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ABSTRACT

Parkinson's disease (PD) is the second most common neurological disorder. It is
characterized by the progressive development of motor symptoms - bradykinesia, resting
tremor, muscular rigidity and difficulty with postural control - which serve as criterias for its
clinical diagnosis. However, there is a need for biomarkers to detect PD early before the
appearance of the symptoms, but also to evaluate efficacy of treatments. Such biomarkers
would also to evaluate the translational value of models of the disease. In recent years,
magnetic resonance imaging (MRI) has been used by researchers to identify biomarkers of
PD in the patients' brain. One MRI method that is gradually becoming more popular is
resting-state functional MRI (rs-fMRI). It consists in tracking the activity of brain by
acquiring the MRI signal of the brain over time for several minutes while the patient is at rest,
i.e. when he/she tries not to think about anything in particular. Compared to task-based fMRI,
it is advantageous for studying PD as patients have problems to perform tasks, both because
of motor symptoms but also cognitive symptoms which are common in PD.

In this thesis, after successfully demonstrating the translational value of rs-fMRI by
comparing a set of functional networks in naive Sprague-Dawley and healthy human subjects
(paper 1), several rat models of parkinsonism were characterized. These models consisted in a
well-established model, the unilateral 6-hydroxydopamine (6-OHDA) model (paper II), and
two progressive models of parkinsonism, the alpha-synuclein adeno-associated virus
overexpression model, a genetic model (paper III), and the B-sitosterol-p-D-glucoside model,
a new toxin-based model (paper 1V).

By acquiring rs-fMRI datasets and analysing them using seed-based correlation analysis,
functional connectivity maps were generated. We could reproducibly demonstrate that
sensorimotor corticostriatal functional connectivity is increased in the 6-OHDA lesioned
animals compared to their control counterparts, while in models with milder parkinsonian
pathology, the sensorimotor corticostriatal functional connectivity is decreased. We therefore
emit the hypothesis that there is a U-shaped function describing corticostriatal functional
connectivity relative to the level of striatal dopaminergic innervation. We also observed in
both models of mild parkinsonism a reinforcement of negative functional connectivity
between the prefrontal cortex, in particular the orbital cortex, and the primary somatosensory
cortex compared to their healthy counterparts.

These results demonstrate that rs-fMRI is a valid method to observe alterations in the brain
related to parkinsonism in animals and that both motor and non-motor areas of the brain are
affected by the loss of dopaminergic neurons. Further investigations must be conducted to
understand the mechanisms involved in these changes and evaluate their translational value.
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1 INTRODUCTION

1.1 PARKINSON'S DISEASE — PATHOGENESIS AND SYMPTOMATOLOGY

Parkinson's disease (PD) is the second most common neurodegenerative disorder (Kalia and
Lang, 2015). It is also the most common movement disorder. PD is characterized and
diagnosed by the progressive development of motor symptoms: bradykinesia, resting tremor,
muscular rigidity and difficulty with postural control. There is a progressive loss of
dopaminergic neurons in the Substantia Nigra (SN) of PD patients and this loss is responsible
for most of the motor symptoms found in PD. Another well-known pathological
characteristic is the presence of Lewy bodies, inclusions of misfolded proteins, mainly alpha-
synuclein (a-syn).

Around five-ten percent of the PD cases are familiar and have an identified genetic origin.
Many different mutations cause PD. These includes mutations in a-syn, Parkin and LRRK2.
In addition, there is an association between mutations in certain genes, such as GBA, and the
likelihood to develop PD. However, in most instances, there is no identified genetic cause for
the development of PD and these cases are called sporadic or idiopathic.

Braak et al. (2000 and 2003) have hypothesized, based on the pathological examinations of
post-mortem samples from PD patients and the occurrence of a-Syn inclusions
(corresponding to Lewy neurites/bodies) , that the disease consists of several stages:

- A preclinical/premotor stage in which a-syn inclusions are mostly present in the
olfactory nerves, the enteric and autonomic nervous systems and brain stem nuclei.
Common symptoms of this stage are hyposmia, REM sleep disorder, obstipation and
depression.

- A clinical stage where motor symptoms are evident and the patient get her/his
diagnosis. At this stage, Lewy bodies are also present in the midbrain including the
dopamine neurons of SN.

- An advanced stage where Lewy bodies are present in most of the brain including
cerebral cortex. Dementia and hallucinations are more common at this stage.

The motor symptoms of PD are treated with agents that stimulate dopamine
neurotransmission (Kalia and Lang, 2015). In particular, the dopamine precursor levodopa or
L-DOPA is highly efficient. To avoid that L-DOPA is metabolized in the periphery, causing
nausea and hypotension, it is combined with a peripheral dopamine decarboxylase inhibitor.
This combination enables most of the L-DOPA to produce dopamine in the nigrostrial system
of the brain. Diverse strategies, mainly MAO B or COMT inhibitors, are used to strengthen
and prolong its effect. Unfortunately, in a large proportion of PD patients, L-DOPA causes
side effects. One of the main side effects which often appears after some years of L-DOPA
treatment is involuntary movements, often referred to as L-DOPA induced dyskinesia (LID).



1.2 CIRCUITRY OF THE BASAL GANGLIA

1.2.1 The basal ganglia

The basal ganglia are subcortical brain regions which form loops with the thalamus and the
cortex (Gerfen and Surmeier, 2011). These loops are usually called cortico-basal ganglia-
thalamic loops. The structures of the basal ganglia include the striatum (Str), the globus
pallidus, the subthalamic nucleus (STN) and the SN (Fig 1).

These regions are structurally and functionally interconnected. Str receives major excitatory
glutamatergic inputs from the cortex and the thalamus along with dopaminergic inputs from
the pars compacta of the substantia nigra (SNc). Str projects directly to the pars reticulata of
substantia nigra (SNr) and the internal part of globus pallidus (GPi). Str also projects,
indirectly to these regions, via SNr, via the external part of globus pallidus (GPe) and the
STN (Fig. 1). There are several feedback loops within the basal ganglia. Moreover, STN
receives direct input from the cortex. SNr and GPi send projections to the thalamus, which, in
turn, project to cortex to regulate movements and cognitive processes.

1.2.2 The striatum

Str is composed in humans of three subregions, the nucleus accumbens or ventral Str, the
caudate nucleus and the putamen. In rodents, the caudate and the putamen cannot be
distinguished and is therefore often called the caudate putamen in these species. An
alternative name is the dorsal Str.

Str is thought to have different roles depending on the subregions. The ventral Str and in
particular the nucleus accumbens is a center for the control of reward, motivation and goal
oriented behaviours, while the putamen is mainly involved in the modulation of movements
and the caudate nucleus in the modulation of cognitive processes and eye movements (Gerfen
and Surmeier, 2011).

