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ABSTRACT 

Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHAD) is a severe inborn error 

in the beta-oxidation of long-chain fatty acids. The disease presents during the first years of 

life. Hypoglycemia, hepatic manifestations, muscle hypotonia and episodes of 

rhabdomyolysis, cardiomyopathy and even sudden death are common symptoms. Despite 

life-long complicated treatment with a low fat diet and fasting avoidance, episodes of 

rhabdomyolysis and liver abnormalities may still occur. Patients with LCHAD develop 

chorioretinopathy, not seen in any other beta-oxidation deficiencies. 

The aim of this thesis was to describe the clinical outcome for patients with LCHAD, and 

investigate the energy metabolism with particular emphasis on the dynamics of fasting. Ten 

patients were included in the studies.  

The patients had rapid weight gain after diagnosis and initiation of dietary treatment. The 

nutritional surplus caused overweight and accelerated linear growth in the majority of the 

children, however not affecting final height.  

Patients with LCHAD had a decreased fasting tolerance with increased lipolysis. Fat and 

carbohydrate metabolism during fasting was investigated by stable isotope technique, 

microdialysis, and biochemical measurements. Despite normal blood glucose and normal 

glucose production rate (19.6 ± 3.4 umol/kg/min), lipolysis was induced after 3–4 hours, 

shown by increased glycerol production rate (7.7  ± 1.6 umol/kg/min). Fatty acid 

intermediates, plasma and microdialysate glycerol levels were increased. Indirect calorimetry 

showed increased respiratory quotient, indicating mainly glucose oxidation. Our results imply 

that frequent meals are essential in order to avoid lipolysis and diminish accumulation of the 

incompletely degraded toxic fatty acid metabolites.  

All patients developed ocular changes with retinal pigmentations and chorioretinopathy. 

Early diagnosis and treatment may delay but not prevent the ocular outcome.   

Neuropsychological deficits were more common than expected, and demonstrated a specific 

cognitive pattern. The patients either had normal IQ scores with a particular weakness in 

auditive verbal memory and executive functions, or developmental delay and autistic 

behaviors.  

In conclusion, this thesis shows that patients with LCHAD have an increased lipolysis with 

considerably impaired fasting tolerance. Shorter fasting intervals than has been advocated are 

thus crucial to reduce the accumulation of fatty acid metabolites and improve the metabolic 

control. The shorter fasting tolerance should be weighed against the increased the risk for 

overweight. All patients develop retinal and cognitive symptoms; however, these symptoms 

may be improved with good adherence to the complicated diet. Neuropsychological 

screening is important for the identification of special needs early on.   
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1 INTRODUCTION 

1.1  ENERGY METABOLISM 

Glucose homeostasis is maintained and energy provided to all tissues by energy rich 

molecules that are either ingested through our diet or processed from the body’s own 

supplies. They are broken down into amino acids, fatty acids and glucose which are further 

degraded and converted into energy. Fatty acids are the body’s main energy reserves, and are 

stored as triacylglycerides (TAGs) in the adipose tissue.   

The organs in the body have different substrate preferences. Glucose is the dominant fuel for 

the brain. Ketone bodies are important energy substrates that the brain and skeletal muscle 

can use as alternative energy fuel. In skeletal muscles, there is a different situation, since the 

utilization of glucose increases as exercise intensity increases and fat oxidation reaches its 

maximum at moderate and prolonged exercise intensities (1, 2). The healthy heart mostly 

utilizes fatty acids for energy supply at all times (3). After a carbohydrate-rich meal, glucose 

levels are high and excess glucose is utilized for fatty acid-, glycogen- and amino acid- 

synthesis. However, the glycogen stores in the muscles can only be used by the muscle itself. 

If no more exogenous glucose is delivered, levels decline and the glycogen stores in the liver 

and skeletal muscles serve as glucose-providers. The glycogen reserves may last for up to 24 

hours in adults, but only for a few hours in children who, consequently, are more prone to 

develop hypoglycemia. Fatty acids are stored as triacylglycerols (TAGs) in the adipose tissue. 

Fasting induces breakdown of the TAGs, thereby supplying energy substrates to heart and 

skeletal muscle and energy for hepatic gluconeogenesis and ketone body synthesis. The 

different metabolic pathways are tightly regulated by hormonal signals. A high 

insulin/glucagon ratio stimulates anabolic pathways, while a decreased energy supply results 

in a lowered insulin/glucagon ratio, changing the metabolic reactions to catabolism.  

1.2 FATTY ACIDS  

Fatty acids have many central functions in the body, particularly for energy production but 

also as structural phospholipids and glycolipids of cell membranes, with involvement in cell 

signaling, inflammatory responses and gene expression (4). They represent the major bodily 

energy reserve, since complete fatty acid oxidation yields 9 kcal/g of fat (37 kJ/g), compared 

to 4 kcal/g of carbohydrates (17 kJ/g), and 4 kcal/g of protein (917kJ/g).  

In plasma, fatty acids exist as free, non-esterified fatty acids, NEFAs, bound to albumin, and 

are also found as fatty acyl esters in triacylglycerols (TAGs), transported by plasma 

lipoproteins.  

A fatty acid consists of a chain of carbon atoms with maximum number of hydrogen atoms 

attached to the carbon (Figure 1). Some of the most physiological fatty acids are long-chain 

fatty acids with an even number of carbons such as, palmitate (C16:0), stearate (C18:0), 

oleate (C18:1), and linolate (C18:2). Saturated fatty acids do not contain any double bonds, 

while mono- or poly- unsaturated fatty acids contain one or more double bonds. The structure 
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is described in terms of the number of carbons and double bonds, e.g. palmitate is 16 carbons 

long and has no double bonds. The carbons may also be counted from the other end, and are 

then referred to as ω- (omega-) fatty acids. Another nomenclature for linolate (C18:2) is ω- 3 

fatty acid, since the first double bond is 3 carbons from the ω-carbon. In general long-chain 

polyunsaturated ω- 3 fatty acids are associated with positive health effects, while saturated 

and trans-fatty acids are associated with cardiovascular disease (4). To optimize biological 

function and health effects, the balance between ω- 3 and ω- 6 fatty acids is crucial (5). All 

polyunsaturated fatty acids derived from linolenic acid (C18:3) are ω- 3 fatty acids, and those 

derived from linoleic acid (C18:2) are ω- 6 types. Both linoleic and linolenic types are 

essential fatty acids and cannot be synthesized endogenously, but need to be provided by the 

diet. Linoleic acid is the precursor for prostaglandin synthesis, while linolenic acid is the 

precursor for docosahexaenoic acid (DHA), synthesized in the peroxisomes (6). DHA is 

important for brain development and visual acuity (7), and is rather abundant in Western 

diets.   

 

Figure 1. Schematic illustration of a fatty acid  

Fatty acids are constructed of long chains of carbon atoms, and are named in different ways. The 

carboxyl-reference system counts the carboxyl carbon as number 1, while the omega-reference 

system counts from the omega “ω” -carbon, which is always the last carbon regardless of chain 

length. The carbon next to the carboxyl group is labelled the alfa “α”-carbon (carbon number 2), and 

the carbon next to the α is the beta ”β”-carbon (carbon number 3).  

1.3 INTRODUCTION TO FATTY ACID OXIDATION DEFECTS 

Fatty acid oxidation defects (FAODs) are a group of inborn diseases affecting the final 

degradation of fatty acids within the cells. Very long-chain fatty acids (> C20) and branched- 

chain fatty acids are oxidized by the peroxisomes, while long-chain fatty acids (< C20) are 

transported into the mitochondria via a carnitine-dependent pathway. Medium- and short-

chain fatty acids do not require carnitine to enter the mitochondria. Chain-length specific 

enzymes facilitate sequential removal of two-carbon fragments by the beta-oxidation process, 

thus yielding acetyl-CoA, NADH, and FADH2. The first cases of defective fatty acid 

oxidation (FAO) were reported in the 1970s (8, 9), and, to date, more than 20 different 

deficiencies have been described. The defects have overlapping symptoms, often occurring in 

connection with fasting, and may involve hypoglycemia without ketone body production, 

OH

H H H H H H H H H

C-C-C-C-C-C-C-C-C-C

H H H H H H H H H
H

O

αβω

Hydrocarbon chain Carboxyl group
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muscle hypotonia, rhabdomyolysis, cardiomyopathy and liver involvement. The clinical 

range is wide, varying from asymptomatic patients to severe symptoms with arrhythmias, 

lactic acidosis, seizures and sudden death (10-12). Many countries have included FAODs in 

their newborn screening programs, thereby enabling early diagnosis and treatment. Fatty acid 

oxidation disorders (FAOD), are included in the Swedish Newborn Screening Program since 

2010. One of the most severe disorders is long-chain 3-hydroxyacyl-CoA dehydrogenase 

deficiency (LCHAD) (OMIM 609016), which impairs the breakdown of long-chain fatty 

acids. Despite treatment, patients with LCHAD develop a specific chorioretinopathy not seen 

in other fatty oxidation disorders. From a clinical perspective, treatment and management of 

patients with LCHAD is challenging, since symptoms and complications arise regardless of 

the complicated dietary treatment. Thus, the focus of this thesis has been on studying the 

metabolism in patients with LCHAD and the related complications, with the foremost 

intention to improve the care and treatment of these patients. 

1.4 FATTY ACID OXIDATION 

1.4.1 Fatty acid mobilization  

The final degradation of fatty acids up to 20 carbon chain-lengths (C20) predominantly 

occurs in the mitochondrial-matrix by beta-oxidation, while very long-chain fatty acids (> 

C20) have to be chain shortened in the peroxisomes before they can be completely oxidized 

to acetylCoA in the mitochondria (13). Fasting and exercise release adrenaline/epinephrine 

and noradrenaline/norepinephrine, which induce lipolysis by the action of hormone-sensitive 

lipase. Hormone-sensitive lipase in the adipose tissues facilitates the hydrolysis of TAGs, 

producing one molecule of glycerol and three molecules of fatty acids (14). The free fatty 

acids are released into the circulation and transported to the target cell, while the glycerol 

backbone is either recycled in the liver for TAG synthesis or used as a substrate for 

gluconeogenesis (15). The most potent inhibitor of lipolysis is insulin, which binds to the 

surface of the adipocytes and inactivates hormone-sensitive lipase (16).   

1.4.2 Fatty acid transportation into the cells 

Several different membrane-bound proteins mediate the transportation of long-chain fatty 

acids (LCFAs) across the plasma membrane into the cytoplasm. These proteins include fatty 

acid translocase (FAT)/CD36, plasma membrane fatty acid binding protein (FABPpm), 

caveolins, and fatty acid transport proteins (FATP) (17, 18). The FATPs are encoded by the 

SLC27 gene and are crucial for maintaining lipid homeostasis. In humans, six FATP have 

been identified, with different chain length-specificity and different tissue distribution (17). 

The fatty acids are activated to acyl-CoA-esters in the cytosol by a family of ATP-dependent 

acyl-CoA synthases (ACSs) (19, 20).  

1.4.3 Fatty acid transport into the mitochondria 

The mitochondrial membrane is impermeable to long-chain acyl-CoAs. The carnitine 

palmitoyl transferase system is essential for LCFA passage into the mitochondria, although 
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fatty acids shorter than 12 carbon atoms enter the mitochondrial matrix without the carnitine 

shuttle (21) (Figure 2). Carnitine levels are maintained by dietary intake of dairy and meat 

products, as well as by endogenous synthesis from lysine and methionine, or by renal 

absorption (18, 22). Its cellular uptake is by the OCTN2 carnitine transporter which is 

essential for sufficient carnitine supply (18).  

Carnitine palmitoyl transferase 1 (CPT-1), on the outer mitochondrial membrane transfers 

fatty acids from Coenzyme-A to carnitine to form acyl-carnitine. Acyl-carnitine is 

translocated across the inner mitochondrial membrane by carnitine acylcarnitine translocase 

(CACT) in exchange for free carnitine. CPT-2 on the inside of the inner membrane removes 

carnitine and the long-chain fatty acid acyl-CoA can undergo beta-oxidation (18, 21, 23). 

CPT-1 is present in different isoforms CPT-1A (liver CPT-1), and CPT-1B (muscle CPT-1) 

(24). In addition, CPT-1 is the rate-limiting step of fat oxidation. Postprandially, levels of 

ATP and citrate rise, and thereby stimulate the synthesis of malonyl-CoA, which binds to the 

inner mitochondrial membrane and prevents entry of the fatty acid into the mitochondria. The 

fatty acid is thus directed toward lipogenesis instead of oxidation (3, 25).  

 

Figure 2. The Carnitine shuttle  

CPT-1 on the outer mitochondrial 

membrane forms fatty acid acyl-

carnitine which is translocated across 

the inner mitochondrial membrane by 

carnitine acylcarnitine translocase 

(CACT) in exchange for free 

carnitine. CPT-2 on the inside of the 

inner membrane removes carnitine 

and re-esterifies the acylcarnitine into 

a long-chain fatty acyl-CoA that 

undergoes beta-oxidation (18, 21, 

23). 

1.4.4 Mitochondrial beta-oxidation of even-numbered unsaturated fatty 
acids 

Once inside the mitochondria the long-chain fatty acyl-CoA undergoes beta-oxidation, a 

series of four reactions affecting the third carbon of the fatty acid, the β-carbon. Beta-

oxidation results in a fatty acid shortened by two carbons, and the production of acetyl-CoA, 

NADH, and FADH2. The initial rounds of beta-oxidation are catalyzed by enzymes bound to 

the mitochondrial membrane. As the fatty acid becomes shorter and more hydrophilic, further 

degradation takes place in the mitochondrial matrix by different enzymes. The beta-oxidation 

process is also described as a spiral since the shortened fatty acyl-CoA cycles through beta-

oxidation until all acetyl groups are cleaved off. The faith of acetyl-CoA is further oxidation 

in the citric acid cycle to CO2 and water, or ketone body synthesis in the liver (21, 23, 24, 

26).  
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The beta-oxidation enzymes are chain-length specific, with overlapping activities (Figure 3). 

The first step in the spiral is catalyzed by a family of acyl-CoA dehydrogenases (ACADs): 

very long-chain acyl-CoA dehydrogenase (VLCAD) with specificity for fatty acids C14–

C18, long-chain acyl-CoA dehydrogenase (LCAD) C10–C12, medium-chain acyl-CoA 

dehydrogenase (MCAD) C6–C12, and short-chain acyl-CoA dehydrogenase (SCAD) C4–C6. 

VLCAD is membrane-bound, while LCAD, MCAD and SCAD are located in the 

mitochondrial matrix (21, 23, 26). The role of LCAD in humans is uncertain; however, it is 

important in mouse models (Section 1.5.9) (27). ACAD enzymes produce FADH2 thereby 

transferring electrons to the electron transport chain. The subsequent three beta-oxidation 

reactions are catalyzed by the membrane-bound mitochondrial trifunctional protein enzyme 

complex (TFP), with activity toward longer chain substrates. Substrates with shorter chain 

lengths are oxidized by homologous enzymes in the matrix. The TFP is a hetero-octamer with 

four α- and four β-subunits, encoded by the HADHA and HADHB genes (28-31). The α-

subunits contain the hydratase and long-chain hydroxyacyl- CoA dehydrogenase activities, 

while the β-subunits comprise the thiolase activity. The second beta-oxidation step is 

catalyzed by long-chain 2, 3-enoyl-CoA hydratase (LCEH) in the TFP and short-chain 2,3-

enoyl-CoA hydratase (SCEH or crotonase) for shorter substrates in the matrix. The third step, 

yielding NADH2, is mediated by long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) 

in the TFP with activity toward C12–C16, or short-chain 3-hydroxyacyl-CoA dehydrogenase 

(SCHAD) in the matrix with an optimal activity toward C6. The fourth step is catalyzed by 

long-chain 3-ketoacyl-CoA thiolase (LKAT) in the TFP. The matrix enzymes are medium 

(MKAT), and short-chain 3-ketoacyl-CoA thiolase (SKAT), and the SKAT reaction remains 

the final step in mitochondrial beta-oxidation (21, 26, 32). 
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Figure3. Mitochondrial beta-oxidation reactions  

Mitochondrial beta-oxidation involves four different reactions affecting the β-carbon.  

