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ABSTRACT 

 

 

The present thesis describes lipopolysaccharide (LPS) structures expressed by 

non-typeable Haemophilus influenzae and Haemophilus parainfluenzae strains. 

LPS is a major surface component of Gram-negative bacteria. Structural studies 

of LPS are very important for understanding the adaptive mechanisms which 

help bacteria to survive in the host environment. 

 

Non-typeable Haemophilus influenzae (NTHi) is a common human commensal of 

the nasopharynx. It is also pathogenic and causes both acute and chronic diseases, 

such as otitis media, sinusitis, pneumonia and bronchitis. H. influenzae expresses 

rough type LPS (lacking O-antigen), which is implicated as a major virulence 

factor. 25 NTHi otitis media isolates were selected for structural studies of LPS. 

These clinical isolates represent the structural diversity of LPS in the natural 

population.  

 

Structural studies of H. influenzae LPS have resulted in a molecular model 

consisting of a conserved (PEtn)-substituted triheptosyl inner-core moiety (HepI–

HepII-HepIII) in which each of the heptose residues can provide a point for 

elongation by oligosaccharide chains (outer-core region). 

 

NTHi strains 1158/1159 and 1232, described in this thesis, were selected from this 

collection of clinical isolates. These strains express additional D,D-Hep residue in 

the outer-core region of LPS.  

 

Haemophilus parainfluenzae is a part of normal human flora. Previous studies 

have indicated that H. parainfluenzae expresses LPS structures that are very 

similar to those expressed by H. influenzae. On the other hand some H. 

parainfluenzae strains express O-antigen containing LPS. The structures of the O-

antigen from H. parainfluenzae strains 20 and 16 are described in this thesis. 

 

The structural investigations of LPS of H. influenzae and the comparison with 

LPS expressed by H. parainfluenzae will increase the knowledge of biological 

properties of LPS and its role in bacterial virulence. 
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1 INTRODUCTION 

 

This thesis presents results from structural studies of lipopolysaccharides from non-

typeable Haemophilus influenzae (NTHi) and Haemophilus parainfluenzae. Both H. 

influenzae and H. parainfluenzae are Gram-negative bacteria that colonize the upper 

respiratory tract of humans. H. parainfluenzae is a part of normal flora, but in rare 

instances it causes infections such septicaemia, endocarditis, pneumonia, periodontal 

disease and biliary tract infections (1-4). Non-typeable H. influenzae is an important 

cause of respiratory tract infections in children and adults. NTHi is the second most 

common cause of acute otitis media in children after Streptococcus pneumoniae and is 

responsible for up to 35 % of all cases (5). It is a common cause of sinusitis, pneumonia 

and bronchitis (6, 7). It is now well established that the cell surface components of 

bacteria play extremely important roles in colonization and persistence to the host 

environment.  

1.1. The bacterial cell envelope.  

Bacteria can be classified into two groups: Gram-positive and Gram-negative on the 

basis of a method called Gram staining, developed by Christian Gram in 1884. The 

Gram staining uses structural differences in bacterial cell surfaces. The bacterial cell 

envelope has a very complex structure (Fig. 1). It does not only control selective 

passage of nutrients from outside and waste products from inside, but also serves as a 

protection of bacteria from very hostile environments (8-11). Both Gram-negative and 

Gram-positive, can be surrounded by a capsule, composed of a polysaccharide, or by S-

layer, composed of a single protein (8).  

Polysaccharides found on the bacterial surfaces are involved in different processes such 

as cell-cell recognition, differentiation and antigenic expression (12, 13).  

 

1.2. The Gram-negative cell envelope. 

The cell envelope of Gram-negative bacteria consists of a cytoplasmic membrane 

covered by a peptidoglycan layer and an outer membrane (Fig. 1A) (14). The 

peptidoglycan layer can be called the skeleton of bacteria. It is composed of a 

disaccharide repeating unit:  

→4)--D-GlcNAc-(1→4)--D-MurNAc-(1→. 

The polysaccharide is cross-linked by peptide chains. Due to the presence of 

peptidoglycan bacteria do not lyse even in distilled water. 

The cytoplasmic membrane is a phospholipid bilayer. The inner leaflet of the outer 

membrane is also composed of phospholipids. However the outer leaflet is formed by 

glycolipids (lipopolysaccharides). Thus lipopolysaccharide (LPS) is a major surface 

component of almost all Gram-negative bacteria.  
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The LPS layer is very important for viability of bacteria in the host environment and is 

also responsible for inflammation and toxic symptoms (15-17). 

 

 

 

Fig.1 The cell envelopes of Gram-negative (A) and Gram-positive (B) bacteria. 

[Abbreviations: CPS-capsular polysaccharide; LPS-lipopolysaccharide; WTAs-wall teichoic acid 

LTAs- lipoteichoic acid] 

 

 

 

1.2.1. The structure of lipopolysaccharide. 

 

LPS are heat-stable amphiphilic molecules, composed of two regions: a lipophilic 

region (lipid A) and a hydrophilic region (poly- or oligosaccharide part). The 

carbohydrate region can be divided into a terminal O-specific chain (O-antigen) and a 

core region, which is covalently linked to the lipid A (Fig. 2). The O-antigen usually 

consists of up to 50 repeating oligosaccharide units, which in turn are formed of 2-8 

monosaccharides (17, 18). 

 

 

Fig. 2. Schematic representation of lipopolysaccharide. 

 

 

 

 



 

  3 

On the other hand, many pathogenic Gram-negative bacteria such as N. meningitides, 

N. gonorrhoeae, H. influenzae, B. pertussis and C. trachomatis, which occupy mucosal 

surfaces of the respiratory and urogenital tracts, lack the O-antigen in LPS structures 

(17, 19). Such LPS is sometimes referred to as lipooligosaccharide (LOS). Depending 

on the presence of the O-antigen, Gram-negative bacteria are divided into smooth (S)- 

and rough (R)-forms. 

O-Antigen. 

The O-specific polysaccharide is characterized by a very high variation even within the 

same species. The synthesis of the O-antigen is controlled by genes of the rfb locus. 

The O-specific polysaccharide is synthesized and added en bloc. Mutant strains that 

have any defect in the rfb locus synthesize LPS lacking the O-antigen. These mutants 

grow and multiply in vitro studies. However such mutants of pathogenic Salmonellae, 

for example, cannot persist and survive in tissues or body fluids (15).   

Core region. 

The core region of LPS can generally be subdivided into an inner- and an outer-core 

region. The inner-core region is usually composed of heptoses and 2-keto-3-

deoxyoctulosonic acid(s) (Kdo). The Kdo residue is linked to the lipid A via ketosidic 

bond, which is very sensitive to mild acidic conditions. The inner-core region together 

with the lipid A moiety correspond to the most conserved part of LPS. The inner core is 

very often decorated by noncarbohydrate substituents such as free phosphate groups 

(P), phosphoethanolamine (PEtn), pyrophosphoethanolamine (PPEtn), phosphocholine 

(PCho), acetate (Ac) and glycine (Gly).  

The outer-core possesses more structural diversity, but is still more conserved in 

structure than the O-antigen. 

Lipid A.  

The lipid A is the biologically active part of the LPS molecule, which is recognized by 

host innate immunity (20). Depending on the amount of released LPS along with other 

different factors such as individual sensitivity of the mammalian organism, LPS can 

either stimulate resistance of the immune system against infection or lead to septic 

shock (15, 21, 22).  

 

Structural studies of the lipid A from different bacteria resulted in the structure 

containing -(1-6)- linked  D-glucosamine disaccharide (D-GlcpN or D-GlcpN3N), 

which carry 3-hydroxy fatty acids at 2, 2´and 3, 3´positions. The 3-hydroxyl group of 

these fatty acids can be further acylated. As it is shown in Fig. 3, position 1 and 

position 4´ can be substituted by phosphate groups.  

Differences in the structures of the lipid A depend on the nature of sugar residues, 

phosphorylation pattern, as well as the nature, length and number of fatty acids (17).  

The number and length of fatty acids affect the toxicity of the lipid A. The most toxic 

lipid A contains six fatty acids such as: C12, C12OH, C14 and C14OH (15, 18).   
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1.3. The Gram-positive cell envelope. 

Gram-positive bacteria quite often colonize in the same environment as Gram-negative 

cells. However Gram-positive bacterial cells lack the outer membrane (Fig. 1B). To 

protect Gram-positive cells from turgor pressure exerted on the plasma membrane, 

these bacteria are surrounded by a peptidoglycan layer that is much thicker than in 

Gram-negative bacteria (8). The peptidoglycan layer is penetrated by long carbohydrate 

polymers called teichoic and lipoteichoic acids. These polymers are composed of 

repeating carbohydrate units that are linked together by a glycerol phosphate or ribitol 

phosphate via a phosphodiester linkage. The lipoteichoic acid is a glycolipid and is 

anchored in the outer layer of the cytoplasmic membrane. The teichoic acid is 

covalently attached by the phosphodiester bond to the peptidoglycan.  

 

1.3.1. Teichoic acid and lipoteichoic acids of Streptococcus pneumoniae. 

Streptococcus pneumoniae express teichoic and lipoteichoic acids having identical 

chain structures: →6)-β-D-Glcp-(1→3)-α-D-FucpNAc4N-(1→ 4)-α-D-GalpNAc-(1→ 

4)-β-D-GalpNAc -(1→ 1)-D-ribitol-5-P-(O→, in which D-FucpNAc4N is 2-acetamido-

4-amino-2,4,6-trideoxy-D-galactose (23). This structure is substituted by one or two 

phosphocholine (PCho) residues (24). The large numbers of pneumococcal proteins 

need to bind to the PCho residues for their activation. The surface-exposed PCho 

residues play a very important role in pneumococcal infection (25). However PCho 

also interacts with C-reactive protein (CRP), an acute-phase protein of mammalian 

blood serum (26). 

