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ABSTRACT 
The nucleotide precursor pool is readily susceptible to numerous sources of modification and 
damage, including alkylation, deamination and oxidation/nitrosylation, among others; most of 
which have deleterious effects on nucleic acid integrity and cellular fitness. In addition to 
DNA repair mechanisms, these metabolic byproducts are kept in check by so-called 
sanitation or “housekeeping” enzymes, chief among them the NUDIX hydrolase superfamily. 
Increased metabolic demand and strain in certain contexts, such as cancer, may require a 
greater reliance on these proteins; therefore, they are attractive drug targets. 

The human NUDIX hydrolase, MTH1 (NUDT1), sanitizes the nucleotide pool of 8-oxo-
guanine triphosphates, considered the most common oxidative lesion, thereby preventing 
mutagenesis of nucleic acids and preserving their integrity. Other NUDIX enzymes, namely 
NUDT15 (MTH2) and NUDT5, are proposed to perform similar functions as MTH1, and, 
therefore, may serve as resistance mechanisms for cells treated with MTH1 inhibitors. 
However, very little is known about their biological functions in human cells. 

The focus of this thesis was to determine the biological roles of NUDT15 and NUDT5 and if 
they are desirable drug targets for treating cancer. Surprisingly, we found that neither of these 
proteins appeared to be important for oxidized nucleotide metabolism, but, rather, they had 
unexpected and diverse functions in nucleotide metabolism with cancer therapeutic 
implications. These findings should encourage further study of the human NUDIX family. 

In Paper I, we compared NUDT15 biochemically, structurally and in a cellular context to 
MTH1. NUDT15 hydrolyzed 8-oxo-dGTP about 230-fold less efficiently than MTH1, and its 
depletion in cancer cells neither affected cell survival nor oxidized nucleotide content of 
DNA. The NUDT15 crystal structure explained this deviation from MTH1 and shows that 8-
oxo-dGTP is poorly accommodated in the enzyme active site. We also identified 6-thio-
(d)GTP, the active metabolites of thiopurine chemotherapeutics, as NUDT15 substrates. 

In Paper II, we expounded upon the role of NUDT15 in thiopurine metabolism and why the 
R139C missense mutant causes thiopurine intolerance in patients. NUDT15 efficiently 
hydrolyzes 6-thio-(d)GTP, thus mediating the amount of the active thiopurine metabolites in 
cells. In addition, the R139C mutation does not impact catalytic ability of NUDT15, but 
rather causes destabilization of the protein structure and proteolytic degradation in cells, thus 
explaining why patients with this mutation are sensitive to thiopurine treatments. 

Paper III presents further evidence that NUDT5 may not be an important contributor to 
sanitation of the oxidized nucleotide pool, describes the first small molecule NUDT5 
inhibitors and confirms the nuclear ATP synthetic role for NUDT5 in breast cancer cells.  
Following an initial screening campaign and medicinal chemistry efforts, potent, cell-active 
NUDT5 inhibitors were identified using a CETSA-guided screening funnel. Lead compound, 
TH5427, abrogated progestin-dependent gene regulation and proliferation in breast cancer 
cells, thus, representing a bonafide probe to further study NUDT5 biology.  
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1 INTRODUCTION 
1.1 CANCER AS A METABOLIC DISEASE 

1.1.1 Oncogenes promote the cancer metabolism phenotype 

Cancer was first described as a metabolic disease by Otto Warburg nearly a century ago1. 
Warburg and colleagues made the initial observation that cancer cells consumed far more 
glucose than cells originating from normal tissue, and the glucose consumed by cancer cells 
was predominantly converted to lactate by aerobic glycolysis2, a vastly inefficient energetic 
process compared to oxidative phosphorylation. For this reason, the preference for aerobic 
glycolysis in cancer cells was puzzling for a number of years, until the realization that cancer 
cell proliferation depends on utilizing nutrients to generate biomass and the preference for 
aerobic glycolysis is a secondary consequence3. Today, it is generally accepted that 
carcinogenesis is initiated by activated oncogenes (and loss of tumor suppressors), which 
drive the development of many of the phenomena associated with the hallmarks of cancer4, 
including cancer cell energy metabolism5 (Figure 1). Nonetheless, the Warburg Effect, or the 
reliance of cancer cells on aerobic glycolysis, is a fundamentally important observation in our 
understanding of the metabolic reprogramming that occurs in cancer cells. 

Proto-oncogenes, such as Myc, RAS and phosphoinositol-3-kinase (PI3K)6-8, drive the 
expression of genes that induce proliferation, invasion, metabolic re-circuiting and resistance 
to apoptosis9,10. Due to their growth rate, cancer cells are highly dependent on the 
fundamental building blocks required for biomacromolecule synthesis: glucose (as mentioned 
above) and glutamine, which meets metabolic needs for nucleotide, protein, lipid, and 
nicotinamide adenine dinucleotide phosphate (NADPH) synthesis11. To sustain this high level 
of proliferation, gain-of-function mutations within the receptor tyrosine kinase 
(RTK)/PI3K/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) regulatory axis 
increase expression of glucose transporter 1 (GLUT1) on the cell membrane and, thus, 
directly increase the inward flux of glucose far in excess of ordinary cellular requirements12-

