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ABSTRACT

Mammographic density is one of the strongest risk factors for breast cancer and has
been thoroughly studied as such. Extensive mammographic density also decreases
screening sensitivity, thereby increasing the risk of interval cancers. Whether density
acts as fertile ground for all types of breast cancer, or whether it influences tumor
growth in a specific direction, was not known when we embarked upon the studies of
this thesis. We therefore aimed to investigate the association between density, tumor
characteristics, molecular subtypes, recurrence, and survival, focusing on interval
cancers in the last study.

For studies I, 11, and IV, we used the cases included in a population-based case-
control study, in which cases were all Swedish women, aged 50-74, with incident
breast cancer, diagnosed 1993-1995 (n=3345). We only included postmenopausal
women with no prior history of cancer other than non-melanoma skin cancer and
cervical cancer in situ (n=2720). Of these women, 1774 women had eligible
mammograms.

For study I1, in which we investigated the relationship between density and
molecular subtypes, the study population was based on all women with breast cancer
operated at a large university hospital in Stockholm 1994-1996 (n=524). Women with
available gene expression profiling and mammograms were included in the study
(n=110).

Pre-diagnostic/diagnostic density of the unaffected breast was assessed using a
semi-automated, computer-assisted thresholding technique, Cumulus. Density was
either measured as the dense area in cm? (absolute density=AD) or percentage density
(PD) (the absolute dense area/the total breast area).

We did not find an association between density and tumor characteristics (lymph
node metastasis, hormone-receptor status, grade, and histopathological classification)
except for tumor size. However, this association seemed at least in part to be due to
masking delaying diagnosis. In accordance with the lack of association between PD and
most tumor characteristics, we did not find an association between density and
molecular subtypes, nor between density, distant recurrence, and survival. We did,
however, see a relatively strong association between PD and both local and
locoregional recurrence, independent of established risk factors.

In the last study, we investigated the differences in survival between interval
cancers and screening-detected cancers, taking mammaographic density into account.
We could show that interval cancers in both dense and non-dense breasts were
associated with poorer prognosis compared to screening-detected cancers. However,
the poorer prognosis seen in interval cancers in dense breasts seemed mainly
attributable to delayed detection, whereas the group of interval cancers in non-dense
breasts primarily seemed composed of truly aggressive tumors which we believe need
further study.
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1 INTRODUCTION

Breast cancer is the most common cancer in women in Sweden and worldwide.
Survival has improved greatly over the past decades, due to, among other things,
mammography screening and adjuvant therapy. However, ~1500 women still die of
breast cancer each year in Sweden. Although 5-year breast cancer survival is high,
which for most diseases reflects the curability of disease, a woman is unfortunately
never cured of breast cancer. She may therefore die from the disease even 20-30 years
after diagnosis.

Over the past decade, there has been growing evidence that breast cancer is not one
disease, rather it is composed of several different subtypes. These are heterogeneous
with respect to etiology, tumor characteristics, response to treatment, and prognosis.
Certain tumors could be described as indolent whereas others are highly aggressive.
Unfortunately, the currently clinically available prognostic factors are unable to
correctly stratify tumor subtypes; some women will therefore die despite adjuvant
therapy, and some women will receive adjuvant therapy who do not need it.

Mammographic density is one of the strongest risk factors of breast cancer but its role
in breast cancer development is poorly understood. The studies that form the basis of
this thesis aimed to investigate the role of mammographic density in carcinogenesis and
tumor progression. Is mammographic density a seedbed for all types of breast cancer,
or is it associated with a certain subtype or behavior? We hereby hoped to shed light on
breast cancer biology and to add valuable information to established prognosticators in
order to improve breast cancer care.



2 BACKGROUND

2.1 THE NORMAL BREAST

2.1.1 Breast anatomy and physiology

The breast lies on top of the pectoralis major muscle. It is composed of parenchyma,
stroma, and fatty tissue as well as skin and subcutaneous tissue. Bands of connective
tissue called Cooper’s ligaments are attached to the fascia of the skin and the pectoralis
major muscle, holding the breast in place. As women age, these ligaments relax,
leading to ptosis of the breast. Dimpling of the skin, a sign of breast cancer, is caused
by tumor invasion of the ligaments of Cooper.

Chest wall

,'("

Ny L)

Pectoralis muscles —=———4 ?', ¥i|
11

Lobules ———< 1

i
Stroma — f

Nipple / »
surface
Areola //

duct

Fatty tissue |
Skin —=- W
[

Figure 1. The anatomy of the breast (1)

The breast parenchyma consists of 15-20 lobes each drained by one major lactiferous
duct. Every lobe of the breast contains a system of ever-branching ducts ending blindly
in a network of terminal ductules. A cluster of terminal ductules and their duct of origin
compose a lobule which is surrounded by a specialized stroma. The terminal ductal
lobular units (TDLU:s) include the terminal ductules, and their specific extra- and
intralobular terminal duct (Figure 2). The TDLU:s are the functional units of the breast,
producing and secreting milk. It is within these that most breast cancers occur; lobular
cancers originating from the terminal ductules and ductal cancers from the ducts. The
ducts are lined by an inner layer of luminal epithelial cells consisting of secretory cells,
hormone receptor-expressing cells (2), and progenitor cells (3, 4), and an outer layer of
basal cells consisting of myoepithelial cells (2), which have the ability to contract when
stimulated by oxytocin, and mammary stem cells (5, 6). Milk is transported from the
TDLU:s through interlobular ducts which merge and drain into the major lactiferous
ducts. The major lactiferous ducts dilate into sinuses beneath the areola in which milk



can accumulate and these are in turn connected to 6-10 openings in the nipple through
which the milk exits.
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Figure 2. Schematic picture of the terminal ductallobular unit

Although the breast epithelium is the functional part of the breast, it is only a minor

component of the breast; the majority of the breast is composed of stroma and fatty

tissue. During menopause the amount of epithelium diminishes as it involutes and is
replaced by fatty tissue (see 2.1.2 Breast development).

For clinical purposes, the breast is further divided into the area behind the areola and
the quadrants which compose the rest of the breast. The upper, outer quadrant contains
the most breast tissue, and it is also here most breast cancers occur.

The breast parenchyma and nipple-areola complex are supplied with blood through
several arteries, of which the internal mammary artery accounts for more than half of
the blood supply to the entire breast parenchyma. The circulus venosus which is
situated around the nipple, carries blood from the breast towards the axilla into the
internal thoracic and axillary vein. The breast is thus richly vascularized and
hematogenic, metastatic spread is not uncommon as the disease progresses. The most
common sites of metastasis are bones, liver, and lungs (7).

Most of the lymphatic drainage of the breast goes to the axillary lymph nodes (75%),
which is why it is the most common initial location of metastasis. The number of
lymph nodes varies between individuals and also depends on what is defined as the
axillary lymph nodes since this depends on method of dissection, but the span of 12-40
axillary lymph nodes is commonly reported (7). Other regional lymph nodes are
situated within the breast (the internal mammary chain), parasternally, and above and
below the clavicula.
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2.1.2 Breast development

Breast development starts during embryonic life but is only fully developed and
differentiated by the end of the first full-term pregnancy. During the fifth week of
embryonic life, the ‘milk streak’ forms, which is a thickening of the ectoderm from
the axilla to the groin (8). During weeks 6-7 the mammary crest forms which is a
thickening in the thoracic region, and the rest of the milk streak involutes (8). This is
also when the nipple primary bud takes form. The primary bud penetrates the
mesenchyme and eventually leads to the development of 15-20 secondary buds which
become the lactiferous ducts and their branches (9).

During puberty, lobule formation occurs (9) and the deposition of fatty tissue
increases breast size (10). Still 80% of the breast consists of stromal tissue (8) which
includes fibroblasts, endothelial cells, immune cells, and extracellular matrix. During
pregnancy, the distal parts of the ducts proliferate. The epithelial cells in the acini
both increase in number and size, and differentiate into secretory cells that can
synthesize and secrete milk (9). The breast has only now become fully differentiated.

The mammary gland changes little morphologically during lactation. However,
cessation of lactation causes post-lactational involution to occur. During this process,
epithelial and stromal tissues go into apoptosis and regress, and stromal remodeling
ensues (11). The lobules go into a resting non-secretory state, but still appear more
complex/developed than the lobules of nulliparous women (11).

Involution also occurs as an aging-process (12) and is especially marked during
menopause (10) in response to the ceasing ovarian hormonal secretion (11).
Involution results in a decrease of both number of acini per lobule and size of acini.
Furthermore, the intralobular stroma is replaced by denser collagen to finally be
replaced by fatty tissue (12).

2.2 BREAST CANCER
2.2.1 Descriptive epidemiology
2.2.1.1 Incidence

Breast cancer is the most common cancer in women worldwide. 1.38 million new
breast cancer cases were diagnosed 2008 (23% of all cancers in women) (13).
However, incidence rates vary from 19.3 per 100,000 women in Eastern Africa to 89.9
per 100,000 women in Western Europe (13). The differences in incidence are due to
variations in environmental factors rather than genetic factors (14, 15), which is well
illustrated by migrant studies which show an increase in risk for migrants moving from
a low-risk to a high-risk country (16) and that the risk increases from generation to
generation (17). Thus, parallel with the progress of the developing countries and the
adoption of a more westernized lifestyle, incidence of breast cancer is also increasing in
these countries (18).

Breast cancer is also the most common cancer in women in Sweden; approximately
8000 women developing breast cancer every year (19). The number of effected women
has been steadily increasing by 1.3% since 20 years, but the last 10 years, the increase
has been weaker (0.9%) (20). This may partially be due to the drastic drop in hormone-
replacement therapy prescription which decreased after the Women’s Health Initiative
(WHI) hormone trial showed adverse effects of hormone-replacement therapy (21).
Lambe et al. (22) studied the incidence of breast cancer in postmenopausal women in



Sweden between 1997 and 2007 and the possible correlation with hormone-
replacement therapy prescription. They found that breast cancer incidence had
significantly decreased from 2003 in the age group 50-59 and concluded that this
decrease was likely due to a decline in hormone-replacement therapy use(22). A
decline in breast cancer incidence has been noted in several Western countries (23-31)
and saturation in mammaography screening has been proposed as another possible
explanation to the decline in breast cancer incidence (32).

2.2.1.2 Mortality and survival

Mortality is usually measured as a rate and refers to the rate of individuals dying from a
particular disease compared to the general population. Mortality is influenced by the
incidence and survival of disease and is a particularly important measure of the burden
of disease (33). Conversely, survival rates measure the rate of dying within a cohort of
individuals with the disease. Survival is not an adequate measure for e.g. evaluating
screening programs since these programs aim to diagnose disease earlier, which will
increase survival “artificially” (see 2.2.5.2 Mammaography screening). Thus, mortality
is the preferred estimate for evaluating secondary preventive measures. However, to the
individual patient, survival is of utmost importance since it estimates the risk of that
individual dying compared to other individuals with the disease.

Since breast cancer survival is much higher in developed regions where the incidence is
highest, the range of mortality rates is smaller (~6-19 per 100,000) than the range of
incidence rates (13). It is the most common cause of death among women worldwide
(269,000 deaths in developing regions and 189,000 deaths in developed regions) (13).
In Sweden, breast cancer was also the most common cause of death from cancer in
women until 2005, but is now the second most common cause of death from cancer
after lung cancer (34). In 2011, 1401 Swedish women died from breast cancer (35).
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Figure 3. Trends in female breast cancer incidence and mortality in Sweden. Data from
Nordcan (Association of the Nordic Cancer Registries).

2.2.1.3 Prevalence

Since breast cancer is relatively common and survival is high (the 5-year breast cancer
specific survival is 86%), the prevalence of disease is high. In 2009, approximately
89000 Swedish women were living with breast cancer (36).

2.2.2 Breast cancer biology
2.2.2.1 Carcinogenesis

2.2.2.1.1 The somatic mutation theory

Cancer evolves through a multi-step process which is initialized by the genetic
mutation of a single cell, either caused by environmental factors, germ-line mutations,
or spontaneously. The mutated cell gives rise to a clonal expansion of genetically
damaged cells, in which further mutations in oncogenes and tumor suppressor genes
lead to uncontrollable growth and deranged cellular architecture and orientation,
resulting in a cancer cell. During this clonal evolution, the ensuing cancer cells also
acquire invasive and metastatic capability. Genetic alterations may continue to occur
and accumulate in the cancerous cells, which may affect proliferation rate, the degree of
invasiveness, and metastatic potential.



In 2000, Hanahan and Weinberg proposed that there were six essential changes in cell
function that lead to cancer development: self-sufficiency in growth signals,
insensitivity to growth-inhibitory signals, escape from programmed cell-death
(apoptosis), unrestricted replicative potential, sustained angiogenesis, and tissue
invasion and metastasis (37). However, as pointed out by Yuri Lazebnik, only the last
criterion of tissue invasion and metastasis differentiates malignant tumors from benign
tumors (38). This is also an important distinction between in situ cancers (which do not
penetrate the myoepithelial basement membrane) and invasive cancers.

Based on the advances in cancer research the past decade, Hanahan and Weinberg
updated their proposed hallmarks of cancer in 2011 to include two emerging hallmarks:
Evasion of immune destruction and reprogramming of energy metabolism to support
unceasing cell growth and proliferation (39). Furthermore, they highlighted the role of
genomic instability and tumor-promoting inflammation in cancer progression. Genomic
instability increases the amount of mutated cells, leading to a high degree of diversity
between cancer clones, which is beneficial for tumor survival. This may, however, also
occur through epigenetic alterations such as DNA methylation and histone
modifications (39).

2.2.2.1.2 The tissue organization field theory

A paradigm shifting hypothesis pertaining to the development of somatic cancer is the
‘tissue organization field theory’ proposed by Ana Soto and Carlos Sonnenschein in
1999 (40). It suggests two fundamental principles. First, in contrast to the prevailing
paradigm of the default state of cells being quiescence, it proposes that the normal state
of cells is proliferation. The second premise is that carcinogenesis is a collapse of tissue
organization rather than an acquisition of crucial genetic mutations. Although
proliferation is presented as the default state of cells, cell-adhesion-dependent tissue
architecture is believed to restrict proliferation (41). A disturbance of stromal-epithelial
interactions may cause a dysfunction of cell adhesion and/or a loss of tissue
organization, which would be able to stimulate normal cells into transforming into
malignant counterparts even in the absence of genetic mutations (41). Moinfar et al.
(42) observed that genetic alterations and loss of heterozygosity was common in the
stromal DNA adjacent to the primary breast tumor. Even more intriguing, they found
that genetic alterations in the stroma seemed to precede genetic changes in the
epithelium in some cases.

In line with the above, tissue reorganization affects tissue stiffness, which is now
known to be an important modulator of cell proliferation, survival, migration, and
differentiation (43). In recent years, tissue stiffness has also been shown to be
associated with both breast tumorigenesis and progression (44). In the same study, it
was shown that tissue stiffness was associated with collagen cross-linking, and the
authors remarked that this may explain why mammographic density increases breast
cancer risk (44).

2.2.2.1.3 Cancer is a tissue disease

Until recently, tumors were viewed as a homogeneous group of cancer cells. However,
it is now known that tumors are heterogeneous, including cancer stem cells, cancer-
associated fibroblasts (CAFs), immune inflammatory cells, pericytes, and endothelial
cells apart from the cancer cells themselves (39). These cells, including the surrounding
extracellular matrix, are referred to as the tumor microenvironment. Interaction
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between the tumor microenvironment and the tumor cells has been shown to be
essential to tumor progression (39). CAFs, for example, effect cell proliferation,
angiogenesis, invasion, and metastasis (39).