As aforementioned, Str receives afferent glutamatergic axons from the cortex, but also from
the thalamus. It receives dopaminergic axons from the SNc and the Ventral Tegmental Area
(VTA), respectively in the dorsal Str and the ventral Str (Dahlstrom and Fuxe, 1964; Gerfen
and Surmeier, 2011). Recent findings have also indicated that in rodents the dorsal Str
receives afferent GABAergic axons from a distinct population of neurons in the GPe (Mallet
etal., 2012).

Str is composed to 90-95 percent of inhibitory GABAergic Medium Spiny projection
Neurons (MSNSs). Other neuronal populations are large cholinergic interneurons and GABA
interneurons. There are several classes of the later, including Parvalbumin-positive fast
spiking interneurons, nitric-oxide synthase-positive interneurons and calretinin-positive
interneurons.



1.2.3 Striatum, Medium Spiny
Neurons and the direct and
indirect pathways
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GABAergic neurons of the GPe and reinforce the inhibition of GABAergic neurons to the
GPi and SNr. This disinhibition activates thalamic neurons projecting to the cortex.

Thus, tonic dopamine levels in the Str modulate the excitability of both D1 MSNs and D2
MSNSs in opposite directions, the more dopamine, the more D1 MSNs are excitable and the
less D2 MSNss are excitable. However, dopamine causes motor stimulation via both the direct
and indirect pathways.

1.2.4 Symptoms of PD and loss of dopamine

As mentioned earlier, the loss of dopaminergic neurons in SNc projecting to putamen is the
major cause of the motor symptoms of PD In addition, several network effects have been
found as a result of dopamine depletion. In healthy conditions, the activity of the basal
ganglia is not synchronized with the motor cortex activity (Bar-Gad et al, 2003), but a
synchrony develops upon chronic depletion of striatal dopamine (Dejean et al, 2012).

Moreover, beta oscillations, which are transiently occurring in the cortex and basal ganglia
when subjects are purposefully maintaining a certain movement (Jenkinson and Brown,
2011; Leventhal et al, 2012), are enhanced and are more coherent in PD patients and animal
models of PD (Mallet et al, 2008; Brazhnik et al, 2012). Indeed, the presence of beta
oscillations is associated with bradykinesia and rigidity in PD (Little et al., 2012; Kihn et al.,
2009) as well as upon dopamine depletion in animals (Mallet et al, 2008).

Several different PD therapies restores dopamine neurotransmission and improves the
movement disorder of PD patients. Treatments with dopaminergic agents or Deep Brain
Stimulation seem to decrease the synchrony observed in the parkinsonian basal ganglia
(Heimer et al., 2002; Burkhardt et al., 2007). The same treatments also proved to be effective



at reducing the degree of beta oscillations in the basal ganglia of PD patients (Brown et al.,
2001; Cassidy et al., 2002; Levy et al., 2002; Priori et al., 2004, Kuhn et al., 2008; Kihn et
al., 2009 Bronte-Stewart et al., 2009).

In addition to accumulated long-term therapy with moderate to high doses of L- DOPA, the
development of LIDs requires a substantial loss of striatal dopaminergic terminals
(Schneider, 1989; Di Monte et al, 2000; Cenci and Lindgren, 2007). It has been reproduced
both in rodents and non-human monkeys after repeated L-DOPA and has been linked to an
abnormal type a plasticity (Cenci and Lindgren, 2007). In PD patient, LID appears rapidly in
younger patients whom have a more plastic nervous system (Schrag et al., 1998). LIDs
involve many neurotransmitters other than dopamine and are often difficult to treat. Current
therapies target glutamate or serotonin receptors.

1.3 ANIMAL MODELS OF PARKINSONISM

In this subsection I will focus on the toxin and genetic animal models of Parkinsonism which
are studied within the frame of this thesis.

1.3.1 The 6-OHDA rat model

The 6-hydroxydopamine (6-OHDA) model to deplete nigrostriatal dopamine transmission
was developed by Urban Ungerstedt at the Karolinska Institutet (Herrera-Marschitz et al.,
2010). 6-OHDA is a toxin targeting the monoaminergic neurons, such as the dopaminergic
neurons, but also noradrenergic and serotonergic neurons. 6-OHDA enters the
monoaminergic neurons via the monominergic transporters such as the dopamine transporter
(DAT). 6-OHDA is a molecule that resembles dopamine and that is changed into oxidative
free radicals once in the soma provoking the neurons' death.

6-OHDA does not cross the blood-brain-barrier and must therefore be injected directly into
the brain. There are thus two common types of 6-OHDA rat models of PD, the model where
6-OHDA is injected in the Str and the model where 6-OHDA is injected in the medial
forebrain bundle (MFB), a white matter structure which carries among other axons the
dopaminergic axons from the SNc to the Str. The intrastriatal model provokes a
neurodegeneration over two-three weeks in the SNc resulting in a partial loss of
dopaminergic neurons, while intra-MFB model provokes a near complete loss (about 95%) of
the dopaminergic neurons in the SNc within a few days. This intra-MFB model requires
protection of noradrenergic axons in the MFB originating from the locus ceuruleus using a
substance like the noradrenaline reuptake inhibitor, desipramine. The injection of 6-OHDA is
done unilaterally as a bilateral injections provoke a high mortality.

6-OHDA-lesioned animals are very useful to assess anti-parkinsonian activity of various
compounds. They react to L-DOPA and other antiparkinsonian treatments, such as
apomorphine, by contralateral rotations which are easily quantified. They also respond in
similar ways to high-frequency stimulation of the STN as PD patients with Deep Brain
Stimulation. Furthermore, the partial intrastriatal 6-OHDA model is not only used to study



anti-parkinsonian activity of various compounds, but also to assess neuroprotective strategies.
In addition to study stimulatory anti-parkinsonian properties of compounds, the intra-MFB
model along with repeated dosage of L-DOPA causes involuntary movements similar to LID
in PD patients (Cenci and Lindgren, 2007). LIDs are evaluated in rodents using the Abnormal
Involuntary Movements Score, which consist in observing the animals during five minutes
while they are under the effect of L-DOPA and measure how often the animals demonstrate
involuntary movements from the limbs, the trunk and the face.

From a mechanistic standpoint, reinforced beta-oscillations similar to those in PD patients
have been observed in the 6-OHDA model (Mallet et al., 2008). It has also been shown that
glutamate release by the corticostriatal neurons is increased in 6-OHDA rats compared to
controls (Alvarsson et al., 2015). Majors drawbacks of the 6-OHDA model are that it does
not present with any Lewy-body inclusions and that the model is not progressive.

