodia protrusions and the formation of short bundles of actin 

filaments. Moreover, RhoD has a role in regulating endosome dynamics and is a 

negative regulator of cell motility. This motivated us to find out more about the 

signaling pathways downstream of RhoD. We initiated our studies by identifying a 

number of novel binding partners for RhoD for instance, FILIP1, WHAMM, 

Rabankyrin-5 and the ZIP kinase. We observed that RhoD together with FILIP1 and 

WHAMM had a distinct role in actin dynamics, cell adhesion and cell migration as 

compared to the better studied members of the Rho subfamily. Furthermore, with the 

same RhoD binding partners, we elucidated another regulatory role of RhoD in Golgi 

homeostasis and ER-to-Golgi transport measured by VSV-G protein transport assay. 

Previous studied have identified Rabankyrin-5 as a Rab5 effector. Interestingly, these 

studies also reported that Rabankyrin-5 localizes to early endosomes and to 

macropinosomes of epithelial cells. We found that Rabankyrin-5 participates in 

coordinating Rab5 and RhoD in endosome trafficking. We describe a novel 

mechanism by which RhoD, Rab5 and Rabankyrin-5 coordinate membrane 

trafficking events and endocytosis, for instance during the internalization of activated 

tyrosine kinase receptor, such as the PDGFRβ. Finally, we found that RhoD 

modulates focal adhesion dynamics and actin filament assembly through a novel 

effector, ZIP kinase. In summary, this thesis sheds light on the less studied Rho 

GTPase RhoD and provides novel insight into the mechanisms underlying its diverse 

cellular effects.  
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1. INTRODUCTION   
1.1 Synopsis 

Just as a skeleton maintains shape and posture of a human body, likewise, all eukaryotic 

cells also possess a scaffold or cytoskeleton. This is a complex yet vital network of 

filamentous proteins that transverse through the crowded cytoplasmic environment, 

giving cells shape and framework in order to accomplish vital cellular processes via the 

signals emanating from outside the cell to the cell interior.  

     The Rho subfamily of GTPases is a family of signaling proteins that belongs to the Ras 

superfamily of small GTPases. They cycle between an active GTP-bound state and an 

inactive GDP-bound state. This cycling is tightly controlled by sets of proteins namely, 

guanine nucleotide exchange factors (GEFs) that catalyze nucleotide exchange by virtue of 

GDP dissociation and GTP association, resulting in the activation of a Rho GTPase. On the 

other hand, GTPase activating proteins (GAPs) play a role by enhancing the intrinsic 

GTPase activity that results in the hydrolysis of GTP and thereby inactivating a GTPase 

(Figure 2) [1,2,3]. This way, the small GTPases can function as molecular switches.  

    The Rho GTPases regulate diverse cellular processes in their active conformation and 

they carry out their functions mainly by binding to the effector proteins. They are called 

“effectors”, because they bind to the GTP-bound form of the GTPases and are able to 

transduce signals from the activated Rho GTPases to downstream cellular responses. Till 

date, many effectors for Rho GTPases have been identified. These include protein kinases 

(i.e., tyrosine kinases, serine/threonine kinases), scaffold proteins and actin regulating 

proteins (e.g. WASP, formins, etc). It appears that the major role of Rho GTPases is to 

recruit effector proteins to a particular target site intracellularly where they can execute 

their functions (Figure 2) [4].  
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Figure 1. Rho GTPases regulate basic cellular processes [adapted from source 5]. 

 

The focus of this thesis is on a less studied member of Rho subfamily of GTPases 

known as RhoD. Together with the related GTPase Rif, it constitutes a unique subgroup 

of the classical Rho GTPases. My studies show that RhoD has profound effects via the 

effector proteins isolated during this thesis work, on the regulation of the actin filament 

system, ER-to-Golgi transport, receptor trafficking and cell migration.  

          

1.2   The Ras GTPases 

The “Ras” stands for Rat sarcoma, indicating how the first member of the protein 

family was identified. In 1964, Jennifer Harvey and Werner Kirsten first observed a 

preparation of murine leukaemia virus isolated from leukamic rats that induced 

sarcomas in newly born litters [6,7,8,9,10]. However, the genes involved in inducing 

sarcomas in rodent litters were shrouded in mystery until 1975, when Edward Scolnick 

at the National Cancer Institute, USA identified and described the first two ras genes, 

H-RAS and K-RAS from the seminal studies on the two murine sarcoma viruses 

identified by Harvey and Kirsten [10,11,12,13,14]. Subsequently, in 1979 the first 

human ras genes were identified and confirmed by three independent research 

laboratories: one headed by Robert Weinberg at the Massachusetts Institute of 

Technology, one by Geoffrey Cooper at the Harvard University, and one by Mariano 

Barbacid in collaboration with Stuart Aaronson lab at the National Institute of Health 

[10,15,16,17]. The third ras gene was identified in 1983 by research team headed by 
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Robin Weiss from the Institute of Cancer Research, UK and designated as N-RAS for 

its early identification in human neuroblastoma cells [18]. These three genes encoded 

similar proteins, comprising of around 189 amino acids (approximately 21KDa) of 

which the first 86 amino acids are identical in sequence including the effector binding 

site and homologous till amino acid residue 167 [19]. Point mutations in Ras genes 

render them GTPase deficient and thereby constitutively active converting them into 

an active oncogenes. The most common point mutation occurring in human cancer is a 

replacement of a glycine for a valine amino acid residue at position 12 of K-Ras. The 

mutation is frequently found in tumor biopsies in patients suffering from pancreatic 

adenocarcinomas, colon and lung cancers. It is therefore, well-established fact now 

that about 20-30 % of all human tumors have mutations in Ras oncogenes [20,21,22].  

      The human genome project has established that the Ras superfamily consists of over 

150 members. These members have evolutionary conserved orthologues present in 

Dictyostelium, Saccharomyces cerevisiae, Drosophila melanogaster as well as higher 

eukaryotes [23]. Based on protein sequence and functional similarities Ras superfamily 

has been further subdivided into six subfamilies summarized in (Table 1) [24].    

      

 

Ras subfamilies 

 

Cellular functions 

 Members 

(in humans) 

Ras (Rat Sarcoma) 

 

Regulates gene expression 36 

Rho (Ras homologous) 

 

Regulates actin organisation, cell cycle 

progression, gene expression 

20 

Rab (Ras-like protein 

in brain) 

 

Regulates intracellular vesicle trafficking, 

mitotic spindle and nuclear envelope 

assembly 

61 

Ran (Ras-like nuclear 

protein) 

 

Regulates nucleocytoplasmic transport of 

RNA and proteins 

1 

Arf (ADP-ribosylation 

factor) 

 

Regulates vesicular transport 27 

Miro (Mitochondrial 

Rho) 

Regulates mitochondrial dynamics 2 

 

      
Table1. The Ras protein superfamily. The Ras superfamily members are subdivided 

based on their protein sequences and functional similarities. It also highlights the role 

of small GTPases in diverse cellular processes. 
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1.3 Molecular regulation and localization of small GTPases  

1.3.1. The Rho GTPases 

The first gene encoding a Rho protein was isolated in 1985 by Pascal Madaule while 

working in Richard Axel’s group, from a cDNA library obtained from abdominal 

ganglia of the mollusc, Aplysia [25]. It was identified with low stringency cDNA screen 

and named Rho for Ras homolog (now called RhoA). The protein encoded turned out to 

share 35% homology with H-Ras [25]. Subsequently, the group of Snyderman identified 

Rac1 and Rac2 in 1989 [26]. The third member of Rho family CDC42 was first identified 

in yeast as S.cerevisiae cell division-cycle 42 and subsequently by Polakis in 1989 [27]. 

Human Cdc42 shows 80% amino acid identity with yeast CDC42, 50% and 70% 

respectively with mammalian RhoA and Rac1 proteins [26]. Till date, 20 members of the 

Rho subfamily have been identified in mammals including the well studied RhoA, Rac1 

and Cdc42 (Figure 3). As with Ras superfamily each Rho subfamily member shares a 

common highly conserved core G domain that is about 150 amino acids long and is 

liable for providing essential nucleotide exchange [1,25]. In contrast to the Ras 

superfamily, most members of the Rho family contain an additional α-helical structure 

comprising 12 amino acid residue and known as the insert region [1,2,3]. 

The Rho GTPases are also under the same GTP cycling regime as the Ras proteins but in 

addition to GEFs and GAPs, they are regulated by guanine nucleotide dissociation 

inhibitors (GDIs), which target the GDP-bound form of Rho GTPases thereby blocking 

the GTP/GDP exchange (Figure 2). The Rho GTPases can further be subdivided into 

classical and so-called atypical Rho GTPases (Figure 3). The latter proteins are not 

under the same regulatory scheme as the classical Rho GTPases. The atypical Rho 

GTPases harbor amino acid residues in their active sites, which render them 

constitutively GTP-bound. This suggests the presence of additional regulatory modes, 

such as post-translational modifications (i.e., phosphorylation or ubiquitylation) and/or 

regulation at the transcriptional level. 
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Figure 2. Rho GTPase regulation. Rho GTPases are regulated by GTPase cycle.  Small 

GTPases that belong to classical Rho subfamily cycle between an inactive GDP-bound 

state and an active GTP-bound form. Active GTPases interact with effector proteins to 

mediate a cell response [adapted from source 1]. 

 

 
 

Figure 3. An unrooted dendritic tree represents the human Rho GTPases. The 

atypical Rho GTPases are encircled and labelled. The 20 members in humans are further 

divided into 8 families (in box top right) [adapted from source 24]. 
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1.4 Regulation of Rho GTPases  

      1.4.1a. The RhoGEFs  

RhoGEFs have a pivotal role in activating small GTPases by nucleotide exchange. 

Around 80 RhoGEFs exist in humans [28]. They have been further subdivided into two 

families, the Dbl family and the DOCK (Dedicator of cytokinesis) family [29,30,31]. 

These proteins are controlled by signals emanating from outside as well as inside a cell. 

The best understood example of RhoGEF is Vav. At the N-terminus of Vav, we find a 

calponin homology (CH) domain and the catalytic GEF module. On the other hand at 

the C-terminal region lies the zinc finger domain, proline-rich region, and SH2 domain 

flanked by two SH3 domains. Upon the deletion of first 66 amino acids from the N-

terminus the Vav can be constitutively activated [32]. Vav is involved in downstream 

signaling of many receptors, for instance EGFR, PDGFR etc [33,34]. When the receptor 

is activated upon the stimuli, Vav is transiently phosphorylated intracellularly by Src and 

Syk members of tyrosine kinase family, resulting in stimulation of its catalytic activity 

[34,35,36,37,38,39]. 

