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ABSTRACT

Diabetic foot ulcers (DFU) represent one of the most feared and invalidating
complication of diabetes with high financial pressure for the healthcare system. For the
moment there is no specific therapy available and it has become a priority to develop
novel rational therapeutic strategies based on new pathophysiological mechanisms. Our
focus was therefore to delineate relevant pathogenic pathways specifically deregulated
in diabetes that could contribute to the defective wound healing in diabetes. Cellular
proliferation, migration and differentiation, angiogenesis, extracellular matrix
deposition, local recruitment of endothelial precursors cells are some of the essential
processes activated during wound healing. We decided to focus our investigation on
two central signaling pathways (HIF-1 pathway and Notch signaling) that modulates
most of the above cellular events.

Hypoxia plays an important role in the development of DFU. We showed that
hyperglycemia complexly repressed the function of Hypoxia inducible Factor (HIF)
which is the main cellular adaptor to low oxygen tension. The repressive effect of
hyperglycemia on HIF-1 alpha was pVHL dependent and affected complexly its
transactivation. This was mirrored by suppression of several HIF-1 target genes
essential for wound healing. However, by blocking HIF-1a degradation through
chemical interference with HIF hydroxylases (DMOG or DFX), it was possible to
reverse the repressive effect of hyperglycemia on HIF and to improve the wound
healing process in a diabetic mouse model (the db/db mouse). Moreover, local
adenovirus-mediated transfer of two stable HIF constructs demonstrated that
stabilization of HIF-1alpha is necessary and sufficient for promoting wound healing in
a diabetic environment. Hyperbaric oxygen therapy (HBOT) has been used as
therapeutical option for severe foot ulcers, resistant to standard therapy. The detailed
mechanisms activated by HBOT are however still unraveled. We showed that HBOT
activated HIF-lalpha at several levels with functional consequence on cellular
proliferation. Moreover, we could show that local transfer of a stable form of HIF has
additive effect to HBOT improving wound healing in the db/db mice.

Notch signaling is a cell-to-cell contact system that consists of several receptors (Notch
1-4) and ligands with a high specific cell-dependent effect. Binding of the ligands to the
receptors is followed by proteolytic cleavage of the receptor by a y-secretase complex
which is followed by activation of the intracellular signaling. Here we show that
hyperglycemia activated Notch signaling at several levels both in vitro and in vivo. The
effect of hyperglycemia on Notch signaling is canceled in the presence of y-secretase
inhibitors with positive functional effect both on in vitro migration and on in vitro
angiogenesis assays. Moreover local treatment with y-secretase inhibitors improved
wound healing of db/db mice despite chronic hyperglycemia. The effect is specific
for diabetes since neither y-secretase inhibitors nor immunization with a DNA
vaccine against D114 influenced the wound healing in non-diabetic animals. Using a
loss of function genetic approach (specific SIRNA and cre/lox system) we showed that
Notch 1 has a central pathogenic role in Notch dependent repression of wound healing
in diabetes.

In conclusion, we identified two new pathogenic mechanisms important for impaired
wound healing in diabetes. Our findings warrant development of specific therapeutics
that address HIF and Notch signaling for normal healing of diabetic wounds.
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1 INTRODCUTION
1.1 DIABETES

Diabetes mellitus (DM) is dramatically increasing worldwide. It is estimated that nearly
250 million people are currently affected by DM worldwide and with an expected
increase to 400 million in the near future according to the data from International
Diabetes Federation (IDF) and the World Health Organization (WHO)". The life time
expectancy of patients with diabetes is on average 10% shorter than in non-diabetics
individuals due to complications as the disease progresses®. An important complication

in term of morbidity, mortality and financial costs is diabetic foot ulcers (DFU) °.

1.2 EPIDEMOLOGY

Diabetic foot ulceration represents a major medical, social and economic problem and is
coupled with a high rate of mortality®*. Amputation rate in diabetes is almost 15 times
higher when compared to the non-diabetic population®. About 85% of non-traumatic
amputations originate from DFU which is also the most common cause of
hospitalization of diabetic patients®. DFU has also a high risk for recurrence. The annual
incidence of diabetic foot ulcers is between 4 to 10% in diabetic population”®. Almost
25% of patients are at risk to develop foot ulcers during their life time®. The therapeutic
options available nowadays are restricted to off-loading, treatment of infection and
improvement of blood circulation. However even with the best clinical care, the time to
heal is longer than 3 months and there are up to 10% of the patients who eventually

undergo amputation®*.

1.3 ETIOLOGY

The etiology of diabetic foot ulcers is multifactorial. Diabetic neuropathy and ischemia
are central contributors to the development of DFU. Impaired blood flow due to micro
and macro angiopathy leads to impaired tissue nutrition that makes the skin more

susceptible to trauma.

Neuropathy plays an essential role in the development of DFU. Most of the plantar

ulcerations are preceded by distal symmetrical polyneuropathy***2. Motor neuropathy
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affects the small muscles of the foot and causes weakness, atrophy, and deformity that
create areas exposed to high pressure. Reduction in sweating as a consequence of
autonomic neuropathy eventually results in drying and fissuring of the skin and
consequent ulceration*®. Autonomic neuropathy is also the most common predictor of
DFU'. Moreover, peripheral autonomic neuropathy and hyperglycemia lead to
impaired skin microcirculation®>*®. Sensory neuropathy is an important predisposing
factor because it leaves the patients to be exposed to trauma without protective
reaction of avoidance. Improper footwear, puncture wounds and foreign bodies in
footwear undetected because of lack of sensation result in increased pressure and may
lead to ulceration*”*°. Substantial evidence shows that repetitive pressure result in
tissue breakdown and poor healing?>%. Callus formation is often seen in patients with
diabetic foot exposed to repeated pressure and increase significantly the risk of
developing DFU on the same area”.

Arterial insufficiency is also important in the defective wound healing in DFU due to
the reduction of oxygen supply and nutrition essential for healing %. About 46% of

amputations in patients with diabetic foot ulcers are due to arterial insufficiency®®?’.

Infection in the DFU contributes also negatively to the regenerative capacity of the
tissues. Two thirds of patients with diabetic foot ulcers are affected by osteomyelitis
with its specific therapeutic challenges®.

1.4 THE WOUND HEALING PROCESS IN DIABETES

The wound healing process consists of several phases: inflammation, proliferation,
granulation and tissue remodeling®®. Wound healing represent a cellular response to
injury and involves activation of several cells i.e. fibroblasts, endothelial cells,
macrophages, and platelets. Several growth factors and cytokines are released in a
perfectly coordinated manner during the healing process®. The first step in wound
healing after injury is the clot formation, initiated by release of several factors such as
TGF beta and PDGF-B which help in recruiting fibroblasts and leukocytes to the
wound area®’. The Inflammatory phase lasts around 4 days and macrophages play a
vital role in this phase. Recently a central role in the inflammatory phase was

identified for the plasma protein plasminogen®. Macrophages migrate to the wound
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area and engulf necrotic material and then produce factors that induce angiogenesis by
endothelial cells, epithelialization by keratinocytes and matrix deposition by
fibroblasts producing collagen, a major component of extra cellular matrix (ECM)***,
Local endothelial cells migrate to form capillary sprouts®. Endothelial progenitor cells
derived from bone marrow, home at the site of injury, undergo in situ differentiation
and contribute to vasculogenesis®®. Granulation, re-epithelisation and wound
contraction are also important processes of wound healing®’. Granulation tissue is the
fibrous connective tissue, composed of fibroblasts, that typically grows from the base
of the wound and they mainly secrete type 111 collagen®. Granulation is followed by
epithelisation; during this process epithelial cells and keratinocytes migrate across the
wound barrier and granulation tissue. Epithelial cells proliferate and form a sheet

across the edges of the wound.

Contraction is also an important step in wound healing® where myofibroblasts and
fibroblasts are vital contributors. They are stimulated by growth factors and are attracted
by fibronectin to move along the fibrin on extracellular matrix to wounds edges.
Successful contraction eventually signals for tissue remodeling which is the last phase of
wound healing where type 1 collagen has an important role in organizing the collagen

fibers in a process that may last from several days to months®.

Diabetes alters several mechanisms at cellular and molecular levels that lead to impaired
wound healing process®**'. Hyperglycemia leads to impairment in migration** and
angiogenesis***, dysfunction of macrophages®, imbalance in ECM components and

4447148 otc. Markers for

their remodeling by MMPs*®, impaired growth factor production
delayed wound healing such as c-myc and beta-catenin that have repressive effects on
migration of Kkeratinocytes were suggested to be used in order to identify chronic
wounds with low potential to spontaneous healing®. Endothelial progenitor cells (EPC)
replace lost cells at the site of tissue injury. EPCs are critical in neovascularization and
play a central role in wound healing, but their circulating levels and their number at the
site of the wounds are decreased in diabetes and contribute to a delay in wound

healing™.



1.5 HIF SIGNALING PATHWAY
1.5.1 Hypoxia

Hypoxia, defined as a lower oxygen concentration, can be generalized or localized and it
is the consequence of either inadequate oxygen supply or increased oxygen
consumption. Hypoxia plays an important role in several essential processes such as
angiogenesis by triggering vessel growth and promoting vascular bed expansion®! and
playing roles in cell fate decision®**3. The molecular reaction to hypoxia is mediated by

a transcriptional factor called hypoxia-inducible factor (HIF). HIF activates

approximately 100 target genes, which play central physiological roles in response to
54,55

hypoxia (figure 1)

Erythropoiesis
EPOC

Cell Migration
H5Pa0, POGFh etc

Target Genes

Hormonal Regulation

Growth and Apoptosis
IGFBP-1, p53, BMIP3 etc

Metabolism
Glutl, GAPDH, Hexokinase etc

( Angiogenesis
WEGF, Endothelin-1, NOS etc

Figurel: HIF-1 activates several genes with central roles in the reaction to hypoxia



1.5.2 Hypoxia Inducible factors

HIF is a heterodimeric transcription factor first discovered as a regulator of
erythropoietin  production®. The heterodimeric complex is composed of two
constitutively expressed subunits: an alpha subunit regulated by oxygen and a beta
subunit also called aryl receptor nuclear translocator (ARNT)>". HIF belongs to the basic
helix-loop-helix (bHLH)-Per-ARNT-Sim (PAS) protein family®®. The HIF-1 alpha
subunit is composed of two transactivation domains, namely NTAD (N-terminal
transactivation domain) and CTAD (C-terminal transactivation domain). HIF-1 alpha
stability is negatively regulated in normoxia at the oxygen dependent degradation
domain (ODD) which is found in NTAD®. The N-terminal bHLH is rich in residues that
involved in DNA binding®®2. Co-factors such as CBP/p300 interact with both HIF-1

alpha transactivation domains to activate gene transcription®*®.