1.3.2 Human a-syn overexpressing adeno-associated virus (AAV) rat model

To study the influence of the a-Syn on the neurodegeneration of dopaminergic neurons,
human o-syn is introduced in neurons of SNc using a viral vector (Kirik and Bjorklund,
2003). For our studies, AAV-a-syn is overexpressed by dopaminergic neurons following the
injection in the SNc (Caudal et al., 2015). This model provokes the death of these neurons in
a progressive manner and the neurodegeneration cease after 12 weeks. The extent of the loss
of dopaminergic neurons is around 50-60% and these animals express a mild parkinsonian
phenotype. Stronger phenotype and neurodegeneration have been reported using a mutated
human a-syn (Van der Perren et al, 2015). Lewy-body inclusions have been observed in the
model.

1.3.3 The B-sitosterol B-D-glucoside (BSSG) rat model

BSSG is a substance found in cycad seeds, a plant that is suspected to be the cause of
amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS-PDC), also known as
Guam disease. ALS-PDC presents itself in two forms, one that resembles amyotrophic lateral
sclerosis and another that resembles PD. When BSSG is fed for sixteen weeks to Sprague-
Dawley rats, they progressively develop a parkinsonian pathology which develop over
several months (Van Kampen and Robertson, 2017). The animals first present an olfaction
deficit similar to anosmia (from the twelfth week of feeding and onward), an early sign of
PD, before to develop motor deficits (from about the twentyfourth week). At a later stage,
around the tenth month, animals have memory impairment, similar to dementia which
develop in some PD patients at a late stage. a-Syn aggregates can be found in areas related to
the phenotype presented by animals with aggregates in the olfactory bulb at first, before to be
found in Str and SN and finally hippocampus and prefrontal cortex (at 10 months).
Interestingly, the locomotor deficits and nigral dopaminergic neurodegeneration appear in an
asymmetric fashion before to have both hemispheres equally affected (Van Kampen et al.,
2015). Though very little has been done in this model so far, all the aspects mentioned above
make the BSSG rat model a promising tool to study PD pathology.



1.4 MAGNETIC RESONANCE IMAGING

1.4.1 General principle

Magnetic resonance imaging (MRI) is a set of techniques developed in the 1970s and 1980s
to obtain pictures of the content of an object based on the phenomenon of nuclear magnetic
resonance. It allows primarily to map the local magnetic properties of soft tissues, which are
rich in hydrogen. MRI is particularly appropriate to study the brain and its pathologies as
high amounts of water and fat, both rich in hydrogen nuclei (protons), are present, thus giving
a strong MRI signal. Also, MRI does not have any known negative effect on people’s health.
Finally, Numerous information can be obtained using MRI from the brain of patients such as
the volume of different brain areas, the presence of tumors or hemorrhages, the presence of
iron accumulation or, more importantly within the scope of the current thesis, knowledge
about the free water diffusion properties (using diffusion MRI) and neuronal activity (using
functional MRI).

1.4.2 Functional MRI

Functional MRI (fMRI) consists in observing the neuronal activity by using a phenomenon
called BOLD. BOLD stands for Blood Oxygen Level Dependence which is the signal
obtained due to the variation in concentration of oxyhemoglobin following an intense
neuronal activity. By recording the BOLD signal over time, one can determine the location of
intense neuronal activity during the performance of a task for example.

1.4.3 Resting-state fMRI

1.4.3.1 Principle

Resting-state fMRI (rs-fMRI) is the use of fMRI when no particular task is performed by the
subject. In these experiments, patients are asked to lie down, close their eyes and not think
about anything specific. This is a particularly interesting approach for PD as it is often
difficult for patients to execute some tasks, in particular in the later stages of the disease, or if
they suffer from dementia.

A common method to analyze rs-fMRI is called seed-based correlation analysis and consists
in calculating the correlation between a region of interest, also called a seed, and the rest of
the brain. This correlation is also called the functional connectivity (FC). Other methods
exist such as independent component analysis, which decompose the signal from the whole
dataset into networks of brain areas with coherent signal over time, or algorithms based on
graph theory.

1.4.3.2 The default-mode network (DMN)

DMN is a collection of regions which were first characterised by the fact that they were
active when patients were not performing tasks, i.e. between tasks during fMRI scans. It was
first thought to be areas that are active when the person is inactive and was therefore given its
name of default mode. It was later proven that DMN can be activated using tasks involving



introspection, autobiographical tasks or social working memory. DMN regions have been
characterised using independent component analysis but can also be detected using
correlation analysis with a seed placed in the posterior cingulate cortex.

The DMN is composed of the infralimbic cortex, the orbital cortex, the cingulate cortex, the
precuneus, the dorsal hippocampus and the retrosplenial cortex. It is present in both humans,
non-human primates but also rodents (Lu et al.,2012; Sierakowiak et al.,2015). Since its
discovery, the study of DMN and its involvement in different neurological disorder has
grown exponentially. DMN was the first resting-state network to be described but several of
them have since been described, involving about every area of the forebrain (visual, auditory,
evecutive function, salience, sensorimotor, etc).

1.4.3.3 Resting-state fMRI in PD patients

In PD patients, many experiments have been conducted using seed-based correlation analysis,
with seeds placed in the Str, the motor cortex and other regions. The results are contradictory.
Some studies conducted with seeds placed in the putamen found a decrease of FC between
the putamen and the cortex in PD patients compared to the control group (Palmer et al., 2010,
Luo et al., 2014). However, other studies found the opposite (Yu et al., 2013; Kwak et al.,
2010; Agosta et al., 2014). To add complexity, a study even found that when they place a
seed in the posterior putamen, they saw a decrease in connectivity towards the motor cortex,
but when the seed was placed in the anterior putamen they observed an increase of
connectivity (Helmich et al., 2010). Studies with seeds placed in the STN showed an increase
of FC between the STN and the sensorimotor cortex (Baudrexel et al., 2011; Kurani et al.,
2014; Fernandez-Seara et al., 2015; Kahan et al., 2014). These discrepancies were found
despite that all these results were found while patients were OFF- dopamine replacement
therapy (DRT).

Tahmasian et al. (2015) argued in a review about the importance to study PD patients OFF-
DRT. They reviewed results obtained in studies conducted ON-DRT and studies OFF-DRT
or on de novo patients and observed that the findings observed were quite different. They also
reviewed the few studies conducted on patients, where the patients were scanned both OFF
and ON-DRT and pointed out the fact that DRT had an effect on functional networks. They
therefore concluded that fMRI studies investigating the functional networks of patients
relative to symptoms of PD should be studied OFF-DRT as DRT seems to alter the results of
the studies.

