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ABSTRACT
Diabetic foot ulcers (DFU) represent one of the most feared and invalidating 
complication of diabetes with high financial pressure for the healthcare system. For the 
moment there is no specific therapy available and it has become a priority to develop 
novel rational therapeutic strategies based on new pathophysiological mechanisms. Our 
focus was therefore to delineate relevant pathogenic pathways specifically deregulated 
in diabetes that could contribute to the defective wound healing in diabetes. Cellular 
proliferation, migration and differentiation, angiogenesis, extracellular matrix 
deposition, local recruitment of endothelial precursors cells are some of the essential 
processes activated during wound healing. We decided to focus our investigation on 
two central signaling pathways (HIF-1 pathway and Notch signaling) that modulates 
most of the above cellular events. 

Hypoxia plays an important role in the development of DFU. We showed that 
hyperglycemia complexly repressed the function of Hypoxia inducible Factor (HIF) 
which is the main cellular adaptor to low oxygen tension. The repressive effect of 
hyperglycemia on HIF-1 alpha was pVHL dependent and affected complexly its 
transactivation. This was mirrored by suppression of several HIF-1 target genes 
essential for wound healing. However, by blocking HIF-
chemical interference with HIF hydroxylases (DMOG or DFX), it was possible to 
reverse the repressive effect of hyperglycemia on HIF and to improve the wound 
healing process in a diabetic mouse model (the db/db mouse). Moreover, local 
adenovirus-mediated transfer of two stable HIF constructs demonstrated that 
stabilization of HIF-1alpha is necessary and sufficient for promoting wound healing in 
a diabetic environment. Hyperbaric oxygen therapy (HBOT) has been used as 
therapeutical option for severe foot ulcers, resistant to standard therapy. The detailed 
mechanisms activated by HBOT are however still unraveled. We showed that HBOT 
activated HIF-1alpha at several levels with functional consequence on cellular 
proliferation. Moreover, we could show that local transfer of a stable form of HIF has 
additive effect to HBOT improving wound healing in the db/db mice. 

Notch signaling is a cell-to-cell contact system that consists of several receptors (Notch 
1-4) and ligands with a high specific cell-dependent effect. Binding of the ligands to the 
receptors is followed by proteolytic cleavage of the receptor by a -secretase complex 
which is followed by activation of the intracellular signaling. Here we show that 
hyperglycemia activated Notch signaling at several levels both in vitro and in vivo. The 
effect of hyperglycemia on Notch signaling is canceled in the presence of -secretase inhibitors with positive functional effect both on in vitro migration and on in vitro 
angiogenesis assays.  Moreover local treatment with -secretase inhibitors improved wound healing of db/db mice despite chronic hyperglycemia. The effect is specific -secretase inhibitors nor immunization with a DNA vaccine against Dll4 influenced the wound healing in non-diabetic animals. Using a 
loss of function genetic approach (specific siRNA and cre/lox system) we showed that 
Notch 1 has a central pathogenic role in Notch dependent repression of wound healing 
in diabetes. 

In conclusion, we identified two new pathogenic mechanisms important for impaired
wound healing in diabetes. Our findings warrant development of specific therapeutics 
that address HIF and Notch signaling for normal healing of diabetic wounds.
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1 INTRODCUTION
1.1 DIABETES

Diabetes mellitus (DM) is dramatically increasing worldwide. It is estimated that nearly 

250 million people are currently affected by DM worldwide and with an expected 

increase to 400 million in the near future according to the data from International 

Diabetes Federation (IDF) and the World Health Organization (WHO)1. The life time 

expectancy of patients with diabetes is on average 10% shorter than in non-diabetics 

individuals due to complications as the disease progresses2. An important complication 

in term of morbidity, mortality and financial costs is diabetic foot ulcers (DFU) 3.

1.2 EPIDEMOLOGY

Diabetic foot ulceration represents a major medical, social and economic problem and is 

coupled with a high rate of mortality3,4. Amputation rate in diabetes is almost 15 times 

higher when compared to the non-diabetic population5. About 85% of non-traumatic

amputations originate from DFU which is also the most common cause of 

hospitalization of diabetic patients6. DFU has also a high risk for recurrence. The annual 

incidence of diabetic foot ulcers is between 4 to 10% in diabetic population7-9. Almost 

25% of patients are at risk to develop foot ulcers during their life time9. The therapeutic

options available nowadays are restricted to off-loading, treatment of infection and

improvement of blood circulation. However even with the best clinical care, the time to

heal is longer than 3 months and there are up to 10% of the patients who eventually

undergo amputation4,10.

1.3 ETIOLOGY

The etiology of diabetic foot ulcers is multifactorial. Diabetic neuropathy and ischemia 

are central contributors to the development of DFU. Impaired blood flow due to micro 

and macro angiopathy leads to impaired tissue nutrition that makes the skin more 

susceptible to trauma. 

Neuropathy plays an essential role in the development of DFU. Most of the plantar 

ulcerations are preceded by distal symmetrical polyneuropathy11,12. Motor neuropathy 
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affects the small muscles of the foot and causes weakness, atrophy, and deformity that 

create areas exposed to high pressure. Reduction in sweating as a consequence of

autonomic neuropathy eventually results in drying and fissuring of the skin and 

consequent ulceration13. Autonomic neuropathy is also the most common predictor of 

DFU14. Moreover, peripheral autonomic neuropathy and hyperglycemia lead to 

impaired skin microcirculation15,16. Sensory neuropathy is an important predisposing 

factor because it leaves the patients to be exposed to trauma without protective 

reaction of avoidance. Improper footwear, puncture wounds and foreign bodies in 

footwear undetected because of lack of sensation result in increased pressure and may 

lead to ulceration17-19. Substantial evidence shows that repetitive pressure result in 

tissue breakdown and poor healing20-23. Callus formation is often seen in patients with 

diabetic foot exposed to repeated pressure and  increase significantly the risk of 

developing DFU on the same area24.

Arterial insufficiency is also important in the defective wound healing in DFU due to 

the reduction of oxygen supply and nutrition essential for healing 25. About 46% of 

amputations in patients with diabetic foot ulcers are due to arterial insufficiency26,27.

Infection in the DFU contributes also negatively to the regenerative capacity of the 

tissues. Two thirds of patients with diabetic foot ulcers are affected by osteomyelitis 

with its specific therapeutic challenges28.

1.4 THE WOUND HEALING PROCESS IN DIABETES

The wound healing process consists of several phases: inflammation, proliferation, 

granulation and tissue remodeling29. Wound healing represent a cellular response to 

injury and involves activation of several cells i.e. fibroblasts, endothelial cells, 

macrophages, and platelets. Several growth factors and cytokines are released in a 

perfectly coordinated manner during the healing process30. The first step in wound 

healing after injury is the clot formation, initiated by release of several factors such as 

TGF beta and PDGF- which help in recruiting fibroblasts and leukocytes to the 

wound area31.  The Inflammatory phase lasts around 4 days and macrophages play a 

vital role in this phase. Recently a central role in the inflammatory phase was 

identified for the plasma protein plasminogen32. Macrophages migrate to the wound 



3

area and engulf necrotic material and then produce factors that induce angiogenesis by 

endothelial cells, epithelialization by keratinocytes and matrix deposition by 

fibroblasts producing collagen, a major component of extra cellular matrix (ECM)33,34.

Local endothelial cells migrate to form capillary sprouts35. Endothelial progenitor cells 

derived from bone marrow, home at the site of injury, undergo in situ differentiation

and contribute to vasculogenesis36. Granulation, re-epithelisation and wound 

contraction are also important processes of wound healing37. Granulation tissue is the

fibrous connective tissue, composed of fibroblasts, that typically grows from the base 

of the wound and they mainly secrete type III collagen38. Granulation is followed by 

epithelisation; during this process epithelial cells and keratinocytes migrate across the 

wound barrier and granulation tissue. Epithelial cells proliferate and form a sheet 

across the edges of the wound38.

Contraction is also an important step in wound healing39 where myofibroblasts and 

fibroblasts are vital contributors. They are stimulated by growth factors and are attracted 

by fibronectin to move along the fibrin on extracellular matrix to wounds edges. 

Successful contraction eventually signals for tissue remodeling which is the last phase of 

wound healing where type 1 collagen has an important role in organizing the collagen 

fibers in a process that may last from several days to months40.

Diabetes alters several mechanisms at cellular and molecular levels that lead to impaired 

wound healing process30,41. Hyperglycemia leads to impairment in migration42 and 

angiogenesis43,44, dysfunction of macrophages45, imbalance in ECM components and 

their remodeling by MMPs46, impaired growth factor production44,47,48 etc. Markers for 

delayed wound healing such as c-myc and beta-catenin that have repressive effects on 

migration of keratinocytes were suggested to be used in order to identify chronic 

wounds with low potential to spontaneous healing49. Endothelial progenitor cells (EPC) 

replace lost cells at the site of tissue injury. EPCs are critical in neovascularization and 

play a central role in wound healing, but their circulating levels and their number at the 

site of the wounds are decreased in diabetes and contribute to a delay in wound 

healing50.
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1.5 HIF SIGNALING PATHWAY

1.5.1 Hypoxia

Hypoxia, defined as a lower oxygen concentration, can be generalized or localized and it 

is the consequence of either inadequate oxygen supply or increased oxygen 

consumption. Hypoxia plays an important role in several essential processes such as 

angiogenesis by triggering vessel growth and promoting vascular bed expansion51 and 

playing roles in cell fate decision52,53. The molecular reaction to hypoxia is mediated by 

a transcriptional factor called hypoxia-inducible factor (HIF). HIF activates 

approximately 100 target genes, which play central physiological roles in response to 

hypoxia (figure 1)54,55

Figure1: HIF-1 activates several genes with central roles in the reaction to hypoxia
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1.5.2 Hypoxia Inducible factors

HIF is a heterodimeric transcription factor first discovered as a regulator of 

erythropoietin production56. The heterodimeric complex is composed of two 

constitutively expressed subunits: an alpha subunit regulated by oxygen and a beta 

subunit also called aryl receptor nuclear translocator (ARNT)57. HIF belongs to the basic

helix-loop-helix (bHLH)-Per-ARNT-Sim (PAS) protein family58. The HIF-1 alpha 

subunit is composed of two transactivation domains, namely NTAD (N-terminal 

transactivation domain) and CTAD (C-terminal transactivation domain). HIF-1 alpha 

stability is negatively regulated in normoxia at the oxygen dependent degradation 

domain (ODD) which is found in NTAD59. The N-terminal bHLH is rich in residues that 

involved in DNA binding60-62. Co-factors such as CBP/p300 interact with both HIF-1

alpha transactivation domains to activate gene transcription63-65.