15. As a result of this influx, oncogenically transformed cells have a reprogrammed 
metabolism that can favor glucose utilization via glycolysis16. While glucose uptake 
mechanisms in cancer cells are fairly well defined, the oncogenic mechanisms causing 
glutamine influx are less concrete. That being said, Myc has been shown to play a principal 
role in amino acid transporter 2 (ASCT2) and system N transporter 2 (SN2) expression, which 
directly regulate the amount of glutamine uptake by the cell17-19, and upregulate expression of 
glutamine-metabolizing enzymes, which encourages the flow of glutamine through the 
transporters5,9. On the other hand, loss of the Retinoblastoma (Rb) tumor suppressor family of 
proteins causes glutamine influx via E2F-dependent expression of ASCT2 and glutaminase 1 
(GLS1), indicating that both activation of oncogenes and loss of tumor suppressors contribute 
to glutamine addiction in cancer20. Altogether, these data suggest that to maintain viability in 
a proliferative state, proto-oncogenes are wired to increase nutrients available to generate 
biomass, but at what cost? 
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Figure 1: Oncogenes and tumor suppressors regulating metabolic pathways responsible for the Warburg 
effect. Oncogenes are shown in green, tumor suppressors in red, key metabolic pathways are labeled in purple 
with white boxes, and the enzymes controlling critical steps in these pathways are shown in blue. Reprinted with 
permission from the American Association for the Advancement of Science (AAAS), from Vander Heiden, 
Thompson and Cantley3. 

1.1.2 Reactive oxygen species (ROS) and redox balance in cancer 

A topic of debate for many years has revolved around the subject of reactive oxygen species 
(ROS) and why, or if, there are generally higher levels in cancer cells. ROS, in the form of 
free radical, ionic or non-radical oxygen species, are formed via mitochondria and 
peroxisomes as a byproduct of proliferation and are counterbalanced by ROS scavengers 
found predominantly in the cytoplasm21. Typically, ROS perform essential biological 
functions within cells (signaling related to growth, differentiation, transcription, etc.) when 
present at tolerable levels; however, if ROS leak into the mitochondrial periphery, their 
intrinsic reactivity causes detrimental oxidation of proteins, lipids and 
ribonucleic/deoxyribonucleic acids (RNA/DNA)21,22. Several oncogenes are capable of 
inducing ROS in transformed cells23-26 and, in some instances, the ROS produced is required 
for the tumorigenic potential of the oncogene27. However, proto-oncogenes, such as RAS, can 
control expression of antioxidants that can suppress high ROS in cancer cells28, thereby 
permitting tumorigenesis and suggesting that a majority of cancer cells do have high intrinsic 
oxidative stress that is kept in check by ROS scavengers21,22,24. As such, the redox balancing 
point in cancer cells is likely shifted upwards, due to increased ROS production and 
subsequent elimination by scavengers22 (Figure 2a), implying that abrupt shifts may cause 
selective cell death. Therefore, specific targeting of ROS production29 and metabolism30,31 is 
a current area of intense research that has yielded promising results (Figure 2b).  
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Figure 2: The higher redox balance point in cancer cells may provide redox-targeted therapeutic 
opportunities. a, Due to the tension between higher ROS production and greater redox buffering capacity, 
cancer cells may be susceptible to redox modulation and selective cell killing. b, Stimulating ROS generation or 
targeting mechanisms of ROS elimination with small molecules can induce selective cancer cell killing via redox 
imbalance. Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Drug Discovery22, 
copyright (2009).  
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NOX-mediated ROS generation in cancer cells as a 
means to kill these cells remains to be explored. The 
synthetic retinoid N-(4-hydroxyphenyl)retinamide 
(4HPR) seems to exert its cytotoxic effect against cancer 
cells, at least in part, by elevating the p67phox subunit 
of NOX112.

Interestingly, some compounds exhibit a potent 
ability to promote ROS generation in cancer cells and 
show promising anticancer activity in vitro and in vivo, 
although the precise mechanisms through which these 
compounds increase ROS production are poorly under-
stood. Elesclomol (STA-4783), a novel compound that 
showed therapeutic activity in malignant melanoma 
and prolonged the progression-free survival time in 
a Phase II clinical trial113,114, seems to exert its cyto-
toxicity against cancer cells mainly by inducing ROS 
generation and oxidative damage. Neutralization of 
ROS by antioxidants suppressed the drug’s action113,114. 
Unfortunately, the Phase III clinical trials of elesclomol 
were recently suspended due to safety concerns. The 
reason for the increased mortality observed in stage IV 
metastatic melanoma patients treated with a combina-
tion of elesclomol and paclitaxel is yet to be determined. 
Understanding the underlying mechanisms of the drug’s 
action and toxicity is essential for future development 
and clinical evaluation.

Interfering with ROS metabolism. GSH is the major 
ROS-scavenging system in cells. The important redox-
modulating enzymes, including the peroxidases, peroxi-
redoxins and thiol reductases, rely on the pool of reduced 
GSH in the cell as their source of reducing equivalents. 
Therefore, strategies to induce a loss of the reduced GSH 
pool could have a profound effect on cell survival and 
drug sensitivity by altering the cells’ ability to detoxify 
ROS and to cope with oxidative damage.