 

1. The first step of beta-oxidation is an oxidation reaction. A family of acyl-CoA dehydrogenases 

mediate the reaction, creating a trans-double bond between the α- and β-carbons, forming 2-

trans-enoyl-CoA and FADH2. 

 

2. The second reaction is hydration of the 2-trans-enoyl-CoA by 2-enoyl-CoA hydratase, forming 

L-3-hydroxyacyl-CoA. The double bond between the α- and β-carbon is converted to a 

hydroxyl group on the β-carbon. 

 

3. L-3-hydroxyacyl CoA dehydrogenase catalyzes the oxidation reaction from L-3-hydroxyacyl-

CoA, producing 3-ketoacyl-CoA and NADH2. The hydroxyl group on the β carbon is converted 

to a keto group. 

 

4. The fourth and final reaction of beta-oxidation is a thiolytic cleavage of the bond between the 

α- and β-carbons. The reaction is facilitated by 3-ketoacyl-CoA thiolase in the presence of 

coenzyme-A and results in a fatty acyl-CoA shortened by two carbons and acetyl-CoA.  
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1.4.5 Oxidation of mono- or poly-unsaturated fatty acids  

Oleic acid (18:1), an unsaturated fatty acid with one double bond, is oxidized by the same set 

of reactions as saturated even-numbered fatty acids, until the double bond is reached. The 

enzyme Cis-Δ
3 
enoyl-CoA-isomerase converts the double bond in the cis-configuration into a 

trans-configuration. The compound bypasses the hydratase reaction and reenters β-oxidation. 

Polyunsaturated fatty acids, linoleic acid (18:2) and linolenic acid (C18:3), requires an 

additional NADPH dependent enzyme, 2, 4 dienoyl-CoA reductase, for further oxidation(23, 

26).  

1.4.6 Odd chain fatty acid oxidation 

Fatty acids with odd numbers of carbons are oxidized in a similar manner similar to that of 

even- numbered ones, until three carbons remain. This molecule, propionyl-CoA, is further 

degraded by the ATP dependent enzyme propionyl CoA carboxylase (using biotin co-factor), 

methylmalonyl-CoA racemase and methylmalonyl-CoA mutase (using vitamin B12 co-

factor) to form succinyl-CoA which enters the citric acid cycle (23, 26).  

1.4.7 Additional fatty acid oxidation pathways 

In addition to the mitochondrial β-oxidation, fatty acids are degraded by pathways that may 

be complementary when mitochondrial β-oxidation is overloaded or impaired (33, 34).  

Peroxisomal β-oxidation is of minor importance for energy generation, and is directed toward 

very long-chain fatty acids, particularly C24:0, 26:0 (6, 13) and pristanic acid (6, 35). The 

enzymatic steps, also involving oxidation, hydration, oxidation and thiolytic cleavage, are 

equivalent to mitochondrial β-oxidation; however, the first reaction is catalyzed by acyl-CoA 

oxidase (and not by ACADs) (13), which transfers electrons via FADH2 to create H2O2. The 

peroxisomal pathway is also different from the mitochondrial one, since the trans-membrane 

import does not require carnitine. The oxidation proceeds to the medium chain level, when 

the fatty acyl-CoA is transported to the mitochondria for further oxidation.  

Omega oxidation for medium chain fatty acids occurs in the endoplasmic reticulum. The 

oxidation does not involve the β-carbon, but it begins from the ω-carbon, i.e., on the opposite 

end of the carbon chain, and yields dicarboxylic acids which are fatty acids with a carboxyl 

group at each end. The dicarboxylic acids can be transported to the mitochondrial matrix or to 

peroxisomes for β-oxidation. When β-oxidation is compromised, high levels of dicarboxylic 

acids are excreted in urine as markers of fatty acid oxidation defects (18, 36).  

1.4.8 Ketone body production 

The ketone bodies acetoacetate and 3-hydroxybutyrate, are formed in the liver from acetyl-

CoA during fasting, by HMG CoA synthase and HMG CoA lyase. The ketone bodies provide 

supplementary energy for the brain and cardiac muscle. 
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1.5 LONG-CHAIN 3-HYDROXYACYL-COA DEHYDROGENASE DEFICIENCY 
(LCHAD)  

1.5.1 Symptoms and prevalence 

LCHAD deficiency was first described in the 1980s (36-38) in patients presenting with liver 

involvement, and concurrent hypoglycemia, free carnitine deficiency and long-chain 

acylcarnitine excess. Today, most patients with FAO defects are identified through newborn 

screening programs before any symptoms occur. However, not all countries perform newborn 

screening and mortality and morbidity rates are still high (10, 39, 40).   

The symptoms of LCHAD are usually initiated by fasting, infection or other catabolic 

situations when the energy demand is high, and affect organs with a high energy demand or 

turnover such as the liver, heart and skeletal muscles. The presentation may involve acute 

symptoms with hypoketotic hypoglycemia, hepatic failure, hypertrophic cardiomyopathy, 

coma, cardiac arrest, and sudden death. Chronic symptoms such as muscle hypotonia, failure 

to thrive, and episodes of rhabdomyolysis, are also common presentations at diagnosis (9-11) 

(12-14). Despite treatment, symptoms may still occur as recurrent episodes of 

rhabdomyolysis or development of cardiomyopathy and liver affection. A common 

complication in LCHAD is rhabdomyolysis in conjunction with exercise. The etiology is 

unknown, but it may include an insufficient energy supply to the muscles or toxic effects of 

acylcarnitines or free fatty acids which cause membrane destabilization and leakage of 

intracellular creatine kinase and transaminases(41, 42). Peripheral neuropathy and 

chorioretinopathy are specific features of LCHAD, not present in other FAO defects. In 

addition, mothers carrying a fetus with LCHAD are at risk for severe pregnancy 

complications such as preeclampsia, HELLP syndrome (hemolysis, elevated liver enzymes, 

low platelets) and acute fatty liver of pregnancy (AFLP) (Section 1.5.4.1). 

1.5.2 Genetics 

Patients with mutations in one of the enzymes active in the TFP, are diagnosed with either 

LCHAD or TFP deficiency, and may exhibit slightly different phenotypes (21, 43). However, 

the disorders cannot easily be distinguished clinically or with acylcarnitine profiles and are 

managed in similar manners (44).  

LCHAD is inherited in an autosomal recessive pattern. Patients who are homozygous or 

compound heterozygous for the common G1528C mutation, are diagnosed with LCHAD and 

trifunctional protein deficiency (TFPD) if any other α- or β-mutations are found (21) (43, 45). 

The  and β subunits are encoded by separate nuclear genes, HADHA and HADHB (30), 

located within the same chromosomal region, 2p23 (46). The G1528C mutation in the α-

subunit of the TFP (47, 48) is the most common mutation in isolated LCHAD and is present 

in 60% to 87% of alleles in Caucasian patients with LCHAD (47, 49). The carrier frequency 

is 1:680 (Dutch population) (50). The mutation severely reduces the LCHAD activity by 

altering glutamic acid into glutamine acid at position 474 (E474Q) (51, 52), which inactivates 

the catalytic domain, but preserves the other TFP activities at >60% of normal activity (32) 
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(53). Hence, general TFP deficiency is characterized by reduced enzyme activities of all three 

TFP enzymes (31, 43). The frequency of the combined deficiency is unknown because most 

reports on LCHAD lack data on the activities of enoyl-CoA hydratase (LCEH) and long-

chain 3-ketoacyl-CoA thiolase (LKAT). Patients with mutations that preserve the hydratase 

activity accumulate more acylcarnitines than patients with loss of all three enzymes (54). 

Mutations in TFP cause instability of the TFP complex, thereby affecting all enzymatic 

reactions, and thus leading to less production of acylcarnitines (45, 55).  

1.5.3 Diagnostic procedures 

The LCHAD diagnosis is based on the analysis of accumulated specific metabolites, and 

confirmatory testing with measurements of enzyme activity and/or identification of mutations 

in the HADHA gene (51, 52, 56, 57). In LCHAD, levels of long-chain metabolites of 3-

hydroxy fatty acids, 3-hydroxy acylcarnitines, 3-hydroxy acyl-CoAs and 3-hydroxy-

dicarboxylic acids are increased in serum and urine (56, 58). Some centers also conduct FAO 

flux studies in cultured skin fibroblasts or lymphocytes, to measure the end products of FAO. 

Enzyme assays and flux studies are time-consuming, and may take several months to 

complete (12).  

The diagnostic procedure also involves plasma measurements of glucose, lactate, ammonia, 

liver transaminases, creatine kinase, blood gases, lactate, ketones, free and total carnitine, 

electrolytes, blood count, platelets, and also amino acids and organic acids in urine. Analysis 

of dicarboxylic acids in urine is no longer part of the diagnostic procedure at our laboratory.  

1.5.4 Pathogenesis  

The pathogenic mechanism in LCHAD is not fully understood. The impaired fatty acid 

oxidation and subsequent build-up of fatty acid intermediary metabolites result in insufficient 

acetyl-CoA and ketone body production during catabolic states, and thereby energy 

deficiency. Accumulated fatty acids bind to Coenzyme A and thereby reduce levels of free 

Coenzyme A, needed for the tricarboxylic acid cycle and production of ATP. 

Histopathological investigations have demonstrated fat accumulation in skeletal muscle, 

liver, kidney and heart (56, 59-61), and a potential toxic effect of the accumulated long-chain 

fatty acids or acylcarnitines is currently debated (52, 62-64). It has been suggested that the 

intermediates may disrupt mitochondria and disturb cellular calcium homoeostasis, thereby 

inducing oxidative stress and increasing the formation of reactive oxygen species (ROS) (64, 

65). In addition, is has been shown that fatty acid derivatives may inhibit the respiratory chain 

directly (66). Many symptoms in LCHAD/FAOD can be linked with the current hypotheses. 

Energy deficiency may alter calcium flux and increase membrane permeability and hence 

rhabdomyolysis and necrosis of myocytes (41, 67). Arrhythmias and impaired cardiac 

function has been linked to accumulated lipids and possible intracellular calcium overload 

(63, 68, 69). It has also been suggested that leakage of tricarboxylic acid cycle intermediates 

from the cells would cause energy deprivation (70). Hence, cellular calcium overload and 

increased cell membrane permeability seem to be involved in the pathogenesis in 
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LCHAD/FAOD. Possible toxicity of acylcarnitines has also been discussed in connection 

with maternal liver disease and the specific chorioretinopathy observed in patients with 

mutations in the trifunctional protein.   

1.5.4.1 Pregnancy complications 

There is an increased risk that the pregnancy of mothers carrying a fetus with LCHAD or 

TFP deficiency will be complicated by maternal preeclampsia, maternal HELLP syndrome 

(hemolysis, elevated transaminases, low platelets) and/or acute fatty liver of pregnancy 

(AFLP) (36, 40, 43, 45, 48, 71, 72). Moreover placental maternal floor infarction has been 

reported in mothers to fetuses with LCHAD (73, 74). HELLP and AFPL may coexist and are 

responsible for high maternal and fetal mortality (75). AFLP is characterized by fatty 

infiltration of the hepatocytes in the third trimester, and the HELLP syndrome involves 

endothelial dysfunction, complement system activation, fibrin deposition and platelet 

aggregation, leading to thrombocytopenia and hepatocellular necrosis.  

The frequency of AFLP or HELLP syndrome in mothers of patients with LCHAD has been 

reported to be between 20–79% (10, 40, 72, 76, 77), and this seems to be unrelated to the 

severity of the fetal phenotype (43). In Asia, where the G1528 C mutation is uncommon, 

reports of AFPL/HELLP in mothers of patients with LCHAD/TFPD are scarce (78), 

proposing a possible link between the mutation and the development of maternal liver 

disease. It has also been suggested that women with AFLP should undergo molecular testing 

for LCHAD/TFPD, since maternal liver disease is more likely to occur in pregnancies with 

an affected fetus (79, 80). LCHAD does not, however, appear to be a major cause of the 

HELLP syndrome (50).  

The mechanism for the high incidence of maternal liver disease is unknown. The 

heterozygous mother has reduced fatty acid oxidation capacity and is asymptomatic until she 

becomes pregnant with a homozygous fetus. It has been speculated that the placenta, mainly 

of fetal origin, relies on fatty acid oxidation for energy supply (81-83). In a pregnancy with a 

fetus with defect beta-oxidation potentially toxic intermediates accumulate. The intermediates 

may injure cell membranes as well as the maternal endothelium and trigger an inflammatory 

response (52).The combination of accumulated fatty acid intermediates, reduced maternal 

fatty acid oxidation capacity and increased metabolic stress during late gestation, eventually 

leads to AFLP (21, 80). The maternal liver disease and placental energy depletion may cause 

intrauterine growth retardation and premature birth (21).  

1.5.4.2 Chorioretinopathy in LCHAD 

Patients with LCHAD/ TFP deficiencies develop a specific and progressive 

chorioretinopathy. It is believed that the initial changes affect the retinal pigment epithelial 

cell layer (RPE) (84, 85), which constitutes a barrier between the photoreceptors and choroid 

vessels. The pigmented RPE cells are essential for visual function by absorbing light, 

reducing oxidative stress, and transporting/secreting nutrients and metabolic intermediates, 

and are involved in phagocytosis and immuno-modulating functions (86).  
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The chorioretinal changes are progressive with deteriorating retinal function as evaluated by 

electroretinography (ERG), and lead ultimately to loss of vision (85, 87). At birth, the fundus 

is normal/pale, and visual acuity is normal (Stage 1). The first signs of chorioretinopathy may 

already be visible after a few months, initially as hypopigmentation, pigment clumping and a 

declined ERG response with intact vision (Stage 2), progressing to atrophy with sparing of 

the central macula and affected color and night vision (Stage 3). Finally, the photoreceptors 

and choroidal vessels are eradicated, and a bare sclera is discerned, leading to blindness 

(Stage 4) (87, 88).  

Mitochondrial beta-oxidation is involved in the metabolism of the (RPE) (89); however, the 

pathogenesis of the unique chorioretinopathy is unknown (55, 88). A possible mechanism 

may be toxic effects of acylcarnitine and hydroxy fatty acid accumulation, since high levels 

of these intermediates are associated with decreased retinal function (90). Histological 

examinations have demonstrated RPE cell death (91), and recent research has revealed lipid 

accumulation and apoptosis in an in vitro RPE cell model (84).  

Chorioretinopathy has been described in patients with LCHAD or TFP deficiency, but not in 

patients with other FAODs (92). In addition, patients lacking the common G1528C mutation 

appear to have milder progression of the chorioretinopathy (90). Chorioretinopathy has not 

been reported in patients of Asian descent, in whom the common mutation is rare (78, 93, 

94), although it is unclear whether ocular examinations and/or ERG were commenced. 