Three isoforms of HIF – alpha subunits have been identified (HIF-1 alpha, HIF-2

alpha/EPAS1, HIF-3 alpha) and three HIF- beta subunits (ARNT, ARNT2 , ARNT3) 

(figure 2). The overall similarity between HIF-1 and HIF-2 is about 48% in their amino 

acid composition. HIF-1 alpha contains 826 amino acids while HIF-2 alpha has 870 

amino acids with longer N-terminal region than HIF-1 alpha66,67. The transactivation 

domains at the C-terminal region have the highest similarity between the isoforms68.

Figure 2: HIF-alpha Isoforms
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HIF-3 alpha has a different overall structure but with similar N-terminal region that 

permits dimerization with HIF-1 beta which is followed by binding to the hypoxia 

responsive element (HRE). Unlike HIF-1/2, HIF-3 alpha lacks CTAD region and is 

regarded as a dominant negative regulator of HIF signaling69,70. Availability of ARNT is 

crucial for HIF-3 alpha actions71. HIF-3 alpha has been identified as a HIF-1 target 

gene72 and is also uniquely regulated at the transcription level since HIF-3 mRNA 

increases under hypoxic conditions73.

The expression pattern of HIF-1 alpha and ARNT is ubiquitous, while the other 

members have a restricted pattern of expression74. HIF-2 alpha is expressed in 

endothelial cells, hepatocytes, cardiomyocytes66,75, while HIF-3 alpha is expressed in 

heart, brain, lung, kidney and adult thymus76.

1.5.3 Regulation of HIF-1 protein stability

HIF-1 beta (ARNT) is constitutively expressed irrespective of oxygen levels77,78 but 

only HIF-1 alpha is degraded in normoxia via proteasomal degradation (figure 3). In the 

presence of oxygen, HIF-1 alpha is hydroxylated on at least one of the two conserved 

proline residues within the ODD (oxygen degradation domain) by prolyl hydroxylases 

(PHDs)79-82. The hydroxylated HIF-1 alpha is identified by von Hippel-Lindau tumor 

suppressor protein (pVHL) and eventually ubiquitinylated leading to its degradation by 

the 26S proteasome83,84.  These proline residues which are sensitive to oxygen are 

conserved in all three isoforms of HIF alpha subunits, HIF-1 alpha (402 and 564), the 

proline residues in HIF-2 alpha and HIF-3 alpha (405 and 530).  Three isoforms of 

PHDs have been identified (PHD1, PHD2 and PHD3) and belong to the dixoygenase 

super family, requiring together with oxygen two cofactors (2-oxoglutarate and iron) for 

performing its activity 82,85-88,. PHD2 seems to be the most important PHD2 for 

regulation of HIF stability in normoxia89, but the expression pattern and distribution of 

PHDs members are tissue and cell specific90-92.     
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                          Figure 3: Classical HIF-1 alpha regulation.

Interestingly PHDs are induced by HIF-1 in prolonged hypoxia closing a regulatory 

feed-back loop93.

HIF-1 alpha is also regulated by other factors besides the canonical regulation through 

PHDs. Acetylation of Lys 532 by Arrest defective protein-1 (ARD1) that is modulated 

by oxygen, enhances interaction of HIF- -
94. However, metastasis-associated protein 1 (MTA1) counteracts the 

activity of ARD1 by binding to HIF- -1 alpha95.

Protein SSAT2 promotes ubiquitination of HIF-1 alpha by interacting with HIF-1 alpha, 

pVHL and elongin C96. Osteo Sarcoma protein-9 (OS9) initiates a strong binding 

between HIF-1 and PHD2 ensuring a stable complex formation and enabling a perfect 

degradation pathway97. The affinity of pVHL to HIF-1 alpha binding is decreased by 

Hepatitis B virus X protein (HBx), a protein involved in hepatocellular carcinoma 

development, interacts with the bHLH/PAS domain of HIF-1 and decreases its binding 

to pVHL, thereby increasing stability of HIF-1 alpha98. Bafilomycin stimulation allows 

ATP6V0C interaction with HIF-1 alpha and directly competes with pVHL in binding to 

HIF-1 alpha99. The pVHL-interacting deubiquitinating enzyme 2 (VDU2) interacts with 

the HIF-1 alpha and pVHL complex and reverses the ubiquitination process and 

stabilizes HIF-1 alpha100. Insulin like growth factor -1 (IGF-1) induced accumulation of 

both HIF-1 alpha and HIF-2 and followed by an increase in HIF function101,102.
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SIRT3, one of the proteins from the Sirtuin family destabilizes HIF-1 alpha in a PHD 

dependent manner. It has been shown that SIRT2 destabilizes HIF-1 alpha by inhibiting 

ROS production, promoting secondary maximal PHD activity103. Reactive oxygen 

species (ROS) play a key role in HIF-1 alpha stability; it has been shown that ROS 

directly affects PHDs enzymatic activity by preventing hydroxylation of HIF104; ROS 

generated from the mitochondrial complex were suggested to play a special role in HIF 

stabilization105. However, the specific role and relative significance of ROS in mediating 

the hypoxic response remain unclear and contradictory, as lower levels of ROS were 

detected in hypoxia than in normoxia106.

HIF-1 alpha is also regulated independently of the pVHL mechanism through several 

interacting proteins. Geldanamycin which is an HSP90 antagonist promotes 

ubiquitination and proteasomal degradation of HIF-

HSP90, in renal carcinoma cell lines via a PHD2/pVHL-independent pathway107.

RACK1 binds to HIF-1 alpha and promotes its degradation independent of pVHL108.

This process can be enhanced by SSAT1 (Spermidine/spermine N(1)-acetyltransferase 

1) stabilizing interaction of HIF-1 alpha to RACK1 109. RACK1 competes with HSP90 

in binding to HIF-1 alpha thereby promoting a VHL independent degradation108.

Binding of p53 to a HIF and p300 transcriptional complex mediates inhibition of HIF 

activity110, HIF- -p53 interaction is modulated by several proteins such as Mdm2 

(murine double minute, functions as E3-ubiquitin ligase and negatively regulate p53 

actions)111 or Jun activation domain-binding protein-1 (Jab1), a coactivator of AP-1

transcription factor interacts directly with HIF-1 alpha and increased transcription and 

stability of HIF-1 alpha protein, through modulation of HIF- -p53 interaction112,113.

Small ubiquitin-related modifier (SUMO) modulates also HIF-1 alpha stability. It has 

been shown that hypoxia induces SUMOylation of HIF-1 by binding it to the pVHL-E3 

complex which leads to HIF-1 to degradation114. On the other hand RSUME which is an 

inducer of SUMOylation increases SUMO conjugation with HIF-1 alpha in hypoxia and 

stabilizes HIF-1 alpha115. The data available to date about SUMO and HIF-1 alpha 

regulation are confusing and further research is needed to understand the exact role of 

SUMOylation.
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1.5.4 Regulation of HIF-1 alpha transcriptional activity

The transcriptional activity of HIF-1 alpha is modified and regulated by many 

interacting proteins; HIF-1 alpha forms a heterodimeric complex with ARNT and binds 

to promoter of hypoxia responsive elements (HREs) in the nucleus to express its 

downstream target genes 116. Factor inhibiting HIF (FIH) hydroxylates asparagine-803 

(HIF-1) and asparagine-851 (HIF-2) in CTAD in the presence of oxygen and modulates 

their transcriptional activity. This hydroxylation prevents the binding of co-factors 

CBP/p300 and thereby represses the transcriptional activity of HIF in normoxia. FIH 

also requires 2-oxoglutarate and iron for its activity like PHDs being member of the 

same family of dixoygenase64. FIH has a lower Km for oxygen than PHDs have, making 

the PHD respond to a lesser decrease in oxygen levels117 and  become inactive to 

stabilize HIF-1 alpha, while at the same time transcriptional activity of HIF is still be 

inhibited by FIH experiencing saturating oxygen concentrations.

Other PAS family members such as MOP3 and MOP9 interact with HIF-1 alpha to form 

active transcription heterodimers; however their targets are still elusive118-120. P14ARF 

tumor suppressor protein sequesters HIF-1alpha to nucleolus and inhibits its 

transcriptional activity121. PER2 (Period circadian protein homolog 2), a circadian factor 

prevents the transcriptional activity of HIF-1 and ARNT complex, possibly through a 

protein-protein interaction122. Contrarily, proteolytical degradation of PER1 is prevented

by interaction of HIF- 123. COMMD1 (COMM domain-containing 1)

protein binds to the amino terminus of HIF-1 alpha and prevents the dimerization of 

HIF- - -1 alpha degradation as well124.

HIF mRNA stability is also crucial for HIF protein levels and function. HIF mRNA 

can be negatively regulated by mRNA-destabilizing protein TTP (tristetraprolin) that 

directly binds to 31UTR of HIF-1 mRNA and regulates HIF-1 alpha levels in hypoxia125.

MiR155 represses HIF-1 alpha mRNA, protein and its transcriptional response during 

hypoxia126. It is interesting to note that miR155 is induced by HIF-1 during prolonged 

hypoxia resulting in a negative feedback loop mechanism. Also miR17-92, directly 

represses HIF-1 interestingly just in normoxia but not in hypoxia126,127.
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Co-activators play a vital role in initiation of HIF-1 alpha transcriptional activity. PKM2 

enhances binding of HIF-1 alpha to HREs to promote transcription under hypoxic 

conditions. PKM2 is also induced by HIF-1 resulting in a positive feedback loop 

mechanism128. SUMO1/sentrin/SMT3 specific peptidase-3 SENP3 enhances binding of 

p300 to HIF-1 alpha and increases transcription by de-SUMOylation of p300 during 

mild oxidative stress129. Pontin, a chromatin remodeling factor is a coactivator of HIF-1

alpha by mediating the interaction of HIF-1 and p300 for initiating transcription in 

hypoxia130. A growth suppressor, Necdin, inhibits transcriptional activity of HIF-1 alpha 

during hypoxia by association with ODD domain. Moreover Necdin decreases HIF-

1alpha protein level and mediates HIF-1 degradation131. SIRT1 deacetylates lysine-674 

on HIF-1 alpha and impedes p300 recruitment and transactivation of target genes while 

p300/CBP-associated factor (PCAF) acetylates the same residue and enhances binding 

of p300 with HIF1 132. It has been shown that CITED2 and 

CITED4 bind to p300/CBP preventing its interaction with HIF-1 alpha thereby 

interfering with HIF-1 alpha activity133,134. Estrogen-related receptors (ERRs) serve as 

cofactor for HIF-1 alpha during hypoxia, by direct interaction135.