Through electrophile–nucleophile interactions, com-
pounds such as isothiocyanates (benzyl isothiocyanate 
(BITC), phenethyl isothiocyanate (PEITC) and sulpho-
raphane) and aziridine derivatives (imexon) rapidly con-
jugate with GSH, causing a depletion of the GSH pool and 
subsequent oxidative stress and cell death115–117. Depletion 
of GSH can also be achieved by targeting its synthesis. 
Buthionine sulphoximine (BSO) is an inhibitor of 
glutamylcysteine synthetase (γ-GCS), the rate-limiting 
enzyme for GSH synthesis118. This compound has been 
shown to cause GSH depletion and exhibits anticancer 
activity in various types of cancer cell. Furthermore, 
inhibitors of the xC

– cystine/glutamate antiporter, such as 
sulphasalazine, may also cause GSH depletion by inhibiting 
the uptake of cystine, the precursor of cysteine, which is 
a rate-limiting substrate for GSH synthesis119.

Another thiol-based antioxidant is the thioredoxin 
system, which seems to be upregulated in cancer cells 
and is correlated with cancer aggressiveness and drug 
resistance120,121. Attention has recently focused on the 
rational design and development of specific inhibitors 
that target thioredoxin 1 (Trx-1) and thioredoxin reduct-
ase 1 (TR1)122. PX-12 (1-methylpropyl 2-imidazolyl 
disulphide), for example, has been developed as a Trx-1 
inhibitor, with potent antitumour activity in vivo123. 
Specific inhibitors of other antioxidant enzymes such as 
SOD, catalase and haem-oxygenase 1 (HMOX1) have 
also been identified and are currently in various stages 
of drug development (FIG. 5; TABLE 1). Examples of SOD 
inhibitors include certain oestrogen derivatives such 
as 2-methoxyestradiol (2-ME)124 and copper chelators, 
such as ATN-224 (REF. 125); inhibitors of catalase and 
HMOX1 include 3-amino-1,2,4-triazole126 and pegylated 
zinc protoporphyrin127, respectively.

Overcoming drug resistance associated with redox 
adaptation. Exploiting the vulnerability of cancer cells 
with intrinsic oxidative stress to further ROS insults 
by exogenous ROS-generating agents to preferentially 
kill the malignant cells has been shown to be feasible in 
experimental systems, and as discussed above some of 
the ROS-modulating agents show promising therapeutic 
activity in clinical studies. However, some cancer cells, 
especially those in advanced disease stages, have become 
highly adapted to intrinsic oxidative stress with upregu-
lated antioxidant capacity. This redox adaptation not 
only enables the cancer cells to survive under increased  
ROS stress, but also provides a mechanism of resistance 
to many anticancer agents, owing to increased tolerance 
of exogenous stress, an upregulation of survival molecules 
and increased capacity for drug inactivation. For example, 
multidrug resistant HL-60 leukaemia cells were shown 

Box 2 | Cancer redox biology: a biological basis for therapeutic selectivity

Reactive oxygen species (ROS) might function as a double-edged sword. A moderate 
increase of ROS may promote cell proliferation and survival. However, when the increase 
of ROS reaches a certain level (the toxic threshold), it may overwhelm the antioxidant 
capacity of the cell and trigger cell death. Under physiological conditions, normal cells 
maintain redox homeostasis with a low level of basal ROS by controlling the balance 
between ROS generation (pro-oxidants) and elimination (antioxidant capacity).  
Normal cells can tolerate a certain level of exogenous ROS stress owing to their ‘reserve’ 
antioxidant capacity, which can be mobilized to prevent the ROS level from reaching  
the cell-death threshold (horizontal dotted line in figure). In cancer cells, the increase  
in ROS generation from metabolic abnormalities and oncogenic signalling may trigger  
a redox adaptation response, leading to an upregulation of antioxidant capacity and a 
shift of redox dynamics with high ROS generation and elimination to maintain the ROS 
levels below the toxic threshold. As such, cancer cells would be more dependent on  
the antioxidant system and more vulnerable to further oxidative stress induced by 
exogenous ROS-generating agents or compounds that inhibit the antioxidant system.  
A further increase of 
ROS stress in cancer 
cells (red bar)  
using exogenous 
ROS-modulating 
agents is likely to 
cause elevation  
of ROS above the 
threshold level, 
leading to cell death. 
This might constitute 
a biochemical basis  
to design therapeutic 
strategies to 
selectively kill  
cancer cells using 
ROS-mediated 
mechanisms.
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to be resistant to the cytotoxic effect of H2O2; this has 
mainly been attributed to elevated levels and activity of 
catalase128. Resistance to arsenic trioxide was found to 
be associated with an upregulation of HMOX1, SOD1 
and GSH101,129. Likewise, several studies suggest that the 
resistance to agents that induce intracellular ROS pro-
duction, such as paclitaxel, doxorubicin or platinum-
based drugs, is correlated with increased antioxidant 
capacity99,130. It is important to recognize the caveat that 
is associated with cancer-cell adaptation to intrinsic oxi-
dative stress, and one should not expect that exogenous 
ROS-generating agents will always have preferential 
activity against cancer cells.

