From the Department of Oncology-Pathology
Karolinska Institutet, Stockholm, Sweden

ROLES OF NUDTS5 AND NUDT15 BEYOND
OXIDIZED NUCLEOTIDE SANITATION
AND THEIR POTENTIAL AS
THERAPEUTIC TARGETS

Nicholas C.K. Valerie

S¥A Iy
Na 2

Y Karolinska
ﬁ@ &}% Institutet

RO

4’\’1\10 1‘6@

Stockholm 2018



Cover art inspired by Brent Page

All previously published papers were reproduced with permission from the publisher.
Published by Karolinska Institutet.

© Nicholas C.K. Valerie, 2018

ISBN 978-91-7676-977-5

Printed by E-Print AB, 2018



Roles of NUDT5 and NUDT15 beyond oxidized
nucleotide sanitation and their potential as
therapeutic targets

THESIS FOR DOCTORAL DEGREE (Ph.D.)
By

Nicholas C.K. Valerie

Principal Supervisor: Opponent:

Professor Thomas Helleday Dr. Lars Petter Jordheim

Karolinska Institutet Université de Lyon, Cancer Research Center Lyon

Department of Oncology-Pathology Institute of Pharmaceutical and Biological
Sciences

Co-supervisor: Laboratory of Analytical Chemistry

Dr. Nina Gustafsson

Karolinska Institutet Examination Board:

Department of Oncology-Pathology Professor Anna Karlsson
Karolinska Institutet

Department of Laboratory Medicine
Division of Clinical Microbiology

Professor Jonas Bergh
Karolinska Institutet
Department of Oncology-Pathology

Professor Neus Visa

Stockholm University

Department of Molecular Biosciences, The
Wenner-Gren Institute






To family, friends, colleagues and my wonderful girlfriend, Simin, for their support and for
accompanying me on this long and winding science odyssey.






ABSTRACT

The nucleotide precursor pool is readily susceptible to numerous sources of modification and
damage, including alkylation, deamination and oxidation/nitrosylation, among others; most of
which have deleterious effects on nucleic acid integrity and cellular fitness. In addition to
DNA repair mechanisms, these metabolic byproducts are kept in check by so-called
sanitation or “housekeeping” enzymes, chief among them the NUDIX hydrolase superfamily.
Increased metabolic demand and strain in certain contexts, such as cancer, may require a

greater reliance on these proteins; therefore, they are attractive drug targets.

The human NUDIX hydrolase, MTH1 (NUDT1), sanitizes the nucleotide pool of 8-oxo-
guanine triphosphates, considered the most common oxidative lesion, thereby preventing
mutagenesis of nucleic acids and preserving their integrity. Other NUDIX enzymes, namely
NUDT15 (MTH2) and NUDTS, are proposed to perform similar functions as MTH1, and,
therefore, may serve as resistance mechanisms for cells treated with MTHI inhibitors.
However, very little is known about their biological functions in human cells.

The focus of this thesis was to determine the biological roles of NUDT15 and NUDTS5 and if
they are desirable drug targets for treating cancer. Surprisingly, we found that neither of these
proteins appeared to be important for oxidized nucleotide metabolism, but, rather, they had
unexpected and diverse functions in nucleotide metabolism with cancer therapeutic
implications. These findings should encourage further study of the human NUDIX family.

In Paper I, we compared NUDT15 biochemically, structurally and in a cellular context to
MTHI. NUDT15 hydrolyzed 8-oxo-dGTP about 230-fold less efficiently than MTHI, and its
depletion in cancer cells neither affected cell survival nor oxidized nucleotide content of
DNA. The NUDT15 crystal structure explained this deviation from MTH1 and shows that 8-
0x0-dGTP is poorly accommodated in the enzyme active site. We also identified 6-thio-
(d)GTP, the active metabolites of thiopurine chemotherapeutics, as NUDT15 substrates.

In Paper 11, we expounded upon the role of NUDT1S5 in thiopurine metabolism and why the
R139C missense mutant causes thiopurine intolerance in patients. NUDT15 efficiently
hydrolyzes 6-thio-(d)GTP, thus mediating the amount of the active thiopurine metabolites in
cells. In addition, the R139C mutation does not impact catalytic ability of NUDTIS5, but
rather causes destabilization of the protein structure and proteolytic degradation in cells, thus

explaining why patients with this mutation are sensitive to thiopurine treatments.

Paper III presents further evidence that NUDTS may not be an important contributor to
sanitation of the oxidized nucleotide pool, describes the first small molecule NUDTS5
inhibitors and confirms the nuclear ATP synthetic role for NUDTS5 in breast cancer cells.
Following an initial screening campaign and medicinal chemistry efforts, potent, cell-active
NUDTS inhibitors were identified using a CETSA-guided screening funnel. Lead compound,
THS5427, abrogated progestin-dependent gene regulation and proliferation in breast cancer
cells, thus, representing a bonafide probe to further study NUDTS5 biology.
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1 INTRODUCTION

1.1 CANCER AS A METABOLIC DISEASE

1.1.1 Oncogenes promote the cancer metabolism phenotype

Cancer was first described as a metabolic disease by Otto Warburg nearly a century ago'.
Warburg and colleagues made the initial observation that cancer cells consumed far more
glucose than cells originating from normal tissue, and the glucose consumed by cancer cells
was predominantly converted to lactate by aerobic glycolysis?, a vastly inefficient energetic
process compared to oxidative phosphorylation. For this reason, the preference for aerobic
glycolysis in cancer cells was puzzling for a number of years, until the realization that cancer
cell proliferation depends on utilizing nutrients to generate biomass and the preference for
aerobic glycolysis is a secondary consequence’. Today, it is generally accepted that
carcinogenesis is initiated by activated oncogenes (and loss of tumor suppressors), which
drive the development of many of the phenomena associated with the hallmarks of cancer?,
including cancer cell energy metabolism’ (Figure 1). Nonetheless, the Warburg Effect, or the
reliance of cancer cells on aerobic glycolysis, is a fundamentally important observation in our

understanding of the metabolic reprogramming that occurs in cancer cells.

Proto-oncogenes, such as Myc, RAS and phosphoinositol-3-kinase (PI3K)®®, drive the
expression of genes that induce proliferation, invasion, metabolic re-circuiting and resistance

10" Due to their growth rate, cancer cells are highly dependent on the

to apoptosis
fundamental building blocks required for biomacromolecule synthesis: glucose (as mentioned
above) and glutamine, which meets metabolic needs for nucleotide, protein, lipid, and
nicotinamide adenine dinucleotide phosphate (NADPH) synthesis'!. To sustain this high level
of proliferation, gain-of-function mutations within the receptor tyrosine kinase
(RTK)/PI3K/protein kinase B (4KT)/mammalian target of rapamycin (m7TOR) regulatory axis
increase expression of glucose transporter 1 (GLUTI) on the cell membrane and, thus,
directly increase the inward flux of glucose far in excess of ordinary cellular requirements!>
15, As a result of this influx, oncogenically transformed cells have a reprogrammed
metabolism that can favor glucose utilization via glycolysis'®. While glucose uptake
mechanisms in cancer cells are fairly well defined, the oncogenic mechanisms causing
glutamine influx are less concrete. That being said, Myc has been shown to play a principal
role in amino acid transporter 2 (4SCT2) and system N transporter 2 (SN2) expression, which
directly regulate the amount of glutamine uptake by the cell'”!?, and upregulate expression of
glutamine-metabolizing enzymes, which encourages the flow of glutamine through the
transporters®’. On the other hand, loss of the Retinoblastoma (Rb) tumor suppressor family of
proteins causes glutamine influx via E2F-dependent expression of ASCT2 and glutaminase 1
(GLS1), indicating that both activation of oncogenes and loss of tumor suppressors contribute
to glutamine addiction in cancer?®. Altogether, these data suggest that to maintain viability in
a proliferative state, proto-oncogenes are wired to increase nutrients available to generate

biomass, but at what cost?
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Figure 1: Oncogenes and tumor suppressors regulating metabolic pathways responsible for the Warburg
effect. Oncogenes are shown in green, tumor suppressors in red, key metabolic pathways are labeled in purple
with white boxes, and the enzymes controlling critical steps in these pathways are shown in blue. Reprinted with
permission from the American Association for the Advancement of Science (AAAS), from Vander Heiden,
Thompson and Cantley.

1.1.2 Reactive oxygen species (ROS) and redox balance in cancer

A topic of debate for many years has revolved around the subject of reactive oxygen species
(ROS) and why, or if, there are generally higher levels in cancer cells. ROS, in the form of
free radical, ionic or non-radical oxygen species, are formed via mitochondria and
peroxisomes as a byproduct of proliferation and are counterbalanced by ROS scavengers
found predominantly in the cytoplasm?!. Typically, ROS perform essential biological
functions within cells (signaling related to growth, differentiation, transcription, etc.) when
present at tolerable levels; however, if ROS leak into the mitochondrial periphery, their
intrinsic ~ reactivity  causes  detrimental  oxidation of proteins, lipids and
ribonucleic/deoxyribonucleic acids (RNA/DNA)?!?2, Several oncogenes are capable of

inducing ROS in transformed cells?*-2°

and, in some instances, the ROS produced is required
for the tumorigenic potential of the oncogene?’. However, proto-oncogenes, such as RAS, can
control expression of antioxidants that can suppress high ROS in cancer cells®®, thereby
permitting tumorigenesis and suggesting that a majority of cancer cells do have high intrinsic
oxidative stress that is kept in check by ROS scavengers®!*%24, As such, the redox balancing
point in cancer cells is likely shifted upwards, due to increased ROS production and
subsequent elimination by scavengers? (Figure 2a), implying that abrupt shifts may cause

30,31

selective cell death. Therefore, specific targeting of ROS production?” and metabolism®*3! is

a current area of intense research that has yielded promising results (Figure 2b).
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targeting mechanisms of ROS elimination with small molecules can induce selective cancer cell killing via redox
imbalance. Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Drug Discovery®?,

copyright (2009).
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1.2 OXIDIZED NUCLEOTIDE-INDUCED MUTAGENESIS AND DNA REPAIR
1.2.1 The nucleotide pool is readily susceptible to oxidation

The innate reactivity of ROS exposes biomacromolecules to oxidative modifications, and, in
relation to carcinogenesis, the DNA is a major source of reactive damage that can cause
mutations and tumorigenesis*. In fact, the free nucleotide pool is orders of magnitude more
susceptible to modifications, such as methylation®* and oxidation®*, than nucleic acids. Upon
subjection to ROS, free nucleotides, particularly purines, are able to undergo a number of
modifications due to their inherent chemical lability*>-*¢. Oxidation of guanine, in particular,
is favorable due to its chemical structure’’. 8-0x0-7,8-dihydroxyguanine (8-oxo-guanine; 8-
0x0-G) is one of the most abundant oxidized species in cells*®* and, thus, the most studied
oxidized metabolite. Other notable nucleobase oxidation products in vitro include 2-
hydroxyadenine (2-OH-A), 5-formyluridine (5-COH-U) and 5-hydroxycytidine (5-OH-C)*.
These modifications can occur in any combination of nucleobase, ribose and phosphate(s)*>.

1.2.2 Incorporation of oxidized nucleotides into nucleic acids

Oxidized nucleotides can readily be incorporated into DNA*#} or RNA* by DNA and RNA
polymerases, respectively. In DNA, 8-0xo-dGTP is indiscriminately paired equally opposite
adenine or cytidine, depending on its conformation (Figure 3), resulting in A:T - C:G
transversion mutations**#!4>-5% while 8-oxo-GTP negatively affects transcriptional fidelity
upon incorporation into RNA*. Similarly, 2-hydroxy-2’-deoxyadenosine-5’-triphosphate (2-
OH-dATP) and 5-hydroxy-2’-deoxycytosine-5’-triphosphate (5-OH-dCTP) also cause

3153 Qverall, the incorporation of

39,54,55

transversion mutations in mammalian or bacterial genomes

oxidized nucleobases is mutagenic and highly correlated with carcinogenesis
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Figure 3: Mispairing of 8-oxo-guanine with adenine results in transversion mutations. 8-oxo-guanine pairs
with cytidine in an anti-anti conformation, while it is rotated around the ribose bond to mispair with adenine in

the syn-anti conformation. Reprinted with permission from Elsevier, from Krahn, et al.*.



1.2.3 Repair and toxicity of oxidized nucleotides incorporated into DNA

1.2.3.1 Base excision repair (BER)

To maintain genomic integrity, prokaryotic and eukaryotic cells possess a multitude of DNA
damage surveillance and repair pathways, which can also effectively recognize and remove
oxidized nucleotides. Once incorporated into DNA, oxidized nucleotides can be excised by
either the base excision repair (BER) or mismatch repair (MMR) pathways®’>® (Figure 4). In
the case of BER, lesion-specific DNA glycosylases identify the error and then excise either
the modified base or the opposing base®®. Specific for 8-oxo-dG are oxidized guanine
glycosylase (OGG1), which targets 8-0x0-dG:dC mis-pairs®®%, and MutY homolog
(MUTYH), which can recognize mis-paired 8-0x0-dG:dA following DNA replication®+,
MUTYH also recognizes and excises 2-OH-dA, making it a broader detector of oxidized
nucleotide mis-pairs®’8, Recently, however, it was found that MUTYH was able to resolve
8-0x0-dG:dA, but not 2-OH-dA:dG and :dC mis-pairs, in human carcinoma cell extracts,
suggesting that the base excision activity of 2-OH-dA by MUTYH may be less active than
originally thought®’.
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Figure 4: Repair of 8-0x0-dG lesions in DNA by BER or MMR pathways. 8-0x0-dG can be generated from
oxidation of the nucleotide pool or direct oxidation of DNA (red). Nascent DNA synthesis and nucleotides are
depicted in blue. SP-BER — short patch-base excision repair; LP-BER — long patch-base excision repair.
Reprinted with permission from Elsevier, from Rudd, Valerie and Helleday™.

1.2.3.2 Mismatch repair (MMR)

MMR corrects base mis-pairing on nascent DNA following replication, and, thus, also has a
role in removing oxidized bases from DNA, although the evidence is less clear than with
BER* (Figure 4). MutS Homolog 2 (MSH2), a key MMR component, has been shown to
reduce the presence of 8-0x0-dG in genomic DNAY’, while over-expression of MTHI, an 8-
ox0-dGTP hydrolase (described in greater detail below), attenuates the mutagenesis rate of
MMR-deficient tumors’. Additionally, MutSa, a heterodimer comprised of MSH2 and
MSH6, can recognize 2-OH-dATP mis-pairs and MSH2-deficient mice have increased
genomic levels of 2-OH-dA7>73, suggesting the importance of MMR in recognition and
excision of this lesion. On the other hand, in vitro studies have shown that MMR can poorly



recognize 8-0xo-dG mis-pairs and does not efficiently correct these lesions®74, however,
these discrepancies may be sequence-specific’.