Several other interacting proteins are involved in the recruitment of coactivators and 

modulate HIF transcription. For example, CTAD of HIF-1 alpha is modified by a thiol-

redox regulator Ref-1, which ultimately facilitates the binding of coactivators 136,137.

Histone deacetylase 7 (HDAC7) forms a complex with HIF-

conditions and increases HIF- 138. Phosphorylation of HIF-1

alpha by MAPK enhances the transcriptional activity without affecting HIF-1 alpha 

stability or DNA binding capacity139.

1.5.5 HIF function

When the oxygen levels decrease during hypoxia, PHDs activity is inhibited leading to 

the stabilization of HIF-alpha. Stabilized HIF translocates to the nucleus and dimerises 

with ARNT (HIF-1 beta)140 and  binds to HREs to promote transcription of 

approximately 100 target genes54,55,139
that participate in regulation of several processes 

such as erythropoiesis (erythropoietin), angiogenesis (vascular endothelial growth 

factor, Angiopoietin 1 and 2, E-cadherin etc), glucose and energy metabolism (glucose 
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transporter, phosphoglycerate kinase 1), cell differentiation, cell survival, apoptosis, 

tumor development etc141-144.

HIF also plays a pivotal role for development during embryogenesis. HIF-1 alpha 

knockout mice stop the development at E8.5 and eventually die at E10.5 due to vascular 

defects and abnormalities in cardiac and neural developments145-147. Like HIF-1 alpha 

knockout mice, HIF-2 alpha knockout mice have high embryonic lethality between E9.5 

and E16.5148-150. However, replacement of HIF-1 alpha in HIF-2 knock mice cannot 

rescue them from lethality151. This shows the distinct functions of HIF-1 alpha and HIF-

2 alpha despite the high level of sequence homology, at least during embryo 

development. Haploinsufficiency of HIF-2 alpha (EPAS-/-) resulted in a strain-specific 

phenotype in mouse with metabolic defects and impaired homeostasis towards reactive 

oxygen species (ROS)150. HIF-1 beta also plays a vital role in embryo development, as 

deletion of HIF-1 beta leads to death due to vascular and placental abnormalities152,153.

HIF is also involved in many other processes such as migration, proliferation, wound 

healing, ischemia, inflammation, differentiation etc. Hypoxia through HIF induces 

migration of fibroblasts and keratinocytes154,155 and induces members of the integrin 

superfamily (CD11b/CD18) that enhance the migration of leukocytes156,157.

In general the undifferentiated state of cells is maintained in hypoxia. However the 

effect is cell specific as hypoxia inhibits differentiation of preadipocytes and myoblasts 
158,159but promotes differentiation of other cell types, such as neural crust stem cells and 

mouse mammary epithelial cells160,161. Specific functions of HIF-2 alpha were also 

identified in controlling the undifferentiated state. Oct-4 which is important in 

maintaining the undifferentiated state of stem cells is controlled only by HIF-2alpha162.

HIF pathway plays an important role in regulating the inflammation response as well. 

Inactivation of the HIF-1 pathway leads to inhibition of motility, cell aggregation and 

pathogen killing capacity after phagocytosis of myeloid cells163. Hypoxia also promotes 

the secretion of inflammatory chemokines164 important to attract monocytes and 

neutrophils165. Interestingly the chemokines activate a positive feedback on HIF 

signaling mediated by ROS that stabilize HIF-1 alpha165 and by an additional effect on 

increasing the DNA binding capacity of HIF-1 alpha and consecutively expression of 
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HIF-1 target genes166. Moreover hypoxia regulates the reaction to inflammation through 

HIF independent mechanisms as well. NF- B that has an essential role in inflammatory 

and immune responses is induced in hypoxia through a direct effect on Ikk 167.

Wound healing occurs in a relatively hypoxic milieu being generally surrounded by 

damaged vessels with impaired blood flow but having in the same time high oxygen 

need for sustaining the healing process. Hypoxia promotes the angiogenic process and 

tissue repair by induction of many target genes important for wound healing168. It has 

been shown that motility of keratinocytes was increased due to hypoxia around the 

wound, and this promotes wound healing by activating re-epithelialization and closure 

of wounds155. HSP90 alpha for instance which is induced by HIF-1 alpha stimulates 

migration of fibroblasts and healing 169.

1.6 NOTCH SYSTEM

The Notch signaling pathway contributes to the multi-cellular development by 

controlling cell fate decisions and consequently, morphogenesis.  Notch signals control 

cellular lineages by linking the fate of one cell to that of a neighboring cell, through the 

interaction of the Notch surface receptor expressed on one cell with membrane-bound 

ligands expressed on the surface of an adjacent cell. The first report on Notch described 

a novel phenotype in the fruit fly Drosophila melanogaster, characterized by a notched 

wing margin170-172. After the initial findings two decades later, in 1940 it has been shown 

that homozygosity for the notched wing allele resulted in embryonic lethality and the 

neural tissue expanded at the expense of ectoderm, establishing Notch as a controller of 

cell fate decisions from uncommitted progenitors. The research on Notch system has 

expanded enormously after the cloning of the Notch gene  establishing the role of Notch 

signaling in disease and development173.

1.6.1 A molecular overview of the Notch System

Notch signaling operates between juxtaposed cells, where membrane bound receptors 

(signaling receiving cell) and ligands (signal sending cell) need a close physical contact 

to initiate the signaling process. The Notch receptor in itself is the effector molecule of 
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the pathway and operates without need of second messengers (such as cGMP, cAMP 

etc), a common feature for other signaling pathways.

1.6.2 Notch Receptors

Notch receptors have developed during evolution from just one Notch receptor in 

Drosophila, 2 Notch receptors in C elegans to reach 4 different Notch receptors 

(Notch1-4) in most vertebrate species. The Notch receptors, Notch 1-4 (figure 4) are 

single-pass transmembrane proteins composed of 29-36 tandemly arranged EGF 

repeats174-177. The EGF repeats 11 and 12 play an important role in the interaction of the 

ligand to the receptor in order to initiate signaling178. Moreover the extracellular domain 

has three cysteine-rich family specific LNR domains (Lin Notch Region present only in 

Notch related proteins at C-terminal to EGF repeats). LNR region negatively regulates 

Lin proteins (Lin proteins facilitate the intracellular signaling) and participates in 

maintaining Notch receptors in resting state before binding to ligand. The Notch 

intracellular domain (NICD) contains RAM (RBP-Jk associated molecule) domain and 

several ankyrin repeats that are involved in interaction with other proteins such as the 

CSL complex179-181. Other intracellular domain includes a C-terminal PEST region and 

RE/AC domain182 that confers the transactivating capacity and the specificity of the 

Notch receptor by binding to RBP-Jk182,183. The PEST domain is believed to be 

important for stability and ubiquitination184,185. On both sides of the ankyrin repeats 

region NICD has two nuclear localization signals (NLSs)186,187. Notch receptors 1-3

have two NLSs, whereas Notch4 has one NLS with a small intracellular domain188.

After translation and insertion into the endoplasmic reticulum membrane, the newly 

synthesized Notch receptor interacts with O-fucosyltransferase-1(Ofut1), an enzyme 

catalyzing the addition of fucose sugar moieties to EGF repeats of Notch189,190. The 

Notch receptor is subsequently transported through the secretory pathway to the Golgi 

network for further glycosylation with importance for future interaction of the receptor 

with the ligand which is catalyzed by the fringe family of glycosyl transferases191-193.

Fringe originally identified in Drosophila has three mammalian homologs – lunatic, 

radical and manic fringe194-196
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In the trans-Golgi network Notch undergoes a proteolytic processing event (known as 

site 1 or S1 cleavage) mediated by a furin-like convertase enzyme197,198. The cleavage is 

important for maturation of the protein and for creation of a heterodimeric Notch 

receptor. Only trace amounts of non-S1 cleaved forms of Notch can be found at the cell 

surface199.

1.6.3 Notch ligands

There are at least 5 functional Notch ligands in vertebrates: three orthologs of 

Drosophila Delta (Delta or Delta-like [Dll] 1200, 3201, and 4202) (figure 4) and two of 

Drosophila Serrate (Jagged1203 and Jagged2204). All ligands are able to interact with all 

the Notch receptors and induce the second cleavage at the extracellular level205-207.

However, all ligands have different expression patterns and their specific 

deletion/inhibition results in diverse outcome208. Like Notch receptors, Notch ligands 

are also single-pass transmembrane proteins and are also composed of a large and 

variable number of EGF-like repeats in their extracellular domain but with a small 

intracellular portion. Notch ligands internalize into endosomes to achieve Notch 

activation and present themselves at the cellular membrane in the signal sending cell. 

This process is regulated by an ubiquitination assisted by E3-ubiquitin ligases 

Mindbomb and Neuralized209. This step is central in Notch signaling as deficiency in 

Mindbomb leads to defective Notch activation210,211. The N-terminal part of Notch 

ligand has a DSL (Delta and Serrate/jagged in Drosophila and vertebrates, Lag2 in 

caenorhabditis elegans) domain which is important for Notch-Ligand interaction212,213.

In contrast to Notch receptors, Notch ligands have a relatively short intracellular 

domain that contribute to endocytosis and interaction with different intracellular 

proteins 214. Also the existence of non-DSL ligands have been proposed, including 

F3/contactin (which acts as a ligand in oligodendrocyte maturation)215 and DNER 

(which acts as neuron specific Notch ligand)216. However more studies are needed to 

understand the mechanism behind this ligand-receptor interaction.
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Figure 4: Mammalian Notch Receptors and Ligands

1.6.4 Notch Activation

The key to Notch receptor activation is the regulation of ectodomain shedding. The 

interaction of Notch Ligands (signal sending cell) with Notch receptors (signal receiving 

cell) elicits two essential proteolytic cleavages (figure 5). First the binding of ligand to 

receptor induces a conformational change in LNRs present in the negative regulatory 

region of Notch receptors, which is followed by exposure of S2-site open for cleavage 

and leads the DSL sites of the ligand for endocytosis217-220. An S2 cleavage is dependent 

on ligand binding and is done by the metalloprotease ADAM called TACE (TNF- alpha 

converting enzyme)221,222 followed by an S3/S4 intramembranous cleavage in the 

hydrophobic milieu of the lipid bilayer by the large gamma-secretase enzyme 

complex223-225.
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Figure 5: Activation of the Notch signaling pathway 

Gamma-secretase cleavage releases the NICD (Notch intracellular domain) into 

cytoplasm that translocates to the nucleus226. NICD binds to CSL (named after CBF1, 

Su(H) and LAG-1), a DNA binding protein also known as RBP-Jk (recombination 

signal sequence binding protein-Jkappa) that is ubiquitously expressed (CBF1 in 

drosophila)227,228. NICD subsequently recruits its coactivators, mastermind-like proteins 

(MAML) and CBP/300 to promote transcription229-233. Turnover mechanism is 

important in controlling Notch signaling. MAML enhances phosphorylation of NICD 

and the turnover process229. NICD in the nucleus is quite unstable234. NICD 

ubiquitination takes place when MAML phosphorylates the PEST domain that leads to 

proteasomal degradation231.