Three isoforms of HIF — alpha subunits have been identified (HIF-1 alpha, HIF-2
alpha/EPAS1, HIF-3 alpha) and three HIF- beta subunits (ARNT, ARNT2 , ARNT3)
(figure 2). The overall similarity between HIF-1 and HIF-2 is about 48% in their amino
acid composition. HIF-1 alpha contains 826 amino acids while HIF-2 alpha has 870
amino acids with longer N-terminal region than HIF-1 alpha®®®’. The transactivation

domains at the C-terminal region have the highest similarity between the isoforms®.

1 NLS NLS 826
LHIF-1a bHLH Alpas| B ﬂm‘ml CTAD

1 870
LHIF-2a
EPAST) bHLH Alpas| B ﬂ NTAD CTAD

1 667
LHIF-3a LHLH Alpas| B Hm;m

1 789
LHIF-18
(ARNT) bHLH Alras| B CTAD

NLS

1 706
LHIF-1B CTAD
{ARNT) bHLH A |pas| B y

Figure 2: HIF-alpha Isoforms



HIF-3 alpha has a different overall structure but with similar N-terminal region that
permits dimerization with HIF-1 beta which is followed by binding to the hypoxia
responsive element (HRE). Unlike HIF-1/2, HIF-3 alpha lacks CTAD region and is
regarded as a dominant negative regulator of HIF signaling® . Availability of ARNT is
crucial for HIF-3 alpha actions™. HIF-3 alpha has been identified as a HIF-1 target
gene’ and is also uniquely regulated at the transcription level since HIF-3 mRNA

increases under hypoxic conditions”.

The expression pattern of HIF-1 alpha and ARNT is ubiquitous, while the other
members have a restricted pattern of expression’. HIF-2 alpha is expressed in

66,75

endothelial cells, hepatocytes, cardiomyocytes™ >, while HIF-3 alpha is expressed in

heart, brain, lung, kidney and adult thymus®.

1.5.3 Regulation of HIF-1 protein stability

HIF-1 beta (ARNT) is constitutively expressed irrespective of oxygen levels’""® but
only HIF-1 alpha is degraded in normoxia via proteasomal degradation (figure 3). In the
presence of oxygen, HIF-1 alpha is hydroxylated on at least one of the two conserved
proline residues within the ODD (oxygen degradation domain) by prolyl hydroxylases
(PHDs)"*®. The hydroxylated HIF-1 alpha is identified by von Hippel-Lindau tumor
suppressor protein (pVVHL) and eventually ubiquitinylated leading to its degradation by
the 26S proteasome®®,
conserved in all three isoforms of HIF alpha subunits, HIF-1 alpha (402 and 564), the
proline residues in HIF-2 alpha and HIF-3 alpha (405 and 530). Three isoforms of
PHDs have been identified (PHD1, PHD2 and PHD3) and belong to the dixoygenase

super family, requiring together with oxygen two cofactors (2-oxoglutarate and iron) for

These proline residues which are sensitive to oxygen are

performing its activity %2*°%  PHD2 seems to be the most important PHD2 for

regulation of HIF stability in normoxia®®, but the expression pattern and distribution of

PHDs members are tissue and cell specific® .



Metabolism \

Cell proliferation/survival

Figure 3: Classical HIF-1 alpha regulation.

Interestingly PHDs are induced by HIF-1 in prolonged hypoxia closing a regulatory

feed-back loop®.

HIF-1 alpha is also regulated by other factors besides the canonical regulation through
PHDs. Acetylation of Lys 532 by Arrest defective protein-1 (ARD1) that is modulated
by oxygen, enhances interaction of HIF-1a with pVHL and subsequently leads to HIF-
la degradation®™. However, metastasis-associated protein 1 (MTA1) counteracts the
activity of ARD1 by binding to HIF-1a and enhancing the stability of HIF-1 alpha®.
Protein SSAT2 promotes ubiquitination of HIF-1 alpha by interacting with HIF-1 alpha,
pVHL and elongin C%*. Osteo Sarcoma protein-9 (OS9) initiates a strong binding
between HIF-1 and PHD2 ensuring a stable complex formation and enabling a perfect
degradation pathway®’. The affinity of pVHL to HIF-1 alpha binding is decreased by
Hepatitis B virus X protein (HBx), a protein involved in hepatocellular carcinoma
development, interacts with the bHLH/PAS domain of HIF-1 and decreases its binding
to pVHL, thereby increasing stability of HIF-1 alpha®. Bafilomycin stimulation allows
ATP6VOC interaction with HIF-1 alpha and directly competes with p\VVHL in binding to
HIF-1 alpha®. The pVHL-interacting deubiquitinating enzyme 2 (VDU2) interacts with
the HIF-1 alpha and pVHL complex and reverses the ubiquitination process and
stabilizes HIF-1 alpha'®. Insulin like growth factor -1 (IGF-1) induced accumulation of

both HIF-1 alpha and HIF-2 and followed by an increase in HIF function'®%%,



SIRT3, one of the proteins from the Sirtuin family destabilizes HIF-1 alpha in a PHD
dependent manner. It has been shown that SIRT2 destabilizes HIF-1 alpha by inhibiting

ROS production, promoting secondary maximal PHD activity'®

. Reactive oxygen
species (ROS) play a key role in HIF-1 alpha stability; it has been shown that ROS
directly affects PHDs enzymatic activity by preventing hydroxylation of HIF*; ROS
generated from the mitochondrial complex were suggested to play a special role in HIF
stabilization'®. However, the specific role and relative significance of ROS in mediating
the hypoxic response remain unclear and contradictory, as lower levels of ROS were

detected in hypoxia than in normoxia'®.

HIF-1 alpha is also regulated independently of the p\VHL mechanism through several
interacting proteins. Geldanamycin which is an HSP90 antagonist promotes
ubiquitination and proteasomal degradation of HIF-1a by disrupting its association with
HSP90, in renal carcinoma cell lines via a PHD2/pVHL-independent pathway’.
RACK1 binds to HIF-1 alpha and promotes its degradation independent of pVHL.
This process can be enhanced by SSAT1 (Spermidine/spermine N(1)-acetyltransferase
1) stabilizing interaction of HIF-1 alpha to RACK1 *®. RACK1 competes with HSP90
in binding to HIF-1 alpha thereby promoting a VHL independent degradation®.
Binding of p53 to a HIF and p300 transcriptional complex mediates inhibition of HIF
activity'®, HIF-10-p53 interaction is modulated by several proteins such as Mdm2
(murine double minute, functions as E3-ubiquitin ligase and negatively regulate p53

111

actions)™ or Jun activation domain-binding protein-1 (Jabl), a coactivator of AP-1

transcription factor interacts directly with HIF-1 alpha and increased transcription and

stability of HIF-1 alpha protein, through modulation of HIF-1a-p53 interaction''%**2,

Small ubiquitin-related modifier (SUMO) modulates also HIF-1 alpha stability. It has
been shown that hypoxia induces SUMOylation of HIF-1 by binding it to the pVHL-E3
complex which leads to HIF-1 to degradation''*. On the other hand RSUME which is an
inducer of SUMOylation increases SUMO conjugation with HIF-1 alpha in hypoxia and
stabilizes HIF-1 alpha'®. The data available to date about SUMO and HIF-1 alpha
regulation are confusing and further research is needed to understand the exact role of
SUMOylation.



1.5.4 Regulation of HIF-1 alpha transcriptional activity

The transcriptional activity of HIF-1 alpha is modified and regulated by many
interacting proteins; HIF-1 alpha forms a heterodimeric complex with ARNT and binds
to promoter of hypoxia responsive elements (HRES) in the nucleus to express its
downstream target genes *°. Factor inhibiting HIF (FIH) hydroxylates asparagine-803
(HIF-1) and asparagine-851 (HIF-2) in CTAD in the presence of oxygen and modulates
their transcriptional activity. This hydroxylation prevents the binding of co-factors
CBP/p300 and thereby represses the transcriptional activity of HIF in normoxia. FIH
also requires 2-oxoglutarate and iron for its activity like PHDs being member of the
same family of dixoygenase®. FIH has a lower Km for oxygen than PHDs have, making

U7 and  become inactive to

the PHD respond to a lesser decrease in oxygen levels
stabilize HIF-1 alpha, while at the same time transcriptional activity of HIF is still be

inhibited by FIH experiencing saturating oxygen concentrations.

Other PAS family members such as MOP3 and MOP9 interact with HIF-1 alpha to form
active transcription heterodimers; however their targets are still elusive™®*%. p14”%*
tumor suppressor protein sequesters HIF-lalpha to nucleolus and inhibits its
transcriptional activity'?*. PER2 (Period circadian protein homolog 2), a circadian factor
prevents the transcriptional activity of HIF-1 and ARNT complex, possibly through a
protein-protein interaction'?
by interaction of HIF-lo with PER1'®., COMMD1 (COMM domain-containing 1)

protein binds to the amino terminus of HIF-1 alpha and prevents the dimerization of

. Contrarily, proteolytical degradation of PERL1 is prevented

HIF-1a with HIF-1 thereby modulating HIF-1 alpha degradation as well***,

HIFa mRNA stability is also crucial for HIFa protein levels and function. HIF mRNA
can be negatively regulated by mRNA-destabilizing protein TTP (tristetraprolin) that
directly binds to 3'UTR of HIF-1 mRNA and regulates HIF-1 alpha levels in hypoxia®.
MiR155 represses HIF-1 alpha mRNA, protein and its transcriptional response during
hypoxia'?®. It is interesting to note that miR155 is induced by HIF-1 during prolonged
hypoxia resulting in a negative feedback loop mechanism. Also miR17-92, directly

represses HIF-1 interestingly just in normoxia but not in hypoxia*?*#’.



Co-activators play a vital role in initiation of HIF-1 alpha transcriptional activity. PKM2
enhances binding of HIF-1 alpha to HREs to promote transcription under hypoxic
conditions. PKM2 is also induced by HIF-1 resulting in a positive feedback loop
mechanism?. SUMO1/sentrin/SMT3 specific peptidase-3 SENP3 enhances binding of
p300 to HIF-1 alpha and increases transcription by de-SUMOylation of p300 during
mild oxidative stress'?°. Pontin, a chromatin remodeling factor is a coactivator of HIF-1
alpha by mediating the interaction of HIF-1 and p300 for initiating transcription in

hypoxia**®

. A growth suppressor, Necdin, inhibits transcriptional activity of HIF-1 alpha
during hypoxia by association with ODD domain. Moreover Necdin decreases HIF-
1alpha protein level and mediates HIF-1 degradation™. SIRT1 deacetylates lysine-674
on HIF-1 alpha and impedes p300 recruitment and transactivation of target genes while
p300/CBP-associated factor (PCAF) acetylates the same residue and enhances binding
of p300 with HIF1o for initiating transcription™. It has been shown that CITED2 and
CITED4 bind to p300/CBP preventing its interaction with HIF-1 alpha thereby
interfering with HIF-1 alpha activity™>***. Estrogen-related receptors (ERRS) serve as

cofactor for HIF-1 alpha during hypoxia, by direct interaction®.