A recent study by Badea et al. (2017) compared results from three independent cohorts of PD
patients and controls and were unable to reproduce FC results between the three cohorts. By
making further tests they concluded that the cause for their inability to reproduce their
findings were due to the heterogeneity of PD between patients, rather than technical
differences.

Despite the fact that more than hundred fMRI studies have been published in the past ten
years, the first meta-analysis focused on rs-fMRI with seed-based correlation analysis
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conducted in PD patients was only published this year (Ji et al., 2018). This publication
focused on corticobasal ganglia thalamocortical network. It was found that the most
significant finding was an increased FC from the different seeds of the network (putamen,
caudate, thalamus, primary motor cortex, supplementary motor area, STN, etc) to the left
pre- and postcentral gyrus (corresponding to primary motor and primary somatosensory
cortices respectively) in PD patients.

1.4.3.4 Resting-state fMRI in the 6-OHDA rat model

There are only three published articles focusing on the use of rs-fMRI in animal models of
parkinsonism including paper I1. All three articles are focused on characterizing the 6-OHDA
model. By using graph theory methods, Westphal and colleagues (2017) found a decrease in
"functional connectivity” primarily in the hemisphere ipsilateral to the lesion in 6-OHDA
lesioned rats and in particular in motor, somatosensory and orbital cortices, while paper Il
(Monnot et al., 2017) and Perlbarg and colleagues (2018) found an increase in corticostriatal
FC in these animals using seed-based correlation analysis. The difference in conclusions
between the first and the two other article is mainly due to the fact that the two methods
employed define "functional connectivity" in a different way, one consider all connections
and attribute it to the region while the other quantify it for each connection separately, so the
two measures are not equivalent.

1.4.4 Diffusion MRI

1.4.4.1 Principle

Diffusion MRI is becoming more popular to study diverse neurological disorders and in
particular PD. Diffusion MRI measures the diffusion of water molecules in an organ, most
commonly the brain. Diverse methods exist to calculate, based on the images obtained, an
estimate of the local diffusion properties of the tissues. The most common approach is
Diffusion Tensor Imaging, which, based on at least 6 diffusion directions, calculates several
metrics. The two best known metrics are Fractional Anisotropy (FA) and Mean Diffusivity
(MD). MD represents how much the molecules can diffuse in the tissue, while FA is a scale
for whether the molecules diffuse equally in any direction (FA=0) or are restricted to a
preferred direction (FA=1).

Those properties are particularly interesting for neurological studies as the white matter
typically has a high FA and a low MD, because of its structure, while ventricles have a low
FA and a high MD as water diffuse freely in cerebrospinal fluid. Diffusion MRI can therefore
indicate the state of tissues and detect lesions and aggregates as a response to
neurodegeneration.

1.4.4.2 Diffusion MRI in PD patients

Many studies have been conducted in the past few years using diffusion MRI and two meta-
studies were also conducted (Cochrane and Ebmeier, 2013; Schwarz et al., 2013). These
meta-studies found only one consistent finding, an FA decrease in the SN of PD patients. One
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of the meta-study also found an increase of MD in the same region (Schwarz et al., 2013).
Both would be consistent with the dopaminergic neurodegeneration observed in patients, as
the region loses the neurons and therefore their axons and their large dendritic trees. Other
observations made by diverse studies, are a loss of FA and/or an increase in MD along a
number of white matter tracts (Scherfler et al., 2013; Kamagata et al., 2013; Kamagata et al.,
2014; Kim et al., 2013). However there does not seem to be any consistency on the white
matter tracts where the changes are observed. These changes could be secondary to the
disease and vary depending on the particularities of the cohorts used.

1.4.4.3 Diffusion MRI in models of parkinsonism

Diffusion MRI was performed in-vivo on a striatal injection 6-OHDA rat model (Van Camp
et al, 2009). An increase in FA as well as a decrease in diffusion values was detected in the
SN of the animals ipsilateral to the lesion. However Boska et al (2007) have observed a
decrease in FA and a increase in diffusitivity in the SN several days after a MPTP
intoxication in mice, another toxin model of parkinsonism, compared to mice treated with a
sham solution. More recently, a study demonstrated by using diffusion kurtosis imaging, an
alternative diffusion MRI paradigm to diffusion tensor imaging, on a genetic mouse model
overexpressing human a-syn that mean kurtosis increases in SN, caudate, and a number of
other area already at three months old compared to the control animals (Khairnar et al.,
2017).






2 AIMS

1. To deepen knowledge of the function of basal ganglia and its relation to cortex.

2. To characterize different models of parkinsonism with rs-fMRI.

i. To characterize functional alterations in individual models of parkinsonism.

ii. To find common patterns of changes among the different models.

3. To determine functional changes related to the loss of dopamine in rodents.
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3 METHODOLOGICAL ASPECTS

3.1 BEHAVIOURAL TESTING

To ensure that a model is successfully created before to acquire and analyse fMRI datasets,
one may use behavioral tests to detect phenotypical changes in the animals. To detect the
parkinsonian phenotype in rats, a number of tests exist, in particular to quantify motor
deficits.

In paper 1V, three different tests have been used, two which focus on motor aspects of
parkinsonism and one focusing on traits related to anxiety and depression. These tests are, in
the order of use in the papers, the open-field test, the ledged-beam walking test and the
sucrose preference test.

3.1.1 Open-field test

The open-field test is a generic test to characterize the phenotype of an animal, several
metrics can be obtained from this test. Regarding motor abilities relevant to parkinsonism,
one can measure the distance traveled during the duration of the test as well as the mean
velocity when animals move. One can also measure the time the animals spend exploring the
edges as a measure of thygmotaxis, a behavior related to anxiety and depression. One may
also measure the frequency at which the animals do certain behaviors such as rearing,
freezing, etc.

3.1.2 Ledged-beam walking test

The ledged-beam walking test is a more specific test where the experimenter measures the
number of errors the animals make with each hindpaw while walking along the beam. From
the number of errors made over three trials, one can determine whether motor phenotype
related to striatal activity is involved and if there is a side with a larger loss in striatal
dopamine for example.

3.1.3 Sucrose preference test

The sucrose preference test is made to detect anhedonia. It consists in having animals placed
individually in a home cage in presence of two bottles, one filled with water and the other
with a sucrose solution. Healthy animals prefer the sucrose solution. In case of anhedonia,
animals will be more indifferent to the sweet solution. Anhedonia is an indicator of
depression, which is common among PD patients.
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3.2 FMRI ACQUISITION IN RATS

3.2.1 Animal preparation

In order to obtain MRI data of good quality, it is important to setup the animal in a good way
before to transfer it into the scanner. Many aspects are to be considered. Animals need to be
in a stable state during the whole duration of the MRI scan. To ensure this, animals have their
breathing rate, temperature, heart pulse and blood oxygen saturation monitored. Also, animals
are anesthetised in order to keep them calm during the scan. Therefore, their temperature
needs to be maintained at 37 degrees.