1.6.5 Notch downstream target genes

Several target genes are modulated by Notch signaling. Enhancer of split complex in 

Drosophila was the first identified Notch target gene235,236. Other classical Notch target 

genes are Hes237 gene family (Hairy/Enhancer of split) and Hey238 genes which are 

closely related to Hes gene family and are direct downstream targets of Notch signaling. 

Following the activation of the Notch receptor, NICD is recruited and induce 

transcription of these genes by binding to CSL on their promoter regions237,239. To date 
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seven Hes (Hes 1-7) and three Hey (Hey 1-3) genes have been identified240. It has been 

shown that Hes1, Hes5, Hes7 and Hey gene family are Notch target genes241. Hes and 

Hey genes encode basic helix-loop-helix transcription factors of the class C type that act 

as transcriptional repressors242,243. The transcriptional repression blocks the expression 

of several genes i.e. MyoD181 in developing muscles or neurogenin244 in nervous tissue 

that are important in promoting tissue differentiation. Hes and Hey bind to co-factors 

such as E12/E47 and sequester them from binding partners such as Mash1 and MyoD 

which are important for inducing a transcriptional response181,244. In this way Hes and 

Hey acts a transcriptional repressor proteins without binding to the DNA promoter sites. 

Several other genes modulated by Notch signaling were identified through genome-wide 

transcriptome analysis, i.e CyclinD1 (coordinates mitotic events), c-Myc (cell 

proliferation and cancer), p21 (regulator of cell cycle progression), NFkB2 (regulates 

apoptosis), Snail (assists in mesoderm formation), ADAM19 (Involved in cell-matrix 

interaction, neurogenesis etc.) and Bcl-2 (apoptosis regulator protein)241,245,246. Nrarp is 

activated by a CSL-dependent Notch activation and have a blocking effect on Notch 

signaling247. Deltex1 (controls cell fate of neural progenitor cells by blocking binding 

partners such as Mash1248) is another negative regulator of Notch signaling but also a 

Notch target gene. 

1.6.6 Notch function

As mentioned before, Notch plays an essential role in embryonic development but also 

in tissue homeostasis during the adult life, by regulating cell fate decisions, proliferation, 

differentiation and apoptosis249-251. Lateral inhibition is an important Notch function, 

where the signaling restricts cell fate decisions and differentiation for example early 

differentiating cells signals to the neighboring cells to not differentiate into the same cell 

type252. Functions of Notch signaling are cell-context dependent. In consequence Notch 

promotes proliferation of leukemia cells by inducing c-Myc 253 but suppress 

proliferation of lung cancer cells via p21 and p27254. The oncogenic role of Notch was 

first described in T-cell acute lymphoblastic leukemia (T-ALL)174. Gain or loss of 

function of Notch is associated with other cancers such as skin cancers255.

Notch plays a key role in Central Nervous System (CNS). Notch signaling inhibits 

differentiation of uncommitted stem cells and stops their differentiation into neurons256-
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258. Notch receptors are also expressed in post-mitotic neurons and their activation leads 

to change in neurite morphology (decrease in neurite elongation and increase in their 

branching259,260). Notch controls also other cells types in CNS such as oligodendrocytes 

by inhibiting their maturation and differentiation into myelinating oligodendrocytes261.

Notch signaling is central in early embryogenesis by guiding the somites and giving rise 

to axial skeleton in vertebrates through Hes transcription factors262. Missense mutations 

in notch signaling are followed by defects in axial skeleton as in Dll3263 or in 

glycosyltransferase Lunatic fringe264. Muscle development is also modulated by Notch 

signaling by upregulating Hes and Hey genes, which represses MyoD which actively 

participate in promoting myogenic differentiation181.

The Notch system has a profound effect on the vascular system as well. Notch1 

deficiency leads to a phenotype with vascular malformations265. Notch1 alone or Notch1 

and 4 double knockout mice exhibit a defect in the vascular remodeling, a similar 

phenotype that was observed in Jagged1 knockout mice266. Notch4 homozygous mutants 

developed however normally and are fertile265. Recent studies pointed out the relative 

importance of Dll4 in vascular development. Even lack of a single Dll4 allele in mice 

leads to vascular defects and embryonic lethality, exactly like Notch1/Notch4 double 

knockout mice267-269. On the other hand Dll4 is overexpressed in tumor vessels 

compared to normal adjacent vascular tissues270,271. Dll4 activates Notch in neighboring 

cells and restricts endothelial sprouting and proliferation by suppressing VEGF 

receptors272,273.

Recent advances suggest a role of Notch signaling in diabetes as well. Pharmacological 

blockade of Notch -secretase inhibitors or haploinsufficiency of Notch1 

markedly increases insulin resistance via FoxO1 dependent manner274. Moreover, Notch 

signaling activation was observed in diabetic nephropathy275 with unclear specificity 

since stimulated Notch signaling is present in most of the glomerulosclerotic diseases276.



19

1.7 DNA VACCINES

DNA vaccines are made from DNA sequence coding for the antigenic protein of interest 

which is inserted into a plasmid vector. Inserted DNA is then translated in the host with 

production of the antigenic protein that will elicit an immune response277,278.

DNA vaccines activate the cell-mediated immunity together with humoral immunity279-

281. DNA vaccination is safer (no risk of infection), cheaper (no need of costly 

equipment for synthesis), easier to store (can be stored in ambient temperatures) and use, 

compared with the conventional vaccination methods. Traditional vaccines can be 

potentially fatal since weakened form of an infectious organism is delivered into the 

host. They provide primarily just humoral immunity and refrigeration is needed for 

storage 282. There has been an explosion of patents applied for DNA vaccines in the last 

decade and several DNA vaccines  are already in clinical trials for different diseases like 

influenza, malaria, hepatitis, HIV and tuberculosis 277.

In 1990 it was first shown a sustained expression of a protein in the mouse quadriceps 

by injecting DNA encoding a lactase driven reporter genes283. Subsequent studies 

showed that DNA delivery (vaccination) has a high potential and can overcome the 

problems posed by protein and carbohydrate vaccines. Injection of a plasmid containing 

DNA coding for the influenza nuclear viral protein (antigen) into mouse muscle results 

in increased CD8+ cytotoxic T lymphocytes and protecting the mice from recurrent 

influenza challenges284.

DNA vaccines can be delivered either intramuscularly, intradermally or 

intraperitoneally. Several delivery techniques have been employed as electroporation 

and gene gun techniques 277. In recent years Nano particles285 were used to both protect 

DNA from degradation and to increase the phagocytic activity of APCs (antigen 

presenting cells).
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1.8 HYPERBARIC OXYGEN THERAPY

Hyperbaric oxygen therapy (HBOT) is exposure to pure oxygen (100%) at higher

pressure (>1 bar) than at the sea level. HBOT has been used for many years as a

therapeutic agent for several indications such as carbon monoxide and cyanide

poisoning286,287. HBOT has also been used as an adjuvant treatment for patients with

diabetic foot ulcers288.

HBOT activates several mechanisms with potential relevance for improving wound 

healing. HBOT improves neutrophil function and helps to combat bacterial infections 

and can be used as an alternative therapy for treating drug resistant microorganisms289-

292. HBOT has a vasoconstrictory effect having a positive effect by reducing edema 

around the wounded tissues287. HBOT stimulates the activity of osteoclasts, activates 

fibroblasts and stimulates angiogenesis with potential positive effects on wound 

healing293.

Angiogenesis (formation of new blood vessels from pre-existing vessels) and

vasculogenesis (formation of new vessels by endothelial progenitor cells) are two main

mechanisms that contribute to neovascularization. Angiogenesis is stimulated by local

factors such as VEGFA and vasculogenesis by recruitment and differentiation of

endothelial progenitor cells (EPC)294-296. Extracellular matrix (ECM) is the largest

component of skin and is composed of polysaccharides, collagen proteins etc. HBOT

enhances extracellular matrix formation, an oxygen dependent process important for

neovascularization and wound healing297-300. Stem/progenitor cells migrate to the site of

tissue injury, replace the cells lost and act as a repair system for the wound healing

process. Nitric oxide synthase 3 (NOS-3) activity is important for EPC mobilization301

and exposure to HBOT rapidly increased the EPC mobilization by increasing the NO

synthesis in humans and mice302. However EPC mobilization is impaired in diabetic

patients probably due to decreased NOS-3 activity in presence of high glucose and

insulin resistance302-304. In reperfusion studies it has been shown that leukocytes bind to

ischemic tissues, releases free radicals and proteases leading to damage of the

tissues305,306. Hyperbaric oxygen treatment reduces the adherence of leukocytes and

improves the recovering of the ischemic tissues307. Moreover HBOT has several anti-

infectious effects as it improves bactericidal action of leukocytes308, increases free

radical production and oxidation of proteins and lipids in the bacterial membrane
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inhibiting consequently the bacterial metabolic function309,310. Also, an increase in

partial oxygen pressure in the environment creates an unfavorable condition for

anaerobic bacteria311.

HBOT has potential complications although with low incidence as middle ear

barotraumas312,313. Reversible myopia is a problem normally seen due to oxygen

toxicity312. Animal studies showed development of cataract after prolonged HBOT

treatments314-316.

Several clinical trials were conducted to assess the role of HBOT in the treatment of

diabetic foot ulcers. Even though most of the studies reported positive effect some

methodological issues preclude a clear conclusion. A lot of studies were retrospective or

when they were performed prospectively they were non-blinded or unclear randomized
317. However a recent monocentric, double blinded and clearly randomized study points

out on improved wound healing and improved quality of life after one year 313, 318. Even

though the other prospective studies with enough quality to be taken in consideration

suggest a superior effect of HBOT on diabetic wounds they show absence of variation in

the control group (no healing) 319,320 that contribute to a high heterogeneity (I=85%) that 

preclude observation of a positive effect after one year 321. It is therefore a big need for 

additional clearly defined studies with more participants that could define the exact 

subgroup of patients that will benefit most from the HBOT. 
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2 AIMS

The overall aim of the work presented in this thesis was to investigate specific

pathogenic mechanisms that contribute to the defective wound healing in diabetes in

order to suggest potential new therapeutic targets.