Several other interacting proteins are involved in the recruitment of coactivators and
modulate HIF transcription. For example, CTAD of HIF-1 alpha is modified by a thiol-
redox regulator Ref-1, which ultimately facilitates the binding of coactivators ****’.
Histone deacetylase 7 (HDACY) forms a complex with HIF-1a and p300 under hypoxic
conditions and increases HIF-1a transcriptional activity™>. Phosphorylation of HIF-1
alpha by MAPK enhances the transcriptional activity without affecting HIF-1 alpha

stability or DNA binding capacity™.

1.5.5 HIF function

When the oxygen levels decrease during hypoxia, PHDs activity is inhibited leading to
the stabilization of HIF-alpha. Stabilized HIF translocates to the nucleus and dimerises
with ARNT (HIF-1 beta)**® and binds to HREs to promote transcription of

approximately 100 target genes>*>>**

that participate in regulation of several processes
such as erythropoiesis (erythropoietin), angiogenesis (vascular endothelial growth

factor, Angiopoietin 1 and 2, E-cadherin etc), glucose and energy metabolism (glucose
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transporter, phosphoglycerate kinase 1), cell differentiation, cell survival, apoptosis,
141-144

tumor development etc
HIF also plays a pivotal role for development during embryogenesis. HIF-1 alpha
knockout mice stop the development at E8.5 and eventually die at E10.5 due to vascular
defects and abnormalities in cardiac and neural developments**™**. Like HIF-1 alpha
knockout mice, HIF-2 alpha knockout mice have high embryonic lethality between E9.5
and E16.5"%%° However, replacement of HIF-1 alpha in HIF-2 knock mice cannot
rescue them from lethality™>. This shows the distinct functions of HIF-1 alpha and HIF-
2 alpha despite the high level of sequence homology, at least during embryo
development. Haploinsufficiency of HIF-2 alpha (EPAS-/-) resulted in a strain-specific
phenotype in mouse with metabolic defects and impaired homeostasis towards reactive
oxygen species (ROS)™. HIF-1 beta also plays a vital role in embryo development, as

deletion of HIF-1 beta leads to death due to vascular and placental abnormalities**>**,

HIF is also involved in many other processes such as migration, proliferation, wound
healing, ischemia, inflammation, differentiation etc. Hypoxia through HIF induces

154,155

migration of fibroblasts and keratinocytes and induces members of the integrin

superfamily (CD11b/CD18) that enhance the migration of leukocytes'*®**".

In general the undifferentiated state of cells is maintained in hypoxia. However the
effect is cell specific as hypoxia inhibits differentiation of preadipocytes and myoblasts
158159t promotes differentiation of other cell types, such as neural crust stem cells and
mouse mammary epithelial cells™®**®". Specific functions of HIF-2 alpha were also
identified in controlling the undifferentiated state. Oct-4 which is important in

maintaining the undifferentiated state of stem cells is controlled only by HIF-2alpha™®.

HIF pathway plays an important role in regulating the inflammation response as well.
Inactivation of the HIF-1 pathway leads to inhibition of motility, cell aggregation and
pathogen killing capacity after phagocytosis of myeloid cells'®. Hypoxia also promotes

the secretion of inflammatory chemokines'®* important to attract monocytes and

165

neutrophils™. Interestingly the chemokines activate a positive feedback on HIF

165

signaling mediated by ROS that stabilize HIF-1 alpha™ and by an additional effect on

increasing the DNA binding capacity of HIF-1 alpha and consecutively expression of
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HIF-1 target genes™". Moreover hypoxia regulates the reaction to inflammation through

HIF independent mechanisms as well. NF-«xB that has an essential role in inflammatory

and immune responses is induced in hypoxia through a direct effect on 1kkp **.

Wound healing occurs in a relatively hypoxic milieu being generally surrounded by
damaged vessels with impaired blood flow but having in the same time high oxygen
need for sustaining the healing process. Hypoxia promotes the angiogenic process and
tissue repair by induction of many target genes important for wound healing™®. It has
been shown that motility of keratinocytes was increased due to hypoxia around the
wound, and this promotes wound healing by activating re-epithelialization and closure
of wounds™>. HSP90 alpha for instance which is induced by HIF-1 alpha stimulates
migration of fibroblasts and healing *®.

1.6 NOTCH SYSTEM

The Notch signaling pathway contributes to the multi-cellular development by
controlling cell fate decisions and consequently, morphogenesis. Notch signals control
cellular lineages by linking the fate of one cell to that of a neighboring cell, through the
interaction of the Notch surface receptor expressed on one cell with membrane-bound
ligands expressed on the surface of an adjacent cell. The first report on Notch described
a novel phenotype in the fruit fly Drosophila melanogaster, characterized by a notched
wing margin"®*"2, After the initial findings two decades later, in 1940 it has been shown
that homozygosity for the notched wing allele resulted in embryonic lethality and the
neural tissue expanded at the expense of ectoderm, establishing Notch as a controller of
cell fate decisions from uncommitted progenitors. The research on Notch system has
expanded enormously after the cloning of the Notch gene establishing the role of Notch

signaling in disease and development*’.

1.6.1 A molecular overview of the Notch System
Notch signaling operates between juxtaposed cells, where membrane bound receptors

(signaling receiving cell) and ligands (signal sending cell) need a close physical contact
to initiate the signaling process. The Notch receptor in itself is the effector molecule of

12



the pathway and operates without need of second messengers (such as cGMP, cAMP

etc), a common feature for other signaling pathways.

1.6.2 Notch Receptors

Notch receptors have developed during evolution from just one Notch receptor in
Drosophila, 2 Notch receptors in C elegans to reach 4 different Notch receptors
(Notch1-4) in most vertebrate species. The Notch receptors, Notch 1-4 (figure 4) are
single-pass transmembrane proteins composed of 29-36 tandemly arranged EGF
repeats'’**"". The EGF repeats 11 and 12 play an important role in the interaction of the

178 Moreover the extracellular domain

ligand to the receptor in order to initiate signaling
has three cysteine-rich family specific LNR domains (Lin Notch Region present only in
Notch related proteins at C-terminal to EGF repeats). LNR region negatively regulates
Lin proteins (Lin proteins facilitate the intracellular signaling) and participates in
maintaining Notch receptors in resting state before binding to ligand. The Notch
intracellular domain (NICD) contains RAM (RBP-Jk associated molecule) domain and
several ankyrin repeats that are involved in interaction with other proteins such as the
CSL complex*"®*8. Other intracellular domain includes a C-terminal PEST region and
RE/AC domain®® that confers the transactivating capacity and the specificity of the
Notch receptor by binding to RBP-Jk'®2'% The PEST domain is believed to be
important for stability and ubiquitination'****. On both sides of the ankyrin repeats
region NICD has two nuclear localization signals (NLSs)**®*%". Notch receptors 1-3

have two NLSs, whereas Notch4 has one NLS with a small intracellular domain®®®,

After translation and insertion into the endoplasmic reticulum membrane, the newly
synthesized Notch receptor interacts with O-fucosyltransferase-1(Ofutl), an enzyme
catalyzing the addition of fucose sugar moieties to EGF repeats of Notch'®**®. The
Notch receptor is subsequently transported through the secretory pathway to the Golgi
network for further glycosylation with importance for future interaction of the receptor
with the ligand which is catalyzed by the fringe family of glycosyl transferases'®**%.
Fringe originally identified in Drosophila has three mammalian homologs — lunatic,

radical and manic fringe®®**%°
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In the trans-Golgi network Notch undergoes a proteolytic processing event (known as
site 1 or S1 cleavage) mediated by a furin-like convertase enzyme™"®®. The cleavage is
important for maturation of the protein and for creation of a heterodimeric Notch
receptor. Only trace amounts of non-S1 cleaved forms of Notch can be found at the cell

surface®®.

1.6.3 Notch ligands

There are at least 5 functional Notch ligands in vertebrates: three orthologs of
Drosophila Delta (Delta or Delta-like [DII] 1°%, 3%, and 4%%%) (figure 4) and two of

1203 2204

Drosophila Serrate (Jagged1=™ and Jagged2=™). All ligands are able to interact with all

the Notch receptors and induce the second cleavage at the extracellular level?®>%""
However, all ligands have different expression patterns and their specific
deletion/inhibition results in diverse outcome®®. Like Notch receptors, Notch ligands
are also single-pass transmembrane proteins and are also composed of a large and
variable number of EGF-like repeats in their extracellular domain but with a small
intracellular portion. Notch ligands internalize into endosomes to achieve Notch
activation and present themselves at the cellular membrane in the signal sending cell.
This process is regulated by an ubiquitination assisted by E3-ubiquitin ligases
Mindbomb and Neuralized®®. This step is central in Notch signaling as deficiency in
Mindbomb leads to defective Notch activation®®?*!, The N-terminal part of Notch
ligand has a DSL (Delta and Serrate/jagged in Drosophila and vertebrates, Lag2 in
caenorhabditis elegans) domain which is important for Notch-Ligand interaction®#?*3,
In contrast to Notch receptors, Notch ligands have a relatively short intracellular
domain that contribute to endocytosis and interaction with different intracellular
proteins 2%, Also the existence of non-DSL ligands have been proposed, including
F3/contactin (which acts as a ligand in oligodendrocyte maturation)”*> and DNER
(which acts as neuron specific Notch ligand)**°. However more studies are needed to

understand the mechanism behind this ligand-receptor interaction.
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Figure 4: Mammalian Notch Receptors and Ligands

1.6.4 Notch Activation

The key to Notch receptor activation is the regulation of ectodomain shedding. The
interaction of Notch Ligands (signal sending cell) with Notch receptors (signal receiving
cell) elicits two essential proteolytic cleavages (figure 5). First the binding of ligand to
receptor induces a conformational change in LNRs present in the negative regulatory
region of Notch receptors, which is followed by exposure of S2-site open for cleavage
and leads the DSL sites of the ligand for endocytosis®*’??°. An S2 cleavage is dependent
on ligand binding and is done by the metalloprotease ADAM called TACE (TNF- alpha
converting enzyme)?*??? followed by an S3/S4 intramembranous cleavage in the

hydrophobic milieu of the lipid bilayer by the large gamma-secretase enzyme

complex®??%,
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Figure 5: Activation of the Notch signaling pathway