        

Dbl RhoGEF family of proteins 

The first RhoGEF isolated in mammals was the Dbl. It was isolated in 1985 as an 

oncogene in NIH3T3 cells by focus formation assay using DNA from a human diffuse 

B-cell lymphoma [40,41]. Eventually, the amino acid sequence revealed similarity to 

S. cerevisiae cell-division-cycle 24 (CDC24) and it turned out to possess a potential to 

catalyze nucleotide exchange on Cdc42 in vitro [40]. A domain was found highly 

conserved between Dbl and CDC24. Subsequently, it was named as DH (Dbl 

homology) domain, constituting the core catalytic domain required for GEF activity 

[42]. Approximately, 70 proteins containing a DH domain have been identified in 

humans, however these proteins share little homology amongst each other with an 

exception of three conserved regions (CR1, CR2 and CR3) each about 10-30 amino 

acids long [29]. The DH proteins also possess a tandem pleckstrin homology (PH) 

domain adjacent to DH domain which is pivotal for intracellular targeting of DH-

domain, the DH-PH unit is the least structural domain necessary to GEF activity in 

vivo (Figure 4) [43]. The PH domains are well known to interact with phosphorylated 

phosphoinositides (PIP3) (Figure 4) [44]. Two possible functional roles have been 

suggested for PH domain, first, they could directly affect the catalytic activity of the 

DH domain; second, they could help target GEFs to their correct intracellular location. 
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An alternative function has also been suggested for the PH domain of Dbs, which is 

that it participates with the DH domain in Cdc42 binding primarily through interaction 

involving the switch II motif of the GTPase [45].  

In addition to DH-PH domains, most GEFs possess some additional domains that are 

functionally involved in the regulation of the protein, like SH2 and SH3 domains, 

serine/threonine, tyrosine kinase domains and PDZ domains. These domains are 

necessary to link GEFs to upstream receptors and signaling molecules, as well as 

regulating the catalytic activity of the RhoGEFs [28]. 

Analysis of the three-dimensional structure of the RhoGEFs Sos1, Trio (DH1) and 

Tiam show that they are composed of a flattened, elongated bundle of 11 α-helices 

[46,47,48]. Two of these 11 helices, CR1 and CR3, are exposed on the surface of the 

DH domain and participate in the formation of the GTPase interaction pocket. GEFs 

bind to the GDP bound form and destabilize the GDP–GTPase complex while 

stabilizing a nucleotide-free reaction intermediate [49]. Since the intracellular 

concentration of GTP exceeds the concentration of GDP with a factor of 10, therefore 

released GDP is replaced with GTP, leading to activation of the small GTPase. Many 

RhoGEF members are specific for a particular Rho GTPase. For instance, Fgd1 and 

Fgd5 are specific for Cdc42 [50]. Other RhoGEFs may trigger the activation of several 

small GTPases; for instance, Vav1 acts on Cdc42, Rac1 and RhoA, whereas Dbl acts 

on RhoA and Cdc42 [42,51]. Surprisingly, of the 20 Rho GTPases known, the 

specificity in activation elicited by most known GEFs has only been investigated for 

Rho, Rac and Cdc42 subgroups.     

 

                      
 

Figure 4. Schematic structure shows Dbl GEF family. Members of Dbl family 

contain DH catalytic domain adjacent to a phosphoinositide-binding PH domain 

[adapted from source 52]. 
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DOCK RhoGEF family of proteins 

 

                       
                    

Figure 5. Schematic structure of DOCK family GEFs. The members of DOCK 

family contain DHR-1 and DHR-2 domain, which are structurally different from the 

Dbl family but functionally similar. DOCK1/180 till DOCK5 are Rac specific GEFs 

and DOCK6 uptill DOCK 8 are GEFs for Rac and Cdc42. From DOCK9 till DOCK11 

bind nucleotide-free Cdc42 [adapted from source 52]. 

 

The DOCK gene was first cloned in 1996 as a gene product encoding a 180 KDa 

protein (hence the name, DOCK 180) interacting with proto-oncogene product c-Crk 

binding protein [30]. Together, DOCK 180 (nowadays called DOCK1) and its 

orthologue in Drosophila melanogaster and Caenorhabditis elegans form an 

evolutionarily conserved RhoGEF protein family sharing two highly conserved 

domains known as DHR-1 and DHR-2 (Figure 5) [29,31]. Thus far, 11 DOCK proteins 

have been identified in mammals and the members of this protein family have been 

subdivided into 4 subgroups designated as DOCK-A, DOCK-B, DOCK-C and DOCK-

D [31]. These proteins control many biologically important cellular processes. 

Interestingly, both in vitro and in vivo, the DHR-2 domain of these DOCK proteins has 

been shown to be sufficient and necessary to trigger guanine nucleotide exchange on 

GTPases (mainly Cdc42 and Rac1)(Figure 5).  

Located upstream of DHR-2 domain is the highly conserved DHR-1 domain present in 

virtually all DOCK180 related GEFs [29,31]. DHR-1 domain has been shown to effect 

interaction between phosphatidylinositol (3,5)-bisphosphate and PtdIns (3,4,5)P3 lipid 
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signaling in vitro as well as in vivo [53]. Intriguingly, Rac1 activation is inhibited upon 

the inactivation of DHR-2 domain of DOCK180 that in turn inhibits cell migration and 

other cellular processes for instance phagocytosis [31,54,55]. This emphasizes the 

importance of the DHR-2 domain in the function of the protein. 

 

1.4.1b. The RhoGAPs   

Till date, more than 80 RhoGAP proteins have been identified and characterized in 

humans.  Being so many compared to Rho GTPases itself indicates that these proteins 

are involved in negatively regulating or terminating the signals at the specific location 

intracellularly. There are considerable evidences to suggest that the activity of Rho 

GAP within a cell is controlled by diverse means for instance protein-protein 

interaction, lipid binding, post-translation modification such as phosphorylation 

[56,57,58,59,60]. The first RhoGAP was discovered in 1989 and known as Bcr 

(breakpoint cluster region) [61]. Biochemically, RhoGAPs interact with the GTP 

loaded conformation of the Rho GTPases, thereby stimulating their intrinsic GTPase 

activity up to a 100 fold [62]. The structural determination of the RhoGAP domain has 

made it possible to decipher exactly how RhoGAPs catalyse the GTPase-activating 

reaction [63,64]. Crystallographic studies have revealed that the amino acids close to 

the arginine form a catalytic site involved in direct hydrolyzing GTP reaction to GDP 

with release of an inorganic phosphate (Pi). Mutation in these residues have also 

shown to hampers the activity of RhoGAPs [65]. Despite a low degree of similarity in 

primary structure between the RhoGAP and the RasGAP domains, the tertiary folding, 

as well as the basic mechanism of RhoGAP domain appears quite similar to RasGAP 

[62]. The RhoGAP domains are formed of 9 alpha helices and the hallmark is a 

conserved arginine amino acid residue present in a loop region, the so-called “Arginine 

finger” [66].  

    

1.4.1c. The RhoGDIs 

The RhoGDIs target the GDP-bound form of Rho and Rab GTPases. Their function is to 

block the exchange by maintaining the GTPases in “OFF-state”. In addition, GDIs also 

prevent the GTPases from localizing to the plasma membrane. The first RhoGDI 

identified was RhoGDI-1 (also known as RhoGDIα) [66]. It was shown to be involved 

in blocking the dissociation of GDP form and eventually binding of GTP to small 

GTPase RhoB. Till date, only 3 RhoGDIs have been identified: RhoGDI-1, RhoGDI-2 
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(also known as D4/Ly-GDI,) and RhoGDI-3 (also known as RhoGDIγ). The GDI-1 

was initially purified from rabbit intestines and bovine brain cytosol [67]. Subsequently, 

the cDNAs of RhoGDI-1 was isolated from humans [68]. The RhoGDIs have a very 

disparate sequence at the N-terminus compared to the C-terminus. The RhoGDI-1 and 

2 share around 74 % homology (i.e., 178 amino acid region at the C-terminus) and 

RhoGDI-3 of around 63% in the same region with GDI-1 and 2 [69].  

Out of these three RhoGDIs, 1 and 2 are of cytoplasmic origin and directly involved in 

controlling the membrane targeting i.e., the membrane association/dissociation cycle 

and GTP/GDP cycle. The RhoGDI-3 acts in a different manner compared to GDI-1 

and 2. Its mode of action is therefore still unclear [68,69].  

Mutations in Cdc42 and Rac1 defective in RhoGDIα binding (due to substitution of 

Arginine 66 with Glutamic acid) are able to target to membranes and induce filopodia 

or lamellipodia formation [70,71]. Similarly, in null RhoGDIα mesangial cells, 

transfection of activated Cdc42 or Rac1 mutants exhibited the same spectrum of actin 

reorganization as the wild-type cells. This suggests that other proteins may assist in the 

solubilization of nascent Rho GTPases. Moreover, the actin reorganization mediated 

by Rac1 and Cdc42 do not rely on control by RhoGDI. However, these studies utilized 

ectopically expressed Rho GTPases, including use of activated mutants evading 

control by GAPs [70,71]. It appears that the C-terminal hypervariable regions of Rho 

family GTPases are sufficient to enable delivery to the various resident membrane 

compartments, rather than their binding to RhoGDIα [72]. Nonetheless, RhoGDI do 

control the partitioning between the cytosol, membrane compartments and may 

facilitate the targeting of GTPases to appropriate signaling sites. 

 

1.4.1d. Organization of Rho GTPase signaling pathways 

A cell has to respond to myriad of signals. Therefore, well-regulated signaling 

pathways make sure that cell responds precisely to signals. Proteins involved in signal 

transduction pathways possess multiple domains that give them a degree of flexibility 

in order to interact concurrently with variety of other proteins. Rho GTPases are 

capable of controlling the cell response by interacting with effector proteins [1,2,3]. 

Based on the upstream signals, the Rho GTPases selectively activate particular 

downstream effector proteins; thereby organizing downstream signals in a cascade that 

ultimately leads to a specific cellular response for instance, cell polarity, cell migration 
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etc. Experimental studies have confirmed the role of GEFs, GAPs in complex with 

these effector proteins, enabling the control of particular effector protein to form a 

complex with a specific Rho GTPase [1,2,3]. Therefore, based on the upstream signals, 

the Rho GTPases efficiently organize signaling pathways downstream. 

The original concept of the best studied Rho members RhoA, Rac1 and Cdc42 stated 

that they regulate stress fibers, lamellipodia and filopodia, respectively [73]. The 

molecular mechanism underlying these biological responses have been described in 

some details. For instance, RhoA regulates the formation of stress fibers through the 

concerted action of Rho-associated protein kinase (ROCK) and Diaphanous-related 

formins (DRFs). ROCK acts by activating myosin II by phosphorylating myosin-

regulating components and promoting actin filament formation via DRFs. Rac1 act via 

so-called nucleation-promoting factors (NPFs), in this particular case the WAVE 

complex induces the formation of a weave of actin filament in the protruding 

lamellipodium at the leading edge of migrating cells. Cdc42, trigger the formation of 

filopodia via a number of downstream effectors but DRFs seem to have a critical role 

in the process [74].   