To achieve therapeutic selectivity and overcome drug 
resistance associated with redox adaptation, it is impor-
tant to design a strategy that exploits the redox difference 
between normal cells and cancer cells, and that disables 

the redox adaptation mechanism in cancer cells. One 
such approach is to target the key redox regulatory 
mechanisms that control both the level of ROS and the 
function of redox-sensitive survival proteins. The thiol-
based antioxidants GSH, thioredoxin and peroxiredoxin 
can be considered potential candidates for such a redox 
intervention. Recent studies demonstrated that rapid 
depletion of GSH using the natural compound PEITC, 
can preferentially kill the Ras-transformed ovarian cells 
and primary leukaemia cells from patients, and effec-
tively eliminate the drug-resistant cell populations84,131,132. 
Depletion of GSH seemed to effectively disable the key 
redox adaptation mechanism and cause destabiliza-
tion of the redox-sensitive survival molecule MCL1 
(REFS 84,131,132). As illustrated in FIG. 6, the intrinsic oxi-
dative stress in these cancer cells and their dependency 
on GSH for redox adaptation are probably the biochemi-
cal basis for the selectivity and effectiveness of PEITC in 
overcoming drug resistance. It is important to note that 
for those cancer cells that have adapted to oxidative stress 
by increasing their antioxidant capacity (often by upregu-
lating GSH), the use of simple ROS-generating agents 
might not be effective. A better strategy might be to use 
compounds that abrogate the adaptive mechanisms.

Redox-based drug combination strategies. To maximally 
exploit the ROS-mediated cell-death mechanism as a 
therapeutic strategy, it is possible to combine drugs that 
induce ROS generation with compounds that suppress 
the cellular antioxidant capacity. This approach might 
be particularly useful in cancer cells that have become 
adapted to stress and resistant to anticancer agents. For 
example, a combination of the ROS-generating agent 
arsenic trioxide and the SOD inhibitor 2-ME showed 
potent activity against primary chronic lymphocytic 
leukaemia (CLL) cells, and significantly enhanced the 
cytotoxic activity of 2-ME in CLL cells that were resistant 
to 2-ME alone25. Combinations of arsenic trioxide and 
ascorbic acid-mediated GSH depletion were also shown 
to be clinically effective in the treatment of relapsed or 
refractory multiple myeloma133. Furthermore, recent 
work suggests that the transcription factor Nrf2 is 
responsible for resistance to the GSH-depleting agent 
BSO, and abrogation of Nrf2 in combination with 
BSO seemed to be an effective therapeutic strategy134. 
Interestingly, the combination of ABT-737 (an inhibitor 
of the pro-survival molecule BCL2) and 4HPR (which 
causes ROS-generation) was shown to enhance the mito-
chondrial apoptotic cascade with minimal cytotoxicity 
to normal lymphocytes135.

Based on the above rationale and observations, several 
ROS-generating agents are currently in clinical trials as 
single agents or in combination therapy. A multicentre 
Phase II trial of the iron chelator triapine and gemci tabine 
in advanced non-small cell lung cancer has been com-
pleted136. Phase I trials of combination therapies with the 
GSH-depleting agent Imexon and gemcita bine in first-
line pancreatic adenocarcinoma, and with docetaxel 
in lung, breast and prostate cancer are ongoing95. The  
current status of redox-modulating agents in various  
phases of drug development is summarized in TABLE 1.  

Figure 5 | Targeting cancer cells through ROS-mediated mechanisms. Because 
the overall cellular reactive oxygen species (ROS) levels are determined by the rates  
of ROS generation and elimination, exogenous agents that increase ROS generation 
or inhibit ROS elimination can induce significant accumulation of ROS in cancer cells, 
leading to oxidative damage and cell death. Examples of the agents that directly 
promote ROS generation or suppress cellular antioxidant mechanisms are shown in 
the top two boxes. Owing to the presence of redox adaptation mechanisms, the use  
of ROS-generating agents alone may not be sufficient to kill cancer cells that have  
an upregulated antioxidant capacity. Agents that disable such adaptive mechanisms 
would be more effective against these cancer cells. A combination of ROS-generating 
agents with compounds that are capable of abrogating cellular antioxidant systems 
are likely to have an additive or synergistic effect. 2-ME, 2-methoxyestradiol;  
As

2
O

3
, arsenic trioxide; BSO, buthionine sulphoximine; GSH, glutathione; HMOX1, 

haem-oxygenase 1; MGd, motexafin gadolinium; Mito-ETC, mitochondrial electron 
transport chain; PEG-ZnPP, pegylated zinc protoporphyrin; PEITC, phenethyl 
isothiocyanate; SOD, superoxide dismutase; Trx, thioredoxin.
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1.2 OXIDIZED NUCLEOTIDE-INDUCED MUTAGENESIS AND DNA REPAIR 

1.2.1 The nucleotide pool is readily susceptible to oxidation 

The innate reactivity of ROS exposes biomacromolecules to oxidative modifications, and, in 
relation to carcinogenesis, the DNA is a major source of reactive damage that can cause 
mutations and tumorigenesis32. In fact, the free nucleotide pool is orders of magnitude more 
susceptible to modifications, such as methylation33 and oxidation34, than nucleic acids. Upon 
subjection to ROS, free nucleotides, particularly purines, are able to undergo a number of 
modifications due to their inherent chemical lability35,36. Oxidation of guanine, in particular, 
is favorable due to its chemical structure37. 8-oxo-7,8-dihydroxyguanine (8-oxo-guanine; 8-
oxo-G) is one of the most abundant oxidized species in cells38,39 and, thus, the most studied 
oxidized metabolite. Other notable nucleobase oxidation products in vitro include 2-
hydroxyadenine (2-OH-A), 5-formyluridine (5-COH-U) and 5-hydroxycytidine (5-OH-C)36. 
These modifications can occur in any combination of nucleobase, ribose and phosphate(s)35. 