Gamma-secretase cleavage releases the NICD (Notch intracellular domain) into
cytoplasm that translocates to the nucleus?®®. NICD binds to CSL (named after CBF1,
Su(H) and LAG-1), a DNA binding protein also known as RBP-Jk (recombination
signal sequence binding protein-Jkappa) that is ubiquitously expressed (CBF1 in
drosophila)®"#%®, NICD subsequently recruits its coactivators, mastermind-like proteins
(MAML) and CBP/300 to promote transcription?®?3. Turnover mechanism is
important in controlling Notch signaling. MAML enhances phosphorylation of NICD
and the turnover process?®. NICD in the nucleus is quite unstable®®’. NICD
ubiquitination takes place when MAML phosphorylates the PEST domain that leads to

proteasomal degradation®".
1.6.5 Notch downstream target genes

Several target genes are modulated by Notch signaling. Enhancer of split complex in
Drosophila was the first identified Notch target gene?*>?*®. Other classical Notch target
genes are Hes™®’ gene family (Hairy/Enhancer of split) and Hey®® genes which are
closely related to Hes gene family and are direct downstream targets of Notch signaling.
Following the activation of the Notch receptor, NICD is recruited and induce
transcription of these genes by binding to CSL on their promoter regions®"?*°. To date
16



seven Hes (Hes 1-7) and three Hey (Hey 1-3) genes have been identified®. It has been
shown that Hes1, Hes5, Hes7 and Hey gene family are Notch target genes***. Hes and
Hey genes encode basic helix-loop-helix transcription factors of the class C type that act
as transcriptional repressors®*#%*, The transcriptional repression blocks the expression
of several genes i.e. MyoD'® in developing muscles or neurogenin®* in nervous tissue
that are important in promoting tissue differentiation. Hes and Hey bind to co-factors
such as E12/E47 and sequester them from binding partners such as Mashl and MyoD
which are important for inducing a transcriptional response’®?*. In this way Hes and
Hey acts a transcriptional repressor proteins without binding to the DNA promoter sites.
Several other genes modulated by Notch signaling were identified through genome-wide
transcriptome analysis, i.e CyclinD1 (coordinates mitotic events), c-Myc (cell
proliferation and cancer), p21 (regulator of cell cycle progression), NFkB2 (regulates
apoptosis), Snail (assists in mesoderm formation), ADAM19 (Involved in cell-matrix
interaction, neurogenesis etc.) and Bcl-2 (apoptosis regulator protein)®*+#*°2%_ Nrarp is
activated by a CSL-dependent Notch activation and have a blocking effect on Notch
signaling®’. Deltex1 (controls cell fate of neural progenitor cells by blocking binding
partners such as Mash1**®) is another negative regulator of Notch signaling but also a
Notch target gene.

1.6.6 Notch function

As mentioned before, Notch plays an essential role in embryonic development but also
in tissue homeostasis during the adult life, by regulating cell fate decisions, proliferation,
differentiation and apoptosis®*®®*. Lateral inhibition is an important Notch function,
where the signaling restricts cell fate decisions and differentiation for example early
differentiating cells signals to the neighboring cells to not differentiate into the same cell
type?2. Functions of Notch signaling are cell-context dependent. In consequence Notch
promotes proliferation of leukemia cells by inducing c-Myc #* but suppress
proliferation of lung cancer cells via p21 and p27%*. The oncogenic role of Notch was
first described in T-cell acute lymphoblastic leukemia (T-ALL)'"*. Gain or loss of

function of Notch is associated with other cancers such as skin cancers®>.

Notch plays a key role in Central Nervous System (CNS). Notch signaling inhibits

differentiation of uncommitted stem cells and stops their differentiation into neurons®®
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28 Notch receptors are also expressed in post-mitotic neurons and their activation leads

to change in neurite morphology (decrease in neurite elongation and increase in their

259,260

branching ). Notch controls also other cells types in CNS such as oligodendrocytes

by inhibiting their maturation and differentiation into myelinating oligodendrocytes®*".

Notch signaling is central in early embryogenesis by guiding the somites and giving rise

262

to axial skeleton in vertebrates through Hes transcription factors™. Missense mutations

263
3

in notch signaling are followed by defects in axial skeleton as in DIl or in

glycosyltransferase Lunatic fringe®*

. Muscle development is also modulated by Notch
signaling by upregulating Hes and Hey genes, which represses MyoD which actively

participate in promoting myogenic differentiation®.

The Notch system has a profound effect on the vascular system as well. Notchl
deficiency leads to a phenotype with vascular malformations®®. Notch1 alone or Notch1l
and 4 double knockout mice exhibit a defect in the vascular remodeling, a similar
phenotype that was observed in Jagged1 knockout mice?®. Notch4 homozygous mutants
developed however normally and are fertile?®. Recent studies pointed out the relative
importance of DII4 in vascular development. Even lack of a single DII4 allele in mice
leads to vascular defects and embryonic lethality, exactly like Notchl/Notch4 double

267-269

knockout mice . On the other hand DIl4 is overexpressed in tumor vessels

compared to normal adjacent vascular tissues*’®?"*, DII4 activates Notch in neighboring

cells and restricts endothelial sprouting and proliferation by suppressing VEGF

receptors®’2%™3,

Recent advances suggest a role of Notch signaling in diabetes as well. Pharmacological

blockade of Notch signaling with y-secretase inhibitors or haploinsufficiency of Notchl

274

markedly increases insulin resistance via FoxO1 dependent manner<™". Moreover, Notch

275

signaling activation was observed in diabetic nephropathy“™> with unclear specificity

since stimulated Notch signaling is present in most of the glomerulosclerotic diseases?".
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1.7 DNA VACCINES

DNA vaccines are made from DNA sequence coding for the antigenic protein of interest
which is inserted into a plasmid vector. Inserted DNA is then translated in the host with

production of the antigenic protein that will elicit an immune response®”"2’,

DNA vaccines activate the cell-mediated immunity together with humoral immunity®’®

81 DNA vaccination is safer (no risk of infection), cheaper (no need of costly
equipment for synthesis), easier to store (can be stored in ambient temperatures) and use,
compared with the conventional vaccination methods. Traditional vaccines can be
potentially fatal since weakened form of an infectious organism is delivered into the
host. They provide primarily just humoral immunity and refrigeration is needed for
storage “®. There has been an explosion of patents applied for DNA vaccines in the last
decade and several DNA vaccines are already in clinical trials for different diseases like

influenza, malaria, hepatitis, HIV and tuberculosis 2”".

In 1990 it was first shown a sustained expression of a protein in the mouse quadriceps
by injecting DNA encoding a lactase driven reporter genes®. Subsequent studies
showed that DNA delivery (vaccination) has a high potential and can overcome the
problems posed by protein and carbohydrate vaccines. Injection of a plasmid containing
DNA coding for the influenza nuclear viral protein (antigen) into mouse muscle results
in increased CD8" cytotoxic T lymphocytes and protecting the mice from recurrent

influenza challenges™*.

DNA vaccines can be delivered either intramuscularly, intradermally or
intraperitoneally. Several delivery techniques have been employed as electroporation
and gene gun techniques 2”’. In recent years Nano particles®®® were used to both protect
DNA from degradation and to increase the phagocytic activity of APCs (antigen

presenting cells).
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1.8 HYPERBARIC OXYGEN THERAPY

Hyperbaric oxygen therapy (HBOT) is exposure to pure oxygen (100%) at higher
pressure (>1 bar) than at the sea level. HBOT has been used for many years as a
therapeutic agent for several indications such as carbon monoxide and cyanide

286,287

poisoning HBOT has also been used as an adjuvant treatment for patients with

diabetic foot ulcers?®.

HBOT activates several mechanisms with potential relevance for improving wound
healing. HBOT improves neutrophil function and helps to combat bacterial infections
and can be used as an alternative therapy for treating drug resistant microorganisms®
22 HBOT has a vasoconstrictory effect having a positive effect by reducing edema
around the wounded tissues®®’. HBOT stimulates the activity of osteoclasts, activates
fibroblasts and stimulates angiogenesis with potential positive effects on wound

healing®®.

Angiogenesis (formation of new blood vessels from pre-existing vessels) and
vasculogenesis (formation of new vessels by endothelial progenitor cells) are two main
mechanisms that contribute to neovascularization. Angiogenesis is stimulated by local
factors such as VEGFA and vasculogenesis by recruitment and differentiation of
endothelial progenitor cells (EPC)***?*. Extracellular matrix (ECM) is the largest
component of skin and is composed of polysaccharides, collagen proteins etc. HBOT
enhances extracellular matrix formation, an oxygen dependent process important for
neovascularization and wound healing®">%. Stem/progenitor cells migrate to the site of
tissue injury, replace the cells lost and act as a repair system for the wound healing
process. Nitric oxide synthase 3 (NOS-3) activity is important for EPC mobilization®™
and exposure to HBOT rapidly increased the EPC mobilization by increasing the NO
synthesis in humans and mice®®. However EPC mobilization is impaired in diabetic
patients probably due to decreased NOS-3 activity in presence of high glucose and
insulin resistance® >, In reperfusion studies it has been shown that leukocytes bind to
ischemic tissues, releases free radicals and proteases leading to damage of the
tissues®®3%. Hyperbaric oxygen treatment reduces the adherence of leukocytes and

%7 Moreover HBOT has several anti-

308

improves the recovering of the ischemic tissues
infectious effects as it improves bactericidal action of leukocytes™, increases free
radical production and oxidation of proteins and lipids in the bacterial membrane
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inhibiting consequently the bacterial metabolic function®**'°. Also, an increase in
partial oxygen pressure in the environment creates an unfavorable condition for

anaerobic bacteria®'.