The stromal cells of the microenvironment are recruited from adjacent normal tissue
(either as preexisting stromal cells or as stem/progenitor cells,) as well as from the bone
marrow (39). When the mesenchymal stem and progenitor cells reach the tumor, they
may either remain undifferentiated, become partially differentiated or fully differentiate
into the different stromal cell types (39).

2.2.2.2 Metastasis

Metastasis occurs when tumor cells from the primary tumor migrate to distant sites in
the body and form a secondary mass at that place. For this to happen, a tumor cell must
detach from adjacent cells and invade the surrounding stroma. It then has to be able to
enter lymphatic channels or blood vessels (intravasation), survive the mechanical forces
of circulation, avoid circulating immune cells, and exit the vessels through a process
called extravasation (45). Once at the new site, the tumor cell must adapt to the new
environment. It also needs to acquire the ability to proliferate without the stimulation it
formerly received from the microenvironment of the primary tumor, and in spite of
inhibitory signals from the new microenvironment (46). Finally, it needs to be able to
develop a vascular system that can support proliferation (47).

As previously stated, metastasis can either spread via the lymphatic channels or blood
vessels. In breast cancer, the former gives rise to lymph node metastasis most often
occurring in the ipsilateral axilla, whereas hematogenic/systemic spread usually gives
rise to metastasis in the bones, lungs, liver, or brain. Breast cancer that is spread to any
of the latter sites is referred to as distant metastasis. It is not uncommon to present with
axillary lymph node metastasis at diagnosis, and this is still a curable disease since the
spread is well-confined. The opposite is true for distant metastasis, which is uncommon
at first presentation, can affect several organs at once and several parts of the same
organ, and for which only palliative therapy exists (7).

2.2.2.3 Recurrence

Recurrence of disease refers to relapse at any site, i.e. locally (in the residual breast,
chest wall, or scar tissue), regionally (in the regional lymph nodes), or in distant organs
(distant metastasis). Local and regional recurrence can also be combined and is then
referred to as locoregional recurrence. Unlike distant metastasis, which is closely
related to breast cancer death, locoregional recurrence is only moderately associated
with breast cancer survival; for every four locoregional reccurences that are avoided,
one breast cancer-specific death over the next 15 years is evaded (48).

2.2.3 Risk factors
2.2.3.1 Sex

Breast cancer is the most common cancer in women, while it is a very rare disease in
men. In 2010, almost 8000 women were diagnosed with breast cancer in Sweden and
only 33 men (49). Sex is therefore a very strong risk factor of breast cancer.



2.2.3.2 Age

Breast cancer incidence increases with age and is relatively rare in women less than 40
years of age, after which the incidence increases greatly (7, 33) (Figure 4). Conversely,
the rate of the age-specific incidence rises steeply until around 50 years of age (i.e.
around menopause), after which the increase is less pronounced (33, 50), suggesting
that hormones are important to breast cancer development (33).
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Figure 4. Breast cancer incidence in women per 100,000 individuals. Sweden, 2010.
Data from the Swedish Cancer Registry.

2.2.3.3 Mammographic density

Mammographic density is one of the strongest risk factors of breast cancer. When
measured quantitatively, a percentage density (PD) >75% has a 5-fold increased risk of
breast cancer compared to women with PD<5% (51) (see 2.3 “Mammographic
Density” below).

2.2.3.4 Heritability

A family history of breast cancer in a first-degree relative increases risk of breast
cancer by approximately 2-fold (52), and a family history of more than one first-degree
relative confers an even greater risk. Approximately 16% of breast cancers in women
with a positive family history are thought to arise due to mutations in the high
penetrance susceptibility genes BRCA1 and BRCA2 (53). High-penetrance
susceptibility genes are characterized by the fact that carriers have a high likelihood of
developing disease. The lifetime risk of developing breast cancer is 45-65% for carriers
of BRCA1 and BRCA2 mutations (54), and is even higher for early-onset breast cancers
(55). Furthermore, BRCA1 and BRCA2 both increase risk of ovarian cancer. There are
four other known high penetrance genes associated with breast cancer,TP53, PTEN,
STK11, and CDH1, but mutations in these genes are very rare and together all six genes



are only believed to account for 20% of the familial risk of breast cancer (55). Four,
intermediate penetrance genes have also been identified: CHEK2, ATM, BRIP1 and
PALB2. These increase breast cancer risk by 2-4 fold but are also believed to be
uncommon (55). Thus, the majority of breast cancers, even cases with family history,
are thought to be polygenic, i.e. attributable to a combination of genetic variants each
conferring a low risk. In order to find these low penetrance alleles, genome-wide
association studies (GWAS) are carried out to compare single nucleotide
polymorphisms (SNPs) (common inter-individual or inter-allelic base pair differences)
in breast cancer cases and controls. However, since effects of the individual SNPs on
breast cancer risk are small, large study populations are needed. GWAS are conducted
without a priori knowledge and are thus hypothesis-generating. Indeed, GWAS has
managed to shed new light on breast cancer biology; new susceptibility genes have
been identified that are not, as the previously identified susceptibility genes (e.g.
BRCAL/2, BRIP1, CHEK2), associated with DNA repair and sex hormone synthesis,
but with cell proliferation and cell signaling, e.g. FGFR2 and MAP3K (56).

2.2.3.5 Endogenous hormones

Breast cancer is influenced by many hormonally related factors (see below) and it has
therefore long been assumed that high levels of endogenous sex hormones are partially
at fault. This was also corroborated when the Endogenous Hormones and Breast
Cancer Collaborative Group showed that postmenopausal women who had increased
levels of endogenous sex hormones, also were at higher risk of breast cancer and there
was a dose-response relationship (57). Eliassen et al. observed a relationship between
higher levels of free estradiol during the follicular phase and breast cancer risk in
premenopausal women (58). Two studies that directly assessed endogenous
progesterone and its relationship to breast cancer risk showed no associations (58, 59).
Missmer et al. also tested for an interaction between estrogen and progesterone but did
not find any evidence of this (59), which is surprising since especially combinations of
HRT (estrogens in combination with progestagens) increase breast cancer risk (see
below). The authors speculated that this could be due to differences between
endogenous progesterone’s and synthetic progestin’s metabolic effects on breast tissue.

2.2.3.6 Reproductive factors

Age at menarche influences breast cancer risk, where older age decreases risk (60). The
opposite is true for age at menopause, where older age at menopause increases risk of
breast cancer (61). Hence, the longer a woman has menstrual cycles, the higher her risk
of breast cancer.

An early age at first full-term pregnancy and number of full-term pregnancies both
have protective effects on breast cancer risk, independent of each other (62). The reason
for this is thought to be that mammary gland cells are undifferentiated until first
pregnancy, and that each pregnancy decreases the number of undifferentiated cells.
However, the effect of pregnancy is dual; a full-term pregnancy increases breast cancer
risk immediately after birth, but the risk then gradually diminishes and, in the long-
term, imparts a protective effect (63). Breast-feeding also has a protective effect on
breast cancer risk independent of age at first birth and parity (63, 64). The
Collaborative Group on Hormonal Factors in Breast Cancer estimated that each birth
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conferred a decrease in relative risk (RR) of breast cancer of 7.0% and every 12 months
of breast feeding conferred a decrease in RR of 4.3% (64).

2.2.3.7 Anthropometric factors

As with pregnancy, BMI also has a dual effect on breast cancer. Childhood and
adolescent obesity is protective of breast cancer, possibly due to obesity being
associated with fewer menstrual cycles (65). Conversely, in postmenopausal women,
obesity increases risk of breast cancer. This may be due to obese postmenopausal
women having higher levels of bioavailable estradiol (65), since the main source of
estrogens in postmenopausal women is the conversion of androgens to estrogens in the
adipose tissue (66). Another anthropometric measure associated with breast cancer risk
is height, which is weakly and positively correlated with risk (67); a 10-cm increment
in height increasing RR by 17%. The cause of this relationship is, however, unclear.

2.2.3.8 Exogenous hormones

The use of combined oral contraceptives is related to an increase in breast cancer risk of
about 25% but is only associated with current or recent use (63). 10 years after
cessation there seems to be no increased risk (63).

Hormone-replacement therapy (HRT), given as a combination of estrogen and
progesterone or estrogen alone, increases breast cancer risk, where combination
treatment increases risk the most (68). Risk also increases with duration, e.g. in women
on combination therapy, breast cancer risk increases by 7.6%/year (69). However, the
increased risk gradually disappears within 2 years of cessation (70). The effect of HRT
on breast cancer risk is larger in lean women (68) and women with high
mammographic density (71).

2.2.3.9 The intrauterine environment

In 1990, Dimitrios Trichopoulos hypothesized that breast cancer may originate in
utero (72). He suggested that the high estrogen levels created a “fertile soil” that was
more susceptible to cancer initiation. Many studies have evaluated this hypothesis,
mainly using birth weight as a proxy of intra-uterine exposure to estrogens and other
growth factors such as insulin and the insulin-like growth factors (IGF) I and Il which
also may influence breast cancer risk (73). Three meta-analyses have confirmed that
there is a positive correlation between birth weight and breast cancer risk (73-75),
especially in pre-menopausal breast cancer (73, 74). The intrauterine environment
thus seems to influence mammary carcinogenesis. However, whether this is due to
increased growth factors and the mechanism by which they would act, remains to be
revealed.

2.2.3.10 Previous benign breast disease

An important distinction of benign breast disease when discussing its relation to breast
cancer, is whether it is a non-proliferative or proliferative lesion, and whether the latter
has presented with or without atypia. Non-proliferative lesions do not or only slightly
increase breast cancer risk (76), whereas proliferative lesions are strong risk factors for
breast cancer. Proliferative lesions without atypia are associated with a doubling of
breast cancer risk, and proliferative lesions with atypia increase risk by at least 4-fold
(63).
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2.2.3.11 Lifestyle factors

Alcohol intake is associated with a moderate increase in breast cancer risk (77), while
most studies have not found an association between smoking and breast cancer (78).
Moderate physical activity seems to have a protective effect on breast cancer risk; a few
hours of vigorous exercise per week may decrease risk by about 30% (63). However,
studies on the relationship have been somewhat inconsistent and the effect of physical
activity on breast cancer risk has varied between studies (63).

Although several factors associated with different aspects of our diets have been
hypothesized to be associated with breast cancer risk, associations are modest at best
and results inconsistent (33). However, for vitamin A, carotenoids, and folate a modest
protective effect on breast cancer risk has consistently been shown (33).

2.2.3.12 lonizing radiation

Studies of the effects of ionizing radiation on breast cancer risk have primarily been
carried out on Japanese atomic bomb survivors and patients exposed to ionizing
radiation in the diagnostic or therapeutic, clinical setting. There was a large variation in
the doses the different populations received to the breast; from 0.02 Sievert (Sv) to >20
Sv (79). According to these studies there seems to be a dose-response relationship
between ionizing radiation and breast cancer risk (79). Furthermore, risk seems to
attenuate with age (and breast maturation) so that girls who are exposed before 20 years
of age have the highest risk of breast cancer, whereas the risk in postmenopausal
women is negligible (79). There may also be an increased breast cancer risk associated
with ionizing radiation in pregnant women (79).
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Table 1. Risk factors of breast cancer

Risk factors

Strength of
association*

Clarifications

Sex [N Females

Age m Risk increases with age

Mammaographic density [N PD>75% compared to PD<5%

Geographical region m Developed countries vs.
developing countries

Previous benign breast () Atypical hyperplasia

disease

Family history i First-degree relative, also increases
with number of effected relatives

BMI postmenopausal " High BMI increases risk

HRT 1 Especially combined HRT

Age at menopause " Older age

Age at menarche 1 Younger age

Age at first birth I >30 compared to <20

lonizing radiation I Before age 20

Alcohol intake T Risk increases with increased
intake

Oral contraceptives T Current use

Height T Risk increases with increased
length

Birth weight T Risk increases with increased birth
weight

Previous benign breast © Fibroadenomas

disease

Breast feeding ] Longer periods of breast feeding
decreases risk

Parity } Long-term protective effect of
parity

BMI premenopausal ! High BMI is protective

Physical activity ! Physical activity is protective

*111 Strong risk factor; 11 Moderate risk factor; 1 Weak risk factor; <> no association;

| protective factor.

2.2.4 Risk prediction models

The Gail model was originally developed by Gail et al. in 1989 (80) and is now a
publicly available tool for prediction of breast cancer risk
(http://www.cancer.gov/berisktool) . The model uses the variables age, age at
menarche, age at first birth, family history of breast cancer in a first-degree relative,
number of previous breast biopsies, atypical hyperplasia, previous breast cancer




(invasive and in situ), and ethnicity to calculate risk (atypical hyperplasia and ethnicity
have been added later on (81)). One caution with the Gail model is that it has not
updated the age-specific incidence rates on which it is based, and this may be one of the
reasons that it underestimates breast cancer risk on the individual level (82).

Since the Gail model mainly includes non-genetic risk factors, the Claus (83) and Ford
(84) models were developed which both focus on family history of breast cancer. The
latter also includes family history of ovarian cancer to identify individuals with BRCA
mutations. The Tyrer-Cuzick model tries to incorporate both information on
endogenous estrogen exposure, history of benign breast disease, and a comprehensive
family history assessment (85). According to an evaluation of the four different models
(86), they all performed similarly pertaining to individual risk assessment, but the
Tyrer-Cuzick model was somewhat better at predicting overall number of cases.

A limitation of all models is that none of them have been validated in the general
population (87). Furthermore, none of the models include mammographic density or
genetic alterations. There have been attempts to incorporate mammographic density
into risk prediction models, but this has only lead to moderate improvements in
prediction (87). However, this may be explained by the correlation between
mammographic density and the other breast cancer risk factors such as parity, age at
first birth, and benign breast disease. Tice et al. (88) namely showed that a model
including only age, ethnicity, and mammographic density performed as well as the Gail
model. Further, Barlow et al. (89) showed that both age and mammaographic density
were highly predictive when studied independently, but that adding mammographic
density to a model including traditional risk factors did not increase predictive power.

2.2.5 Diagnostics
2.2.5.1 Triple diagnostics

Breast cancer is diagnosed through triple-diagnostics, referring to the triad
mammography, clinical assessment, and cytology. Nowadays, ultrasound is also often
added as a complement to mammaography, and courser needle biopsies may be taken in
addition to cytology (7). About half of all breast cancers diagnosed in Sweden today are
diagnosed within the screening program (7). These are usually asymptomatic cancers
(7). The rest of the cancers are clinically detected as symptomatic cancers and most
often present as a lump in the breast, but other symptoms such as a lump in the axilla,
breast discomfort, redness of the skin, or nipple secretion can also occur. The majority
of women diagnosed with symptomatic cancers are women who are not invited to
screening, but also consist of women who were invited but chose not to attend
screening (7). Furthermore, breast cancer may be detected in the interval between two
screening examinations as a symptomatic cancer, either because a cancer was missed at
the previous screening or because it is highly proliferative (see 2.2.5.2.2. Interval
cancers).

High mammographic density lowers mammographic sensitivity (90). Consequently,
other breast imaging modalities are used in populations where high mammaographic
density is prevalent. Ultrasound is for instance preferred in young (<30 years of age),
pregnant, and lactating women (7), all of whom have high mammaographic density. In
women with a strong family history or carriers of e.g. BRCAL or BRCA2 mutations,
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who are recommended yearly follow-up from age 25-35 years of age (91-93), MRl is
preferred also due to the younger age group and higher mammographic density.
However, MRl is also favored in these women since BRCA2 carriers have an increased
risk of lobular cancer (94) which are difficult to detect on a mammography (95), and
BRCA-associated tumors may be more likely to have a benign appearance on
mammography (96, 97). MRI is not only used in individuals with family history, but
may also be used to further investigate unclear radiologic findings. The drawback of
MRI is that, although sensitivity is high, specificity is lower than that of mammography
(98), increasing the risk of false positive findings.