1.2.2 Incorporation of oxidized nucleotides into nucleic acids 

Oxidized nucleotides can readily be incorporated into DNA40-43 or RNA44 by DNA and RNA 
polymerases, respectively. In DNA, 8-oxo-dGTP is indiscriminately paired equally opposite 
adenine or cytidine, depending on its conformation (Figure 3), resulting in A:T à C:G 
transversion mutations34,41,45-50, while 8-oxo-GTP negatively affects transcriptional fidelity 
upon incorporation into RNA44. Similarly, 2-hydroxy-2’-deoxyadenosine-5’-triphosphate (2-
OH-dATP) and 5-hydroxy-2’-deoxycytosine-5’-triphosphate (5-OH-dCTP) also cause 
transversion mutations in mammalian or bacterial genomes51-53. Overall, the incorporation of 
oxidized nucleobases is mutagenic and highly correlated with carcinogenesis39,54,55. 

 

Figure 3: Mispairing of 8-oxo-guanine with adenine results in transversion mutations. 8-oxo-guanine pairs 
with cytidine in an anti-anti conformation, while it is rotated around the ribose bond to mispair with adenine in 
the syn-anti conformation. Reprinted with permission from Elsevier, from Krahn, et al.56.  
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was incubated with a two-nucleotide-gapped DNA sub-
strate, where the first templating base was an unmodi-
fied guanine and the subsequent template residue was
an 8-oxodG (Figure 2C). A stoichiometric concentration
of ddCTP was added to the mixture, and, after reaction,
the extended primer resulted in a one-nucleotide-
gapped DNA product with a dideoxy-terminated primer.
A 5-fold molar excess of dCTP was then added to form
the ternary complex. In contrast to the protocol used
previously [12], this procedure results in an incoming
dCTP, rather than ddCTP. The data from the 8-oxodG-
dCTP complex was phased with coordinates from the
crystal structure with the unmodified guanine paired
with ddCTP (Protein Data Bank accession code 1BPY).
Table 1 summarizes the crystal parameter data.

The ternary complex of pol ! with the oxidative DNA
lesion 8-oxodG positioned as the templating base in the
polymerase active site forms Watson-Crick hydrogen
bonds with the incoming dCTP, and the density due
to the oxygen at C8 is clearly visible (Figure 3A). The
polymerase conformation is identical to the ternary com-
plex determined previously when bound to unmodified
DNA [12]. The root-mean-square deviation between all
main chain atoms in these two structures is 0.78 Å. In
this conformation, the N subdomain of pol ! (residues
262–335; Figure 2A, orange) is closed around the na-
scent base pair (8-oxodG-dCTP) and interacts with the
amino-terminal lyase domain (Figure 2A, gray). As ob-
served with the structure of pol ! bound to gapped or
nicked DNA and other DNA polymerases where the 5"-
path of the template strand can be determined, the tra-
jectory of the template strand is altered dramatically
as it enters the polymerase active site (Figure 2). InFigure 1. Base-Pairing Properties of 8-OxodG
comparison with the pol ! structure bound to unmodi-(A) The conformationally preferred form of 8-oxodG has a carbonyl
fied DNA, the largest structural difference between theseoxygen at C8, and N7 is protonated. In an anti conformation, 8-oxodG
structures resides in the deoxyribose-phosphate back-can form a Watson-Crick base pair with cytosine.

(B) 8-oxodG favors a syn conformation that can form a Hoogsteen bone of the templating 8-oxodG (Figure 3B). The 5"-
base pair with adenine. Protonation of N7 contributes to this struc- phosphate of the templating 8-oxodG is shifted 3.4 Å
ture by donating a hydrogen bond to N1 of adenine. In this conforma- with respect to its position in the structure with an un-
tion, there is also a weak, but favorable, interaction between the 5"-

modified guanine.phosphate and N2 of 8-oxodG (data not shown). The resulting stabil-
ity of an 8-oxodG:dA pair can lead to erroneous incorporation of dATP
opposite a templating 8-oxodG or incorporation of 8-oxodGTP

Anti Conformation of 8-OxodG in the Polymeraseopposite a template dA.
Active Site
The 2D NMR and crystal structures of 8-oxodG paired
with cytosine in duplex DNA reveals that these nucleo-genic DNA lesion in the confines of its active site. The

modified guanine residue is in an anti conformation and tides prefer a glycosidic anti conformation and that the
duplex is structurally similar, but not identical (see be-forms Watson-Crick hydrogen bonds with an incoming

dCTP. To accommodate the oxygen at C8, the 5"-phos- low), to unmodified DNA [4, 5]. In contrast, NMR analysis
of isolated 8-substituted purine nucleosides indicatesphate backbone of the templating nucleotide flips 180#.