HBOT has potential complications although with low incidence as middle ear

312,313

barotraumas . Reversible myopia is a problem normally seen due to oxygen

toxicity®*?. Animal studies showed development of cataract after prolonged HBOT

treatments®*436,

Several clinical trials were conducted to assess the role of HBOT in the treatment of
diabetic foot ulcers. Even though most of the studies reported positive effect some
methodological issues preclude a clear conclusion. A lot of studies were retrospective or
when they were performed prospectively they were non-blinded or unclear randomized
17 However a recent monocentric, double blinded and clearly randomized study points
out on improved wound healing and improved quality of life after one year 3 *8, Even
though the other prospective studies with enough quality to be taken in consideration
suggest a superior effect of HBOT on diabetic wounds they show absence of variation in
the control group (no healing) ***%° that contribute to a high heterogeneity (1=85%) that
preclude observation of a positive effect after one year ***. It is therefore a big need for
additional clearly defined studies with more participants that could define the exact
subgroup of patients that will benefit most from the HBOT.
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2 AIMS

The overall aim of the work presented in this thesis was to investigate specific
pathogenic mechanisms that contribute to the defective wound healing in diabetes in
order to suggest potential new therapeutic targets.
Specific aims
e To identify intracellular pathways modulated by high glucose levels with
potential relevance for wound healing processes.
e To study the mechanisms by which glucose contributes to HIF and Notch
modulation
e To study the potential therapeutic effect of HIF and Notch modulation for
diabetic wound healing
e To study the effect of HBOT on HIF signaling and the therapeutic relevance for
diabetic wound healing.
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3. MATERIALS AND METHODS

Animals: C57BL/KsJm/Leptdb(db/db) diabetic mice and their heterozygotes control
non-diabetic littermates (age 14-20 weeks) were originated from breeding pairs obtained
from Charles River (Belgium) (Paper I, I1, 1V). Db/db mice represent a commonly used
model to study type 2 diabetes complications. Due to a deficient leptin signaling, these
mice become hyperphagic with subsequent obesity, hyperglycemia and dyslipidemia
after 8 — 10 weeks of age®?,

Skin specific Notch 1 knockout mice (Paper IlI) were generated from crossing

lelox/leon females KRT14-Cre males (Breeding pairs obtained from Charles River,

Belgium), and in F1, leIOX/ *. KRT14-Cre/+ male offsprings were backcrossed to

unrelated NlﬂOXINlfIOX females. The F2 leloxlﬂox; KRT14Cre+/+ mice displayed

typical hair phenotypes (without hair) but not all the other offsprings (leIOX/+;

KRT14-Cre/+, NlﬂoxlNlﬂOX or NlﬂOX/ +). Heterozygous NlﬂOX/ * were used as
controls. Female BALB/C mice, 6 to 8 weeks old were used for DII4 vaccination
experiments (Paper Il1I). All animals were maintained under controlled light and
temperature, with free access to standard food and water. The experimental procedure
for animals was approved by the North Stockholm Ethical Committee for care and use
of laboratory animals.

Streptozotocin  Induced Diabetes: Diabetes was induced in N1,
KRT14Cre+/+ mice and Heterozygous N1"/* by streptozotocin (STZ) according to the
instructions from AMDCC (Animal Models of Diabetic Complications Consortium).
Briefly, the animals (8-10 weeks) received 50mg/kg STZ mixed in sodium citrate buffer
(i.p) daily for five consecutive days. All the treated mice became diabetic after 2 weeks
from the first STZ injection. Animals were kept diabetic for three weeks before the start

of wound healing experiment (13-14 weeks).

Wound Model: Following blood glucose control, general anesthesia was performed
with 3% isoflurane (Abbott). The hair of the back was shaved with an electric clipper

followed by a depilatory cream. The skin was rinsed with alcohol and two full-
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thickness wounds extending through the panniculus carnosus were made on the
dorsum on each side of midline, using a 6-mm biopsy punch. A transparent dressing
(Tegaderm; 3M) was applied to cover the wounds after topical application of drugs:
Paper I: 100 pl of DMOG (2 mM), DFX (1 mM), or vehicle alone, Paper I, IV: four
injections of 20 pl of the viral suspension (10° pfu/ml) containing HIF-1 V-N, HIF-1
V-NC, or LacZ-expressing adenoviruses were injected intradermally into the wound
edges using a 30-gauge needle , Paper IT 100 pl of DAPT (100 uM), L-685, 458 (100
uM) or DMSO control, and in STZ induced diabetic Notchl knockouts. Following
the surgical procedure, the animals were individually housed. During the first 2 days,
the animals received s.c. buprenorphine (0.03 mg/kg) twice a day for relief of any
possible distress caused by the procedure. In the experiments aimed to analyze
histology, mRNA, or protein expression, the wounds were harvested at 7 days after
surgery (=50% closed). Freshly made treatment was applied through the dressing
using a 30-gauge needle every other day. Viruses (HIF-VN, HIF-V-NC, LacZ) were
inoculated once at the beginning of the experiment, all the other treatments every

other day. Each treatment was evaluated in 10 animals per group.

Wound Analysis: Digital photographs were recorded at the day of surgery and every
other day after wounding. A circular reference was placed alongside to permit
correction for the distance between the camera and the animals. The wound area was
calculated in pixels with ImageJ 1.32 software (National Institutes of Health),
corrected for the area of the reference circle and expressed as percentage of the

original area.

Tissue Preparation and Histological Analysis: After fixation in formalin, the
samples were embedded in paraffin and sectioned (5 um). For histological evaluation,
sections were deparaffinized and rehydrated followed by hematoxylin and eosin
staining. All slides were then evaluated by light microscopy by two independent
observers unaware of the identity of the biopsy, using a semi-quantitative score to
evaluate vascularity, granulation, and dermal and epidermal regeneration as
previously described®? and internally validated in our laboratory. We used four-point
scales to evaluate vascularity (1, severely altered angiogenesis with one or two
vessels per site and endothelial edema, thrombosis, and/or hemorrhage; 2, moderately
altered angiogenesis with three to four vessels per site, moderate edema and
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hemorrhage, but absence of thrombosis; 3, mildly altered angiogenesis with five to
six vessels per site, moderate edema, but absence of thrombosis and hemorrhage; and
4, normal angiogenesis with more than seven vessels per site with only mild edema
but absence of thrombosis and hemorrhage) and granulation tissue formation (1, thin
granulation layer; 2, moderate granulation layer; 3, thick granulation layer; and 4,
very thick granulation layer) and a three-point scale to evaluate dermal and epidermal
regeneration (1, little regeneration; 2, moderate regeneration; and 3, complete

regeneration).

Immunohistochemistry staining and Evaluation: We evaluated microvessel density by
semi-quantitative, double-blind analysis of the specific binding of GS-1 isolectin B4 to
microvascular structures using a four-point scale (0, no positive vessels; 1, low number
of positive vessels; 2, moderate number of positive vessels; and 3, high number of
positive vessels). Isolectin B4 binding was performed using biotinylated isolectin B4
(diluted 1:25). Expression of the adenovirus-mediated transfer of f-galactosidase was
evaluated by immunohistochemistry using anti-B-galactosidase antibody (1:500) from
Abcam. Matched 1gG isotype controls were included for each marker. In paper I, the
hypoxia level within the wounds was evaluated using the Hypoxiprobe kit (Natural-

Amersham Pharmacia) following the instructions of the manufacturer.

Cell Culture: Primary Human Dermal fibroblasts (HDFs) (Promocell, Germany),
Mouse embryonic fibroblasts (MEFs) (kindly offered by Dr. Daiana Vasilcanu, Cancer
Centrum Karolinska), Primary mouse skin fibroblast cultures (prepared as described in
the next section) - HDFs, MEFs and 3T3 cells were cultured in DMEM (5.5 mM
glucose) supplemented with 2mM L-glutamine, 100 IU/ml penicillin and
streptomycin, and 10% heat-inactivated FBS (Invitrogen). Human Dermal
Microvascular endothelial cells (HDMECs) purchased from Promocell, were cultured
in the ready to use medium provided by Promocell. All the cells were maintained in a
humidified atmosphere with 5% CO2 at 37 °C in a cell culture incubator. Only cells
between passages 4 to 9 were used. The human SKRC-7 cell line, originating from
renal carcinoma from a patient with point mutated VHL, was kindly provided by E.

Oosterwijk (Nijmegen, The Netherlands) and maintained as described®** .

Establishing fibroblast primary cell culture: Primary mouse skin fibroblasts were

established by skin explant technique®”®. The cells were maintained in a humidified
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atmosphere with 5% CO, at 37 °C DMEM (5.5 mM glucose) supplemented with 2
mM L-glutamine, 100 1U/ml penicillin and streptomycin, and 10% heat-inactivated

FBS. Only cells between passages 4 and 9 were used (Paper I).

Hypoxia treatment: Cells were incubated in a Modular Chamber (Billups-Rothenberg)
which is flushed with a gas mixture (95% N, and 5% CO;) until the oxygen
concentrations lowered to 1%, oxygen levels were constantly measured and monitored

by an oxygen meter (Dréger) (Paper ).

Activation of Notch signaling using Recombinant ligands: Cell culture plates were
first coated overnight with Protein G (Invitrogen) 50 mg/ml in PBS at room temperature
(RT) and then washed two times with PBS and blocked with 3% BSA in PBS for 2 h at
RT. Plates were washed again two times with PBS and incubated with either
recombinant Jagged1-FC chimera, 5.8 pg/ml (Ct.No — 599-JG from R&D systems) or
DII4-CF, 2 pg/ml (Ct.N0-1389-D4/CF) for 2-4 h at RT. After washing two times with
PBS, cells (MEFs and HDFs) were immediately plated and then grown in DMEM
containing either 5.5mM or 30mM glucose (Paper II).

Reporter Gene Assay: In Paper I, 3T3 cells were transfected with 500 ng of a GAL4-
driven luciferase reporter gene plasmid and 10 ng of NTAD residues (pFLAG-GAL4-
mHIF10-[531-584]) or CTAD residues (pFLAG-GAL4-mHIF1a-[772-822]) using
Lipofectamine 2000 (Invitrogen) in 60-mm plates, following the instructions of the
manufacturer. In Paper 1l, HDFs placed on Jagggedl coated plates were transfected with
500 ng of 12XCSL luciferase reporter gene plasmid (kindly offered by Dr. Teresa
Pereira, CMB) using Lipofectamine 2000 (Invitrogen) in 100-mm plates, following the
instructions of the manufacturer. In Paper 1V, Transcriptional activity of HIF-1a was
assayed using a plasmid (pT81/HRE-luc) containing hypoxia responsive element (HRE)
from erythropoietin. HDFs were co-transfected in 12 wells plates with 500ngs of HRE
plasmid and 25ngs of Renilla plasmid (used for normalization) (Promega) using
Lipofectamine 2000 in Optimem (Life Technologies) for 3h, when the medium was
changed to regular cell culture medium (DMEM with 10% FBS). After exposure to the
planned experimental conditions, the luciferase activity was assayed (BioThema) in the
cell extract and expressed relative to the total protein concentration as evaluated by
Bradford method (Bio-Rad) (as described in the Paper I, Il accordingly)or relative to
Renilla activity (as described in the Paper 1V).
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RNA interference experiments: In Paper |, Human dermal fibroblasts were
transiently transfected with 200 pmol per well of either pVHL-siRNA (Hs_VHL 5 HP
validated siRNA S102664550 for gene pVVHL) or scrambled siRNA from Qiagen using
HiPerFect. transfection reagent (Qiagen). After 48 h, cells were exposed to different
glucose concentrations (5.5 mM and 30 mM) for another 48 h when the RNA was
prepared as described. In Paper Il, siRNA oligos against Notch 1,3 and 4 were
obtained from Sigma (SASI_MmO01_ 00104901 N1, SASI_MmO01_00057178 N3,
SASI_Hs01_ 00052678 N4). All stars negative control (scrambled) siRNA from
Ambion was used as a scrambled siRNA control. All sSiRNAs were reconstituted under
RNase-free conditions according to the manufacturer’s protocol, using the buffers
supplied. HDFs or HDMECs were transfected with the 20nM siRNAs at a confluence
of 80-90% with HiPerFect Transfection Reagent (Qiagen) in OPTIMEM-1 medium
(GIBCO) according to the supplier’s protocol. Transfected cells were trypsinised and