Altogether, the mutant protein produced in normal levels in LCHAD may lead to high levels 

of accumulated intermediates that are potentially toxic for the RPE (54).  

To date, there is no treatment for the chorioretinopathy; however, supplementation with 

docosahexaenoic acid (DHA), abundant in the retinal cells as well as a low-fat diet 

supplemented with medium-chain triglycerides (MCTs), may prevent or delay progression of 

visual impairment(90, 95). 

1.5.5 Management of patients with LCHAD 

The management of patients with fatty acid oxidation defects involves regular monitoring by 

a multidisciplinary team consisting of metabolic specialists, dieticians, and psychologists. 

The treatment in LCAHD is initiated as soon as the diagnosis is established and consists of an 

individualized, rigorous and lifelong dietary intervention. The goal of the treatment is to 

provide sufficient energy and nutrients to maintain health and normal growth, and at the same 

time limit fatty acid oxidation from exogenous and endogenous lipids, and thus the 

accumulation of metabolites from defective fatty acid oxidation. 

Treatment guidelines are based on expert recommendations and few clinical trials, and they 

differ between centers, especially regarding the length of fasting periods and the need for 

nocturnal feeding, but also concerning levels of carnitine and essential fatty acid 

supplementation (96-101).  
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The cornerstones of the specific LCHAD treatment are fasting avoidance and a low-fat diet 

with 15–20% of the calories derived from fat, and restriction of long-chain fatty acid intake 

accompanied by supplementation of medium chain triglycerides (MCTs), essential fatty 

acids, vitamins, and minerals (95). During any catabolic situations such as febrile illness, 

fasting or vigorous physical activity the patients are liberally treated with a carbohydrate-rich 

supplements or intravenous 10% glucose infusions (10–12 mg/kg/min) to avoid metabolic 

derangement and deleterious consequences. To normalize plasma acylcarnitine levels, it is 

recommended that the LCFA intake should be less than 10% of the total energy intake. The 

remaining fat-intake, up to 20% of total energy, is replaced with MCT, containing mainly C8 

and C10 fatty acids, which bypass the metabolic block (95, 98, 102). The MCT constitutes an 

important energy substrate for heart and skeletal muscle that utilizes fatty acids under well-

fed conditions. In addition, MCT is thought to yield adequate levels of acetyl-CoA to produce 

ketone bodies and also malonyl-CoA which inhibits CPT-1 and thus further accumulation of 

long-chain intermediates (58). The MCT is administered as an MCT- containing infant 

formula for toddlers and infants, and for older children as a liquid supplement or is used in 

cooking. Adverse effects may involve gastrointestinal symptoms as nausea and stomach ache, 

loose stools, and steatorrhea.  

The low LCFA intake poses a risk for essential fatty acid deficiency (95) and the diet is 

therefore supplemented with α-linolenic and linoleic acids, calculated as part of the LCFA 

intake (101) and given as flax/walnut oil (103). In addition, patients with LCHAD may suffer 

from docosahexaenoic acid (22:6 n-3) (DHA) deficiency (104). The mechanism is not 

known, but it has been postulated that the conversion from precursor α-linolenic acid to DHA 

is impaired in the presence of fatty acid oxidation defects, making it an essential compound in 

LCHAD.  

Short fasting intervals and lipid restriction in combination with sustained age-appropriate 

protein intake, result in a relatively high-carbohydrate diet compared to normal dietary 

guidelines (105). The desired effect is increased insulin secretion which act as a potent 

inhibitor of lipolysis (106, 107). A higher protein intake may have positive effects on energy 

balance and metabolic control, although long-term effects require further evaluation (108). 

Cornstarch, that slowly releases glucose for many hours, is only recommended as emergency 

treatment and not before bedtime (101), as it is difficult to individualize the correct dose that 

prevents lipolysis. 

Patients with LCHAD and other long-chain FAODs are at risk of secondary carnitine 

deficiency, since carnitine conjugates with accumulated long-chain acyl-groups from 

Coenzyme-A (18). Acylcarnitines cross the plasma membrane and are excreted in the urine 

or bile (24). Supplementation with carnitine is, however, controversial. Studies on mice with 

VLCAD have shown that carnitine biosynthesis is induced by increased carnitine demand 

and that levels in plasma do not reflect tissue levels (109), thus, the endogenous synthesis is 

very effective and need not be substituted. Intravenous carnitine administration during acute 

metabolic derangements is discouraged due to the arrhythmogenic effect of increased intra-
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mitochondrial long-chain acylcarnitines (68, 110). Others argue that carnitine 

supplementation is essential for export of accumulated long-chain fatty acid intermediates 

and to release free Coenzyme-A, and that the large amounts of energy required for creatine 

synthesis may actually be a trigger for rhabdomyolysis or cardiomyopathy during illness 

when energy levels are low (111).  

Supplementation with carbohydrates and MCT is recommended prior to physical exercise 

(112). Carbohydrates constrain FAO through the inhibiting effect of insulin, and MCT 

generates ketone body synthesis, which have beneficial effects on the cardiac energy supply 

(112). Thus, regular exercise is recommended for patients with LCHAD, if a “MCT/ 

carbohydrate sport drink” is consumed before exercise in addition to adequate rest and 

rehydration post-exercise (112, 113).  

Despite treatment, patients with LCHAD may still develop cardiomyopathy, recurrent 

episodes of rhabdomyolysis, and even sudden death, especially during periods of higher 

energy demand. Energy deprivation may arise from defective fatty acid oxidation and 

decreased levels of acetyl-CoA and decreased conversion of NAD to NADH. Accumulating 

fatty acid intermediates limits the availability of free Coenzyme-A, thus compromising 

important pathways, including the citric acid cycle. In addition, acylcarnitines may have toxic 

effects, with destabilized membranes and increased cellular leakage (64). It has therefore 

been hypothesized that the acetyl-CoA-yield from MCT oxidation may not be adequate to 

replenish the leakage of citric acid cycle intermediates (114, 115).  

One possible supplement for replenishing the citric acid cycle is triheptanoin. Triheptanoin is 

a triacylglyceride with three molecules of heptanoate which is an odd-numbered fatty acid 

with 7 carbon atoms. Mitochondrial beta-oxidation of heptanoate yields two acetyl-CoA 

molecules and propionyl-CoA, which is converted to the citric acid cycle intermediate 

succinyl-CoA. As a result, triheptanoin increases the energy supply by replenishing the citric 

acid cycle and thereby supplying substrates for gluconeogenesis (111). Moreover, 

triheptanoin is converted to C5 ketone bodies, which are efficient substrates for the brain and 

other tissues (114). Replacing MCT with triheptanoin, equivalent to 30–35% of total caloric 

intake, relieved cardiomyopathy in patients with VLCAD (70) and a retrospective chart 

review suggested that triheptanoin decreases the number of hospital days and hypoglycemic 

events, but not the number of episodes with rhabdomyolysis (99). Gillingham et al. 

conducted a randomized double-blind study comparing supplementation with 20 E% MCT 

vs. 20 E% triheptanoin in patients with long-chain FAOD (unpublished data, Gillingham et 

al, INFORM Meeting, Lyon, 2015) and found that triheptanoin decreased the heart rate 

during exercise and improved left ventricular function. Patients supplemented with either 

MCT or triheptanoin had complains about upset stomach and gastric cramps, but there was 

no difference between MCT and triheptanoin regarding gastrointestinal symptoms or other 

adverse effects. More studies are needed to evaluate dose-response relationships and 

compliance, especially when a larger amount than 20 E% of triheptanoin is prescribed. At the 
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present time, a pharmaceutical company is investigating the effect of triheptanoin in a phase 

II study (http://www.ultragenyx.com/pipeline/triheptanoin-faod/).  

Another therapeutic approach for mild muscular forms of long-chain FAOD with residual 

enzyme activity may be treatment with compounds of the bezafibrate group (116). 

Bezafibrates stimulate the nuclear peroxisome proliferator activated receptor (PPAR) and 

enhance gene transcription expression in both fibroblasts and patients with muscular forms of 

CPT-2 and VLCAD {Djouadi, 2008 #524;Bonnefont, 2010 #470}. The activation of PPAR 

restores levels of mutated proteins, and accordingly the residual enzyme activity and FAO 

capacity. Recent research has shown that bezafibrate treatment improved FAO capacity in 

23% of TFP-deficient cell lines, including those heterozygous for the G1528C mutation 

(119). Although increases in mutant proteins were seen, FAO flux was not restored and 

accumulated acylcarnitines were not cleared. This is expected as the G1528C mutation target 

the catalytic site and increased levels of the protein would not improve FAO capacity.  

The Swedish dietary instructions for children with LCHAD deficiency follow the general 

guidelines, with restricted intake of long-chain fatty acids of 10 E% and MCT 

supplementation up to 20 E %. To reduce the total daily energy intake,  the fat restrictions are 

emphasized as grams of long-chain fatty acid intake (120) instead of a percentage of the total 

energy intake. Fasting periods are limited to 3–4 hours, and all LCHAD patients are 

recommended to have nocturnal feedings through a gastrostomy tube (with a low-fat formula 

containing whey protein, carbohydrates, MCT fat, vitamins, minerals, and trace elements). 

The intake of carbohydrates and protein is not adjusted in detail, but is altered if the patients 

show significant deviations in weight, height or BMI. Essential fatty acids are predominantly 

given as walnut oil, and DHA is supplemented to maintain plasma levels just above or within 

the upper reference range. Carnitine is supplemented if the patients have low carnitine levels. 

Presently no patients at our centers receive treatment with triheptanoin or bezafibrates.  

1.5.6 Follow-up  

Regular clinical check-ups and informative briefings for patients with LCHAD and their 

families are important to prevent morbidity and mortality (96) and are take place at least 

annually at the metabolic center. Follow-ups include physical examinations, such as regular 

ocular examinations, including ERG, and echocardiography. Hepatic ultrasonography is 

performed if serum transaminases are increased or the liver is enlarged. Biochemical follow-

ups include plasma measurements of long-chain acylcarnitines, total and free carnitine, CK, 

and transaminases. Essential fatty acids and docosahexaenoic acid are analyzed in the 

phospholipid fraction of plasma samples and expressed as a relative percentage of total fatty 

acids.   

1.5.7 Animal models for studying FAOD 

Cultured skin fibroblasts are often the only specimen provided for clinical studies, since there 

are no viable animal models for LCHAD or TFP deficiencies (121), although several mouse 

models have been developed to study other FAODs. While the LCAD enzyme expression is 

http://www.ultragenyx.com/pipeline/triheptanoin-faod/
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very low in humans, it plays an important role in mouse fatty acid oxidation, and has 

overlapping enzymatic activities with VLCAD (27). There are two different VLCAD mouse 

models, both with stress-induced phenotypes. The LCAD -/- model resembles human 

VLCAD with fasting intolerance, cardiomyopathy, hypoketotic hypoglycemia, and sudden 

death (122, 123). The VLCAD -/- mouse model displays a milder clinical disease than the 

LCAD -/- mouse, with mild hepatic steatosis and cardiac fatty acid accumulation. In addition, 

the LCAD -/- mice and the LCAD +/- mice have an increased loss of pups in utero (121), 

which indicates that impaired fatty acid oxidation may play an important role in intrauterine 

life. Studies on these mouse models have also demonstrated the relationship between energy 

deficiency and development of cardiomyopathy, and that supplementation with carnitine does 

not prevent low tissue carnitine levels, but induces acylcarnitine production (124).  

1.6 NORMAL GROWTH IN INFANCY, CHILDHOOD AND PUBERTY 

A healthy child follows an individual growth curve, and regular measurements of height and 

weight are cornerstones in pediatric healthcare. Any deviations from the individual curve 

may be an indicator of physical disease or psychosocial distress. The regulation of linear 

growth is complex and multifactorial, and occurs in three different phases: infancy, 

childhood, and puberty (125). Nutritional, as well as hormonal factors control the infancy 

component from birth to 3 years of age. Insulin growth Factor I, IGF-I, plays a major role in 

fetal and post-neonatal growth (126), as well as insulin and thyroid hormones(127). The 

infancy growth velocity is rapid and decelerating, the growth rate is being about 2.5 

cm/month from birth to 6 months and 1.3 cm/month between 6 and 12 months. From about 1 

year of age, the childhood component of growth becomes significant as the influence of 

growth hormone (GH) becomes gradually important, although infancy and childhood growth 

overlap until 3 years of age (128). At birth, the child’s size is influenced by prenatal growth, 

but as childhood growth is initiated, genetic components become increasingly important. 

From 2 years of age, the child will begin to grow according to its genetic potential and thus 

follow an individual curve, so-called canalization (129). Thus, whereas growth in infancy 

may tend to oscillate, growth from the second year of life is stable. A change of more than 

0.75 SDS between 2 and 3 years of age indicates an abnormal development, and the attained 

annual height seldom changes more than 0.3–0.4 SDS during childhood growth (125). Boys 

and girls show little difference in growth rate during childhood, and growth velocity slowly 

decelerates until the beginning of puberty. The onset of puberty varies between individuals 

and populations, with a slightly different pubertal growth spurt in boys (28 ± 8 cm) and girls 

(25 ± 8 cm) (130). Pubertal growth is regulated by GH and the sex hormones testosterone and 

estrogen (125). 

An uncomplicated method to determine if the child is growing to his/her genetic potential, or 

target height, is to compare the predicted final height with the midparental height, calculated 

by adding or subtracting 6.5 cm for boys and girls, respectively, to or from the mean parental 

height (131). The child is growing according to its genetic potential if it is growing within the 
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TH reference range and the final height is predicted to be within 1 SDS of the target height. 

However, this method may underestimate height for children with short parents (132).  

The different oscillations in height and weight are mirrored in the BMI curve (133). The 

mean BMI (weight in kg/height in meters
2
) is 14 kg/m

2
 at birth and increases to 18 kg/m

2
 

around the age of nine months, when GH begins to stimulate growth. This characteristic point 

is defined as the BMI peak (134). The influence of GH results in an increased growth rate and 

a decreased percentage of body fat, thus lowering the BMI scores. At age 6 the decline in fat 

mass has stabilized, and BMI has decreased to a minimum of 16 kg/m
2
 defined as the 

adiposity or BMI rebound. After this age the lean body mass increases and the BMI rises to a 

mean value of 22 kg/m
2
 at age 20 years (135). Reports on growth in patients with LCHAD 

are scare, although some reports indicate that the frequency of overweight or obesity is 

increased (108, 113). 

1.7 COGNITIVE OUTCOME  

Psychological testing is part of the routine checkup at our clinics, since it is well known that 

metabolic diseases affect neuropsychological outcomes (136-138). Concerning fatty acid 

oxidation defects developmental delays in speech, language and motor function have been 

reported for medium- and very long-chain defects (MCAD and VLCAD) (139-142), although 

reports on cognitive outcomes in LCHAD are scarce (141).  

The highly metabolically active neurons in the central nervous system are vulnerable to 

metabolic derangements (143). Consequently, toxic intermediates and a suboptimal energy 

and/or substrate supply, as well as seizures and coma, may cause cognitive and behavioral 

impairments. In addition, the metabolism of omega-3 fatty acids, essential for brain and 

retinal development (144), may be affected in fatty acid oxidation disorders.  