 

1.5 Essential functions of Rho GTPases 

1.5.1a. Actin filament system regulation 

One of most abundant proteins present in eukaryotic cells is the actin. The 

polymerization of actin is regulated by variety of actin binding proteins. There are actin-

sequestering proteins, such as profilin, which act to keep actin in a monomeric 

unpolymerized state. Actin filament formation is brought about mainly by two groups of 

polymerization machineries, the NPFs (most notably, WASP, WAVE and WHAMM) 

and the DRFs (most notably mDia1 and mDia2) [75]. NPFs bind to the so-called Arp2/3 

complex and promote the formation of branched actin filaments, whereas DRFs promote 

the elongation of actin filaments. The organization of actin is further regulated by 

proteins that aid in promoting assembly of actin filaments into highly ordered bundles 

and meshwork. Another important regulatory cue acts through capping of actin 

filaments, which helps to keep the actin filaments stable. Finally, there are numerous 

proteins (such as cofilin) that aid in the depolymerization of actin filaments by a 

severing activity and by promoting actin filament disassembly [2,76].  
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1.5.1b. Actin polymerization via NPFs and the Arp2/3 complex 

Actin regulators trigger formation of new actin filaments by a process known as 

nucleation. Kinetically, nucleation is rate-limiting step in the actin polymerization due to 

actin dimer intermediates being highly unstable [77,78]. The actin related proteins were 

initially purified from Acanthamoeba casetellanii by affinity chromatography. These 

proteins had high affinity for the actin sequestering protein, Profilin and stabilized actin 

for the promotion of filament growth and elongation [79].  

The Arp2/3 complex consists of assembly of seven proteins [79,80]. Of these seven 

proteins, two subunits were actin-related proteins of ARP2 and ARP3 subfamilies 

(hence, the name Arp2/3 complex). Remaining 5 subunits were initially named by size 

but have now been named as ARPC1 (actin-related protein complex-1), ARPC2, 

ARPC3, ARPC4 and p16-ARPC5 (Figure 6). ARPC1 possesses two isoforms in humans 

namely, ARPC1A and ARPC1B. ARPC1 possesses WD repeats domain whereas 

ARPC-5 do not contain any common domains. A definitive role of Arp2/3 complex in 

lamellipodia formation was clarified by Bailly et al., in 2001 by using an antibody 

against Arp2/3, which inhibited EGF-stimulated lamellipodia formation [81]. The actin 

filaments in lamellipodia distinctly oriented their barbed ends (i.e., fast growing ends) 

towards the cell membrane (Figure 6). The Arp 2/3 complex binds to the sides and 

pointed ends of the pre-existing actin filaments in a manner that contributes to its 

activation (Figure 6) [82]. Binding to NPFs is also essential in the activation of the 

Arp2/3 complex. The Arp2/3 complex nucleates actin filament by mimicking actin 

trimer with two of its subunits binding to actin monomers. The best studied role of 

Arp2/3 was performed by Welch et al., in 1997 where they showed how bacterium 

Listeria monocytogenes left an arc trajectory in the cytoplasm of platelets cells and 

comet-like tail rich in short actin filaments with their barbed ends towards the bacterium 

[83]. The Arp2/3 was subsequently purified from these platelets cells. This meant that 

the polymerization of actin monomers at the bacterial surface was coupled with 

propulsion indicating that it provides motile forces at the leading edges [84,85,86].  
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           Figure 6. The Arp2/3 complex. The Arp2/3 complex and others actin related proteins 

(ARPC1-ARPC5) linking two filamentous actins together [adapted from source 87]. 

 

Immediately after the Arp 2/3 isolation and its characterization, it became apparent 

that this complex by itself has weak in vitro nucleating ability leading to a conviction 

that certain cellular factors must be required in order to trigger the nucleation and 

branching by the Arp2/3 complex. Eventually, many Arp2/3-binding NPFs were 

isolated. They can be divided into two subclasses: Type 1 NPFs include Wiskott-

Aldrich syndrome protein (WASp), neural WASp (N-WASp), WASp family verprolin 

homologous protein (WAVE also called SCAR), WASp and SCAR homologue 

(WASH), WASp homolog associated with actin, membrane and microtubules 

(WHAMM) and Junction-mediating and-regulatory protein (JMY). All these proteins 

possess verprolin-homology domain (VCA domain or also called WH2), the central 

(Cofilin homology domain) and the acidic domain consisting of three conserved motifs 

which allow globular actin binding [88]. The Type II nucleation-promoting factors 

most notably cortactin lack VCA domains [89]. However, this class of NPFs have 

acidic domain at their amino terminus which binds directly with Arp2/3 complex [89].  

The Cdc42 triggers the activation of Arp2/3 through WASp and N-WASp. Cdc42 

interacts with N-WASp directly in vivo freeing an intra-molecular and auto-inhibitory 

interaction thereby exposing C-terminus of Arp2/3 binding and activation site (Figure 

7) [2]. Rac1 has been shown to act mainly via the WAVE family of proteins and the 

so-called WAVE complex (Figure 7). The WAVE proteins are constitutively 

associated with four additional proteins namely: Sra1/Cyfip1, Nap1/Hem-2, Abi and 
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HSPC300 [90]. Rac1 binds Sra1 and triggers the dismantling of this inactive complex, 

thereby letting WAVE to interact directly with Arp2/3 [2,91].  

                
Figure 7. Actin polymerization mediated by the Rho GTPases. Rac1 and Cdc42 

activate Arp2/3 via WASP and WAVE in order to initiate a branched filament network 

[adapted from source 1]. 

                          

                                           
 
Figure 8. Rho GTPases and formins. Rho triggers the activation of formins that in turn 

promotes linear elongation of filaments at the barbed ends [adapted from source 1]. 

 

Actin polymerization via DRFs 

In eukaryotic cells, another mechanism for actin polymerization is through Formin 

protein family [92]. The formins are a large family of proteins that facilitate the 

nucleation of new filaments by promoting the interaction between two actin monomers. 

In addition to nucleation, formins also facilitate the elongation of actin filaments, 

exclusively at the barbed ends. The formin mDia1 (also known as Dia1, Drf1 for 

Diaphanous-related formin-1) is the mouse homologue of the diaphanous homolog 1 of 
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Drosophila. This protein was identified in a yeast two-hybrid screen as  RhoA effector 

and it triggers actin filament elongation (Figure 8). In yeast, there are only two formins 

known Bnr1 and Bni1 that stimulate the Rho mediated actin polymerization. In 

mammals, formins function downstream of Rho to form focal contacts and stress 

fibers. In Saccharomyces cerevisiae, they function downstream of Cdc42 to induce 

actin filament formation in an Arp2/3 independent manner [93,94]. Their function 

appears to include nucleation of new actin filaments [95,96]. The C-terminal of the 

yeast formin, Bni1 contains FH1 and FH2 domains. These domains are sufficient to 

nucleate actin filaments in vitro [97,98]. Interestingly, the FH1 and FH2 domains of 

Bni1 also cap the barbed end of actin filaments, decreasing but not blocking the rate of 

actin polymerization [99,100,101].  

In humans, there at least 15 members of the formin family of proteins but not all of 

them bind to small GTPases [92]. The interaction of mDia1 with RhoA relieves an 

autonomous inhibitory interaction making FH2 domain exposed, which then directly 

binds to barbed ends of actin filaments and functions as the actin polymerization 

machine. The FH1 domain promotes the interaction of the formin with the 

profilin/actin complex and brings it to the end of the actin filament to add new G-actin 

monomer to the barbed end of the filament [2]. 

 
ADF/Cofilin 

The ADF/Cofilin family of proteins in eukaryotic cells has a role in actin 

depolymerization. ADF (also known as destrin) was first identified in chick embryo 

brain tissue as an actin depolymerizing factor (ADF) [102]. These proteins are widely 

distributed among plants and animals tissues [102,103,104,105].  Cofilin binds to both 

G-actin as well as F-actin and enhances the rate of polymerization and 

depolymerization of actin filaments [106,107]. Cofilin engages itself in actin filament 

depolymerization by triggering monomeric actin disassociation from pointed ends 

[77,108,109]. Members of cofilin family of proteins depolymerize actin filaments via 

two mechanisms i.e., via severing and by accelerating the rate of depolymerization 

from pointed ends. When the ATP bound G-actin is abundantly available in the cell, 

cofilin enhances actin polymerization through its actin severing activity, by supplying 

the free barbed ends for continuous polymerization and nucleation via Arp2/3 

complex.  

Intriguingly, microinjecting the Arp2/3 nucleation blocking antibodies in cells, 
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significantly inhibited lamellipodia formation but does not inhibit free barbed ends 

suggesting that there might be an alternative mechanism that takes part in barbed end 

generation in vivo. Microinjection of antibody blocking cofilin in the same cell system 

inhibited barbed end generation suggesting that cofilin and Arp2/3 work in close 

cooperation in order to reorganize actin filaments. At the growing barbed ends, Arp 

2/3 complex binds to side of ATP loaded filamentous actin thereby triggering the 

nucleation of newly formed filamentous actin branch. On the other hand, cofilin 

mediated actin disassembly occurs after the Arp2/3 dissociates from the filamentous 

actin [110]. 

 

1.5.1c. Regulation of cell migration 

One of the fundamental and central aspect in the normal development of the 

multicellular organisms is the cell migration. For vital cellular processes for instance, the 

formation of tissue during embryonic development, wound repair and inflammatory 

immune responses, cells need to migrate in a direction to reach to a specific location 

within a body. Additionally, cell migration also occurs in human diseases such as 

metastasis, atherosclerosis etc. [111]. One of the characteristics necessary for cell 

migration is the protrusion at the cell front. Lamellipodia are rich in branched filaments 

of actin at cell front or leading edges. These sheet like extensions propel the cell body 

over the substratum. It is well documented that lamellipodia consist of branched actin 

filament networks formed via the actin-nucleating activity of Arp2/3 complex. Induced 

by growth factors, cytokines, hormones or extra cellular components, Rac1 is necessary 

for lamellipodia extensions and upon Rac1 inhibition cells fail to migrate [73,112]. 

Activation of Rac1 is brought about by tyrosine kinases, G-protein coupled receptors 

and mediated by phosphoinositide 3-kinase (PI3-Kinase). However, evidences indicate 

that the Arp2/3 complex is activated by Rac through its target IRSp53. Rac interacts 

with IRSp53, which in turn interacts through the SH3 domain with WAVE, which then 

binds to and activates the Arp2/3 complex. Inhibitors of PI3-kinase blocks Rac 

activation [113,114,115].  

Most migrating cells have small foci complex structures that are localized in the 

lamellipodia and are important for attachments of the lamellipodium to the 

extracellular matrix. Rac1 is required for focal adhesion complex assembly.  

Therefore, cells make new focal adhesion sites at the motile edges and degrade the 

attachments with ECM at the rear end. It is plausible that constant formation of new 
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interaction between integrins and the ECM at the motile edges of cells maintains 

activated Rac there. The cell migration speed is dependent on substrate composition, 

levels of RhoA, Rac1 and Cdc42 activation and it varies with the matrix composition.  

As the cell lamella moves forward, the focal complexes disassemble and in slowly 

migrating cells such as fibroblast they can mature into Rho-induced focal adhesions 

[116]. On the other hand, RhoA regulates the focal complex maturation into focal 

adhesions through its effector Dia1 and Rho-associated coiled coil-containing protein 

kinase (ROCK) [117,118,119,120]. 