used for either migration assay or angiogenesis assay

In vitro Migration assay: The cell migration was studied using the “in vitro scratch”
assay as described®®. Briefly, HDFs were plated in 12 wells cell culture plates that were
pre-coated with collagen (50 pg/ml) and blocked with BSA (3% BSA in PBS). After
reaching confluence, the cells were serum starved (overnight) and a scratch was
performed with a micropipette tip on the following day in each well. After rinsing with
PBS the HDFs were incubated for additional 16 hours with a gamma secretase inhibitor
(10 uM DAPT or 10 uM L-685,458) or with control (DMSQO) dissolved in DMEM
supplemented with 0.2% FBS with different glucose concentrations (5.5mM or 30mM).
Mitomycin C (10 pg/ml) was included in the media to prevent cell proliferation. Pictures
were taken immediately after scratching (basal level) and after 16 hours with a digital
camera coupled to an inverted phase microscope. The relative migration of the cells was
calculated from the area measured 16 hours after scratching relative to the basal area
expressed in pixels, using Imagel 1.32 (N.I.H., USA) software. The results were
expressed as percentage from the migration of the cells grown in 5.5mM and exposed to

control (Paper II).
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In vitro Angiogenesis Assay: HDMECs were seeded at a density of 1 x 10* cells/well in
150 pl culture medium in a 96-wells plate pre-coated with 50 ul EC-Matrigel/well
(Chemicon; Cat. No. ECM625). The tube formation was quantified 12h after the
treatments (DMSO, DAPT, VEGFA or siRNA specific to Notch 1 and 4) by counting
the number of sprouting tube-like structures at randomly 5 selected fields under an
inverted phase contrast microscope at 40 x magnifications. Three independent
experiments were performed, and the data was presented as the total number of tubes

formed in each experiment (Paper I1).

Hyperbaric oxygen treatment:

For the in vitro experiments the cells were exposed to HBO (100% oxygen at 2.5bar
absolute pressure) for 1hr in a hyperbaric oxygen chamber while the cells used for
control were simultaneously placed outside the chamber. For the in vivo experiments the
animals were placed in an animal hyperbaric oxygen chamber (RSI-B11; Reimers
Systems) and exposed to HBO at 2 bar abs for 90-min. The untreated control mice, were
placed outside the hyperbaric chamber in the same room. HBOT session for in vivo
experiments begins with a progressive increase in pressure for 15min, followed by
60min of continuous exposure to 100% oxygen at 2 bar absolute. After 60min of
exposure the pressure in the chamber is slowly reduced during a 15min period. After the

procedure the animals were placed in single cages in the animal care room.

3H-thymidine incorporation assay: MEFs HIF+/+ and MEFs HIF-/- cells were plated at
a density of 2 x 10* cells/well in a 6 wells plate. Cells were starved overnight and then
exposed for two successive exposures to HBO for 60min (as described in hyperbaric
oxygen treatment). After 24 h from the last HBO exposure 1 pCi/ml of *H-thymidine
(PerkinElmer, Boston, MA, USA) was added to each well. Four hours later the cells
were washed twice with cold PBS and then with cold 5% TCA followed by
solubilization with 0.5 N NaOH. The solubilized cells (400 ul) were mixed with 4 ml
scintillation liquid and counted in a beta counter (Packard BioScience, Downers Grove,
IL, USA).

Western Blotting: Western Blot analysis was performed for evaluating HIF (Paper | &
IV), Notch 1 intracellular domain (Paper 1) and expression of plasmid vaccine protein

(Paper 1V). Proteins from cells or skin (extracted using 2-mm Zirconia beads and a mini-
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bead beater (Biospec Products)) were extracted using RIPA Buffer in the presence of
protease inhibitors as described™®. The same amount of protein was loaded in SDS gels
(7%), separated by electrophoresis and transferred to a nitrocellulose membrane (Bio-
Rad). The membranes were blocked in 5% milk and further incubated first with the
primary antibody for 3hrs in 0.1% Tween PBS, and then incubated with HRP
conjugated anti-goat secondary antibody (Thermo Scientific, 1:3000). After extensive
washing with PBS the complexes were visualized using enhanced chemiluminescence

(GE Health Care) according to the manufacturer’s instructions.

Quantitative Real time — PCR: Total RNA was isolated from cells using RNeasy RNA
extraction kit (Qiagen), and from skin using an RNeasy Fibrous Tissue Mini Kit
(Qiagen). cDNA was obtained by reverse-transcribing total RNA with SuperScript 111
and first-strand synthesis Supermix for quantitative RT-PCR according to the
manufacturer's recommended protocol (Invitrogen). The primers (as described in papers

I, 11, 1V) designed by using the Primer 3 program (http://frodo.wi.mit.edu) or choosen

from Harvard primer bank (http://pga.mgh.harvard.edu/primerbank/). Real-time PCR

was performed in an Applied Biosystems 7300 or 7900 units using Platinum SYBR
Green quantitative PCR Supermix-UDG with ROX reference dye (Invitrogen). After
incubation for 2 min at 50 °C and 2 min at 95 °C, a two-step cycling protocol (15 s at 94
°C, 30 s at 60 °C) was used for 40 cycles. The melting curve analysis was done using the
program supplied by Applied Biosystems. The quality of the quantitative PCR run was
determined by standard curves and melting curve analysis. The amplification products

were verified by sequencing.
Statistical analysis: Differences between groups were computed using one-way analysis

or two way repeated measures of variance (ANOVA) as appropriate, with Bonfferoni

post hoc test. A p<0.05 was considered statistically significant.
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4 RESULTS AND DISCUSSION

Diabetic foot ulcer represents a major complication of diabetes that may lead to
amputation. For the moment, there is no specific therapy available for diabetic foot
ulcers and it has become a priority to develop novel rational therapeutic strategies based
on new pathophysiological mechanisms. Our focus was therefore to delineate relevant
pathogenic pathways specifically deregulated in diabetes that could contribute to the

defective wound healing.

4.1 High glucose modulates cellular pathways with potential relevance
for wound healing

(Paper I and Paper I11)

The central pathogenic factor for development of complications in diabetes is high
glucose concentration. During the last decade hypoxia has also started to be recognized
as an important pathogenic contributor to chronic complications of diabetes. Major
findings in the present thesis consist of the description of two new cellular pathways
with high relevance for wound healing that are specifically modulated by hyperglycemia
and contribute to defective wound healing in diabetes i.e. repression of HIF-alpha
pathway in hypoxia (Paper 1) and induction of Notch Signaling (Paper I1).

We first focused on the modulation of HIF-1 alpha in two cell types, essentially affected
during development of chronic complications of diabetes i.e. primary human dermal
fibroblasts (HDFs) and human dermal microvascular endothelial cells (HDMECs). In
normoxia, we could not detect any influence of high glucose concentrations on HIF-1
alpha expression. However, the hypoxia-stabilized HIF-1 alpha is impaired by glucose

as previously described by our group and others®"3%

. The repressive effects of high
glucose on HIF-1 alpha stabilization were described in other primary cells and tissues
also but are different in transformed tumor cells pointing out on its specificity for

diabetes (data not shown).

High glucose destabilizes HIF-1 alpha as early as after 6hrs which highlights the
potential relevance for the immediate cell reaction to hypoxia in acute ischemic events

(acute myocardial infarction, stroke). The HIF repression induced by hyperglycemia
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continues even at later time points with potential significance for chronic complications
of diabetes since most of the tissues prone to develop complications share a hypoxic

environment (kidney, nerves, retina etc.).

In order to further understand the intimal mechanism behind the effect of hyperglycemia
on HIF-1 alpha stability we investigated the potential involvement of pVVHL dependent
degradation mechanism, we could appreciate that hyperglycemia contributes to HIF-
lalpha degradation through a pVHL-dependent mechanism since HIF-1 is no longer
modulated by hyperglycemia in renal carcinoma cells that lack functional pVHL and
traditional target genes as VEGFA are no longer modulated in HDF if VHL is
specifically silenced. However, VHL expression is not induced by hyperglycemia
suggesting that hyperglycemia just increases the sensitivity of HIF-1a to VHL
dependent degradation. The same VHL dependent degradation modulated by glucose

was also observed in myotubules but not in tumoral cells**.

In concordance with the VHL mediated degradation of HIF-1lalpha in hyperglycemia
PHD inhibitors are able to reverse the repressive effect of glucose. The negative
regulatory effect of glucose was not only restricted to the stability of HIF-1lalpha but
also affected both HIF-1 alpha transactivation domains NTAD and the CTAD. In
agreement with our results, it has been shown that hyperglycemia induced decrease in
transactivation of HIF-1 alpha and limited the HIF-1 alpha function®. The repressive
effect of hyperglycemia on both HIF-1alpha stability and transactivation was mirrored
by down-regulation of several HIF-1a target genes essential for wound healing such as
heat shock protein 90 (HSP-90), VEGF-A, VEGF-R1, stromal cell-derived factor
(SDF)-1a, and stromal cell factor (SCF) .

The Notch signaling pathway is involved in many cellular processes with potential
relevance for wound healing as cell differentiation, cell migration, proliferation,

angiogenesis etc245,249,332,333

. In Paper Il, we have observed activation of Notch
signaling in skin of different diabetic animals, as assessed by relative mRNA expression
of several Notch target genes. We have therefore investigated if high glucose has direct
effect on Notch signaling in HDFs and HDMCEs. Exposure to high glucose
concentrations induces indeed the active intracellular domain (NICD) which is followed

by Notch mediated transcriptional activation as shown by induction of the highly Notch
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specific 12XCSL-luc reporter assay. Hyperglycemia induces the Notch signaling at a
level before the cleavage of Notch receptor since treatment of the mouse embryonic
fibroblasts (MEFs) with gamma-secretase inhibitor (DAPT) cancel the stimulatory
effect of high glucose concentration on Heyl. Moreover the stimulatory effect of
hyperglycemia on Notch signaling is not restricted to the fibroblasts but affects also
other cells with important roles in wound healing e.g. human dermal microvascular
endothelial cells (HDMEC) where several Notch-related genes (Notchl, Notch4, Hesl)
were induced by exposure to high glucose concentrations. The level of glucose inducing
effect on Notch signaling is common in different tissues since y-secretase inhibitors are
able to cancel the effect of hyperglycemia on functional assay performed both in HDF
(migration assay) and in HDMEC (in vitro angiogenesis). Modulatory effects of
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hyperglycemia on Notch signaling were found as well in podocytes and in neural

stem cells®*,

4.2 Glucose affects HIF-1 alpha function by different mechanisms

High glucose modulates HIF-1 stability and function at multiple levels. The effect is
however restricted to posttranslational level (figure 6) since HIF-1 alpha RNA were not
influenced by High glucose concentrations in either hypoxia or normoxia.