1.2.3.3 Toxicity of oxidized nucleotide-induced DNA repair

Repair of 8-0x0-dG and 2-OH-dA, but also 5-OH-dCTP’, lesions in DNA can have dire
consequences on cell viability, depending on the context”’. The first evidence that 8-ox0-dG
may be toxic arose from the fact that while Mthil- or Oggl-knockout mice developed
spontaneous tumors in the liver and lungs, Mth1/Oggl double knockout mice did not develop
lung tumors, yet high levels of 8-0x0-dG were detected in the nuclear DNA of lung cells’.
This would insinuate that the increase in DNA 8-0x0-dG content caused by depletion of both
factors imposes a barrier on tumorigenesis instead of exacerbating it. Indeed, accumulation of
8-0x0-dG in nuclear DNA can result in apoptotic cell death by futile BER cycling, which
induces single strand DNA breaks (SSBs) and ATP exhaustion via polyADP-ribose
polymerase 1 (PARPI) hyperactivation’®°. A similar phenomenon occurs in mitochondria
but leads to loss of mitochondrial DNA and necrosis’®. Thus, in cancer cells, which may have
higher loads of oxidative stress, there may be a greater reliance on oxidized nucleotide

sanitation enzymes to permit cell viability.

1.2.4 Other roles for oxidized nucleotides in cells

Besides the mutagenesis angle that is well established in the field, oxidized nucleotides,
particularly 8-oxo-guanine, appear to serve other necessary functions in cells that complicate
our originally straightforward understanding of their purpose. It would seem that not all
incorporation of 8-oxo-guanine into DNA is detrimental to the cell, as the positioning of these
lesions in different regions of the DNA can have distinctive outcomes. The oxidized guanine
DNA glycosylase, OGG1, primarily known for BER of 8-oxo-guanine from DNA, is heavily
involved in modulating 8-oxo-guanine-mediated cellular functions on the basis of: 1) binding
8-oxo-guanine lesions in DNA or 2) remaining in a complex with the 8-oxo-guanine excision
product®!. Thus, this may indicate that a balance exists between oxidized nucleotide
sanitation and incorporation, and importantly, there is still much to learn about the role of 8-

oxo-guanine in cells.

1.2.4.1 Signaling roles of the OGG1:8-oxo-guanine excision complex

The potential roles of 8-oxo-guanine in cellular signaling were not recognized until the
discovery that the OGGI1:8-0xo-guanine excision complex can behave as a guanine
nucleotide exchange factor (GEF) and activate RAS small guanosine triphosphatases
(GTPases; Figure 5a)*2. Rather than binding the OGGI1 active site®>%, 8-0x0-guanine may
stimulate its glycosylase activity as a potential cofactor, implying a feed-forward response
that encourages OGG1 activity®?. However, this alternative binding site for 8-oxo-guanine
has not yet been elucidated. Activation of RAS proteins by OGG1:8-0xo-guanine then
initiates a phosphorylation cascade beginning with Rafl and spreading to MAP (mitogen-
activated protein) kinases®. Further work illustrated that the OGG1:8-0x0-guanine complex
can also activate the Rho family kinase, Rac18, and that OGG1 is required for Rho-GTPase



activation upon challenge with oxidative stress®’. Another intriguing finding was that
exposure of mouse lungs to exogenous 8-oxo-guanine, that presumably forms the complex
with OGGL in cellulo, also activated RAS GTPase and the transcription of multiple pro-
inflammatory genes®. Therefore, 8-oxo-guanine, with the help of OGGIl-mediated BER,

appears to facilitate numerous cell signaling functions in response to oxidative stress®®%,

1.2.4.2 8-oxo-guanine-mediated transcriptional regulation via OGG1

In assessing the physiological ramifications of 8-oxo-guanine, OGG1 knockout (Oggl™")
mice, which lack a functional gene product, were found to have decreased inflammation
following bacterial infection®® or exposure to pro-inflammatory agents®!, which first alluded
to a role in regulating the inflammatory response®. These findings suggested that activation
of RAS by OGG1:8-0x0-guanine®? and induction of pro-inflammatory cytokine expression
by 8-0x0-guanine®® held systemic physiological importance.

An obvious starting point to consider was the effect of 8-oxo-guanine lesions on binding of
transcription factors to guanine-rich promoters that regulate inflammatory responses. This is
typically mediated by NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells)

92-9 TInstead, there

or Spl. However, conflicting evidence proved this hypothesis inconclusive
was proof suggesting that DNA repair factors and transcription factors compete for binding to
oxidatively damaged promoter regions’**°, with occupancy of the promoter by OGGl
physically obstructing the binding of transcription factors®>. More recently, however, it was
determined that OGG1 bound upstream of the NF-kB consensus binding site facilitates
recruitment of NF-kB to oxidized promoters and enhances transcription of pro-inflammatory
genes in response to TNF-a (tumor necrosis factor alpha) exposure®®®’ (Figure 5b). Hence,

this likely explains the dampened inflammatory response seen in Ogg”" mice®*?!.

Along similar lines, oxidized promoter regions have recently been found to enhance
transcription by facilitating G-quadruplex formation®®. G-quadruplex formation in promoters
is known to stimulate transcription®®, such as is the case with the vascular endothelial growth
factor (VEGF) gene'®, which is also known to contain 8-oxo-guanine lesions in its promoter

region!%!

. Fleming, Ding and Burrows illustrated that apurinic (AP) sites, generated from
OGG1 BER repair intermediates, enhance G-quadruplex formation on the VEGF or
endonuclease IlIl-like protein 1 (NTHLI) promoters. This, in turn, increases gene
transcription®® (Figure 5¢), depending on if the 8-oxo-guanine resides in the template or
coding DNA strands'®2. In contrast, 8-oxo-guanine present in telomeric repeats can block
formation of G-quadruplexes and restore telomerase activity’®, which illustrates the
importance of oxidized guanine in regulating G-quadruplex formation (Figure Sc). Taken
together, these findings delineate exciting new roles for 8-oxo-guanine and OGGI1 in

epigenetic regulation of transcription®!-1%3,
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Figure 5: Roles for 8-oxo-guanine beyond mutagenesis. a, Excised 8-oxo-G in complex with OGG1 can
function as a GEF and activate RAS GTPases that promote transcription of inflammatory genes via MAP
kinases. b, 8-0xo-guanine in gene promoters recruits OGGI1, which facilitates adjacent binding of the NF-kB
transcription factor downstream and expression of inflammatory response genes. ¢, DNA:8-0xo-guanine disrupts
G-quadruplex formation, which enables telomerase activation in telomeric regions, but excision by OGG1 in
promoter regions permits G-quadruplex formation and gene transcription.



1.3 “PREVENTATIVE DNA REPAIR” BY NUCLEOTIDE PRECURSOR POOL
SANITATION ENZYMES

(excerpts taken with permission from Elsevier, from Rudd, Valerie and Helleday’™)
1.3.1 Sanitation enzymes police the nucleotide precursor pool

The DNA precursor pool is readily susceptible to modification from a myriad of sources
within the cellular environment. To counteract the potential toxicity of modified nucleotide
precursors, cells have evolved various mechanisms to maintain cellular fitness. While a
number of retrospective solutions (i.e., after incorporation into nucleic acids), such as DNA
repair, have garnered more attention, nucleotide pool sanitation enzymes offer a more
favorable alternative: preventative maintenance (reviewed specifically by Galperin'® and
Nagy'®). As numerous modified dNTPs are efficient DNA  polymerase
substrates*?43-53:106.107 " ganitation enzymes help eliminate them from the nucleotide pool and
work in concert with DNA repair machinery to maintain genome integrity!®® (Figure 6a).
Modified nucleoside monophosphates may then be poor substrates for their respective
nucleoside kinases, as is the case with 8-0x0-(d)GMP and guanylate kinase (Figure 6b)**!%
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Figure 6: Sanitation enzymes prevent nucleic acid incorporation of modified or damaged nucleotides. a,
Modification from multiple sources can alter the nucleobase or ribose sugar, which can cause deleterious effects
once incorporated into nucleic acids. Sanitation enzymes are generally phosphohydrolases that continually
cleanse the nucleotide pool of these polymerase substrates. b, 8-0x0-(d)GMP is a poor substrate of guanylate
kinase (GK), thus preventing direct utilization of 8-oxo-(d)G. Cellular nucleotidases can convert 8-oxo-(d)GMP
to 8-ox0-(d)G, which is excreted from the cell or can potentially be recycled back to 8-oxo-(d)GMP by a chain
of reactions mediated by PNPase, among others!®!!°. Mouse GK structure from Sekulic ef al.!'!.



1.3.2 NUDIX hydrolases — not one and the same

Perhaps the most common sanitation enzymes are those of the nucleoside diphosphate linked
to some other moiety, X, (NUDIX) hydrolase family, which was a term first coined by

Bessman and colleagues in the mid-90s!!2

. Family members, of which there are at least 22
described thus far in humans (Figure 7), typically catalyze the hydrolysis of nucleoside-like
di- or triphosphates to their respective monophosphates and are related by a consensus 23-
amino acid NUDIX box motif (GxsEx;[UA]XREx;EExGU, where “U” is an aliphatic,
hydrophobic residue and “X” is any amino acid) that facilitates phosphohydrolase

13.114 ‘Tnterestingly, the core residues of the catalytic domain are required for divalent

activity
cation coordination (usually Mg?"), which is essential for catalysis, but do not discriminate or
direct the nucleobase substrates, per se, implying plasticity may exist within the
superfamily!®*!15, NUDIX enzymes were originally called MutT family proteins, after the
antimutagenic E. coli 8-0x0-(d)GTPase*##8:116.117 "yt the diversity of substrate preferences
has suggested that a number of them have little or no role in preventing mutations to DNA,

thus, prompting the change in nomenclature!!,
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Figure 7: The 22 canonical human NUDIX proteins drawn to relative scale. NUDIX domains are depicted

in blue, mitochondrial or peroxisomal localization signals in orange, and ankyrin repeats in green.

1.3.2.1 MTHI sanitizes the oxidized nucleotide pool

Despite the variety in substrate preferences for NUDIX enzymes, by far the most studied
class of precursor to date are the oxidized nucleotides and their sanitation by human NUDT1
(NUDIX type 1), also known as MutT homologue 1 (MTHI). MTHI, like its E. coli
counterpart, MutT, hydrolyzes oxidized nucleotides, including 8-oxo-(d)GTP and 2-OH-
(d)ATP, thereby preventing downstream transversion mutations in DNA and

10



RNA#SLSSUI The importance of MTHI in maintaining genomic integrity and replicative
potential has been shown extensively in cultured fibroblasts and oncogenic RAS-transformed

CCIIS120-123

Depletion of MTHI in these studies triggered characteristic senescence
phenotypes, including the presence of [-galactosidase, irreparable DNA damage, and
induction of p53, p21 and pl 6INK4A tumor suppressor expression!?, Importantly, these cells
did not undergo cell death and culturing MTH1-depleted cells in hypoxic conditions rescued

the senescence phenotype!?!123,

More recently, we and others have demonstrated that MTHI1 may be a potent drug target in

cancer cells!?*130

, where a dysfunctional redox environment can impose a reliance on
oxidized nucleotide sanitation (Figure 8). The mechanistic link between initially described
inhibitors and the dependence on MTH1 for their cell killing effect has been controversial.
Subsequent reports using MTHI1 inhibitors, TH287 and TH588, indicated that cancer-specific
cell killing may be independent of MTH1 inhibition (i.e., through an off-target effect)!3!-133,
while other, independent groups have also synthesized potent MTH1 inhibitors and saw lack
of effect in cancer cells'3*136, These recent reports have cast doubt on whether MTHI is a
bonafide cancer therapeutic target. That being said, depletion of MTH]1 was recently shown
to selectively increase telomere dysfunction and cell death in telomerase-positive cancer cells

with shortened telomeres, thus representing a new potential avenue of inhibitor utilization®.
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Figure 8: The original MTH1 inhibitor mechanism proposed by Gad et al '2*. In cancer cells, treatment with
MTHI1 inhibitors causes DNA damage and ATM-p53-mediated apoptosis due to incorporation of oxidized
nucleotides. Reprinted by permission from Macmillan Publishers Ltd: Nature'?, copyright (2014).

1.3.2.2 Back-up enzymes to MTHI?

Potential MTH1 back-ups include other members of the NUDIX family: NUDT15 (MTH2),
NUDTI18 (MTH3) and NUDTS. In vitro, each of these NUDIX enzymes is capable of

137-139 and knockdown in human cells was reported

hydrolyzing various oxidized nucleotides
to increase 8-0x0-dGTP-induced mutations on a reporter plasmid'*’; however, compared to

MTHLI, the enzyme kinetics for these proteins are relatively underwhelming. In light of this, it

11



is fair to question if these proteins confer the same physiological importance to mammalian
cells, and, indeed, this issue was raised in a recent review!*!. As the author rationalizes, the
fact that a number of human NUDIX enzymes are capable of hydrolyzing oxidized
substrates, albeit poorly, suggests an evolutionary link to a more primitive NUDIX hydrolase
(e.g., MutT). As such, bias towards mutagenic oxidized bases may be obscuring the
physiological roles of NUDIX enzymes that hydrolyze other substrates far more efficiently.

1.3.2.3 NUDTIS5 (MTH2)

NUDTI15 (MTH2), originally described to hydrolyze 8-0xo-dGTP in mice!*” and 8-oxo-
dGTP/dGDP in humans'3®!40 also has a previously overlooked dGTP activity'3”. Like
MTHI, NUDT15 was proposed to sanitize the nucleotide pool of these oxidation products
based on in vitro characterization!*”-13%140 Tt had the ability to revert mutagenesis on a

137 or increase mutagenesis of the

bacterial plasmid when expressed in MutT-deficient E. coli
same plasmid when depleted in HEK293T cells!*. Furthermore, Nudtl5 expression was
upregulated in mouse kidney following intestinal ischemia and reperfusion injury, which
produces a rapid burst of oxidative stress, suggesting NUDT15 transcription is triggered by
acute oxidative damage'#2. Intriguingly, ethanol toxicity, due to ROS production during its
metabolism, decreased expression of Nudtl5 in adolescent mice but showed no difference in
adult mice!'*. Meanwhile, longer-term depletion of MTHI also resulted in a significant
increase of NUDTI15 messenger RNA (mRNA) expression'?*. Despite this evidence,
investigations with human NUDTIS5 concluded that it had about 40-fold less enzymatic
activity towards 8-0xo-dGTP compared to MTH1!¥. Thus, the role of NUDTI15 in oxidized

nucleotide metabolism, especially in humans, is far from clear.