To obtain the best signal to noise ratio for BOLD signal, it is of particular importance to
avoid vasodilation in order to detect changes in blood flow and oxygenation. It is therefore
important to avoid halogenated gas anesthesia such as isofluran. Unfortunately isofluran is
the main anesthetic agent used during MRI scans as it is appropriate to keep a good control
over the depth of animals’ anesthesia. Given this situation, medetomidine has been used in the
past years to sedate animals during fMRI examination. Medetomidine is vasoconstricting and
thus allows to obtain a strong BOLD signal, however, to start the sedation, animals are to be
first anesthetised with isofluran or used combined with ketamine. Lu and colleagues (2012)
have proposed a protocol for which animals are set to sleep with isoflurane before to give a
bolus of medetomidine and then reduce isoflurane to 0.25% of the gas mixture. One must
then wait for 90 minutes for the body to eliminate isofluran from the system before to do the
fMRI examination. This is the procedure which was followed for papers I, 111 and IV, while
in paper I, isoflurane was completely removed, but with a period of 90 minutes beteen the
bolus of medetomidine and the star of the acquisition.

A) Side view

/ 1 i \ /
temperature / pressure sensor \ /
sensor (breathing) nose cone
tape

Pulse oximeter preamplifier

pe
rat head
subcutaneous surface coil
. catheter gas mixture supply
B) Top view \ \
— Y
6-—-\ \ {

Fig. 2: Schematic representation of the setup for conducting resting-state functional MRI experiments in rats.
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3.2.2 FMRI procedure

There are many ways to proceed with acquiring fMRI datasets. However, one must take care
of eliminating confounders and mitigate artifacts which may affect the data quality and
therefore the ability to interpret correctly the results obtained. One major effect to correct is
the differences in signals depending on the location in the images because of a difference of
sensitivity of the receiver surface coil, which is usually refered as the bias field of the coil. It
is of particular importance for aligning the images of all subjects correctly. This is done by
acquiring an extra structural image with each coil as a receiver, the surface coil and the
volume coil.

Another artifact to take into account and mitigate is magnetic susceptibility artifact which
consist in deformations of images as well as a loss of signal due to changes of magnetic
susceptibility at the interface between different tissues, bones or air. This artifact also results
in a loss of signal at this interface, in particular at high magnetic field. The prevalence of this
artifact is dependent on the strength of the magnetic field of the MRI scanner and is
particularly present when using gradient-echo echo-planar imaging (EPI), the classic MRI
sequence for fMRI acquisition. It is therefore a major issue in preclinical MRI on small
animals like rats or mice while it is quite limited in a clinical setup at 1.5T if the datasets are
acquired appropriately.

Different strategies exist to reduce magnetic susceptibility artifacts. A first strategy is to
reduce as much as possible the echo time of EPI, as the extent of the artifact depends on the
echo-time. This is possible through two ways. To reduce the matrix size in the phase-
encoding direction (which also limits the resolution of the images), but also to employ
parallel imaging strategies to acquire the images. Parallel imaging consists in using the
redundancy of the data acquired through the different channels of the surface coil to recreate
an image from which only part of the information was obtained.

Another strategy that can be employed to mitigate susceptibility artifacts is to obtain the
information about the magnetic susceptibility in the image and model the deformations. One
can then invert the process to obtain the spatially corrected image. There are different ways to
obtain this information. One can acquire an image similar to the results from EPI for different
echo times and deduce fieldmap of the deformations by comparing the intensity in these
images. This is the approach employed by the fieldmap tool in Statistical Parametric Mapping
toolbox (SPM) (Wellcome Department of Imaging Neuroscience, University of London,
London, UK) for MATLAB (Mathworks, Natick, Massachusetts, USA). Another way is to
acquire the EPI datasets with the two opposite directions in phase-encoding gradients in an
interleaved fashion over the image repetitions and then to estimate the deformations using the
images for both directions. This is the approach employed by the topup tool (Andersson et al.,
2003) in FMRIB Software Library (FSL)(Smith et al., 2004). It was first used to correct
deformations in clinical diffusion MRI datasets which are acquired using spin-echo EPI. We
decided to use this approach for papers 111 and IV and adapted the MRI sequence for EPI to
allow us to use this approach.
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Other changes have been made over time in the acquisition procedure between the different
studies. In paper |, datasets were acquired in an axial direction (in the radiological
convention, corresponding to coronal in biological convention) while in papers Il, 11l and 1V
datasets were acquired in a coronal direction (horizontal direction in biological convention).

Paper | Paper I Papers Il + IV
raw data raw data raw data
Separation
odd/even
timepoints
ody Y\:en
2D 2D
realignment realignment
: i 3D 3D 3D 3D
Motion-correction realignment realignment realignment realignment
Susceptibility
artifact topup
correction l
Inte_r-subject normalisation normalisation normalisation
alignment
smooth smooth smooth
A
BOLD signal bandpass bandpass bandpass
selection filtering filtering filtering
regression
WM and CSF
Signal correlation correlation correlation
processing analysis analysis analysis
correlation correlation correlation
maps maps maps
Statlstu_:al SPM SPM SPM
analysis

'

statistical maps statistical maps statistical maps

Fig. 3: Processing pipeline of resting-state functional MRI datasets for the different papers. SPM, statistical
parametric mapping; CSF, cerebrospinal fluid; WM, white matter.
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This change was made in order to cover the whole-brain in the shortest repetition time
possible, hence maximising the amount of useful information acquired (by reducing the
amount of extracerebral space in the images). Also the resolution between the first and other
studies changed. The first study was made with voxel size equal to 0.5x0.5x1 mm”3 while
others were made with voxel size equal to 0.65x0.65x0.65 mm~3. The matrix size was
adapted accordingly. Total number of repetitions was also increased from three hundreds in
paper | and Il to eighteen hundreds in paper 11l and I1V. This was done in order to decrease the
variance of the results from seed-based correlation analysis within the same group by
acquiring data for a longer period of time, thus increasing the chance to have animals in
similar functional state in average and therefore increasing the sensitivity of the method when
employed to models with an expected small effect size and milder phenotypical alterations.