Galactography/ductography is also an alternative radiologic examination of the breast if
a woman suffers from serous or bloody discharge from the nipple. It is carried out by
injecting contrast material into the secreting duct in order to visualize intraductal
proliferative disease, e.g. papillomas, and also allows for cytological examination of the
discharge. Sensitivity is, however, low (7).

2.2.5.2 Mammography screening
2.2.5.2.1 History and guidelines

Mammography screening was implemented in Sweden in order to decrease breast
cancer mortality. Screening programs were introduced in 1986 and were implemented
in all of Sweden by 1997. The initial recommendations that came in 1986 included
women from 40-74 years of age. However, two amendments were made in 1987 and
1988, respectively, allowing county councils that were short of staff to only include
women between 50-69 years of age (99). Different county councils therefore included
different age groups. In 1995-1996, for example, 11 out of the 25 participating county
councils invited women 40-74 years old, six invited women 50-69 years old, and the
eight remaining invited women between these two age spans (99).

The interval between screening examinations is between 1,5-2 years in Sweden. It is
based on the time difference between the point at which a tumor first becomes
detectable on a mammaography (at 3-4 mm) and the point at which it becomes
symptomatic. The length of this pre-symptomatic phase at which the tumor is
detectable at screening has been estimated to be approximately 1,5-3 years in most
cases (100).

2.2.5.2.2 Interval cancers

Interval cancers are symptomatic cancers diagnosed in the interval between two
screening examinations, where the prior screening mammography was negative (or
inconclusive with a negative follow-up). Since mammography does not have 100%
sensitivity, some cancers will not be detected at mammography screening either due to
observer error, unspecific findings, or masking, and therefore diagnosed as interval
cancers. These are viewed as “false” interval cancers. Highly proliferative tumors may,
however, also arise in the interval between two screening examinations, and these are
referred to as “true” interval cancers. The latter are thought to be more aggressive and
have a poorer prognosis than screening-detected cancers (101).

The number of interval cancers is used as a measure of the quality of the screening

program. For the quality of the screening program to be acceptable, the percentage of
interval cancers should not exceed 30% of the estimated breast cancer incidence
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without screening the first year after a negative screen, and not exceed 40% the second
year (100).

2.25.2.3 Views

The mammogram views routinely used in screening programs are the medio-lateral
oblique (MLO) and the cranio-caudal (CC) views. The CC view is taken straight from
above and the MLO view is taken at an angle of 30-60 degrees medially of the CC
view. The MLO view constitutes the basis of the Swedish mammography screening
program, but CC views are often added to increase detection rate. At the first
mammography a woman ever does (the baseline mammography), both the CC and the
MLO views are taken. When performing a diagnostic mammogram, both the MLO and
CC views are used and a lateral view (90 degrees lateral of the CC view) is usually also
added to further increase the detection rate.

2.2.5.2.4 Biases in estimating the effect of screening on mortality

The aim of mammography screening is to reduce breast cancer mortality. However,
comparisons between screening- and non-screening-detected cancers to evaluate the
efficiency of mammography screening suffer from several biases e.g. selection bias,
lead-time bias (see figure 5), and length bias (see figure 6). Selection bias refers to
women attending screening being different from non-attenders; they are more often of
higher socio-economic status and health-conscious which increases their life-
expectancy. Lead-time bias refers to tumors diagnosed at screening being detected
earlier during their natural history than tumors detected otherwise; screening will then
advance detection of disease and result in a survival advantage independent of whether
it actually prolongs survival or not. Tumors detected by mammography screening are
generally therefore of lower stage than symptomatic cancers, a phenomenon called
stage shift (102). The length bias refers to differences in tumors’ proliferation rates;
indolent tumors spend a longer time in an asymptomatic phase and are thus more likely
to be detected at screening, whereas fast-growing tumors have a shorter asymptomatic
phase and are thus more likely to be detected between screening rounds.

Pre-symptomatic,
detectable

at screening Symptoms Death
Tumor Early Clinical Time
MAQQQH detection ngvgggwswlvg
' |
I
. | |
Lead-time |

Survival time

Figure 5. Lead-time bias refers to the artificial survival advantage a pre-symptomatic
tumor has compared to a clinically detected tumor, due to the former being diagnosed
earlier during its natural history.
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Figure 6. Length bias. Tumor 1 is a more highly proliferative and aggressive tumor
with a much shorter pre-symptomatic phase than tumor 2 which is a more indolent
tumor. Tumor 2 will thus more likely be diagnosed at screening than tumor 1 which
will more likely be diagnosed between screening rounds. This will affect survival
comparisons and is referred to as the length bias.

2.2.5.2.5 The screening debate

Several Swedish randomized controlled trials have been carried out to assess the effect
of mammography screening on mortality. They have shown reductions in mortality of
approximately 25% for the general population and even more for the women who
participated in screening (103-105). However, a Cochrane review by Gotzsche and
Nielsen of all eligible and completed randomized trials comparing breast cancer
mortality in screened vs. non-screened women, has questioned the results of the trials
(106). Among other things, the trials were accused of having had a suboptimal
randomization process and biased assessment of breast cancer mortality (this critique
was later refuted by Nystrom et al. (104)). Yet, in spite of these objections, it was still
calculated that mammography screening reduces breast cancer mortality by 15-20%
(106). However, it was also estimated that screening led to an over-detection of breast
cancer cases by ~30%, and the authors concluded that it is “not clear whether screening
does more harm than good.”(106)

The issue of over-detection is important, but a review in 2007 of the studies assessing
over-detection (107) concluded that all the estimates were biased and deemed the
studies inadequate. They specifically scrutinized the estimates presented by Gotzsche
(108) (among others) and found that lead-time had not been taken into consideration.
Lead-time influences the comparison of incidence in screening and control groups since
it increases the incidence rate of breast cancer in the screening group at both the
prevalent (the first screen a woman ever does) and subsequent, incident screens. After
screening stops, the incidence rate drops in the previously screened group. This is due
to the fact that cancers that would have emerged as symptomatic cancers in this period
have already been diagnosed at screening. After some years (no exact time point), the
cumulative incidence will even out between both groups, which is why the comparison
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of the cumulative incidence should not be made until several years after screening has
ended. Gotzsche based his comparisons on the cumulative incidence directly at the end
of screening, and did not statistically adjust for lead-time. This biased all his estimates
upward, including the estimate of 30% which is referred to in the Cochrane review.

An interesting study from Norway, contributing to the debate about screening, was
published in 2010 (109). In this study it was shown that there was an effect of
mammaography screening on breast cancer mortality, but that a large part of this
reduction was attributable to improvements in the healthcare associated with screening,
e.g. the implementation of interdisciplinary breast cancer teams.

In summary, the studies above all show that mammography screening decreases breast
cancer mortality. However, more and non-biased studies are needed to evaluate the
extent of over-detection to be able to adequately assess the pros and cons of screening.
Furthermore, | personally believe that much would be gained if we could improve
screening sensitivity for women with highest density, since these are women at high
risk of breast cancer and where mammography has lowest sensitivity.

2.2.6 Breast cancer classification

Cancers of the breast are almost always adenocarcinomas which originate from the
epithelial cells. Even so, breast cancer is heterogeneous and can be classified according
to invasiveness, tumor characteristics, and gene expression patterns.

2.2.6.1 Invasiveness

Breast cancer is divided into non-invasive and invasive breast cancer. Non-invasive
cancer is further subdivided into lobular cancer in situ (LCIS) and ductal cancer in situ
(DCIS). Non-invasive breast cancer has become common since the introduction of
mammography screening and now accounts for 15-20 % of all breast cancers diagnosed
in Sweden (7). Throughout the studies of this thesis, the term breast cancer refers to
invasive breast cancer only.

2.2.6.2 Histopathological classification

The most common type of invasive cancer histopathologically is ductal cancer, which
accounts for 40-75% of all invasive breast cancers (7). The second most common type
of cancer is lobular cancer (5-15%) followed by tubular cancer (2-7%), medullary
cancer (1-7%), invasive cribriform cancer (0.8-3.5%), mucinous cancer (2%), invasive
papillary cancer (<1-2%), and invasive micropapillary cancer (<2%) (7). There are
other types as well but these are even less common.

2.2.6.3 Stage

Stage is the most important prognosticator to date and is assessed using the TNM-
classification, which incorporates the variables tumor size (T), lymph node involvement
(N), and presence of distant metastasis (M). Lymph node involvement is the single
most powerful predictor of prognosis in patients who do not have distant metastasis
(110), the number of metastatic lymph nodes also strongly, negatively influencing
survival (111).
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2.2.6.4 Histologic grade

Tumor grade was introduced by Greenough in 1925 (112), modified by Bloom and
Richardson in 1957 (113) and later on in 1991 by Elston and Ellis (114). The latter
classification is the grading system currently used in Sweden and is commonly referred
to as the Nottingham histologic grade (NHG), in which a score from 1 to 3 is given
according to the tubular formation, size and appearance of nuclei (nuclear atypia), and
number of mitotic cells. The more similar to normal breast tissue the tumor tissue
appears and the lower the proliferative activity, the lower the grade, and vice versa.
Grade is a prognostic factor independent of tumor size and lymph node involvement
but, unlike these factors, is only moderately reproducible (115).

2.2.6.5 Proliferation rate

Cell division is carefully regulated in normal cells but not in cancer cells where one of
the most important features is uncontrollable cell growth. All cells go through a cell
cycle consisting of five phases; G0, G1, S, G2, and M. GO is a resting phase. During
G1, cells increase in size. This is also a checkpoint that the cell is ready to enter S-
phase, the synthesis phase, during which DNA replication takes place. During G2 the
cell continues to grow. This is also a checkpoint to see that the cell is ready to enter M-
phase. If ready, the cell enters M-phase, when mitosis (cell division) takes place,
producing two identical daughter cells.

During the time period of studies I, 111, and 1V, proliferation rate was measured using
flow cytometry as the percentage of cells in S-phase. Nowadays, assessment of Ki67
and cyclin A, proteins produced during the proliferative part of the cell cycle (i.e. not
during GO0), is carried out instead, using immunohistochemistry. A tumor’s proliferation
rate influences prognosis, but whether it predicts response to chemotherapy is uncertain
(116).

2.2.6.6 Hormone receptors

Breast cancers can be categorized based on estrogen receptor (ER) and progesterone
receptor (PR) status. This is assessed using immunohistochemistry and predicts
whether the primary tumor/metastasis will respond to endocrine therapy. A tumor is
usually considered positive if >10% of the nuclei are stained, but tumors with only 1-
10% stained nuclei may also benefit from endocrine treatment (117). ER-status is the
most important factor influencing response to endocrine therapy, but PR-status may
give additional information to ER-positive tumors (118, 119). Apart from predicting
response to endocrine therapy, hormone-receptor status also influences prognosis;
hormone receptor-positive cancers conferring a survival advantage compared to
hormone receptor-negative cancers (120).

2.2.6.7 HER2 (or HER2/neu or ERBB2)

Human epidermal growth factor receptor 2 (HER2) (also known as HER2-neu and
ERBB?2) is amplified in 10-30% of all breast cancer cases (7). HER2 mediates growth,
differentiation, and survival of cells. Women whose tumors overexpress HER2 thus
have a more aggressive disease than women whose tumors do not overexpress HER2,
both with respect to disease-free and overall survival (121). Assessment of
amplification of the HER2 gene has come into use in later years and was not carried out
during the time of the studies included in this thesis. HER2-status is assessed using
immunohistochemistry followed by in situ hybridization in cases where amplification is
suspected with immunohistochemistry or where this is inconclusive. Amplification of
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the HER2 gene allows for treatment with a specific antibody against the HER2-receptor
(trastuzumab) and was initially introduced in Sweden in 2001 as a treatment of
metastasized breast cancer but is now also used approved for treatment of non-
metastasized breast cancer. Before the availability of trastuzumab, women with HER2-
positive cancers had a particularly poor prognosis, but now these women, if they are
treated with trastuzumab, may even have a better prognosis than women with HER2-
negative disease (122).

2.2.6.8 Triple-negative disease

Tumors that are ER-, PR-, and HER2-negative are referred to as triple-negative tumors
and account for 15-20% of all newly diagnosed breast cancers (123). Triple-negative
cancers are associated with younger age, African American ethnicity, and BRCAL1-
mutations (124). Since they lack ER- and PR-expression as well as HER-2
overexpression/gene amplification, there is no targeted therapy for these cancers, but
they respond to chemotherapy (124). Despite this, triple-negative breast cancers still
have a higher probability of relapse and poorer overall survival in the first years after
breast cancer diagnosis compared to other types of breast cancer (123). Most triple-
negative cancers are high-grade tumors and of ductal type. However, both low-grade
tumors and tumors of other histopathological classification than ductal may be triple-
negative. Most triple-negative breast cancers fall into a specific molecular subgroup of
breast cancers, the basal group (see below), but the remainder fall into different
molecular subtypes (see below). In other words, the group of triple-negative tumors is
diverse (124).

2.2.6.9 Molecular subtypes

Gene expression profiling has highlighted the concept of breast cancer as a collection
of different diseases albeit affecting the same organ. Individual subclasses have been
identified through gene expression profiling, referred to as the Sorlie—Perou subtypes
(125, 126). The heterogeneity between the subtypes is reflected in differences in
etiology, clinical presentation, histopathological features, outcomes, and response to
systemic therapies (127).

The five original subtypes were the luminal A, luminal B, basal-like, ERBB2, and the
normal breast-like subtypes (125, 126). The claudin-low and molecular apocrine
subtypes were identified later on (128, 129). Luminal A tumors are mostly ER-positive,
have a low proliferation rate, and are of low grade. Luminal B tumors are also mostly
ER-positive but may express low levels of hormone receptors, and are usually of high
grade and have a higher proliferation rate. The basal-like subtype is often characterized
by triple-negative tumors (ER-, PR-, and HER2-negative), high levels of expression of
proliferation-related genes, and expression of genes associated with basal and
myoepithelial cells. The claudin-low subtype is also often triple-negative. However, the
claudin-low tumors are characterized by down-regulation of genes involved in cell
adhesion, are more enriched in epithelial-to-mesenchymal transition features, and
express stem cell-associated genes (127). The apocrine subtype is usually ER-negative
but expresses androgen receptors and androgen receptor-associated genes, and has
histological features suggestive of apocrine differentiation (129, 130). The ERBB2
subtype shows amplification and high expression of the ERBB2 gene (also known as
HER2 or HER2-neu). The normal breast-like subtype shows expression of many genes
expressed by adipose tissue and other non-epithelial cell types, strong expression of
basal epithelial genes, and low expression of luminal epithelial genes. It is, however,
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unclear whether the latter subtype is a distinct group or represents poorly sampled
tissue (131).

The different subtypes can be used as both prognostic and therapeutic predictive
factors. The luminal A subtype, for example, has a better prognosis than the luminal B
and basal-like subtypes (127). Further, the basal-like subtype responds well to
chemotherapy whereas the luminal A subtype does not (127). However, the additive
prognostic and predictive information offered is limited compared to ER-status, PR-
status, HER2-status, and Ki67 (127). The clear advantage of molecular subtyping lies
in reproducibility and quantitative assessment (127).