  

 

1.4. Haemophilus influenzae. 

Depending on the presence of the capsular polysaccharide, H. influenzae can be 

subdivided into encapsulated (type a-f) and non- encapsulated (non-typeable) forms.  

Encapsulated type b strains cause invasive bacteraemic diseases, such as meningitis, 

epiglottitis, cellulitis and pneumonia. Introduction of vaccines against serotype b H. 

influenzae have dramatically reduced the incidence of diseases caused by this type of 

H. influenzae (27).  

 

25 NTHi isolates obtained from Finnish children with otitis media have been chosen for 

structural investigations of LPS. These isolates span a H. influenzae species-level 

ribotyping dendrogram comprised of more than 400 non-typeable and encapsulated 

strains (28) and represent the diversity of LPS in the natural population of NTHi. 

 

In contrast to encapsulated strains, which have relatively clonal populations, the non-

typeable H. influenzae (NTHi) show extensive genetic diversity (29-31).  
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1.4.1. Lipopolysaccharide structure of H. influenzae. 

H. influenzae express rough (R)-type LPS which is composed of the lipid A and the 

core. The core OS region of  LPS plays an important role in infections caused by NTHi 

(32).  

The inner-core region. 

The inner-core is the most conserved part of NTHi LPS, which is composed of a PEtn-

substituted triheptosyl moiety linked via one phosphorylated Kdo to the lipid A moiety 

(Scheme. 1) (33). Structural variations of the inner-core region depend on the presence 

of non-carbohydrate substituents such as acetate group (Ac), phosphoethanolamine 

(PEtn) and glycine (Gly) (34-36).  

The outer-core region. 

The outer-core region of H. influenzae LPS is extremely diverse. Each heptose from the 

triheptosyl inner-core can be an attachment point for an oligosaccharide chain. The 

complete genome sequence of H. influenzae strain Rd has facilitated the study of 

lipopolysaccharide genes (37). Following the completion of further genome sequences 

for NTHi strains (38, 39), all of the major genes responsible for synthesis of 

oligosaccharide part of LPS were identified by sequence similarity comparisons along 

with structural studies of LPS from wild-type and mutant strains (Schemes 1, 2B) (40-

45).  

The elongations from the triheptosyl moiety can differ between strains (inter-strain 

variation) as well as within a single strain (intra-strain variation). The heterogeneity 

within the same strain appears as differences in lengths of oligosaccharide extensions 

from the triheptosyl moiety. This intra-strain variation depends on uncompleted 

syntheses of LPS molecules, on enzyme competition and sterical hinderance as well as 

genetic mechanism called phase variation (46). Phase variation is also found in other 

mucosal pathogens such as Neisseria (47, 48). 

 

 PPEtn 

 kdkA ↓  

 4 

R
1→4)-L-α-D-HepIp-(1→5)-α-Kdop-(2→6)-lipid A 

 3 opsX kdtA 

 rfaF ↑ 

 1 lpt6 

R
2→3)-L-α-D-HepIIp6←PEtn 

 2 

 orfH  ↑  

 1 

R
3→2)-L-α-D-HepIIIp 

 

Scheme 1. The conserved inner-core part of LPS from H. influenzae and genes 

involved in the biosynthesis of inner-core.   

(R
1
, R

2
, R

3
 - H or sugar residues, representing the outer-core region.) 
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1.4.1.1. Phase-variable and host-mimicking structures and their role in virulence. 

Phase variation is a high frequency on-off switching of gene expression. Several 

chromosomal loci from H. influenzae were found to contain a number of tetranucleatide 

repeats within the open reading frame. Spontaneous variation of these repeats during 

replication leads to the gain and loss of phase variable structures. (49-51). 

NTHi is a highly adapted human pathogen (52, 53). Extensive structural studies of the 

lipopolysaccharides indicated that H. influenzae express structures that are 

immunochemically identical to groups of different human glycosphingolipids and 

glycolipid antigens (Table 1). Remarkably, expression of almost all host-mimicking 

structures is controlled by phase variable genes (Scheme 2B). 

Six genetic loci, lic1, lic2, lic3, lgtC, lex2 and oafA, have been identified to be 

responsible for phase variation. 

The expression of the digalactoside structure (-Gal-(1→4)--Gal-(1→) is phase 

variable from every possible position (41, 54).  Lex2 or lic2A genes are responsible for 

addition of the -Gal residue to Glc. The further addition of -Gal to -Gal is 

controlled by a phase variable gene lgtC (41). Notably, lex2 (55, 56) is not only phase 

variable but also exists in two allelic variants. The presence of the phase-variable and 

host-mimicking digalactoside epitope on LPS increases resistance to naturally acquired 

bactericidal antibody in humans (57). Most likely the host mimicking allows the 

bacterium to evade the immune defense system by covering its surface with structures 

that do not cause the production of host antibody (58).   

Lic3A and lic3B are both phase variable genes. It has been found that Lic3A is 

responsible for sialylation of -D-Gal linked to -Glc-HepIII (Scheme 2) (59). Lic3B is 

responsible for synthesis of disialyllactose. Interestingly Lic3B is bifunctional and can 

be involved in syntheses of both sialyl- and disialyllactose (Scheme 2) (60). 

Furthermore the lic3B gene is responsible for sialylation of -D-Gal linked to the 

external heptose (61).  Sialic acid can also be linked to -D-Gal that is either linked to 

-Glc-HepI (62) or -Glc-HepII (63). Since all tested NTHi strains contain lic3A 

genes, it can be suggested that lic3A and/or lic3B genes are responsible for addition of 

sialic acid to these epitopes. 

 

Table 1. Terminal extensions from LPS of H. influenzae that mimic human        

structures. 

Host-mimicking structure Trivial name 

PCho→ Phosphocholine 

-Gal-(1→4)--Glc-(1→ Lactose  

-Neu5Ac-(2→3)--Gal-(1→4)--Glc-(1→ Sialyllactose 

-Gal-(1→4)--Gal-(1→ Digalactoside  

-GalNAc-(1→3)--Gal-(1→4)--Gal-(1→4)--Glc-(1→ Globotetraose  

-Gal-(1→4)--Gal-(1→4)--Glc-(1→ Globotriose 

-Neu5Ac-(2→3)--Gal-(1→4)--GlcNAc-(1→3)--Gal-(1→ Sialyllacto-N-

neotetraose 
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                                                                                                             -Glc (-Gal) 

A                                                                                                                           ↓1,4 

                                                                                                                L(D),D-Hep       1,4    R 

                                                                                                                      1,4   1,6↓ 

                                                                                               1,4        -Glc→-Glc →L,D-HepI-(1→ 

                                                                 1,6(7*)                                                 1,4            3  

                                                                                                     1,4                    -Glc                ↑ 

                           1,3               1,4                                                                1,4                ↑  1,4                1     6,1 

-GalNAc →-Gal →-Gal                                                             -Glc →L,D-HepII←PEtn 

                                                                                       1,4                                 1,4           2 

 -Neu5Ac→-Neu5Ac                               1,4                                                                ↑           

                                                                                                                                       1,2(3)          1 

                                                                                                                  -Glc →L,D-HepIII 

                                                                                                                                            1,2(3) 

                                                                                                                            -Gal 

 

R: -Neu5Ac-(2→3)--Gal-(1→4)--GlcNAc-(1→3)--Gal-(1→ 

     PEtn→6)--GalNAc-(1→6)--Gal-(1→4)--GlcNAc-(1→3)--Gal-(1→ 

(7*) – Substituted position of D,D-Hep is identified in this study. 

 

                                                                                                             -Glc (-Gal) 

                                                                                                                              ↓losA 

B                                                                                                          L(D),D-Hep                    PCho 

                                                                                                                  lex2*   ↓losB 

                                                                                        ?              **-Glc→-Glc →L,D-HepI-(1→ 

                                                                                   lex2 *                          lgtF              3  

                                                                                                                      **-Glc       PCho  ↑ 

                         lgtD        lgtC *                                                                    lic2B  ↓                       1    lpt6 

-GalNAc→-Gal→-Gal                                                         ** -Glc →L,D-HepII←PEtn 

                                            lic3A*                                                                  lic2C         2 

 -Neu5Ac→-Neu5Ac    lic3B*               lic2A *                                                         ↑           

               lic3B*                                                                                                 lpsA          1 

                                                                                                                  -Glc →L,D-HepIII 

                                                                                                                                            lpsA 

                                                                                                                             -Gal 

                                                                                                               lic1* ↑  

                                                                                                                                   PCho 

 

Scheme 2. Schematic representation of oligosaccharide elongations from 

HepI-HepII-HepIII (A) and genes involved in biosynthesis of the outer core (B). 

All sugars are D-pyranosides. 

*-phase variable genes; 

 substitution of  **Glc by -Gal is controlled  by lic2A gene 
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The sialyllacto-N-neotetraose epitope was found in some strains linked to Glc attached 

to HepI (64). Interestingly, biosynthesis of this unit is different from the biosynthesis of 

the rest of the LPS molecule. It is synthesized and added en bloc, by a mechanism 

related to synthesis of the O-antigen (65). Two different sialyltransferases LsgB and 

SiaA are involved in sialylation of this epitope (66).  

 

Almost all clinical isolates studied to date can incorporate sialic acid in their LPS (67). 

The presence of sialylated glycoforms significantly increases the resistance to the 

killing effects of normal human serum. Sialylated glycoforms are an essential 

requirement for inflammation of the middle ear in chinchillas (68-70).  