Specific aims

To identify intracellular pathways modulated by high glucose levels with

potential relevance for wound healing processes.

To study the mechanisms by which glucose contributes to HIF and Notch

modulation

To study the potential therapeutic effect of HIF and Notch modulation for

diabetic wound healing

To study the effect of HBOT on HIF signaling and the therapeutic relevance for

diabetic wound healing.
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3. MATERIALS AND METHODS

Animals: C57BL/KsJm/Leptdb(db/db) diabetic mice and their heterozygotes control 

non-diabetic littermates (age 14-20 weeks) were originated from breeding pairs obtained 

from Charles River (Belgium) (Paper I, II, IV). Db/db mice represent a commonly used 

model to study type 2 diabetes complications. Due to a deficient leptin signaling, these 

mice become hyperphagic with subsequent obesity, hyperglycemia and dyslipidemia 

after 8 – 10 weeks of age322.

Skin specific Notch 1 knockout mice (Paper II) were generated from crossing  

N1flox/N1flox females KRT14-Cre males (Breeding pairs obtained from Charles River, 

Belgium), and in F1, N1flox/+; KRT14-Cre/+ male offsprings were backcrossed to

unrelated N1flox/N1flox females. The F2 N1flox/flox; KRT14Cre+/+ mice displayed 

typical hair phenotypes (without hair) but not all the other offsprings (N1flox/+;

KRT14-Cre/+, N1flox/N1flox or N1flox/+). Heterozygous N1flox/+ were used as

controls. Female BALB/C mice, 6 to 8 weeks old were used for Dll4 vaccination 

experiments (Paper III). All animals were maintained under controlled light and 

temperature, with free access to standard food and water. The experimental procedure 

for animals was approved by the North Stockholm Ethical Committee for care and use 

of laboratory animals.

Streptozotocin Induced Diabetes: Diabetes was induced in N1flox/flox;

KRT14Cre+/+ mice and Heterozygous N1flox/+ by streptozotocin (STZ) according to the 

instructions from AMDCC (Animal Models of Diabetic Complications Consortium). 

Briefly, the animals (8-10 weeks) received 50mg/kg STZ mixed in sodium citrate buffer 

(i.p) daily for five consecutive days. All the treated mice became diabetic after 2 weeks 

from the first STZ injection. Animals were kept diabetic for three weeks before the start 

of wound healing experiment (13-14 weeks).

Wound Model:  Following blood glucose control, general anesthesia was performed 

with 3% isoflurane (Abbott). The hair of the back was shaved with an electric clipper 

followed by a depilatory cream. The skin was rinsed with alcohol and two full-
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thickness wounds extending through the panniculus carnosus were made on the 

dorsum on each side of midline, using a 6-mm biopsy punch. A transparent dressing 

(Tegaderm; 3M) was applied to cover the wounds after topical application of drugs: 

Paper I:
9 pfu/ml) containing HIF-1 V-N, HIF-1

V-NC, or LacZ-expressing adenoviruses were injected intradermally into the wound 

edges using a 30-ga -685, 458 (100 

the surgical procedure, the animals were individually housed. During the first 2 days, 

the animals received s.c. buprenorphine (0.03 mg/kg) twice a day for relief of any 

possible distress caused by the procedure. In the experiments aimed to analyze 

histology, mRNA, or protein expression, the wounds were harvested at 7 days after 

tment was applied through the dressing 

using a 30-gauge needle every other day. Viruses (HIF-VN, HIF-V-NC, LacZ) were 

inoculated once at the beginning of the experiment, all the other treatments every 

other day. Each treatment was evaluated in 10 animals per group.

Wound Analysis: Digital photographs were recorded at the day of surgery and every 

other day after wounding. A circular reference was placed alongside to permit 

correction for the distance between the camera and the animals. The wound area was 

calculated in pixels with ImageJ 1.32 software (National Institutes of Health), 

corrected for the area of the reference circle and expressed as percentage of the 

original area.

Tissue Preparation and Histological Analysis:  After fixation in formalin, the 

s

sections were deparaffinized and rehydrated followed by hematoxylin and eosin 

staining. All slides were then evaluated by light microscopy by two independent 

observers unaware of the identity of the biopsy, using a semi-quantitative score to 

evaluate vascularity, granulation, and dermal and epidermal regeneration as 

previously described323 and internally validated in our laboratory. We used four-point 

scales to evaluate vascularity (1, severely altered angiogenesis with one or two 

vessels per site and endothelial edema, thrombosis, and/or hemorrhage; 2, moderately 

altered angiogenesis with three to four vessels per site, moderate edema and 
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hemorrhage, but absence of thrombosis; 3, mildly altered angiogenesis with five to 

six vessels per site, moderate edema, but absence of thrombosis and hemorrhage; and 

4, normal angiogenesis with more than seven vessels per site with only mild edema 

but absence of thrombosis and hemorrhage) and granulation tissue formation (1, thin 

granulation layer; 2, moderate granulation layer; 3, thick granulation layer; and 4, 

very thick granulation layer) and a three-point scale to evaluate dermal and epidermal 

regeneration (1, little regeneration; 2, moderate regeneration; and 3, complete 

regeneration).

Immunohistochemistry staining and Evaluation: We evaluated microvessel density by 

semi-quantitative, double-blind analysis of the specific binding of GS-1 isolectin B4 to 

microvascular structures using a four-point scale (0, no positive vessels; 1, low number 

of positive vessels; 2, moderate number of positive vessels; and 3, high number of 

positive vessels). Isolectin B4 binding was performed using biotinylated isolectin B4 

(diluted 1:25). Expression of the adenovirus- -galactosidase was 

evaluated by immunohistochemistry using anti- -galactosidase antibody (1:500) from 

Abcam. Matched IgG isotype controls were included for each marker. In paper I, the 

hypoxia level within the wounds was evaluated using the Hypoxiprobe kit (Natural-

Amersham Pharmacia) following the instructions of the manufacturer.

Cell Culture: Primary Human Dermal fibroblasts (HDFs) (Promocell, Germany),

Mouse embryonic fibroblasts (MEFs) (kindly offered by Dr. Daiana Vasilcanu, Cancer 

Centrum Karolinska), Primary mouse skin fibroblast cultures (prepared as described in 

the next section) - HDFs, MEFs and 3T3 cells were cultured in DMEM (5.5 mM 

glucose) supplemented with 2mM L-glutamine, 100 IU/ml penicillin and 

streptomycin, and 10% heat-inactivated FBS (Invitrogen). Human Dermal 

Microvascular endothelial cells (HDMECs) purchased from Promocell, were cultured 

in the ready to use medium provided by Promocell. All the cells were maintained in a 

humidified atmosphere with 5% CO2 at 37 °C in a cell culture incubator. Only cells 

between passages 4 to 9 were used.  The human SKRC-7 cell line, originating from 

renal carcinoma from a patient with point mutated VHL, was kindly provided by E. 

Oosterwijk (Nijmegen, The Netherlands) and maintained as described324 .

Establishing fibroblast primary cell culture: Primary mouse skin fibroblasts were 

established by skin explant technique325. The cells were maintained in a humidified 
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atmosphere with 5% CO2 at 37 °C DMEM (5.5 mM glucose) supplemented with 2 

mM L-glutamine, 100 IU/ml penicillin and streptomycin, and 10% heat-inactivated 

FBS. Only cells between passages 4 and 9 were used (Paper I). 

Hypoxia treatment: Cells were incubated in a Modular Chamber (Billups-Rothenberg) 

which is flushed with a gas mixture (95% N2 and 5% CO2) until the oxygen 

concentrations lowered to 1%, oxygen levels were constantly measured and monitored 

by an oxygen meter (Dräger) (Paper I).

Activation of Notch signaling using Recombinant ligands: Cell culture plates were 

first coated overnight with Protein G (Invitrogen) 50 mg/ml in PBS at room temperature 

(RT) and then washed two times with PBS and blocked with 3% BSA in PBS for 2 h at 

RT. Plates were washed again two times with PBS and incubated with either 

recombinant Jagged1- – 599-JG from R&D systems) or 

Dll4- (Ct.No-1389-D4/CF) for 2–4 h at RT. After washing two times with 

PBS, cells (MEFs and HDFs) were immediately plated and then grown in DMEM 

containing either 5.5mM or 30mM glucose (Paper II).

Reporter Gene Assay: In Paper I, 3T3 cells were transfected with 500 ng of a GAL4-

driven luciferase reporter gene plasmid and 10 ng of NTAD residues (pFLAG-GAL4-

-[531–584]) or CTAD residues (pFLAG-GAL4- -[772–822]) using 

Lipofectamine 2000 (Invitrogen) in 60-mm plates, following the instructions of the 

manufacturer. In Paper II, HDFs placed on Jaggged1 coated plates were transfected with 

500 ng of 12XCSL luciferase reporter gene plasmid (kindly offered by Dr. Teresa 

Pereira, CMB) using Lipofectamine 2000 (Invitrogen) in 100-mm plates, following the 

instructions of the manufacturer. In Paper IV, Transcriptional activity of HIF-

assayed using a plasmid (pT81/HRE-luc) containing hypoxia responsive element (HRE) 

from erythropoietin. HDFs were co-transfected in 12 wells plates with 500ngs of HRE 

plasmid and 25ngs of Renilla plasmid (used for normalization) (Promega) using 

Lipofectamine 2000 in Optimem (Life Technologies) for 3h, when the medium was 

changed to regular cell culture medium (DMEM with 10% FBS). After exposure to the 

planned experimental conditions, the luciferase activity was assayed (BioThema) in the 

cell extract and expressed relative to the total protein concentration as evaluated by 

Bradford method (Bio-Rad) (as described in the Paper I, II accordingly)or relative to 

Renilla activity  (as described in the Paper IV).
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RNA interference experiments: In Paper I, Human dermal fibroblasts were 

transiently transfected with 200 pmol per well of either pVHL-siRNA (Hs_VHL_5 HP 

validated siRNA SI02664550 for gene pVHL) or scrambled siRNA from Qiagen using 

HiPerFect. transfection reagent (Qiagen). After 48 h, cells were exposed to different 

glucose concentrations (5.5 mM and 30 mM) for another 48 h when the RNA was 

prepared as described. In Paper II, siRNA oligos against Notch 1,3 and 4 were 

obtained from Sigma (SASI_Mm01_00104901 N1, SASI_Mm01_00057178 N3, 

SASI_Hs01_00052678 N4). All stars negative control (scrambled) siRNA from 

Ambion was used as a scrambled siRNA control. All siRNAs were reconstituted under 

RNase-free conditions according to the manufacturer’s protocol, using the buffers 

supplied. HDFs or HDMECs were transfected with the 20nM siRNAs at a confluence 

of 80–90% with HiPerFect Transfection Reagent (Qiagen) in OPTIMEM-1 medium 

(GIBCO) according to the supplier’s protocol. Transfected cells were trypsinised and 

used for either migration assay or angiogenesis assay 

In vitro Migration assay: The cell migration was studied using the “in vitro scratch” 

assay as described326. Briefly, HDFs were plated in 12 wells cell culture plates that were 

pre-

reaching confluence, the cells were serum starved (overnight) and a scratch was 

performed with a micropipette tip on the following day in each well. After rinsing with 

PBS the HDFs were incubated for additional 16 hours with a gamma secretase inhibitor

-685,458) or with control (DMSO) dissolved in DMEM 

supplemented with 0.2% FBS with different glucose concentrations (5.5mM or 30mM). 