2.2.7 Treatment
2.2.7.1 Surgery

Surgery is the primary treatment of breast cancer and many women are cured after
surgery or after surgery and radiotherapy combined (7). Depending on the size of the
tumor and its relation to the total breast size, tumor stage, number of tumor foci and
distance between them, and whether the patient can tolerate radiotherapy or not, either
partial mastectomy (breast-conserving surgery) or total mastectomy is performed. In
addition to the surgery of the breast, axillary surgery is also carried out. The primary
aim of the axillary surgery is to appropriately determine tumor stage in order to plan the
adjuvant therapy and also assess prognosis. The therapeutic effect of lymph node
dissection is uncertain; although axillary lymph node dissection protects against
axillary recurrences, it is unclear whether this effects survival (132-134).

During the time period of the studies within this thesis, i.e. the 1990’s, axillary lymph
node dissection was the only surgical procedure in routine use. However, axillary
lymph node dissection is associated with complications such as seroma, infections, and
lymphedema of the arm. Furthermore, mammography screening caused a shift in the
stage at which breast cancers were detected, and more and more patients were
diagnosed without spread to axillary lymph nodes. This made many question the role of
axillary lymph node dissection and the sentinel node biopsy was therefore developed
during the end of the 1990’s for staging purposes to reduce morbidity. With this
method, the first lymph node/s in the axilla draining the breast is/are identified using
radioactive tracer and blue dye. This/these lymph node/s are then surgically removed
and analyzed immediately (with the patient still on the operating table). If any spread is
seen, an axillary lymph node dissection is performed, if not, no further surgery of the
axilla is carried out. Sentinel node biopsies are currently only performed in women with
unifocal tumors and where preoperative axillary lymph node status is negative.

2.2.7.2 Radiotherapy

Postoperative radiotherapy is routinely given to the residual breast tissue of women
treated with breast-conserving surgery. The purpose of the treatment is to decrease risk
of local recurrence but postoperative radiotherapy has also been shown to improve
breast cancer-specific survival (135). However, radiotherapy also increases risk of
cardiovascular events and decreases overall survival due to this (135). Other less severe
side-effects include redness of the skin, swelling of the breast, pneumonitis (136),
lymphedema of the arm (if the axilla is radiated), and possibly also negative effects on
lung function (7). It is therefore of utter importance to balance risk and benefit.
International (ASCO and Eusoma) and Swedish guidelines (SweBCG) thus recommend
that women at high risk of locoregional recurrence (where risk of recurrence within 10
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years is greater than 20%) should receive post-operative locoregional. According to the
Swedish guidelines this means that women treated with total mastectomy should
receive radiotherapy towards the thoracic wall if e.g. the tumor is >5 cm, or receive
radiotherapy towards both the thoracic wall, axilla, and supraclavicular lymph nodes if
e.g. there are > 4 metastatic lymph nodes (7). Radiotherapy is usually given in fractions
of 2 Gy every day, 5 days per week until the patient has received a total dose of 50 Gy

().

2.2.7.3 Systemic therapy

The aim of systemic therapy is to annihilate micrometastatic disease. Factors that
predict response to systemic therapy are ER-status, PR-status, and HER-2
amplification. Proliferation rate, assessed as e.g. Ki67 may add information as to who
will benefit from chemotherapy. Despite these factors, the response to therapy is not
certain; individuals will both be under- and over-treated.

2.2.7.3.1 Endocrine therapy

ER-status and PR-status are predictive of a tumor’s response to endocrine therapy. A
woman with ER-negative cancer does not benefit from endocrine therapy (7). The
oldest type of endocrine therapy is the selective estrogen receptor modulator (SERM),
tamoxifen. It has been in use since the 1970’s and is still an important part of the
arsenal of endocrine treatment. Tamoxifen reduces risk of recurrence, contralateral
breast cancer, and breast cancer mortality (137). It is prescribed as a pill to be taken
daily for usually 5 years.

During the time at which the study subjects within this thesis were treated, tamoxifen
was the most commonly prescribed type of endocrine therapy. Other forms of
endocrine therapy were megestron (Megace®), a substance similar to progesterone, and
goserelin (Zoladex®), an analogue to GnRH which results in medical castration.
During the 1990’s, aromatase-inhibitors were introduced as an alternative treatment of
hormone-positive postmenopausal breast cancer, but it was not until the late 1990’s that
randomized controlled trials were conducted to compare the effect of aromatase
inhibitors to tamoxifen. A meta-analyses has shown that the former decreases risk of
recurrence compared to latter (138). However, no statistically significant improvement
in survival has been shown (137).

2.2.7.3.2 Chemotherapy

There is no specific predictive factor of response to chemotherapy but according to the
St Gallen treatment recommendations (117) low expression of the estrogen receptor,
HER2 amplification, and increased proliferation rates predict response to chemotherapy
in general. All trials that have evaluated treatment with trastuzumab have also given
HER2-positive patients chemotherapy, why there is no support of the use of
trastuzumab without chemotherapy (117). Furthermore, triple-negative patients should
(almost always) receive chemotherapy. Whether to give chemotherapy to women with
ER-positive, HER2-negative disease is more problematic; for these patients relative
indications for chemotherapy include grade 3 tumors, high proliferation rate, >4
positive lymph nodes, tumor size of >5 cm, extensive peritumoral vascular invasion,
and patient preference (117).
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Chemotherapy is usually given after surgery, but women with locally
advanced/primarily inoperable tumors (T3-T4), fixed axillary metastatic lymph nodes,
or parasternal or supraclavicular metastasis are recommended preoperative
chemotherapy (neo-adjuvant treatment) (7). Neoadjuvant chemotherapy has the
potential to decrease tumor size, increasing the possibility of performing breast-
conserving surgery. Although there is no difference in survival depending on whether
chemotherapy is given before or after surgery, there is an increased risk of locoregional
recurrence if given before (139).

During the mid 1990’s (and already in the 1980’s) a combination of cyclophosphamide,
methotrexate, and fluorouracil (CMF) and/or anthracyclins were standardly given,
especially to premenopausal women with cancers of more advanced stages. Currently
in Sweden, the decision to use chemotherapy is based on lymph node status. An
anthracycline-based combination of drugs or CMF is given to lymph node negative
patients requiring chemotherapy, and lymph node positive patients are recommended a
more aggressive treatment with anthracycline and taxane-based polychemotherapy (7).

2.2.7.3.3 Antibodies

Trastuzumab is a monoclonal antibody that binds to the HER2-receptor and impairs
HER?2 signalling, thereby reducing proliferation. It is given to patients with tumors
showing amplification of the HER2 gene and was initially introduced in Sweden in
2001 as a treatment of metastasized breast cancer but is now also approved for
treatment non-metastasized breast cancer (7). Women with HER2-amplified tumors
should always initially be treated with chemotherapy followed by trastuzumab (7).

2.2.8 Prognosis

Breast cancer survival has improved drastically over the years due to many factors such
as adjuvant therapy, mammography screening, and an improved organization. The
prognosis is generally good and many women are cured by surgery alone. Yet
approximately 1500 women in Sweden die from breast cancer every year. Unlike most
other cancers where the 5-year survival often reflects the cure rate, breast cancer has no
cure rate since women with breast cancer continue to die many years after diagnosis.
This is naturally also reflected in the development of recurrence; most recurrences
occur within five years, but a substantial proportion relapses first after five years and
many years later (140).

The currently used prognostic factors in Sweden are age, stage (tumor size, lymph node
involvement and distant metastasis), histologic grade, ER-status, PR-status, HER-2-
status, and Ki67 (7). However, studies have also showed that mode of detection
influences survival — screening-detected cancers have been found to have a better
prognosis beyond the impact of stage shift compared to cancers detected otherwise
(141, 142).

Other patient characteristics than age may also influence breast cancer prognosis. High
BMI, for example, has been shown to confer a poorer prognosis (143) while physical
activity after diagnosis seems to improve prognosis (144). Ethnicity also affects breast
cancer outcome: African American women have a poorer survival than non-African
American women (145). The former are at higher risk of developing triple-negative
tumors (146) and thereby have a worse prognosis, but Sparano et al. (145) also found a
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poorer prognosis for African American women with ER-positive cancers and that this
was independent of e.g. disparities in healthcare. Lastly, time since childbirth is
inversely associated with survival (147, 148).

HRT has been shown to influence mortality, however, results are contradictory; the
Women’s Health Initiative (a randomized controlled trial) showed an increased
mortality for HRT users, whereas observational studies have shown a decreased
mortality for HRT users (68, 149). This may be due to the fact that HRT users more
frequently attend mammography than non-HRT users. This will advance the date of
diagnosis for HRT users, improving survival in observational studies. In the WHI,
however, mammography attendance was balanced in the comparison arms and could
therefore not influence results (149).

2.3 MAMMOGRAPHIC DENSITY

2.3.1 Relationship with breast cancer

It was John Wolfe who in 1976 initially proposed that the mammographic appearance
of the breast was related to breast cancer risk (150, 151). He created the following
categorization according to risk: N1 (predominantly fatty breasts); P1 (ductal
prominence in <25% of the breast); P2 (ductal prominence in >25% of the breast); and
DY (extensive dysplasia). Wolfe showed that the women categorized as DY had a 37-
fold increased incidence of breast cancer compared to the women in the N1 group.
There was, however, much critique, since Wolfe had performed a cohort study with a
relatively short follow-up period. Hence, it was believed that the association was due to
women with dense breasts having masked tumors at study entrance which were then
diagnosed during the study period. These objections were adequate, but both cohort
studies with as much as 10 years of follow-up (in which the effect of masking will
diminish), and case-control studies (in which breast cancers in dense breasts instead
will be underdiagnosed due to masking) have consistently showed a strong relationship
between mammographic density and breast cancer (51), although not as high as
Wolfe’s original estimates.

To achieve a more objective method of assessing density, a semi-automated software,
Cumulus (152), was developed, which calculates the total breast area, dense and non-
dense areas in mm?, and percentage density (PD) by dividing the dense area with the
total breast area. PD is the most commonly used measurement of density and a meta-
analyses has shown that women with a PD>75% have a 5-fold increased risk of breast
cancer than women with PD<5% (51). This makes it the strongest risk factor for breast
cancer after gender, age and BRCA mutations. However, there is an important
distinction between high-penetrance genes and mammographic density, because
whereas the former are fairly uncommon among women with breast cancer
(approximately 5% of all cases), mammographic density of >50% may account for
almost 1/3 of all breast cancer cases (153, 154).

2.3.2 Mammographic density assessment

Mammographic density (MD) reflects the different tissues of the breast.
Fibroglandular tissue consists of stromal and epithelial cells and is radiodense,
appearing white on a mammogram, whereas fatty tissue is radiolucent and appears
black.
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There are two different ways of assessing density; either qualitatively or
quantitatively. Wolfe’s parenchymal patterns (151), described previously, and Tabar
patterns (155) are examples of qualitative assessment. They take into account certain
features of the breast on a mammogram, such as the appearance of the ducts and
texture of the tissue, as well as the quantity of density. The American College of
Radiology created a qualitative, categorical assessment for clinical purposes, Bl-
RADS (Breast Imaging-Reporting and Data System) which has largely replaced both
the Wolfe and Tabér patterns. BI-RADS is categorized accordingly: (1) almost
entirely fatty, (2) scattered fibroglandular densities, (3) heterogeneously dense, and
(4) extremely dense. However reliability between readers is modest (kappa
statistic=0.56) (156).

The software Cumulus is an example of a computer-assisted technique allowing for a
continuous, quantitative classification of density. In short, two thresholds are set; one
threshold demarcates the breast from the background (i.e. pixels with a gray value
equal to or greater than this threshold comprise the total area of the breast) and the
other threshold separates non-dense from dense tissue (i.e. pixels with a grey value
equal to or greater than the selected threshold comprise the dense area of the breast)
(Figure 7). The total breast area, absolute dense area, absolute non-dense area, and
percentage density (PD) is then calculated by the software. Since Cumulus is a
technique used for quantitative measurement, the qualitative aspect is lost.
Nonetheless, PD is still more strongly associated with breast cancer risk than e.g.
Wolfe patterns (157).
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Figure 7. Assessing mammographic density using Cumulus. The pectoralis muscle
and thoracic wall is demarcated as is the red background. The dense area of the breast
is encircled/marked. All other tissue in the breast that is not encircled is considered
non-dense.

There are important limitations with Cumulus. First, it requires digitized, analogue
films, and is not yet compatible with digital images. Since many mammography units

25



are converting to digital images, this will become an increasing problem for future
studies. The digitization of images also adds to the work load associated with density
measurement, which in itself is a laborious task. Secondly, although subjectivity is
decreased compared to the qualitative techniques, it is not eliminated. For both these
reasons, fully automated methods are being developed (158, 159). Lastly, density,
which in reality is a volume, is assessed from 2D films and is estimated as an area.
New methods are being developed that measure volumetric density. Surprisingly,
though, the volumetric methods do not give better risk estimations than the area-
based measures (87).

Our group has developed an automated thresholding method using an established
Java-based image analyses program, ImageJ, for obtaining quantitative measurements
of mammographic density. We found that it compares well with Cumulus in
predicting breast cancer risk(159). We also found evidence that ImageJ captured
additional features of mammograms which were significant and independent markers
of breast cancer risk (159). We believe that the latter may be a measurement of tissue
texture. This study was, however, performed on digitized images and the MLO view,
and must be validated on digital images as well as other views.

2.3.3 Percent versus absolute density

Most studies assessing density in quantitative terms use the relative measure of density,
percentage density (PD). However, this does not convey any information about the
absolute amounts of dense and non-dense tissues. A woman with x amount of dense
tissue in a small breast will have a higher PD than a woman with the same amount of
dense tissue in a larger breast (Figure 8). Moreover, two women with the same PD may
have large differences in the absolute amounts of each respective tissue (Figure 8). On
the other hand, PD contains information on the non-dense area which the measure of
absolute density lacks unless one adjusts for the non-dense area. The non-dense area
may be important, especially in postmenopausal women, since the fatty tissue is an
important source of local estrogens (160), which influences the dense tissue.
Furthermore, PD is more intuitive than absolute density and, used as a categorical
variable, is fairly simple to apply clinically.
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Same percent density (PD)

Same absolute density (AD)

Figure 8. Percent and absolute density

However, since the amount of dense tissue reflects the amount of target tissue for
carcinogenesis, it has been proposed that inferences on the etiology of mammographic
density should be made using the absolute measure of density (161). Conversely, PD is
satisfactory when studying breast cancer risk since both absolute density and percent
density have been shown to be equally predictive of breast cancer risk (162, 163).
There is no consensus on which parameter to use when studying mammographic
density and breast cancer phenotypes/prognosis.

2.3.4 Histology

Through histological studies increased MD has been shown to be associated with an
increased amount of stromal cells (164, 165), an increased amount of collagen (164-
166), stromal fibrosis (166, 167), and an increased number of epithelial cells (164, 165,
168). Interactions between stroma and epithelium are important both in breast
organogenesis and carcinogenesis and the stromal matrix effects proliferation,
differentiation, migration, and apoptosis of epithelial cells (37, 39, 169).

Mammographic density has further been hypothesized to correlate with lobular
involution. Only one group has investigated this relationship (170, 171). They found
that there was an inverse correlation between mammaographic density (assessed using
the Wolfe patterns) and lobular involution (170), although breasts showing complete
involution were identified both in the group with mammaographically fatty breasts (N1)
and in the group with densest breasts (DY)). In a related study of the same cohort of
women, they further showed that mammographic density, assessed using the Wolfe
patterns, and lobular involution were independent risk factors of breast cancer (171);
the women with no lobular involution and densest breasts having highest risks.
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2.3.5 Factors influencing mammographic density
2.3.5.1 Non-genetic factors

Mammographic density is a dynamic and hormonally responsive trait. It decreases with
age and during menopause which has been ascribed the process of involution (see
above). The few existing longitudinal studies have shown a decrease of PD per year of
~1% (172, 173) and an especially large decrease is seen during menopause when PD
may decrease by ~3% (173). Parity and increased number of live births decreases
density, whereas later age at first birth is associated with higher mammaographic density
(174).