Another aspect necessary for cell migration is the cell body contraction. Contraction of 

cell body and retraction at cell body rear are vital for cell movement. It is dependent on 

actomyosin contractility and can be controlled by RhoA [121]. For instance, upon RhoA 

inhibition, macrophages continue to extend, however the cell body fails to translocate 

[122,123]. It could be due to stress fiber contraction. Stress fibers are the major motor 

for cellular contraction. Stress fibers are formed of actin and myosin filaments. When 

the myosin fiber slides past the actin filament, it leads to the shortening of the stress 

fibers, providing the contractile force for cell motility [124,125]. The stress fibers attach 

to the integrin, transmembrane receptors via proteins complexes at the so-called focal 

adhesions. Rho acts via ROCK to affect the MLC by phosphorylating myosin light chain 

(MLC) and inhibiting MLC phosphatase. MLC phosphorylation is also regulated by 

MLC kinase (MLCK). The ultimate effect of MLC phosphorylation is cell contractility 

and stress fibre formation due to enhanced interaction between the actin filaments and 

MLC [126]. 

Additional aspect of the cell migration is the directional movement. Cells sense and 

respond to the guidance cues in their surroundings via filopodia. Filopodia are the 

finger-like protrusions present at the cell periphery. Cdc42 triggers filopodia formation 

and is required for directional sensing during chemotaxis in fibroblast cells as well as 

neurons [112,122,123,106]. By protruding out from cells into surrounding, receptors on 

filopodia detect changes in the extracellular signals that would then be transmitted back 

into cells.  

 

1.5.1d. Regulation of membrane trafficking 

Members of Rho family GTPases are well known to control many aspects of 

membrane trafficking, for instance the vesicle transport by endocytosis and exocytosis 

[127]. This cellular process is vital for the flow of material inside and outside a cell.  
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Rho GTPases in endocytic pathways  

Endocytosis via clathrin 

Numerous receptors involved in signal transduction pathways are internalized in cells 

by clathrin-coated pits. Upon internalization, these transmembrane receptors can be 

either directed for degradation by ending up in lysosomal compartments, which are 

highly acidic vesicles or they can be recycled back to cell surface via recycling 

endosomes [128]. These vital cellular processes are well controlled by actin 

cytoskeleton as observed in yeast [129]. However, latest results of Schmid et al., 2000, 

contradict this notion and discuss that the role of actin cytoskeleton may vary based on 

the cell type used and more importantly the experimental conditions [130]. For 

instance, in HeLa cells, overexpression of activated Rho or Rac blocks transferrin 

receptor endocytosis [131]. Additionally, as discussed by Apodaca G et al., 2000 

activated Rac blocks endocytosis from both basolateral and apical membranes of 

epithelial cells that are highly polarized [132,133]. Intriguingly, Rac1 GTPase can bind 

with synaptojanin 2, a polyphosphoinositide phosphatase involved in clathrin-coated 

vesicles uncoating [134]. By recruiting synaptojanin 2 at the plasma membrane, Rac1 

act specifically by inhibiting the coated pit formation thereby blocking endocytosis. This 

activity of Rac explains its role in extending the lifespan of activated receptors at the 

plasma membrane [135]. 

On the other hand, Rho GTPases also affect certain stages of endosomal trafficking (i.e., 

stages such as: directing endosome vesicles either to lysosomes or recycling to plasma 

membrane) [136]. For instance, endogenous and myc-tagged RhoB was shown to 

localize to endosome compartments and have a key role in endosome trafficking [137]. 

Ectopic expression of GFP-tagged RhoB localizes in the perinuclear compartment in 

live cells [72]. However, it is plausible that GFP-tag could lead to mislocalization of 

RhoB due to protein folding. At the endosome vesicle, RhoB targets serine/threonine 

kinase, PRK1 to slow down trafficking of the endocytosed EGF receptor from 

endosome vesicles to pre-lysosomal compartment [132,138]. Another member of Rho 

family GTPases, RhoD also localizes to endosome. Ectopic expression of activated 

RhoD/G26V changes early endosomal distribution and motility [139]. Ectopic 

expression of activated or dominant negative Cdc42 also affect endosome recycling of 

polarized MDCK cells. However, it is unclear whether the effect is related to actin 

cytoskeleton [140]. 
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Pinocytosis 

Pinocytosis is a form of endocytosis whereby extracellular fluid is internalized 

resulting in the formation of cell membrane invagination. Experimentally, it can be 

studied by tracing cellular uptake of fluorescent molecules from the medium. This 

form of endocytosis is necessary for a cell in order to uptake nutrients that are 

necessary for cell homeostasis such cell growth and cell motility. Active variant of Rac 

has been shown to stimulate pinocytosis. Interestingly, PAK1, a Rac/Cdc42 target is 

needed for macropinosome formation upon growth factor stimulation [141]. A 

controversial model has been put forth discussing Rac-stimulated pinocytosis enhances 

the membrane ruffling and these ruffles fold back forming membrane bound vesicles 

[142]. Subsequently, this model was accepted since it clearly demonstrated that 

immature dendritic cells while sampling their surroundings for antigens do pinocytose 

via membrane ruffling [143]. 

 

Phagocytosis 

Another form of endocytosis is called phagocytosis. It results by engulfing large 

particles (i.e., bacteria, virus etc). This form of endocytosis is usually carried out by 

mature macrophages, neutrophiles, and phagocytes cells to clear out the antigens. The 

mechanism by which phagocytic cells engulf large particles depends on the receptor 

type present on the phagocytic cell surface. For instance, particles coated with 

antibody are taken into the cell via Fc gamma receptor [4]. This involves the actin 

polymerization via Arp2/3 complex mediated by Cdc42/Rac [4]. However, there are 

no real evidences to indicate that Cdc42/Rac are involved in driving movement of 

phagosome away from cell membrane although it has been suggested that PI3-K 

perhaps acts at later steps to regulate endocytosis and not Cdc42/Rac mediated actin 

polymerization [135]. 

 

1.6 Rho GTPases in disease development 

1.6.1a. In cancer 

After the identification of RhoA, it became apparent that RhoA was not acting as an 

oncogene in the same sense as Ras. With an exception of RhoH, there are no mutations 

identified in the genes encoding Rho GTPases in human cancer. Instead, the expression 

of Rho GTPases seems to be down regulated in cancer particularly in conditions such as 
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cancer cell migration, tumor invasion and metastasis. For instance, RhoH (also known as 

TTF) is upregulated in non-Hodgkin’s lymphomas, multiple myeloma, as well as large 

cell lymphoma with the mutations in the 5’ UTR region, that indicates the direct role of 

RhoH/TTF in cancer although precise mechanism is still unclear [144]. Experimentally, 

tumor derived cell lines and mouse models clearly advocate that the protein levels of  

master regulators of Rho GTPases (i.e., RhoGEFs and RhoGAPs) have a direct bearing 

on the initiation as well as tumor progression [144]. Deregulated RhoGEFs and GAPs 

signaling lead to aggressive cell migration, invasion and metastasis of various tumor cell 

types caused by variations in the levels of Rho proteins and untimely activation [145].  

Altered Rho signaling particularly impacts the cellular scaffold or cytoskeleton whose 

organization and reorganization supports the motility of cancer cells during the invasive 

growth [146]. Nowadays, it is generally accepted that Rho GTPases are frequently 

upregulated in many human cancers, summarized in the Table 2 [144]. The variation in 

the expression can occur at mRNA or protein level. For instance, experimentally when 

malignant breast tissue samples were compared to the normal breast tissue samples, it 

was observed that the levels of Rac1 protein were elevated much higher in the malignant 

breast tissue compared to the normal breast tissue, indicating Rac1 triggers breast tumor 

formation in vivo [147,148]. In addition upregulation of Rac1b, a splice variant of Rac1 

triggers cellular transformation in breast and colon carcinoma cells. In vitro studies in 

mouse fibroblast cells suggest that Rac1b signaling might be involved in cell survival 

signals via NFκB [149]. Contrarily, downregulation of Rac1 leads to embryonic lethality 

in vivo [150]. 

 Studies in the mouse leukaemia model have ascribed important roles of Rac3 in cancer 

progression [151]. In that study, the mice deficient of Rac3 were observed safe against 

lymphoblast leukaemia induced by crossing with mice expressing a fusion oncogene, 

BCR-ABL. This suggests that intervention with Rac3 function can be explored as 

therapeutic target for B-cell lymphomas or blood cancers [151,152]. 

Altered expression levels of regulators of Rho GTPases also cause cancer development 

by resulting in the deregulated signals downstream of Rho proteins. For instance, 

deprivation of Tiam1, a RacGEF, maintains E-cadherin based cell-cell adhesion that 

leads to epithelial-to-mesenchymal transition [153,154]. The studies carried out in 

mouse tumor models suggest that the lack of Tiam1 enhances invasion of Ras-induced 

epithelial skin tumors as well as β-catenin/TCF-induced intestinal tumors [155,156]. 

Moreover, point mutations in the N-terminal of PH domain of Tiam1, drastically affects 



 

 
21 

its localization and it has been observed in approximately 10% of samples affected by 

human renal-cell carcinoma samples [157]. The levels of Tiam1 protein have also been 

observed to be upregulated in human prostate carcinomas [158].  

 
Rho GTPase Variation Cancer/Tumor type 

RhoA Upregulation Breast, HNSCC*, colon, lung, gastric, bladder 

and testicular cancer 

RhoB Upregulation 

or downregulation 

Breast (upregulation), lung and HNSCC* 

(downregulation) 

RhoC Upregulation Breast and metastatic gastric cancer 

(inflammatory), pancreatic ductal 

adenocarcinoma, bladder cancer, NSCLC* 

and HNSCC 

Rac1 Upregulation Breast, gastric and testicular cancer OSCC* 

Rac1b Alternative splicing Breast and colon cancer 

Rac2 Upregulation HNSCC* 

Rac3 Hyperactivation  

or upregulation 

Breast cancer 

RhoG Upregulation Breast cancer 

Cdc42 Upregulation Breast and testicular cancer 

RhoH/TTF Upregulation  

and mutations 

(5’UTR) 

Non-Hodgkin’s lymphoma and multiple 

myeloma (upregulation) and diffuse large B-

cell lymphoma (mutation) 

RhoE/Rnd3 Upregulation  

and downregulation 

NSCLC (upregulation) and prostate cancer 

cancer (downregulation) 

RHO GTPASE REGULATORS 

Tiam1 Point mutation Renal-cell carcinoma, prostate carcinoma and 

breast cancer (upregulation) 

LARG Fusion to MLL Acute Myleiod Leukemia (AML) 

DOCK 180-

ELMO1 

Upregulation Glioma 

Vav1 Upregulation Pancreatic adenocarcinoma, neuroblastoma 

β-PIX Upregulation Breast cancer 

RhoGDIα Downregulation Invasive ovarian (upregulation) and breast 
 

Table 2. The mutations in Rho GTPases and their regulators with associated 

cancer types [adapted from source 144]. 
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Upregulation of GDIs has also been well documented to occur during the different 

stages of cancer progression. RhoGDI1 or RhoGDIα has been observed to be 

upregulated in colorectal and ovarian cancers [159,160]. Contrarily, dowregulation of 

GDI2 have been observed to promote development of muscle invasive bladder cancer 

[161]. The RhoGAPs constitute another group of key regulators that contributes to 

cancer progression. Genomic deletion of DLC-1, a GAP for RhoA and Cdc42 has been 

found in primary tumours [162]. Deletion of DLC-2 expression has also been found in 

hepatocellular carcinomas [162,163]. Deletion or downregulation of these GAPs lead to 

enhanced activation of Rho GTPases and their downstream signaling pathways during 

cancer progression. The examples mentioned above, it is still unclear about the 

specificity of most of the regulators of Rho proteins in vivo perhaps uncontrolled signals 

emanating via Rho GTPases are sufficient for the contribution of tumor progression.  