1.7.1 Intellectual Disability 

Intelligence involves an individual’s ability to reason, plan, solve problems, do abstract 

thinking and to understand complex ideas. It also involves a person’s ability to adapt to the 

environment and to learn from experience (145). A person’s adaptive skills are vital to be 

able to live and function independently, and include life skills such as taking care of personal 

hygiene and health, handle money, social skills etc. Intellectual disability is defined as 

“deficits in intellectual and adaptive functioning presenting before 18 years of age”, in the 

American Psychiatric Association’s Diagnostic and Statistical Manual of Mental Disorders 

(DSM-V) (146).  

1.7.2 Executive Function 

Executive functioning is an important component of behavioral control, is essential for 

learning new information, recovering old information, and using the information to solve 

problems of everyday life. In general, executive functions are needed in complex cognitive 

processes like problem solving, planning, and decision-making. The principal executive 

components are cognitive flexibility, inhibitory control, and working memory (147). 
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Cognitive flexibility reflects the ability to shift actions and attention in response to changing 

situations, and inhibitory control is the mind’s ability to suppress interfering stimuli. The 

working memory system is responsible for maintenance and manipulation of information 

over short periods of time(148) and is necessary for language comprehension, learning, and 

reasoning, thus forming the basis for intelligence (149). The psychological models describing 

the relationship between executive functioning and working memory differ. One of the most 

accepted models (150, 151) describes working memory as a multi-compartment model, with 

a storage component that holds visual or auditive information, while the executive component 

controls and processes the information.  
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2 AIMS 

2.1 GENERAL OBJECTIVE  

The aim of this thesis was to describe the clinical outcome and complications in patients with 

LCHAD, and, in addition, investigate the energy metabolism, with particular emphasis on the 

dynamics of fasting. The ultimate ambition was to improve the care and treatment of these 

patients. 

2.2 SPECIFIC AIMS  

1. How is height, weight, and BMI affected in LCHAD? 

2. How long is the fasting tolerance in patients with LCHAD? 

3. What energy substrates do children with LCHAD utilize during fasting? 

4. How does age at diagnosis, dietary treatment, and number of metabolic 

decompensations affect visual function and retinal pathology? 

5. How is cognition affected in LCHAD? 

3 MATERIALS AND METHODS 

3.1 ETHICAL CONSIDERATIONS 

The studies included in this thesis have been carried out on children. The families were 

informed orally and received written information. The children received age appropriate oral 

and written information, and all procedures and interviews were performed by experienced 

pediatric examiners. Before participation all patients and families gave their informed 

consent. Our aim was to ensure that all invasive procedures were pain-free by using EMLA
®
 

and/or nitrous oxide, and that the research procedures were coordinated with the patients’ 

regular check-ups. 

All procedures followed were in accord with the ethical standards of the responsible 

committee on human experimentation (Ethics Committee of Uppsala University, Sweden, 

Decision Number 2006/005, 2009-09-30) and with the Helsinki Declaration of 1975. One 

major ethical concern was the low number of participants which may have affected 

anonymity. In the study investigating cognitive outcome, the results were reported on a group 

level to avoid identification of single patients.  

3.2 PATIENTS  

This thesis is based on investigations on ten patients with LCHAD followed at the Karolinska 

University Hospital and Uppsala Akademiska Hospital, Sweden. They were diagnosed with 

LCHAD between 1990 and 2002, before newborn screening for FAODs was introduced in 

Sweden. The patients lived in different parts of Sweden, but they had at least annual 

checkups at our centers. During the same time period, there were three additional patients 

with LCHAD in Sweden, under control at other centers. They were not included in this study.  
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3.3 MEDICAL CHART REVIEW  

In order to compare retinal outcomes with clinical parameters and to study growth, medical 

records and charts were reviewed systematically for major clinical events. Age and symptoms 

at diagnosis, signs of intrauterine and perinatal stress (maternal hypertension, maternal 

preeclampsia, maternal HELLP syndrome and/or AFLP), gestational age, birth weight, 

neonatal hypoglycemia, cardiomyopathy, episodes of metabolic decompensations, and/or 

number of hospitalizations were included. Information on height, weight and biochemical 

parameters (plasma acylcarnitines, creatine kinase, transaminases) was assembled. 

Furthermore, information on gross psychomotor development, epilepsy incidence, and 

dietary regimen including information on length of fasting periods and night feeds, was 

collected. Food in-take was monitored with diaries. 

3.4 HEIGHT AND WEIGHT MEASUREMENTS  

Bodyweight was measured to the nearest 0.1 kg, and height to the nearest centimeter. The 

measurements were compared with Swedish reference data (152) and plotted as height 

standard deviation scores (SDS) and BMI SDS. Parental heights were recorded and the target 

heights (THs) were calculated using the Tanner method (131), by adding 6.5 cm to the mean 

of the parental heights for male TH and subtracting 6.5 cm for female TH. In order to assess 

whether the children achieved their final height (FH) according to their genetic potential, TH 

SDS was compared with FH SDS. In addition, we aimed to estimate growth velocity by 

analyzing mean annual changes in height, weight and BMI SDS. 

3.5 METHODS FOR STUDYING LIPOLYSIS AND GLUCOSE HOMEOSTASIS 

3.5.1 Study protocol 

The patients were admitted to our hospital units for two days. The first day corresponded to a 

regular annual follow-up with microdialysis, a standard FAOD diet, as well as night feeds, 

while studies on fasting metabolism took place on day 2. Nitrous oxide anesthesia and 

EMLA
®
 cream were used to insert two peripheral intravenous lines for the tracer infusions 

and blood sampling, and also for insertion of a microdialysis probe in the abdominal 

subcutaneous adipose tissue. 

On the second day, the patients were fed an evening meal and had regular night feeds until 

just before 2 a.m. when the night feeds were omitted and a standardized meal consisting of 

233 mL Monogen (80% MCT, 20% LCT)/m
2
 body surface was given through the 

gastrostomy tube. The patients were fasted for 6 hours until 8 a.m. when the fast was 

interrupted by a standardized morning meal consisting of 233 mL Monogen/m
2
 body surface. 

The study ended 2 hours postprandially. Subcutaneous adipose tissue metabolism was 

monitored by microdialysis of glucose, glycerol, lactate, and pyruvate on days 1 and 2. 

Lipolysis during fasting was studied by measurements of stable isotope enrichments of 

glucose and glycerol, accumulation of fatty acid intermediates (from dried blood spots), 

glycerol, and non-esterified fatty acids (NEFA). In addition, plasma glucose, insulin, 
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glucagon, cortisol, growth hormone, lactate, pyruvate, and biochemical parameters (plasma 

Hb, ASAT, ALAT, CK, 3-hydroxybuturate) were followed. Resting energy expenditure and 

substrate utilization were evaluated by indirect calorimetry.  

3.5.2 Dietary treatment 

All patients continued with their regular dietary intervention during the study with the 

exception of the 6 hour fast. The diet involved a low-fat diet, with the fat-intake adjusted as 

the maximum intake of grams of fat/day, and restriction of long-chain fatty acids and 

supplementation with essential fatty acids, docosahexaenoic acid (DHA) and MCT fat. All 

children had continuous night feeds, and fasting periods were limited to 3–4 hours. One 

patient received carnitine supplementation. 

3.5.3 Microdialysis 

Microdialysis is a minimally invasive sampling technique that facilitates continuous sampling 

and analysis of extracellular metabolites without repeated blood sampling (153). The basic 

principle is that a thin double-lumen catheter (microdialysis probe) is placed in the tissue of 

interest and perfused with a physiological solution (Figure 4). Small molecules cross the 

outer semipermeable membrane by passive diffusion and the outgoing dialysate is collected 

at regular intervals for analysis, thereby reflecting the concentrations in the interstitial fluid 

over that interval. In this study, the dialysates were collected for analysis every 30 minutes. 

When the probe is implanted there is initial vasoconstriction and tissue damage, and it takes 

minutes to hours before baseline levels are reached. In addition it is important that the 

composition of the perfusate is close to being physiological. 

To study adipose tissue metabolism, the probe was inserted in the abdominal subcutaneous 

tissue and the dialysates were analyzed for glucose, glycerol, lactate, and pyruvate. The 

steady-state concentration of glucose is similar to that in venous blood (154). The level of 

glycerol in adipose tissue is higher than that in blood, since glycerol is produced by fat cells 

and the levels in blood only partly reflect adipose tissue lipolysis (154). 

 

Figure 4. Basic principles of the 

microdialysis technique 

The microdialysis probe simulates a 

capillary blood vessel. Small 

molecules cross the outer 

semipermeable membrane by 

passive diffusion and the dialysate is 

collected for analysis. 

https://en.wikipedia.org/wiki/Diffusion
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3.5.4 Stable isotopes 

The stable isotope technique is a method for studying flows of metabolites and metabolic 

processes. Stable isotopes are naturally occurring variants of an atom with different numbers 

of neutrons and thus different molecular weights, compared to the naturally dominant isotope. 

Isotopes can therefore be detected by mass spectrometry. As an example, the dominant 

isotope of carbon has 6 protons and 6 neutrons (12C), but a small amount of carbon isotopes 

have 6 protons and 7 neutrons (13C), creating a stable carbon isotope. Stable isotopes do not 

decay over time, but persist in their same elemental form, contrary to radioactive isotopes.  

In metabolic studies, stable isotopes are administered intravenously or orally to record, or 

trace, a specific substance, the tracee. The tracer has to be chemically identical to the tracee, 

but differ in some ways to be detected. The tracer is infused in the bloodstream at a constant 

rate, resulting in an increase in concentration, until it reaches a metabolic plateau or steady 

state. At that point, the relation of tracer and tracee leaving the bloodstream is identical to the 

measurable levels within the bloodstream, and also identical to that entering the bloodstream 

(rate of appearance, Ra). It may take several hours to reach steady state, so the constant tracer 

infusion is usually combined with an initial bolus injection (priming dose). The tracee is 

determined by measuring the amount of tracer relative to the tracee, referred to as the 

enrichment (Figure 5).  

 

 

Figure 5. Principle of the stable 

isotope technique 

At metabolic steady state, the 

concentration of the enrichment is 

identical to the concentration in 

plasma and the rate of appearance. 

The different molecular weights of the 

tracer/tracee enable detection of the 

substance of interest. 

In the course of lipolysis, 1 mole of triglyceride is hydrolyzed to 1 mole of glycerol and 3 

moles of fatty acids. Glycerol is fully released into the bloodstream, while some of the fatty 

acids are recycled to triglycerides. Hence, the rate of appearance of glycerol is a better 

lipolytic marker than fatty acids (14). The assumptions are that whole-body lipolysis reflects 

adipose tissue lipolysis, and that glycerol is not produced from any other metabolic pathway 

(155). Tracers for studying gluconeogenesis do not differentiate between hepatic and renal 

gluconeogenesis (156). 

To study lipolysis in patients with LCHAD, we measured the enrichment of glycerol in the 

bloodstream after a priming dose (0.6 mg/kg) and a constant rate of infusion of [1.1.2.3.3-

2H5]-glycerol (0.015 mg/kg/min) (Cambridge Isotope Laboratories, Woburn, MA, USA). 

The rate of appearance of unlabeled glycerol corresponded to glycerol released by lipolysis in 

steady state. Glucose production was studied using a [U-13C2]-glucose tracer. A priming 
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dose was given (5 mg/kg) prior to the constant rate infusion (0.1 mg/kg/min), and unlabeled 

glucose was equivalent to glucose production at metabolic steady state. The glycerol and 

glucose tracers were infused during the fasting period of 6 hours, and for 2 additional hours 

postprandially. Blood, analyzed for plasma glucose, glycerol, and isotopic enrichments was 

sampled at the beginning of the infusions and every 10 minutes during the last 60 minutes of 

the fasting period and also during the last 60 minutes of the study period. The postprandial 

measurements were not analyzed. The isotopic enrichments were analyzed by gas 

chromatography- mass spectrometry (GC-MS).  

3.5.5 Indirect calorimetry 

Substrate utilization and resting energy expenditure (REE) were estimated after 5 hours of 

fasting, by indirect calorimetry with the use of a ventilated hood system (Sensor Medics, 

Vmax29n), pre-and post-prandially. During the procedure the children were resting in bed. 

Measurements of REE were done every minute for 30 minutes and the data showing steady 

state measurements were used to calculate REE expressed as kcal/day. The respiratory 

quotient (RQ) was assessed by measuring CO2 production and O2 consumption in the 

breathing air. A CO2/O2 ratio close to 1 would indicate carbohydrate oxidation, while an RQ 

near 0.7 is an indicator of mainly fat oxidation. The Schofield reference was used to estimate 

predicted resting energy expenditure (REE) (157). 

3.5.6 Fatty acid metabolites 

Disease-specific acylcarnitines C16-OH, C16-OH/C16, C18-OH, C18-OH/C18 were 

analyzed by tandem mass spectrometry from dried blood spots (NeoBaseTM Non-derivatized 

MSMS Kit, Perkin Elmer, analyzed by LC-MS/MS Micromass Quattro microTM, Waters). 

Tandem mass spectrometry (MS/MS) is a method used to identify and measure carnitine 

esters and many other metabolites in blood and urine, and allows quick and accurate 

measurements with minimal sample preparation. The mass spectrometer ionizes and 

separates the molecules according to their mass (m)-to-charge (z) ratios (m/z), followed by 

detection and data processing, and resulting in a graph illustrating, molecular mass and the 

relative quantity of the different molecules (158). In addition to acylcarnitines, analysis of 

hydroxy-fatty acids, 3OHC16:0 and 3OHC18:1, were measured in plasma and analyzed by 

GC-MS (36). 

3.5.7 Biochemical analyses 

Capillary blood glucose was analyzed at bedside (HemoCue Glucose 201, Hemocue AB, 

Ängelholm, Sweden). Levels of glycerol (159), non-esterified fatty acids NEFA (Wako 

Chemicals GmbH, Neuss, Germany), triacylglycerides (enzymatic, colorimetric method) and 

levels of 3-hydroxybutyrate (160) were analyzed in plasma. Levels and outlines of hormones 

involved in fat metabolism were investigated; Insulin (radioimmunoassay, Pharmacia Insulin 

RIA, Pharmacia Uppsala, Sweden), glucagon (radioimmunoassay), cortisol (Electro Chemi 

Luminescence Immuno Assay), and growth hormone (monoclonal antibodies). 

Catecholamines, crucial for the regulation of lipolysis, require large blood-sampling volumes, 
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which is not realistic considering the total blood volume required for all analyses. Instead 

heart rate was monitored as an indirect indication of catecholamine release. Heart rate was 

registered by Actiheart, a small light-weight accelerometer worn on the chest; Figure 6.  

 

Figure 6. Actiheart 

The Actiheart is a compact and 

waterproof device that records 

heart rate and physical activity, 

intended for measuring activity 

energy expenditure. 

 

3.6 OCULAR EXAMINATIONS  

All examinations were performed by the same orthoptist and pediatric ophthalmologist and 

included best corrected visual acuity, stereopsis (three-dimensional vision) (Lang, Forch, 

Switzerland), ocular alignment, color vision testing, slit-lamp investigation (a magnified 

assessment of the eye structures), ophthalmoscopy, fundus photography and refraction with 

dilated pupils. Best visual acuity was classified according to the WHO reference 

(http://www.who.int/blindness/Change%20the%20Definition%20of%20Blindness.pdf); 

blindness 0–<0.05, severe visual impairment 0.05–<0.1, moderate visual impairment 0.1–0.3. 