The lic 1 locus is associated with incorporation of phosphocholine (PCho) to LPS and 

comprises 4 genes (lic1A-lic1D) (71). Comprehensive structural studies of LPS from 

NTHi strains indicated four possible positions for phosphocholine. The external 

heptose and the first hexose residue, which is linked to any heptose (HepI, HepII or 

HepIII) could be substituted by PCho (Scheme 2B). The position of PCho depends on 

the sequence of lic1D, encoding a diphosphonucleoside choline transferase (72). Some 

H. influenzae strains express lipopolysaccharide structures containing two PCho 

residues. Genome sequence analysis of these strains indicated that they contain two 

distinct copies of the lic1 operon where the lic1D gene from each operon is responsible 

for position of PCho (73).  

PCho plays a very important role in colonization of the
 
bacterium on the mucosal 

surface of the nasopharynx (57, 74-76). In addition expression of PCho on LPS of H. 

influenzae
 
has also been associated with increased resistance to host antimicrobial

 

peptide killing (77). On the other hand PCho is a
 
target for the serum component C-

reactive protein (CRP), which,
 
when bound, mediates killing of the bacteria via 

activation
 
of complement. However, the sensitivity to CRP depends on the position of 

PCho in LPS (72). 

 

Some NTHi strains express highly acetylated LPS. It has been found that the addition 

of acetate to HepIII is controlled by the phase-variable gene oafA (78). 

 

1.4.1.2. The lipid A structure of H. influenzae. 

The structure of the lipid A was first established by Helander I. et al (79). In 2005 

Mikhail I. et al characterized in detail the lipid A part from 22 NTHi strains and two 

type f strains by ESI-MS
n 
(80).  

The major structure of the lipid A is composed of two 2-amino-2-deoxy-D-

glucopyranose residues with phosphates at C1 and C4´. 

The C2/C2´and C3/C3´positions were found to be substituted by 3-

hydroxytetradecanoic acids. Moreover the fatty acids at C3´and C2´were further 

esterified by tetradecanoic acids (Fig. 3). 
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Fig. 3. The lipid A structure of H. influenzae. 

 

1.5. Haemophilus parainfluenzae. 

Almost all people carry H. parainfluenzae and, by multi-locus sequence typing and 

partial 16S rRNA sequences (Derek Hood, unpublished data), it has been found to be a 

highly diverse population of organisms. H. parainfluenzae is closely related to H. 

influenzae. Despite their relatedness and similar presence in the nasopharynx, H. 

parainfluenzae strains very rarely cause diseases. 

  

The significant difference in LPS structures is that some strains of H. parainfluenzae 

express smooth (S)-type LPS (81). Unlike LPS of H. influenzae, the structural 

information of the lipopolysaccharide from H. parainfluenzae is very limited.  

Before our investigations, only one paper was published on the structures of LPS from 

H. parainfluenzae (strains 4201 and 4282), strains that are lacking O-antigen (82).  

Interestingly, LPS expressed by these strains are similar to those of H. influenzae and 

are composed of the triheptosyl inner-core moiety (33), 

L--D-HepIIIp-(12)-[PEtn6]-L--D-HepIIp-(13)-L--D-HepIp-(15)--Kdop- 

(Scheme 1).  

 

Furthermore the structures expressed in the outer-core region were found to be similar 

to those in LPS of H. influenzae. Specifically, in strain 4201 HepI is substituted by  

-D-Glcp-(14)-D--D-Hepp-(16)--D-Glcp-(1

and strain 4282 expresses 

-D-Galp-(16)--D-Glcp-(14)-D--D-Hepp-(16)--D-Glcp-(1

linked to HepI. 
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2 METHODS 

 

The wild type and mutant strains used in this thesis were provided by our colleagues 

from Oxford University. 

The lipopolysaccharide can be obtained from bacteria by extraction. Two methods are 

used, the hot phenol-water extraction (83) and the PCP-method (phenol-chloroform- 

light petroleum) (84). The choice of method depends on the structure of LPS. The 

LPS from smooth strains is more hydrophilic than from rough strains. Therefore LPS 

containing the O-antigen is extracted by phenol-water method. The rough strains 

express shorter lipopolysaccharides, which can be extracted by PCP-method.  

Usually, LPS very poorly dissolves in water, making it difficult to be analyzed in its 

native form. To resolve this problem LPS can be degraded to the oligosaccharide 

(OS) and the lipid A materials by the mild acid hydrolysis, or by O-deacylation with 

hydrazine to O-deacylated LPS (LPS-OH). It should be kept in mind that the mild 

acid hydrolysis also leads to hydrolysis of all acid sensitive linkages like the ketosidic 

linkage in sialic acid (Neu5Ac), phosphodiester linkages (PPEtn) and 

phosphoglycosidic linkages. On the other hand O-deacylation with hydrazine 

removes not only ester-linked fatty acids but also all acetate groups and ester linked 

glycine. Hence analyses of OS and LPS-OH alone do not give all structural 

information about carbohydrate part of LPS but together can complement one 

another.  

In order to elucidate the structure of carbohydrate polymers it is necessary to 

determine the identity, the absolute configuration, the ring size and the linkage 

positions of all monosaccharide residues, as well as their sequence and anomeric 

configurations. In addition LPS is often decorated by non-carbohydrate substituents, 

for which linkage positions must be determined. This information can be analyzed by 

different mass spectrometry methods and by nuclear magnetic resonance (NMR) 

spectroscopy (Fig.4). 

Sometimes LPS containing O-antigen can be analyzed directly by NMR spectroscopy 

due to the repeating OS unit structure.  

 

Fig. 4. Summary of methods used for the structural elucidation of LPS. 
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2.1 Preparation, purification and degradation of LPS, OS, LPS-OH and lipid A 

materials.  

2.1.1 Bacterial cultivation. 

H. influenzae strains 1158/1159 and 1232 were grown in brain-heart infusion broth 

supplemented with haemin (10µg∙ml
-1

) and NAD (2µg∙ml
-1

). 

H. parainfluenzae strains 20 and 16 were isolated as commensals from the throats of 

two children in Oxfordshire, UK. Bacteria were grown on solid brain-heart infusion 

(BHI) medium (agar 1% w/v) supplemented with 10% Levinthals reagent. 

 

2.1.2 Extraction of lipopolysaccharides from bacteria. 

PCP extraction. 

H. influenzae express rough type LPS. Hence the PCP extraction method (84) is more 

preferable for extraction of LPS from NTHi strains 1158, 1159 and 1232.  

The lyophilized bacteria were dissolved in the phenol:chloroform:light petroleum 

mixture (2:5:8) and stirred at room temperature. After 24h the mixture was 

centrifuged (7500rpm; 30min), and the pellet was dissolved one more time in PCP 

solution. The supernatants from day one and day two were filtered through filter 

paper, pooled together and evaporated on rotary evaporator until only phenol phase 

was left. LPS was precipitated by adding a mixture of diethyl ether and acetone (1:5). 

The obtained LPS was washed with acetone. In the final step, LPS was purified by 

ultracentrifugation to remove all impurities as RNA and proteins. 

Hot phenol-water extraction. 

Since SDS-PAGE indicatied   H. parainfluenzae strains Hp20 and Hp16 express (S)-

type LPS, the hot phenol-water extraction method was chosen as more appropriate 

method for these strains. 

The lyophilized bacteria were dissolved in a phenol:water (1:1) mixture and stirred at 

68
o
C for 2h. The mixture was cooled and centrifuged (7500rpm; 40min) at 4

o
C. The 

water phase layer was removed and saved. The phenol phase layer with added water 

was stirred one more time at 68
o
C for 2h, and centrifuged. Both water phase layers 

were pooled together and dialyzed against tap water, followed by dialyzing by 

distilled water and lyophilized. The extracted LPS can be further purified by 

treatment with RNAse, DNAse and proteinase K, followed with dialysis against 

distilled water. 

2.1.3 O-deacylation with hydrazine. 

The O-deacylation with hydrazine is used to remove ester-linked fatty acids from the 

lipid A moiety (85). 

To obtain the O-deacylated LPS (LPS-OH), the lipopolysaccharide was treated with 

anhydrous hydrazine at 40
o
C for 1h. After cooling on ice, the excess of hydrazine was 

destroyed by dropwise addition of cold acetone (hydrazine:acetone-1:4). The 

precipitated LPS-OH after washing with acetone was dissolved in water and 

lyophilized. 
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2.1.4 Delipidation by mild acid hydrolysis. 

The ketosidic linkage between the Kdo and the lipid A can be selectively cleaved by 

mild acid hydrolysis (delipidation). During the delipidation the Kdo is changed to 

several anhydro-Kdo (AnKdo-ol) forms due to the -elimination of a phosphate group 

at C-4 (86) (Fig. 5). The simultaneous reduction by borane-N-methyl-morpholine 

complex reduces the amount of AnKdo-ol forms. Thus, reduced core oligosaccharide 

(OS) samples and the lipid A were obtained after mild acid hydrolysis of LPS with 1-

2% aqueous acetic acid at 100
o
C for 2h in the presence of borane-N-methyl-

morpholine complex. The insoluble lipid A was separated from the mixture by 

centrifugation (7500rpm, 35min). The water-soluble part (OS) was purified by gel 

filtration on Bio Gel G-15 or Bio Gel P-4 columns. The lipid A was purified by 

partition using chloroform:methanol:water (2:1:1). The lower chloroform phase was 

evaporated to dryness.  

 

 

Fig. 5. Mild acid hydrolysis of LPS and formation of anhydro-forms of Kdo. 

 

2.1.5 Dephosphorylation. 

Dephosphorylation of OS materials was performed with 48% aqueous HF (4
 o

C, 48h) 

in order to remove all phosphate containing substituents.  

 

2.1.6  O-Deacylation.  

 

In order to reduce the heterogeneity due to the different amount of acetate groups and 

glycine in the same glycoform, the OS material was deacytylated by 1M NH3 for 24h 

at room temperature. 
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2.2 Analytical methods with mass spectrometry. 

The structural characterization of carbohydrates is a challenging task.  