Expanding on potential functions of NUDTI15, a more recent study demonstrated that
multiple mouse NUDIX proteins, including Nudtl5, could decap mRNA!#4, which is an
important determinant of gene expression via regulation of mRNA half-life. Specifically,
Nudtl5 could cleave 7-methylguanosine-5’-monophosphate (m’GMP) and 7-

144 signifying a

methylguanosine-5’-diphosphate (m’GDP) from methylated, capped RNAs
potential alternative role for NUDT15 in mammalian cells. Another curious finding regarding
NUDTI5 is its interaction with the polymerase clamp PCNA (proliferating cell nuclear
antigen)'¥, suggesting that sanitation of modified nucleotides could occur at distinct
subcellular locations, such as at the replication fork. Binding of NUDT15 to PCNA appeared
to protect the latter from degradation, whereas ultraviolet irradiation, but not other insults,
caused dissociation of the NUDT15-PCNA complex and PCNA degradation'®. Lastly, it was
recently discovered that a missense mutant of NUDT15, R139C, is significantly correlated
with thiopurine intolerance in acute lymphoblastic leukemia (ALL) and inflammatory bowel
disease (IBD) patients of Asian descent'#®-148, This finding opens the enticing possibility that
NUDTI15 may play an important role in modulating the effectiveness of thiopurines and,
potentially, other nucleoside analog therapeutics used to treat cancer and viral infections. As
of this time, the physiological roles of NUDT15 have not been clearly elucidated, but these

findings may hold important clues to reach that end.
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1.3.2.4 NUDTI8 (MTH3)

First described in 2012 by Takagi and colleagues!**, NUDT18 (MTH3) is able to hydrolyze
8-0x0-dGDP and 8-0xo0-GDP to their respective monophosphates at physiological pH (and
with similar efficiency) but has no activity towards the relevant triphosphate species. This is
particularly interesting given that MTH1 and NUDT15 have negligible hydrolysis activity
towards the diphosphate forms, which are readily converted to triphosphates in cells**!13°.
Recent work by our group also suggests there is activity towards 8-oxo-dGDP, but also 8-
ox0-(d)GTP, albeit at low efficiency, and depletion of NUDT18 had negligible effects on cell
viability and proliferation!!4, Until recently, there were no other reports describing biological
roles for NUDT18 in human cells. Knockout of NUDT18 by CRISPR/Cas9 appears to cause

a proliferation defect in HeLa cells but for reasons yet unknown!'#.

1.3.2.5 NUDTS5

NUDTS, originally named YSAIH — after its yeast homolog, was first described as a
homodimeric ADP-sugar hydrolase, with particular activity towards adenosine diphosphate
ribose (ADP-ribose, ADPR) and ADP-mannose!**!>2, ADPR is an important component of
nicotinamide adenine dinucleotide (NAD) and polyADP-ribose (PAR) metabolism!>*-1%,
Analysis of the NUDTS5-ADPR co-crystal structure indicated that Glul66 functions as a
catalytic base to deprotonate a water molecule, which then hydrolyzes between the o and
phosphates of ADPR!!57, Tt was also reported that several NUDIX hydrolases, including
yeast Ysal and mouse Nudt5, but not human NUDT9, were able to efficiently hydrolyze O-
acetyl-ADP-ribose (OAADPR), the product of NAD-dependent sirtuin deacetylases!>%!1>°,
NUDT?Y is another NUDIX ADPR hydrolase that is localized to the mitochondria and shares
sequence homology with the ADPR binding domain of the TRPM2 calcium channel'®%-161,
Interestingly, AYsal yeast are highly resistant to exogenous ROS due to accumulation of
ADPR and OAADPR, which inhibited the mitochondrial electron transport chain and

upregulated production of the ROS scavenger, reduced glutathione!s.

In addition to ADPR, human NUDTS has been proposed to hydrolyze 8-oxo-dGDP to 8-oxo-
dGMP38140.163-165 = ytilizing the same techniques as for MTHI1, NUDTI5 and MTH3
analyses.  8-ox0-7,8-dihydroxy-2’-deoxyadenosine-5’-diphosphate ~ (8-oxo-dADP),  2-
hydroxy-2’-deoxyadenosine-5’-diphosphate (2-OH-dADP) and 5-formyl-2'-deoxyuridine-5'-
diphosphate (5-COH-dUDP) may also be NUDTS5 substrates!®4!>. However, further analyses
and comparison have demonstrated that ADPR has a 400-fold higher enzymatic efficiency
than 8-0x0-dGDP and optimal 8-0x0-dGDP turnover occurs at pH 10.5'41-16% suggesting that
ADPR is the biologically relevant substrate. Nonetheless, NUDTS is capable of hydrolyzing
8-0x0-dGDP and, intriguingly, the modality of binding in the active site is noticeably
different compared to the NUDTS5-ADPR co-crystal structures — with the phosphates of 8-
0x0-dGDP being completely inverted compared to ADPR!%6, In this case, hydrolysis occurs
at the B phosphate as opposed to the a phosphate during ADPR hydrolysis. Thus, as the co-
crystal and substrate competition studies imply, NUDTS5 may be able to accommodate

diverse substrates by different binding conformations in its active site!%,
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A limited number of cellular experiments have, thus far, supported a role for NUDTS in
ADPR, but not 8-oxo-guanine, metabolism. Reports of NUDTS5 depletion in HeLa or IMR-90
fibroblast cells causing a p53-mediated G1 cell cycle arrest were loosely linked to increases
in 8-oxo-guanine, but, in combination with what is known from biochemical analyses, these
conclusions were not convincing!#-167:198 Tn addition, depletion of NUDT5 in HEK293T
cells could increase the mutation frequency of a shuttle plasmid by about 1.5-fold'*°. While
statistically significant, it is reasonable to express concern that this difference is not
biologically important.

In line with its originally described function, multiple lines of evidence suggest NUDTS is
intimately involved in ADPR metabolism. Besides the functions already described for yeast
Ysal, human NUDTS is activated by ADP-ribosylation of its cysteine residues in response to

169" while

both exogenously- and endogenously-generated nitric oxide in macrophage cells
similar experiments with ADPRase-I, a rat homolog of human NUDTY, indicated an
inhibitory effect of ADP-ribosylation!”’. This might suggest that NUDTS5 is selectively
activated by nitric oxide, which, for example, is produced in macrophages that are stimulated
by TNF-o/IFN-y (interferon gamma) during an inflammatory response. Likewise, there are
indications that NUDTS5 (as well as NUDTY) is biologically active in the maintenance of ATP
levels and mitochondrial energy homeostasis in response to PARPI hyperactivation by
alkylating agents'>*. The authors also demonstrated that interfering RNA (RNAi) knockdown
of NUDTS5/9 (or small molecule inhibition of NUDIX activity) in HeLa lysates blocked ATP
exhaustion and AMP generation in response to treatment, implying that NUDIX ADPR
hydrolases contribute to energetic failure and cell death in response to PARP activation. More
recently, NUDTS5 was implicated in the regulation of hormone-responsive genes and
proliferation of breast cancer cells following stimulation with progestin or estradiol!”!.
Interestingly, NUDTS was found to synthesize nuclear ATP from PARP1- and polyADP-
ribose glycohydrolase (PARG)-derived ADPR, rather than hydrolyze it to AMP, in the
presence of inorganic pyrophosphate (PP;). NUDT5 depletion caused a blockade of nuclear
ATP generation, which is required by ATP-dependent chromatin remodeling complexes for
gene regulation!’>!76 thus inhibiting proliferative responses from hormones in the breast

cancer cells!”!,

An additional thought-provoking finding, which was a side note in two recent studies, is that
NUDTS5 may also play a role in 6-thioguanine metabolism!7”-178, Utilizing clustered regularly

interspaced short palindromic repeats (CRISPR)/Cas9 screening in cancer cells!'”’

or haploid
embryonic stem cells'’8, the researchers identified multiple guide RNAs (gRNAs) targeting
NUDTS5 that caused resistance to thioguanine selection, on par with disruption of the
hypoxanthine phosphoribosyltransferase (HPRT) gene'”’. The authors proposed a model
where NUDTS ablation may cause depletion of phosphoribosyl pyrophosphate (PRPP), a
required cofactor for HPRT to activate thioguanine, by decreasing cellular ribose-5-phosphate
(R5P) production. This would imply that RSP generated via NUDTS activity is more
important than originally thought. While early, the expanding roles of NUDTS in human cells

represent exciting advances that should foster further exploration of its functions.
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1.3.3 Other (d)NTP pool sanitizers and their clinical implications

1.3.3.1 All-p dUTPases

The all-B dUTPases, with remarkable specificity, prevent pooling of dUTP in cells (Figure
9)!7. dUTP is a non-canonical NTP resultant from thymidine biosynthesis and is a detriment
to DNA integrity via the potential double-strand breaks formed following excision by uracil-
DNA glycosylases (UNG)!8%-182 This outcome was purported by the discovery that dUTPase
function is essential for viability in both bacteria and yeast'®-!%, While human dUTPase is

179 its singular importance in cell viability has

suggested to maintain DNA replication fidelity
not been explored extensively. For cancer cells, however, dUTPase appears to be crucial for
survival in the presence of thymidylate synthase (TS) inhibitors, such as non-canonical
fluorodeoxyuridine (FUdR), by producing dUMP for thymidine synthesis!®®. This has
suggested that there is a window for anti-neoplastic therapies modulating the thymidine
pool'¥7-18 " Indeed, dUTPase inhibitors, such as TAS-114, have been developed and are in

clinical trials to potentiate the anticancer effects of TS inhibitors! %!,

1.3.3.2 All-a NTP pyrophosphatases

The all-a NTP pyrophosphatase superfamily includes MazG, the MazG-like hydrolases and
dimeric dUTPases (Figure 9)!°2. Like the all-B dUTPases, all-a. dUTPases hydrolyze dUTP
but also can hydrolyse dUDP due to significant deviations in protein structure!®*. All-a
dUTPases are expressed in select prokaryotic and eukaryotic organisms (usually where there
are no all-p dUTPases present in the genome) and demonstrates the essential nature of this
function. MazG and MazG-like enzymes are ubiquitously expressed and were believed to
selectively hydrolyze canonical NTPs to their respective monophosphates!®>!%4, This has
changed with the recent discovery that mycobacterial MazG sanitizes cells of the oxidized
pyrimidine, 5-OH-dCTP’%!®°) and that human DCTPP1 (XTP3-transactivated protein A,
dCTPase) prefers modified cytidine triphosphates, including fluorinated or formylated
species!'®® and 5-methyl-2’-deoxycytosine-5’-triphosphate (5-methyl-dCTP), which can affect
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global methylation and epigenetic signatures that promote breast cancer”’. For this reason,

dCTPase may have clinical significance and can be targeted with small molecule

inhibitors!?$-20,

1.3.3.3 ITPases

ITPases efficiently hydrolyze the non-canonical purines, (d)ITP and (d)XTP, and prevent
their incorporation into DNA and RNA (Figure 9)*!292 Resulting from deamination
reactions in the cell and defects in purine synthesis?®, misincorporation of these nucleotides
does not cause mutations in E. coli*’*, but in higher organisms their incorporation is likely
mutagenic and affects transcription of nascent mRNA, possibly by including ribonucleotide
incorporation into DNA and vice versa®®. This is suggested by the fact that ITPase null mice
are embryonic lethal?®. Additionally, one of the NUDIX enzymes, NUDT16, preferentially
hydrolyses (d)IDP, which can otherwise cause incorporation-induced DNA damage®®.

Clearly, the redundancy of sanitation enzymes targeting deaminated purine species suggests
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an important role in genome maintenance; however, the detailed physiological roles and
ramifications of these nucleotide species in cells require further study.

1.3.3.4 SAMHDI

Beyond the pyrophosphatase sanitizing enzymes, particular hydrolases, such as SAMHDI,
possess unique NTP triphosphohydrolase activity, reducing the nucleotide substrate to its
nucleoside core (Figure 9)*°’. A member of the HD domain-containing superfamily?°8,
SAMHDI1 has broad substrate accommodation for canonical dNTPs, suggesting that it may

oppose ribonucleotide reductase and tightly control dNTP pools?®

. However, it can
hydrolyze modified dNTPs as well, such as O%-methyl-2’-deoxyguanosine-5’-triphosphate
(05-Me-dGTP), 5-Me-dCTP and 2-thio-2’-deoxythymidine-5’-triphosphate  (2-Thio-
dTTP)*, but also the anti-cancer agent, clofarabine-5’-triphosphate (clofarabine)?!!. More
recently, SAMHDI1 has been implicated as a major barrier to cytarabine (cytosine
arabinoside, araC) efficacy in acute myeloid leukemia (AML) patients by preventing
accumulation of ara-CTP, the active species incorporated into DNA2!2213, Subsequently, it
was further confirmed to control the response of several other antimetabolite-based therapies
for treating cancer or viral infections, including fludarabine, decitabine, trifluridine,
vidarabine, nelarabine, aciclovir, and ganciclovir?'42'®, SAMHDI] regulates these responses
in several manners. Some may be substrates of SAMHDI (such as 5-aza-dCTP, decitabine
triphosphate?!®), while others directly (allosterically) or indirectly (influence dNTP pools)
regulate its triphosphohydrolase activity. Thus, at multiple levels, SAMHDI is a critical
determinant of efficacy with regard to nucleoside analog-based therapeutics and represents an

immensely attractive drug target?!”.

As the efficiency of hydrolysis between canonical and modified nucleotides is similar?!?, it
remains an open question whether SAMHDI has a physiological role in nucleotide pool
sanitation. How this impacts upon its apparent tumor suppressor functions will also be an
interesting avenue of study. These are outstanding questions that will need to be addressed by
in-depth biochemical and cell-based characterization, but the importance of SAMHDI in

cancer and preventing viral propagation has clearly emerged in recent years*!7218,

1.3.3.5 Cytidine deaminase

Cytidine deaminase (CDA) is an important component of the pyrimidine salvage pathway by
irreversibly deaminating cytidine and deoxycytidine to uridine and deoxyuridine, respectively
— the building blocks for nascent pyrimidines®'’. It has been typically viewed in a negative
light as a resistance mechanism to cytidine analogue therapies®®. Interestingly, while it is not
a sanitation enzyme in the traditional sense, CDA may also provide cancer therapeutic
opportunities with specific cytidine analogues (Figure 9). It was recently demonstrated that
CDA deaminates 5-hydroxymethyl-2’-deoxycytosine (5-hydroxymethyl-dC, 5-OHMe-dC)
and 5-formyl-2’-deoxycytosine (5-formyl-dC, 5-COH-dC) to their uridine counterparts,
which are then phosphorylated and incorporated into DNA, causing cell death??!. As 5-
OHMe-dU and 5-COH-dU are not substrates for dUTPase and CDA is expressed lower in
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normal tissues, this appears a promising cancer therapeutic strategy; however, combining

these with traditional cytidine analogues may provide the most effective strategy?>?
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Figure 9: Nucleotide pool sanitation enzymes in the context of de novo nucleotide synthesis Sanitation
enzymes depicted with orange ovals, generalized nucleotide biosynthesis enzymes with purple squares,
canonical deoxynucleotides with green boxes, and potentially deleterious deoxynucleotides with red boxes.
Generic modified species are marked with an asterisk (*). Reprinted with permission from Elsevier, from Rudd,
Valerie and  Helleday”®. IMPDH—inosine  monophosphate  dehydrogenase; ~ GMPS—guanine
monosphosphate synthase; GUK—guanylate kinase; RNR—ribonucleotide reductase; NDPK—
nucleoside diphosphate kinase; AK—adenylate kinase; UK—uridine kinase; UMP-CMPK
— uridinemonophosphate-cytidine monophosphate kinase; CTPS—cytidine triphosphate synthase; DCTD—
deoxycytidine monophosphate deaminase; TS—thymidine synthase; dTMPK—deoxythymidine monophosphate
kinase; P—inorganic phosphate; PPi—inorganic pyrophosphate; PPP—inorganic triphosphate.