Retinal function was investigated under general anesthesia by electroretinography (ERG), 

measuring the electrical responses to light of the different retinal cell types. After dark 

adaptation, the eye was stimulated with bright light provoking a biphasic waveform with a 

negative a-wave and a positive b-wave recordable at the cornea. The amplitudes of the a- and 

b-waves were measured, as well as the time from the flash to the peak of the b-wave. Retinal 

pathology is detected by deteriorating amplitudes. Tissue morphology was examined by 

optical coherence tomography (OCT) in three patients. OCT is a non-invasive imaging 

technique that provides a high-resolution- image of the ocular tissues. The technique is 

comparable to an ultrasound procedure, but measure the reflection of light rather than sound, 

resulting in a cross-sectional view of the retinal structures.  

3.7 COGNITIVE ASSESSMENTS 

3.7.1 Intelligence 

The level of cognitive function was measured using the Wechsler intelligence scales. These 

scales are considered to be the “gold standard” for evaluating cognitive outcome in Sweden 

and have been translated into Swedish and adapted to Swedish norms. Children aged 3 ̶ 7 

years were tested with the Wechsler Preschool and Primary Scale of Intelligence-III (WPPSI-

III) and patients aged 6 ̶ 16 were tested with the Wechsler Intelligence Scale for Children-IV 

(WISC-IV). Patients 16 years old and older were evaluated with the Wechsler Adult 

Intelligence Scale-III (WAIS-III). The test generates a Full-Scale IQ score, representing the 

individual’s general intellectual ability and intellectual function in different cognitive 
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domains (Figure 7). The Intelligence quotient (IQ) was defined as being within the normal 

range (IQ 70–130) or below normal (IQ ≤70). 

The Verbal Comprehension Index evaluates the children's verbal communication, cover 

questions on how words are similar, word definitions, comprehension of common concepts 

and general knowledge. The Perceptual Reasoning Index measures non-verbal abstract 

problem solving and is tested by letting the children organize pictures and puzzles according 

to predefined models. It also contains logic matrix reasoning. The Working Memory Index is 

based on timed subtests assessing attention, concentration, and ability to memorize 

information by repetition of number/letter sequences, and The Processing Speed Index 

assesses the ability to process information under time pressure, and requires visual-motor 

coordination and persistence. For example the patients may be asked to search for or draw 

symbols below numbers according to key. The number of items completed in a specific 

period of time equals processing speed.  

The Wechsler scales are mostly based on auditive tests. The Spatial Span Board Subtest (161) 

was added to assess the visuospatial processes. During the test the examiner points to a 

sequence of symbols, and the person performing the test has to repeat the pattern.  

 

Figure 7. Schematic illustration of the Wechsler scales 

The Wechsler tests assess Full-Scale IQ and intellectual function in different cognitive domains, 

represented by perceptual reasoning, verbal comprehension, working memory and processing speed. 

The IQ scores were compared to Swedish norms (mean 100, SD ± 15). 
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3.7.2 Adaptive and Executive Functions 

To evaluate areas of personal independence and daily functioning, we used ABAS-II (162), 

which has been translated into Swedish and adapted to Swedish norms and takes 20 minutes 

to administer. The results are reported as an overall score, the General Adaptive Composite 

(GAC), including conceptual, social and practical domains. The conceptual domain consists 

of communication skills (language, speech), functional academic skills (basic reading, 

writing, and math skills) and self-direction (following directions, independence). The social 

domain represents skills important for social interaction, and the practical domain comprises 

skills important for personal care and hygiene, home living, health and safety skills and 

getting around the community. The ABAS scale has a mean of 100, with an SD of 15. A 

higher GAC score indicates better adaptive functioning.  

Executive functions can be measured by different methods, depending on executive 

component of interest and explanatory psychological model. In addition to the Wechsler tests, 

we measured executive functioning with the Behavior Rating Inventory of Executive 

Function (BRIEF) (163), which is a standardized method of asking 

parents/caregivers/teachers of children, and adolescents aged 5–18 for executive functions in 

daily life. The BRIEF is not diagnosis-specific and is used to evaluate executive function in 

children and adolescents with various disabilities, ranging from learning, attention or 

developmental disorders to different medical conditions, including fatty acid oxidation 

defects (136, 141). The questionnaire is completed in 15 minutes and has been translated into 

Swedish. The BRIEF consists of different scales that produce two different indexes, the 

Behavioral Regulation Index (ability to control impulses, alternate between activities and 

regulate emotional responses) and the Metacognition Index (ability to generate ideas, hold 

information in mind to complete a task, set goals, check own work), as well as a Global 

Executive Composite (GEC) that represents the overall executive function. A high score 

indicates a dysfunction in a specific domain of executive function. The scale consists of T-

scores, with 50 being the mean and 10 being one SD. Scores above 65 are considered to be 

clinically significant.  

3.8 STATISTICAL ANALYSES 

All studies included basic descriptive statistics expressed as the mean, median, and standard 

deviation.  
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4 RESULTS 

4.1 PATIENTS 

The clinical characteristics of all patients are listed in table 1. Three pregnancies (30%) were 

complicated by maternal liver disease, and three patients (30%) were born small for 

gestational age, however they were not born to the mothers with preeclampsia. Four children 

were born preterm (40%), two of which being very preterm (gestational weeks, GWs, 29 and 

31), and two preterm (GW 35). The girl born in GW 31 suffered a complicated neonatal 

period along with stage III cerebral hemorrhage. Hypoglycemia was a common symptom in 

the neonatal period (70%), and three patients (30%) have developed epilepsy. The mean age 

for diagnosis was 6.4 months (median 7.5 months). No patients have died after the diagnosis. 

Five patients (50%) had acute symptoms at diagnosis with hypoketotic hypoglycemia, 

enlarged liver, coma, seizures and/or cardiomyopathy, while three patients had less dramatic 

symptoms with recurrent episodes of hypoglycemia, hypotonia, and failure to thrive. Two 

patients (5 and 6) were treated for suspected FAOD because of a family history of diseased 

siblings. Patient 5 had treatment with a MCT containing formula from birth until diagnosis at 

8 months. Seven patients were homozygous for the common G1528C mutation, while three 

were compound heterozygous for G1528C with three novel HADHA mutations on the second 

allele. There was no difference in acylcarnitine profiles or phenotypes, although preeclampsia 

was only found in mothers of homozygous patients. Enzyme assays have not been performed 

and the hydratase and thiolase activities are thus unknown. Since one copy of the common 

mutation was found, LCHAD and not trifunctional protein (TFP) deficiency is assumed to 

occur also in the heterozygous patients.  

Our ambition was to determine the number of episodes of metabolic decompensation and/or 

the number of hospitalizations. However, the chart review revealed that different families 

seek medical attention to different extents. Some families seek medical attention often, and 

for symptoms that may not be related to the FAOD, while others tend to manage the 

decompensations at home with “emergency treatments”. Therefore the episode may not 

always be documented in the medical charts. Instead of counting the number of strict 

metabolic decompensations, we recorded the occasions when the patients contacted the 

hospital due to infections or myopathy. Information from food diaries showed that the 

patients did adhere to the recommended LCHAD diet. The fat intake constituted 13–24% of 

the total calorie intake, with 8–19% of total fat as MCT and 4–5% as LCT.  
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Table 1. Clinical characteristics 

Patient's

Age at 

diagnosis 

(months)

Symptoms at diagnosis
Preeclampsia

/AFLP

Caesarian 

section

Gestational 

age 

(weeks)

Birth 

weight     

(g)

Birth 

weight 

SDS 

Neonatal 

hypoglycemia
Epilepsy Mutations

1 ♀ 5

Vomiting, metabolic 

acidosis, seizures, lethargy, 

liver enlargement, hypotonia.

Yes 37 2165 -2.3 Yes
Homozygous 

c.1528G>C

2 ♂ 8

Hypoglycemia, elevated liver 

enzymes, seizures, 

cardiomyopathy.

NA 38 3070 -0.5 Yes Yes
Homozygous 

c.1528G>C

3 ♂ 4.5

Hypoglycemia, elevated liver 

enzymes, metabolic 

acidosis, seizures, cerebral 

edema, cardiomyopathy.

Yes Yes 38 2865 -1.0 Yes
Homozygous 

c.1528G>C

4 ♀ 13

Vomiting, failure to thrive, 

elevated liver enzymes, 

anemia, seizures, metabolic 

acidosis, coma, heart 

arrest, cardiomyopathy.

Yes 35 2016 -1.8 Yes
Homozygous 

c.1528G>C

5 ♀ 8

Neonatal hypothermia 

elevated liver enzymes and 

3OH-FA.Treated from birth 

due to suspected metabolic 

disease.

35 1910 -2.1 Yes

 Compound 

heterozygous 

c.1528G>C

6 ♀ 0.25
No symptoms. Treated from 

birth due to family history.
NA 38 3510 1.0

Homozygous 

c.1528G>C

7 ♀ 0.25

Vomiting, diarrhea, apnea, 

lethargy, hypoglycemia, 

renal, liver and heartfailure, 

cardiomyopathy, seizures.

40 3260 0.3 Yes
Homozygous 

c.1528G>C

8 ♀ 8 Lethargy, hypotonia. Yes Yes 29 1101 -1.5
Homozygous 

c.1528G>C

9 ♀ 10

Neonatal hypoglycemia, 

intraventricular/intraparen-

chymal hemorrhage grade III-

IV, periventricular 

leukomalacia. Failure to 

thrive, liver enlargement.

Yes 31 1309 -2.0 Yes Yes

 Compound 

heterozygous 

c.1528G>C

10 ♂ 7 Hypoglycemia, hypotonia. 40 3165 0.2 Yes

 Compound 

heterozygous 

c.1528G>C
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4.2 HEIGHT, WEIGHT AND BMI  

4.2.1 Height 

We found accelerated linear growth up to 5 years of age with an increasing annual height 

SDS (mean SDS 0.2 at age 2 years to mean SDS 0.7 at age 5 years) (Figure 8). Annual 

growth velocity, measured as annual change in height SDS, was difficult to obtain from the 

retrospective data as measurements were made with irregular intervals, especially when the 

child became older. The measurements were more systematic in early childhood, and height 

SDS increased by 0.2–0.3 SDS between the second and fourth year.  

 

 

Table 2. Anthropometric data on final height and target height. 

Pubertal growth was compared with the Tanner reference (28 ± 8 cm for males, 25 ± 8 cm for 

females) (130).One boy had subnormal pubertal growth (patient 3). Three patients had final height 

(FH) SDS within target height (TH) range (±1 SDS), representing growth according to genetic 

potential. 

Patient

Pubertal 

growth  (cm) FH (cm)  FH SDS

Mother´s 

height (cm)

Father´s 

height (cm) TH (cm) TH SDS 

FH  SDS 

–TH SDS

1 24 156 -2 162 187 168 0.1 -2.1

2 26 185 0.7 159 187 180 0.9 -0.2

3 18 180 -0.1 168 196 189 1.3 -1.4

4 18 169 0.2 167 189 172 0.7 -0.5

5 20 166 -0.2 162 187 168 0.1 -0.3

 

  

 

Figure 8. Mean height 

SDS all patients 

Height SDS increased up 

to the fourth year. The 

arrow indicates mean age 

for diagnosis, error bars ± 

1 SD. 
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During the study period, five patients (patients 1–5) reached their final height (FH). Patients 

2, 4, and 5 had a final height that was within ±1.3 SDS of target height, and two patients’ 

final heights were slightly below their target; Table 2. Patient 1 had an early puberty and was 

treated with a GnRH-agonist between ages 8 and 10 years. Her pubertal growth spurt was 

normal (24 cm). Patient 3 developed severe epilepsy, accompanied by neurological and 

cognitive disabilities and poor pubertal growth; Table 2. The mean final height SDS was 0.3 

4.2.2 Weight and BMI 

The greatest annual change in weight SDS occurred during the second year of life and, to a 

lesser extent during years 3 and 4 (Figure 9).  

 

Figure 9. Weight SDS annual 

change.  

The greatest annual change in 

weight SDS occurred during 

the second year of life and to a 

lesser extent during year 3 and 

4. 

Peak BMI values before 1 year of age, were recognizable for 9 out of 10 patients (data 

missing for one patient). The majority of patients with diagnosis after the neonatal period had 

a sudden interruption in the BMI trajectory around the time of diagnosis, with declining BMI 

values. After the diagnosis, BMI increased for all but one patient. On average, the BMI peak 

occurred at age 8.4 months (± 2.4 months) in the girls, with a mean BMI of 16.8 kg/m
2
 (± 1.2 

kg/m
2
) (n = 6). In boys, the corresponding BMI peak occurred at age 8.2 months (± 2.0 

months) with a slightly higher mean BMI of 17.1 kg/m
2
 (± 0.3 kg/m

2
) (n = 3).  

Four patients (40 %) had a declining BMI after the peak, but only for a short period of time, 

while the other patients either maintained their BMI or had an increase in it. The highest BMI 

SDS were observed between ages 5 and 7 years, hence a BMI rebound with a nadir around 

age 6, was not seen (Figure 10). At age 6 years, six patients were overweight and 1 patient 

obese. 

-0.6

-0.2

0.2

0.6

1.0

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Weight SDS, mean annual change  

Weight SDS, mean annual change



 

36 

 

Figure 10. Mean annual BMI 

SDS 

The highest BMI SDS were 

observed between ages 5 and 

7 years. The arrow indicates 

mean age of diagnosis, error 

bars ± 1 SD. For individual 

BMI scores please see paper 

III. 

 

4.3 ENERGY HOMEOSTASIS 

Lipolysis was investigated in five patients (patients 6–10), aged between 5.5 and 9.5 years at 

the time of the study (mean age 7.5 years). The results of the studied parameters are depicted 

in Figure 11.  

No patients developed hypoglycemia or had clinical or laboratory signs of rhabdomyolysis. 

Mean plasma glucose was 5.7 ± 0.7 mM (min 3.9 mM, max 9.4 mM) with the lowest 

concentration recorded after 2 hours of fasting. Glucose levels in subcutaneous adipose tissue 

were slightly lower than in plasma, with a mean concentration of 4.4 ± 0.5 mM (min 3.0 mM, 

max 6.8mM) and the lowest levels observed between 1 and 3.5 hours of fasting. Glucose 

production was normal, with a rate of 19.6 ± 3.4 μmol/kg/min (3.5 ± 0.6 mg/kg/min) at 

fasting hour 5–6.  

Increasing plasma and dialysate levels of glycerol were detected after 3–4 hours of fasting, 

without any concurrent changes in levels of NEFA and TAG. The peak level of plasma 

glycerol was 143 μM (Figure 11), detected after 5 hours of fasting. The peak level of glycerol 

in subcutaneous adipose tissue, i.e. the microdialysate, was 530 μM detected after 6.5 hours 

of fasting. In addition, the levels of microdialysate glycerol were 59% higher during the night 

when the child was fasting, compared to the night with regular LCHAD diet and night feeds 

(mean 304 ± 96 μM compared to 191 ± 64 μM). The mean endogenous rate of glycerol 

production was 7.7 ± 1.6 μmol/kg/min, which is a higher rate than normal for age (Table 3). 

Levels of long-chain acylcarnitines increased after 4 –5 hours of fasting, particularly levels of 

C16-OH (Figure 11e). 
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Study population 

Number 
of 

subjects 
Hours of 
fasting 

Glycerol production rate 
μmol/kg/min Reference 

LCHAD 5 6 7.7 Current study 

Healthy  9 12 2.0 (164) 

Healthy 4 12 4.3 (165) 

Afro-American  20 12 2.4 (166) 

White American 20 12 3.8 (166) 

    
   

Table 3. Glycerol production in different populations 

Glycerol production was increased in patients with LCHAD with a rate of 7.7 ± 1.6 μmol/kg/min.  