Monosaccharaide components from complex oligosaccharides typically differ from 

each other in their stereochemistry, and the positions of interglycosidic linkages. In 

addition, the oligosaccharides can be decorated by non-carbohydrate structures. Mass 

spectrometry is a very powerful and useful tool for the structural analysis of 

lipopolysaccharides (87). 
 

Gas-liquid chromatography-mass spectrometry (GC-MS) is mostly used for 

analysis of volatile derivatives, such as alditol acetates (88), permethylated alditol 

acetates (89) and methyl esters which are identified by their retention time in the GC 

chromatogram and characteristic electron ionization (EI) spectra (Fig. 6). 

 

 
 

 

Fig. 6. Degradation methods used for the structural analysis of the oligosaccharide 

part of LPS. 

 

 

Structural studies of carbohydrates were revolutionized by the development of mass 

spectrometry with mild ionization sources, such as fast atom bombardment (FAB), 

matrix-assisted laser desorption ionization (MALDI), and electrospray ionization 

(ESI), which together with tandem spectrometric methods provide very powerful 

means for determination of carbohydrate sequence,  in derivatized or native forms 

(90-94). ESI is the most effective method for transforming carbohydrate molecules 

from solution to gas-phase ions. 

 

Different separation techniques such as high-performance liquid chromatography 

(HPLC) and capillary electrophoresis (CE) are often coupled to mass spectrometry 

to analyze complex mixtures of saccharides (70, 95-98). 
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In order to obtain the molecular mass of oligosaccharides and their distribution in the 

oligosaccharides mixture, OS and LPS-OH samples can be analyzed by ESI-MS in 

native form in positive or negative mode (99). It has been shown that HPLC using 

graphitized carbon columns (GCC) coupled to ESI-MS/MS is a powerful method, 

which can be used for structural characterization of complex mixtures of 

carbohydrates, without prior derivatization (100, 101).  

The sensitivity of ESI-MS can also be improved by adding Li+, Na+ or K+ ions, 

especially Li+ ions (102). However, the sensitivity of ESI on underivatized 

carbohydrates is much lower than on peptideds and proteins. The improvement of 

electrospray ionization by nano-ESI technique (103) increases the sensitivity, due to 

increasing the surface activity of formed droplets. Underivatized carbohydrates can 

be measured by nano-ESI with the same level of sensitivity as proteins. Consequently 

the sequence and branching information of oligosaccharide can be obtained by nano-

ESI -MS
n
 without prior derivatization of carbohydrates (104).  

The main fragmentation ions observed in MS/MS spectra are formed by cleavages of 

glycosidic bonds. The nomenclature of a fragmentation mechanism was introduced 

by Domon, B., and Costello, C. E. and as shown in Fig. 7 allows detailed sequence 

information to be obtained (105). 

Derivatization of carbohydrates by permethylation prior ESI-MS/MS increases the 

detection sensitivity of their ions by several orders. Permethylation (106-108) in 

conjunction with ionization by sodium adduction simplifies structural elucidation of 

carbohydrates.  

In addition, permethylation permits to couple HPLC to ESI-MS/MS using reversed-

phase column where selected ion monitoring can be used for selecting critical m/z 

values. Since - and - anomers can be separated by reversed-phase HPLC, the 

oligosaccharide should be reduced before permethylation (106). 

 

 

 
 

 

Fig. 7. The nomenclature of fragmentation ions obtained from cleavages of 

glycosidic bonds. 
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2.3 Analytical methods used in these studies. 

Chemical modifications of the carbohydrates (lipopolysaccharides) followed by mass 

spectrometric methods provide important structural information such as: 

 

1. The identity of monosaccharide residues (sugar analysis) 

2. The D or L configuration of sugar residues (absolute configuration analysis). 

3. The ring form i.e. pyranose or furanose form of monosaccharides (methylation 

analysis). 

4. The linkage position, the position to which other glycosyl residues are linked 

(methylation analysis). 

5. The molecular mass and sequence information (permethylation analysis). 

6. The identity of fatty acids from to the lipid A part (Fatty acid analysis). 

7. Molecular mass and relative distribution of glycoforms (ESI-MS). 

8. Sequence information and the information about location of non-carbohydrate 

substituents such as PCho, PEtn, Ac and Gly (CE-ESI-MS on OS). 

9. Molecular mass and relative distribution of sialylated glycoforms by precursor 

ion monitoring by scanning for the loss of sialic acid and disialic acid       

(CE-ESI-MS on LPS-OH). 

2.3.1 Sugar analysis. 

The monosaccharide residues were identified by GC-MS as theirs corresponding 

alditol acetates (Fig. 6). The preparation of the sample includes: 

 Hydrolysis of glycosidic linkages* (2M, 0.5M TFA). 

 Subsequent reduction of monosaccharide residues by NaBH4 in 1M NH3 

for 16h at 21
o
C. 

 Acetylation of hydroxyl groups with acetic anhydride/pyridine (1:1) for 20 

min at 120
o
C. 

 Extraction with EtOAc:water (1:1). 

 Analysis by GC-MS. 

 

*the choice of the hydrolysis condition depends on the sugar residues. 

 

2.3.2 Methylation analysis. 

 

In order to identify the linkage positions of monosaccharaides to which other glycosyl 

residues are linked, OS was modified to partially methylated alditol acetates and 

analyzed by GC-MS (Fig. 6). Since phosphorylated sugars are not detected by GC-

MS, the OS was dephosphorylated prior methylation. 

The preparation includes: 

 Dissolving the OS in anhydrous DMSO. 

 Preparation of DMSO anion (BuLi, 40
o
C, 1h). 

 Methylation (MeI, 16h, 21
o
C). 
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 Evaporation of excess amount of MeI by vacuum. 

 Purification on SepPackC18 column:  

▪ Preconditioned with 10mL ethanol, 4mL water. 

▪ Addition of an equal amount of water to sample. 

▪ Washing of applied sample with 10mL water, 6mL 10% acetonitrile in 

water. 

▪ Elution of sample with 4ml acetonitrile. 

 Reduction and acetylation as in sugar analysis (NaBD4 must be used 

instead of NaBH4). 

 Analysis by GC-MS. 

 
2.3.3 Absolute configuration analysis. 

 

The absolute configuration of sugar residues was obtained by modifications of sugar 

enantiomers to diastereomers (109). It was done by Fischer glycosylation with 

secondary alcohols, usually (+)-2-butanol.  

Briefly, 

 OS samples are hydrolyzed by 2M TFA at 120
o
C for 2h. 

 Re-N-acetylation step is done, when necessary (the presence of N-

acetylhexoseamine sugar), by reaction with Ac2O at 21
o
C for 4h. 

 Glycosylation ( (+)-2-butanol, acetyl chloride, at 80
o
C, for 16h). 

 Acetylation (acetic anhydride/pyridine (1:1) for 20 min at 120
o
C). 

 Analysis by GC-MS.  

 
2.3.4 Fatty acid analysis. 

 

Fatty acids of the lipid A were derivatized to methyl esters and analyzed by GC-MS. 

Preparation method: 

 The lipid A is treated with 4M HCl at 100
o
C for 4h. 

 The sample is extracted with 6mL of mixture of chloroform:water (1:1). 

 The chloroform phase is collected and dried by Na2SO4. 

 The solution is filtrated and evaporated to dryness. 

 The sample is subjected to methanolysis (MeOH, acetyl chlorid, 80
o
C, 16h) 

 The methyl esters are purified by extraction with chloroform:NaCl solution 

(30mg/ml), and chloroform phase is collected and evaporated. 

 The methyl esters are dissolved in EtOAc and analyzed by GC-MS. 

 
2.3.5 Permethylation analysis (HPLC-ESI-MS

n
). 

 

Electrospray ionization tandem mass spectrometry (ESI-MS
n
) on dephosphorylated 

and permethylated oligosaccharide samples is a very important method for 

determination of the sequence and branching information. Dephosphorylation 

decreases the heterogeneity of samples. 

 

 Dephosphorylation and methylation were achieved as described above 

(2.3.2).  

 HPLC-ESI-MS
n
 on dephosphorylated and permethylated OS samples was 

carried out on a Waters 2690 system coupled to the Finnigan LCQ ion trap 

mass spectrometer) in the positive ion mode. 

 A microbore C18-column (Phenomenex LUNA 5u C18) was used with an 

eluent gradient consisting of 1mM NaOAc and 1% HOAc in MeOH as 
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eluent A and 1mM NaOAc and 1% HOAc in water as eluent B. A gradient 

program was used with 50% A rising to 100% in 50min and thereafter 

100% A for 20 min. The flow rate was 100µL/min. 

 

2.3.6 ESI-MS. 

 

ESI-MS (Finnigan LCQ ion trap mass spectrometer) on  

 OS samples (positive mode) were done using a running solvent of 1% 

acetic acid in aceteonitrile/water (1:1, v/v) and the flow rate of 5µL/min.  

 LPS-OH samples (negative mode) were done using a running solvent of 

1M NH4OH in water and the flow rate of 5µL/min.  

 

2.3.7 CE-ESI-MS. 

 

CE-ESI-MS
n
 experiments in positive and negative mode on OS and LPS-OH samples 

provided information about molecular masses of glycoforms and their distribution. 

Furthermore CE-ESI-MS
n
 on OS samples provide the information about location of 

non-carbohydrate substituents such as: PCho, PEtn, Ac and Gly. The distribution of 

sialylated glycoforms is very low but they can be detected by precursor ion 

monitoring for scaning for the loss of sialic acid (m/z 290) and disialic acid (m/z 581). 

These CE-ESI-MS
n 

experiments were performed by our colleges in Institute for 

Biological Sciences, Ottawa. 

 CE-ESI-MS
n 

experiments on OS and LPS-OH materials were carried out in 

negative and positive mode with a Crystal model 310 CE instrument 

coupled to an API 3000 mass spectrometer via a MicroIonspray interface as 

described previously (68). 