Mitomyc

were taken immediately after scratching (basal level) and after 16 hours with a digital 

camera coupled to an inverted phase microscope. The relative migration of the cells was

calculated from the area measured 16 hours after scratching relative to the basal area 

expressed in pixels, using ImageJ 1.32 (N.I.H., USA) software. The results were 

expressed as percentage from the migration of the cells grown in 5.5mM and exposed to 

control (Paper II).
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In vitro Angiogenesis Assay: HDMECs were seeded at a density of 1 × 104 cells/well in 

-wells plate pre- -Matrigel/well 

(Chemicon; Cat. No. ECM625). The tube formation was quantified 12h after the 

treatments (DMSO, DAPT, VEGFA or siRNA specific to Notch 1 and 4) by counting 

the number of sprouting tube-like structures at randomly 5 selected fields under an 

inverted phase contrast microscope at 40 × magnifications. Three independent 

experiments were performed, and the data was presented as the total number of tubes 

formed in each experiment (Paper II).

Hyperbaric oxygen treatment:

For the in vitro experiments the cells were exposed to HBO (100% oxygen at 2.5bar 

absolute pressure) for 1hr in a hyperbaric oxygen chamber while the cells used for 

control were simultaneously placed outside the chamber. For the in vivo experiments the 

animals were placed in an animal hyperbaric oxygen chamber (RSI-B11; Reimers 

Systems) and exposed to HBO at 2 bar abs for 90-min. The untreated control mice, were 

placed outside the hyperbaric chamber in the same room. HBOT session for in vivo 

experiments begins with a progressive increase in pressure for 15min, followed by 

60min of continuous exposure to 100% oxygen at 2 bar absolute. After 60min of 

exposure the pressure in the chamber is slowly reduced during a 15min period. After the 

procedure the animals were placed in single cages in the animal care room.

3H-thymidine incorporation assay: MEFs HIF+/+ and MEFs HIF-/- cells were plated at 

a density of 2 x 104 cells/well in a 6 wells plate. Cells were starved overnight and then 

exposed for two successive exposures to HBO for 60min (as described in hyperbaric 
3H-thymidine 

(PerkinElmer, Boston, MA, USA) was added to each well. Four hours later the cells 

were washed twice with cold PBS and then with cold 5% TCA followed by 

solubilization with 0.5 N NaOH. The solubilized cells (400 l) were mixed with 4 ml 

scintillation liquid and counted in a beta counter (Packard BioScience, Downers Grove, 

IL, USA).

Western Blotting: Western Blot analysis was performed for evaluating HIF (Paper I &

IV), Notch 1 intracellular domain (Paper II) and expression of plasmid vaccine protein 

(Paper IV). Proteins from cells or skin (extracted using 2-mm Zirconia beads and a mini-
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bead beater (Biospec Products)) were extracted using RIPA Buffer in the presence of 

protease inhibitors as described168. The same amount of protein was loaded in SDS gels 

(7%), separated by electrophoresis and transferred to a nitrocellulose membrane (Bio-

Rad). The membranes were blocked in 5% milk and further incubated first with the 

primary antibody for 3hrs in 0.1% Tween PBS, and then incubated with HRP 

conjugated anti-goat secondary antibody (Thermo Scientific, 1:3000). After extensive 

washing with PBS the complexes were visualized using enhanced chemiluminescence 

(GE Health Care) according to the manufacturer’s instructions.

Quantitative Real time – PCR: Total RNA was isolated from cells using RNeasy RNA 

extraction kit (Qiagen), and from skin using an RNeasy Fibrous Tissue Mini Kit 

(Qiagen). cDNA was obtained by reverse-transcribing total RNA with SuperScript III 

and first-strand synthesis Supermix for quantitative RT-PCR according to the 

manufacturer's recommended protocol (Invitrogen). The primers (as described in papers 

I, II, IV) designed by using the Primer 3 program (http://frodo.wi.mit.edu) or choosen 

from Harvard primer bank (http://pga.mgh.harvard.edu/primerbank/). Real-time PCR 

was performed in an Applied Biosystems 7300 or 7900 units using Platinum SYBR 

Green quantitative PCR Supermix-UDG with ROX reference dye (Invitrogen). After 

incubation for 2 min at 50 °C and 2 min at 95 °C, a two-step cycling protocol (15 s at 94 

°C, 30 s at 60 °C) was used for 40 cycles. The melting curve analysis was done using the 

program supplied by Applied Biosystems. The quality of the quantitative PCR run was 

determined by standard curves and melting curve analysis. The amplification products 

were verified by sequencing.

Statistical analysis: Differences between groups were computed using one-way analysis 

or two way repeated measures of variance (ANOVA) as appropriate, with Bonfferoni

post hoc test. A p<0.05 was considered statistically significant.
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4 RESULTS AND DISCUSSION
Diabetic foot ulcer represents a major complication of diabetes that may lead to 

amputation. For the moment, there is no specific therapy available for diabetic foot 

ulcers and it has become a priority to develop novel rational therapeutic strategies based 

on new pathophysiological mechanisms. Our focus was therefore to delineate relevant 

pathogenic pathways specifically deregulated in diabetes that could contribute to the 

defective wound healing.

4.1 High glucose modulates cellular pathways with potential relevance 
for wound healing
(Paper I and Paper II)

The central pathogenic factor for development of complications in diabetes is high

glucose concentration. During the last decade hypoxia has also started to be recognized

as an important pathogenic contributor to chronic complications of diabetes. Major

findings in the present thesis consist of the description of two new cellular pathways

with high relevance for wound healing that are specifically modulated by hyperglycemia

and contribute to defective wound healing in diabetes i.e. repression of HIF-alpha

pathway in hypoxia (Paper I) and induction of Notch Signaling (Paper II).

We first focused on the modulation of HIF-1 alpha in two cell types, essentially affected

during development of chronic complications of diabetes i.e. primary human dermal

fibroblasts (HDFs) and human dermal microvascular endothelial cells (HDMECs). In

normoxia, we could not detect any influence of high glucose concentrations on HIF-1

alpha expression. However, the hypoxia-stabilized HIF-1 alpha is impaired by glucose

as previously described by our group and others327-330 . The repressive effects of high

glucose on HIF-1 alpha stabilization were described in other primary cells and tissues

also but are different in transformed tumor cells pointing out on its specificity for

diabetes (data not shown).

High glucose destabilizes HIF-1 alpha as early as after 6hrs which highlights the

potential relevance for the immediate cell reaction to hypoxia in acute ischemic events

(acute myocardial infarction, stroke). The HIF repression induced by hyperglycemia
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continues even at later time points with potential significance for chronic complications

of diabetes since most of the tissues prone to develop complications share a hypoxic

environment (kidney, nerves, retina etc.).

In order to further understand the intimal mechanism behind the effect of hyperglycemia

on HIF-1 alpha stability we investigated the potential involvement of pVHL dependent

degradation mechanism, we could appreciate that hyperglycemia contributes to HIF-

1alpha degradation through a pVHL-dependent mechanism since HIF-1 is no longer 

modulated by hyperglycemia in renal carcinoma cells that lack functional pVHL and 

traditional target genes as VEGFA are no longer modulated in HDF if VHL is 

specifically silenced. However, VHL expression is not induced by hyperglycemia 

suggesting that hyperglycemia just increases the sensitivity of HIF-

dependent degradation. The same VHL dependent degradation modulated by glucose 

was also observed in myotubules but not in tumoral cells329.

In concordance with the VHL mediated degradation of HIF-1alpha in hyperglycemia 

PHD inhibitors are able to reverse the repressive effect of glucose. The negative 

regulatory effect of glucose was not only restricted to the stability of HIF-1alpha but 

also affected both HIF-1 alpha transactivation domains NTAD and the CTAD. In 

agreement with our results, it has been shown that hyperglycemia induced decrease in 

transactivation of HIF-1 alpha and limited the HIF-1 alpha function331. The repressive 

effect of hyperglycemia on both HIF-1alpha stability and transactivation was mirrored 

by down-regulation of several HIF- es essential for wound healing such as 

heat shock protein 90 (HSP-90), VEGF-A, VEGF-R1, stromal cell-derived factor 

(SDF)-

The Notch signaling pathway is involved in many cellular processes with potential 

relevance for wound healing as cell differentiation, cell migration, proliferation, 

angiogenesis etc245,249,332,333. In Paper II, we have observed activation of Notch 

signaling in skin of different diabetic animals, as assessed by relative mRNA expression 

of several Notch target genes. We have therefore investigated if high glucose has direct 

effect on Notch signaling in HDFs and HDMCEs. Exposure to high glucose 

concentrations induces indeed the active intracellular domain (NICD) which is followed 

by Notch mediated transcriptional activation as shown by induction of the highly Notch 
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specific 12XCSL-luc reporter assay. Hyperglycemia induces the Notch signaling at a 

level before the cleavage of Notch receptor since treatment of the mouse embryonic 

fibroblasts (MEFs) with gamma-secretase inhibitor (DAPT) cancel the stimulatory 

effect of high glucose concentration on Hey1. Moreover the stimulatory effect of 

hyperglycemia on Notch signaling is not restricted to the fibroblasts but affects also 

other cells with important roles in wound healing e.g. human dermal microvascular 

endothelial cells (HDMEC) where several Notch-related genes (Notch1, Notch4, Hes1)

were induced by exposure to high glucose concentrations. The level of glucose inducing 

effect on Notch signaling is common in different tissues since -secretase inhibitors are 

able to cancel the effect of hyperglycemia on functional assay performed both in HDF 

(migration assay) and in HDMEC (in vitro angiogenesis). Modulatory effects of 

hyperglycemia on Notch signaling were found as well in podocytes  276 and in neural 

stem cells334.