Hormone replacement therapy (HRT), especially combined estrogen-progestin
treatment, increases MD (175). The increase in MD occurs within the first year of use
(176) and the effect may disappear within three weeks after cessation (177). Lastly, the
selective estrogen receptor modulator (SERM), tamoxifen, reduces MD (178). Not only
has tamoxifen been seen to decrease mammographic density, but women whose density
decreased also had a reduction in breast cancer risk (178). Whether this is true for other
SERMs, aromatase inhibitors, and chemotherapy, remains to be confirmed (87).
Although there are many examples of mammaographic density as a hormonally
responsive trait, most studies of mammaographic density and blood hormone levels of
estrogens, progesterone, SHBG, testosterone, and androstenedione have found no
associations (179). Furthermore, Tamimi et al. found that mammaographic density and
circulating sex hormones were independent risk factors of breast cancer in
postmenopausal women (180).

BMI is highly, inversely correlated with PD (181, 182). This is due to BMI being
positively associated with the area of the non-dense tissue, because of an increased
amount of fatty tissue in the breast. Postmenopausal women with more non-dense
tissue will have an increased local production of estrogens compared to women with
less non-dense tissue, which could influence the dense area. In spite of this, BMI seems
to be only weakly (183), or possibly not at all associated with the absolute dense area of
the breast (161).

Thus, most factors that influence mammographic density also influence breast cancer
risk in the same direction, the two exceptions being age and BMI. Boyd et al. (184)
related mammographic density to the Pike model (50) to try to explain the
counterintuitive association between mammographic density and age. Pike et al.
modelled breast cancer incidence as a function of breast tissue aging instead of
chronological age (50). They proposed that breast tissue aging starts at menarche at a
certain constant rate until first full-term pregnancy. It then slows and continues at that
rate until menopause, when it slows even more, and after which it is constant. Pike et
al. (50) further showed that it was the cumulative exposure to breast tissue aging that
described the age-incidence curve for breast cancer. Rosner and Colditz extended the
Pike model to include more breast cancer risk factors (185-187) and proposed that it
was not breast tissue aging per se that was the underlying cause of breast cancer
incidence, rather breast tissue aging was a proxy for cell proliferation and accumulation
of genetic damage due to cumulative hormonal exposure. Boyd et al. applied this to
mammographic density and hypothesized that cumulative exposure to mammographic
density represents the epithelial and stromal cells’ cumulative exposure to hormonal
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and growth factor stimuli, and that the cumulative exposure to density increases with
age (157).

2.3.5.2 Genetic factors

Mammographic density is highly heritable at a given age (188); lifestyle factors only
explaining 20-30% of the variation in PD between women (189), and >60% of the
variation attributable to genetic factors (188). As with other quantitative traits, there is
evidence that the mode of inheritance is polygenic (190), i.e. that several genes are
involved in the heritability of the disease.

Since mammographic density has been considered an intermediate in breast cancer
development (184), investigations of associations between genetic variations and
mammographic density are important to attempt to shed light on breast cancer biology
and also to possibly find ways of disease prevention. To date, the following breast
cancer susceptibility genes, ZNF365 (191), LSP1 (192, 193), RAD51L1 (192), ESR1
(191), and a locus on the long arm of chromosome 8 (193) have been found to correlate
with mammographic density.
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3 AIMS OF THIS THESIS

The overall aim of this thesis has been to investigate whether mammaographic density,
one of the strongest risk factors of breast cancer, also influences the breast cancer
phenotype and breast cancer progression. We attempted to answer this question through
the four studies carried out in this thesis. They had the following individual objectives:

Study I: To investigate if mammographic density is associated with breast tumor
characteristics.

Study IlI: To investigate if mammographic density is associated with molecular
subtypes of breast cancer.

Study IlI: To investigate if mammographic density influences breast cancer recurrence
and survival.

Study 1V: To investigate if mammographic density influences survival in interval
cancers.
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4 MATERIALS AND METHODS
4.1 REGISTRIES

The personal identity number was introduced in 1947. It is a unique 10-digit identifier
consisting of six digits denoting the birth date (year, month, and day), two digits
originally specifying the place of birth, but this has been changed so that these two
digits no longer have a relation to place of birth, one digit to identify the sex of the
carrier, and, lastly, a control digit. The control digit is calculated given the first nine
digits so that the entrance of an incorrect number into e.g. a medical record data base
will give an error message. The personal identity number is registered in all public
registers, allowing for easy and unequivocal withdrawal and cross-linkage of
information.

4.2 THE SWEDISH POPULATION REGISTER

The Swedish Population Register includes information on population statistics such as
name, personal identity number, place of birth, civil status, address, and
immigration/emigration data. Population registration is an old tradition originally
maintained by the church; the oldest preserved records dating back to the early 17"
century.

4.3 THE SWEDISH CANCER REGISTRY

The Swedish Cancer Registry was established in 1958 and holds information on all
primary incident cancers diagnosed in Sweden (49). Reporting is mandatory for
physicians as for pathologists/cytologists separately, which has led to a double
notification system, and a high degree of completeness. The system also ensures that
cancers diagnosed at e.g. autopsy are included and are classified according to the
International Classification of Disease (ICD). 99% of the registered cancers have been
morphologically verified, and in women, completeness may be as high as 99% (194).

4.4 STOCKHOLM-GOTLAND BREAST CANCER REGISTRY

All new primary breast cancers diagnosed in the Stockholm-Gotland health care region
since 1976 have been reported to the Stockholm-Gotland Breast Cancer registry and it
has a close to complete coverage. An important role of the registry is to evaluate the
quality of breast cancer care and ensure that patients receive the same care independent
of place of diagnosis.

4.5 THE CAUSE OF DEATH REGISTRY

The cause of death register covers all residents in Sweden. It was computerized in 1952
and is considered reliable since 1961. The reporting is mandatory and there are
essentially no missing deaths. It has also been shown to correctly classify 98% of breast
cancer deaths (195). Information in the register includes date of death, underlying cause
of death, and up to 10 contributing causes, classified according to ICD.
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4.6 STUDY POPULATIONS
4.6.1 Paper |, lll, and IV

This study is an extension of a large case-control study, CAHRES, among all Swedish
residents born in Sweden and aged 50 to 74 years at the time of enrollment, 1 October,
1993 - 31 March, 1995. Women with incident primary invasive breast cancer were
identified via the six Swedish Regional Cancer Registries. The study identified 3,979
women, of whom 84% (n=3345) participated. However, of the cases included, 19 were
diagnosed outside of the study period, one case had a diagnosis other than breast
cancer, and 58 cases had non-invasive breast cancer, rendering them ineligible.

For the studies within this thesis, the inclusion criteria were further refined to only
include postmenopausal women who had no prior diagnosis of cancer other than non-
melanoma skin cancer. Menopause was defined as the age at the last menstrual period
or the age at bilateral oophorectomy if at least one year prior to date of study entrance.
198 premenopausal women and 202 women with unknown menopausal status who
were younger than 55 for non-smokers or 54 for smokers (the 90th percentile of age at
natural menopause of study subjects) were thus excluded from the study as were 147
women with previous cancer. The study base thus consisted of 2720 breast cancer
cases.

We used the national registration number to retrieve the correct patient records, and
collected, among other things, information on tumor characteristics and reason for
diagnostic mammography (see 4.7.1.3 Data collection of clinical variables).

Using the Swedish national registration numbers, we obtained addresses for
participants from 1975 to 1995 through the civil registry. During 2007 and 2008, we
visited all mammaography screening units and radiology departments conducting
screening mammography throughout Sweden. A second retrieval attempt was carried
out in 2010-2011. For the eligible participants in these studies, we managed to collect
mammograms for 2046 women (75%). For all three studies, we used the mammogram
closest to diagnosis, excluding post-diagnostic mammograms. 107 women who only
had post-diagnostic mammograms available were thus excluded. The median difference
from date of mammaography to study entrance was 50 days.

Since studies have shown that MD may differ histologically in pre- and
postmenopausal women (164) and also may be affected differentially by hormones
(196, 197), we excluded women who lacked postmenopausal mammograms (n=79).

Tumors appear white on a mammogram and can thereby distort density measurements.
Hence, we used the mammogram of the breast contralateral to the tumor, excluding
women with missing information on tumor side (n=3) or lacking contralateral
mammograms (n=62, of which 19 had bilateral breast cancer). Images of poor quality,
including breasts with silicone implants, were also omitted, excluding 21 women. 1774
women thus comprised the study population of study IlI.

Following a decision of the Ethical Review Board of the University of Lund, written
informed consent was sought to retrieve information from medical records. For study I,
24 women were excluded due to lack of written consent and another 3 women were
excluded due to missing medical records. The final study population for this study thus
included 1747 women.
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For the fourth study, only women with screening-detected cancers and interval cancers
were included. We thus used information collected from 66 of the 68 mammography
units in Sweden from which we had gathered the following: Date and reason for the
mammaographies (screening or referral and reason for referral,) performed within 5
years before diagnosis, excluding 3 months just before diagnosis to avoid registering
diagnostic examinations. We added this to the information on mode of detection
(collected from the medical journals,) to assess interval cancer status for which the
following definition was applied: Non-screening detected cancers (i.e. reason for
diagnostic mammography was not screening), where a previous, negative (either
negative directly at mammography or at follow-up) screening mammography, had been
conducted 3-24 months before the diagnostic mammaography. 24 months was the
screening-interval in Sweden during the time period of the study. The three-month cut-
off was used to avoid including mammography screenings with clinical work-up
periods. Out of the 1774 eligible women, 268 women had non-screening detected
cancers but either a previous screening mammography more than two years prior to
diagnosis, or no previous screening mammography at all, and 106 individuals lacked
information to be able to assess interval cancer status. All of these women were
therefore excluded. Hence, there were 1115 women with screening-detected cancers
and 285 women with interval cancers which comprised the study population.

Figure 9 depicts the process of study population selection and figure 10 illustrates the
process of interval cancer assessment.
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Figure 9. Flow chart of study populations

Original CAHRES | 3979 women, ages 50-74, were diagnosed with incident
study cohort invasive breast cancer in Sweden, October, 1993 —
(cases only) March, 1995. 634 women did not participate.
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Eligible cases
(n=1774)

Screening-detected Information missing
cancer, n=1115 to assess interval
cancer status, n=106

Non-screening-detected
cancer, n=553

Negative screening No previous screening
mammography 3-24 mammography/previous
months prior to screening outside of the
diagnostic mammography interval defined for interval
= interval cancer, n=285 cancers, n=268

Figure 10. Flow chart of study population for study 1V

4.6.2 Study Il

Study Il is also a case-only study. The source population was all women with breast
cancer operated at a large university hospital in Stockholm (Karolinska University
Hospital) between 1 January 1994 and 31 December 1996 (n=524), as previously
described (198). The women were identified through the population-based
Stockholm-Gotland Breast Cancer Registry. Exclusion was due to refusal of
participation (n=6), emigration (n=7), lack of frozen tumor (n=231), insufficient
amount or quality of RNA (n=89), lack of gene expression profiling on U133 A and
B chips (n=14), neoadjuvant therapy (n=12), in situ cancer (n=5), or stage IV cancer
(n=1).

The mammogram closest to diagnosis was retrieved for 141 out of the 159 subjects
with gene expression profiling information. Women with bilateral breast cancer
(n=10) and subjects with breast implants (n=3) were excluded. We thus had density
measurements for 128 women. As in the original publication (198), it was not possible
to assign a unique subtype for all samples. Consequently, n=18 patients were excluded,
leaving n=110 patients for the final analysis.
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4.7 DATA COLLECTION AND CLASSIFICATIONS
4.7.1 Studies I, Ill, and IV
4.7.1.1 Questionnaire data

Data on sociodemographic, anthropometric, hormonal and lifestyle factors, as well as
family history of breast and ovarian cancer, previous benign breast disease, and
previous mammography examinations were collected by means of a postal
questionnaire. The questionnaire included detailed information on HRT including
brand, dosage, and dates of first and last use of each treatment episode. Pictures of all
brands marketed in Sweden 1950-1995 were also included to aid recall. If essential
information was missing in the questionnaire, then cases (and controls) were
contacted by telephone to obtain this. Approximately 50% of cases were contacted in
this way.

Since date of mammography was prior to study entrance, the variables age, menopausal
status, and HRT use were reassessed according to date of mammography. We were not
able to do this with BMI as we only had information on BMI at study entrance and one
year prior to study entrance. However, it has previously been shown that inter-
individual variations in BMI are small (199) and the difference in BMI at study
entrance and one year prior to this was 0.05 units (SD 1.2) for our study participants.

HRT was classified according to recency (current, former, and never use). Since the
influence of HRT on MD may diminish within three weeks of cessation (176), former
users were those who discontinued HRT-use more than one month prior to date of
mammography. There were no individuals classified as never users who started using
HRT after date of mammaography. All compounds, modes of administration, and
potencies were included in the HRT variable except for low potency, estrogen-only
pharmaceuticals, since the latter have not been shown to increase breast cancer risk
(200).

4.7.1.2 Mammographic density data

Film mammograms of the MLO view were digitized using an Array 2905HD Laser
Film Digitizer (Array Corporation, Tokyo, Japan), which covers a range of 0 to 4.7
optical density. The MLO view was used since this was the routine view used at
mammography screening in Sweden. The density resolution was set at 12-bit spatial
resolution. We used Cumulus to assess density (152) of the mammogram contralateral
to the tumor. For each image, a trained observer (LE) set the appropriate gray-scale
threshold levels defining the edge of the breast and distinguishing dense from non-
dense tissue. The software calculated the total number of pixels within the entire region
of interest and within the region identified as dense. The percentage density was then
calculated from these values (dense area/total breast area). The images were measured
together with approximately the same amount of images for healthy women, and the
reader was blinded to case-control status and also, naturally, to all variables associated
with tumor phenotype/prognosis. A random 10% of the images were included as
replicates to assess the intra-observer reliability, which was high with an R? of 0.92.
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4.7.1.2.1 Mammographic density

In study I, 111, and 1V, mammographic density was treated as a dichotomized variable
with the cutoff of 25% for high mammographic density, defining the highest quartile in
our cohort. (Figure 11 depicts mammograms with different PD values also categorized
based on the 25% cut-off.) We used a categorical variable since this is more clinically
relevant than a continuous measure and more easily interpreted. An alternative to our
categorization would be to use the categories introduced by Boyd et al. (157). However,
these did not fit our postmenopausal study population whose density is lower and more
homogeneous than a combined pre- and postmenopausal population. N.B. that all
analyses in study | and 111 were also performed using PD as a continuous variable.

Figure 11. Mammograms depicting breasts with different PD values, also categorized
according to the 25% cut-off used in studies I, I11, and IV.
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4.7.1.3 Data collection of clinical variables

We used the national registration numbers to retrieve patient records and register
information. Between 2000 and 2002, we collected information on primary surgery,
adjuvant treatment (endocrine therapy, chemotherapy, and radiotherapy), tumor
characteristics, possible recurrence, and reason for diagnostic mammography from
surgical and oncological patient records throughout Sweden.

Grade was classified according to the Nottingham histologic grade or the Bloom—
Richardson scale into three groups. Tumors were considered ER-positive or
progesterone receptor (PR)-positive if they contained > 0.05 fmol receptor/ug DNA or
> 10 fmol receptor/mg protein.

Type of surgery was classified as partial or total mastectomy independent of axillary
surgery since 98% of our study participants had axillary lymph node clearance carried
out.

Mode of detection was treated as a binary variable — screening- vs. non-screening-
detected cancer in studies I and I11. This was due to few observations in the categories
of asymptomatic women referred for mammaographic examination, and they were thus
combined with the group of women with symptomatic cancers.