3.3 RESTING-STATE FMRI ANALYSIS

3.3.1 Preparation of datasets for the analysis

Before to obtain the metrics to be compared between subjects, steps have to be taken to
prepare datasets and reduce as much as possible the different sources of variance, which are
the potential motion of subjects during the scan, the variation in position and size between
different subjects, but also the exclusion of non-BOLD signals which may disturb the results
such as the influence of heart pulse or breathing.

These steps are the same as those taken in clinical fMRI analysis though the influence of
motion in rats is very small as the animals are anesthetised. Yet, motion in images can be
detected over time due to a shift in gradient system properties due to heating over the course
of the functional scan acquisition. This shift is small (less than 100 um over the whole scan,
most often around 30 um) and progressive.

Also, during the pilot experiment conducted to prepare experiments for paper I, motion
within slices could be detected in individual slices at occasional times but it did not affect the
whole image, just a slice. We hypothetised that these motions occured due to breathing which
affect locally the magnetic field based on the filling of the subjects' lungs with air. This was
corrected by realigning separately each slice to a reference timepoint before doing the normal
realignment procedure.

3.3.1.1 Motion correction - realignment of timeseries

Effects of motions are corrected using algorithms that compare images from one timepoint to
a reference image by calculating the sum of square differences, which it tries to minimize by
translating and rotating the image to realign it to the reference. It repeats these cycles of
calculating the sum of square differences and transforming the image until it finds a
minimum to this sum. This should correspond to the best alignment possible between the
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images. This approach is implemented in both SPM's Realign, and in FSL's FLIRT
(Jenkinson and Smith, 2001; Jenkinson et al., 2002).

3.3.1.2 Alignment between subjects - normalisation

The alignment of images between the different subjects to match them anatomically is similar
to what is done for motion correction. The major difference is that besides rotating and
translating images, it also allows shearing and zooming them. Also, as a final step, the
algorithm involves some non-linear transformation, i.e. to locally deform images to improve
the match with the template image. These algorithms are implemented in tools like SPM's
Normalise and FSL's FLIRT (linear transformation) and FNIRT (non-linear transformation).

Following this step, functional datasets are spatially smoothed using a gaussian kernel to
mitigate inconsistencies between the aligned datasets of different subjects. SPM's Smooth and
the command fslmaths are tools used for this purpose.

3.3.1.3 Selection of BOLD signal - Band-pass filtering

BOLD is shown to have a frequency between 0.01 Hz and 0.1 Hz approximately. In order to
remove signals not related to BOLD, one can apply a band-pass filter on the timecourses of
each voxel for each subject. The band-pass filter removes the signal which have a different
frequency by applying a Fourier transform to the timecourse and attribute the value zero to
signals outside the desired frequency range before to use the inverse Fourier transform to
obtain the filtered timecourses.

3.3.2 Seed-based correlation analysis

Seed-based correlation analysis consists in calculating the cross-correlation between the
timecourse of a region of interest, also known as a seed, and the timecourse of every other
voxel within an area of interest, in this case the whole brain. The timecourse of the seed
correspond to the average of the timecourses of all voxels contained in the region of interest.
In paper I and I, single voxels were used as seeds while in paper Ill and 1V, a few voxels
composed the seeds. This approach is implemented in a number of tools. Within the
framework of this thesis, | used REST toolbox (Song et al., 2011) for MATLAB.

3.3.2.1 Statistics for seed-based correlation analysis

To obtain statistical results from seed-based correlation analysis, parametric statistical tests
were performed on correlation maps obtained with the method described above. Statistical
parametric mapping tools such as SPM or equivalent tools from FSL or other software
distributions can be used. In SPM, one must use the factorial design tool which performs
statistics based on a generalised linear model where the formula used to explain the variance
is the following:

=B *X+e Eq. 1
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where p is the dependent variable to be explained, X the matrix of the independent variables
(i.e. group, gender, age, treatment, ...), B the parameters to be determined and ¢ the residual
value which cannot be explained based on the independent variables provided. The algorithm
tries to determine the values for 3 in order to minimise €. p for a normal distribution as in this
case is the mean value.

Using this principle, one can perform analyses of variances and Student's t-tests to compare
groups. Statistical tests are performed independently for each voxel of the images. One can
then correct the probabilities of a false positive using a family-wise error correction or based
on the size of cluster of statistically significant findings.

It is worth noting that correlation must be converted using a Fisher transform before to be
used for parametric statistical tests in order to respect the requirements regarding the
distribution of values which must follow a normal distribution.

3.4 POST-MORTEM MRI ACQUISITION OF RAT HEADS

MRI is a slow imaging method which is sensitive to motion. Therefore when one wants to
obtain accurate images with particularly long scan times with small-animal MRI, one may opt
for performing the experiment post-mortem. This allows to perform scans for very long
periods of time, motion-free. This is particularly useful for acquiring high-resolution
diffusion MRI datasets in rodents.

3.4.1 Rat head preparation for MRI scan

The main goal of preparing the rat head is to allow for scanning the brain of the animals with
the smallest amount of artifacts in the images produced during the scan. Therefore, one must
take into account all sources of magnetic susceptibility artifacts, but also reduce sources of
noise and position the tissues so that the sample is immobile during the entire duration of the
scans. The brains must also be preserved from any damage or physical deformation in order
to allow a good alignment of structures between subjects and a good match to living animals
equally. This last point is ensured by keeping the brains within the skulls, the natural shell to
the brain.

Before to prepare the rat head for scanning, one must have the animal perfused with a
paraformaldehyde solution intracardially in order to stabilise the tissues and allow for
manipulation of tissues at room temperature without degradation.

To limit magnetic susceptibility artifacts, skin is removed, thus reducing surfaces where air
bubbles are prone to form and heads are placed into perfluoropolyether (Fomblin, Solvay
Solexis, Neder-Over-Hembeek, Belgium), a fluorinated oil, which has a magnetic
susceptibility close to tissues' susceptibility, while being chemically inert and having no MRI
signal. One must then try to extract as much as possible remaining air bubbles that may
remain within the sample.
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Further steps can be taken to ensure the absence of air by breaking the tympanic bulla, a part
of the temporal bone of the skull which is located at the level of the midbrain and is usually
filled with air.

To reduce the thermal noise in the images, one can reduce the number of electrical charges of
the sample (ions) by removing all the extra tissues surrounding the skull. This has also for
effect to reduce the size of the sample and therefore allows to reduce the field of view and the
matrix size, resulting in a reduced scan time.

Finally, one may improve the scanning time drastically by adding some gadolinium-based
contrast agent to the perfusion solution and in the post-perfusion bath. This has for effect to
reduce dramatically the magnetic resonance relaxation times of the tissues, and therefore
reduce the time necessary to scan the sample, allowing to achieve a higher spatial resolution
and/or a larger number of diffusion directions in a diffusion MRI experiment for a same
amount of time.