4.2  Glucose affects HIF-1 alpha function by different mechanisms

High glucose modulates HIF-1 stability and function at multiple levels. The effect is 

however restricted to posttranslational level (figure 6) since HIF-1 alpha RNA were not 

influenced by High glucose concentrations in either hypoxia or normoxia.

                     

Hyperglycemia modulates HIF-1 alpha degradation since it has been shown that the 

effect of high glucose on HIF-1alpha stability is cancelled if the cells were exposed to 

the proteosomal inhibitor, MG132 327. Moreover we could establish that the effect of 

glucose is mediated by a pVHL dependent mechanism. It is however an increase of the 

interaction between VHL and HIF-1alpha which is activated by hyperglycemia since 
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VHL levels are not modulated by glucose. In concordance with the central importance of 

prolyl hydroxylation for facilitating the interaction between HIF-1alpha and VHL 

prolylhydroxylases (PHD) inhibitors (DMOG and DFX) are able to rescue at least 

partially the effect of hyperglycemia on HIF-1 alpha stability and function both in 

normoxia and in hypoxia. However, it should be stressed that HIF-1 alpha 

destabilization in high glucose is only partially reversed by the PHD inhibitors 

suggesting the role of other mechanisms, in addition to proline hydroxylation, as already 

suggested before327.

Methylglyoxal is a reactive oxoaldehyde produced in the cells exposed for long time 

to hyperglycemia that was reported to modulate HIF-1 reaction to hypoxia. 

Methylglyoxal modifies HIF-

and reduces its interaction with HIF-1 beta. 335. Moreover methylglyoxal affects p300 

interaction with HIF- -1 transactivation. An important role was 

identified in one residue in p300 since mutation of arginine 354 of p300 restored its 

interaction with HIF- -glucose331. Methylglyoxal increases HIF-

1alpha degradation by increasing its interaction with molecular chaperones CHIP,

HSP40 and HSP70 which eventually leads to polyubiquitination of HIF-

degradation336. Methylglyoxal leads to accumulation of CHIP, Hsp40 and decreases the 

levels of the molecular chaperone Hsp90. It is however a more complicated interaction 

in the presence of hyperglycemia since CHIP and HSP 70 contribute to HIF-1alpha 

degradation but not HIF-2alpha degradation 337 which is in discordance with our 

observation that hyperglycemia destabilizes HIF-2alpha to the same extent as HIF-

1alpha. Interestingly, Methylglyoxal decreases Hsp90338and can modulate HIF-1alpha 

stability by this way since Hsp90 has an established role for stabilization of HIF-1

alpha108,339.

Several other factors could play a significant role in the destabilization of HIF in 

presence of high glucose. For example, p53 is able to interfere with HIF-1 alpha stability 

and activity by a pVHL independent mechanism340 and it is induced by high glucose341.,

However HIF-1 alpha is still destabilized by high glucose in fibroblasts deficient of 

p53327. Sumolyation is an important process in HIF-1 alpha stability, RSUME an 

inducer of SUMOylation increase SUMO conjugation with HIF-1 alpha and stabilize 

HIF-1 alpha115 during hypoxia. Sirtuins regulates protein functions by sumolyation and 



34

SIRT1 sumolyation regulates activity of HIF-1 alpha and participates in HIF-1 alpha 

accumulation and transcriptional activity under hypoxia342. High glucose reduces SIRT1 

expression levels and enzyme activity343 making SIRT1 a potential mediator of 

hyperglycemia on HIF-1 alpha destabilization in diabetes.

By investigating mediators of hyperglycemia on HIF function we will be able to identify 

new specific therapeutic targets to rescue the repressed reaction of the cells to hypoxia 

characteristic in diabetes. 

4.3  HIF-1 alpha stabilization improves the defective wound healing in diabetes 

(Paper I & IV)

To assess the in vivo significance of the modulation of HIF by hyperglycemia we have 

further studied the modulation of HIF-1 in experimental diabetic wounds. 

In perfect agreement with the in vitro results, a general repression of HIF-1 signaling 

was recorded in wounds in diabetic mice (db/db) despite profound hypoxia as evaluated 

by pimonidazol staining. We observed both lower levels of HIF-1 alpha expression and 

lower levels of HIF target genes with relevance for wound healing (Paper I). These data 

are in agreement with previous reports in patients with diabetic chronic foot ulcers that 

express lower levels of HIF-1alpha compared with patients with chronic venous ulcers 

despite the same levels of hypoxia 327. The same destabilization of HIF-1alpha in 

diabetic skin was also reported by others344. Moreover, the fibroblasts isolated from the 

skin of diabetic patients are unable to induce VEGFA in response to hypoxia exactly 

like fibroblasts from diabetic mice331. We also observed the same inappropriate HIF 

reaction to hypoxia in diabetic kidneys345.

Low oxygen levels as a consequence of macro- and micro- angiopathy are present 

locally in patients with diabetic foot ulcers or diabetic neuropathy346-349. Based on our in 

vitro and in vivo observations on the repression of HIF-1 signaling by hyperglycemia we 

hypothesized that in diabetes the defect of the cells to adapt to hypoxia might play a 

central role in development of chronic complications. To test this hypothesis we choose 

to study the therapeutic potential of HIF-1 alpha induction for wound healing in db/db 

mice (Paper I) that are the best rodent model for wound healing defects in diabetes350.
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For inducing HIF-1 in the wounds we have used either compounds that interfere with 

activity of HIF hydroxylases, by chelating Fe2+ (DFX) or by competing with 2-

oxoglutarate (DMOG) (Paper I) or by hyperbaric oxygen therapy (HBOT) (Paper IV).

All the above treatments were able to induce HIF-1 alpha accumulation, and expression 

of HIF target genes essential for wound healing (HSP-90, VEGF-A, VEGFR1, SDF-1, 

and SCF).

Local application of HIF hydroxylase inhibitors (DMOG and DFX) or treatment with 

HBO improved the healing process in db/db mice despite the presence of persistent 

chronic hyperglycemia (Paper I and IV). However to obtain direct evidence of HIF-1

role in the diabetic wound healing, we performed a gain of function studies with 

adenoviruses expressing stable forms of HIF-1 alpha (V-N and V-NC) in which both the 

critical proline residues have been substituted with alanine’s. Indeed local injection of 

adenoviruses containing stable HIF-1 alpha around the wound edges improves the 

wound healing rate in db/db mice confirming the central role of HIF-1 repression as 

pathogenic defect in diabetic wounds. The positive effect of local HIF induction for 

wound healing in diabetes was shown in other experimental designs as well using either 

chemicals or virus mediated transfer 331,344.  The functional consequence of HIF 

hydroxylases on diabetic wounds improved several processes important for healing (i.e., 

granulation, vascularization, epidermal regeneration, and recruitment of endothelial 

precursors).

4.4 Diabetes Impairs of HIF-1 alpha regulation in several tissues

There is a large body of evidence supporting that HIF-1 is destabilized by high 

glucose concentrations. Moreover inappropriate low levels of HIF-1 are found in 

diabetes in several tissues with negative consequences. Biopsies from patients with 

diabetic foot ulcers showed decreased HIF-1 alpha levels compared to patients with 

venous ulcers that share the same hypoxic environment but are not exposed to 

hyperglycemia327. The functional relevance of this observation was confirmed by other 

groups beside us that have also shown that gene-based therapy with HIF-1alpha 

induced acceleration of wound healing and angiogenesis in diabetic mice330,344.

Diabetes impairs through HIF-1 hypoxia-induced production of SDF-1, CXCR4, 

VEGF and eNOS and lead to endothelial dysfunction. Hyperglycemia represses HIF-1
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alpha and is followed by an increase in the myocardial infarct size in rats351. The same 

dysfunction of HIF-1 in presence of hyperglycemia is followed by decreased 

angiogenesis in diabetic patients352,353. However overexpression of HIF-1 normalized 

VEGF levels and improved myocardial capillary network following myocardial injury 

in diabetic mice354 .

In addition, increased expression or stabilization of HIF-1 is critical to increase limb 

perfusion and function in diabetic mice, along with an increase in the number of 

circulating EPCs and vessel density355. A polymorphism of HIF-1alpha (P582S) that 

confers relative resistant to the repressive effect of hyperglycemia is associated with 

protection against nephropathy in patients with type2 diabetes345,356,357

HIF is suggested to play an important role for the function of beta cells in diabetes as 

well. Several opposing data concerning the effect of the manipulation of the HIF-1

system in beta cells are available358,359,360,361.362 suggesting that both excessive and 

inappropriate HIF-1alpha is deleterious for insulin secretion362. A polymorphism in 

HIF-1alpha was associated with type 2 diabetes345,356,357.

4.5 Blocking overactive Notch signaling improves wound healing in diabetes 

(Paper II & III)

Overactive Notch signaling in vivo confirmed our in vitro data. Notch signaling is 

overactive in the skin of different model of diabetes both in mice and in rat as reflected 

by induction of several Notch target genes (Paper II). Using a specific antibody against 

the active Notch 1 intracellular domain we could confirm an intense expression of NICD 

in the granulation tissue of the diabetic wounds (Figure 7).
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To unravel the pathophysiological role of overactive Notch for the diabetic wound 

healing, we have blocked Notch signaling using gamma secretase inhibitors (DAPT and 

L-864, 548) in experimental wounds performed in db/db mice. Both compounds 

improved significantly the wound healing process highlighting the pathogenic role of 

glucose-stimulated Notch signaling (Paper II). Moreover, the positive effects of 

blockage of the Notch signaling on wound healing seem to be specific for diabetes. We 

could not observe any effect of the gamma secretase inhibitors (Paper II) or Dll4 DNA 

vaccine (Paper IV) on wound healing rate in non-diabetic mice that confirms previous 

observations363,364. Discordant effects were observed in other wound healing models as 

corneal epithelial wound healing365 366 that might be a consequence of effectivity of the 

manipulation of the Notch signaling367.

Blocking the overactive Notch signaling in wounds increased the angiogenesis as 

assessed by isolectin staining and markers of tip cell formation and angiogenic sprouts 

as assessed by relative expression of vascular endothelial growth factor receptor 2 

(VEGFR-2), Platelet derived growth factor B (PDGF-B)368 and vascular endothelial 

growth factor receptor 3 (VEGFR-3)369 (Paper II). Moreover, treatment with DAPT is 

followed by an increase in the expression of chemokines with essential roles in the 

recruitment of endothelial precursor cells as SDF-1370 and SCF371. Taken together 

gamma secretase inhibition in diabetic wounds improves the diabetes-dependent 

repression of granulation and angiogenesis at multiple levels.