 

 

Profiles of hormones of central importance for lipolysis were followed. Insulin decreased 

after the standardized MCT intake that preceded the fast, and remained low (Figure 11d). 

Mean glucagon levels were also low with the highest measurements recorded at time 0 hours. 

Levels of glucagon at the time of the lowest recorded glucose levels were not available. 

Cortisol-secretion followed the regular endogenous circadian rhythm showing normal 

concentrations. Interestingly, four patients displayed a growth hormone peak after 3 hours of 

fasting while sleeping (mean peak value 13 ± 11.2 mU/L, min 6.9 mU/L, max 30 mU/L) 

(Figure 11d).  

Plasma 3-hydroxybutyrate remained low (<0.2 mM) throughout the fast. Pyruvate (mean 162 

± 35 µM, min 87 µM, max 290 µM) and lactate (mean 1.8 ± 0.3 mM, min 1.0 mM, max 3.6 

mM) in the microdialysates peaked at hour 1.5 after the initial glucose peak, but declined and 

remained low during the continuing fast (Figure 11b).  
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Figure 11. Results of lipolytic parameters and hormones during fasting 

The lowest recorded glucose, pyruvate, and lactate levels in the capillary and dialysate 

measurements (a–c) were followed by a growth hormone peak (d) and increased heart rate (Figure 

12). Levels of long-chain acylcarnitines and levels of plasma and microdialysate glycerol increased 

after 3–4 hours of fasting (e and c). Levels of insulin were low and the cortisol secretion followed the 

endogenous circadian rhythm. The grey fields indicate times for stable isotope measurements and 

the dotted line when the fasting was interrupted. 
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An increased mean heart rate was recorded after 2 hours of fasting (Figure 12). 

The fast was discontinued at 8 a.m., followed by a decreased rate of appearance and levels of 

plasma glycerol, acylcarnitines, 3-hydroxy fatty acids, and mean heart rate. As expected 

plasma glucose and glucose production, as well as insulin secretion, increased as the fast was 

interrupted. 

The energy production at rest was 1074 ± 80 kcal/day, which is normal or slightly lower than 

that reported for healthy peers (157). Mean RQ was 0.9, indicating carbohydrate oxidation 

rather than fat oxidation. A similar RQ has been reported in other children with FAOD (108); 

however, the fat oxidation is lower in children with LCHAD than in corresponding 

prepubertal children without an FAO disorder (164, 167).  

4.4 OCULAR CHARACTERISTICS 

Retinal pathology of different severities was found in all 10 children (Figure 13). The initial 

changes were subtle pigmentations in the posterior retinal poles, detected at a median age of 

3.6 years (range 14 months to 6 years), progressing to granular pigmentations and atrophies 

around the optic disc and the macula. Six patients had no or only slight vision loss, while two 

patients (1 and 4) developed central chorioretinal atrophy and severe myopia. Development 

of chorioretinopathy was also monitored by ERG, which was pathological in seven patients, 

and subnormal in three patients, suggesting that ERG changes developed after the fundus 

changes were visible.  
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Figure 12. Heart rate 
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increased after 2 hours of 
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Figure 10. Fundus photograph 

A fundus photograph from a 4 year 

old patient with LCHAD, illustrating 

scattered granular pigmentations, 

peripapillary atrophy (a) and hyper-

pigmentation in the macula (b). 

Visual acuity was normal for age. 

 

In order to compare retinal function with the patients’ clinical condition, major clinical events 

like age and symptoms at diagnosis, neonatal hypoglycemia, gestational age, pregnancy 

complications, psychomotor development, number of metabolic decompensations, epilepsy, 

night feeds and present age, were scored depending on severity, and the summed scores were 

compared with the ocular outcome. Children with higher summarized scores for clinical 

parameters also had the most pronounced chorioretinopathy. It was not apparent, however, 

which clinical events were most harmful to the retina. There was an association between age 

at diagnosis and fundus stage; hence, chorioretinopathy was less pronounced in children with 

an early diagnosis and more severe in children with a late diagnosis. One of the patients with 

severe myopia was diagnosed with LCHAD at five months and was hospitalized for 

LCHAD-related symptoms on numerous occasions while the other patient with severe 

myopia was diagnosed at 13 months, but was hospitalized only a few times. The children 

with best ocular outcome and subnormal ERG results (patients 5, 7 and 10) were diagnosed at 

8, 0.25, and 7 months, respectively, although patient 5 was treated for a suspected 

metabolic/FAO disorder from birth. Patients 5 and 10 were hospitalized on numerous 

occasions, and were compound heterozygous for the common mutation. Patient 7 was 

diagnosed within her first week of life due to hypoglycemia, lethargy, liver enlargement, 

cardiomyopathy and seizures, but has had few hospitalizations once a dietary regimen was 

initiated. Moreover, a child diagnosed and treated presymptomatically developed granular 

pigmentations at age 5.5 years and declining ERG responses from 7 years. 

4.5 COGNITION 

Eight patients were evaluated for cognitive outcome (patients 1–2, 5–10). The tests took 

approximately 45 to 90 minutes to complete. The mean Full-Scale IQ Scores was 82, but the 

results had a wide distribution ranging from 42 to 112, and two subgroups were identified 

(Figure 14).  

a b 
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Figure 14. Patients evaluated for cognitive outcome 

Eight patients participated in cognitive evaluations, and two subgroups were identified. 

The scores on the different scales and subgroups are presented in Table 4. Group I had a 

mean IQ score of 95, range 87–112 (n = 5), with average scores for verbal (mean 101), 

perceptual (mean 97), and processing speed (mean 102) skills. However, the mean scores for 

working memory were lower (mean 81). The results from the visuospatial span board subtest 

were normal; hence, the lower scores for working memory were derived primarily from the 

auditory component of the working memory. Parents reported deficiencies in adaptive 

functioning with a mean GAC score of 83. They also reported dysfunctions in executive 

functioning, particularly in the domains of shifting, flexibility, and planning. There were vast 

inter-individual differences with a GEF score ranging from 50 to 69, but the mean GEF score 

for all five patients was 60, which is considered to be within the normal range of variation. 

All the patients in Group I attended regular schools. 

In Group II the IQ scores ranged from 46 to 77 (n = 3). The patients displayed autistic-like 

behavior and two children were diagnosed with mental retardation and epilepsy. They all had 

low scores on verbal (mean 65), perceptual (mean 67), processing speed (mean 57) and 

working memory (mean 67) skills and had special educational needs. As expected, the 

parents of patients with autism spectrum disorder (ASD) and intellectual disabilities, reported 

lower scores for adaptive skills than parents of children in Group I, with a mean GAC of 34 

10 LCHAD patients,  

 diagnosesd before NBS 

7 (♀), 3 (♂)  

Participants  

6 (♀), 2 (♂) 

IQ 46-112 (mean 82, median 88) 

 

I ) No ASD, IQ ≥ 87  

 4 (♀), 1 (♂) 

IQ 87-112 (mean 95, median 92)   

  

II) ASD, IQ ≤ 77, 

 2 (♀), 1 (♂) 

IQ 46-77 (mean 60, median 56) 

Declined to participate 

1 (♂) cognitive dysfunction, epilepsy 

1 (♀) visual impairment, poor eyesight 
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(range 28 to 42). Evaluation by the BRIEF was not carried out. The patients in Group II were 

diagnosed at a somewhat older age than the patients in Group I (mean age for diagnosis, 8 

and 5 months, respectively).  

 

Table 4. Scores for cognitive outcomes 

Five patients had mean full-scale IQ above 87, with a specific deficit in working memory and individual 

deficiencies in executive functions. Three patients had mean full-scale IQ below 77 and were 

diagnosed with autism spectrum disorder (ASD). Adaptive function was evaluated by Adaptive 

Behavior Assessment System
®
 (ABAS) (mean 100, SD 15). Executive function was evaluated using 

the Behavior Rating Inventory of Executive Function
®
 (BRIEF) (mean 50, SD 10). Lower scores on 

BRIEF indicated a better outcome, and scores above 65 were considered clinically significant. 

 

  

Intelligence (WPPSI-III /WISC-IV/ WAIS-III/ WNV)

Full-scale IQ 82 88 46-112 95 92 87-112 60 56 46-77

Verbal 87 92 57-112 101 102 87-112 65 68 57-70

Perceptual 85 93 55-106 97 98 80-106 67 56 55-90

Working memory 77 (n=7) 77 65-91 81 80 73-91 67 (n=2) 65-68

Processing Speed 85 90 49-128 102 101 85-128 57 60 49-63

Visual working memory 53 56 43-68

Adaptive functioning (ABAS)

GAC 69 (n=7) 80 28-102 83 89 52-102 34 (n=2) 28-42

Cognitive 68 (n=7) 78 12-97 85 92 59-97 26 (n=2) 12-40

Social 70 (n=7) 75 4-109 87 83 72-109 27 (n=2) 4-50

Practical 77 (n=7) 92 12-114 97 94 83-114 28 (n=2) 12-44

Executive Functioning (BRIEF)

Inhibit 48 50 39-55

Shift 66 67 57-77

Emotional Control 53 51 47-61

Behavioral Regulatory Index 55 58 47-63

Initiate 57 56 50-68

Working Memory 64 64 43-79

Plan/Organize 65 61 51-84

Organization of materials 55 59 46-62

Monitor 57 57 47-67

Metacognition Index 62 60 51-75

Global Executive Function 60 61 50-69

All patients, latest 

assesment (n=8)

Patients without ASD 

(n=5)

Patients with ASD   

(n=3)

Range Mean Median RangeMean Median Range Mean Median
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5 DISCUSSION 

The first cases of LCHAD were reported in the early 1990s. Since then the general 

knowledge about the pathophysiology and complications has increased, and different 

treatment protocols have been developed. Despite dietary therapy there is still marked 

morbidity and mortality associated with the disorder (10, 39, 111). Serious clinical 

complications remain a problem, including the development of chorioretinopathy and 

peripheral neuropathy, recurrent episodes of myopathy and rhabdomyolysis, along with 

cardiomyopathy, and liver manifestations (21, 23, 57, 111).  

This thesis is based on clinical investigations of ten patients with LCHAD, with the aim to 

increase our understanding of the energy metabolism in LCHAD, especially during fasting, 

and to give an overall description of the clinical outcomes as well as complications. The older 

patients have been followed from infancy to adulthood. This cohort is comparable to other 

cohorts of patients with LCHAD diagnosed by symptoms, since age and symptoms at 

presentation and frequency of maternal liver disease is similar (10, 12, 39, 40, 72, 79, 168). 

None of the patients have died after the diagnosis.  

5.1 GROWTH  

Assessment of growth is an important indicator of health and nutritional status. The LCHAD 

diet with frequent meals and low fat content differs substantially from the traditional 

nutritional recommendations for normal children. As part of the study, data on height, weight, 

and BMI were collected and analyzed. The majority of the children had a rapid weight gain 

between 2 and 4 years of age, and the characteristic decline in BMI after the BMI peak was 

not observed. We found that the BMI peaked at age 8.4 months in females and at 8.2 months 

in males, occurring slightly earlier than in normal children (9.6 and 8.8 months respectively) 

(134). Also, the mean peak values were lower with a peak BMI of 16.8 kg/m
2
 and 17.1 kg/m

2
 

compared to 17.7 kg/m
2
 and 18.1 kg/m

2
 in a large study on Finnish children (134). Several 

patients had an abrupt disruption of the BMI trajectory with declining BMIs around time for 

diagnosis (mean and median ages for diagnosis 6.4 and 7.5 months respectively). This may 

have affected the timing and the BMI peak value in patients with LCHAD, since the time for 

diagnosis occurred in close proximity to when the BMI peak normally occurs.  

The mean BMI at 6 years of age, when the BMI normally decreases to a minimum, was 18.1 

kg/m
2
 (17.3 kg/m

2
 for males and 18.4 kg/m

2
 for females). Five of the girls and one boy were 

overweight (60%), and one girl was obese at age 6 years (10%). Two patients had a normal 

BMI (20%), and one boy did not have any measurements at that point in time. This shows 

that the adiposity rebound was early or even non-existent, and that overweight was 

overrepresented. In comparison, only 11% of the girls and 15% of the boys were overweight 

in a study of normal Swedish school children (169). Three patients were born SGA, but did 

not show catch-up growth.  

Height velocity was also affected after the start of treatment, with the greatest increases in 

height SDS observed up to 4 years of age, followed by a period of stable or decelerated 
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growth. The increase in weight occurred before acceleration in height. It is likely that the 

dietary intervention resulted in a nutritional surplus, and thus increased the secretion of IGF-I 

and insulin resulting in growth acceleration in early childhood (170). Furthermore, three out 

of five patients reached their final height within their target height, and it appears that neither 

the disorder itself nor the dietary treatment affects final height negatively. 

In patients with LCHAD several factors constitute risks for development of insulin resistance. 

Rapid weight gain and early adiposity rebound are associated with adult adverse metabolic 

profiles and obesity, and it has also been suggested that early rebound is part of a 

developmental pathway to the metabolic syndrome (135, 171). In addition, regular feeds and 

night feeds subsequently results in constant hyperinsulinemia, which also constitutes a risk-

factor for development of insulin resistance (172, 173). In addition, high insulin levels and 

inhibited lipolysis result in “fat trapping”, with further enlargement of the adipose tissue (14, 

174). Moreover the capacity to oxidize fatty acids seem to play an important role in the 

development of insulin resistance, although it is unclear whether intramyocellular lipid 

accumulation causes decreased insulin sensitivity or not (175, 176). 

It has been suggested that FAOD may be protective against the development of insulin 

resistance since patients with LCHAD seem to have normal glucose tolerance (177), and 

mice with VLCAD did not develop insulin resistance (178). In contrast, ageing mice 

heterozygous for mutations in the mitochondrial trifunctional protein developed insulin 

resistance and liver steatosis (65).  

The majority of the patients studied in this thesis were overweight and some had very high 

insulin levels, but they have not developed signs of impaired glucose metabolism or type 2 

diabetes mellitus. The associations between insulin resistance and defect fatty acid oxidation, 

overweight, hyperinsulinemia, and a low fat diet with MCT are interesting and need further 

evaluation.  

Overweight and obesity have also been observed in other patients with LCHAD (108, 177). 

In addition to the diet, patients with FAOD may be physically less active due to muscular 

weakness and/or fear of rhabdomyolysis or they may have an altered total energy 

expenditure, which contributes to the weight increase. The risks associated with childhood 

obesity are well known, and will not be further discussed here. However, obesity in FAOD 

constitutes an extra challenge since planned weight reduction involves endogenous fatty acid 

oxidation and therefore is not endorsed. It is therefore crucial to follow weight development 

and adjust the diet to avoid over-feeding at an early age. A higher dietary protein content may 

contribute to an improved weight and energy balance, although long-term effects are not 

known (108). Both weight and metabolic control may be facilitated by fat recommendations 

in grams instead of percentage of total calories, since a higher caloric intake allows for a 

higher fat intake. Recommendations for exercise and exercise intensity levels should also be 

considered. Theoretically, fatty acid oxidation is more pronounced during prolonged intervals 

of moderate exercise, in comparison to short bursts of high-intensity activities in which 

glycogen is the preferred substrate. With supplementation of MCT (0.3–0.4 g/kg body 
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weight) prior to physical activity, exercise at a moderate intensity (60–70% of maximal heart 

rate) for up to an hour is considered safe and does not increase levels of acylcarnitines or 

cause rhabdomyolysis(112, 113, 179). Hence, exercise in LCHAD patients should be 

encouraged if the patients undertake precautions with diet, rehydration and recovery in 

conjunction with the physical activity. 