 

1.6.1b. In neurodegenerative disorders 

In a developing and well-developed nervous system, Rho GTPases have an important 

role in neuronal morphogenesis and dendritic plasticity by regulating the actin 

cytoskeleton at various stages. The Rac1 and Cdc42 have been well studied for their 

roles to promote the growth and dendritic stability whereas RhoA has been shown to 

inhibit this growth [164]. Many GEFs and GAPs are expressed in the nervous system 

making them likely to be involved in the specific Rho GTPases mediated signaling 

pathways leading to the neuronal processes. For instance, neuropathological disorder, X-

chromosome linked mental retardation (MRX) impairs the cognitive function in the 

individuals suffering from this disease, which affects 1 in 500 males representing 25% 

of genetically, manifested cases of mental retardation [5]. Upon closer histological 

inspection of the brain structure it was observed that patients suffering from MRX 

disease had increased size of hippocampus and certain cerebellar ventricles. In contrast, 

the cerebral cortex appeared reduce in size compared to the unaffected control tissue 

samples [165,166]. Additionally, microscopic examination showed thinner and 

stretched dendritic spines in the affected regions of patients suffering from mental 

retardation (MR). A closer look at the synaptic contacts revealed that this region had 

immature dendritic spines cells [167,168]. Synapses at the spines are thought to 

transmit the majority of functionally excited synaptic communication [169]. It was via 

positional cloning that ten genes related to mental retardation were identified giving an 
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insight into mutational basis for study of genetics and biochemistry involved in mental 

retardation (Table 3).  

Out of the genes/proteins enlisted Table 3, three genes/proteins namely, oligophrenin-

1, PAK and PIX/Cool-2/ARHGEF6 are directly involved in Rho GTPases mediated 

signaling pathways observed in neurons [170]. Another example of the involvement of 

Rho GTPase in neurodegenerative disorder is mutation in the RhoGEF, alsin, which 

causes the Amyotrophic lateral sclerosis (ALS) [171]. ALS causes a very life-

threatening disorder in which motor neurons degenerate with time. It has an important 

role in neurodegenerative disease [171]. Another key molecule is the Intersectin, for 

which the gene is located on chromosome 21 in humans and has been studied for its 

role in neuronal defect, Down syndrome by impairing Rho GTPase mediated signaling 

using mice model [172].  

Apart from the neurodegenerative disorders discussed above, alterations of 

mitochondrial dynamics and fusion also have been reported to link human neurological 

diseases affecting a specific area in the brain and nervous system, thereby highlighting 

the important role of mitochondrial function in maintaining healthy neurons [173]. 

Interestingly, Miro GTPases are well known to regulate mitochondrial motility along 

the microtubules in order to migrate to distinct location intracellularly. There is a 

substantial amount of genetic and chemical evidence indicating the involvement of 

mitochondria in Parkinson’s disease (PD), which is the second most common 

neurodegenerative disorder in humans, in which there is a continuous loss of 

dopaminergic neurons in the substantia nigra, symptoms observed are resting tremor, 

rigidity, bradykinesia and a unsteady gait (Figure 9) [173]. 
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Figure 9. The neurodegenerative disorders related to mitochondrial dynamics 

defects [adapted from source 173]. 

 

Two genes have been identified in patients suffering from Parkinson’s disease, Pink1 

and Parkin; both have been shown to have a key role in mitochondrial integrity [174].  

Pink1 is a serine/threonine kinase and has an N-terminal sequence that targets 

mitochondria. It localizes both within mitochondria as well as in cytosol. On the other 

hand, Parkin is a cytosolic E3 ubiquitin ligase with two RING fingers, cysteine and 

histidine-containing protein motifs that coordinate zinc ions. The studies with Pink1 

and parkin in mammals have yielded less success due to the fact that mouse knockouts 

displayed very little phenotypical changes and did not show the common symptoms of 

Parkinson’s disease [173,175,176,177]. Moreover, additional studies indicate that loss 

of Pink1 can result in morphological abnormalities in the mitochondria [178].  

Deficiency of Pink1 in human dopaminergic neurons or primary mouse neuronal 

cultures leads to reduced viability accompanied by abnormal and enlarged 

mitochondria [178]. Experiments with Pink1 double knockout mice (-/-) did not reveal 

any ultrastructure alterations of mitochondria, except the fact that the mitochondria 

appeared somewhat larger. Similar results were also observed in the cell line, COS7 

where the knockdown of Pink1 also showed increased mitochondrial size through 

tubulation [173,179].  
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Genes/Proteins Functions Clinical 

symptoms 

Spine/synapse 

phenotypes 

Oligophrenin-1 Rho GAP for 

RhoA, Rac1 and 

Cdc42 

MR*, cerebellar 

hypoplasia, 

epilepsy 

Spine length 

reduced, 

reduction in 

mature spines 

PAK3 Serine/threonine 

kinase, effector 

of Rac1/Cdc42 

MR* Abnormal 

elongated spines, 

decrease in 

mature synapses 

αPIX/Cool-2 

ARHGEF6 

Rho family 

GEF for 

Rac1/Cdc42, 

interact with 

PAK 

MR* Reduction in 

large mushroom 

type spines 

FMRP RNA binding 

protein (Rac1), 

interacts with 

CYFIP, 

downstream of 

Rac1 

MR*, 

macrocephaly, 

long face, long 

ears, 

macroorchidism 

Long and 

irregular 

dendritic spines 

MEGAP, WRP, 

srGAP3 

Rho family 

GAP for 

Rac/Cdc42 

Macrocephaly, 

growth failure, 

heart and renal 

defects, 

hypotonia and 

facial 

abnormalities 

Loss of filipodia 

and dendritic 

spines 

LIMK1 Ser/Thr kinase, 

downstream of 

Rac1/Cdc42 

Williams 

syndrome 

Decreased spine 

head size and 

thicker spine 

necks 

Alsin GEF for Rac1, 

Rab5 and Ran 

Motor neuron 

degeneration 

Reduced axon 

growth, 

increased cell 

death 
  

Table 3. Shows different Rho GTPases, their regulators and the clinical 

manifestations when mutated [adapted from source 170]. 
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1.7 Rho GTPases as therapeutic targets 

From basic to clinical research, there are considerable evidences suggesting that the 

pathways downstream of Rho GTPases have role in disease for instance cancer 

development and progression [180]. Consequently, there has been a profound interest to 

target specific Rho proteins involved in Rho GTPase-dependent signaling pathways in 

malignant transformation as potential therapeutic targets. Therefore, varieties of effector 

protein inhibitors have emerged. However, not all of these inhibitors have entered 

clinical trials. Nevertheless, it is promising to explore their nature as a drug against 

different types of tumors [180].  

Approximately, 80 GEFs for Rho GTPases are known and their modes of action have 

been well studied [28,181]. Due to the key roles of these proteins in the activation of a 

specific Rho GTPase, they were considered targets for drug development (Table 4) 

[180]. For instance, RhoG, Rac and RhoA are activated by the RhoGEF Trio and an 

alternate splice variant, Tgat that are considered druggable. In addition, LARG 

(Leukemia-associated RhoGEF) activates RhoA/B/C have also been considered as a 

therapeutic target [182,183,184,185]. Trio is upregulated in breast and glioblastoma 

cancers and it is associated with poor prognostic outcome. Tgat on the other hand is 

capable of transforming NIH 3T3 cells by virtue of the loss of contact inhibition, 

anchorage independent growth, tumorigenicity in nude mice and increased invasiveness. 

Since both Trio and Tgat GEFs are involved in catalyzing the exchange of GDP to GTP, 

it makes them ideal candidate for drug development by developing an inhibitor molecule 

that could bind the GTP pocket thereby inactivating the signaling cascade downsteam of 

Rho GTPases (Figure 10) [145,186].  
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Class Inhibitors Applications    

  In vitro Cells In vivo Clinic 

Rho GEFs 

Trio/Tgat TRIAPα 

(bacterial toxin) 

√    

 TRIPα √ √   

 TRIPE32G √ √   

 ITX3 √ √   

LARG  √    

Tiam NSC23766 √ √   

Rho GTPases 

Rho C-3 exoenzyme 

C3-05/BA-210 

√ √  

√ 
 

√ 

Rac1 EHT1864 √ √   

      

Rho/Rac MLS000532223 √ √   

Cdc42 MLS000573151 √ √   

IsoPrenylation 

inhibitors 

     

GGTase Statins  √  Widespread 

use in clinic 

to control 

cholesterol 

levels 

GGTase/FTase AZD3409    √ 

 26b √    

  
Table 4. Rho GTPases activators and their functional inhibitors [adapted from source 

180]. 

 

In addition to a central role in controlling actin-related mechanisms, Rho GTPases are 

also involved in virtually all the cellular processes. This makes them a key ideal targets 

for drug development. For instance, Rho GTPases are important in cell cycle progression 

through G1 phase of cell cycle by regulating the expression of cyclin D1 and cyclin-

dependent kinase (CDKs) inhibitors p21 and p27 [187,188,189,190]. Intriguingly, very 
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few compounds have been developed till date that target Rho GTPases and their 

effectors. Nevertheless, many strategies have been developed to inhibit interactions 

between GTPases and cognate GEFs in order to block Rho signaling activation (Table 4) 

[191].  

Alternatively, another way of inhibiting GTPase function is by displacing nucleotide 

binding, nevertheless, questions remain regarding the specificity of this approach [192]. 

Another approach that could be explored is inhibiting C-terminal modification of Rho 

GTPases that are necessary for anchoring with the cell membrane. This can be achieved 

by inhibiting C-terminal modifying enzymes or by limiting the essential supply of lipid 

for these modifications (for example, isoprenylation), which is possible by using a Statin 

class of drugs (Table 4) [193]. Statins target Rho function by interfering with the 

attachment of lipid moieties at their C-terminus. Since, C-terminus lipid modifications are 

important for correct intracellular localization of Rho GTPases. Statins class of 

compounds include HMG-CoA reductase inhibitors, which deplete the cellular pool of 

isoprene precursors as well as prenyl transferase inhibitors (i.e., farnesyltransferase and 

geranylgeranyl transferase inhibitors (GGTI) [194,195,196].  