For information on recurrence variables, see 4.7.1.5 Data on survival variables.

4.7.1.4 Data on interval cancer status

We visited 66 of the 68 units performing mammographic examinations in Sweden, and
collected information on the dates and reasons for the examinations (screening or
referral and reason for referral) performed within 5 years before diagnosis, excluding 3
months just before diagnosis to avoid registering diagnostic examinations. To evaluate
whether lack of information on pre-diagnostic mammaographies was due to failure in
finding the information or a true lack of previous mammographies, we compared the
information retrieved from mammaography units to the questionnaire. In the latter,
women had stated how many mammographies they had undergone 5 years prior to
diagnosis and this was thus used as reference. N.B., this was only done to distinguish
between clinical cancers and cancers where we lacked information to assess interval
cancer status (see Figure 10), and was carried out as quality control.

4.7.1.5 Data on survival variables

We collected information on emigrations from the Swedish National Population
Register, and the date and cause of death until 31 December 2008 from the Swedish
Causes of Death Registry.

Local recurrence included recurrence in the residual ipsilateral breast, scar tissue, or
chest wall. Locoregional recurrence included both local recurrences and recurrences in
regional lymph nodes. During the collection of follow-up information from clinical
records, the study subjects’ follow-up period was marked as complete or incomplete
depending on whether follow-up information was complete or missing until date of
retrieval. Follow-up time for recurrence variables was thus computed from date of
diagnosis and, depending on outcome, as follows: If recurrence occurred, time to
specific recurrence; if the specific recurrence did not occur and follow-up information
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from medical records was considered complete, time to date of medical record retrieval
or date of death, whichever came first; or, lastly, if information on follow-up was
considered incomplete, time to last documented date in the medical record or date of
death, whichever came first.

4.7.2 Study Il
4.7.2.1 Data on patient and tumor characteristics

We collected information pertaining to status at diagnosis on age, menopausal status,
HRT, family history, oral contraceptive use, and tumor characteristics from the
medical records. Breast cancer heredity is defined as history of breast cancer in a
first-degree relative. Menopausal status was self-assessed by the patient as either pre-
or postmenopausal. Two women had unknown menopausal status. Both oral
contraceptive use and HRT use were assessed according to status at time of referral to
the Karolinska Hospital (former, current, and nonuse, collapsing former and current
use into one category because of few observations). Non-users of HRT were
postmenopausal women actively stating no current or previous use of HRT. Of the
HRT users, approximately two out of three used a combined estrogen and
progesterone regimen, and one out of three used estrogen only. Local estrogen
treatment was not considered as HRT use. Oral contraceptive use included all
preparations.

4.7.2.2 Gene expression data

Details on RNA preparation and microarray profiling have previously been described
elsewhere (198). Briefly, frozen tumor was cut into minute pieces and transferred into
test tubes with RLT buffer (RNeasy lysis buffer, Qiagen, Hilden, Germany), followed
by homogenization. Proteinase K was then added. After this step, total RNA was
isolated using Qiagen’s microspin technology. DNase was added to some samples to
further increase RNA quality. The quality of RNA was assessed by measuring the
28S:18S ribosomal RNA ratio. Preparation of in vitro transcription products and
oligonucleotide array hybridization and scanning were performed according to the
protocol of Affymetrix (Santa Clara, CA, USA). The molecular subtypes have been
validated previously on a larger cohort of patients (201).

4.7.2.3 Mammographic density data

The process of digitization of images was the same as for studies I, 11, and IV (see
above).

Two independent observers (ISS and VM) carried out the density measurements
blinded to the characteristics of the patients and their tumors. Both observers
measured all of the images and a random repeat sample of 10% of the images. There
was good inter- and intra-observer reliability with Pearson’s correlation coefficients
of 0.82 and 0.93, respectively, for absolute density. For our analysis, the density
measurements from both observers were averaged to minimize random measurement
error.
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4.7.3 Statistical analyses
4.7.3.1 Brief description of statistical analyses used in this thesis

4.7.3.1.1 Linear regression

A linear regression model is used to model the relationship between an outcome that is
continuous and a linear combination of a set of explanatory/predictive variables. In the
simplest case of one explanatory variable, the model is based on the following
equation: yj=a+bx;+¢; , where y; is the outcome, x; is the explanatory variable of the ith
individual/sampling unit, a is the intercept, and b is the slope of the model. The
relationship is modeled using an error variable ;.

The model is most commonly based on the normal distribution curve — g; is assumed to
be normally distributed, hence, the outcome is also assumed to be normally distributed.
The supposed linear relationship should be tested when fitting the model to the data by
e.g. plotting a simple scatter plot of the exposure and outcome. Furthermore, the
variance in errors or the outcome variable should be independent of the values of the
explanatory variables (homoscedasticity), which can be assessed by plotting the
residual errors against the predicted values. This linear regression model can be used to
make inferences about the mean value of y (e.g. BMI) given x.

4.7.3.1.2 Logistic regression

Logistic regression is used for modeling binary outcomes (0 or 1, where 0 could be the
state healthy and 1 the state diseased). It can be used to estimate the odds ratio, which
compares the odds of e.g. developing breast cancer given the exposure compared to the
odds of developing breast cancer given not having the exposure. It models the natural
logarithm of the odds, which is continuous, as a function of the linear predictor. Instead
of the normal distribution, the binomial or Bernouilli distribution underlies this model.

The multinomial logistic regression model is a generalization of the binomial logistic
regression model, and allows for the use of categorical outcomes, such as molecular
subtypes. There is no implied order for the different values of the outcome.

4.7.3.1.3 The Cox proportional hazards model

The Cox proportional hazards model is a model used for survival analyses and is used
to estimate the effect of an exposure on a time-to-event variable, such as recurrence or
death. A hazards ratio (HR) is calculated. This is the ratio of the hazard rates (e.g. the
instantaneous rates of dying/failing) for the exposed and unexposed groups. Basic Cox
proportional hazards models assume that this ratio does not change over time
(proportional). However, the model assumes nothing of the underlying baseline hazard
which may vary with time.

4.7.3.2 Study |

We performed regression analyses treating tumor characteristics as outcomes and
density as a covariate; we used linear regression for studying tumor size (tumor size
was transformed by power of 0.2 to obtain an approximately normal distribution),
multinomial logistic regression for grade and histological classification, and logistic
regression for all other outcomes. Tests of heterogeneity in effect sizes across

40



subgroups were carried out for grade and histological classification. We included age
(continuous), BMI (continuous), HRT-use (categorical), age at menarche
(continuous), previous oral contraceptive use (binary), parity and age at first birth
combined into one categorical variable (nulliparous, parity <2 and age at first birth
<25, parity <2 and age at first birth >25, parity >2 and age at first birth <25, and
lastly, parity >2 and age at first birth >25), breast feeding ever (binary), age at
menopause (continuous), previous benign breast disease (binary), family history of
breast cancer in a first-degree relative (binary), and mode of detection (to try to
account for masking) as potential confounders. We did not adjust for tumor size,
presence of lymph node metastasis, or grade since this would risk depleting a true,
biological effect of density on tumor characteristics or over-adjustment, since mode
of detection also is associated with these factors. The decision to use covariates as
continuous or categorical variables was based on the goodness of fit of the model
which was ascertained using AIC (202).

4.7.3.3 Study Il

Our main variable of interest pertaining to MD was the AD area (measured in cm2),
owing to the lack of information on BMI.

We analyzed AD as a continuous variable after transformation to the square-root of
AD to make the density distribution more symmetric. The transformed density values
were then standardized by subtracting the mean and dividing by the SD (Z scores), to
be able to interpret the risk estimates in terms of the inherent variability of the density
values, see below. The relationship between AD and molecular subtypes was
modelled via multinomial logistic regression. The multinomial model is an extension
of the logistic regression model that allows for more than two categories in the
response variable (i.e., subtype). The luminal A subtype was set as reference category
and we report risk estimates as relative risk ratios (RRRs) for the standardized,
square-root-transformed AD values. The RRRs reported in Table 3 (page 44) measure
the change in odds for a tumor falling into any of the reported categories relative to
the reference category that is associated with an increase of square-root transformed
AD by one SD (or somewhat less than 25% of the range of densities).

We fitted both an age-adjusted model as well as a fully adjusted model, which took
into account known correlates of MD and breast cancer risk (age, menopausal status,
HRT, family history, and oral contraceptive use) (157, 203) and tumor size. The latter
adjustment was made to try to account for the masking bias and its possible influence
on molecular subtypes. We have no prior knowledge of whether the factors adjusted
for influence molecular subtypes, so we chose a conservative approach. Significance
testing was conducted via likelihood ratio tests. Confidence intervals and P-values for
individual parameters are based on Wald statistics. All tests were conducted at a
nominal significance level of a=0.05.

4.7.3.4 Study I

Survival analyses were carried out using the Cox proportional hazards model to study
the association between PD and prognostic variables. We included age (continuous),
BMI (continuous), and HRT-use (categorical) as potential confounders, based on their
strong association with MD and breast cancer risk (203) and influences on breast
cancer survival (143, 149, 204). We viewed this as our “crude model” since we were
not interested in their effect on tumor characteristics but rather the independent effect of
PD. In the full model we further adjusted for tumor size (continuous), lymph node
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metastasis (continuous), estrogen receptor(ER)-status (categorical), progesterone
receptor(PR)-status (categorical), grade (categorical), and mode of detection (binary;
screening- vs. non-screening-detected cancer). These factors were adjusted for since
they all influence prognosis (111, 141). Whereas less than 5% of our study population
were missing information on mode of detection, tumor size, and presence of lymph
node metastasis, respectively, approximately 30% were missing information on grade,
ER-, and PR-status. We thus added a missing category to these variables.

4735 Study IV

We studied the influence of PD on survival in interval cancers versus screening-
detected cancers by first comparing survival in interval cancers compared to screening-
detected cancers independent of density, and then stratifying on density (<25% vs.
>25%). The Cox proportional hazards model was used to calculate hazard ratios (HR)
and their associated 95% confidence intervals (95% CI) for 5-year breast cancer-
specific survival. Age at mammography (continuous), BMI (continuous), and HRT use
(categorical) were included as possible confounders in the first model, further adjusting
for tumor size (continuous) to try to account for time to diagnosis, or lead-time, in the
second model.
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5 MAIN RESULTS
5.1 STUDY |

Table 2 shows the results from the analyses of PD and tumor characteristics. PD was
positively associated with tumor size (regression coefficient 0.031 for tumor size,

p = 0.017). When we excluded mode of detection from the model, the regression
coefficient increased slightly and became highly significant (regression coefficient
0.043, p = 0.001) (results not shown in Table 1). There was a borderline statistically
significant association between PD and grade 3 tumors (OR 1.56 for grade 3, p =
0.069). However, a test of heterogeneity revealed that there was no difference in risk
associated with PD between different categories of grade (p = 0.192).

Re-analyses using PD as a continuous variable gave similar results as those presented,
i.e., PD was only associated with tumor size (data not shown).

Table 2: Association between percentage density (PD) (>25% vs. <25%) and tumor
characteristics*

Outcome variable Effect size® 95% ClI p-value
(Linear) regression coefficient

Tumor size

mm~0.2 0.031 0.005 0.056 | 0.017

Odds ratio (OR)

ER-status

ER-negative 1.00 (Ref.)

ER-positive 1.07 0.72 1.60 0.725

PR-status

PR-negative 1.00 (Ref.)

PR-positive 1.17 0.83 1.66 0.369

ERPR-status

ERPR-negative 1.00 (Ref.)

ERPR-positive 1.31 0.83 2.06 0.247

Lymph node

metastasis

Negative 1.00 (Ref.)

Positive 0.88 0.65 1.19 0.394

Grade (WHO)

1 1.00 (Ref.)

2 1.36 0.85 2.19 0.205"

3 1.56 0.97 2.52 0.069"

Histology

Ductal 1.00 (Ref.)

Lobular 1.22 0.82 1.82 0.335

Other 1.08 0.74 1.57 0.689

#Odds ratios in all cases except for tumor size for which a (linear) regression
coefficient is presented. PD coded as 0= <25%, 1=>25%.
®1=0.192 for heterogeneity across subgroups
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5.2 STUDY I

Compared with the luminal A subtype (taken as the reference category), the relative
risk of the luminal B, ERBB2, and normal breast-like subtypes increased with
increasing AD both in the age adjusted (RRR 1.19, 95% CI1 0.58-2.45; RRR 1.88,
95% CI1 0.79-4.48; and RRR 1.51, 95% CI 0.78-2.92, respectively, for an increase in
square-root-transformed density by one SD) and in the fully adjusted (RRR 1.22,
95% CI1 0.53-2.83; RRR 1.74, 95% CI 0.62-4.85; and RRR 1.43, 95% CI 0.64-3.17,
respectively) models (Table 3). The relative risk of the basal subtype was essentially
the same as that of the luminal A subtype in the age-adjusted model (RRR 0.99, 95%
C10.48-2.06), but decreased with increasing AD in the fully adjusted model (RRR
0.83, 95% C1 0.33-2.10) (Table 3). None of the individual associations were,
however, statistically significant, nor was the association between AD and molecular
subtype as a whole statistically significant (p=0.483 and p=0.651 for the age adjusted
and fully adjusted models, respectively).

Table 3: Relative risk ratios (RRRs) for specific molecular subtypes of breast cancer
compared to the luminal A subtype for an increase in square-root transformed AD by
one standard deviation (SD).

Age-adjusted™ Fully adjusted**

RRR 95% CI p-value RRR 95% CI p-value
Subtype
Luminal A 1.00 (Ref.) 1.00 (Ref.)
Luminal B 1.19 0.58-2.45 0.641 1.22 0.53-2.83 0.644
Basal-like 0.99 0.48-2.06 0.986 0.83 0.33-2.10 0.690
ERBB2 1.88 0.79-4.48 0.153 1.74 0.62-4.85 0.291
Normal
breast-like 1.51 0.78-2.92 0.222 1.43 0.64-3.17 0.385

*Adjusted for age; p=0.483 for the association between AD and subtype as a whole
based on the likelihood ratio test.

**Adjusted for age, oral contraceptive use, menopausal status, HRT use, family history,
tumor size; p=0.651 for the association between AD and subtype as a whole based on
the likelihood ratio test.