Hypoxia
Glucose (mM) 55 30 55 30

HF10 | e e - -
B.actin w

Figure 6: Hyperglycemia Impairs HIF-1 alpha staiblity
in mouse dermal fibroblasts

Hyperglycemia modulates HIF-1 alpha degradation since it has been shown that the
effect of high glucose on HIF-1alpha stability is cancelled if the cells were exposed to
the proteosomal inhibitor, MG132 **". Moreover we could establish that the effect of
glucose is mediated by a pVHL dependent mechanism. It is however an increase of the
interaction between VHL and HIF-1alpha which is activated by hyperglycemia since

32



VHL levels are not modulated by glucose. In concordance with the central importance of
prolyl hydroxylation for facilitating the interaction between HIF-lalpha and VHL
prolylhydroxylases (PHD) inhibitors (DMOG and DFX) are able to rescue at least
partially the effect of hyperglycemia on HIF-1 alpha stability and function both in
normoxia and in hypoxia. However, it should be stressed that HIF-1 alpha
destabilization in high glucose is only partially reversed by the PHD inhibitors
suggesting the role of other mechanisms, in addition to proline hydroxylation, as already

suggested before®”’.

Methylglyoxal is a reactive a—oxoaldehyde produced in the cells exposed for long time
to hyperglycemia that was reported to modulate HIF-1 reaction to hypoxia.
Methylglyoxal modifies HIF-1a at two specific residues, arginine 17 and arginine 23,
and reduces its interaction with HIF-1 beta. 3. Moreover methylglyoxal affects p300
interaction with HIF-1a and interferes with HIF-1 transactivation. An important role was
identified in one residue in p300 since mutation of arginine 354 of p300 restored its

interaction with HIF-1a in presence of high-glucose®*

. Methylglyoxal increases HIF-
lalpha degradation by increasing its interaction with molecular chaperones CHIP,
HSP40 and HSP70 which eventually leads to polyubiquitination of HIF-1a and its

degradation®*°

. Methylglyoxal leads to accumulation of CHIP, Hsp40 and decreases the
levels of the molecular chaperone Hsp90. It is however a more complicated interaction
in the presence of hyperglycemia since CHIP and HSP 70 contribute to HIF-1alpha
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degradation but not HIF-2alpha degradation which is in discordance with our

observation that hyperglycemia destabilizes HIF-2alpha to the same extent as HIF-

0338

lalpha. Interestingly, Methylglyoxal decreases Hsp90°*and can modulate HIF-lalpha

stability by this way since Hsp90 has an established role for stabilization of HIF-1

108,339

alpha

Several other factors could play a significant role in the destabilization of HIF in
presence of high glucose. For example, p53 is able to interfere with HIF-1 alpha stability
and activity by a pVHL independent mechanism®*° and it is induced by high glucose®*.,
However HIF-1 alpha is still destabilized by high glucose in fibroblasts deficient of
p53**. Sumolyation is an important process in HIF-1 alpha stability, RSUME an
inducer of SUMOylation increase SUMO conjugation with HIF-1 alpha and stabilize
HIF-1 alpha™™ during hypoxia. Sirtuins regulates protein functions by sumolyation and
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SIRT1 sumolyation regulates activity of HIF-1 alpha and participates in HIF-1 alpha

accumulation and transcriptional activity under hypoxia®*?
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. High glucose reduces SIRT1
expression levels and enzyme activity”™™ making SIRT1 a potential mediator of

hyperglycemia on HIF-1 alpha destabilization in diabetes.

By investigating mediators of hyperglycemia on HIF function we will be able to identify
new specific therapeutic targets to rescue the repressed reaction of the cells to hypoxia

characteristic in diabetes.

4.3 HIF-1 alpha stabilization improves the defective wound healing in diabetes
(Paper I & 1V)

To assess the in vivo significance of the modulation of HIF by hyperglycemia we have

further studied the modulation of HIF-1 in experimental diabetic wounds.

In perfect agreement with the in vitro results, a general repression of HIF-1 signaling
was recorded in wounds in diabetic mice (db/db) despite profound hypoxia as evaluated
by pimonidazol staining. We observed both lower levels of HIF-1 alpha expression and
lower levels of HIF target genes with relevance for wound healing (Paper I). These data
are in agreement with previous reports in patients with diabetic chronic foot ulcers that
express lower levels of HIF-1lalpha compared with patients with chronic venous ulcers
despite the same levels of hypoxia **'. The same destabilization of HIF-lalpha in
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diabetic skin was also reported by others®". Moreover, the fibroblasts isolated from the

skin of diabetic patients are unable to induce VEGFA in response to hypoxia exactly
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like fibroblasts from diabetic mice®™". We also observed the same inappropriate HIF

reaction to hypoxia in diabetic kidneys**.

Low oxygen levels as a consequence of macro- and micro- angiopathy are present
locally in patients with diabetic foot ulcers or diabetic neuropathy***3*’. Based on our in
vitro and in vivo observations on the repression of HIF-1 signaling by hyperglycemia we
hypothesized that in diabetes the defect of the cells to adapt to hypoxia might play a
central role in development of chronic complications. To test this hypothesis we choose
to study the therapeutic potential of HIF-1 alpha induction for wound healing in db/db

mice (Paper I) that are the best rodent model for wound healing defects in diabetes®.
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For inducing HIF-1 in the wounds we have used either compounds that interfere with
activity of HIF hydroxylases, by chelating Fe?* (DFX) or by competing with 2-
oxoglutarate (DMOG) (Paper 1) or by hyperbaric oxygen therapy (HBOT) (Paper V).
All the above treatments were able to induce HIF-1 alpha accumulation, and expression
of HIF target genes essential for wound healing (HSP-90, VEGF-A, VEGFR1, SDF-1,
and SCF).

Local application of HIF hydroxylase inhibitors (DMOG and DFX) or treatment with
HBO improved the healing process in db/db mice despite the presence of persistent
chronic hyperglycemia (Paper | and 1V). However to obtain direct evidence of HIF-1
role in the diabetic wound healing, we performed a gain of function studies with
adenoviruses expressing stable forms of HIF-1 alpha (V-N and V-NC) in which both the
critical proline residues have been substituted with alanine’s. Indeed local injection of
adenoviruses containing stable HIF-1 alpha around the wound edges improves the
wound healing rate in db/db mice confirming the central role of HIF-1 repression as
pathogenic defect in diabetic wounds. The positive effect of local HIF induction for
wound healing in diabetes was shown in other experimental designs as well using either

chemicals or virus mediated transfer 3%,

The functional consequence of HIF
hydroxylases on diabetic wounds improved several processes important for healing (i.e.,
granulation, vascularization, epidermal regeneration, and recruitment of endothelial

precursors).

4.4 Diabetes Impairs of HIF-1 alpha regulation in several tissues

There is a large body of evidence supporting that HIF-1a is destabilized by high
glucose concentrations. Moreover inappropriate low levels of HIF-1 are found in
diabetes in several tissues with negative consequences. Biopsies from patients with
diabetic foot ulcers showed decreased HIF-1 alpha levels compared to patients with
venous ulcers that share the same hypoxic environment but are not exposed to

327

hyperglycemia®". The functional relevance of this observation was confirmed by other

groups beside us that have also shown that gene-based therapy with HIF-lalpha

induced acceleration of wound healing and angiogenesis in diabetic mice®3*3,

Diabetes impairs through HIF-1 hypoxia-induced production of SDF-1, CXCR4,
VEGF and eNOS and lead to endothelial dysfunction. Hyperglycemia represses HIF-1
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%1 The same

alpha and is followed by an increase in the myocardial infarct size in rats
dysfunction of HIF-1 in presence of hyperglycemia is followed by decreased
angiogenesis in diabetic patients®****. However overexpression of HIF-1 normalized
VEGF levels and improved myocardial capillary network following myocardial injury

in diabetic mice®* .

In addition, increased expression or stabilization of HIF-1a is critical to increase limb
perfusion and function in diabetic mice, along with an increase in the number of
circulating EPCs and vessel density®°. A polymorphism of HIF-1alpha (P582S) that
confers relative resistant to the repressive effect of hyperglycemia is associated with
protection against nephropathy in patients with type2 diabetes>*>3*0%>7

HIF is suggested to play an important role for the function of beta cells in diabetes as
well. Several opposing data concerning the effect of the manipulation of the HIF-1

358,359,360,361.362

system in beta cells are available suggesting that both excessive and

inappropriate HIF-1alpha is deleterious for insulin secretion®®?. A polymorphism in

HIF-1alpha was associated with type 2 diabetes>*3%0%%7,

4.5 Blocking overactive Notch signaling improves wound healing in diabetes
(Paper Il & 111)

Overactive Notch signaling in vivo confirmed our in vitro data. Notch signaling is
overactive in the skin of different model of diabetes both in mice and in rat as reflected
by induction of several Notch target genes (Paper I1). Using a specific antibody against
the active Notch 1 intracellular domain we could confirm an intense expression of NICD

in the granulation tissue of the diabetic wounds (Figure 7).

4
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Figure 7. Notch-1 intracellular domain expression in venous and diabetic
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To unravel the pathophysiological role of overactive Notch for the diabetic wound
healing, we have blocked Notch signaling using gamma secretase inhibitors (DAPT and
L-864, 548) in experimental wounds performed in db/db mice. Both compounds
improved significantly the wound healing process highlighting the pathogenic role of
glucose-stimulated Notch signaling (Paper I1). Moreover, the positive effects of
blockage of the Notch signaling on wound healing seem to be specific for diabetes. We
could not observe any effect of the gamma secretase inhibitors (Paper I1) or DIl4 DNA
vaccine (Paper 1V) on wound healing rate in non-diabetic mice that confirms previous
observations******, Discordant effects were observed in other wound healing models as
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corneal epithelial wound healing that might be a consequence of effectivity of the

manipulation of the Notch signaling®’.

Blocking the overactive Notch signaling in wounds increased the angiogenesis as
assessed by isolectin staining and markers of tip cell formation and angiogenic sprouts
as assessed by relative expression of vascular endothelial growth factor receptor 2
(VEGFR-2), Platelet derived growth factor B (PDGF-B)**® and vascular endothelial
growth factor receptor 3 (VEGFR-3)** (Paper 11). Moreover, treatment with DAPT is
followed by an increase in the expression of chemokines with essential roles in the
recruitment of endothelial precursor cells as SDF-1°"° and SCF**. Taken together
gamma secretase inhibition in diabetic wounds improves the diabetes-dependent
repression of granulation and angiogenesis at multiple levels.