1.3.4 Future and therapeutic perspectives

Nucleotide pool sanitation enzymes are clearly an important aspect of maintaining genome
integrity. Recent studies have generated substantial progress in this field, yet as mentioned
above, many outstanding questions remain. Detailed interrogation by an interdisciplinary
approach may yield the most beneficial results. For example, substrates identified in
biochemical screens can be related to phenotypes elicited from loss-of-function studies in
cells, thus linking metabolism and novel biology. This is important to keep in mind for
translational applications, especially when considering the number of nucleoside analogues
used in the clinic?®. In the context of cancer or combating viral infection, then, it is likely that

sanitation enzymes may be therapeutically relevant as drug targets?!’.
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1.4 THIOPURINES AS ANTI-METABOLITE THERAPEUTICS

1.4.1 Discovery and clinical uses

Nucleoside analogs (also known as antimetabolites) are a class of drugs that target
proliferating cells by interfering with the synthesis of human or viral nucleic acids?®. In the
1950s, Elion and Hitchings initiated ground-breaking research into the synthesis and clinical
utility of nucleoside analogs, including the discovery of the anti-herpes simplex virus (HSV)
analog, acyclovir, and allopurinol for treatment of hyperuricemia and gout??*22°, But it was
the discovery of a new class of anti-cancer drugs, known as thiopurines, that would have the
most therapeutic impact. Since this time, thiopurines have been a mainstay in clinical practice
for treating various ailments, such as inflammation??’ and cancer (ALL)?*?*2%° but also

functioning as immunosuppressants for organ transplants??7-2%,

1.4.2 Metabolism and mechanisms of action

Three variations of thiopurine prodrugs are routinely available in the clinic: azathioprine
(AZA-T), 6-mercaptopurine (6-MP, mercaptopurine) and 6-thioguanine (6-TG, thioguanine).
Metabolic conversion of thiopurine analogs is a relatively complex process that includes
many purine salvage pathway components and reactive intermediates that can simultaneously
improve or adversely affect treatment (Figure 10)*°. AZA-T, 6-MP and 6-TG are
metabolized slightly differently in cells; where thioguanine conversion is most
straightforward and azathioprine is readily converted to mercaptopurine in cells by a non-

enzymatic reaction?!.

Although 6-methylthioinosine-5’-monophosphate (6-MTIMP), resultant from thiopurine S-
methyltransferase (TPMT) conversion of 6-thioinosine-5’-monophosphate (6-TIMP), is a
potent inhibitor of phosphoribosyl pyrophosphate amidotransferase (PPAT), the early and
rate-determining step of de novo purine biosynthesis*¥, it is a common misconception that
thiopurines exert their effects through blocking production of purine nucleotides. This is in
spite of evidence in existence since the 1970s suggesting the contrary?*3. More recent clinical
evidence demonstrated that de novo purine synthesis was unchanged in mercaptopurine-
treated patients, as compared to untreated individuals, and that methotrexate, a potent
inhibitor of de novo purine biosynthesis, greatly potentiated thiopurine efficacy?**. In fact, the
accumulation of the thioguanine nucleotides (TGN), 6-thio-GTP and 6-thio-dGTP, not 6-
MTIMP, is highly correlated with cytotoxicity?*236,
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Figure 10: An outline of thiopurine metabolism in human cells prior to this thesis. Thiopurines are
converted to their active metabolites, 6-thio-GTP and 6-thio-dGTP, by multiple enzymes. Thiopurine prodrugs
are boxed in gold, enzymes are labeled in blue and deactivating enzymes in red. Courtesy of Brent Page. HPRT
— hypoxanthine phosphoribosyltransferase; IMPDH — inosine monophosphate dehydrogenase; GMPS — guanine
monophosphate synthetase; GMPK — guanosine monophosphate kinase; RNR — ribonucleotide reductase;
NDPK — nucleoside diphosphate kinase; XO — xanthine oxidase; AO — aldehyde oxidase; GD — guanine
deaminase; TPMT — thiopurine methyltransferase; ITPase — inosine triphosphate pyrophosphatase; 6-MMP — 6-
methyl-mercaptopurine; 6-TUA — 6-thiouric acid; 6-TX — 6-thioxanthine; 8-OHTX — 8-hydroxythioxanthine; 6-
MTG — 6-methylthioguanine; 6-TIMP — 6-thioinosine-5’-monophosphate; 6-MTIMP — 6-methylthioinosine-5’-
monophosphate; 6-MTIDP — 6-methylthioinosine-5’-diphosphate; 6-MTITP — 6-methylthioinosine-5’-
triphosphate; 6-TIDP — 6-thioinosine-5’-diphosphate; 6-TITP — 6-thioinosine-5’-triphosphate; 6-TXMP — 6-
thioxanthosine-5’-monophosphate; 6-TGMP — 6-thioguanosine-5’-monophosphate; 6-MTGMP —  6-
methylthioguanosine-5’-monophosphate; 6-TGDP —  6-thioguanosine-5’-diphosphate; 6-TGTP -  6-
thioguanosine-5’-triphosphate; 6-TdGDP — 6-thio-2’-deoxyguanosine-5’-diphosphate; 6-TdGTP — 6-thio-2’-
deoxyguanosine-5’-triphosphate.
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6-thio-dGTP is an efficient substrate for cellular DNA polymerases, replacing the occurrence

of guanine nucleotides by up to 0.1%%7240;

however, the incorporation itself is not
particularly toxic or mutagenic??*238-241242 Incorporation opposite thymidine and cytidine is
roughly equal, but the problem arises when some of the 6-thio-dGTP is methylated by S-
adenosylmethionine (SAM), which, during the following DNA replication cycle, can create a
6-MeThio-dG:dT mispair?*-**, Highly similar to repair of O®-Me-dG mispaired lesions?®,
the cellular MMR system recognizes the misincorporation of thymidine opposite 6-MeThio-
dG and attempts to correct the pairing on the nascent DNA strand***; however, the correct
match for this lesion cannot be made and the cell gets stuck in a futile repair cycle (Figure
11)?42%8 This results in unrepaired gaps left opposite of 6-MeThio-dG lesions and
catastrophic DNA damage ensues during the next S-phase, when recombination events create
lethal DNA structures??*>*724, Compared with most antimetabolites, cytotoxicity by
thiopurines is noticeably delayed, requiring approximately three rounds of DNA replication
for toxic effect?®®. Cytotoxicity is predominantly mediated by MMR?%, although there is also
evidence that 6-thio-GTP can complicate mRNA transcription?® and inhibit Racl GTPase

251

activity=', which may explain residual toxicity in MMR-deficient cells. This multifaceted

mechanism of action requires constant monitoring in the clinic to limit adverse side
effects?27229252

1st S-phase 2nd S-phase 3rd S/G2-phase

Figure 11: Mechanism of thiopurine-induced toxicity by futile mismatch repair. 6-thio-dGTP can be
incorporated opposite thymidine and, upon methylation by SAM, cannot be repaired by MMR during the
following S-phase. Gaps left from the unrepaired lesions result in irreparable DNA damage, G2 delay via ATR
and Chkl activation, and, inevitably, cell death by the third S/G2-phase. Green highlights indicate the nascent
DNA strand.

1.4.3 Pharmacogenetics and clinical thiopurine response

Over time, key genetic determinants of thiopurine resistance and sensitivity have emerged
that influence clinical regimens (Figure 11). Inactivating mutations to HPRT, the gene that

encodes the committal step in de novo purine biosynthesis and is required for active
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thiopurine metabolite conversion, are frequently found in vitro*>, as there is only a single

copy of the X-linked gene in cells. However, despite its utility to evaluate mutagenesis

otential>*, HPRT activity has little bearing on response to thiopurines in patients>>.
p y g p p p

20



TPMT can convert 6-TIMP, 6-TGMP, mercaptopurine and thioguanine to their inactive,
methylated counterparts, thus, effectively removing them from the nucleotide pool**¢2*’, The
physiological function of TPMT is unknown, but loss-of-function mutations to the TPMT
gene, particularly homozygous mutations, can be deadly to patients treated with
thiopurines?*>23¢, Although rare (approximately 1 in 300 patients or 0.3% incidence), patients
homozygous for these mutations suffer from leukopenia and subsequent infections due to
dangerously high TGN levels*3>2%, Therefore, many clinics now screen patients for TPMT

mutations prior to administering thiopurine treatments for ALL or IBD?3%-2%,

Mutations to ITPase (/7PA or inosine triphosphate pyrophosphatase), particularly 94C>A
(P32T), have also been associated with thiopurine intolerance for treatment of ALL and
IBD?692! This mutation is known to negatively affect the catalytic rate of ITPase, which
causes two of its thiopurine-based substrates, 6-thioinosine-5’-triphosphate (6-TITP) and 6-
methylthioinosine-5’-triphosphate (6-MTITP), to accumulate in erythrocytes and cause
toxicity in patients?®*2°, Interestingly, an additional contributing factor to the incidence of
thiopurine sensitivity in patients may relate to reduced protein stability of the ITPase P32T

mutant?4,

Mutations to 7MPT and ITPA alone, however, cannot totally account for sensitivity to
thiopurines, as only a quarter of European patients (and even fewer patients of Asian descent)
suffering from thiopurine intolerance carry TPMT mutations?$¢-268, More recently, missense
mutations of the NUDTI5 gene (R139C) correlated strongly with thiopurine sensitivity in

leukemia and IBD patients!4-148

. The incidence rate of this mutation, particularly in East
Asians (9.8%) and Hispanics (3.9%), is relatively high, and patients homozygous for this
alteration can only tolerate 10% of a typical thiopurine dosing'¥’. Combined, these studies

have suggested that NUDT15 also plays a major role in thiopurine metabolism.

Another particularly influential alteration involves 5’-nucleotidase, cytosolic II (NT5C2),
which removes the phosphate from purine nucleoside monophosphates and permits their
excretion from cells?®-?’°, NT5C2 is known to hydrolyze the thiopurine intermediates, 6-
TIMP and 6-TGMP, and, thus, is integral to thiopurine metabolism?’!. Missense mutations to
NT5C2, encoding R367Q, R238W or K359Q, further activate enzyme activity and are
strongly associated with relapse in ALL patients treated with thiopurines?’>*”3. A recent
publication demonstrating the clonal evolution of the N75C2 mutations in response to
thiopurines also identified that these relapsed leukemias can be treated with inhibitors of
inosine monophosphate dehydrogenase (IMPDH), due to their increased reliance on purine

biogenesis®’4.
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1.5 TARGETING HORMONE RECEPTOR POSITIVE BREAST CANCER

1.56.1 Hormone receptors drive breast carcinogenesis

It is commonly assumed that breast cancer originates from deactivating mutations to tumor
suppressors or activating mutations to oncogenes, such as PIK3CA*”, TP53%"6, MAP3K1 *77,
GATA3*® or AKTI?”; however, this may be an oversimplification of the disease?®. Studies
from approximately 30 years ago have indicated that around 30% of women aged 40 or older
have ductal carcinoma in vitro (DCIS), a precancerous lesion, although roughly 1 in 8 women
are actually diagnosed with breast cancer?®!. Already by this stage, cells in DCISs are laden
with many of the same mutations and genetic rearrangements that are found in invasive breast

cancer®®?, indicating that mutational load may not be sufficient for breast carcinogenesis®®’.

Meanwhile, evidence implicating the steroid hormones, estrogen and progesterone, and their
nuclear receptors as drivers of this disease can be inferred from the fact that the prevalence of
breast cancer is on par with colon cancer until a woman reaches menopause, when incidence
rate drops significantly?®’. Furthermore, supplementation of estrogens in combination with
progestins (progesterone analogs), which is typical for hormone replacement therapies,

k284

increases breast cancer risk?*, possibly due to cell proliferation in the breast epithelium?®>.

O and their ability to

This may be directly related to the increased stability of progestins®®
activate other nuclear receptors®*®, as supplementation with estrogens alone apparently poses

no additional cancer risk?®’.

Exposure of breast epithelial cells to estrogen or progesterone can induce expression of
CCNDI (cyclin D1)?%2% which regulates G1-S cell cycle progression via cyclin-dependent
kinase (CDK)-dependent and -independent functions®2°!. Cyclin D1 is an established
oncogene and is overexpressed in up to 50% of breast cancers, with high correlation to
estrogen receptor (ER)-positive cancer cells®!2?°2, Thus, in an intricate relationship with ER,
cyclin D1 overexpression is believed to foster breast cancer proliferation by increasingly

diverse mechanisms2’2,

1.5.2 Therapeutic options for HR+ breast cancer

In the clinic, breast cancers expressing one or both of these receptors are known as hormone
receptor (HR)-positive and account for 60-75% of breast cancers (ER+ and 65% of these are
also progesterone receptor [PR]+)?3. Additionally, stratifying patients based on combined
ER/PR status instead of expression of either alone may be a better discriminator of

prognosis®*

. The current standard-of-care for HR-positive breast cancers includes surgery,
followed by radiation and endocrine therapy®”. Endocrine therapies target the ER: tamoxifen
and raloxifene are competitive ER antagonists, while fulvestrant binding causes ER
degradation. Alternatively, aromatase inhibitors block estrogen biosynthesis. However, it is
known that these treatments are prone to resistance development®>-2*7. Inhibitors of CDK4/6,
which are regulated by cyclin D1, are also showing promising activity as breast cancer
treatments, although resistance mechanisms to this novel therapy are already emerging®®. All

of these treatment options target the cell proliferation spurred by active hormone receptors.
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1.56.3 Regulation of hormone-dependent transcription

To transcribe genetic material, transcriptional machinery must be able to access genomic
DNA. For this to occur, chromatin needs to be rearranged by direct modification of histones
and the help of chromatin remodeling enzymes!’>2%°, PARylation (polyADP-ribosylation) is
one such modification regulating chromatin structure®®, predominantly via PARP13%1:302,
PARPI activity is crucial for gene regulation’®, especially during development’*,
neurogenesis®® and by activated nuclear receptors®®, such as the ER3% and PR!71:174,

Transcription of estrogen-dependent genes appears to involve the concerted efforts of a DNA
topoisomerase IIf (TOPOIIB):PARPI complex (Figure 12)°%. Interestingly, in order to
transcribe the estrogen-responsive pS2 gene, a transient DNA double strand break (DSB)
formed by TOPOIIP within the estrogen responsive element (ERE) of the pS2 promoter on
nucleosome E (NucE) activates PARP1 to PARylate histone H1. Modification of histone H1
by PARylation facilitates exchange with high mobility group B 1/2 (HMG1/2). Another
possible explanation for exchange of histone H1 with HMG1/2 is that PARP1 competes with
histone H1 for binding to nucleosomes and causes its exclusion’®. Consequently,
replacement with HMG1/2 permits repair of the DSB by the DNA-PKcs:Ku70/86 canonical
non-homologous end joining (NHEJ) repair complex and access of ERa (along with its

transcriptional coactivators) to transcribe the pS2 gene product®®.

Figure 12: PARP1 and TOPOIIP cooperate to enable transcription of estrogen-responsive genes. Transient
DSBs induced by TOPOIIp activate PARP1, which facilitates replacement of linker histone H1 with HMG1/2

and access by ERa transcriptional machinery. Reprinted with permission from the American Association for the

Advancement of Science, from Ju et al.3%.