Thus, the flexibility of the template sugar-phosphate that the syn conformation is energetically preferred [2,
3]. This is believed to be because of steric hindrancebackbone near the polymerase active site is one param-

eter that influences the anti-syn equilibrium of the modi- between the deoxyribose and O8 of the modified purine
base. Comparison of the deoxyribose-phosphate back-fied guanine. The results provide valuable insights into

the mechanisms employed by polymerases to select the bone of the 8-oxodG nucleotide that is base paired with
cytosine in duplex DNA with an isomorphous structurecomplementary dNTP.
of unmodified DNA indicated that the structural differ-
ences were minor [4, 5]. In contrast, comparing the de-Results and Discussion
oxyribose-phosphate backbone of 8-oxodG in duplex
DNA with that of the deoxyguanines in the ternary polOverall Structure

The strategy employed to trap a ternary polymerase ! complex or B form DNA suggests that subtle confor-
mational changes occur both in the deoxyribose andcomplex with an incoming dCTP paired with a template

8-oxodG residue was similar to that described pre- 5"-phosphodiester linkage of the modified nucleotide to
accommodate it (Table 2). The carbonyl oxygen at C8viously with unmodified DNA [12]. DNA polymerase !

Structure
122

was incubated with a two-nucleotide-gapped DNA sub-
strate, where the first templating base was an unmodi-
fied guanine and the subsequent template residue was
an 8-oxodG (Figure 2C). A stoichiometric concentration
of ddCTP was added to the mixture, and, after reaction,
the extended primer resulted in a one-nucleotide-
gapped DNA product with a dideoxy-terminated primer.
A 5-fold molar excess of dCTP was then added to form
the ternary complex. In contrast to the protocol used
previously [12], this procedure results in an incoming
dCTP, rather than ddCTP. The data from the 8-oxodG-
dCTP complex was phased with coordinates from the
crystal structure with the unmodified guanine paired
with ddCTP (Protein Data Bank accession code 1BPY).
Table 1 summarizes the crystal parameter data.

The ternary complex of pol ! with the oxidative DNA
lesion 8-oxodG positioned as the templating base in the
polymerase active site forms Watson-Crick hydrogen
bonds with the incoming dCTP, and the density due
to the oxygen at C8 is clearly visible (Figure 3A). The
polymerase conformation is identical to the ternary com-
plex determined previously when bound to unmodified
DNA [12]. The root-mean-square deviation between all
main chain atoms in these two structures is 0.78 Å. In
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1.2.3 Repair and toxicity of oxidized nucleotides incorporated into DNA 

1.2.3.1 Base excision repair (BER) 

To maintain genomic integrity, prokaryotic and eukaryotic cells possess a multitude of DNA 
damage surveillance and repair pathways, which can also effectively recognize and remove 
oxidized nucleotides. Once incorporated into DNA, oxidized nucleotides can be excised by 
either the base excision repair (BER) or mismatch repair (MMR) pathways57,58 (Figure 4). In 
the case of BER, lesion-specific DNA glycosylases identify the error and then excise either 
the modified base or the opposing base59. Specific for 8-oxo-dG are oxidized guanine 
glycosylase (OGG1), which targets 8-oxo-dG:dC mis-pairs60-63, and MutY homolog 
(MUTYH), which can recognize mis-paired 8-oxo-dG:dA following DNA replication64-66. 
MUTYH also recognizes and excises 2-OH-dA, making it a broader detector of oxidized 
nucleotide mis-pairs67,68. Recently, however, it was found that MUTYH was able to resolve 
8-oxo-dG:dA, but not 2-OH-dA:dG and :dC mis-pairs, in human carcinoma cell extracts, 
suggesting that the base excision activity of 2-OH-dA by MUTYH may be less active than 
originally thought69. 

 

Figure 4: Repair of 8-oxo-dG lesions in DNA by BER or MMR pathways. 8-oxo-dG can be generated from 
oxidation of the nucleotide pool or direct oxidation of DNA (red). Nascent DNA synthesis and nucleotides are 
depicted in blue. SP-BER – short patch-base excision repair; LP-BER – long patch-base excision repair. 
Reprinted with permission from Elsevier, from Rudd, Valerie and Helleday70. 

1.2.3.2 Mismatch repair (MMR) 

MMR corrects base mis-pairing on nascent DNA following replication, and, thus, also has a 
role in removing oxidized bases from DNA, although the evidence is less clear than with 
BER59 (Figure 4). MutS Homolog 2 (MSH2), a key MMR component, has been shown to 
reduce the presence of 8-oxo-dG in genomic DNA57, while over-expression of MTH1, an 8-
oxo-dGTP hydrolase (described in greater detail below), attenuates the mutagenesis rate of 
MMR-deficient tumors71. Additionally, MutSα, a heterodimer comprised of MSH2 and 
MSH6, can recognize 2-OH-dATP mis-pairs and MSH2-deficient mice have increased 
genomic levels of 2-OH-dA72,73, suggesting the importance of MMR in recognition and 
excision of this lesion. On the other hand, in vitro studies have shown that MMR can poorly 
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recognize 8-oxo-dG mis-pairs and does not efficiently correct these lesions69,74, however, 
these discrepancies may be sequence-specific75. 