3.4.2 Diffusion MRI acquisition of rat heads

Acquiring diffusion MRI can be done with different MRI sequences. When applied in
patients at the clinical level, one must reduce the duration of the scans and use fast sequences
such as EPI to obtain the datasets. However, when acquiring datasets at very high magnetic
field as in a preclinical setup, EPI results in images with limited image resolution or high
image deformations due to susceptibility artifacts. To obtain images with a resolution
equivalent in scale to the resolution of clinical images (roughly a factor ten in each dimension
between humans and rats), one must consider slower methods such as a spin-echo multislice
sequence (when acquiring without contrast agent) or a spin-echo 3D sequence (when
acquiring with contrast agent). This change requires to acquire the images post-mortem as the
typical duration of a spin-echo multislice scan for diffusion imaging with 6 directions at 150
um isotropic resolution is around nine hours. Furthermore, in order to use superior methods
to analyse diffusion MRI datasets such as connectometry analysis or Q-ball imaging, a large
number of diffusion directions must be acquired. which prolonges the duration of scans.

Unfortunately, to obtain the same results as in-vivo, one must then increase the b-value of the
diffusion paradigm as the perfusion with paraformaldehyde affects the diffusion properties of
brain tissues (Dyrby et al., 2011). The b-value for images in paper Il were obtained with a b-
value of 1250 s/mm? while ideal value would be around 3000 or 4000 s/mm?.

3.5 CONNECTOMETRY ANALYSIS IN DIFFUSION MRI DATASETS OF
RODENTS

Different methods exist to analyse diffusion MRI datasets. The most common methods use

diffusion tensor imaging to reconstruct the diffusion tensor from the datasets and then use the

parameters extracted such as FA or MD to compare the different subjects, either directly

between the subjects within the same areas or by using a probabilistic approach to reconstruct

tracts and compare the properties of these tracts. Those two approaches have been
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implemented in softwares such as FSL's TBSS (Smith et al., 2006) and FSL's FDT
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT) respectively.

A recently developed method, connectometry analysis, quantifies instead, for every subject, a
given metric, such as FA, along white-matter tracts defined using a deterministic tracking
algorithm on a template dataset. It then uses non-parametric statistical tests to define whether
a significant relation is found (Yeh et al., 2016). In the case of paper Il, a group comparison
was made for the isotropic value of the diffusion along white matter tracts and found an
increase along tracts corresponding to the nigrostriatal pathway in the hemisphere lesioned
using 6-OHDA.

In order to conduct such an analysis, one must reconstruct the orientation diffusion functions
from the diffusion MRI datasets within a common template, therefore requiring to normalise
the datasets simultaneously with this reconstruction step. This is what is done using g-space
diffeomorphic reconstruction (QSDR) which is provided in the software DSI Studio (Yeh and
Tseng, 2011). Unfortunately, there is no standard template of rat brains for this method, so
one must create his/her own template using diffusion MRI datasets. By using generalized g-
sampling imaging (Yeh et al.,2010), quantitative anisotropy maps can be obtained, which can
then be normalised to a common space and the map of the average quantitative anisotropy
can be calculated. The quality of the template is then dependent on the quality of the
alignment of fine white matter structures and the number of subjects that are used to calculate
the average map.

Once the template for QSDR is created, one can run QSDR on the datasets to be analysed.
Also one must have datasets going through QSDR from healthy animals in order to create a
template from which tracts for connectometry analysis will be resolved.
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4 RESULTS AND DISCUSSION

4.1 DIFFUSION MRI ALTERATION IN THE UNILATERAL 6-OHDA MODEL OF
PARKINSONISM (PAPER II)

In paper Il, we characterized the changes in brain structure which follow the loss of nigral
dopaminergic neurons alongside with associated functional alterations. To do so, diffusion
MRI images were obtained post-mortem on 6-OHDA unilaterally lesioned animals. Two
approaches were used to analyse the images. The first was to use diffusion tensor imaging
together with SPM to detect statistically significant changes on a voxel per voxel basis. Using
this approach, it was found that FA decreases in the SNr in the 6-OHDA lesioned hemisphere
while radial diffusivity increases in SNc of the same hemisphere. We interpret these changes
as being the result of the loss of dendrites of dopaminergic neurons projecting to SNr in a
dorsal to ventral direction in parallel of each other.

As a second approach, we used connectometry analysis to identify white matter tracts with
altered diffusion properties in the 6-OHDA lesioned animals and we found that the isotropic
value of diffusion orientation density function was increased along nigrostriatal tracts of the
lesioned hemisphere. We believe that it is related to the loss of dopaminergic axons which
remove barriers for protons to diffuse orthogonal to the main direction of the white matter
tract.

Both of these findings demonstrated that alterations in diffusion MRI could be detected after
6-OHDA lesioning. The findings from the first approach were aligned with clinical findings
(Cochrane and Ebmeier, 2013; Schwarz et al., 2013) as well as an animal study in another
model (Boska et al., 2007).

4.2 CHARACTERIZATION AND TRANSLATIONAL VALIDATION OF RS-FMRI
NETWORKS IN RATS (PAPER I)

With paper 1, the goal was to characterize resting-state networks obtained using rs-fMRI and
seed-based correlation analysis and validate their translational value by comparing them to
those of humans. By acquiring rs-fMRI datasets in wild type naive rats and healthy humans
and using seed-based correlation analysis with seeds bilaterally in the dorsal Str, the ventral
Str (the nucleus accumbens), the motor cortex and the posterior cingulate cortex in both
species, we could obtain correlation maps with high correlation values in areas of their
respective resting-state networks.

The experiments demonstrated that the networks observed using these methods were
conserved between the two species despite the fact that rats were anesthetised while people
were not.

Confirming the conservation of resting-state networks between the two different species at an
healthy state is important in order to study any neurological disease model, as the absence of
conserved functional networks would invalidate rs-fMRI and fMRI overall as a valid
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approach to study these models. In the contrary this study confirmed the translational value of
rs-fMRI as an approach to study animal models of neurological disorders.

4.3 CORTICOSTRIATAL FC AND LOSS OF DOPAMINE (PAPER I, 111, V)

Loss of dopaminergic innervation and lowered tonic level of dopamine in Str are two of the
most remarkable hallmarks of PD, dorsal Str, the region equivalent to caudate and putamen,
is thus the primary area of interest to characterize the functional alterations in PD. By placing
a seed in dorsal Str in paper Il, we could observe an increase of FC between the dorsal Str in
the lesioned hemisphere and the sensorimotor cortex in unilaterally 6-OHDA lesioned
animals when compared to their healthy counterparts. This change was reversible using L-
DOPA. In paper IlI, we used the same approach on rats which were injected with the a-syn
AAV. Contrary to the previous experiment, a decrease of FC between dorsal Str and
sensorimotor cortex was observed. A similar change was observed in paper 1V with the
BSSG model of parkinsonism.