Roughly 85% of progestin-responsive genes depend on functional PARP1 for their
transcription!”#. The remodeling of chromatin in response to the progestin, R5020, is transient
(occurring over approximately 30 minutes) and mediated by a cohort of remodeling
complexes (Figure 13)!74307 Tnitially, phosphorylated PR is recruited along with the
nucleosome remodeling factor (NURF) and ASC-2/NCOA6 (ASCOM) complexes to
chromatin, where they facilitate removal of the heterochromatin protein 1 gamma
(HP1y)/lysine demethylase 5 (KDMS5) repressive complex. Simultaneously, the PR:CDK2
complex binds to cyclin A and PARP1, and CDK2 phosphorylates PARP1 on Serine 785 and
786, which, in turn, activates its PARylation activity. PARP1:CDK2 then
phosphorylates/PARylates histone H1, preceding its displacement from chromatin®®®, Histone

H2A/H2B is then displaced by ATP-dependent chromatin remodeling via the P300/CBP-
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associated factor (PCAF)/PR-SWI/SNF (BAF) complex. Following additional PARylation of
other chromatin targets by PARP1, PAR chains are degraded and chromatin is returned to a

repressive state following transcription!’#307,

The involvement of PARP1 in these diverse modes of transcriptional regulation and the
varied mechanisms resulting in its activation highlights the essential nature of PARPI
catalytic activity for these processes. For example, PARP1 is activated by transient DNA
damage for ER-mediated transcription, whereas it is activated by phosphorylation via CDK2
in response to progestins'’13%_ A central theme is the PARylation of linker histone H1, which
after PARPI itself, is one of the most heavily PARylated proteins in cells’*3%, PARylation
of histones causes loss of affinity for DNA and initial relaxation of chromatin structure®%-31°,
This, in turn, facilitates further rearrangements by ATP-dependent chromatin remodeling

complexes and completes access to DNA by transcriptional machinery>?’.
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Figure 13: Progestin-mediated transcriptional events are dependent on PARP1 and CDK2. Following
initial removal of the HP1y/KDMS5B repressive complex, activation of PARP1 by CDK2:cyclin A results in
histone H1 displacement, facilitating histone H2A/H2B displacement by chromatin remodeling complexes and
progestin-dependent gene transcription. Reprinted with permission from Taylor & Francis Online, from Wright

and Beato®’.
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1.6 NUCLEAR ATP SYNTHESIS

For decades, it has been a foregone conclusion that the ATP that fuels all of the cell’s
activities arises from oxidative phosphorylation in mitrochondria, the powerhouse of the cell.
However, nuclear ATP synthesis is a phenomenon that was first described in 1955 by Allfrey
and Mirsky during their studies of protein synthesis in isolated thymus nuclei®!!*12, Nuclei
were found to “possess a capacity for aerobic ATP synthesis™!! that could be inhibited by
anaerobic conditions, similar to mitochondrial oxidative phosphorylation, but not by other

agents that also blocked ATP synthesis in mitochondria’!?

. Similarly, work by Betel
suggested that the ribose-phosphate metabolized from nucleotides or nucleic acids may be
responsible for this occurrence’'®. Interestingly, when the nuclei were treated with DNase
they were unable to synthesize ATP, but this could be rescued by the addition of
polynucleotides®!?, thus indicating that nucleic acids were the source of nuclear ATP

generation that could be used to power nuclear functions.

Years later, Sei-ichi Tanuma found that, in the presence of PP; and magnesium, degradation
of PAR in HeLa S3 cell nuclei could produce ATP and R5P, which was catalyzed by a
mysterious ADP-ribose pyrophosphorylase®'®. The author proposed that the catabolism of
PAR to ADPR by PARG propelled the synthesis of ATP from ADPR and PP;. Intriguingly,
addition of exogenous ATP, AMP, fluoride (phosphatase inhibitor) or RSP blocked the ATP
synthesis reaction. It was hypothesized that, in addition to modifying chromatin structure,
PAR functions as a reservoir for ATP, which may be utilized for ATP-dependent processes,

such as DNA repair, replication and transcription.

Subsequently, the same group reported that the ATP produced from PAR by the concerted
efforts of PARG and ADPR pyrophosphorylase was required for DNA repair synthesis in
isolated HeLa S3 nuclei*!>. Cells synchronized in G1-phase and treated with alkylating agent,
N-methyl-N’-nito-N-nitrosoguanidine (MNNG), were found to generate ATP following PAR
catabolism. This ATP was utilized for repair-mediated DNA synthesis within minutes of
MNNG treatment, as measured by *H-thymidine incorporation. In the absence of PP; or with
the PARG inhibitor, Oen B, ATP synthesis was blocked, as was previously described?!4, but
so was DNA synthesis for repair. Roughly 8% of the PAR was converted to ATP, which was
maximal at around 20 minutes. A similar follow-up report demonstrated that nuclei
supplemented with ATP in the presence of PP; could synthesize DNA normally, while loss of
DNA synthesis occurred if a PARG inhibitor was used or if PP; was excluded from the
reaction mixture’!®. This would collectively suggest that ATP specifically generated from
PAR catabolism and PP; is required to maintain DNA replication.

A direct requirement for PAR-derived ATP synthesis was similarly shown for DNA ligation
following BER?!7. The findings were generally analogous to those presented before but with
a few noteworthy differences: 1) the production of ATP from PAR required active DNA
synthesis, which can generate copious amounts of PP; (although significantly less ATP could
also be synthesized from exogenous addition of PP;), 2) only ADPR formed from PAR
catabolism could create ATP (addition of exogenous ADPR could not generate ATP), 3) the
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ATP generated during nick-induced DNA synthesis is specifically utilized for DNA ligation,
which is ATP-dependent and rate-limiting for completion of BER. Thus, in replicating cells,
PAR can act as an energetic store that is tapped under shortage of cellular ATP to complete
DNA repair.

More recently, work elucidating a mechanism for nuclear ATP synthesis from PAR-derived
ADPR and PP; was described!”!. Catabolism of PAR formed from the stimulation of
quiescent breast cancer cells by estradiol or progestin could generate nuclear ATP, which was
required for ATP-dependent chromatin remodeling and gene regulation. The enzyme
responsible in this phenomenon was NUDTS, previously known only to hydrolyze ADPR to
AMPOI5T n response to hormone, NUDTS5 formed a complex with NMNAT1, PARP1 and
PARG, thus completing a self-sufficient unit that can singlehandedly process NAD+, PAR,
ADPR and ATP. Therefore, PAR-derived ATP catalyzed by NUDT5 may be formed at local
sites of chromatin, where immediate influx of ATP is required to expose transcriptionally
accessible DNA.
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2 DOCTORAL THESIS

21 PURPOSE/AIMS

Many of the human NUDIX enzymes outside of MTHI1 are poorly understood, but some
have been implicated in oxidized nucleotide sanitation in vitro, including NUDTS5 and
NUDTI1S. Therefore, the overall aim of this thesis is to elucidate the biological
function(s) of NUDTS and NUDT1S in human cells and to evaluate their potential as
therapeutic targets for small molecule inhibitors.

The specific aims are as follows:

o Identify the biological function(s) of NUDTS/NUDT15 with specific focus on their
involvement in oxidized nucleotide metabolism, as well as NAD/nucleotide and
thiopurine metabolism, respectively

o Identify substrates with biochemical substrate screening

o Discern the effects of NUDTS5/NUDT15 depletion on proliferation, cell cycle,
DNA damage, cell death and oxidized nucleotide metabolism in cells

o Relate biochemical and cellular data

e Evaluate the potential involvement of NUDTS5/NUDTIS5 in human disease(s) and as
therapeutic targets, particularly for cancer

e Assess and develop potent, specific small molecule inhibitors for NUDT5/NUDT15
to further study their biological functions and potential for therapeutic targeting

The above-mentioned aims were addressed in the component papers of this thesis and
clarified by answering specific research questions, as follows:

Paper I

e Does NUDTI15 (MTH2) possess similar substrate preferences to MTH1 in vitro?

e Does the NUDT15 crystal structure explain the observed substrate preferences and
why it is similar or different from MTH1?

e Does depletion of NUDT15 by RNAi in cells phenocopy or enhance MTHI
depletion?

e Do the collective data suggest that NUDT15 is important for oxidized nucleotide
sanitation, similar to MTH1?

e Are there substrates for NUDT15 that indicate its physiological importance in cells?
Paper 11

e What is the catalytic efficiency of NUDT15 towards 6-thio-GTP and 6-thio-dGTP
compared to a known, endogenous substrate (dGTP)?

e Can the co-crystal structure of 6-thio-GMP in the NUDT15 active site explain the
preference for thionylated guanosine triphosphates?
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Does the NUDT15 R139C missense variant affect catalysis of substrate hydrolysis in
vitro?

Does the NUDT15 R139C mutant express normally in cells? How does it compare to
wild-type protein expression?

What is the cause of lower basal expression of the R139C mutant in cells?

How does NUDTI15 expression affect cellular sensitivity to 6-thioguanine? Can
depletion of endogenous, wild-type NUDTI5 mimic the enhanced toxicity to
thiopurines seen in NUDT 15 mutant patients?

Paper 111

30

What are the preferred substrates for NUDTS in vitro and how does the profile
compare to MTH1?

Do RNAI experiments support the biochemical substrate profiles, particularly with
regard to oxidized nucleotide sanitation and ADP-ribose metabolism?

Following medicinal chemistry optimization of hits from high-throughput screening,
can cellular target engagement techniques be used to identify potent and cell-active
molecules in lieu of phenotypic assays?

How can the structure of NUDTS improve the design of our NUDTS inhibitors?

Can top NUDTS inhibitors identified by target engagement profiling confirm the
emerging role of NUDTS5 in hormonal gene regulation in breast cancer cells? Do the
results match potency rankings from the target engagment analyses?



21 RESEARCH APPROACH

The approaches to address the research questions of the doctoral thesis were truly
multidisciplinary in nature and were comprised of multiple biochemical,
biophysical/structural, molecular and cell biology and chemical biology methodologies. In
this way, research questions could be addressed by several orthogonal methods and explored
more in detail. Generally, the design of the research approach began from biochemical and
structural understanding of NUDTS5 and NUDT15, which then was related to phenotypic
observations in cells by RNAi and with potent, small molecule inhibitors synthesized in the
Helleday Laboratory. This process is outlined below:

1. Biochemical evaluation with purified NUDTS and NUDT15
a. Substrate analyses by coupled enzymatic assay (malachite green) or high-
performance liquid chromatography (HPLC)
b. Structural insight to substrate preference by in silico docking and co-
crystallography with substrates or products
2. RNAi-mediated ablation in cells — relate back to biochemical results
a. Investigate general effects on cell proliferation, survival, etc.
b. Discern influence on oxidized nucleotide sanitation by analyzing markers of
DNA damage and by modified alkaline comet assay
c. Confirm phenotypic changes relate to substrate preferences in vitro — or not
d. Cytostatic or cytotoxic effects on cancer cell lines?
3. Compromise enzymatic activity with small molecule inhibitors — relate back to
biochemical and RNAI data
a. Confirm inhibition of enzyme by biochemical assays
b. In addition to the RNAi points listed above, confirm intracellular target
engagement and specificity
c. Explore utility of inhibitors in combination with other cytostatic or cytotoxic
agents
4. Follow-up studies for confirmation of clinical relevance in animal models of disease
(future work)
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2.2 KEY METHODOLOGIES
2.2.1 The OGG1 modified alkaline comet assay

2.2.1.1 Background

The comet assay has had many different variations published over the years but was first
described by Ostling and Johanson in 1984 to measure repair of DNA breaks following

ionizing radiation (IR)*!8

. The assay was based on the premise of the nucleoid structure
observed upon loss of DNA supercoiling, which can be measured using electrophoresis!®.
Although the pH 9.5 buffer used was was clearly basic, DNA is not denatured at this pH, so it
is often referred to as a “neutral” comet assay*?. Singh er al. then first described the alkaline

comet assay (pH>13) in 19882

, which is capable of converting more lesions to DNA breaks.
Thus, the alkaline comet assay is suitable to detect a wider range of DNA lesions, namely,
alkali-labile sites (ALS), which includes apurinic/apyrimidinic (AP) sites, and DNA-
DNA/DNA-protein cross-links*?’. In this way, the alkaline comet assay can provide more

information regarding genotoxic treatments and is typically preferred?.

That being said, there are many perceived misconceptions with regard to the variations of the
comet assay, the most common of which stipulates that the neutral comet assay only detects
DNA DSBs and the high pH of the alkaline comet assay is required to detect DNA

SSBs¥2323 1R, the insult used to exemplify both the neutral and alkaline comet assay>!®32!,

induces many more SSBs than DSBs***

and give reproducible comets by either assay.
Similarly, this misconception has been further put to rest by other studies with hydrogen

peroxide and methyl methane sulfonate (MMS) that demonstrated the same result®%.

Other variants of the alkaline comet assay emerged that included incubation steps with DNA

320322323 " including those associated with oxidation damage surveillance, such as

glycosylases
formamidopyrimidine DNA glycosylase (Fpg)*?®, OGG1??’ and endonuclease III (Endo
I11)*28; repair of UV-induced damage, such as T4 endonuclease V3233; and repair of uracil
incorporation in DNA, such as UNG?*}!. These inclusions have given added value to the
comet assay, particularly with Fpg being utilized for human biomonitoring of oxidative
damage to DNA%?2, but also to mechanistic studies affecting metabolism or repair of specific

glycosylase substrates.

2.2.1.2 General protocol (Figure 14)

Cells are treated in culture and then harvested. Following washes with PBS, the cells are
embedded in low melting point (LMP) agarose. Prior to this point, one can briefly treat cells
on ice with hydrogen peroxide, potassium bromate, or the photosensitizer, Ro19-8022, and
light as positive controls for the assay*?>327332333 An initial layer of agarose is applied to a
microscope slide, followed by the layer containing the cells of interest. The cells are then
lysed with buffer containing Triton X-100 for at least 1-2 hours, but typically overnight,
although lysis time appears to bear little effect on assay performance®??. The cells are then
incubated with enzyme buffer as a control or human OGGI to assay for oxidized nucleotide
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lesions in the DNA%’. Next, the slides are submerged in alkaline buffer (pH>13) prior to
electrophoresis in a comet assay tank. The incubation time prior to electrophoresis, as well as
voltage and the duration of electrophoresis, has the greatest effect on assay
variability3?233433; therefore, incubation times were kept at 30 minutes and electrophoresis
was constant at 25V for 30 minutes in all experiments. The cells are then incubated in a Tris-
buffered neutralization solution to stop the alkaline reaction. At this point, the slides can be
kept in a humidified chamber at 4°C for several weeks; however, drying the slides prior to
analysis may improve visualization on the microscope*??. Addition of a fluorescent DNA dye,
such as SYBR Gold or YOYO-1, prior to microscopy will permit visualization of the DNA.
Analysis of the comets is performed with the aid of software, such as Comet Assay IV or
OpenComet. Supercoiled DNA is found in the head and freed DNA loops and fragments
comprise the comet “tail”33¢, Several metrics have been utilized to measure comets, including
tail moment, Olive moment, and percent DNA in the tail>3”3, but use of percent DNA in the
tail is preferred since it is proportional to DNA break frequency???3*8, Detailed protocols for
the OGG1 modified comet assay used in the thesis work are found in Papers I and I11.