In conclusion, the examples metioned above discuss the ability of each Rho GTPase 

member to trigger the activation of many cellular pathways, making them the likely 

targets for therapy since they might be a part of critical signaling hubs [197].  

Nonetheless, blocking Rho GTPases could affect multiple signaling pathways that might 

most likely result in dose-limiting toxicities.  There are other promising ways for instance 

targeting kinases by inhibitors (Table 5). The first Rho effector to be targeted as a 

therapeutic agent was Rho-associated kinase (ROCK1/2) by Y-27632 inhibitor. This 

fuelled a considerable interest of pharmaceutical companies to invest into drug 

development using Y-27632 inhibitor (Table 5). The ROCK isoform inhibitors are 

currently under investigation for many drug discovery programs [197,198]. Using 

selective inhibitors will allow analyzing biological function [198]. The use of 

Chelerythrine chloride against MRCK has been shown to be similar to ROCK in 

inhibiting cancer invasion. Inhibition of p-21activated kinases (PAKs) activity has been 

tested and inhibitor have been developed by using small molecule group 1-vs 2- selective 

inhibitors [199].  For future studies, these inhibitors will be useful to study the role of 

PAKs in disease such as cancer (Table 5) [199].                                     
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Kinases Inhibitors  Applications   
  In vitro Cells In vivo Clinic 
ROCK1/2 Y-27632 

Y-30141 
Y-30946 
Fasudi(HA-
1077)/Hydro 
xylfasudil 
H-1152P 
Lead compound 
14A 
Isoquinoline-based 
compound 35 
GSK269962A 
SB-7720770-B 

√ 
 
 
 
 
 
√ 
√ 
 
 
 
 
 
√ 

√ 
 
 
 

 
 

√ 
√ 
 
 
 
 
 

√ 
 

√ 
 
 
√ 
 

√ 

 
 
 
 

√ 

ROCK2 SLx-2119 
Indazole piperazine 
Indazole 
piperidine 

 
√ 

√   

LIMK1/2 BMS compound 3 
Pyrrolopyrimidine 
Compounds 
 
 

√ 
√ 

√  
√ 

 

MRCKα/β Chelerythrine 
chloride 

√ √   

PAK4,5,6 
and 1 

PF-3758309 √ √ √  

PAK IPA-3 √ √   

    
Table 5.  Kinases inhibitors downstream of Rho GTPases signaling [adapted from 

source 199] 

                       
 Figure 10. The druggable target sites in the Rho GTP/GDP cycle ($). 
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In conclusion, rapid advances have been made in trying to develop and optimize novel 

inhibitors targeting different Rho GTPases and their downstream effectors. So far, none 

of these inhibitors for Rho GTPases has been used as a standard therapy in patients 

suffering from diseases for instance, cancer. Nevertheless, their anti-tumor activities in 

vivo substantiate their future development and hint that they can be used alone or in 

combination with other cytotoxic drugs [180]. The day first Rho signaling inhibitor is 

approved and tested on patients suffering from disease like cancer or Parkinson’s 

disease, it will be a milestone for researchers [180]. 

 

1.8 The RhoD and Rif subfamily of GTPases 

The Rho GTPases comprise of 20 members. The RhoD and Rif proteins are less studied 

members of classical Rho subfamily of GTPases (Figure 3). From the evolutionary point 

of view, RhoD/Rif-like proteins appeared first in tunicates (urochordatas) like sea squirts 

[139,200]. Subsequently, RhoD precursor protein duplication resulted in the RhoD 

protein (in therians). Evolutionarily compared to Rif, RhoD evolved much later and is 

expressed only in mammals [201]. Both RhoD and Rif play a pivotal part in the actin 

dynamics regulation. Additionally, RhoD have also been studied in relation to their role 

in endosome vesicle transport [139,202,203]. The RhoD and Rif are expressed in the 

subset of tissues and unlike Cdc42, Rac1 and RhoA that are expressed in virtually all 

cell types [200]. 

 

1.8.1a. Domain organization and regulation 

 

 
Figure 11. The location of RhoD and Rif. RhoD and Rif are localized on chromosome 

numbers 11 and 12 in humans (adapted from Genecards). 
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The RhoD and Rif genes are located on chromosome numbers 11(11q14.3) and 

12(12q24.31)(Figure 11) [201]. Like most classical Rho GTPases, the RhoD and Rif 

proteins contain GTP-binding domain and a C-terminal CAAX box. It is considered to 

be post-translationally farnesylated by geranyl-geranylation; however this has not 

actually been clearly demonstrated. A recent report suggests that RhoD and Rif possess 

an elevated intrinsic exchange activity [204]. In this regard, they resemble the atypical 

Rho members Wrch-1 and the activated Rac1 splice-variant Rac1b. This suggests that 

RhoD and Rif also act as atypical Rho GTPases, something that also indicate that they 

are not likely to be regulated by GEFs and GAPs, rather by other means, such as post-

translational modifications. Once docked and anchored at the plasma membrane, the 

RhoD is activated and triggers physiological response to activating signals. 

Fundamentally, RhoD and Rif share high sequence similarity and domain organization, 

only noticeable difference being the presence of an extension of few amino acids at the 

N-terminal of Rif GTPase. However, no particular function has been ascribed to this 

extension (Figure 12) [201].  

 
Figure 12. Schematic representation of domain organization of RhoD and Rif 
[adapted from source 201].                     

 
 
1.8.1b. RhoD/Rif in the regulation of actin cytoskeleton dynamics 

The present knowledge and understanding regarding the role of RhoD/Rif in the 

regulation of actin cytoskeletal dynamics emanates from the experiments where different 

variants of RhoD/Rif (i.e., wild type, constitutively active and dominant negative) were 

overexpressed in different cell types. For instance, overexpression of the active variants 

of RhoD and Rif in PAE/PDGFRβ or HeLa cells changed the cell morphology observed 

as thin and long protrusions of filamentous actin appearing either from the dorsal or the 

peripheral sides of cells. Similarly, morphological changes have also been observed in 
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cell lines such as NIH3T3, SHSY5Y and PC-12 [205].  These long and thin filopodia are 

highly dynamic structures arising from the cells particularly from the leading edges and 

are rich in linear bundles of filamentous actin cross-linked to each other by actin-binding 

proteins such as fascin. Filopodia are best known for their important roles in cell-cell 

interaction, sensing and migration [206,207,208,209,210]. 

  Additionally, RhoD and Rif mediated filopodia’s are of 20-40µm in length compared to 

conventional filopodia, which are of approximately 8-15 µm in length [139,211,212]. 

The complete understanding of how RhoD is involved in filamentous actin 

polymerization or filopodia formation has not been completely achieved [212,213]. 

However, in paper I, we suggest that via the effectors of RhoD, WASP-homolog 

associated with actin, membrane and microtubules, WHAMM and Filamin-A (FLNa) 

binding protein, FILIP1 involved in actin polymerization [214]. Interestingly, out of 

these two-RhoD binding proteins, WHAMM binds to Arp2/3 complex via its c-terminal 

WCA domain and FILIP1 binds FLNa. Both these proteins act downstream of RhoD in 

regulating the actin polymerization and cytoskeletal dynamics thereby regulating the 

polymerization of filamentous actin [214].   

 

1.8.1c. RhoD in the regulation of vesicle trafficking  

Studies by Gasman et al., 2003 observed another role of RhoD in regulating the vesicle 

trafficking or endocytosis [203]. Endosome vesicles are very dynamic structures. 

These endocytic vesicles need a close cooperation of cytoskeleton (i.e., actin and 

microtubules) to deliver cargo [202]. For instance, close association of microtubule, 

microtubule motor proteins and filamentous actin are needed for the correct 

positioning, internalization and dispatching cargo from early to late/recycling 

endocytic vesicles within a cell [201]. Intriguingly, members of small GTPases, Rho 

and Rab subfamilies are involved in regulating endosome motility. For instance, Rac1, 

RhoA have a key role in receptor uptake. Rab5 GTPase has an important role in 

stimulating the migration of the early endosome vesicles on the microtubules through 

kinesin-like motor proteins [201,203]. Also, RhoB has been shown to co-ordinate 

transport of cargo from late endosome vesicle to lysosomes [138].  

Vesicle trafficking needs additional functionally specific proteins known as effector 

proteins, such as DRFs, which help the members of Rho and Rab GTPases to carry out 

vesicle trafficking in a well coordinated manner [139]. Examples of effector proteins 

include, mDia1 that binds to RhoA, mDia2 to Cdc42 and RhoA, FHOS, FRL binds to 
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Rac1 [203,215]. 

 For shuttling a cargo to a short distance intracellularly, endosomes use actin filaments.   

Conversely, for a long distance transport endosome vesicles hop on to microtubules. 

This mechanism has been studied by destroying the microtubule network using 

microtubule depolymerization compounds such as Nocodazole, Vincristine and 

Colchicine in cells. Endosome motility was impaired and the endosome vesicles were 

localized to the cell periphery [202]. Ectopic expression of RhoD, blocks Rab5-

dependent effect on early endosomes. Moreover, RhoD induces spherical, scattered 

and small endosome vesicles compared to Rab5 endosomes. With the identification of 

RhoD effector protein hDia2C, a great deal of interest arouse in how RhoD via hDia2C 

regulates early endosome motility. Subsequent studies found that hDia2C promotes the 

alignment of early endosomes on the filamentous actin tracks. However, RhoD-

mediated inhibition of endosome shuttling was dependent on Src activity and was 

reverted by an actin-depolymerizing drug, cytochalasin D [203]. This suggests a 

mechanism by which RhoD blocks endosome movement in a Src-dependent but actin-

independent manner.  Fundamentally, the assumption of this study was based on an 

observation describing the pathway in which RhoD was needed for the c-Src activation 

on endosomes via hDia2C [203]. 

Another example is that of Src family kinase members, Fyn that has been observed to 

localize to vesicles positive for RhoD [203].  RhoD directs Fyn to the cell membrane 

via the post-translational modification on Fyn (i.e., palmitoylation). Collectively, the 

observation regarding the localization of RhoD and its role in early endosome motility, 

suggests that RhoD can control the localization of Src family kinases and thereby 

regulate the early endosome motility. 
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2. AIMS  
The work in this thesis highlights the role of RhoD, a less studied member of the Rho 

subfamily of GTPases. The overall aim was to elucidate the biological function of 

RhoD, and RhoD downstream signaling pathways. At the start of the thesis work, novel 

RhoD interactors via yeast two-hybrid screening were identified namely: FILIP1, 

WHAMM, Rabankyrin-5 and ZIP kinase.  Furthermore, I wanted to study their potential 

role in the regulation of actin filament system, cell adhesion, cell migration, protein and 

tyrosine kinase receptor trafficking. 

The specific aims of this thesis are:  

• To elucidate the role of RhoD, via its binding partners WHAMM and FILIP1 in 

the regulation of actin cytoskeletal dynamics, cell adhesion and migration 

(Paper I). 