5.3 STUDY Il

Results from survival analyses are reported in Table 4. PD was associated with local
and locoregional recurrence both before (HR for local recurrence 1-99, 95% CI 1-09-
3-66; HR for locoregional recurrence 1-84, 95% CI 1-16-2-91) and after adjustment for
established prognosticators (HR for local recurrence 1-92, 95% CI 1-:03-3-57; HR for
locoregional recurrence 1:67, 95% CI 1-04-2-69). No associations between PD, distant
metastasis, breast cancer-specific survival, and overall survival were observed.
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Table 4: Association of percentage density (PD) with breast cancer recurrence and
survival

Adjusted model 1* Adjusted model 2**

HR' | CI(95%) | p-value | HR' | CI(95%) | p-value
Local recurrence 1.99 1.09-3.66 0.026 192 | 1.03-3.57 0.039
Locoregional
recurrence 1.84 1.16-2.91 0.010 1.67 | 1.04-2.69 0.033
Distant recurrence 1.28 0.90-1.82 0.170 1.08 | 0.74-1.56 0.698
5-year breast cancer-
specific survival 1.25 0.82-1.92 0.299 0.97 | 0.61-1.54 0.908
10-year breast cancer-
specific survival 1.34 0.97-1.85 0.080 1.08 | 0.77-1.53 0.644
Overall 5-year survival 1.07 0.73-1.55 0.742 0.89 | 0.60-1.32 0.554
Overall 10-year survival | 1.14 0.87-1.48 0.343 0.99 | 0.75-1.29 0.921

*Adjusted for age, BMI, and hormone replacement therapy (HRT) use

** Adjusted for age, BMI, HRT use, mode of detection, tumor size, lymph node
metastasis, ER-status, PR-status, and grade

! HR=Hazards ratio comparing PD>25% to PD<25%

The associations described in Table 4 between PD and local and locoregional
recurrence could be due to density masking residual disease in women who were
operated with partial mastectomy. We therefore redid the analyses pertaining to PD,
local, and locoregional recurrence, stratifying on surgical procedure (Table 5). For
women exposed to total mastectomy, the HRs for local and locoregional recurrence
were 293 (95% CI 1:03-8-39) and 2-16 (95% CI 1-02-4-54), respectively, after full
adjustment. For partially mastectomized women, the HRs for local recurrence and
locoregional recurrence were 1-48 (95% CI 0-67-3-25) and 1-57 (95% C1 0-83-2-97),
respectively, after full adjustment. Although the HRs were highest and only statistically
significant for the group treated with total mastectomy, there was no statistically
significant difference in the effect of PD on risk of recurrence based on surgical
procedure, reflected in the non-significant p-values for interaction.
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Table 5: Association between percentage density (PD>25% compared to PD<25%)
and local recurrence stratified on type of surgery

Partial mastectomy Total mastectomy p-value
for
inter-

HR! | CI p-value | HR® | CI p-value | action?

Local
recurrence

Adjustment 1* | 1.53 | 0.70-3.32 | 0.286 3.44 | 1.26-9.38 | 0.016 0.248

Adjustment 2** | 1.48 | 0.67-3.25 | 0.334 2.93 | 1.03-8.39 | 0.045 0.314

Locoregional
recurrence

Adjustment 1* | 1.45 | 0.78-2.70 | 0.242 2.69 | 1.34-5.43 | 0.006 0.238

Adjustment 2** | 1.57 | 0.83-2.97 | 0.166 2.16 | 1.02-4.54 | 0.044 0.485

'HR=Hazards ratio

2p-value for interaction testing a possible difference in effects of PD on local and
locoregional recurrence depending on type of surgery.

* Adjusted for age, BMI, and hormone replacement therapy (HRT)

** Adjusted for age, BMI, HRT, mode of detection, tumor size, lymph node metastasis,
ER-status, PR-status, and grade

Although we used PD as a binary variable, we also carried out analyses using PD as a
continuous measure. This did not change the interpretation of the results (data not
shown).

54 STUDY IV

ICs had a particularly unfavorable phenotype compared to screening-detected cancers;
they were larger (p<0.001), more often lymph node positive (p<0.001), ER-negative
(p=0.020), PR-negative (0.008), of higher grade (<0.001), and of higher proliferation
rate (p<0.001) (see Table 2 in manuscript V). These results were reflected in the
comparison of ICs in non-dense breasts with screening-detected cancers in non-dense
breasts. Conversely, in dense breasts, ICs were similar to screening-detected cancers
except that they were larger (p<0.001), more often presented with lymph node
metastasis (p=0.001), and of higher grade (p=0.012). Despite the difference in tumor
size, there was no statistically significant difference in proliferation rates (p=0.523).

According to the Cox proportional hazards model, ICs had a worse prognosis than
screening-detected cancers, independent of adjustments (Table 6). Both types of ICs
were associated with a HR of ~3 before adjustment for tumor size. After adjustment for
tumor size, ICs in non-dense breasts still had a statistically significantly worse survival
then screening-detected cancers in non-dense breasts (HR of 2.43, 95% CI 1.44-4.10),
whereas the point estimate approached unity and was statistically non-significant in
dense breasts (HR 1.41, 95% CI 0.53-3.74).
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Table 6: Hazard ratios (HRs) comparing 5-year breast cancer-specific survival in 1)
interval cancers (ICs) to screening-detected cancers 2) only including non-dense breasts

3) and only including dense breasts

ICs compared to
screening-detected

ICs compared to
screening-detected

ICs compared to
screening-detected
cancers in dense breasts

cancers, all cancers in non-dense
breasts
HR Cl p- HR Cl p- HR Cl p-
(95%) | value (95%) | value (95%) | value
Model* | 3.50 | 2.25- <0.001 | 3.62 | 2.17- <0.001 | 3.00 | 1.26- 0.013
5.44 6.06 7.17
Model* | 2.17 | 1.36- 0.001 | 2.43 | 1.44- 0.001 |1.41 | 0.53- 0.486
347 4.10 3.74

Adjusted for age, BMI, and hormone replacement therapy (HRT) use.
?Adjusted for age, BMI, HRT use, and tumor size.
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6 DISCUSSION
6.1 METHODOLOGICAL CONSIDERATIONS

6.1.1 Study designs
6.1.1.1 Observational and experimental studies

Epidemiologic studies can be either observational or experimental. Observational
studies can be purely descriptive, investigating e.g. the occurrence of disease in a
certain population. They can also aspire to investigate causes of disease by studying
associations which is the aim of this thesis.

In an observational study, the assignment of an individual to an exposure is outside of
the control of the investigator. This leads to important drawbacks including
confounding and bias (see below), hampering assumptions on causality. In an
experimental study, on the other hand, a study subject is randomly allocated to a
treatment (exposure) or control group by the investigator. If carried out properly, i.e. a
correct randomization process with no cross-over between treatment arms, complete
follow-up, and double-blind assessment of outcome, the experimental study is
supposed to be free from systematic errors. Yet the role of chance can still operate in
both types of studies. To minimize this risk, the study population has to be large, which
is not always possible, especially in experimental studies. Probably the most important
limitation of experimental studies, especially in humans, is that they can be unethical to
perform; one cannot e.g. expose a group of people to a suspected carcinogen to study
disease etiology. Moreover, certain exposures, e.g. mammographic density, are not
possible to assign. In these cases we have to rely on animal models and observational
studies to inform us of disease etiology but be aware of their limitations.

6.1.1.2 Cohort and case-control studies

A cohort is a group of individuals that is followed for a period of time. A cohort study
consists of a group of individuals with a certain exposure and a group of individuals
without the exposure. These two groups are followed for a certain time period and
comparisons of different outcomes are then made between the two groups. Cohort
studies are good when it comes to the study of rare exposures and has the advantage
that one can study the association between the exposure and several different outcomes.
Further, temporality is known, i.e. it is known that the exposure came before the
outcome, and this is fundamental when trying to make inferences on causality.

Although a cohort study can initially be created to assess the impact of one exposure on
different outcomes, it is not uncommon that information on other exposures is collected
at the same time (or later on). The same cohort can then be re-classified as either
exposed or non-exposed depending on the next exposure one would want to study.

When an outcome is rare, e.g. breast cancer compared to a cold, it is much more
efficient to create a study based on individuals with and without the outcome. This is
called a case-control study and also gives the possibility of studying many different
exposures at once. Individuals selected as controls have to be identified from the same
study base as the cases were identified, i.e. if a control had developed the disease under
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investigation, he/she would have been included as a case in the study. Sampling
controls from anything but the study base, e.g. comparing female breast cancer cases to
healthy males, will give rise to selection bias (see below). Since individuals are
identified when they have developed the outcome (disease), collection of information
on possible risk factors has to be done retrospectively, which is a limitation of case-
control studies and may give rise to recall bias. This is a specific bias in case-control
studies due to the ascertainment of exposure occurring after disease development. The
result may be differences in the likelihood of cases and controls recalling an exposure.

Although studies I, 111, and 1V all are based on a case-control study, they could be
considered cohort studies in the sense that they include a cohort of population-based
breast cancer cases. In line with the benefits of a cohort study, the issue of control
selection is also irrelevant for all studies. Both exposure and outcomes have been re-
defined compared to the original study, thus, although information from the
questionnaire was retrospective, recall bias cannot be present. Studies 11l and IV could
also be considered prospective since the exposure and all possible confounders were
assessed (or in the case of mammographic density, mammograms were taken) prior to
the outcome (recurrence, distant metastasis, or death), thus, temporality is certain.
However, retrospective collection of mammograms affected the selection of included
women which is an important limitation of our studies (please see 6.1.2.2.1 Selection
bias below).

6.1.2 Factors influencing validity
6.1.2.1 Confounding

7\

Confounding occurs when the exposure and outcome have common causes. It affects
the internal validity of the study. If we were to study coffee drinking and lung cancer
we would most probably see an association since coffee drinkers tend to be smokers.
To remove the effect of smoking on the relationship between coffee drinking on lung
cancer, one could e.g. limit the study to non-smokers, adjust for smoking, or stratify on
smoking. However, in reality, all confounders are not always known, and/or cannot
always be accurately measured, resulting in residual confounding (33).

The probability of residual confounding due to lack of adjustment for possible
confounders seems low in studies I, 111, and IV, since we had detailed information on
many related factors. However, we cannot completely rule out the possibility of
residual confounding due to confounders that we do not yet know about or due to
inaccurate assessment of possible confounders.

For study 111, we lacked BMI and thus instead used absolute dense area as a measure of
mammographic density instead of PD. This should have taken care of (or at least
minimized) any possible confounding by BMI on the relationship between
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mammographic density and molecular subtypes. As for the studies above, there may
also be residual confounding due to unknown confounding factors or inaccurate
assessment of confounders.

6.1.2.2 Bias
6.1.2.2.1 Selection bias

The most important threat to the internal validity of all the studies within this thesis is
the possibility of selection bias, since all study participants had to have an available
mammography. However, since only cases were included in the four studies, and
mammography is one of the fundaments of detecting breast cancer, all cases would at
least have a mammogram taken at diagnosis. However, the retrieval rate was affected
for the following reasons: First, it is not uncommon that “healthy” mammograms older
than 10 years are disposed. Secondly, we used analogue films so some films may have
been misplaced. Thirdly, each time a woman has a mammogram carried out, old
mammograms are studied for comparison, therefore, if a woman has an active disease,
the likelihood of finding the mammograms in the storage area is lower. However, since
we searched for mammograms in 2007-2009 i.e. >10 years after diagnosis, and events
(recurrences and contralateral breast cancer) are most common within the first five
years, it is unlikely that this will be a frequent problem. Further, a second retrieval
round was carried out in 2010, minimizing this risk. The last and probably most
important source of possible selection bias lies in the management of deceased
women’s’ mammograms. These are often stored separately, and not always in order,
making them more difficult to find. In some cases they are even discarded. This would
lead to an exclusion of older cases and cases with a more aggressive disease than those
included.

We did see a small, yet significant age difference between women with and without
mammaograms (62.9 for included women compared to 63.6 for excluded women,
p=0.015). Nevertheless, selection bias can be controlled for by adjusting for the factors
influencing selection (33) which we did with age. We could not adjust for vital status.
Although selection bias can influence the estimation of the strength of the association it
does not influence the validity of the hypothesis testing. In study I, the finding of a
null association between mammographic density and survival is valid. In study 1V, the
p-values are also valid, though there is a risk that the strength of the association
comparing survival in interval cancers to screening-detected cancers may be slightly
biased due to a selection of survivors.

In study Il we had the opposite problem; here subjects were excluded because of lack
of frozen tumor. Excluded women therefore had a lower mean tumor diameter and
less often metastatic lymph nodes. There was thus a selection of higher stage tumors
than that of the source population. This was inevitable because of the harvest of RNA
requiring a certain amount of tumor tissue. Hence, the results of the study may not be
generalizable to women with smallest tumors. However, as pointed out above, the
testing of the null hypothesis is still valid. We found no evidence of an association
between mammographic density and molecular subtypes, i.e. could not reject the null
hypothesis.

6.1.2.2.2 Lead-time and length bias

Comparisons between screening- and non-screening-detected cancers to evaluate the
efficiency of mammaography screening suffer from several biases e.g. selection bias,
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lead-time bias, and length bias (see 2.2.5.2.4 Biases in estimating the effect of
screening on mortality). In study 1V, we compare the survival of interval cancer cases
to screening-detected cases, to see if there are true biological differences between them.
With this aim, only lead-time bias will be a concern. Selection bias will not be present
since the interval cancer cases originate from the same population as the screening-
detected cancers. The length bias is a true difference in biology - differences in tumors’
proliferation rates - and thereby a difference we did not wish to remove. Screening-
detected cancers and interval cancers will, however, have differences in lead-time,
resulting in an artificial survival advantage for the former compared to the latter. This is
because interval cancers will be diagnosed at a symptomatic stage, i.e. later in their
natural history than screening-detected cancers, which mostly will be pre-symptomatic
and diagnosed earlier in their natural history. Hence, we had to take lead-time into
account and tried to do so by adjusting for tumor size, a proxy for time to diagnosis.

6.1.2.2.3 Misclassification/information bias

We used Cumulus, a semi-automated thresholding technique to minimized exposure
misclassification. Further, the intra- and inter-observer reliability was high in all
studies. For studies I, 111, and 1V the R*was 0.92 and the reader (LE) regularly
calibrated herself against the gold standard of Cumulus measurement, test images
previously read by Professor Norman Boyd (who was one of the developers of
Cumulus). For study Il the Pearson’s rank correlation coefficients were 0.82 and 0.93
also high for inter- and intra-observer reliability, respectively. Furthermore, we took the
mean of the density values to minimize measurement error. Nonetheless, exposure may
have been misclassified in certain individuals. For this misclassification to be
differential and have biased results, the misclassification of exposure must be
associated with the outcome (tumor characteristics, molecular subtypes, and prognostic
variables, respectively), which there is no reason to believe. Yet we cannot completely
rule out a non-differential misclassification which is a misclassification of exposure not
related to outcome. This would attenuate results and would therefore be of importance
in the studies in which we have null findings (e.g. mammaographic density and tumor
characteristics, molecular subtypes, and survival). However, since inter- and intra-
correlation was high throughout, the influence of misclassification should be low.

6.1.2.3 Chance

Not only can systematic errors influence the results in epidemiologic studies, but
chance also plays an important role. Increasing the number of participants in a study is
the best way to reduce its impact. We can also assess the uncertainty of results by
calculating p-values and confidence intervals (CI).

6.1.2.3.1 The p-value

In all studies, we construct a null hypothesis (Ho) (e.g. that there is no association
between exposure E and outcome O), and an alternative hypothesis (Ha) (there is an
association between E and O). A p-value measures the certainty with which we can say
that an observed association (or a more extreme association than the observed) would
appear by chance. We often use the cut-off of 0.05 for the p-value to discriminate
between “true” and chance findings. This means that if the p-value<0.05, then there is a
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5% chance that the observed association (or a more extreme one) would appear by
chance. If we are only conducting one test, are not conducting multiple tests of the
same association, and have a probable a priori hypothesis about the relationship, we
usually deem this a satisfactory cut-off at which to reject the null hypothesis.

The p-value says nothing of the strength of an association; it can be small in a large
study although the effect of an exposure is weak, and it can be large in a small study,
although the effect is strong.

6.1.2.3.2 The confidence interval

In contrast to the p-value, the confidence interval (CI) incorporates both the
significance and strength of an association. Throughout this thesis, the 95% CI is used
which means that one can be 95% confident that the “true” value lies within that range.
If the Cl was set at 99%, the confidence that we have captured the true estimate of the
association would increase, but the width of the CI would also increase. The width of
the Cl is also affected by the size of the study, so that the width increases with smaller
study samples and vice versa.