Culture/ \
Treatment

Suspend
/ + DNA Stain in LMP agarose

Gel
Neutralization Fluorescence Layers
Microscopy
+
— Analysis

Alkaline Unwinding
+ Electrophoresis / Losi
ysis
+ OGG1

Figure 14: Graphical procedure of the modified (+ OGG1) alkaline comet assay. All points from the lysis
step onwards are performed in the dark to limit background exogenous DNA damage.
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2.2.1.3 Utility in the current studies

The issue of accurately measuring 8-oxo-guanine is well known and is why the European
Standards Committee on Oxidative DNA Damage (ESCODD) was established in the
1990532022325 Depending on the assay used, chromatographic methods could detect orders
of magnitude higher 8-oxo-guanine than enzyme-based methods, such as the comet assay’?.
As 8-oxo-guanine is among the most common byproducts of oxidative damage and is useful
as a biomarker for human diseases, it was vital to identify the most accurate method of
detection, especially for endogenous, background levels. Chromatographic methodologies,
such as HPLC or gas chromatography-mass spectrometry (GC-MS), are expected to be most
accurate, due to their detection limits. These methods were compared with the alkaline
elution, alkaline unwinding and comet assays for the ability and sensitivity in detecting 8-
oxo-guanine from multiple sources**342, Antibody staining for 8-oxo-guanine, however, was
not included in the evaluation. The results indicated that chromatographic methods,
particularly HPLC, were more sensitive for detecting differences in 8-oxo-guanine in a dose-
dependent manner, especially for samples treated with exogenous oxidation320-322:340,
However, the methods were unsuitable for measuring endogenous 8-oxo-guanine due to
oxidation artifacts introduced during sample preparation®®. Thus, while the comet assay is
less sensitive than chromatographic means, it is very effective for measuring background 8-

oxo-guanine lesions®?2,

The OGG1 modified alkaline comet assay had the most utility in the studies conducted for
this thesis work due to its selectivity for 8-oxo-guanine®?’ and the tightknit relationship of
MTHI1, NUDTS5 and NUDTIS5 to this nucleobase. From past studies, it was known that
MTHI depletion or inhibitors can induce selective comet tails in OGGI-treated

124,129

samples , suggesting an increased presence of §-oxo-guanine in DNA, thus, they were

used as controls.

2.2.1.4 Issues/Complications

One of the overarching issues with the comet assay, which has been touched upon in
numerous reviews and commentaries, is the fact that there is very little standardization of the
protocol’?’. Studies conducted to evaluate inter-laboratory variability of the comet assay
showed that there was very little variability within the same lab, but, perhaps not surprisingly,
there were major disparities among different labs®*3-**7. The conclusions on the source(s) of
discrepancy ranged from image analysis, staining, or protocol used***3** to the duration of
enzyme incubation®*. Scoring of comets can also be time-consuming and subjective,
especially if automated software is not used®*’. In light of the number of variations and
modifications to the comet assay that have been introduced over the years, it is no surprise
that this problem becomes magnified. The ESCODD and European Comet Assay Validation
Group (ECAVG) consortia have highlighted these issues and have laid forth a framework for
assay standardization. In principle, standardization should be extended to all variations of the

comet assay to minimize problems with reproducibility among independent groups.
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The second major problem arises from technical complications while performing the comet
assay*?’. Among the most frequent issues are gels detaching from microscope slides and
unexplainable variations in comet appearance, such as random highly damaged cells, large
tails detected in unexposed control samples and comet tails extending in different
directions®*’. Prolonged lysis times are known to increase the propensity of gels detaching
from microscope slides, so care should be taken when extending lysis for longer than a
day?2. In some cases, especially when monitoring endogenous 8-oxo-guanine in DNA, we
found that cells that had been in active culture for more than 3 or 4 weeks gave high
background signals that masked the effects of adding OGG1 in the modified alkaline comet
assay. Another important source of technical variability can appear in modified forms of the
comet assay, where differences in purity or activity of glycosylase purification can have

lasting impacts on comet measurement and inter-experimental variability2°.
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2.2.2 The cellular thermal shift assay (CETSA)

2.2.2.1 Background

In general, the efficacy of a candidate drug molecule can be directly related to its ability to
bind specific target(s) inside cells**332, Adverse toxicity may arise when target proteins
become saturated by a ligand in certain cell types or may result from non-specific binding to
other proteins or macromolecules. Thus, information regarding the potency and specificity of

target engagement within cells is invaluable to drug development and clinicians*#-3>2,

The cellular thermal shift assay (CETSA) was born from the biophysical principle that

ligands bound to a protein of interest can result in thermal stabilization?>3-3%7

. As a particular
protein is heated, the energy infusion will eventually cause unfolding and aggregation as the
intramolecular bonds are broken. The temperature at which 50% of protein is aggregated is
known as the aggregation temperature (Tag)>*®3>". The thermal shift of proteins by a ligand is
likely entropically-driven, as increasing ligand concentration raises the probability that the
protein of interest is not unfolded®>*3>°, Therefore, data from CETSA can complement
thermal shift assays performed in vitro. Detection of a specific protein is possible with
antibodies, and the typical readouts are western blotting (for lower-throughput studies) and
AlphaScreen® technology, which utilizes antibody-conjugated donor and acceptor
fluorescent beads and is best suited for higher-throughput screening applications®’. The
recent demonstration of its utility as a primary screening assay was reported in the search for

S360

stabilizers of TS°*”, whereas its use for monitoring target engagement in situ was also

recently described®!. Importantly, CETSA, like other cellular target engagement

methodologies, permits indirect relation of target occupancy to relevant phenotypic events®>’.

More recently, the principles of CETSA have been combined with the power of mass
spectrometry to create a new technique known as thermal proteome profiling (TPP or mass
spectrometry CETSA [MS-CETSA])*23%, This advancement has increased capacity for
target engagement analysis from one protein of interest to nearly the entire proteome (roughly
7000 proteins) in a single experiment. While the traditional CETSA assay is great for
monitoring target engagement of a particular protein, TPP can provide information regarding
off-target interactions of a given ligand and identify previously unknown targets of drugs
currently used in the clinic*®?3%, Along these lines, phenotypic alterations and responses to
an inhibitor or ligand may be inferred from clustering and mapping of the thermal proteomic
profile’®. Altogether, this showcases the potential power of CETSA when applied to the
cellular proteome.

Therefore, in many shapes and instances, the development of CETSA has transformed the
way academia and industry approach and prioritize confirmation of cellular target
engagement. The core methodology itself is straightforward and can be performed in virtually
any laboratory that has a ligand for testing, high affinity antibodies for particular target(s) of
interest and a gradient polymerase chain reaction (PCR) machine. As further applications of
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the CETSA assay evolve and alternative assays spurred by its success arise, the scientific

community as a whole will reap the benefits.

2.2.2.2 General protocol (Figure 15)

The basic principle of CETSA implies that two essential steps must occur: 1) Heating of cell
samples in the absence or presence of a ligand to denature protein that is not bound by the
ligand and 2) separation/clarification of aggregated protein from soluble, stabilized protein

357, Outside of these two basic tenets, there are many steps

that is detected by an antibody
within the protocol that can be altered and require empirical optimization, as the biophysical
properties of proteins and potential ligands vary tremendously®’. In addition, there are
several flavors of the CETSA assay that will yield different information regarding a ligand’s
potential affinity for a protein of interest. First off, CETSA can be performed with intact cells
or cell lysates, which, due to gross changes in environmental complexity, usually results in
different melting temperatures for a given protein®6337:362363  Traditional CETSA is
predicated on a dose-dependent shift in a protein’s melt curve (T.g) by a given ligand,
whereas relative stabilizing potential and affinity may be evaluated by isothermal dose-
response fingerprint CETSA (ITDRFcersa)*%%7. ITDRFcersa permits comparisons of ligand
potency by monitoring protein stability at a single temperature.

For the sake of simplicity, the protocols employed in Paper III used the originally-described
settings for heating to investigate NUDTS inhibitors, namely a 3-minute heating
duration®%337, CETSA with cell lysates was performed by collecting HL-60 leukemic cells,
washing them with PBS, and resuspending them in Tris-buffered saline (TBS) complemented
with protease inhibitors. The addition of protease inhibitors ensures degradation of proteins
does not impact protein levels following cell lysis. In some cases, where other post-
translational modifications may influence protein stability, phosphatase or deubiquitination
inhibitors may also be added to the buffer to ensure their integrity’**. Next, the cells were
aliquoted in PCR tubes and lysed by freeze-thaw cycles with a dry ice/ethanol bath and 37°C
water bath. To clarify the cellular debris from the released proteins, centrifugation was
performed and the lysates were transferred to new PCR tubes. Clarified lysates were then
incubated with NUDTS inhibitors of interest or the equivalent volume of dimethyl sulfoxide
(DMSO) for 30 minutes at room temperature to allow for inhibitor binding equilibration.
Following incubation, the samples were heated in a gradient PCR machine at the given
temperatures for 3 minutes, followed by a 3-minute temperature equilibration step at room
temperature. Another high-speed centrifugation step pellets the aggregated proteins, and the
resulting lysate is used for western blotting with anti-NUDTS5 antibody and anti-superoxide

dismutase 1 (SOD1) antibody, as a loading control due to its high thermostability3¢°.

Experiments with intact HL-60 cells, including the ITDRFcgrsa studies, followed many of
the same steps as above. Particular differences included the treatment of cells in culture for 3
hours with DMSO or NUDTS inhibitor. When collecting for analysis, the cells were washed
twice with PBS to remove excess compound. This was a necessary step because cell
membranes are ruptured at higher temperatures, including the range where NUDTS5
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stabilization is seen . The cells were prepared in TBS buffer with protease inhibitors as

before, heated for 3 minutes, cooled, and immediately freeze-thawed to lyse the cells.
Following centrifugation, the clarified protein lysates were analyzed by western blotting. The
ITDRFcEersa experiments were performed at 83°C, as most of the NUDTS protein had
aggregated at this temperature.

Cell Lysate Intact Cell
CETSA CETSA
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Figure 15: Graphical procedure for CETSA experiments performed during the thesis work. Prior to lysis
or heating, all cells were resuspended in TBS complemented with protease inhibitors to minimize proteolysis
during sampler preparation.
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2.2.2.3 Utility for the current studies

CETSA ended up being a crucial assay for evaluation of NUDTS inhibitors. Due to the lack
of information regarding its biological functions at the time, functional or phenotypic
screening assays were simply not possible. However, CETSA gave us the opportunity to
evaluate the NUDTS inhibitors in cells without the need of understanding its function.

We realized early on that gradation of the CETSA assay was possible and could be useful to
screen our NUDTS inhibitor library to distinguish the most active compounds. The screening
funnel we devised started with NUDTS stabilization in cell lysates, followed by stabilization
in intact cells, and, lastly, qualitatively ranking inhibitors that cleared the first two phases by
their ability to stabilize NUDTS at the lowest treatment dose with ITDRF. To facilitate more
rapid screening of our inhibitor library, we utilized an isothermal temperature of 83°C to
evaluate NUDTS inhibitors at a single 20 uM dose and compared NUDTS protein levels to a
37°C control and 83°C DMSO-treated control. This, in effect, gave relative stabilizing ability
without requiring full melt curve analyses for every compound. Importantly, however, one
cannot accurately determine relative affinity from these single points, as the aggregation
curves may differ. Absolute affinity can be derived from dose-dependent shifts in the melting
curves (not magnitude of shifts alone), whereas relative comparison is possible with
ITDRF?*33%, As a result of this CETSA-guided approach, we identified our lead inhibitor,
THS5427, and confirmed its ability to dose-dependently shift the Toee of NUDTS.

2.2.2.4 Issues/Complications

Despite all of the abilities that CETSA has introduced, there are still drawbacks inherent to
the fundamentals of the concept or that may be improved upon with newer iterations of the
assay. The key for CETSA to work as advertised is for the user to have access to a high

affinity antibody to probe for a native protein®>’

. In many cases, as with proteins that are not
commonly studied or in high demand, obtaining good antibodies may prove difficult. Using a
less-than-acceptable antibody will complicate all iterations of the CETSA assay and
convolute interpretation of results. One way of getting around this is to express a recombinant
protein that is fused to an epitope tag. Antibodies recognizing epitope tags are commonplace
and alleviate affinity concerns, as we have experienced in our lab with other projects.

Nonetheless, the user would have to engineer cell lines in order to achieve this workaround.

The number of variables required for optimization of a CETSA protocol for a particular
protein may be very complex. These areas include ligand exposure times, heating
temperature, and duration of heating, among others®>>’3>°, Furthermore, while CETSA is quite
suitable for soluble proteins, there may be further optimization required to extract chromatin-
bound or membrane-bound proteins, although measures to incorporate these classes of
proteins in CETSA analyses, including addition of detergents, have been recently

described306-367,
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2.3 SUMMARY OF RESEARCH PAPERS

2.3.1 Crystal structure, biochemical and cellular activities demonstrate separate
functions of MTH1 and MTH?2

NUDT15 (MTH2) had been proposed as a “back-up” enzyme to MTHI that sanitizes
oxidized nucleotides from the ANTP pool!3”-13%140 The incorporation of oxidized bases into
nucleic acids causes transversion mutations and, potentially, cell death®*#1:44-49.7 Tn this
study, we reported that NUDT1S5 is very different from MTHI1 and has a minimal role in 8-
0x0-dGTP sanitation, which can be primarily attributed to poor fit of the 8-oxo-guanine
nucleobase in the enzyme active site. This data was further verified by biochemical and cell
biology experimentation to assess NUDT15 functions.

First, we explored the substrate activities of NUDT15, MTHI and closely related NUDIX
enzymes, NUDT17 and NUDTI8, by the malachite green assay (MG assay) and HPLC
(Figure 16a, b). The MG assay measures inorganic phosphate (P;) levels in aqueous solution
and was employed by coupling a NUDIX hydrolase and an additional phosphatase to
generate free P;. Compared to MTH1, NUDT15 (and the others) had virtually no hydrolysis
activity towards 8-0xo-dGTP or 2-OH-dATP. Substrate saturation and HPLC experiments
further confirmed that both MTH1 and NUDT15 hydrolyzed dGTP at similar efficiencies but
MTHLI is approximately 230-fold more efficient at hydrolyzing 8-oxo-dGTP.

To understand if structural differences could account for the distinct substrate preferences, we
next solved the crystal structure of NUDT15 to 1.8 A by X-ray crystallography (Figure 16c,
d). Despite high sequence similarity to MTH1, NUDT15 was confirmed to be a homodimer
by both crystallography and size-exclusion chromatography. The overall structure of
NUDT15 was highly similar to MTH1, but major differences in the substrate binding site of
NUDTI15 (namely, the orientation of GIn44 and differences in key residues forming the base
of the active site) suggested that 8-oxo-dGMP would be a poor fit.