 

2.4 NMR spectroscopy. 

 

Nuclear Magnetic Resonance (NMR) spectroscopy has been used for structural 

studies of carbohydrates for relatively long time. Developments in instrumentation 

and pulse sequences have made NMR spectroscopy a very powerful and absolute 

necessary technique for structural elucidation of carbohydrates and carbohydrate 

containing structures (110-115). 

The detailed structural analysis of carbohydrates by 1D and 2D NMR spectroscopy 

can give information about the identity of monosaccharide, their anomeric 

configuration, ring form, linkage positions, sequence information; even information 

about absolute configuration can be achieved. However the structural information 

from analytical and mass spectroscopic methods is often needed for simplifying the 

elucidation and for confirming the results form NMR spectra. The major weakness of 

NMR spectroscopy is its sensitivity. But one of the advantages is that NMR is a non-

destructive method. 

The spectra of carbohydrates are usually recorded in D2O.  The almost full exchange 

of all exchangeable protons (NH, OH) can be gained by lyophilization from D2O 

prior analysis. When determination of chemical shifts of NH2 and NH protons is 

needed for confirming positions of amino or acetamido groups the sample can be 

recorded in a mixture of H2O/D2O.   
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Due to thermostability of carbohydrates, they can be analyzed over a wide range of 

temperature, usually between 22-85
o
C. The chemical shifts of some protons can be 

temperature dependent, but the effect is usually small. On the other hand the change 

of the temperature leads to large shifts of the HDO signal so that sugar resonances 

under HDO can be observed. 

2.4.1 One- dimensional spectra. 

1D 
1
H is a first step in structural studies by NMR. First of all, the 1D 

1
H spectrum 

gives information about purity of the sample. The 1D 
1
H spectrum of carbohydrate 

has very characteristic pattern and can be divided into several regions. 

The first region is a region of anomeric protons at 4.3-5.9 p.p.m. which can give 

preliminary information about the number of sugar residues in the carbohydrate 

structure (Fig. 8A) 

 

The well resolved anomeric signal appears as doublet and coupling constant gives 

information about anomeric configuration of the sugar. The coupling constant about 

4Hz corresponds to -anomeric configuration and the coupling constant about 8Hz 

corresponds to -anomeric configuration (Fig. 9).   

 

 

 

 

Fig. 8. The 1D 
1
H spectrum of OS-2 derived from H. parainfluenzae strain 20 . 

A-region of anomeric protons; B-region of ring protons; (NH-CO)-CH3- methyl signals 

from acetoamido groups; (CH)-CH3- methyl protons from 6-deoxy sugar. 

 

Fig. 9. Anomeric region of the 1D 
1
H spectrum of OS-2 from LPS from Hp20. 
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These statements can be made for sugar residues having gluco- and galacto-

configurations and adopting pyranose form. For pyranose sugar residues having 

manno-configuration 
3
JH-H is small for both - and -anomers, as well as for 

furanoses.  

Methyl protons of 6-deoxy sugar appear as doublet between 1.1-1.3 p.p.m. and 

methyl singlets of acetamido groups at 2.0-2.2 p.p.m. The remaining majority of 

proton resonances appear in a very narrow region at 3.0-4.2 p.p.m. (Fig. 8B), making 

further interpretation by 1D NMR impossible.  
13

C NMR spectroscopy is much less sensitive than 
1
H due to the low natural 

abundance of the 
13

C nucleus (1.1%). But 1D 
13

C spectroscopy can be very useful for 

determination of carbon chemical shifts of carbohydrates due to its greater dispersion 

(Fig. 10). The anomeric carbon signals resonate in a region 90-112 p.p.m. giving 

more clearly information about the number of O-linked monosaccharaides. However, 

the monosaccharide at reducing end can adopt different forms and thereby the 

chemical shifts of these forms will be different. 

 

 

Fig. 10. The 1D 
13

C spectrum of LPS from H. parainfluenzae strain 16. 

A-anomeric region, B-region of ring carbons. 

 

 

The resonances between 52 and 57 p.p.m. indicate the presence of animo-substituted 

carbons. The presence of acetamido groups can be confirmed by methyl resonances 

from amino sugar residues between 21-24 p.p.m. The unsubstituted 

hydroxymethylene (C-6) gives signal between 57.7-64.7 p.p.m. However, the 

glycosylated C-6 resonates in region between 66-70 p.p.m. Resonances in the region 

16-19 p.p.m. indicate the presence of 6-deoxysugars (H3C-6). Resonances in the 

region between 80-85 p.p.m. usually, indicate the presence of furanoses. However, 

1D spectrum cannot provide all information to complete structural characterization of 

an unknown carbohydrate. 

 

2.4.2 Two-dimensional spectra. 

 

Through 2D NMR the severe resolution problem related to determination of ring 

proton resonates (they resonate in narrow region at 3.0-4.2 p.p.m) has been generally 

overcome.  
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In general, structural studies of carbohydrates by NMR include: 2D COSY, TOCSY 

experiments, which are used to assign all protons belonging to closed spin systems; 

heteronuclear experiments such as 
1
H-

13
C HMQC or HSQC are used to obtain carbon 

chemical shifts and, the sequence information can be achieve by 
1
H-

1
H NOESY 

and/or 
1
H-

13
C HMBC experiments. 

 

2.4.2.1. COSY. 

 

Correlation spectroscopy (COSY) is a homonuclear experiment which allows the 

identification of the proton chemical shifts through identification of scalar coupled 

spins.  

The determination of proton chemical shifts of carbohydrates can be started from 

anomeric proton, which is coupled only to one proton and gives well-resolved cross-

peaks to H-2. H-2 gives cross-peaks to H-3 and H-3 gives cross-peaks to H-4 etc. 

(Fig. 11).  

However the assignment of all proton chemical shifts within closed systems can be 

very difficult or impossible due to overlapping signals or the lack of cross-peaks due 

to 
3
J couplings constants that are too small. 

 

 
 

Fig. 11. The DQF-COSY (Double -quantum filtered COSY) spectrum of OS-2 from 

Hp20. 

 

 

The DQF-COSY (Double -quantum filtrered COSY) experiment is preferred to 

COSY for two reasons. It gives a nicer spectrum with better balance of intensity 

between the cross-peaks and diagonal-peaks and the spectrum doesn’t contain the 

signals from uncoupled spins.  
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2.4.2.2 TOCSY. 

The identification of proton chemical shifts which belong to the same spin system can 

be achieved by a TOCSY (Total Correlation Spectroscopy) experiment.  

In the TOCSY spectrum the chemical shift of one spin shows the correlation to all 

spins of the unbroken chain. The chain can be “broken” between two neighboring 

spins from one spin system if the coupling constant is too small. However it also 

points the configuration of sugar residues (gluco-, galacto- and manno-configuration)  

(see Fig. 24). 

2.4.2.3 NOESY. 

In the two-dimensional NOESY (Nuclear Overhauser Effect Spectroscopy) spectrum 

the cross-peaks appear between two spins that are close in space (less than 5Å).  

Typically, the protons from the glycosidic bond are close in space. The analysis of 

cross-peaks in the anomeric region gives information about substitution positions and 

sequences of sugar residues, the information about the anomeric configurations () 

as well as confirming galacto- gluco- and manno-configurations (see Fig. 24).  

2.4.2.4 HMQC (HSQC) and HMBC. 

HMQC (Heteronuclear Multiple Quantum Coherence) or HSQC (Heteronuclear 

Single Quantum Coherence) experiments are used to identify the carbon chemical 

shift through one bond correlation between directly attached 
1
H and 

13
C observed by 

1
H NMR  (Fig. 12). 

 

 
 

 

Fig. 12. 
1
H-

13
C HMQC spectrum on LPS from H. parainfluenzae strain 20. 
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The HMBC (Heteronuclear Multiple-Bond Coherence) experiment is very useful for 

sequencing (Fig. 13). 
1
H-

13
C correlations over three bonds are particularly valuable 

for determining linkage positions of carbohydrates with low molecular masses. 

 
 

 

 

 

Fig. 13. Selected region of the 
1
H-

13
C HMBC spectrum of OS-2 from  

H. parainfluenzae strain 20. 

 

The inter-residue cross-peaks between C-1
 
of C and H-3 of B; C-1

 
of B and H-4 of 

A
as well as H-1

 
of C and C-3 of B; H-1

 
of B and C-4 of A

indicated that C was 

substituted by B at O-4 position , which was further substituted by A at O-3 position. 

 

P→6)-D-Glcp-(1→3)--D-FucpNAc4N-(1→4)--D-GalpNAc 

     C                               B                                         A 
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3 RESULTS AND DISCUSSION 

 

Structural studies of LPS from non-typeable Haemophilus 

influenzae. 
 

NTHi strains 1158/1159 and 1232 were obtained from the collection of 25 NTHi 

otitis media clinical isolates that express additional D,D-Hep residues in the outer-

core region of LPS.  

 

3.1 Paper I. 
The structural diversity of lipopolysaccharide expressed by non-typeable 

Haemophilus influenzae strains 1158 and 1159. 

 

The analysis of two NTHi strains 1158 and 1159, which were obtained from the left 

and right middle ear of one patient with otitis media on the same day, indicated that 

both strains express almost identical lipopolysaccharide structures. The only 

differences which were found were the levels of acylation and phosphorylation. LPS 

were isolated by phenol/chloroform/light petroleum method and were degraded to O-

deacylated LPS (LPS-OH) and core oligosaccharides (OS). Analyses were done by 

NMR spectroscopy on deacylated OS, capillary electrophoresis coupled to 

electrospray ionization mass spectrometry (CE-ESI-MS) on LPS-OH and OS 

materials, as well as HPLC-ESI-MS
n
 on permethylated and dephosphorylated OS 

(Fig 14).  It was confirmed that LPS 1158 and 1159 contain the conserved triheptosyl 

inner-core which is attached via the phosphorylated Kdo unit to the lipid A moiety.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. ESI-MS spectrum of dephosphorylated and permethylated OS 1158. 