• To clarify the role of RhoD, via its effectors, WHAMM and FILIP1 in the 

regulation of protein transport from ER to cell membrane via Golgi (Paper II). 

• To determine the role of RhoD, via the Rab5 effector Rabankyrin-5 in receptor 

tyrosine kinases trafficking (Paper III). 

• To dissect the mechanism by which the interaction of RhoD and ZIPk regulates 

the actin filament assembly and focal adhesion dynamics (Paper IV). 
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3. HIGHLIGHTS OF METHODS 
Yeast two-hybrid screen 

The Saccharomyces cerevisiae strain Y190 (genotype; MATa, gal4-542, gal80-538, 

his3, trp1-901, ade2-101, ura3-52, leu2-3, 112, URA3::GAL1-LacZ, Lys2::GAL1-

HIS3cyhr) was transformed with a cDNA that encodes human RhoD/G26V fused to the 

GAL4 DNA-binding domain (GAL4DB) in the pYTH9 vector [216]. This RhoD 

construct harbored cysteine-to-serine mutations in its CAAX box, since we reasoned that 

this would facilitate the nuclear translocation of RhoD during the screening procedure. 

This GAL4DB-RhoD/G26V–expressing yeast strain was used to screen a cDNA library 

from human mammary glands. 

Protein production and GST pull-down assays 

GST-tagged fragments of FILIP1, WHAMM, Rabankyrin-5, RhoD, or GST alone 

were expressed in Escherichia coli and purified on glutathione-Sepharose beads. The 

pull-down assays were performed described previously [217]. 

Cell culture and transfection 

Human embryonic kidney 293T (HEK293T) cells, BJ human foreskin fibroblasts 

stably transfected with hTERT, and SV40 large T antigen (BJ/SV40T) cells, and green 

monkey COS-1 cells were cultured in DMEM supplemented with 10% (vol./vol.) fetal 

bovine serum (FBS) and 1% (vol/vol) penicillin–streptomycin. Porcine aortic 

endothelial cells stably transfected with the human platelet-derived growth factor β-

receptor (PAE/PDGFRβ cells) were cultured in HAM’s F12 medium supplemented 

with 10% (vol./vol.) FBS and 1% (vol./vol.) penicillin–streptomycin. All cell lines 

were cultured at 37°C in an atmosphere of 5% CO2. The cells were transfected using 

Lipofectamine or JetPEI reagents, according to the protocols provided by the 

manufacturers.  

Immunoprecipitation 
For immunoprecipitation, the transiently transfected cells were lysed on ice in Triton 

X-100 lysis buffer (20 mM HEPES, pH 7.5, 100 mM NaCl, 1% Triton X-100, 10% 

glycerol, 5 mM EDTA, 1% aprotinin) 48 h post-transfection. The cell lysates were 

centrifuged for 15 min at 4°C, and the supernatants were incubated with the primary 

antibodies for 1 h at 4°C, after which the immunoprecipitates were collected on protein 
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G-Sepharose for 1 h at 4°C. The beads were washed three times with Triton X-100 

lysis buffer and subjected to SDS–PAGE, and the proteins were subsequently 

transferred onto nitrocellulose. Western blotting analyses were performed with the 

antibodies as specified in the figure legends; this was followed by horseradish 

peroxidase–conjugated anti-mouse or anti-rabbit antibodies. The proteins on the 

Western blots were revealed using Luminol immunoblotting reagent. 

 
RNAi work 

Knockdown of RhoD, WHAMM, FILIP1 or Rabankyrin-5 expression was induced by 

transfecting the BJ/SV40T cells with RhoD-directed siRNAs or with WHAMM-

directed siRNAs, RhoD siRNA, or a nontargeting siRNA using the SilentFect 

transfection reagent. The cells were incubated for 48 h posttransfection before being 

processed for the various assays. 

Antibodies, reagents, and constructs 

All the antibodies, constructs and reagents used in investigating the specific aims 

mentioned are documented in the articles/manuscripts enclosed. 

Immunocytochemistry 
The cells were seeded onto coverslips in six-well plates, fixed in 3% 

paraformaldehyde in phosphate-buffered saline (PBS) for 25 min at 37ºC, and then 

washed with PBS. The cells were permeabilized in 0.2% Triton X-100 in PBS for 5 

min, washed with PBS, and blocked in 5% FBS in PBS for 30 min at room temperature. 

The primary and secondary antibodies were diluted in PBS containing 5% FBS. The 

cells were incubated with the primary antibodies and secondary antibodies for 1 h each, 

with washes in PBS between the incubations. The coverslips were then mounted on 

microscopy slides using Fluoromount-G, photographed using a Zeiss AxioCAM MRm 

digital camera connected to a Zeiss AxioVert 40 CFL microscope, and processed with 

the AxioVision software. The cellular effects induced by ectopic expression were 

determined by microscopy analysis.  

Wound closure assay 
For the wound closure assay, cells were seeded in six-well plates. The following day, 

siRNAs were transfected using SilentFect. The cells reached confluency over the next 

48 h, and wounds were made in the confluent monolayers with a Gilson P200 pipette 
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plastic tip. Two to three spots along the wound were marked with a pen under the 

plate. The wounded areas were photographed directly after the wounding (0 h) and 

again after 20 h with a Zeiss AxioVert 40 CFL microscope using a 10× objective. The 

cells that had moved into the wounded areas were counted on the photographs. The 

field of view was 0.603 mm2. The experiment was repeated five times and data from 

two to three wounds were analyzed for each condition. 

 

Cell viability assay 

Cell survival was determined by the calcein AM viability assay according to the 

protocol provided by the manufacturer. Cells were washed three times with PBS and 

then treated with 1 mM calcein AM in PBS for 50 min at room temperature; this was 

followed by analysis of the fluorescence intensity at excitation 490 and emission 520 

on a fluorescence plate reader. 

 

Cell adhesion assay 
For the adhesion assay, cells were seeded in six-well plates and, the following day, the 

cells were transfected with siRNAs as described above. After 48 h, the cells were 

trypsinized and seeded on coverslips precoated with serum. The cells were allowed to 

adhere for 30 min, 1 h, or 2 h. The cells were then washed with PBS to remove 

nonadhered cells and fixed in 3% paraformaldehyde for 25 min. The coverslips were 

mounted and photographed with a Zeiss AxioVert 40 CFL microscope using a 10× 

objective. Cells attaching to the coverslips under the different conditions were counted 

on the photographs. The data shown represent quantifications from 5 to 10 random 

sites at the coverslips and were normalized to the amount of cells attaching at the 

initial time point. 

 

Golgi transport assay 

In essence, the original protocol from Presley et al. was used [218]. In brief, cells were 

transfected with EGFP-VSV-G alone or together with FILIP1, WHAMM or Rho 

GTPases. In those cases where the cells had been transfected with siRNAs, the cells 

were transfected with EGFP-VSV-G after 24 hours. The cells were kept at 40°C after 

the transfection and the transport of EGFP-VSV-G from the ER to the cell membrane 

via the Golgi complex was initiated by a transfer of the cells to 32°C. 
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4. RESULTS AND DISCUSSION 

In brief 

To decipher the signaling pathways downstream of RhoD, a yeast-two hybrid screening 

was performed. We used the constitutively active RhoD/G26V mutant fused to the DNA-

binding domain of GAL4 as bait to screen a human mammary gland cDNA library fused to 

the GAL4 activation domain. We confirmed the interaction of RhoD with its potential 

binding partners by co-immunopreciptation. We also mapped the precise domain of 

interaction between RhoD and its binding partners. Subsequently, their functional roles in 

cellular signaling context were investigated using different tools and strategies (Papers I, 

II, III, IV).  Herein, I will discuss the results that we have achieved. 

 
Serial no. RhoD interacting protein Cellular function 
1. FILIP1 Filamin A-interacting protein involved 

in cytoskeletal function. 
2. Rabankyrin-5 Rab5 effector. Endocytic protein 
3. Death-associated protein 

Kinase 3 (DAPK3/ZIPk) 
Cytoskeletal regulation during apoptosis 

    
Table 6. Shows RhoD binding proteins emanated from the yeast-two hybrid 

screening. 

 

To elucidate the role of RhoD, via its binding partners, WHAMM and FILIP1 in the 

regulation of actin cytoskeletal dynamics, cell adhesion and migration  

Paper I: RhoD regulates cytoskeletal dynamics via the actin nucleation–promoting factor 

WASp homologue associated with actin, Golgi membranes and microtubules. 

 

The present notion about RhoD is that it inhibits endosome dynamics and cell motility 

[203]. Ectopic expression of RhoD leads to dramatic effects on the organization of actin 

filament system observed as long flexible filopodia protrusions and formation of short 

bundles of actin filaments [205]. FILIP1 was initially identified in 2002, as a Filamin A 

(FLNa) binding protein and was shown to have a role in the degradation of FLNa, 

suggesing that FILIP1 overexpression results in the decreased cell migration [219]. FLNa 

organizes actin networks by binding with the pre-existing actin filaments to form 

orthogonal lattices of filaments.  

Intriguingly, after identification of FILIP1 as a RhoD-binding protein, a sequence similarity 

to WHAMM was noticed. More specifically, FILIP1 and WHAMM possess distinct 
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homology in their domain organization particularly in the structural maintenance of 

chromosome (SMC) domain. WHAMM does not bind Filamin-A (FLNa) instead it binds 

to the Arp2/3 complex and functions as an NPF. Previous studies suggest that FLNa is 

needed for cell motility via the organization of lamellipodia; knocking down of FLNa leads 

to defective cell migration of neural cells into the ventricular zone [219]. WHAMM 

localizes to the cis-side of Golgi apparatus [220]. It is clear that WHAMM has the ability to 

trigger actin polymerization. However, most of its functions seem to be associated with 

bundling of microtubules and Golgi homeostasis.  

Overexpression of RhoD active variant in endothelial cell negatively effects cell migration 

[139]. Results from our experiments indicate that knocking down of both WHAMM and 

RhoD decreases cell migration in BJ/SV40T fibroblasts observed in wound closure assay. 

Furthermore, we observed a significant increase in focal adhesion size in cells depleted of 

RhoD or WHAMM. Moreover, these cells adhered more firmly to substratum. In 

conclusion, our data suggests a unique role of less studied member of Rho GTPases 

subfamily RhoD in cell migration and cell adhesion via its effectors, FILIP1 and 

WHAMM. 

 

To clarify the role of RhoD, via its effectors, WHAMM and FILIP1 in the 

regulation of protein transport from ER to cell membrane via Golgi. 