These effects were indeed confirmed in vitro by blockage of Notch signaling in HDF or 

in keratinocytes (figure 8) by exposure to gamma secretase inhibitors (DAPT and L-

685,458) rescued the inhibitory effect of hyperglycemia on cellular migration. 

Moreover, the same treatment increased the in vitro angiogenesis in HDMECs. 

However, the positive effects of Notch inhibition on migration and angiogenesis are 

mediated exclusively through Notch1 receptor, since Notch1 specific siRNA but not 

Notch3, Notch2 or Notch4 siRNA mimics the effects of gamma-secretase inhibitors 

(Paper II).

To investigate the role of Notch1 receptor in diabetes repressed wound healing in vivo,

we studied the wound healing rate in skin specific Notch1 knockout mice in which 

diabetes was induced by streptozotocin. Diabetic skin specific Notch1 knockout mice 
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have a significantly improved healing rate compared to its diabetic heterozygote control 

(Paper II) pointing out the importance of Notch 1 receptor in diabetes and its essential 

role in diabetic wound healing (figure 9). 
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4.6 Hyperglycemia induced Notch signaling mechanisms

We here report for the first time that Notch signaling is activated in diabetic skin and 

this effect is dependent on hyperglycemia. The mechanism behind the activation of 

Notch signaling in diabetes is still unclear. We have however investigated some 

potential mechanisms such as fringe and FoxO genes. Fringes (Manic, Lunatic and 

Radical fringes) are regulators of Notch signaling, by mediating O-fucosylation and O-

glycosylation372,373 of EGF repeats on Notch receptors. These posttranslational 

modifications modify the specificity of the interaction between receptors to ligands, and 

modulate Notch activity in a number of tissue specific contexts191,192,374.  For example, 

lunatic fringe (Lfng) inhibits the Notch1 and Jagged1 binding and potentiates Delta1 

signaling through Notch1, but potentiates both Delta1 and Jagged1 mediated signaling 

through Notch2375. Loss of Lfng enhances angiogenic sprouting by decreasing the 

affinity of Notch1 and Dll4 binding; in the same time, jagged1 competes with Dll4 in 

binding to Notch and thereby locally enhances angiogenic growth while Mfng 

glycosylation of Notch further increases the Dll4-Notch signaling376. Interestingly we 

have observed increase in expression of the fringes and Dll4 genes in the skin of diabetic 

animals (Paper II) that was reproduced by hyperglycemia in vitro (data not shown). 

Moreover blocking fringes by siRNA treatment in HDMECs reversed the effect of 

hyperglycemia induced Notch signaling however without been able to identify a specific 

effect on any of the isolated fringes (figure 10).
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FOX (Forkhead box) proteins plays important roles in regulating the expression of 

genes involved in cell growth, proliferation, differentiation, and longevity377. FoxO1 and 

Notch interact physically and functionally leading to activation of Notch target genes to 

regulate the progenitor cell maintenance and differentiation378. Recent evidence suggest 

a synergistic role of FoxO1 and Notch1 on insulin sensitivity. Treatment with gamma-

secretase inhibitors improves insulin sensitivity in a FoxO1 dependent manner274. This 

stimulated us to study the potential role of FoxO1 on Notch signaling in our 

experimental system. We were able to observe that induction of the Notch target gene, 

Hes1 by hyperglycemia (figure 11) in HDFs is cancelled when FoxO1 was specifically 

silenced by siRNA suggesting a FoxO1 mediation. However, further investigation is 

necessary to understand the exact underlying mechanisms of Notch activation by fringes 

and FoxO.

Notch signaling interacts as well with p53 pathway379. NICD1 is activated by p53276 and 

p53 is activated by hyperglycemia341. It is therefore tempting to propose this interaction 

as potential mediator of the hyperglycemia effect on Notch signaling.
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4.7  HIF-1 alpha and hyperbaric oxygen therapy (HBOT) in treatment of diabetic 

wounds (Paper IV)

Hyperbaric oxygen has been used as an adjuvant therapy for many years in the 

treatment of complicated diabetic wounds. However, the underlying mechanism is not 

clear. We show here that HBOT induces HIF-1 alpha stabilization. This effect takes 

place at later time points after exposure to high oxygen pressure, suggests that is not a 

direct effect of oxygen but of other different mechanisms. Radical oxygen species 

(ROS) excess during exposure to HBO could be such a mediator380 since ROS 

improve HIF-1 alpha stability and function 381. It is however difficult to accommodate 

the ROS impairment of PHDs with the VHL independent regulation noted in HBO 

exposure. However other potential VHL independent mediators could stabilize HIF in 

HBOT as HSP90107, RACK1 108, Mdm2 382 Jun activation domain-binding protein-1

(Jab1) 31 FOXO4 383 or GSK3 384.  HBOT effect is via HIF-1 since it stimulated 

proliferation of wild type MEFs (HIF+/+), but the proliferative effects were abolished 

in HIF deficient cells (MEFs  HIF-/-).

It has been shown that HBO stimulates the release of endothelial progenitor cells (EPC) 

from bone marrow that finally home in the wounds and contribute to angiogenesis and 

wound healing304. However, this process is defective in diabetes due to low levels of 

SDF-1 alpha, a cytokine that modulates the EPCs homing. Local application of SDF-1

alpha together with HBOT increases the healing rate in diabetic mice296,304,370. Taking 

into account that SDF-1 is a target gene for HIF-1370 and the importance of HIF-1 alpha 

in diabetic wound healing in mice (Paper I) we have studied the effect of combined 

local induction of HIF-1 alpha with HBO treatment. Indeed adenovirus mediated 

transfer of HIF-1 alpha improves the effect of HBOT on wound healing in db/db mice. 

In perfect agreement with the central role of HIF-1 alpha as inducer of much more other 

relevant target genes for wound healing above SDF-1, the transfer of HIF-1alpha was 

superior to the adenoassociated virus mediated transfer of SDF-1 alpha in potentiating 

the effects of HBO on wound healing in db/db mice (Figure 12).
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5  POINTS OF PERSPECTIVES

The focus of our investigation was to identify new pathogenic mechanisms relevant for 

the defective wound healing in diabetes. We have identified two new pathways that 

contribute to the repressive effect of diabetes on wound healing and could propose new 

therapeutic approaches.

The role of HIF, in diabetes was just emerging when this work started. We have further 

investigated the mechanisms behind the repressive effect of hyperglycemia on hypoxia 

induced HIF-1 alpha. We could show that hyperglycemia destabilizes HIF-1 alpha 

through a VHL dependent mechanism- Moreover we could show that hyperglycemia 

affects both transactivation domains of HIF but stabilization of HIF-

sufficient for promoting wound healing in a diabetic environment.. We could make the 

proof of concept concerning the central role of HIF for defective wound healing in 

diabetes through improvement of healing in in an experimental model of diabetic 

wounds by using either chemicals that induce HIF or through direct adeno-virus 

mediated transfer of HIF. These results might offer the premises for conducting clinical 

studies on wound healing in patients with diabetes. DFX which we used efficiently in 

vitro and in vivo to induce HIF-1 alpha is already clinically approved for other 

indications. Moreover inhibitors of HIF-1 hydroxylases are developed, for other 

indications by several pharmaceutical companies. 

Important future issues are the identification of the critical residues that are sensitive to 

hyperglycemia-induced HIF-1 alpha destabilization and to identify the pathways 

activated by hyperglycemia that lead to HIF repression in diabetes. Both these strategies 

could suggest more specific future therapies. 

Hyperbaric oxygen therapy (HBOT) has been proposed as a medical treatment for 

diabetic foot ulcers. We demonstrated that HBOT activated HIF-1 alpha and contribute 

to diabetic wound healing. Moreover, we could show that local transfer of a stable form 

of HIF has an additive effect to HBOT improving wound healing in db/db mice. Further 

studies on the HBOT and HIF-1 alpha contribution in wound healing in patients with 
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diabetic foot ulcers will help to further tailor therapeutically use of potential 

combination between HBOT and HIF alpha local induction.

Notch signaling was identified as another important pathway deregulated by 

hyperglycemia with relevance for defective wound healing in diabetes. Notch pathway 

is highly important for several cell fate decisions-. We demonstrated that hyperglycemia 

could induce Notch signaling both in vitro and in vivo. Blockage of Notch signaling 

induced by hyperglycemia using gamma-secretase inhibitors (DAPT or L-658,458) 

resulted in positive effects on migration and angiogenesis in vitro, and improved wound 

healing in diabetic mice. Moreover, we could show that these effects were specific for 

diabetes, since treatment with either gamma-secretase inhibitors or DNA vaccine against 

Dll4 did not influence wound healing in non-diabetic mice. We could also identify the 

central pathogenic role of Notch1 in Notch dependent defect in wound healing in 

diabetes through loss of function genetic approaches (siRNA and cre/lox system).

These results offer the premises for the use of gamma secretase inhibitors in clinical 

studies in patients with DFU, as gamma secretase inhibitors have already been 

developed and studied in humans, for other indications. However, the potential use of 

specific Notch 1 inhibitors is of more interest in this context. Having in mind the 

interplay between HIF signaling and Notch signaling during development it would be 

highly interesting to further investigate the interaction between these systems in diabetes

in general and in diabetes wounds in particular.
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6  CONCLUDING REMARKS

HIF-1 alpha represent a potential therapeutic target for improving the defective wound 

healing process in diabetes:

High glucose impairs HIF-1 alpha stability and function in vitro and in wounds 

in diabetic mice

The repressive effects of high glucose involves a VHL-mediated degradation 

mechanism

The increase of local HIF levels through blockade of the HIF hydroxylation or 

through direct HIF-1 alpha adenoviral transfer results in improvement of wound 

healing in diabetes.

HBOT induces HIF-1 alpha and the combination of HBOT with local HIF-1

alpha stabilization reverses the negative effects of diabetic wound healing in 

mice.

HIF stabilization is critical for improving defective wound healing in diabetic 

mice, activating all the essential steps of this process.

Hyperglycemia activates Notch signaling with repressive effect on wound healing in 

diabetes Hyperglycemia activates Notch signaling at different levels with negative 

effects on cell migration and angiogenesis

Blocking overactive Notch signaling using gamma-secretase inhibitors rescues 

in vitro hyperglycemia repressed migration and angiogenesis, and improved 

wound healing in diabetic mice

Notch1 is the main player of the Notch negative effect for wound healing in 

diabetes

In conclusion, we identified two new pathogenic mechanisms important for defective 

wound healing in diabetes. Our findings warrant development of specific therapeutics 

that address HIF and Notch signaling for improving the healing of diabetes wounds.
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