1.2.3.3 Toxicity of oxidized nucleotide-induced DNA repair 

Repair of 8-oxo-dG and 2-OH-dA, but also 5-OH-dCTP76, lesions in DNA can have dire 
consequences on cell viability, depending on the context77. The first evidence that 8-oxo-dG 
may be toxic arose from the fact that while Mth1- or Ogg1-knockout mice developed 
spontaneous tumors in the liver and lungs, Mth1/Ogg1 double knockout mice did not develop 
lung tumors, yet high levels of 8-oxo-dG were detected in the nuclear DNA of lung cells78. 
This would insinuate that the increase in DNA 8-oxo-dG content caused by depletion of both 
factors imposes a barrier on tumorigenesis instead of exacerbating it. Indeed, accumulation of 
8-oxo-dG in nuclear DNA can result in apoptotic cell death by futile BER cycling, which 
induces single strand DNA breaks (SSBs) and ATP exhaustion via polyADP-ribose 
polymerase 1 (PARP1) hyperactivation79,80. A similar phenomenon occurs in mitochondria 
but leads to loss of mitochondrial DNA and necrosis79. Thus, in cancer cells, which may have 
higher loads of oxidative stress, there may be a greater reliance on oxidized nucleotide 
sanitation enzymes to permit cell viability. 

1.2.4 Other roles for oxidized nucleotides in cells 

Besides the mutagenesis angle that is well established in the field, oxidized nucleotides, 
particularly 8-oxo-guanine, appear to serve other necessary functions in cells that complicate 
our originally straightforward understanding of their purpose. It would seem that not all 
incorporation of 8-oxo-guanine into DNA is detrimental to the cell, as the positioning of these 
lesions in different regions of the DNA can have distinctive outcomes. The oxidized guanine 
DNA glycosylase, OGG1, primarily known for BER of 8-oxo-guanine from DNA, is heavily 
involved in modulating 8-oxo-guanine-mediated cellular functions on the basis of: 1) binding 
8-oxo-guanine lesions in DNA or 2) remaining in a complex with the 8-oxo-guanine excision 
product81. Thus, this may indicate that a balance exists between oxidized nucleotide 
sanitation and incorporation, and importantly, there is still much to learn about the role of 8-
oxo-guanine in cells. 

1.2.4.1 Signaling roles of the OGG1:8-oxo-guanine excision complex 

The potential roles of 8-oxo-guanine in cellular signaling were not recognized until the 
discovery that the OGG1:8-oxo-guanine excision complex can behave as a guanine 
nucleotide exchange factor (GEF) and activate RAS small guanosine triphosphatases 
(GTPases; Figure 5a)82. Rather than binding the OGG1 active site83,84, 8-oxo-guanine may 
stimulate its glycosylase activity as a potential cofactor, implying a feed-forward response 
that encourages OGG1 activity82. However, this alternative binding site for 8-oxo-guanine 
has not yet been elucidated. Activation of RAS proteins by OGG1:8-oxo-guanine then 
initiates a phosphorylation cascade beginning with Raf1 and spreading to MAP (mitogen-
activated protein) kinases85. Further work illustrated that the OGG1:8-oxo-guanine complex 
can also activate the Rho family kinase, Rac186, and that OGG1 is required for Rho-GTPase 
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activation upon challenge with oxidative stress87. Another intriguing finding was that 
exposure of mouse lungs to exogenous 8-oxo-guanine, that presumably forms the complex 
with OGG1 in cellulo, also activated RAS GTPase and the transcription of multiple pro-
inflammatory genes88. Therefore, 8-oxo-guanine, with the help of OGG1-mediated BER, 
appears to facilitate numerous cell signaling functions in response to oxidative stress88,89. 

1.2.4.2 8-oxo-guanine-mediated transcriptional regulation via OGG1 

In assessing the physiological ramifications of 8-oxo-guanine, OGG1 knockout (Ogg1-/-) 
mice, which lack a functional gene product, were found to have decreased inflammation 
following bacterial infection90 or exposure to pro-inflammatory agents91, which first alluded 
to a role in regulating the inflammatory response89. These findings suggested that activation 
of RAS by OGG1:8-oxo-guanine82 and induction of pro-inflammatory cytokine expression 
by 8-oxo-guanine88 held systemic physiological importance. 

An obvious starting point to consider was the effect of 8-oxo-guanine lesions on binding of 
transcription factors to guanine-rich promoters that regulate inflammatory responses. This is 
typically mediated by NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) 
or Sp1. However, conflicting evidence proved this hypothesis inconclusive92-94. Instead, there 
was proof suggesting that DNA repair factors and transcription factors compete for binding to 
oxidatively damaged promoter regions94,95, with occupancy of the promoter by OGG1 
physically obstructing the binding of transcription factors95. More recently, however, it was 
determined that OGG1 bound upstream of the NF-κB consensus binding site facilitates 
recruitment of NF-κB to oxidized promoters and enhances transcription of pro-inflammatory 
genes in response to TNF-α (tumor necrosis factor alpha) exposure96,97 (Figure 5b). Hence, 
this likely explains the dampened inflammatory response seen in Ogg-/- mice90,91.  