Paper II: RhoD regulates ER to Golgi transport through its effectors Filamin A-binding 

protein FILIP1 and WHAMM 

 

The described role of WHAMM in Golgi homeostasis stimulated us to study the 

subcellular localization of RhoD in more detail. Previously, RhoD has been shown to 

localize to early endosome vesicles and cell membrane. We made an observation that 

endogenous RhoD localizes to the Golgi complex based on the colocalization with the 

Golgi markers, GM130 and TGN46. We confirmed this by co-expressing RhoD and 

ArfGAP, a known Golgi apparatus morphology maintenance protein and observed a 

colocalization between RhoD and ArfGAP. Upon overexpression of active and the 

dominant negative variants of RhoD (i.e., G26V and T31N respectively) in Cos1 and 

BJ/SV40T cells, we observed dispersion of the Golgi apparatus. RhoD/T31N had more 

prominent effect on the Golgi disruption. Similar effects were observed upon 

overexpression of WHAMM and FILIP1, indicating the presence of a RhoD-dependent 

signaling pathway in the regulation of Golgi homeostasis. 
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We measured and quantified this disruption of ER-to-Golgi transport using RhoD/T31N, 

together with a temperature sensitive mutant of vesicular stomatitis virus coat protein 

(EGFP-VSV-G). We reasoned that dominant negative variant of RhoD might affect the 

transport of this virus-derived protein from ER-to-Golgi. In this assay, at 40oC, VSV-G 

is misfolded and confined to ER. Upon a downshift in the temperature to 32oC this viral 

protein refolds and funnels through the ER to the plasma membrane via Golgi [218]. A 

drastic difference in the VSV-G protein transport was observed in the cells 

overexpressing RhoD/T31N as compared to control cells. Similar effects on the VSV-G 

transport were observed in WHAMM and FILIP1 overexpressing cells. WHAMM 

showed a predominant effect on the transport by trapping the VSV-G protein in ER even 

after 60 minutes.  FILIP1 had a weaker effect and delayed the VSV-G transport by 

holding half of the protein in ER post 60 minutes. 

While overexpression of RhoD and its effectors i.e., FILIP1 and WHAMM showed a 

dramatic effect on protein transport and Golgi disruption, knocking down by siRNA 

targeting RhoD, FILIP1 and/or WHAMM also affected Golgi homeostasis in BJ/SV40T 

cells. Knocking down of RhoD, WHAMM and FILIP1 resulted in dispersion of Golgi 

membranes. Comparatively, WHAMM induced less Golgi dispersion. In conclusion, the 

work in this paper describes that RhoD, via its effectors, WHAMM and FILIP1 

interferes with the protein transport from ER-to-Golgi. Also, it shows that a shift in the 

balance of RhoD levels and its binding partners interferes with Golgi homeostasis.   

 

To determine the role of RhoD, via the Rab5 effector Rabankyrin-5 in receptor 

tyrosine kinases trafficking 

 Paper III: RhoD binds the Rab5 effector Rabankyrin-5 and has a role in trafficking of 

receptor tyrosine kinases 

 

The data in this manuscript describes the role of RhoD via its novel effector, 

Rabankyrin-5 in the trafficking of receptor tyrosine kinase (PDGFβ). Rabankyrin-5 is a 

known effector for the Rab5 GTPase and is involved in early endosome and 

macropinosome motility in epithelial cells. Ectopic expression of Rabankyrin-5 has been 

well documented to increase macropinosome number and enhance fluid uptake in 

MDCK epithelial and fibroblasts cells [221]. By knocking down of Rabankyrin-5 in 

these cells reduces the macropinosome number. 
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We found that RhoD binds to Rabankyrin-5. Also, Rabankyrin-5 coordinates RhoD and 

Rab5 in the trafficking of early endosomes. A study by Gasman et al. showed that the 

active variant of RhoD/G26V localizes to early endosome vesicles and has a role in 

endosome trafficking [203]. In that study, it was observed that ectopically expressed 

RhoD inhibited Rab5-dependent effects and caused the formation of more spherical, 

scattered and small endosome vesicles. This RhoD-dependent effect on vesicle 

trafficking was observed to be independent of Rab5 overexpression, which suggests that 

RhoD is sufficient to disturb endosomal movement. Our data demonstrates that 

knocking down of RhoD and/or Rabankyrin-5 affects endocytosis. This was checked by 

impeding the internalization of receptor tyrosine kinase, PDGFR-β. In conclusion, our 

study demonstrates that RhoD controls endosome vesicle trafficking and endocytosis, 

presumably via the novel RhoD effector Rabankyrin-5. 

 

To dissect the mechanism by which the interaction of RhoD and ZIPk regulates the 

actin filament assembly and focal adhesion dynamics  

 Paper IV: Interaction of RhoD and ZIP kinase modulates actin filament assembly and   

focal adhesion dynamics  

 

This study gives an account of RhoD via its effector, Zipper Interacting Protein kinase 

(ZIPk) in regulating actin and focal adhesion reorganization. ZIPk is a serine/threonine 

kinase implicated in programmed cell death. This protein is also known as death-

associated protein kinase 3, DAPK3 and belongs to death-associated protein family 

(DAPk). Members of this protein kinase family share great deal of similarity in their 

catalytic (kinase) domain and also cell-death related functions [222]. Close to N-

terminus of the ZIPk protein is the kinase domain and it is due to this domain that 

DAPk, DRP-1 and ZIPk make a subfamily. Outside this region, this subfamily varies in 

size and structure. Upon upregulation of these kinases, cells undergo morphological 

changes that lead to programmed cell death by cell rounding and membrane blebbing. 

ZIPk has been implicated in the control of filamentous actin via myosin regulatory light 

chain phosphorylation (MRLC). We observed that RhoD interacts with ZIPk in a GTP-

dependent manner. Additionally, we also tested the interaction between a point mutant 

and a deletion mutant of ZIPk (i.e., kinase dead mutant D161A and mutant lacking the 

C-terminal leucine zipper domain/ΔLZ) with both the active variant of RhoD/G26V as 

well as the dominant negative RhoD/T31N. We observed that the ZIPk/ΔLZ mutant did 
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not interact with RhoD in a GTP-dependent manner. However, the kinase dead D161A 

mutant did interact with RhoD in a GTP-dependent manner. Additionally, we found that 

overexpression of ZIPk induces the reorganization of the actin filament system observed 

as condensed stress fibres into thick bundles appearing like a star shape, similar to a 

phenotype described before [223]. Moreover, overexpression of the ZIPk also induces 

membrane blebbing that was not linked to reduced cell adhesion. Our data shows that 

both kinase dead mutant (D161A) and the C-terminus deletion mutant (ZIPk/ΔLZ) did 

not affect the organization of stress fibres. We also observed that while the ZIPk wild 

type and its kinase dead counterpart localize to the cell cytoplasm, the ΔLZ mutant 

localizes in the nucleus of fibroblast cells. This can indicate a role of LZ domain in the 

localization of ZIPk. Intriguingly, overexpressing ZIPk together with either RhoD wild 

type or active variant, RhoD/G2V, suppresses the ZIPk-induced stress fibre bundling. 

The constitutively active RhoD mutant, RhoD/G26V, suppressed ZIPk-induced 

membrane blebbing, thereby reverting the phenotype to the normal fibroblast cells 

morphologically. However, the wild-type RhoD, dominant negative RhoD/T31N mutant 

and a membrane targeting-defective mutant of RhoD failed to suppress ZIPk-induced 

blebbing. This suggests that the suppressing and the membrane targeting abilities of 

RhoD are dependent on the GTP-loaded status of RhoD.  

After observing that overexpressed ZIPk had a profound effect on stress fibre 

organisation, we tested the effect of ZIPk on focal adhesion organization. Wild type 

ZIPk overexpression resulted in a dramatic increase in focal adhesion size. It was only 

the wild type ZIPk that could increase the focal adhesion size and not kinase dead 

mutant of the ZIPk (D161A). When ZIPk was coexpressed with active variant of 

RhoD/G26V, the focal adhesion size was suppressed. Focal adhesion dynamics is 

related to the activity of focal adhesion kinase (FAK). FAK is activated by integrins via 

disruption of auto-inhibitory conformation. The phosphorylated tyrosine residue pY397 is 

positively correlated with the FAK activation. Fibroblast cells ectopically expressing 

ZIPk resulted in decreased phospho-Y397 and so did the kinase dead D161A mutant. 

However, the ZIPk/ΔLZ mutant did not have any effect on phospho-Y397. On the other 

hand, overexpression of RhoD alone did not change Y397 phosphorylation significantly 

however, it suppressed the ZIPk-dependent decrease of phospho-Y397. In contrast, the 

phosphorylation on another tyrosine residue, Y576 was not affected significantly upon 

ectopic expression of either ZIPk or RhoD.  
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In essence, our data shows that RhoD interacts with ZIPK in a GTP-dependent manner 

and modulates stress fibers, focal adhesion reorganization and membrane blebbing.  
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5. FUTURE PROSPECTS  
Till date, the best-studied members of Rho subfamily are RhoA, Rac and Cdc42. The 

other members of Rho GTPases have been less studied and their potential roles in 

myriads of cellular processes have not been fully explored. The work in this thesis 

brings forth one of the members of the less studied Rho GTPases subfamily i.e., RhoD.  
Our findings with RhoD have unravelled the role of RhoD in the regulation of cell 

adhesion and migration via novel binding partners i.e., FILIP1 and WHAMM. 

Additionally, with the same effectors, RhoD also has role in regulating ER-to-Golgi 

transport and Golgi homeostasis. Our quest to know more about the function of RhoD 

and effector Rabankryin-5 provids a new understanding and knowledge of how RhoD 

has a role in the internalization and trafficking of the activated receptor tyrosine kinases. 

Subsequent work with binding partner, ZIP kinase, gives an insight into how RhoD via 

its binding partners, ZIP kinase also modulates focal adhesion dynamics and actin 

filament assembly. In summary, this thesis work contributes to our understanding of 

complex regulatory networks mediated by RhoD and the associated biological function. 

With this understanding of RhoD to date, it will be interesting and intriguing to find out 

additional roles of RhoD via its effectors in cell cycle progression or epithelial-

mesenchymal transition, ultimately giving an insight and understanding of the signal 

transduction pathways mediated by RhoD in metastasis and/or cancer progression. 
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AUTHORIZATION LETTER* 
Details of communication with, “The Guardian”, newspaper seeking permission to 

quote a poem in my PhD thesis. 

 
Reply to my email on Wednesday, January 30, 2013 at 11:32:30 AM GMT+01:00 

from: 

Edie Reilly  
Observer Letters 
Letters.Observer@guardian.co.uk 
 

Dear Vishal,  
As far as I'm aware you don't need permission to quote the poem. The only time you 

need permission is if it is going to be reproduced in a publication that will be sold for 

profit. Therefore, you can quote this poem in your PhD thesis. 
Best wishes,  
Edie Reilly  
Observer Letters 

 

On Sunday, January 27, 2013 at 14:33, I emailed Observer letters,“The Guardian”. 

 
Dear Sir/Madam, 
 
I am writing a PhD thesis and I would like to quote an obituary poetry that appeared in 

the ”The Guardian newspaper” in 2003 written by a poet, Mr. Vikram Seth as a 

dedication to my late grandfather. I tried to find out the contact details of Mr. Seth, so 

that I can seek his permission directly but had no luck. I would appreciate, if you could 

help me in getting his permission so that I can quote his poetry in my thesis. 

I look forward to hearing from you. 

With regards, 

Vishal 
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