 

         The ion at m/z 1716.0 corresponds to Hex2Hep4AnKdo-ol glycoform, and the 

ion at m/z 2368.3 to HexNAc1Hex4Hep4AnKdo-ol. 
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The structural studies revealed that strains 1158 and 1159 express the additional D,D-

Hep residue in the outer core region of the LPS. In the most abundant glycoform the 

D,D-Hep residue is terminal and links to O-6 of the β-D-Glcp linked to HepI. 

 

However HPLC-ESI-MS
n
 analysis also indicated glycoforms in which the external 

heptose was further substituted by HexNAc-Hex-Hex (Fig. 15). 

 

 
 

 

Fig. 15. HPLC-ESI-MS
n
 analysis on dephosphorylated and permethylated OS 1159.  

(A) MS
2
 spectrum of ion at m/z 2368.3, corresponding to HexNAc1Hex4Hep4Ankdo-ol 

glycoform. 

 (B) MS
3
 spectrum of ion at m/z 1655.0, corresponding to the loss of terminal hexose and 

2-substituted heptose. 

(C) MS
3
 spectrum of ion at m/z 1250.1, corresponding to the loss of HexNAc-Hex-Hex-

Hex-Hep-. 

 

The same structural element can be attached to β-D-Glcp linked to HepIII (33). 

Although these structures could not be confirmed by NMR analysis, the data from 

methylation and HPLC-ESI-MS
n
 analyses clearly showed the expression of 

globotetraose  

[β-D-GalpNAc-(1→3)-α-D-Galp-(1→4)-β-D-Galp-(1→4)-β-D-Glcp-(1→] 

from HepIII, as well as allowing us to propose the presence of  

β-D-GalpNAc-(1→3)-α-D-Galp-(1→4)-β-D-Galp-(1→ x)-HepIV-(1→4)-β-D-Glcp 

from HepI.  
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The linkage position of the external heptose could not be determined due to the low 

abundance of these glycoforms. Interestingly, methylation analysis did not show any 

substituted D,D-Hep, but instead showed small  amount of O-6 substituted L,D-Hep 

(Fig. 16). 

 

 
 

 

Fig. 16. Methylation analysis of dephosphorylated OS-1158 
 

 

β-D-GalNAc-(1→3)-α-D-Galp-(1→4)-β-D- Galp-(1→?)-HepIVp-(1→6)-β-D-Glcp-(1→4)-L-α-D-HepIp-(1→5)AnKdo-ol 

 3 

 ↑ 

 1 

 L-α-D-HepIIp6←PEtn 

 α-Neu5Ac-(2→8)-α-Neu5Ac-(2 2 

 ↓ ↑ 

 3 1 

 β-D-GalNAc-(1→3)-α-D-Galp-(1→4)-β-D- Galp-(1→4)-β-D-Glcp-(1→2)-L-α-D-HepIIIp 

 

 

             

Scheme 3. Structure proposed for the Hep4 glycoforms of NTHi strains 1158/1159. 

 

 

Previously, two genes losB1 and losB2 were found, which are responsible for 

addition of D,D-Hep or L,D-Hep, respectively (44). These two genes were found 

alongside losA1, losA2 genes encoding glycosyltransferases that are responsible for 

substitution of the external heptose (116). DNA sequence analyses indicated that 

strains 1158/1159 have losA2/losB2 and, however instead of losA1/losB1 they have 

lic2B/lic2C gene pairs. Nevertheless they still express the D,D-Hep residue in the 

outer-core region of LPS. The confirmation, that losB2 is responsible for 

incorporation of D,D-Hep in strains 1158/1159 was done by structural analysis of 

1158losB2 mutant strain. HPLC-ESI-MS
n
 analysis on permethylated and 

dephosphorylated OS 1158losB2 indicated only glycoforms, containing three 

heptoses.  
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More likely that despite the high degree of homology between losB2 from 1158 and 

losB2 from R2846 and 1207, the function of 1158LosB2 is more closely related to the 

function of LosB1 in the other NTHi strains (116). 

Giving the small amount of 6-substituted D,D-Hep  observed by methylation analysis, 

it is possible that LosB2 in 1158 may still possess low level  activity to add L,D-Hep 

to β-D-Glcp linked to HepI .  Then L,D-Hep (HepIV) would be elongated as shown in 

Scheme 3. This would need to be confirmed through further investigations.  

 

 The lic2B/lic2C gens are responsible for elongation from middle heptose (HepII) 

(42). It was found that α-D-Glcp linked to HepII can be also substituted by 

globotetraose [β-D-GalpNAc-(1→3)-α-D-Galp-(1→4)-β-D-Galp-(1→4)-β-D-Glcp-

(1→] or truncated version of it. Interestingly, chain elongation from HepII was found 

only in Hep3 glycoforms, probably due to steric hinderance. 

 

 

 
 

 
Fig. 17. Selected regions of the 2D TOCSY spectrum of deacylated OS 1158losB2 

 

 
 β-D-Glcp-(1→4)-L-α-D-HepIp-(1→5)-AnKdo-ol 

 α-Neu5Ac-(2→8)-α-Neu5Ac-(2 3 

 ↓ ↑ 

 3 1 

 β-D-GalNAc-(1→3)-α-D-Galp-(1→4)-β-D-Galp-(1→4)-β-D-Glcp-(1→4)-α-D-Glcp-(1→3)-L-α-D-HepIIp6←PEtn 

 2 

 VII VI V IV III ↑ 

 1 

 β-D-Glcp-(1→2)-L-α-D-HepIIIp 

 6 

 ↑  

 PCho 

  

 

Scheme 4. Structure proposed for Hep3 glycoforms of NTHi strains 1158/1159. 
 

 

CE-ESI-MS
n
 experiments on LPS-OH samples allowed us to suggest that a lactose 

unit [β-D-Galp-(1→4)-β-D-Glcp-(1→] linked to HepIII (Scheme 3) or to α-D-Glcp 

attached to HepII could be substituted by sialic or disialic acid (Scheme 4).  
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The strains 1158/1159 can be decorated by one or two PCho residues (73). These 

strains have two distinct copies of the lic1 operon consisting of lic1A, lic1B, lic1C 

and lic1D genes, which are responsible for addition of PCho (73). Location of PCho 

depends on the sequence of lic1D. Hence lic1D is responsible for addition of PCho at 

O-6 position to β-D-Glcp linked to HepIII, and lic1D* for addition to D,D-Hepp at O-

7 position.  

This novel linkage position of PCho attached to D,D-Hep was determined  by 

structural study of LPS from 1158lpsA mutant strain.  Since the lpsA gene is 

responsible for chain elongation from HepIII, the major glycoform from LPS 

1158lpsA can contain only one PCho linked to D,D-Hep. 

 

CE-ESI-MS
n
 experiments indicated also that LPS from NTHi strains 1158/1159 can 

be decorated by up to four acetate groups and by glycine (Scheme 5) 

 

 
 PCho  

 ↓ Ac  
 7 ↓  

 D--D-Hepp-(1→6)--D-Glcp-(1→4)-L--D-HepIp-(1→5)AnKdo-ol 

 ↑ 3 

 Ac ↑ 

 1 

 L--D-HepIIp 6←PEtn 

 PCho 2 

 ↑ ↑ 

 6 1 

 -D-Glcp-(1→2)-L--D-HepIIIp← Gly 

 ↑ ↑ 

 Ac Ac 

 

 

Scheme 5. Structure proposed for the Hex2 Hep4 glycoform of NTHi strains 

1158/1159. 
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3.2 PaperII. 

The structural studies of a novel branching pattern in the lipopolysaccharide 

expressed by non-typeable Haemophilus influenzae strain 1232.  

 

NTHi strain 1232 was obtained from a patient with otitis media. The 

lipopolysaccharide, extracted by phenol/chloroform/light petroleum method was O-

deacylated by anhydrous hydrazine. LPS was also degraded to OS material by mild 

acid hydrolysis, and further purified by gel filtration.  

 

ESI-MS
n
 and CE-ESI-MS

n
 on OS and LPS-OH samples as well as the detailed 

structural analysis by NMR spectroscopy confirmed that LPS from NTHi strain 1232 

comprises the conserved PEtn substituted triheptosyl inner core which is attached via 

the phosphorylated Kdo unit to the lipid A moiety. 

 

HPLC-ESI-MS experiment on dephosphorylated and permethylated OS as well as 

ESI-MS on OS fractions indicated that the most abundant glycoform contains four 

hexoses and four heptoses (Fig. 18). Further analysis by MS
2
 and MS

3
 and MS

4
 

experiments showed that the external heptose was di-substituted by two hexoses.  

 

 

Fig. 18. HPLC-ESI-MS
n
 analysis of permethylated dephosphorylated OS-1232.  

(A) MS
2
spectrum of ion at m/z 2124.0 corresponding to Hex4Hep4AnKdo-ol glycoform.  

(B) MS
4
spectrum of the fragment ion at m/z 1396.1 corresponding to the loss of terminal 

hexose from the ion at m/z 1410.0 (MS
3
 spectrum not shown). 

 

Thus NTHi strain 1232 is the first reported strain that expresses di-substituted heptose 

in the outer-core region of LPS. Previously it has been shown that the D,D-Hep 

residue can be substituted by -D-Glcp or -D-Galp at O-4 position (35, 44). 

Elucidation of the structure of LPS 1232 indicated that the D,D-Hep residue can be 

also substituted by -D-Galp at O-7 position (Fig. 19).  
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Fig. 19. Selected 

regions of 2D 
1
H-

13
C 

HMBC (A), 
1
H-

13
C 

HMQC (B) and TQF 

COSY (C) spectra. 