5.2 ENERGY TURNOVER AND SUBSTRATE UTILIZATION IN PATIENTS WITH 
LCHAD  

Fasting tolerance has previously mainly been determined in terms of the risk of developing 

hypoglycemia (101). Hence, many centers do not generally recommend nocturnal intragastric 

feedings, but consider nightly fasting intervals of 10–12 hours safe, since the glycogen stores 

built up during the day would maintain blood glucose levels during the night (101). However, 

in this disorder there is also a concern regarding the risk of increasing levels of toxic 

metabolic intermediates coming from the defective breakdown of long-chain acylcarnitines. 

Emerging evidence highlights an indirect association between accumulation of fatty acid 

metabolites and lipotoxicity. Gillingham et al. found reduced progression of retinopathy 

when levels of acylcarnitines and hydroxyacyl fatty acids declined (90), and Polinati and co-

workers demonstrated lipid accumulation and possible toxicity to the retinal pigment 

epithelium (RPE) cells (84). Furthermore, the association with LCHAD and acute fatty liver 

of pregnancy, preeclampsia and the HELLP syndrome is believed to be caused by 

accumulation of toxic fatty acids (80). Likewise, elevated levels of myocardial triglyceride 

content in LCAD mice may be responsible for the impairment of cardiac function (63, 180). 

Others have suggested structural and functional mitochondrial abnormalities, secondary to 

the accumulation of toxic intermediates (62). It has also been suggested that high levels of 

hydroxylated fatty acids accumulating in LCHAD deficiency may disturb mitochondrial 

energy and redox homoeostasis (64).  

We were interested in studying glucose homeostasis, as well as the degree and timing of 

lipolysis, levels of acylcarnitines, and the main regulating hormonal balance in the fasting 

situation in patients with LCHAD. Lipolysis and glucose production were studied using 

stable isotopes of glucose and glycerol, microdialysis, and analysis of acylcarnitines. Heart 

rate, hormones associated with fasting, and biochemical parameters were also followed. We 

found considerably shorter fasting tolerance than in healthy children, since fatty acid 

metabolites had already increased after 3–4 hours, despite normal blood glucose and glucose 

production rates. The lipolysis was preceded by slightly lower microdialysis glucose levels, 

elevated heart rate, and a growth hormone peek, most likely representing a hormonal 

counterregulation necessary to supply substrates and sufficient energy to maintain glucose 

homeostasis. Declining levels of substrate availability (glucose, pyruvate, and lactate) and 

insufficient acetyl-CoA supply to the citric acid cycle may contribute to reduced ATP 

availability, possibly with initiation of catecholamine release and increased lipolysis. Blood 

levels of long-chain acylcarnitines and 3-hydroxyfatty acids were also elevated after 4 hours 

of fasting. The inability to utilize lipids as energy substrates was demonstrated by an 
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increased respiratory quotient, indicating higher carbohydrate oxidation than fatty acid 

oxidation compared with peers, but not with other patients with LCHAD (108, 167, 177). 

Increased concentrations of fatty acid intermediates occurred much earlier than the 

development of hypoglycemia. Hence, hypoglycemia is a late indicator of metabolic 

derangement. Increased lipolysis in LCHAD has also been reported previously (181). With 

the increasing evidence of deleterious effects of acylcarnitines, it is essential to evaluate the 

fasting intervals not only from a glycemic perspective, but from the risk for accumulation of 

fatty acids. The levels of acylcarnitines that may be harmful require further assessment.  

The antilipolytic effect of insulin is used in clinical practice, as the patients are recommended 

a low fat, high carbohydrate diet, and fasting avoidance, which triggers insulin secretion. 

Insulin binds to the adipocytes and inhibits lipolysis by inactivation of hormone-sensitive 

lipase, thus preventing the breakdown of triacylglycerols to free fatty acids and glycerol 

(182). To avoid lipolysis, fasting intervals that do not exceed 4 hours are essential, – even 

during the night. Hence, continuous nocturnal intragastric feedings are required to avoid 

lipolysis and fatty acid intermediate build-up, and should be weighed against the associated 

risks and influence on the quality of life in a longer perspective (183, 184). 

5.3 OCULAR CHARACTERISTICS AND COGNITION  

Chorioretinopathy is a well-studied and debilitating complication in patients with LCHAD, 

which is not seen in other forms of FAODs. We found retinal pigmentations in all patients 

with LCHAD, which is a higher frequency than previously reported (10, 12, 40, 59, 76). The 

higher occurrence of chorioretinopathy in this cohort is probably due to a longer follow-up 

interval and no mortality after the diagnosis. The pathogenesis of this specific type of 

chorioretinopathy is largely unknown (55), and most likely multifactorial. It was not possible 

to identify any single clinical factor that was directly related to the progression of the 

chorioretinopathy in the current study, but the patients with more pronounced ocular changes 

and decreased retinal function had a combination of more serious clinical events such as older 

age at diagnosis, severe symptoms at diagnosis and epilepsy. The patients with the most 

pathological fundus and ERG findings were also the ones with IQ scores in the range of 

mental retardation and with ASD, suggesting a possible common underlying 

pathophysiology.  

Patients diagnosed at a younger age had, as a group, better ocular and cognitive outcomes, 

assessed as fundus stage, ERG response, and IQ scores. This may be counterintuitive since it 

may be assumed that patients with lower residual enzymatic activity would develop energy 

deficiency and high levels of long-chain acylcarnitines with dramatic symptoms at an earlier 

age and therefor have a more severe clinical situation. On the other hand, they subsequently 

received an earlier diagnosis and treatment, which may be a more important positive factor. 

However severe initial symptoms such as hypoglycemia, metabolic acidosis, coma, heart 

arrest, and seizures may also cause irreversible harm to the retina and CNS. Therefore, both 
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the severity of symptoms and the age at diagnosis may be associated with ocular and 

cognitive disability. 

The numbers of metabolic decompensations as a measure of metabolic control are interesting, 

but challenging to evaluate. Intermittent episodes of metabolic derangements cause overload 

of acylcarnitines, energy deficiency, and/or hypoglycemia and may be harmful to the retina 

and CNS. In addition, any event of metabolic decompensation treated with either glucose 

infusions or “emergency treatment” typically involves extra caloric intakes, and may thus 

affect weight gain. To arrive at a strict definition of metabolic decompensation is, however, 

challenging. The tendency to seek healthcare differed between families and was affected by 

many factors such as age of the child, distance to the nearest hospital, magnitude of pain and 

symptoms, and knowledge of and attitude to the disease. The numbers of metabolic 

decompensations were therefore either under- or over-reported, and associations with 

outcome results were not credible.  

Seven of the patients were homozygous for the common G1528C mutation, and three were 

compound heterozygous, resulting in production of a mutant LCHAD protein and high levels 

of fatty acid intermediates. Both the specific chorioretinopathy and the cognitive profiles are 

unique for patients with LCHAD, and are not seen in other forms of FAO defects. This 

suggests that the defective protein and accumulated intermediates are involved in the 

development of the retinal changes and cognitive symptoms. Acylcarnitines and fatty acids 

are important for the CNS. While glucose is the dominant cerebral fuel, fatty acids may be 

used as well, predominantly by the astrocytes (185). Fatty acids, as well as acylcarnitines, are 

involved in neuroprotection, gene modification, and neurotransmission (185, 186). 

Accumulated acylcarnitines easily cross the blood-brain barrier, and hence lipotoxicity may 

also affect the brain. However, neuropathological light microscopy examinations using 

specimens from deceased patients with LCHAD, have shown unspecific changes but not fat 

accumulation (59).  

Three patients had IQ scores below normal and autistic symptoms and epilepsy. Furthermore, 

a third patient, not participating in the neuropsychological testing, had recurrent seizures and 

delayed psychomotor development. Some of the patients have undergone brain MRI 

investigations, which have been inconclusive. Autism is a developmental disorder of 

unknown origin, characterized by persistent deficits in social communication and social 

interaction, as well as restricted, repetitive patterns of behavior, interests, or activities (146). 

Intellectual disability and autism spectrum disorder frequently co-occur. Information on 

neuropsychological function and autism in patients with LCHAD is very limited, and prior to 

our publication only two patients have been described (141); a boy homozygous for G1528C 

with developmental delay and IQ< 85, and a girl heterozygous for G1528C with speech 

delay. Both were diagnosed by newborn screening and had mild retinal pigmentary changes. 

Several other metabolic defects have been associated with autistic symptoms (187-189) . 

There are a number of possible interacting factors in LCHAD that may cause epilepsy and 

affect the development of the CNS and the brain. The medical histories of the patients are 



 

 49 

complex, and it is likely that the epileptic seizures have contributed to the lower IQ scores, 

but it is also possible that the disease has caused cerebral lesions that result in epilepsy. It 

may not only be the hypoglycemic episodes per se, or energy deficiency, but toxic effects of 

metabolites or deficiencies of certain fatty acids may cause the described deficiencies in 

cognitive outcome, or a combination of all of them.  

A specific cognitive pattern was also noticed in patients with IQ scores in the normal range 

with a noticeable deficit in verbal auditory working memory. This may influence vocabulary, 

speech development and reading comprehension, all tasks when phonics or sounds and oral 

instructions are important (151). Moreover, parental questionnaires stressed the patients’ 

difficulties in executive functions. Deficient executive functions result in disability when 

skills such as planning, monitoring, multitasking and being flexible become increasingly 

important with age. These skills are crucial when the patients need to manage the disease and 

dietary therapy independently. Larger studies with more sophisticated neuroimaging are 

needed to investigate causalities and draw general conclusions from these findings. 

Nevertheless, the results are important to be able to identify special educational needs early 

on.  

Another factor essential for ocular and cognitive outcomes in LCHAD may be DHA. 

Increasing levels of DHA are present in the prefrontal cortex and in the retina during late 

gestation and during the first years of life (190). DHA has numerous roles in neurocognitive 

development and affect memory formation by stimulating neuron growth in the hippocampus 

(7, 191). DHA also plays a major role in visual development and prevents damage of 

photoreceptors (192-194). It has been suggested that patients with LCHAD may develop 

DHA deficiency (95, 104), either due to defective synthesis or to low levels of the precursor, 

linolenic acid. Low DHA levels, especially during the first years of life when neuronal 

development is particularly vulnerable, could have critical effects on the retina and the 

developing brain. In our studies, DHA deficiency was not detected. The patients were 

substituted with DHA and no correlation with DHA levels was seen over the relatively short 

study period. Hence, we cannot express an opinion on how DHA might have affected the 

ocular outcome in the patients studied. 

5.4 METHODOLOGICAL CONSIDERATIONS 

The patients in this cohort were investigated for ocular complications and important clinical 

parameters. Data on growth and diet were collected by reviewing medical charts and lipolysis 

during fasting was studied by means of microdialysis, infusion of stable isotopes of glucose 

and glycerol, and biochemical and hormonal blood samples. In addition, cognition and 

executive functions were studied by means of cognitive tests and parental questionnaires. 

Some methodological concerns have been identified, beyond the small size of the cohort. 

Chart reviews are retrospective by nature and data on follow-up parameters, dietary regimen, 

and height and weight measurements were at times missing or not frequently documented or 

documented at irregular intervals. In any type of dietary intervention, it is important to 

monitor compliance. The only way to check whether the patients adhered to the 
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recommended diet was by checking food diaries and results from blood samples. It is well 

known that misreporting of food intake is common and that food diaries should be considered 

to be an approximate guide to food intake rather than a comprehensive research tool (195). 

The difficulties with estimating the number of metabolic decompensations have already been 

discussed. The study of lipolysis involved intravenous and subcutaneous catheterization, as 

well as repeated blood sampling. Due to the limitation of the amount on blood that it was 

possible to draw, some of the analyses had to be restricted or omitted. Furthermore, we did 

not include a healthy control group for comparisons, but used the patients as their own 

controls by analyzing microdialysates during intragastric feeding versus fasting. Moreover, 

the patients had been on the diet for several years, and it is not known how the lipolytic 

indicators would be affected with another diet or without night feeds. Two patients with 

severe phenotypes did not participate in the cognitive tests, which may have caused a 

selection bias toward patients with better cognitive outcomes in this study.  

5.5 SUMMARY 

In summary, fasting tolerance, assessed by timing of lipolysis, is shorter than was expected 

and fasting intervals should be determined by taking lipolysis into consideration. Since 

lipolysis occurs before hypoglycemia it is essential to establish thorough metabolic control 

around the clock, hence nocturnal intra-gastric feedings with a low-fat formula supplemented 

with MCT, protein, and carbohydrates should indeed be considered. LCHAD deficiency and 

the treatment present a challenge, since it is difficult to achieve balanced optimized metabolic 

control without a corresponding weight gain and overweight. In addition, despite dietary 

intervention and strict metabolic control, the evolution of chorioretinopathy seems inevitably. 

The neuropsychological outcome is affected and differs from that in patients with other 

FAODs. We have speculated that the same factors involved in the development of retinal 

changes may also impact cognitive outcomes.  

The results in this thesis emphasize the importance of frequent clinical follow-ups in order to 

improve metabolic control and monitor the development of ocular and cognitive 

complications as well as overweight. Clinical examinations should involve assessments of 

height, weight, and BMI, with extra attention to cardiac, hepatic, and neurological 

examinations. It may be possible to counteract a further increase in weight and BMI, by 

means of dietary alterations with less carbohydrates and increased protein if it is recognized 

early on. The intake of fat quantities may also be facilitated by recommendations in grams 

instead of percentages of total calories. Cardiac and hepatic complications require 

individualized treatment and handling. Ocular examinations are recommended annually, with 

repeated fundus photography and ERG examinations. Systematic evaluations of 

developmental and neuropsychological outcomes beyond regular developmental milestones 

are important. Parental or self-report screening questionnaires are easy to administer, but 

patients with LCHAD should also participate in formal neuropsychological testing in order to 

identify specific disabilities and need for special education.  
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With expanded newborn screening and early treatment, the disease may have a less dramatic 

development and, hopefully, lead to improved health in patients with LCHAD. Future studies 

will determine whether the described complications will also occur in asymptomatic patients.  
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6 CONCLUSIONS 

 The majority of the patients develop overweight in early childhood, presumably due 

to excessive caloric intake.  

 The disease and the treatment do not seem to affect final height negatively.   

 Lipolysis and accumulation of acylcarnitines occur after 3–4 hours of fasting, before 

hypoglycemia, and despite a normal glucose production rate. 

 The recommendation for an acceptable length of fasting periods should be limited and 

night feeds considered.  

 Microdialysis and the stable isotope techniques are suitable methods for studying the 

dynamics of metabolic processes. Microdialysis is convenient for clinical use. 

 The fasting periods in patients with LCHAD should be limited to 4 hours, and night 

feeds should be considered.  

 All patients develop retinal changes to different degrees. 

 The current management does not prevent, but possibly delays the development of 

ocular symptoms.  

 Early diagnosis and treatment results in better ocular and cognitive outcomes.  