We then wanted to determine if the limited activity towards 8-oxo-dGTP in vitro was
reflected in cells when NUDT15 was depleted by siRNA. NUDT15 depletion had no effect
on overall survival in multiple cancer cell lines by clonogenic survival assay, but also did not
further decrease the survival of MTH1 depleted cells. In addition, NUDT15 knockdown had
no effect on cell cycle progression or proliferation (flow cytometry), and NUDT15 protein
expression did not fluctuate over the cell cycle (double thymidine block and western blot).
We then tested the effect of NUDT15, MTHI or combined knockdown on induction of the
DNA damage response by immunostaining for RPA and 53BP1 foci. While MTHI
knockdown increased these markers, NUDTI15 knockdown had no effect alone or in
combination with MTH1 siRNA. Similarly, OGG1-specific lesions were quantified using the
modified alkaline comet assay, and as before, MTH1 depletion induced a significant increase
in comet tail moment with OGGI1 treatment'?* but NUDT15 depletion had no effect (Figure
16e). Cumulatively, these data suggest NUDT15 has a very different role from MTHI1 in
cells, as there there appears to be no effect on oxidized nucleotide metabolism.
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In an attempt to identify true substrates for NUDT15, we screened a larger panel of NUDIX-
like substrates by malachite green assay and HPLC (Figure 16f). Interestingly, NUDT15
showed moderate activity hydrolyzing the canonical nucleotides, dGTP, dTTP and dUTP, but
very low activity against 8-oxo-dGTP and other oxidized nucleosides, especially when
compared to MTH1. However, we also saw that NUDT 15 had activity in hydrolyzing 6-thio-
(d)GTP, the active species in thiopurine treatments, in line with recent reports that patients
possessing NUDT15 missense mutations were hypersensitive to thiopurine treatments!'46-148,
The crystal structure also indicated that the primary point mutation, Arg139Cys (R139C),
was located within alpha helix 2 of the protein. Thus, altogether, this work demonstrated that

NUDT]1S5 is likely not an oxidized nucleotide pool sanitation enzyme like MTH1.
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Figure 16: NUDT1S5 is biochemically, structurally and biologically distinct from MTHI. a, Enyzmatic
activities of MTH1, NUDT15, NUDT17 and NUDT18 against canonical and oxidized nucleoside substrates by
malachite green assay. b, Substrate saturation curves compare the enzyme kinetics of MTHI and NUDT15 in
hydrolyzing 8-0xo-dGTP and dGTP. ¢, Comparison of the enzyme binding pockets of MTH1 (purple) and
NUDTI15 (cyan). d, Comparing 8-oxo-dGMP bound in the MTHI1 active site with key binding interactions
(purple) and the structural dissimilarity of the same residues in the NUDT 15 active site (cyan). e, OGG1-specific
lesions identified by modified alkaline comet assay with knockdown of NUDT15 or MTHI in U-2 OS cells. f,
Broadened screening of potential NUDT 15 substrates by malachite green assay.
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2.3.2 NUDT15 hydrolyzes 6-thio-deoxyGTP to mediate the anticancer efficacy of
6-thioguanine

From Paper I, we knew that NUDT15 does not have a substantive role in hydrolyzing
oxidized nucleotides but could catalyze hydrolysis of thiopurine triphosphates. The
ramifications of this activity, and of the recently-identified NUDT15 missense variant,
R139C, on thiopurine toxicity in cells required further investigation.

In Paper 11, using wild-type (WT) NUDT15 purified protein, we confirmed that NUDT15
hydrolyzed 6-thio-(d)GTP to 6-thio-(d)GMP by HPLC (Figure 17a). We then showed that
the R139C mutant still possessed catalytic activity and could hydrolyze 6-thio-(d)GTP, as
well as the canonical nucleotide, (d)GTP, with little difference in activity when compared to
NUDT15 WT protein by substrate saturation kinetics analyses (Figure 17b). This suggested
that the R139C mutation did not directly affect NUDTI15 catalytic activity. We then
confirmed that 6-thio-GTP was a NUDT15 substrate by solving the co-crystal structure of the
6-thio-GTP hydrolysis product, 6-thio-GMP, in complex with NUDT15. Overall, the binding
was very similar to that of dGTP except that the preference for 6-thionylated substituents can
be explained by the greater accommodation of this group by a hydrophobic pocket in the
NUDT15 active site, comprised of the residues Phel35, Leul38 and GIn443¢8,
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Figure 17: NUDT15 preferably hydrolyzes 6-thio-(d)GTP and the R139C missense mutant maintains
catalytic function. a, Catalyzed hydrolysis of 6-thio-dGTP to 6-thio-dGMP and 6-thio-dG by NUDT15 with
HPLC. b, Substrate saturation curves comparing wild-type and R193C NUDT 15-catalyzed hydrolysis of 6-thio-
(d)GTP compared to (d)GTP.

Next, we wanted to understand how the R139C mutation sensitized patients to thiopurines,
since it is still capable of hydrolyzing 6-thio-(d)GTP in vitro. We then over-expressed
doxycycline (DOX)-inducible HA-tagged NUDTI15 WT and R139C in HCT116 colon
carcinoma cells. Upon DOX treatment, WT NUDT15 protein was robustly expressed but the
R139C mutant was barely detectable by western blot (Figure 18a). mRNA expression of WT
and R139C transcripts was virtually identical, so we then considered that changes in protein
turnover of R139C may be the cause. Indeed, when we treated the HCT116 cells expressing
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NUDT15 WT and R139C with MG-132, a proteasome inhibitor*®, we could rescue the
protein levels as early as 3 hours following addition (Figure 18b). p53 protein, which is also
rapidly turned over in cells by MDM2370, was blotted as a control. Thus, we concluded that
the R139C mutant is expressed in cells but rapidly degraded by the proteasome.

Due to the fact that R139C had activity in vitro but was degraded when expressed in cells, we
considered that the mutation, which replaces an arginine within helix a2 with a cysteine, may
be destabilizing the protein structure. When we studied the thermal stability of NUDT15 WT
and R139C by differential scanning fluorimetry (DSF), we saw that WT NUDT15 had a Tn,
of 58°C, while the R139C mutant had a melting temperature (Tm) of 46°C (Figure 18¢). We
also noticed that the basal fluorescence for NUDT15 R139C was drastically higher than for
the WT protein. Sypro orange dye preferentially binds to hydrophobic surfaces of proteins as
they unfold®’!. Thus, the increased basal fluorescence from the R139C mutant suggests that
the structure may be more loose and open than the WT counterpart.

Mutagenesis of Argl39 to serine or alanine had the same effect as mutation to cysteine, while
mutation to lysine could mostly restore the thermal stability of NUDT15 (Figure 18c).
Argl39 is important for several intramolecular interactions in the protein structure, most
notably, an ionic interaction with Asp132, which is on an adjacent alpha helix (Figure 18d).
Arginine and lysine are able to make this interaction while the other mutants cannot. Thus,
the R139C mutation destabilizes the NUDT1S5 protein structure likely due to loss of
stabilizing intramolecular bonding networks.
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Figure 18: NUDT15 R139C is unstable and rapidly degraded in cells due to loss of key intramolecular
bonding. a, HA-tagged NUDT15 WT and R139C expression in HCT116 cells. b, HCT116 cells expressing HA-
tagged WT or R139C mutant NUDT15 were subjected to MG-132 treatment. p53 protein was blotted as a
control. ¢, DSF with WT NUDT15 and various Argl39 mutants. d, Arg139 of NUDT15 makes a key intrahelical
bond with Glu143 and interhelical ionic interaction with Asp132 of the adjacent alpha helix (bonds in yellow).
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We next sought to understand how loss of NUDT15 would affect 6-thioguanine toxicity.
Mismatch repair (MMR)-deficient and -proficient HCT116 and HCT116 3-6 cells,

244,247,372-374 and

respectively, have been used extensively for studying 6-thioguanine toxicity
were transduced with Control or NUDT15 shRNA. Toxicity of thioguanine was assessed in
both cell lines by clonogenic survival assay (Figure 19a). As expected, shControl-expressing
HCT116 3-6 cells were more sensitive to thioguanine than MMR-deficient HCT116 cells.
Depletion of NUDT15 rendered the HCT116 3-6 cells extremely sensitive to thioguanine,

while even the parental HCT116 cells displayed some increased sensitivity.

Futile repair cycling and prolonged G2 checkpoint activation are signatures of thiopurine
DNA incorporation in MMR-proficient cells**>248, We then performed a time course to see if
a very low dose of thioguanine (150 nM) could selectively affect the G2 DNA damage
checkpoint response in NUDTI15 knockdown cells (Figure 19b). Thioguanine addition
robustly induced phosphorylation of Chkl and then Chk2, as well as subsequent G2 phase
accumulation (indicated by inhibitory CDK2 phosphorylation)*”, in a time-dependent
manner in the NUDT15-depleted cells but less so in control cells.
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Figure 19: NUDT15 depletion greatly
sensitizes cells to thioguanine treatment. a,
Mismatch repair-deficient HCT116 and —
proficient HCT116 3-6 cells were treated with
control or NUDT15 shRNA by doxycycline
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v

cellular thiopurine metabolism.

Therefore, NUDT15 appears to be a barrier to the anti-cancer efficacy of thioguanine by
hydrolyzing the cell-active metabolites, 6-thio-GTP and 6-thio-dGTP, to inactive
monophosphates (Figure 19¢). Our data suggests that patients homozygous for the NUDT15
R139C mutation are hypersensitive to thiopurine treatments due to inherent protein instability
from loss of key intramolecular bonding interactions and subsequent protein degradation.
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2.3.3 Targeted NUDTS inhibitors block hormone signaling in breast cancer cells

NUDTS is another member of the NUDIX family implicated in oxidized nucleotide pool
sanitation!3%:140:163-165, however, the physiological relevance of this activity, and ambiguity

surrounding its substrate preferences!*!, has not been extensively evaluated.

In Paper III, we first assessed the substrate specificity of NUDT5 by MG assay and HPLC.
Distinct from MTHI1, NUDTS5 was unable to hydrolyze any of the oxidized or canonical
nucleoside substrates tested but efficiently hydrolyzed ADP-ribose (Figure 20a). Similarly,
we compared NUDT5-mediated hydrolysis of the two proposed substrates, ADP-ribose and
8-0x0-dGDP, and identified hydrolysis products by HPLC. Matching with the MG data,
NUDTS hydrolyzed ADP-ribose to AMP but had no activity towards 8-oxo-dGDP.

NUDTS was then depleted in U-2 OS cells before assessing DNA damage markers by
immunofluorescence microscopy and OGGl-specific lesions in DNA by the modified
alkaline comet assay. Knockdown of NUDTS5 with two specific siRNAs caused no increases
in YH2A. X, RPA or 53BP1 foci, nor was there an increase in OGG1-specific DNA lesions by
modified alkaline comet assay when compared to MTHI1 inhibitor, TH1579 (karonudib;
Figure 20b)'%.
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Figure 20: NUDTS preferentially hydrolyzes ADPR. a, Relative enzymatic activities of NUDIX substrates by
MTHI1 (blue) and NUDTS (red) by in vitro malachite green assay. b, U-2 OS cells treated with MTH1 inhibitor,
THI1579 (karonudib), or depleted of NUDTS5 were analyzed by the modified alkaline comet assay, which
includes an hOGG1 incubation step (red) and is compared to buffer-treated samples (blue).

To assess NUDTS function with regard to ADP-ribose hydrolysis in a cellular context, we
depleted NUDTS5 by siRNA, prepared cell lysates for enzymatic reactions with spiked ADP-
ribose and analyzed the hydrolysis by HPLC. As we expected, NUDT5-depleted U-2 OS
cells hydrolyzed ADP-ribose less efficiently than control cells and this effect could be
completely rescued by addition of purified NUDTS5 protein to the reaction mixture.
Altogether, the data suggest that NUDTS5 is minimally involved in oxidized nucleotide
metabolism and that ADP-ribose is a primary substrate.

In conjunction with Laboratory for Chemical Biology Karolinska Institutet/Chemical Biology
Consortium Stockholm (LCBKI/CBCS), we performed a small molecule high-throughput
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screen of approximately 72,000 compounds utilizing a screening-compatible, enzyme-
coupled MG assay. From hit compound, TH1167, medicinal chemistry efforts to improve
biochemical potency were focused on diversification at the 8-position of the theophylline
core and the far tail-end of the molecule. We obtained a co-crystal structure of TH1713 in the
active site of the NUDT5 homodimer, and the theophylline ring (present in all compounds
within this series) was firmly anchored in place by pi-stacking and hydrogen bonding
interactions. The theophylline 8-position, meanwhile, was directed towards the solvent space.

With limited biological roles for NUDTS established in the literature, we utilized a compound
screening funnel that prioritized cellular target engagement by CETSA3®%¢3%7 to identify
potent, cell-active NUDTS probes (Figure 21a). We selected several compounds with ICsp <
100 nM by the MG assay. These compounds were analyzed by CETSA with HL-60 cell
lysates and tested for their ability to stabilize intracellular NUDTS5 at 83°C and 20 pM.
Notably, three compounds, TH5423, TH5424 and TH5427, stabilized NUDTS to greater than
50% of 37°C NUDTS protein levels. These three compounds, and TH1659, were then tested
for their ability to stabilize NUDTS5 with intact HL-60 cells at 20 uM, and, again, TH5423-
5427 stood out from TH1659. Each of these compounds was then tested by ITDRFcgtsa to
determine which compound was able to stabilize intracellular NUDTS at the lowest
concentration (Figure 21b). Indeed, TH5427 was clearly the most potent and stabilized
NUDTS at < 1uM, both by CETSA and by DARTS, a protease degradation-based cellular
target engagement assay>’® (Figure 21c¢).
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Figure 21: CETSA-guided screening of top NUDTS inhibitors identifies TH5427 as a lead agent. a,
Screening funnel for top NUDTS inhibitors with successive CETSA. b, ITDRFcersa for NUDTS5 inhibitors with
intact HL-60 cells. ¢, CETSA with TH5427 at 2.5 or 20 uM in intact HL-60 cells.
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Having now identified potent, cell-active NUDTS inhibitors, we needed to test them in a
biological context. To this end, we established a collaboration with the Miguel Beato lab at
the Center for Genomic Regulation in Barcelona. They recently discovered that NUDTS can
synthesize ATP in the nucleus following hormone stimulation of breast cancer cells, and this
PAR-derived nuclear ATP is required to power ATP-dependent chromatin remodeling and,
thus, hormone-dependent gene regulation and cell proliferation'’! (Figure 22).

NUDTS is able to synthesize ATP from ADP-ribose in the presence of PP; in vitro. Thus, we
tested if TH5427 could block the formation of AMP and ATP from the ADP-ribose formed
from *?P-PAR and bovine PARG by thin layer chromatography and radiography. Addition of
THS5427 completely abrogated NUDTS activity and reinforced the fundamental biological
role for NUDTS5 in producing AMP and ATP from ADP-ribose. With a nuclear-targeted
luciferase reporter’”’, we showed that TH5427 blocked nuclear ATP formation following
R5020 stimulation at just 1.5 uM in T47D breast cancer cells. Additionally, it impeded the
displacement of histone HI from DNA 30 minutes following hormone addition, as assayed
by ChIP with 5 different histone H1-interacting regions'’®>. Then 6 hours following R5020
addition, TH5427 blocked the transcription of the progesterone-dependent genes, EGFR and
MMTV-Iluc. Finally, TH5427 was able to completely inhibit progesterone-dependent cell
proliferation by BrdU incorporation 24 hours post-R5020 treatment.
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Figure 22: NUDTS is required for hormone-dependent, PAR-derived nuclear ATP synthesis and gene
regulation in breast cancer cells. In response to hormone, NUDTS5 synthesizes ATP from ADPR, which is
required for ATP-dependent chromatin remodelling and subsequent gene regulation and proliferation.