TQF-COSY spectrum of 

deacylated OS-1232(A) 

indicated that 3 signals 

at H
 
4.28, H

 
4.36 and 

H
 
3.81 belong to 

 –CH-CH2- system.  

Carbon chemical shifts 

were obtained by 
1
H-

13
C 

HMQC experiment (B) 

and indicated that signal 

at C 
 
69.1/H 

 
4.36 

belong to C6/H6, and 

signals  at C 
 
69.1/H 

 

4.28, 3.81belong to 

C7/H7a,b. 
1
H-

13
C HMBC 

experiment (C), which 

showed the cross-peaks 

between H1 of terminal 

and 4-substituted GalIV 

comfirmed the chemical 

shift of C7 of HepIV*, 

and also indicated that 

D,D-HepIV was 

substituted at O-7 by  -

D-Galp. 

 

* methylation analysis of 

dephosphorylated OS-

1232 showed the 

presence of 4,7-

disubstituted D,D-Hep. 
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The losB1 gene responsible for addition of D,D-Hep is adjacent to the 

glycosyltransferase gene losA1. This losA1 is required for addition of -D-Glc to D,D-

Hep at O-4 position (116). The glycosyltransferase gene responsible for addition of -

D-Gal to D,D-Hep at O-7 position is still under investigation.  

 

HPLC-ESI-MS
n
 on permethylated and dephosphorylated OS, ESI-MS and CE-ESI-

MS experiments on OS and LPS-OH samples as well as data from methylation 

analysis, indicated the presence of sialyllacto-N-neotetraose [ α-Neu5Ac-(2→3)-β-D-

Galp-(1→4) β-D-GlcNAcp-(1→3)-β-D-Galp-(1→] epitope linked to GlcI at O-4 

position. 

 

Purification of OS material by gel filtration resulted in two fractions, OS-1 and OS-2. 

ESI-MS analyses as well as NMR experiments indicated that these fractions differed 

in the presence of PCho. A 
1
H-

31
P HMQC experiment on the deacylated OS-1 sample 

revealed that -D-Galp linked to HepIII can be substituted by PCho at O-6 position 

(Fig. 20).  

 

 

 

 

Fig. 20. The 
1
H-

31
P HMQC spectrum of deacylated OS-1. 

 

 

 

ESI-MS experiments on OS samples indicated glycoforms that were substituted by 

ester-linked glycine, and acetate groups. Information on the location of acetate was 

provided by CE-ESI-MS
n
 on OS-1. One acetate group was found to be linked to -D-

Galp attached to acetylated HepIII. Another acetate group is linked to D,D-Hep 

residue. It has been shown that O-acetyl groups help bacteria to increase their 

resistance to the killing effect of normal human sera (78). 
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Thus analysis of LPS from NTHi strain 1232 allows us to propose the structure of the 

fully extended HexNAc1Hex7Hep4 glycoform (Scheme 6). 

 

 

 
 

 α-D-Galp-(1→4)--D-Galp 

 1 

 ↓ 

  7 

 -D-Glcp-(1→4)-D--D-HepIVp←Ac 

 1 PPEtn 

 ↓ ↓ 

 6 4 

α-Neu5Ac-(2→3)-β-D-Galp-(1→4)--D-GlcNAcp-(1→3)-β-D-Galp-(1→4)--D-Glcp-(1→4)-L--D-HepIp-(1→5)--Kdop-(2→6)-lipid A 

  3 

 ↑ 

 1 

 L--D-HepIIp 6←PEtn 

 2 

 ↑ 

  1 

 PCho→6 -D-Galp-(1→2)-L--D-HepIIIp 

 ↑ ↑ 

 Ac Ac 

 
 

 

 

Scheme 6. The structure of the fully extended HexNAc1Hex7Hep4 

glycoform from NTHi strain 1232. 
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Structural studies of LPS from Haemophilus parainfluenzae. 
 

SDS-PAGE analysis of LPS, which was done by our colleges in Oxford University, 

indicated that H. parainfluenzae strains 20 and 16 express O-antigen on their 

surfaces.  

 

3.3 Paper III.  

Structural studies of the lipopolysaccharide from Haemophilus parainfluenzae 

strain 20. 
 

The lipopolysaccharide was isolated by hot phenol/water extraction followed with 

RNAse/DNAse and proteinase K treatment and then purified by dialysis. 

OS material, obtained by the mild acid hydrolysis of LPS, after purification by gel 

filtration resulted in oligosaccharide samples OS-1 and OS-2. The ESI-MS spectrum 

of OS-2 showed one single charged ion corresponding to a phosphorylated 

trisaccharide (Fig. 21). 

 

 

Fig. 21. The ESI-MS spectrum of OS-2 (positive mode). 

 

The OS-2 fraction was subjected to NMR spectroscopy. The 
1
H-

13
C HMQC spectrum 

of OS-2 showed four anomeric signals, two of these signals belonged to the linked 

monosaccharides and two signals to α- and β-form of the monosaccharide at the 

reducing end (Fig. 22). The presence of the phosphate group was confirmed by 
1
H-

31
P 

HMQC experiment. Thus the OS-2 consists of trisaccharide with the structure:  

P→6)-β-D-Glcp-(1→3)-α-D-FucpNAc4N-(1→4)-α,β-D-GalpNAc-(1→ 

It was suggested that this structure represents the O-antigen repeated unit, which 

contains phosphate linkage that was degraded under mild acid hydrolysis. 
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Fig. 22. Anomeric region of the 
1
H- 

13
C HMQC spectrum of OS-2 

 

This was confirmed by 1D and 2D NMR spectroscopy on LPS. The 1D 
1
H spectrum 

showed signals for three anomeric protons belonging to GalNAc, FucNAc4N and Glc 

(Fig. 23). Relatively small coupling constants have indicated that of FucpNAc4N and 

GalpNAc residues have the α-anomeric configuration and a relatively large coupling 

constant have indicated Glcp residue as having the -anomeric configuration. The 

phosphate group was found to be coupled to H-6,6´of -Glcp and to the anomeric 

proton of -GalpNAc that also appears as a doublet of a doublet in 1D 
1
H spectrum 

due to the coupling of H-1 to H-2 and H-1 to the phosphorus atom (Fig. 23A). 

 

 

 

 

 

 

Fig. 23. The 1D 
1
H spectrum of LPS in D2O. 
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TOCSY and NOESY spectra were used to confirm gluco-configuration of Glcp and 

galacto-configuration of GalpNAc and FucpNAc4N residues and the sequence was 

established by NOESY experiment (Fig. 24) 

 

 

 

Fig. 24. Selected regions 

from 2D TOCSY (A) and 

NOESY (B) spectra of 

LPS. 

NOE cross picks between 

the protons H-1 and H-2 

indicated that FucpNAc4N 

and GalpNAc residues have 

α-amoneric configurations.  

NOE connectivities 

between the protons H-1 

and H-3,5 indicated  Glcp 

residue having the  

-anomeric configuration. 

 

The  gluco-configuration of 

Glcp was confirmed by 

correlation of H-1 with  

H-2,3,4,5,6 in TOCSY 

spectrum and galacto-

configuration of GalpNAc 

and FucpNAc4N residues 

by correlation of H-1 with 

H-2,3,4 in TOCSY spectrum 

and by NOE connectivities  

between the protons H-3, 

H-4 and H-5 (not shown). 

 

The NOESY connectivities 

between the protons H-1 of 

-FucpNAc4N and  

H-4/H-6,6´ of  -GalpNAc 

indicated that  -GalpNAc 

was substituted at O-4 

position by -FucpNAc4N, 

which was further 

substituted by -Glcp 

residue at O-3 position  

(NOE connectivitise 

between the proton  H-1 of 

-Glcp and H-3 of -

FucpNAc4N) . 
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Absolute configurations of -D-Glc and -D-GalNAc residues were identified by 

GC-MS as the acetylated (R)-2-butyl ester. Absolute configuration of 2-acetamido-4-

amino-2,4,6-tridioxygalactose cannot be obtained by this method due to full 

destruction of this acid-labile monosaccharide under hydrolysis (117). However 

analysis of effects of glycosylation on 
13

C chemical shifts of -D-Glcp allowed us to 

suggest the absolute configuration of 2-acetamido-4-amino-2,4,6-tridioxygalactose. A 

sufficiently large -effect of +7,4p.p.m. on C1 of -D-Glcp points to the D-

configuration of -FucpNAc4N residue (118).  

 

-Effects on C1 of -D-Glcp from 
13

C NMR simulation spectra (119) 

→ P→6)-β-D-Glcp-(1→3)-α-D-FucpNAc-(1→4)--D-GalpNAc-(1→ +7.0 

→ P→6)--D-Glcp-(1→3)-α-L-FucpNAc-(1→4)--D-GalpNAc-(1→  +5.0 

 

Based on these data, the following structure of the O-antigen repeating unit was 

concluded: 

→4)-α-D-GalpNAc-1→ P-(O→6)-β-D-Glcp-(1→3)-α-D-FucpNAc4N-(1→. 

The O-antigen of H. parainfluenzae strain 20 contains the quite unusual sugar 

FucNAc4N or 2-acetamido-4-amino-2,4,6-tridioxy-D-galactose, that has been found 

mostly in the structures of teichoic and lipoteichoic acids of Streptococcus 

pneumonia. They have the following main structure →6)-β-D-Glcp-(1→3)-α-D-

FucpNAc4N-(1→ 4)-α-D-GalpNAc-(1→ 4)-β-D-GalpNAc -(1→ 1)-D-ribitol-5-P-(O→ 

(23). This structure is substituted by one or two PCho residues per repeating unit. 

However, PCho was not found in the O-antigen structure from H.parainfluenzae strain 

20. 