These effects were indeed confirmed in vitro by blockage of Notch signaling in HDF or
in keratinocytes (figure 8) by exposure to gamma secretase inhibitors (DAPT and L-
685,458) rescued the inhibitory effect of hyperglycemia on cellular migration.
Moreover, the same treatment increased the in vitro angiogenesis in HDMECs.
However, the positive effects of Notch inhibition on migration and angiogenesis are
mediated exclusively through Notchl receptor, since Notchl specific siRNA but not
Notch3, Notch2 or Notch4 siRNA mimics the effects of gamma-secretase inhibitors
(Paper I11).

To investigate the role of Notchl receptor in diabetes repressed wound healing in vivo,
we studied the wound healing rate in skin specific Notchl knockout mice in which
diabetes was induced by streptozotocin. Diabetic skin specific Notchl knockout mice
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have a significantly improved healing rate compared to its diabetic heterozygote control
(Paper 11) pointing out the importance of Notch 1 receptor in diabetes and its essential

role in diabetic wound healing (figure 9).
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Figure 8. Relative rate of migration in Keratinocvites treated with gamma-secretase inhibitors
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Figure 9. Notch-1 deficiency in skin improves wound healing in diabetes mice,
with no additional effect of DAPT on Notchl knockout mice
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4.6 Hyperglycemia induced Notch signaling mechanisms

We here report for the first time that Notch signaling is activated in diabetic skin and
this effect is dependent on hyperglycemia. The mechanism behind the activation of
Notch signaling in diabetes is still unclear. We have however investigated some
potential mechanisms such as fringe and FoxO genes. Fringes (Manic, Lunatic and
Radical fringes) are regulators of Notch signaling, by mediating O-fucosylation and O-

372,373

glycosylation of EGF repeats on Notch receptors. These posttranslational

modifications modify the specificity of the interaction between receptors to ligands, and

modulate Notch activity in a number of tissue specific contexts %3

. For example,
lunatic fringe (Lfng) inhibits the Notchl and Jaggedl binding and potentiates Deltal
signaling through Notch1, but potentiates both Deltal and Jaggedl mediated signaling
through Notch2®™. Loss of Lfng enhances angiogenic sprouting by decreasing the
affinity of Notchl and DIl4 binding; in the same time, jaggedl competes with DII4 in
binding to Notch and thereby locally enhances angiogenic growth while Mfng
glycosylation of Notch further increases the DII4-Notch signaling®”®. Interestingly we
have observed increase in expression of the fringes and DII4 genes in the skin of diabetic
animals (Paper 1) that was reproduced by hyperglycemia in vitro (data not shown).
Moreover blocking fringes by siRNA treatment in HDMECs reversed the effect of
hyperglycemia induced Notch signaling however without been able to identify a specific

effect on any of the isolated fringes (figure 10).
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Figure 10. Relative gene expression of Noich target gene,
Hesl in presence of high glicose in fringe siRNA treated Endothelial cells
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FOX (Forkhead box) proteins plays important roles in regulating the expression of
genes involved in cell growth, proliferation, differentiation, and longevity*”’. FoxO1 and
Notch interact physically and functionally leading to activation of Notch target genes to
regulate the progenitor cell maintenance and differentiation®’®. Recent evidence suggest
a synergistic role of FoxO1 and Notchl on insulin sensitivity. Treatment with gamma-
secretase inhibitors improves insulin sensitivity in a FoxO1 dependent manner®’. This
stimulated us to study the potential role of FoxOl on Notch signaling in our
experimental system. We were able to observe that induction of the Notch target gene,
Hes1 by hyperglycemia (figure 11) in HDFs is cancelled when FoxO1 was specifically
silenced by siRNA suggesting a FoxO1 mediation. However, further investigation is
necessary to understand the exact underlying mechanisms of Notch activation by fringes
and FoxO.
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Figure 11.Relative gene expression of Notch target gene,
Hesl in presence of high glhicose in FoxO1 siBINA treated Endothelial cells

Notch signaling interacts as well with p53 pathway*". NICD1 is activated by p532" and
p53 is activated by hyperglycemia®. It is therefore tempting to propose this interaction

as potential mediator of the hyperglycemia effect on Notch signaling.
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4.7 HIF-1 alpha and hyperbaric oxygen therapy (HBOT) in treatment of diabetic
wounds (Paper 1V)

Hyperbaric oxygen has been used as an adjuvant therapy for many years in the
treatment of complicated diabetic wounds. However, the underlying mechanism is not
clear. We show here that HBOT induces HIF-1 alpha stabilization. This effect takes
place at later time points after exposure to high oxygen pressure, suggests that is not a
direct effect of oxygen but of other different mechanisms. Radical oxygen species
(ROS) excess during exposure to HBO could be such a mediator® since ROS
improve HIF-1 alpha stability and function **!. It is however difficult to accommodate
the ROS impairment of PHDs with the VHL independent regulation noted in HBO
exposure. However other potential VHL independent mediators could stabilize HIF in
HBOT as HSP90'", RACK1 *® Mdmz2 3 jun activation domain-binding protein-1
(Jabl) *! FOX04 * or GSK3 4 HBOT effect is via HIF-1 since it stimulated
proliferation of wild type MEFs (HIF+/+), but the proliferative effects were abolished
in HIF deficient cells (MEFs HIF-/-).

It has been shown that HBO stimulates the release of endothelial progenitor cells (EPC)
from bone marrow that finally home in the wounds and contribute to angiogenesis and
wound healing®*. However, this process is defective in diabetes due to low levels of
SDF-1 alpha, a cytokine that modulates the EPCs homing. Local application of SDF-1
alpha together with HBOT increases the healing rate in diabetic mice?****%® Taking
into account that SDF-1 is a target gene for HIF-1*"° and the importance of HIF-1 alpha
in diabetic wound healing in mice (Paper 1) we have studied the effect of combined
local induction of HIF-1 alpha with HBO treatment. Indeed adenovirus mediated
transfer of HIF-1 alpha improves the effect of HBOT on wound healing in db/db mice.
In perfect agreement with the central role of HIF-1 alpha as inducer of much more other
relevant target genes for wound healing above SDF-1, the transfer of HIF-1lalpha was
superior to the adenoassociated virus mediated transfer of SDF-1 alpha in potentiating
the effects of HBO on wound healing in db/db mice (Figure 12).
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Figure 12. HBO and Adenovirus HIF-1 alpha effects on wound healing in db/db mice
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5 POINTS OF PERSPECTIVES

The focus of our investigation was to identify new pathogenic mechanisms relevant for
the defective wound healing in diabetes. We have identified two new pathways that
contribute to the repressive effect of diabetes on wound healing and could propose new

therapeutic approaches.

The role of HIF, in diabetes was just emerging when this work started. We have further
investigated the mechanisms behind the repressive effect of hyperglycemia on hypoxia
induced HIF-1 alpha. We could show that hyperglycemia destabilizes HIF-1 alpha
through a VHL dependent mechanism- Moreover we could show that hyperglycemia
affects both transactivation domains of HIF but stabilization of HIF-1a is necessary and
sufficient for promoting wound healing in a diabetic environment.. We could make the
proof of concept concerning the central role of HIF for defective wound healing in
diabetes through improvement of healing in in an experimental model of diabetic
wounds by using either chemicals that induce HIF or through direct adeno-virus
mediated transfer of HIF. These results might offer the premises for conducting clinical
studies on wound healing in patients with diabetes. DFX which we used efficiently in
vitro and in vivo to induce HIF-1 alpha is already clinically approved for other
indications. Moreover inhibitors of HIF-1 hydroxylases are developed, for other

indications by several pharmaceutical companies.

Important future issues are the identification of the critical residues that are sensitive to
hyperglycemia-induced HIF-1 alpha destabilization and to identify the pathways
activated by hyperglycemia that lead to HIF repression in diabetes. Both these strategies

could suggest more specific future therapies.

Hyperbaric oxygen therapy (HBOT) has been proposed as a medical treatment for
diabetic foot ulcers. We demonstrated that HBOT activated HIF-1 alpha and contribute
to diabetic wound healing. Moreover, we could show that local transfer of a stable form
of HIF has an additive effect to HBOT improving wound healing in db/db mice. Further

studies on the HBOT and HIF-1 alpha contribution in wound healing in patients with
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diabetic foot ulcers will help to further tailor therapeutically use of potential
combination between HBOT and HIF alpha local induction.

Notch signaling was identified as another important pathway deregulated by
hyperglycemia with relevance for defective wound healing in diabetes. Notch pathway
is highly important for several cell fate decisions-. We demonstrated that hyperglycemia
could induce Notch signaling both in vitro and in vivo. Blockage of Notch signaling
induced by hyperglycemia using gamma-secretase inhibitors (DAPT or L-658,458)
resulted in positive effects on migration and angiogenesis in vitro, and improved wound
healing in diabetic mice. Moreover, we could show that these effects were specific for
diabetes, since treatment with either gamma-secretase inhibitors or DNA vaccine against
Dll4 did not influence wound healing in non-diabetic mice. We could also identify the
central pathogenic role of Notchl in Notch dependent defect in wound healing in

diabetes through loss of function genetic approaches (SIRNA and cre/lox system).

These results offer the premises for the use of gamma secretase inhibitors in clinical
studies in patients with DFU, as gamma secretase inhibitors have already been
developed and studied in humans, for other indications. However, the potential use of
specific Notch 1 inhibitors is of more interest in this context. Having in mind the
interplay between HIF signaling and Notch signaling during development it would be
highly interesting to further investigate the interaction between these systems in diabetes

in general and in diabetes wounds in particular.
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6 CONCLUDING REMARKS

HIF-1 alpha represent a potential therapeutic target for improving the defective wound

healing process in diabetes:

High glucose impairs HIF-1 alpha stability and function in vitro and in wounds
in diabetic mice

The repressive effects of high glucose involves a VHL-mediated degradation
mechanism

The increase of local HIF levels through blockade of the HIF hydroxylation or
through direct HIF-1 alpha adenoviral transfer results in improvement of wound
healing in diabetes.

HBOT induces HIF-1 alpha and the combination of HBOT with local HIF-1
alpha stabilization reverses the negative effects of diabetic wound healing in
mice.

HIF stabilization is critical for improving defective wound healing in diabetic

mice, activating all the essential steps of this process.

Hyperglycemia activates Notch signaling with repressive effect on wound healing in

diabetes Hyperglycemia activates Notch signaling at different levels with negative

effects on cell migration and angiogenesis

Blocking overactive Notch signaling using gamma-secretase inhibitors rescues
in vitro hyperglycemia repressed migration and angiogenesis, and improved
wound healing in diabetic mice

Notchl is the main player of the Notch negative effect for wound healing in

diabetes

In conclusion, we identified two new pathogenic mechanisms important for defective

wound healing in diabetes. Our findings warrant development of specific therapeutics

that address HIF and Notch signaling for improving the healing of diabetes wounds.
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