Altogether, the data suggest that TH5427 is a potent, selective and cell-active NUDTS5 inhibitor that
can be used to probe PAR and ADP-ribose metabolism, novel NUDTS5 biology and uncover novel
therapeutic strategies for treating human diseases.
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2.4 DISCUSSION AND IMPLICATIONS

At the time this thesis work commenced, the best-characterized function of human NUDIX
hydrolases was the sanitation of the oxidized nucleotide pool by hydrolysis of mutagenic 8-
oxo-(d)GTP and 2-OH-(d)ATP to their respective monophosphate
species*#4849.64 13O, 24A18.141378 ' thyg preventing their incorporation into nucleic acids
by DNA and RNA polymerases. This makes sense because the first described NUDIX
protein, E. coli MutT#-$4116 performed this function and, prior to renaming to NUDIX by
Bessman and colleagues!!'?, they were called the MutT family of proteins. Thus, human
NUDIX proteins were identified by sequential and structural homology and initially tested for
their ability to hydrolyze oxidatively-damaged nucleotides like MutT. In turn, this led to the
discovery of MTH1 (MutT homology 1; NUDT1)!"® and, later, other NUDIX hydrolases that
could also facilitate hydrolysis of 8-oxo-guanine species, including NUDTIS5
(MTH2)!37:139:.140 and NUDT5!138:140.157.163-166 _ \york pioneered by Sekiguchi, Kamiya, and

Nakabeppu, among others.

It should be no surprise, then, that functional analyses of NUDIX proteins were biased
towards oxidized nucleotide pool sanitation and 8-oxo-G-centric in nature. This inclination
for a particular phenotype likely obscured the relevant functions of several of the human
NUDIX proteins, as was recently alluded to in a review by Alex McLennan'#!, who has
contributed immensely to our understanding of NUDIX enzyme biochemistry and function.
Nonetheless, this phase served as an important starting point and generated tremendous
interest in establishing the relevance of the NUDIX superfamily, particularly with respect to

cancer.

It was also this perspective that generated our lab’s interest in studying MTH1 and, soon
thereafter, NUDT 15 and NUDTS, as potential anticancer targets for small molecule inhibitors
synthesized in-house. The early success in the lab regarding the potential of small molecule
inhibitors targeting MTH1!2!12% led us to pursue the possibility that NUDT15 and NUDTS5
may be MTHI redundancy factors that could serve as a resistance mechanism to MTHI1
inhibitors. Instead, as was addressed in the component papers of this thesis, NUDT15 and
NUDTS appear to be important for diverse functions that are unrelated to oxidized nucleotide
metabolism, at least, under the tested conditions and cell lines.

2.4.1 NUDT15 (MTH2)

Papers I and II highlighted that NUDT15 has a prominent role in regulating thiopurine
efficacy in cells, namely by hydrolyzing the active metabolites, 6-thio-GTP and 6-thio-dGTP,
to their respective monophosphates**®37°, This was in line with initial papers identifying the
NUDT15 R139C mutation as a highly correlated predisposition factor for thiopurine-induced

146-148

leukopenia and is now further substantiated by numerous follow-up studies with
patients of different ethnic backgrounds. Like other factors influencing thiopurine toxicity,
such as TPMT or ITPA, screening patients for NUDTI5 missense mutations will likely

become common clinical practice.
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Just prior to publishing Paper II, another group published a highly similar story*°. In most
respects, their findings agreed with our own, except with regard to the reason for sensitivity
seen in NUDT15 R139C patients. Their conclusions were that R139C was not enzymatically
active due to thermoinstability, but this did not affect protein expression in cells. The reasons
for this disparity are likely due to key differences in experimental approaches. First of all, the
in vitro enzymatic assays were performed at 37°C and not room temperature (20-21°C), as
was done in our studies’”. Given the lowered protein stability of R139C, it would make
sense that we saw activity and the other group did not. A logical conclusion, then, is that the
R139C mutation does not directly affect enzyme catalysis, but, at physiological temperature,
unfolding of the protein would compromise enzyme function. It was puzzling, therefore, that
the other group did not see degradation of R139C when expressed in cells, as the proteasome
system should flag the protein for destruction®®!. One reason for this could be that they
utilized a transient transfection approach or, perhaps, the choice of protein fusion tag. In any
case, greater perspective will be gained if these studies are reproduced by a third, independent

group.

One of the other objectives within the NUDT15 project was the development and evaluation
of NUDT15 inhibitors, which was alluded to in another thesis from our research group**? and
is not included as part of this thesis. Identical to methods with RNAi, NUDT15 inhibitors can
potentiate the effects of thiopurines by increasing the active triphosphates, with further
sensitization seen in MMR-proficient leukemias than in MMR-deficient cells®*2. An
interesting question becomes then — if NUDT15 inhibitors were developed to a pre-clinical
stage, would there be any interest in using them? The answer is likely complicated on
multiple levels. For one, thiopurines are a cytotoxic therapy that will also affect rapidly
proliferating normal cells, such as in the gut and bone marrow, which is the reason doses
have to be lowered or treatment completely halted, in some cases. Additionally, patients with
nonfunctional NUDT15 are deathly sensitive to thiopurines'#-!%®, The only way this would
be practical is if expression of NUDT15 was higher in cancer cells than in normal cells;
however, this has yet to be properly studied. Furthermore, long-term side effects, such as the
photoreactivity of thiopurines and their effects on DNA, proteins, and lipids, have to be
considered, especially since children are among those typically treated with the drug??®-383-384,
Another possibility is that thiopurine dosing regimens could be titrated down if combined
with NUDT15 inhibitors, which may curb some of the negative side effects. However,
thiopurines are used as maintenance therapies for ALL, not primary treatments, and 90+% of
childhood ALL cases are cured with the current standard-of-care??®??°. Thus, there is very
little incentive to experiment further with dosing and risk losing an already-great cure rate.

A logical follow-up question following the role in thiopurine metabolism is: Does NUDT15
influence the efficacy of other nucleoside analogs? This question is readily apparent when
considering the multiple nucleoside analog drugs that are directly or indirectly regulated by
SAMHD12!1-21638  Interestingly, thioguanine triphosphates are not substrates of
SAMHD12!3, which may explain why NUDT15 is relevant in this circumstance. Extensive
screening of both clinical and generic nucleoside analogs may yield further direct substrates
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of, not only NUDTI15, but other NUDIX proteins as well, which may be informative

regarding clinical utility or for determining endogenous substrates.

Quite frustratingly, very little progress was made on the physiological function(s) of
NUDT15 during the course of this thesis, as thiopurines are not endogenously-occuring
metabolites. Based on experiments performed by myself and others, blockade of NUDT15
function by RNAi*®37 or potent NUDT15 inhibitors®*? had no discernable effects on cell
cycle, proliferation, or cell survival for up to several weeks with numerous cell types®68379-382,
This by no means excludes the possibility that NUDT15 has important functions in cells but
suggests that whatever changes occur following loss of NUDT15 are not significantly
impacting normal cellular processes under tested conditions. Still, though, the linkage to
oxidative damage metabolism is ever-present!3’-13%140:192 " mogt recently exemplified by
NUDT15 CRISPR/Cas9 knockout cells being sensitized to hydrogen peroxide!*’. As was the
case with our experiences, NUDT15 knockout cells had no changes to their proliferation
rate!*. Clues to NUDT15’s cellular function(s) may be uncovered by substrate profiling,
which has thus far suggested that dGTP, dTTP, and dUTP are endogenous NUDT15
substrates®*®; however, the relative importance of NUDT15 in modulating dNTP pools is still
unclear. Nonetheless, the work from this thesis has cast doubt on the role for NUDT15 in
metabolizing oxidized nucleotides and defined how NUDT15 affects thiopurine treatments in

patients.

2.4.2 NUDTS

In Paper III, we reported the first small molecule inhibitors of NUDT5 and utilized them to
confirm its role in generating nuclear ATP for chromatin remodeling in response to progestin

in breast cancer cells’%¢

. We used an unorthodox approach to evaluate our compound library:
a CETSA-guided screening funnel. Initially, this was chosen out of necessity because there
were no known NUDTS5-linked phenotypic assays that could reliably inform about the
cellular activity of our inhibitors. However, we later realized that this approach could
alleviate any potential biases that might arise from performing a phenotypic screen. Why try
and define what we think NUDTS5 inhibitors are doing in cells, when we can reliably select
out the compounds that bind NUDTS in cells with the most potency? Our goal was to identify
the best, cell-active NUDTS inhibitor, and then use it to further interrogate NUDTS5 cellular

functions.

To our knowledge, no one has reported utilizing CETSA prioritization as a primary screening
method in cells for a focused library of small molecule inhibitors. From the initial publication
in 2013, one of the recognized advantages of CETSA was the ability to rank inhibitors by
using the ITDRF method to determine relative target engagement potency?>36-337-339:364 More
recently, CETSA with AlphaScreen® was used as a primary screen to identify ligands that
stabilized TS*%, and the authors were able to identify mM inhibitors. What this implies is that
one can screen any set of molecules against a protein of interest in cells and not just identify,
but also rank, inhibitors without knowing anything about the protein’s function. It cannot be

understated just how powerful that is. On that note, it is well established that targeted
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therapies are only as good as their ability to bind the target in cells, which is why prioritizing
target engagement, not just confirming it, should be a goal for inhibitor and drug

development programs®49-332,

By identifying potent, cell-active NUDTS inhibitors, we were able to confirm a new function
for NUDTS5 that was recently reported!’!. The ability for cells to synthesize ATP in the
nucleus has been conveyed over several decades but has never gained momentum as a
bonafide source of ATP production, likely because it was assumed that this ATP was from
mitochondrial contamination or passive diffusion. However, looking back at the series of
manuscripts on the topic, one can see a clear pattern that has developed and led to the point
we are today. Allfrey and Mirsky first saw that HeLa nuclei could generate their own ATP
from DNA®? and Betel added that it was dependent on ribose-phosphate®!'®. Tanuma and
colleagues identified that ATP could be formed in nuclei from PAR catabolism via an
enzyme called ADPR pyrophosphorylase, which catalyzes the formation of ATP from ADPR
and PP'4. This ATP appeared to be important for facilitating repair synthesis of DNA3!3-316,
Oei and Ziegler demonstrated that PAR-derived ATP was dependent on active DNA
replication and required for ligation following DNA repair®!’. Now, we have helped confirm
that PAR catabolism and PP; can make ATP via NUDT5!7!8 bringing the process full

circle.

The ability of NUDTS5 to synthesize ATP from ADPR and PP; is certainly unexpected, not
just because NUDTS is a hydrolase, but also because the reaction is energetically
unfavorable!”!. For hydrolysis, approximately 22 kJ/mol of energy is released but for ATP
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synthesis, 12 kJ/mol is required for the reaction to occur'’*. Wright and colleagues concluded

that loss of a phosphorylation on Thr45 may result in a NUDTS conformational change that

can facilitate PP; binding and ATP synthesis!”!*%

. However, in light of the high melting
temperature and resistance to proteolysis seen in Paper III, it is difficult to envision that a
single phosphorylation event will cause inversion of the NUDTS5 dimer'’!*%7. In fact, the
model proposed by Wright and colleagues would completely disrupt the NUDTS active sites,
as they are composed of residues from both monomers at the dimer interface!>6-137.165,166,386
As these conclusions were based on in silico modeling, crystallographic structure
determination studies would be immensely insightful. Another possibility is that energetic
coupling during PAR hydrolysis by PARG propels the unfavorable ATP synthesis reaction;
since NUDT5 can form a complex with NMNATI1, PARP and PARG!”' and PAR
degradation is absolutely required to produce nuclear ATP3'4316 (addition of exogenous

ADPR is not enough3'”).

An interesting scientific question revolves around the purpose of PAR formation. It is well
known that PARylation orchestrates chromatin dynamics and recruitment of DNA modifying
enzymes, but could it also be an emergency energy store, as Tanuma, Oei and Ziegler
proposed®!*3!7? During chromatin remodeling, which occurs during transcription, replication,
and repair processes, among others; the cell likely requires large quantities of ATP in close
proximity to the dependent enzymes at a moment’s notice'’!*¥’. As PAR is involved in
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coordinating most, if not all, of these processes, could it be the source of ATP (via NUDTS)
for all of them? In the presence of excess ATP, ATP synthesis from PAR catabolism does not
occur, which could indicate that this process is only activated when local ATP concentrations
are low3!4316317 Further supporting this possibility is the fact that ATP, at physiologically-
relevant concentrations of 1-10 mM, can inhibit PARP1 catalysis of PAR3%-3#8 [ikely by both
indirect and direct binding to the enzyme active site’*®. Kim ez al. also proposed that PARP1
was a sensitive metabolic switch that could modulate transcriptional activity of chromatin
depending on local ATP concentrations®®. Collectively, this may indicate an unappreciated

purpose of PAR formation.

With the tools we currently have available, such as the ATP?* and NAD+*° FRET probes, it
will be interesting to see what other PARP-related functions require ATP production from
NUDTS. PARPI, for example, which is known to complex with NUDTS, is well
characterized for its role in repairing DNA damage, but also regulating chromatin structure,
transcription, proteasomal degradation and mitochondrial function®!. PAR itself is also
implicated in numerous other functions — including spindle assembly during mitosis,
translational elongation, macromolecular complex assembly, and regulation of RNA
splicing®!3%, Most, if not all, of these processes also require large amounts of ATP, so it is
conceivable that NUDTS, or some other unknown protein, may also produce ATP from PAR
in these circumstances. Even if we restrict the scope of NUDT5 and PAR-derived ATP
synthesis to the process of transcription, it is entirely possible that transcriptional programs of
several nuclear receptors, like the androgen, retinoic acid, thyroid, and AP-1 receptors®*® —
are activated in the same fashion as estrogen-responsive gene regulation!’!3%6:387 Tt ig
tempting to speculate whether NUDT5-mediated ATP synthesis is required for chromatin
remodeling, ligation of the transient DSB formed prior to transcription (as suggested for
BER?!7), or possibly both, during this process.

As for the development and future of NUDTS inhibitors, we are currently working towards
suitable pre-clinical candidates. Early in vivo characterization of TH5427 is promising, but
further experiments are required, both for pre-clinical efficacy and for selectivity profiling. Of
immediate interest is the confirmation that NUDTS is an important determinant for breast
cancer proliferation, which has been previously suggested in animal studies***, and if the ATP
synthesis mechanism is responsible for this effect. Should this be the case, one argument may
be that PARP inhibitors should be just as effective at blocking hormone-dependent breast
cancer growth. The counterargument is that PARP1/2 are involved in several processes
beyond hormone-dependent transcriptional regulation®®!-%® (see above) and clinical-grade
PARP inhibitors trap PARP to DNA as part of their effective mechanism3*>*¢, both of which
would entail unwanted side effects. Thus, a NUDTS inhibitor will likely be a better option in
this regard. Nonetheless, TH5427 represents a selective NUDTS probe molecule that can be
used to uncover the intricacies of NUDTS, ADPR and PAR biology.
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