 

ESI-MS on OS-1 indicated a low amount of glycoforms containing triheptosyl inner-

core with compositions P1•Hex2•4NHexNAc1•Hep3•PEtn1•AnKdo-ol and 

P1•Hex2•4NHexNAc1•Hep3•PEtn1•AnKdo-ol. 

In order to isolate these oligosaccharides, OS-1 was subjected to repetitive gel 

filtration and the resulting OS-1* fraction was analyzed by NMR spectroscopy. In 

this way it was confirmed that LPS from H. parainfluenzae and H. influenzae 

comprise the same PEtn-substituted triheptosyl inner-core moiety linked via the Kdo 

unit to the lipid A moiety (Scheme 7).  
 

 

P→6)--D-Glcp-(1→3)-β-D-FucpNAc4N-(1→4)--D-Glcp-(1→4)-L--D-HepIp-(1→5)-nKdo-ol 

  3 

 ↑ 

 1 

 L--D-HepIIp 6←PEtn  

 2 

 ↑  

  1 

 -D-Galp-(1→2)-L--D-HepIIIp 
 

 

Scheme 7. Structure proposed for the P1•Hex2•4NHexNAc1•Hep3•PEtn2•AnKdo-ol 

glycoform of H.parainfluenzae strain 20. 
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Interestingly, GlcI linked to HepI was substituted by a FucNAc4N residue having the 

-configuration, however in the O-antigen it was in the -configuration. This result 

allows us to conclude that FucNAc4N is the first monosaccharide in the O-antigen 

repeating unit.  

It is known that O-units are synthesized en bloc in the cytoplasm linked to an 

undecaprenyl lipid carrier, which is then polymerized and added to the LPS as the O-

antigen during the transport of LPS across the bacterial cell wall. It is also known that 

in other bacteria, WbaP is responsible for addition of the first sugar to the isoprenoid 

lipid carrier to which the remainder of the sugars of the repeating unit are condensed. 

The analysis of H. parainfluenzae mutant strain 20wbaP indicated that WbaP performs 

a similar function in H. parainfluenzae strain 20. When wbaP was inactivated, the 

mutant did not express the O-antigen, consistent with its predicted function. 
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3.4 Paper IV. 

Structural studies of the O-antigen from Haemophilus parainfluenzae             

strain 16. 

 

LPS from H. parainfluenzae strain Hp16 was extracted by hot phenol/water method 

and purified by dialysis. Due to its hydrophilic property, LPS could be analyzed by 

NMR spectroscopy without prior derivatization.  

The 1D C
13

 NMR spectum showed 12 signals, two of them at δC 107.5 p.p.m and at 

δC 104.8 p.p.m. were observed in the anomeric region (Fig. 26A). The 1D H
1
 

spectrum showed only one anomeric protons at δH 5.18 p.p.m. (Fig. 25B).  

 

 

 

 

 

 

 

Fig. 25. 1D 
13

C (A) and 1D 
1
H (B) spectra of LPS from Hp 16. 

 

 

According to this result it was suggested that the O-antigen of H. parainfluenzae 16 

consists of a repeating disaccharide containing one ketose. Since sugar analysis 

showed the presence of glucose, galactose and mannose, it was concluded that this 

keto sugar is fructose, given that reduction of fructose gives mannitol and glucitol 

(Fig. 26). 
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Fig. 26. Sugar analysis of fructose residue from the O-antigen of Hp16. 

 

 

Analysis of 2D TOCSY and COSY spectra, which clearly showed the presence of 

two spin systems, confirmed that the O-antigen from H. parainfluenzae strain 16 is 

built on two sugar residues (Fig. 27).  

 

 
 

Fig. 27. Selected region of the 2D 
1
H-

1
H TOCSY spectrum of LPS from Hp16. 

A→ -D-Galf 

B→ -D-Fruf. 
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Carbon chemical shifts, obtained by an HMQC experiment, indicated that both sugar 

residues are furanosidic and have - anomeric configuration.  2D COSY, TOCSY, 

NOESY, HMQC and HMBC experiments indicated that the anomeric signal at δC 

107.5 p.p.m. belongs to -D-Galf and the signal at δC 105 p.p.m. to -D-Fruf.  

The sequence analysis was achieved by HMBC experiment (Fig. 28) and was 

confirmed by a NOESY spectrum, which showed a cross-peak between H-1 of -D-

Galf and H-3 of -D-Fruf.    

 

  

 

 

 

Fig. 28. The 
1
H-

13
C HMBC spectrum of LPS from H. parainfluenzae strain 16. 

 

 

The cross-peaks between H-1 of A and C-3 of B, as well as C-1 of A and H-3 of B 

indicated that B was substituted by A at O-3 position. Cross-peaks between C-2 of B 

and H-6 of A indicated that A was substituted by B at O-6 position. 

Thus the structure was established as : 

 

→6)--D-Galf –(1→3)--D-Fruf –(2→ 

A                             B 
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4 SUMMARY AND CONCLUSIONS 

 

The structural studies of NTHi strains 1158, 1159 and 1232 extend our knowledge of 

structural motives extending from HepI. NTHi strains 1158, 1159 and 1232 express 

the D,D-Hep residue in the outer core region. 

Elucidation of LPS structures of NTHi strain 1232 revealed di-substituted D,D-Hep.  

 

 α-D-Galp-(1→4)--D-Galp 

 1 

 ↓ 

 7 

-D-Glcp-(1→4)-D--D-HepIVp-(1→6)--D-GlcIp-(1→4)-L--D-HepIp-(1→ 

 ↓ 

 

Results from this study together with previously published data have indicated that 

the D,D-Hep residue can be substituted not only at the O-4 position by β-D-Glcp 

(NTHi strains: 1232, 2846 (44)) or β-D-Galp (NTHi strain 981(35)), but can also be 

substituted at O-7 position by β-D-Galp, which can be further elongated by α-D-Galp 

at O-4 position.  

Hence a new site has been found for the expression of the digalactoside [α-D-Galp-

(1→4)-β-D-Galp-(1→], an epitope known to increase resistance to killing by naturally 

acquired antibody and complement present in human serum (57). 

 

Two gene pairs: losB1/losA1 and losB2 /losA2 are responsible for addition and 

substitution of D,D-Hep and L,D-Hep, respectively (44). 

NTHi strain 1232 like strain 2846, contains both the losB1/losA1 and losB2 /losB2 

gene pairs (116). It has been shown that losA1 is needed for elongation from D,D-Hep 

by β-D-Glcp at O-4 position.  

 

Interestingly, NTHi strains 1158/1159 do not have the losB1/losA1 gene pair, only 

losB2/losA2, but still express D,D-Hep. We could confirm that instead of losB1, losB2 

is responsible for addition of the D,D-Hep residue in strain 1158. Sequence analysis 

of losB2 would suggest that the function of 1158LosB2 more closely related to 

function of LosB1 in the other NTHi strains (116). The O-7 position of the D,D-Hep 

residue can be also occupied by PCho in this strain. This novel site for PCho was 

found by structural analysis of 1158lpsA mutant strain. 

 

The structural studies of NTHi strains 1158/1159 and mutant strain 1158losB2 have 

indicated that the chain elongation from HepII is only possible in glycoforms lacking 

the external heptose. This suggests that the D,D-Hep residue sterically hinders chain 

extension from HepII and vice versa. 

 

The structural studies on LPS from H. parainfluenzae complement our investigations 

about the role of LPS of H. influenzae in diseases. It is known that H. parainfluenzae 

is the part of normal flora and causes diseases only very rarely. On the other hand the 

lipopolysaccharide from H. parainfluenzae comprises the same inner-core structural 

element as H. influenzae, consisting of the PEtn-substituted triheptosyl unit linked via 

the Kdo unit to the lipid A moiety (33, 82).   
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As it was shown earlier, some strains of H. parainfluenzae express O-antigen 

containing LPS on its surfaces (81). H. parainfluenzae strains 20 and 16 are among 

these strains. This study was the first to characterize the O-antigen structure of smooth 

type LPS from H. parainfluenzae. 

 

The O-antigen from Hp20 has the following structure:  

 
→P-(O→6)-β-D-Glcp-(1→3)-α-D-FucpNAc4N-(1→4)-α-D-GalpNAc-(1→ 

 

Interestingly, this structure is closely related to that of teichoic and lipoteichoic acids 

of Streptococcus pneumoniae: 

 

→P→6)-β-D-Glcp-(1→3)-α-D-FucpNAc4N-(1→ 4)-α-D-GalpNAc-(1→ 4)-β-D-GalpNAc -(1→  

1)-D-ribitol-5→ 

In S. pneumonia this structure is further substituted by one or two PCho residues per 

repeating unit. However, PCho was not found in the O-antigen structure of Hp20. 

 

The O-specific polysaccharide of H. parainfluenzae strain 16 has the following 

structure:  

→6)--D-Galf –(1→3)--D-Fruf –(2→. 

It is noteworthy, that fructofuranosyl unit is very rarely present in bacterial 

polysaccharides.  

 

From a comparison of LPS structures from the NTHi and H. parainfluenzae strains 

investigated in this thesis, it can be said that known outer-core virulence factors present 

in H. influenzae are absent in H. parainfluenzae. Instead in the investigated strains 

reported here, H. parainfluenzae express unique O-polysaccharide antigens which may 

play a role in colonization or persistence of the organism in the nasopharynx.  

 

Previous studies of LPS from rough type H. parainfluenzae strains also show no 

evidence of virulence factors in their outer-core structures. 

Future studies would include inserting known LPS virulence genes from H. influenzae 

into H. parainflluenzae. Since the triheptosyl inner-core region of the LPS are identical, 

it would be possible to add genes responsible for addition of globoside, phosphocholine 

or sialyllactose, epitopes known to promote virulence by NTHi. The expected LPS 

structures in these genetically modified H.parainfluenzae strain would be confirmed by 

methods outlined in this thesis followed by studies to determine whether the modified 

organisms are pathogenic.  
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