The opposite direction of FC alterations between results of paper Il in two independent
cohorts and those of papers Il and IV is counterintuive. However, one must consider the
amount of dopaminergic loss in the three models to interpret these results. In the 6-OHDA
model, the loss of DAT was quantified at about 90 percents, which is in the range of loss
observed in this model. When quantifying tyrosine hydroxylase, an enzyme used as a marker
of dopaminergic neurons, in Str in paper 111 only 18 percents of loss was observed at week 12
in animals overexpressing a-Syn. In paper 1V, striatal TH level was decreased by 33 percents
in rats fed with BSSG 25 weeks after the start of the experiment. Though it is usual to
observe a lower decrease of tyrosine hydroxylase compared to DAT in a same model due to
the retrograde nature of the dopaminergic neurodegeneration in PD and many of its models,
we can affirm that the neurodegeneration levels in papers Il and IV is much milder than in
paper I1.

If we combine this result with the fact that tonic dopamine levels in Str affect the excitability
of D1 MSNs and D2 MSNs in opposite directions, we may emit the hypothesis that FC
between dorsal Str and its cortical afferent regions form a U-shaped curve in function of tonic
striatal dopamine level or dopaminergic innervation and that the minimum FC value is for a
dopamine level lower than the level of naive animals, and corresponding to a mild
parkinsonian phenotype in rats. This could be explained by the fact that at very low or very
high dopamine levels, only one of the two populations of MSNs are excited by cortical
afferents and therefore highly synchronised with cortical activity while the other population is
mostly silent. For levels of dopamine in between, none of the two populations is as excitable,
rendering the overall activity measured through BOLD less synchronized to the BOLD signal
of its afferent regions.

To confirm this hypothesis further experiments are needed. One could for example use
different combinations of agonists and antagonists of D1 and D2 receptors in healthy rats to
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Fig. 4: Measured average functional connectivity between the right Str and the primary somatosensory cortex
for different groups from papers I, I11 and IV in function of striatal dopaminergic innervation loss. A U-shaped
curve was overlaid as the potential shape of the function taken by functional connectivity depending on striatal
dopaminergic levels.

modulate the activity of D1 MSNs and D2 MSNs and measure corticostriatal FC in those
conditions. Also, the existence of such a relation needs to be confirmed in humans in order to
prove its translational value, and in particular the location of the minimum relative to the
dopamine level must be determined for humans, whether it corresponds to a normal healthy
level, or a mild loss of striatal dopamine.
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4.4 FC BETWEEN SOMATOSENSORY CORTEX AND PREFRONTAL CORTEX

IN RELATION TO PD (PAPER IIl AND 1V)
Experiments from paper 11 demonstrated that alterations in the level of dopamine affect not
only sensorimotor related area but also regions related to emotions and cognition and the
relation between these two networks. Indeed, in this paper we could demonstrate that FC
within the DMN was increased in the a-syn overexpressing animals at week 8 compared to
their green fluorescent protein overexpressing counterparts, but also that FC between primary
somatosensory cortex and DMN was decreased at the same timepoint. We also showed that at
week 12 FC between primary somatosensory cortex and orbital cortex is decreased in a-syn
overexpressing animals. Decrease in FC between the orbital cortex and primary
somatosensory cortex could also be observed for BSSG fed rats in paper IV at both
timepoints.
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Fig. 5: Results of One-sample t-test for functional connectivity maps with seeds in right orbital cortex for
different groups of paper Ill. A) and C) a-synuclein overexpressing rats at weeks 8 and 12 respectively. B)
and D) GFP overexpressing rats at weeks 8 and 12 respectively. p-value < 0.001. Red areas represent
positive functional connectivity values and blue areas represent negative values. GFP, green fluorescent
protein.
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Fig. 6: Results of One-sample t-test for functional connectivity maps with seeds in right orbital cortex for
different groups of paper 1V. A) and C) Rats fed with BSSG at weeks 18 and 24 respectively. B) and D)
Control rats at weeks 18 and 24 respectively. p-value < 0.001. Red areas represent positive functional
connectivity values and blue areas represent negative values. BSSG, S-sitosterol-S-D-glucoside.

It is interesting to note that for healthy rats FC between S1 and orbital cortex (and the
prefrontal cortex overall) is negative but close to zero, meaning that activity of S1 is slightly
anticorrelated with the activity of the prefrontal cortex. One is active when the other is at rest
and inversely. This was observed in paper I, but also in papers Ill and IV. Therefore a
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decrease in FC between these areas in parkinsonian animals corresponds to a reinforcement
of the anticorrelation observed at a healthy state.

Functional alterations observed involving the prefrontal cortex and in particular the orbital
cortex may be related to the development of a depressive phenotype by the animals, which
was observed in the a-syn overexpressing model (Caudal et al., 2015). However, there is no
evidence of depressive phenotype in the BSSG model that was reported so far.

Another possibility is that these functional alterations are related to cognitive impairments
which are frequent in PD, and in particular executive dysfunction. Indeed, the prefrontal
cortex is involved in executive function and the corticostriatal circuit formed by caudate
nucleus and prefrontal cortex is key to executive function (Leh et al., 2010). However, more
needs to be done to show alterations in cognitive function in both the a-syn overexpression
and the BSSG models.
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5 GENERAL CONCLUSIONS

The results shown within this thesis demonstrate clearly that rs-fMRI has a translational value
to study neurological and psychiatric disorders and their models. We also clearly
demonstrated that rs-fMRI could be conducted in a reproducible manner and that the findings
are consistent between studies.

More specifically, we have shown here that dopaminergic neurodegeneration occuring in
models of parkinsonism provoke functional alterations that can be characterized using rs-
fMRI. Two main features were demonstrated, an alteration in FC between the dorsal Str and
the sensorimotor areas and a reinforcement of negative FC between prefrontal cortex and
primary somatosensory cortex in rats presenting a mild parkinsonian pathology. More needs
to be done to characterize these and other models of parkinsonism with rs-fMRI and these
changes need yet to be demonstrated in clinical studies. A recent meta-analysis on rs-fMRI
studies in PD patients seem to support the corticostriatal change observed here but more
needs to be done to fully characterize rodents models of parkinsonism with rs-fMRI.
Moreover, these changes need yet to be confirmed in clinical studies.
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