 LCHAD patients demonstrate a specific cognitive pattern. Patients with normal IQ 

scores have a particular deficit in auditive verbal memory and deficiencies in 

executive functions, which may affect their learning and ability to independently 

manage the dietary treatment.  

 The neuropsychiatric dissabilities in patients with LCHAD present as autistic 

spectrum disorders. 

 The development of chorioretinopathy and the cognitive outcome may have a 

common underlying pathophysiology, since the patients with low IQs and autism also 

have the most pathological ocular examinations.  

 Screening for neuropsychological deficits should be included in the routine follow-up, 

with the purpose of identifying special educational needs early on. 
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7 FUTURE PERSPECTIVES 

The major future challenges are to further investigate the causes of the morbidity in LCHAD 

and thereby improve management and treatment. However, LCHAD is difficult to study due 

to the lack of viable animal models, few clinical cases, and a lack of common guidelines and 

treatment protocols. Furthermore, not all countries perform newborn screening for FAOD.  

Systematic investigations and comparisons of screened and unscreened cohorts will increase 

our understanding of the pathogenesis and effectiveness of treatments. This emphasizes the 

need for multicenter collaborations to facilitate recruitment of a larger selection of study 

participants. It will be important to evaluate clinical, developmental and neuropsychological 

outcomes in patients identified by newborn screening and those diagnosed by symptoms in 

lager numbers of patients.  

As discussed in this thesis, fatty acid accumulation and lipotoxicity have been suggested to be 

part of the pathogenesis in many of the LCHAD-related complications. Going forward it will 

be vital to further investigate the toxic mechanisms and to explore the levels of acylcarnitines 

that may be considered harmful. For this, additional and appropriate research methods will be 

required. The pluripotent stem-cell technology (84), generating LCHAD-deficient retinal 

pigment epithelial cells, may constitute an interesting model for experimental research. The 

method could be used to further study the development and background to the 

chorioretinopathy and also to perform in vitro experiments of possible treatment approaches. 

Viral and non-viral gene replacement therapies have been proposed as future treatment 

possibilities to lower toxic byproducts (32), and may possibly be explored by the pluripotent 

stem-cell method.  

As also discussed in this thesis, symptoms and complications occur despite treatment. Thus, 

treatment-alternatives that more effectively inhibits fatty acid intermediate accumulation and 

provide sufficient energy is warranted. Triheptanoin and anaplerotic substrates, which 

replenish the citric acid cycle intermediates, are interesting and require further investigation 

to assess the possible treatment effects.  

The earliest discovered patients with LCHAD are now in their 20s and it is not clear what 

symptoms and complications might arise with increasing age. The dietary intervention with 

frequent feeds and constant hyperinsulinemia comprises a possible risk for the development 

of insulin resistance, and it will be important to follow and further evaluate metabolic profiles 

and insulin sensitivity. 
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8 SVENSK SAMMANFATTNING  

8.1 KROPPENS ENERGIBALANS 

Kroppens celler behöver energi för att fungera. Energin kommer från kolhydrater, protein och 

fett i maten, men även från kroppsegna reserver. Insulin frisätts i samband med matintag och 

ökar upptaget av socker (glukos) i cellerna, och hämmar samtidigt fettnedbryningen. Stress 

och fasta ger utsöndring av adrenalin som stimulerar fettnedbrytningen. Det mest näringstäta 

ämnet utgörs av fettsyror som består av långa kedjor av kolatomer. Fettsyrorna lagras i 

fettväven som triglycerider vilka består av tre fettsyror kopplade till glycerol. Vid 

fettnedbrytning ökar nivåerna av glycerol, som alltså är ett indirekt mått på hur mycket fett 

som bryts ner. Fettsyrorna omvandlas till energi i cellens kraftverk, mitokondrien, genom 

beta-oxidation. De olika biokemiska reaktionerna i beta-oxidationen underlättas med hjälp av 

olika proteiner, eller enzymer.  

Olika organ föredrar olika sorters energi-bränsle. Hjärnan föredrar glukos, medan 

hjärtmuskeln föredrar fettsyror. Muskler använder fett vid låg intensivt arbete, men använder 

glukos lagrat som glykogen vid högintensivt arbete.  

8.2 FETTSYRA OXIDATIONS DEFEKTER  

8.2.1 Bakgrund 

Fettsyrorna transporteras in i mitokondrien för beta-oxidation. Ett varv av beta-oxidation 

kortar fettsyran med två kolatomer, varefter fettsyran genomgår ett nytt varv av beta-

oxidation, tills hela kedjan är förkortad. För varje varv utvinns energi De sammankopplade 

sekvenserna gör att beta-oxidationen brukar beskrivas som en spiral. Enzymerna i beta-

oxidationen är anpassade efter längden på fettsyran, och det finns enzymer specifika för 

långa, medellånga respektive korta fettsyror. Vid brist på något av beta-oxidationens enzym 

drabbas patienten av en fettsyraoxidationsdefekt, vilket medför att fettsyrorna bryts ner 

ofullständigt och cellen får brist på energi. De ofullständigt nedbrutna fettsyrorna är skadliga 

och kan inlagras i olika organ. Det finns defekter beskrivna i nästan alla enzymsteg. I den här 

avhandlingen har vi fokuserat på en av de allvarligaste fettsyra-oxidations defekterna, som 

beror på en skada i enzymet Long-chain 3-hydroxyacyl-CoA-dehydrogenas och orsakar 

Long-chain 3-hydroxyacyl-CoA-dehydrogenas-brist, förkortat LCHAD.  

LCHAD är en recessivt ärftlig sjukdom som drabbar ca 1 per 60 000 födslar, vilket innebär 

att det i genomsnitt föds 1-2 barn per år med LCHAD i Sverige. De första fallen upptäcktes i 

början av 1980 talet, och de äldsta patienterna är i dag i 20-30 årsåldern. I Sverige ingår sedan 

2010 utredning av fettsyraoxidationsdefekter inklusive LCHAD i det blodprov som tas i 

samband med födseln (nyföddhetsscreening). Det innebär att vi sedan 2010 kan diagnostisera 

patienter med LCHAD och andra fettsyraoxidationsdefekter innan symptom uppkommer. 
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8.2.2 Symptom 

Symptomen uppkommer under de första levnadsåren, ofta i samband med tillstånd då extra 

energi behövs t.ex. vid en infektion, men även då barnet har långa intervaller mellan 

måltiderna som vid amningsavvänjning. De första symptomen kan vara dramatiska med lågt 

blodsocker, hjärtmuskelförstoring, leverpåverkan och plötslig död. En del patienter har mer 

ospecifika symptom som muskelsvaghet och återkommande episoder av muskelvärk och 

muskelsönderfall och otillräcklig viktuppgång. På sikt utvecklar patienter med LCHAD 

specifika ögonbottenförändringar som kan orsaka, synnedsättning och i vissa fall även 

blindhet. En del patienter utvecklar nedsatt känsel. Kvinnor som väntar ett barn med LCHAD 

kan drabbas av leversjukdom i samband med graviditeten. Mekanismen för 

ögonbottenförändringarna och graviditets-komplikationerna är okänd, men tros höra ihop 

med ansamling av ofullständigt nedbrutna fettsyror. Ögon och graviditets-komplikationerna 

förekommer inte vid några andra beta-oxidationsdefekter, och det verkar därför finnas en 

speciell sjukdomsmekanism vid LCHAD.  

8.2.3 Diagnostik 

Misstanke om LCHAD bör utredas snabbt eftersom symptomen kan vara livshotande och 

förbättras med insatt behandling. För att ställa diagnosen krävs rutin-blodprover som 

blodvärde, blodsocker, leverprover, kreatin-kinas, men även specifika blodprover av 

ofullständigt metaboliserade fettsyror samt mutationsanalys. En specifik mutation (G1528C) i 

genen för LCHAD enzymet är särskilt vanlig och resulterar i att enzymet blir felaktigtt.  

8.2.4 Behandling 

Behandlingen skiljer sig i olika länder i världen. I Sverige behandlas patienter med LCHAD 

av ett team med läkare, dietister, sjuksköterskor och psykologer som har specialistkunskap 

om ärftliga ämnesomsättningssjukdomar. Behandlingen är livslång och syftar till att bromsa 

fettnedbrytningen och samtidigt tillgodose näringstillförseln. Insulins hämmande effekt på 

fettnedbryningen utnyttjas i behandlingen av patienter med LCHAD, genom att 

rekommendera täta måltider. I Sverige rekommenderar vi också att patienterna erhåller ett 

näringsdropp nattetid. Fettintaget minskas kraftigt så att mindre än 20 % av det totala 

kaloriintaget utgörs av fett. Familjerna får noggranna instruktioner om hur fettinnehåll 

beräknas och hur många gram fett som max tillåts i kosten. Det fett som ges ska framför allt 

bestå av medel-långa fetter, så kallat MCT fett, som förbränns utan LCHAD-enzymet. Kosten 

vid LCHAD skiljer sig väsentligt från den som rekommenderas för växande barn.  

För att undvika allvarliga symptom bör infektioner behandlas med extra näringstillförsel, 

vilket ofta innebär att barnet måste vårdas på sjukhus med glukosdropp. Trots behandling, får 

patienter med LCHAD återkommande episoder av muskelpåverkan.  

8.3 SYFTE 

Syftet med den här avhandlingen har varit att beskriva det kliniska förloppet hos patienter 

med LCHAD. Särskilt har vi velat studera hur kosten och sjukdomen påverkar längd och 
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vikt, samt hur energiomsättningen påverkas vid fasta. Vi har också undersökt om det finns 

något samband mellan ålder vid diagnos, sjukdomssymtom och ögonbottenförändringar och 

kognitiv utveckling. Studierna är gjorda på tio patienter med LCHAD som följts vid 

Karolinska Universitetssjukhuset och Uppsala Universitetssjukhus, innan 

nyföddhetsscreening för fettsyraoxidations defekter infördes i Sverige.  

8.4 METODER  

Medicinska data från tillväxtkurvor och patientjournaler registrerades. Kliniska symtom 

graderades och relaterades till resultatet av ögon och kognitiva undersökningar. 

Mikrodialys innebär att en tunn slang sätts in i underhudsfettet på magen under bedövning. 

Slangen, som har två hålrum, spolas med en lösning som liknar vätskan mellan cellerna. Små 

molekyler som socker och glycerol passerar fritt från fettväven in i slangen och analyseras 

med regelbundna intervaller. Metoden är ett okomplicarat sätt att få en uppfattning om 

ämnesomsättningen i fettväven och uppfattas inte som besvärlig av de flesta barn.  

Stabil isotop teknik möjliggör att ämnen och olika ämnesomsättningsvägar kan spåras i 

kroppen. Samma grundämne kan ha olika atomvikter, eller olika isotoper. En stabil isotop 

förändras inte över tid till skillnad från en radioaktiv isotop som faller sönder. De stabila 

isotoperna ges som dropp intravenöst under flera timmar, varvid isotopkoncentrationen ökar. 

Slutligen uppnås en platå där inte koncentrationen ändras något mer. Med hjälp av blodprover 

går det att skilja på tillsatt isotop och det ämne som kroppen tillverkat.  

Indirekt kalorimetri ger ett mått på energiomsättningen och vilka ämnen(substrat) som 

kroppen använder för att tillverka energi. Syre- och koldioxidmängden mäts i in- och 

utandningsluften. Energiomsättningen beräknas utifrån syreförbrukningen, och den så kallade 

respiratoriska kvoten (RQ) ger uppgift om substratutnyttjande. En respiratorisk kvot på 1.0 

visar att det är kolhydrater som är den huvudsakliga energikällan, medan en respiratorisk kvot 

runt 0.7 motsvarar fettförbränning.  

Ögonundersökningar syftar till att undersöka synskärpan och funktionen av näthinnan, samt 

för att registrera eventuell pigmentering av ögats näthinna. Med elektroretinografi (ERG). 

Registreras näthinnas reaktion på ljusstimulans. Vid ERG måste små barn sövas. 

En psykolog genomförde åldersanpassade kognitiva tester med hjälp av Wechsler skalorna 

och undersökte exekutiva funktioner med specifika frågeformulär som ifylldes av föräldrarna 

(ABAS och BRIEF).  

8.5 RESULTAT 

Vi fann att patienterna hade en snabb viktökning efter påbörjad kostbehandling i samband 

med att de fått LCHAD-diagnosen. De täta måltiderna och näringstillförseln nattetid gav 

upphov till övervikt hos majoriteten av barnen. Vi såg också att längdtillväxten ökade efter 

viktuppgången, däremot verkade inte slutlängden påverkas. 
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Undersökningarna av energiomsättningen vid fasta gjordes med barnet inneliggande på 

sjukhus under två dygn. Första dygnet motsvarade en ordinarie årskontroll inklusive 

mikrodialysundersökning. Under andra dygnet fastade barnet sex timmar nattetid. Fett- och 

kolhydratomsättningen undersöktes med stabil isotop teknik (glukos och glycerol), 

mikrodialys, indirekt kalorimetri samt blodprover för hormoner viktiga för 

ämnesomsättningen. Trots normala blodglukosvärden och normal glukosproduktions 

hastighet (19.6 ± 3.4 umol/kg/min), började patienterna bryta ner fett redan efter 3-4 timmar, 

vilket illustrerades av ökad glycerol produktionshastighet (7.7 ± 1.6 umol/kg/min). Dessutom 

steg nivåerna av ofullständigt nedbrutna fettsyror, samt glycerol i plasma och i vätskan från 

mikrodialysen.  

Ämnesomsättningen i vila var normal för åldern och den respiratoriska kvoten var hög (0.9), 

vilket tyder på att kolhydrater utgjorde den huvudsakliga energikällan. Resultaten visar att 

fettförbränningen inte fungerade optimalt, eftersom barnen borde förbränna fett efter fasta.  

Alla patienter utvecklade pigmentförändringar på ögats näthinna. Ögonförändringarna 

orsakade kraftig synnedsättning hos två av de äldre patienterna. Vi såg att patienter med tidig 

diagnos och behandling utvecklade mildare förändringar som uppkom vid en högre ålder. 

Kognitiv funktionsnedsättning var vanligare än väntat, och uppvisade ett specifikt mönster. 

Majoriteten av patienterna hade normalt IQ med en svaghet i auditivt verbalt arbetsminne, 

vilket kan ha betydelse för ordförråd, talutveckling och läsförståelse. Patienterna hade 

nedsatta exekutiva funktioner vilket kan påverka förmågan att självständigt följa diet och 

behandlingsrekommendationer. Tre patienter (38 %) hade en försenad utveckling och 

autistiska beteenden.  

8.6 SLUTSATSER 

Sammanfattningsvis visar denna avhandling att patienter med LCHAD börjar bryta ner 

kroppens fettreserver avsevärt tidigare än friska barn. Det innebär att täta måltider och 

näringsdropp nattetid är viktiga för att minska ansamlingen av ofullständigt nedbrutna 

fettsyror. Den defekta fettförbränningen gör att patienterna använder kolhydrater som bränsle 

under fasta. Dieten gör att patienterna har en risk för viktökning och övervikt. Alla patienter 

utvecklade ögonförändringar, men både ögon- och kognitiva komplikationer var mindre 

utpräglade vid tidig diagnos och strikt tidig behandling. Specifik kognitiv påverkan 

förekommer, och det är därför viktigt att testa kognitiva och exekutiva funktioner hos 

patienter med LCHAD, så att särskilda stöd- och utbildningsbehov identifieras tidigt. 
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