6.1.2.4 Type | and type Il errors

Type | and type |1 errors refer to the erroneous acceptance or rejection of a given null
hypothesis. A type | error is the rejection of a null hypothesis that is actually true. In
study 111, for example, we found an association between mammographic density and
local recurrence. However, if there really is no association, we have falsely rejected the
null hypothesis and have committed a type | error. A type Il error occurs if one instead
erroneously accepts the null hypothesis when it should be rejected. The probability of
not making a type Il error is called the statistical power and is dependent on study size
and effect size. Study Il is an example where a type Il error may have occurred. In
study I1, we did not find any association between mammographic density and
molecular subtypes which could be a result of the relatively small study population.
Study 111 is also an example of a possible type Il error; in study 111 we found an
association between mammographic density and local and locoregional recurrence but
no association with breast cancer specific survival. If the effect of mammographic
density on survival is small, we may not have had a large enough study sample to
observe the association and may therefore have made a type Il error. Indeed, it was not
until the Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) conducted a
large meta-analysis in 2005 that it became clear that locoregional recurrences influence
survival (48).

6.2 FINDINGS AND INTERPRETATION
6.2.1 Study |

Among the tumor characteristics studied, we only found an association between PD and
tumor size. Interestingly, neither presence of lymph node metastasis nor hormone
receptor status was associated with PD.

Although there was a statistically significant, positive association between PD and
tumor size, the effect size was relatively small. The association became more
pronounced when mode of detection was excluded from the model, lending support to
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the hypothesis that it is due to masking. However, dense breasts may also give rise to
more highly proliferative tumors which may be the reason why there still is an
association between PD and tumor size even after adjustment for mode of detection. To
try to disentangle the cause of this relationship in an epidemiological study is difficult,
but an investigation of the association between PD and proliferation rate could give a
clue to the etiology. Unfortunately, we were not able to study this due to too many
missing values for proliferation rate (approximately 70% missing values).

Since MD decreases screening sensitivity (90, 205), our a priori hypothesis was that
density would be correlated with both tumor size and lymph node metastasis. However,
we found no evidence of an association between PD and the latter. Previous studies
have been inconsistent (206-210). The ability for breast tumors to metastasize is not
only dependent on time but also on the acquired ability to invade vessels, survive
migration, extravasate, and colonize distant sites (45). In agreement with this, Jatoi et
al. observed that lymph node metastasis was a marker of both time to diagnosis and
tumor aggressiveness (211). Hence, although density may cause a delay in diagnosis, it
does not per se imply a direct association with lymph node metastasis.

Although MD is a hormonally responsive trait (212), we saw no association between
density and hormone receptor status. This is in line with most previous studies (157,
213) but is in contrast with another study of postmenopausal women in which higher
density was associated with increased risk of ER-negative cancers (210). However,
mode of detection was not accounted for and the proportions of ever-users of HRT
(76% of the study population) and women with previous benign breast disease (59% of
the study population) were very high, both of which contribute to increased PD (203,
214) and increased risk of interval cancers (215, 216). In our study, 50% of the
participants were ever-users of HRT (including all compounds and modes of
administration) and 14% had previous benign breast disease. The proportions were the
same as for women lacking density measurements as was the proportion of ER-
negative cancers. Thus, we believe that our results are representative.

Heusinger et al. recently published a large study on PD and tumor characteristics,
including both pre-and postmenopausal women, in which they found that PD was
associated with lower ER-expression (217). However, although highly statistically
significant, differences in PD between categories of ER-expression were very small,
and there was no dose-response relationship.

A limitation of this study is that it was solely composed of postmenopausal women;
hence, our results may not be applicable to premenopausal populations. MD may differ
histologically in pre- and postmenopausal women (164), and has been shown to be
influenced by different hormonal factors depending on menopausal status (196, 197).
Furthermore, both age and menopausal status influence tumor characteristics (146).
Thus, well-conducted studies are needed to investigate the relationship between MD
and tumor characteristics in premenopausal women.

6.2.2 Study Il

We found no associations between AD and Sorlie-Perou subtypes; neither between AD
and individual subtypes, nor between AD and subtype as a whole. However, our study
population was relatively small and the null findings could simply be due to low power.
Hence, larger studies are needed to confirm our results.
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A couple of studies have previously attempted to investigate the association between
MD and Sorlie-Perou subtypes using receptor status (ER-, PR-, and HER-2-status) as
proxies for the different molecular subtypes (213, 218-221). Ma et al. (219) studied the
association between PD and the luminal A and basal-like subtypes and found no
relationship in case-only analyses. In case-control analyses they observed positive
associations between PD and both the luminal A and basal-like subtypes, but as these
associations were of a similar magnitude got they are likely to simply reflect the
general increase in breast cancer risk associated with PD. Phipps et al. (213) also
conducted a case-control study investigating the association between density (assessed
using a visual categorical classification, BI-RADS), ER+, ER-/PR-/HER2+, and triple-
negative breast cancers. They achieved the same results as Ma et al. (219) i.e. that
density was similarly, positively associated with all subtypes. They concluded that
although the different subtypes are distinct biological entities, this is not a result of
differences in the association with MD. We thus believe that our results are in
agreement with both studies. Arora et al. (218) studied the association between density
and the luminal A, luminal B, basal-like, and ERBB-2 subtypes also using BI-RADS to
assess density. They observed that women with extremely dense breasts had a higher
frequency of luminal A tumors (p=0.05). However, as only age was adjusted for in this
analysis the findings might have been affected by confounding.

Our findings are in line with most studies relating to the association between MD and
other tumor characteristics such as hormone-receptor status (157, 222), HER2-status
(157, 210, 222, 223), and Ki67 (206, 224). Furthermore, most studies addressing the
relationship between MD and survival have found no association (207, 225-227). We
find this to be in indirect support of the null association between MD and Sorlie-Perou
subtypes shown in this study, since molecular subtypes are associated with both tumor
characteristics and prognosis (228, 229).

6.2.3 Study Il

We found that mammographic density increases risk of local and locoregional
recurrence after diagnosis of invasive breast cancer. There was no association between
density and distant metastasis or between density and survival in our postmenopausal
study population.

A PD of >25% nearly doubled the risk of local recurrence compared to women with
PD<25% and increased the risk of locoregional recurrence by almost 70%, independent
of established breast cancer prognosticators. The association between PD and
locoregional recurrence is in agreement with two of three previously published studies
investigating this relationship (227, 230), although they were both limited to women
who had undergone breast-conserving surgery.

The relationship between PD and local recurrence could be caused by PD masking
residual disease after breast-conserving surgery. This reservation is especially
important in our study since we lacked information on the status of the surgical margin.
We thus stratified on type of breast surgery and found that the effect was most
pronounced in the group of women exposed to total mastectomy, undermining this
hypothesis.

We did not see an association between density and distant recurrence nor with density

and survival. Distant metastasis is closely linked with breast cancer mortality whereas
locoregional recurrence has a moderate impact on survival (48). Since we only had 10-
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year follow-up of survival, we cannot exclude that there may be a relationship between
PD and long term survival, nor can we exclude that there is a small effect of PD on
survival requiring even larger studies to identify the association. However, our findings
of a lack of association between MD, distant metastasis, and survival is in accordance
with both previous studies pertaining to MD and distant metastasis (227, 230), and two
of three studies on MD and survival (207, 225, 227). The conflicting study relating to
density and prognosis (226) showed a lower case fatality for women with high density
compared to women with low density. However, since only age was adjusted for, this
relationship is most likely due to confounding.

A limitation of our study was that the study population was solely composed of
postmenopausal women; hence, our results may not be applicable to pre-menopausal
populations. We also lacked information on HER2 status and Ki67 since they were not
clinically in use in Sweden at the time our participants were diagnosed with breast
cancer. Both HER2-status and Ki67 influence prognosis (121, 231). However, for these
factors to have influenced our results, they must be associated with MD, which there is
currently no evidence of (210, 219, 223, 224).

6.2.4 Study IV

We found that ICs, overall, have a worse prognosis than screening-detected cancers.
Both interval cancers in non-dense and dense breasts (defined as PD<25% and
PD>25%, respectively,) had a poorer survival than corresponding screening-detected
cancers before adjusting for tumor size, a proxy for time to diagnosis. After adjusting
for tumor size, ICs in non-dense breasts still had a HR of >2 compared to
corresponding screening-detected cancers. For women with dense breasts, however,
there was no longer evidence of a statistically significant difference between I1Cs and
screening-detected cancers. We thus conclude that ICs in non-dense breasts seem to be
truly aggressive tumors, whereas the poorer prognosis of ICs in dense breasts compared
to corresponding screening-detected cancers seems primarily due to differences in time
to diagnosis.

In support of the above, I1Cs in non-dense breasts had particularly unfavorable tumor
characteristics, correlating well with their poorer prognosis. Tumor characteristics in
ICs in dense breasts were more similar to their corresponding screening-detected
cancers. However, ICs in dense breasts were larger, more often positive for lymph node
metastasis, and of higher grade; the first two differences could be in line with the
hypothesis that these primarily are masked tumors.

A limitation of our study is that our study population was solely composed of
postmenopausal women. Our results may not be applicable to premenopausal
populations; hence, studies are needed to investigate the relationship between
mammographic density, ICs, and survival in premenopausal women.

In conclusion, women with interval cancers had a worse prognosis than women with
screening-detected cancers. Women diagnosed with ICs in non-dense breasts seemed to
have a particularly aggressive phenotype and poor prognosis. In women diagnosed with
ICs in dense breasts, the poorer prognosis seemed primarily due to differences in time
to diagnosis rather than differences in tumor aggressiveness. Since this is the first study
of its kind, it is, however, important to verify our findings. If they hold true, future
studies should focus on establishing the risk factors associated with the more aggressive
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entity of interval cancers in non-dense breasts, hopefully, allowing for primary
preventive measures to be taken in the future.

6.3 OVERALL CONCLUSIONS

Mammographic density does not affect lymph node metastasis, ER-status, PR-status,
grade, or histopathological classification, but is positively associated with tumor size.

Mammographic density is not associated with molecular subtypes of breast cancer, but
larger studies are needed to validate our findings.

Mammographic density is an independent risk factor of local and locoregional
recurrence.

Although high mammographic density increases risk of local and locoregional
recurrence, it is not associated with distant metastasis or survival. Nonetheless, larger
studies are needed to rule out a weak association between density and survival.

Interval cancers diagnosed in non-dense breasts seem to be more aggressive than
corresponding screening-detected cancers.

In dense breasts, there is no evidence of a statistically significantly worse prognosis for
interval cancers than screening-detected cancers, after taking time to diagnosis into
account.

In conclusion, out of all phenotypic variables studied, we only found a relationship
between mammaographic density and tumor size, as well as mammaographic density and
local and locoregional recurrence. The latter associations were independent of type of
surgery; the relationships were actually more pronounced in totally mastectomized
patients. This is quite surprising — how does mammographic density at diagnosis,
which is excised, influence recurrence years later? | have two theories: First, there will
probably be women for whom some breast tissue is left despite a total mastectomy. If
this tissue is dense rather than non-dense, it may increase the risk of local recurrence in
the same way it increased the risk of primary breast cancer. Secondly, and more
speculatively, maybe mammographic density increases risk of self-seeding, which |
will describe in detail below.

Tumor dissemination was long viewed as a one-way process. However, in 2009, Kim et
al. (232) showed that disseminated tumor cells could return to the primary tumor and
re-infiltrate it, a process they referred to as self-seeding. This capacity of re-infiltrating
the primary tumor was also seen for cells from metastatic colonies.

The self-seeding hypothesis was originally generated when the same research group
saw that some tumors grew faster than others, despite that the faster-growing tumors
had lower proliferation rates. Hence, they hypothesized that disseminated tumor cells
re-colonized the primary tumor. The self-seeded primary tumor could then grow more
quickly than other unseeded tumors, despite the slower growth rate. They were also
able to prove this later on (232).
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It is known that large quantities of tumor cells leave the primary tumor and enter the
blood stream and that this may occur at early stages (232). However, only a minority of
these cells give rise to metastasis due to many obstacles, among other things,
unfavorable conditions at the new site. Self-seeding, on the other hand, does not require
all of these capacities, since the circulating tumor cell returns “home”, where vessels
are leaky (easy to extravasate) and the environment familiar (no/little adaptation is
required) (233).

The primary tumor can either be self-seeded by circulating tumor cells coming directly
from the primary tumor or from metastatic sites (232). N.B. metastatic tumor cells may
reside in a dormant manner in a new organ (233), thus, seeding of the primary site does
not require manifest metastasis. Kim et al. therefore hypothesized that this could
explain why local recurrence can follow a complete eradication of the primary tumor
(232).

Mammographic density has been hypothesized to give rise to more aggressive tumors
due to the increased stromal composition of the breast and increased deposition of
collagen. Despite this, we and others (227, 230) were not able to show an association
between mammographic density and risk of distant metastasis. Perhaps, however,
density does increase risk of dissemination, but maybe these circulating tumor cells
prefer to colonize or are only capable of colonizing the primary tumor/breast.

The self-seeding hypothesis could thus explain the observed association between
mammographic density and tumor size, despite that mammographic density has not yet
been shown to be associated with increased proliferation rate. It would further explain
the relationship between mammographic density and local and locoregional recurrence,
in spite of the lacking relationship with distant metastasis. Finally, the strong
relationship of mammographic density and recurrence in totally mastectomized patients
would not be as surprising.
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7/ FUTURE PERSPECTIVE

Imagine the endless depth of information a mammography unit holds — mammograms
for countless women, spanning several years of their lives. Some of these women will
develop breast cancer and others will not. Some will be cured the minute they get off
the surgery table, while others will die in spite of all treatments. Who is who? Neither
our tools of risk prediction nor our prognostic tools are satisfactory. Yet, for many
years, we neglected the information available within mammograms and are just now
realizing their potential.

It is now well-established that high mammographic density increases breast cancer risk.
However, we still lack knowledge of what mammographic density really is and how it
relates to breast cancer. Not surprisingly, mammographic density seems to be a
reflection of the number of epithelial and stromal cells in the breast. Some therefore
believe that density purely is a reflection of the number of cells at risk, but I do not
think it is that simple.

As both John Wolfe and Laszlo Tabar noted, mammographic density isn’t just white. It
appears to have different textures — from a flat, homogeneous mass, to multiple round
little islands, to a rugged, streaky appearance, and so on. Although we did not find that
guantitative mammographic density was differentially associated with different tumor
phenotypes, it seems more plausible that qualitative mammographic density is. This
would be in agreement with studies showing e.g. that the organization of collagen
affects the degree of malignancy in breast tumors. However, when investigating this, it
is important that the qualitative measure of density is assessed objectively in order to
minimize exposure misclassification. Our research group is currently working on an
automated density assessment tool which incorporates an objective evaluation of
texture that was shown to add predictive value to breast cancer risk estimates.
Hopefully, this will also add valuable information pertaining to prognosis.

In clinical practice, we are using a mammogram as a simple means of answering the
question whether a woman has cancer or not. | believe that a mammogram holds much
more information than that. We don’t just get a binary value of a tumor, we see the
qualitative specifics of the tumor and we also see the tumor environment - an important
factor of carcinogenesis and tumor progression. Furthermore, we can compare the
mammaogram to previous mammograms and, when appropriate, assess interval cancer
status, and evaluate possible changes in the structure and amounts of the different
tissues. | think that these variables contain important prognostic information
independent of established prognosticators. Furthermore, if we could combine this
information with e.g. histological, cytological, and genetic examinations, | believe that
we would come a long way in our understanding of breast cancer biology.

We know so much and so little. It appears that for every new answer we get, only more
questions arise. The complexity of cancer is intriguing, and, at times, also
overwhelming. Within each field of cancer research we are digging deeper and deeper,
but we also have to be able to see the big picture and cross the gaps between the
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disciplines to create new and greater research. Only then can we understand cancer and
remove the obstacles impeding us from curing and preventing it.
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