Along similar lines, oxidized promoter regions have recently been found to enhance 
transcription by facilitating G-quadruplex formation98. G-quadruplex formation in promoters 
is known to stimulate transcription99, such as is the case with the vascular endothelial growth 
factor (VEGF) gene100, which is also known to contain 8-oxo-guanine lesions in its promoter 
region101. Fleming, Ding and Burrows illustrated that apurinic (AP) sites, generated from 
OGG1 BER repair intermediates, enhance G-quadruplex formation on the VEGF or 
endonuclease III-like protein 1 (NTHL1) promoters. This, in turn, increases gene 
transcription98 (Figure 5c), depending on if the 8-oxo-guanine resides in the template or 
coding DNA strands102. In contrast, 8-oxo-guanine present in telomeric repeats can block 
formation of G-quadruplexes and restore telomerase activity50, which illustrates the 
importance of oxidized guanine in regulating G-quadruplex formation (Figure 5c). Taken 
together, these findings delineate exciting new roles for 8-oxo-guanine and OGG1 in 
epigenetic regulation of transcription81,103. 
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Figure 5: Roles for 8-oxo-guanine beyond mutagenesis. a, Excised 8-oxo-G in complex with OGG1 can 
function as a GEF and activate RAS GTPases that promote transcription of inflammatory genes via MAP 
kinases. b, 8-oxo-guanine in gene promoters recruits OGG1, which facilitates adjacent binding of the NF-κB 
transcription factor downstream and expression of inflammatory response genes. c, DNA:8-oxo-guanine disrupts 
G-quadruplex formation, which enables telomerase activation in telomeric regions, but excision by OGG1 in 
promoter regions permits G-quadruplex formation and gene transcription.  
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1.3 “PREVENTATIVE DNA REPAIR” BY NUCLEOTIDE PRECURSOR POOL 
SANITATION ENZYMES 

(excerpts taken with permission from Elsevier, from Rudd, Valerie and Helleday70) 

1.3.1 Sanitation enzymes police the nucleotide precursor pool  

The DNA precursor pool is readily susceptible to modification from a myriad of sources 
within the cellular environment. To counteract the potential toxicity of modified nucleotide 
precursors, cells have evolved various mechanisms to maintain cellular fitness. While a 
number of retrospective solutions (i.e., after incorporation into nucleic acids), such as DNA 
repair, have garnered more attention, nucleotide pool sanitation enzymes offer a more 
favorable alternative: preventative maintenance (reviewed specifically by Galperin104 and 
Nagy105). As numerous modified dNTPs are efficient DNA polymerase 
substrates42,43,53,106,107, sanitation enzymes help eliminate them from the nucleotide pool and 
work in concert with DNA repair machinery to maintain genome integrity108 (Figure 6a). 
Modified nucleoside monophosphates may then be poor substrates for their respective 
nucleoside kinases, as is the case with 8-oxo-(d)GMP and guanylate kinase (Figure 6b)34,106.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Sanitation enzymes prevent nucleic acid incorporation of modified or damaged nucleotides. a, 
Modification from multiple sources can alter the nucleobase or ribose sugar, which can cause deleterious effects 
once incorporated into nucleic acids. Sanitation enzymes are generally phosphohydrolases that continually 
cleanse the nucleotide pool of these polymerase substrates. b, 8-oxo-(d)GMP is a poor substrate of guanylate 
kinase (GK), thus preventing direct utilization of 8-oxo-(d)G. Cellular nucleotidases can convert 8-oxo-(d)GMP 
to 8-oxo-(d)G, which is excreted from the cell or can potentially be recycled back to 8-oxo-(d)GMP by a chain 
of reactions mediated by PNPase, among others109,110. Mouse GK structure from Sekulic et al.111. 
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1.3.2 NUDIX hydrolases – not one and the same 

Perhaps the most common sanitation enzymes are those of the nucleoside diphosphate linked 
to some other moiety, X, (NUDIX) hydrolase family, which was a term first coined by 
Bessman and colleagues in the mid-90s112. Family members, of which there are at least 22 
described thus far in humans (Figure 7), typically catalyze the hydrolysis of nucleoside-like 
di- or triphosphates to their respective monophosphates and are related by a consensus 23-
amino acid NUDIX box motif (Gx5Ex2[UA]xREx2EExGU, where “U” is an aliphatic, 
hydrophobic residue and “X” is any amino acid) that facilitates phosphohydrolase 
activity113,114. Interestingly, the core residues of the catalytic domain are required for divalent 
cation coordination (usually Mg2+), which is essential for catalysis, but do not discriminate or 
direct the nucleobase substrates, per se, implying plasticity may exist within the 
superfamily104,115. NUDIX enzymes were originally called MutT family proteins, after the 
antimutagenic E. coli 8-oxo-(d)GTPase44,45,48,116,117, but the diversity of substrate preferences 
has suggested that a number of them have little or no role in preventing mutations to DNA, 
thus, prompting the change in nomenclature112.  

 

Figure 7: The 22 canonical human NUDIX proteins drawn to relative scale. NUDIX domains are depicted 
in blue, mitochondrial or peroxisomal localization signals in orange, and ankyrin repeats in green. 

1.3.2.1 MTH1 sanitizes the oxidized nucleotide pool 

Despite the variety in substrate preferences for NUDIX enzymes, by far the most studied 
class of precursor to date are the oxidized nucleotides and their sanitation by human NUDT1 
(NUDIX type 1), also known as MutT homologue 1 (MTH1). MTH1, like its E. coli 
counterpart, MutT, hydrolyzes oxidized nucleotides, including 8-oxo-(d)GTP and 2-OH-
(d)ATP, thereby preventing downstream transversion mutations in DNA and 
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RNA49,51,55,118,119. The importance of MTH1 in maintaining genomic integrity and replicative 
potential has been shown extensively in cultured fibroblasts and oncogenic RAS-transformed 
cells120-123. Depletion of MTH1 in these studies triggered characteristic senescence 
phenotypes, including the presence of β-galactosidase, irreparable DNA damage, and 
induction of p53, p21 and p16INK4A tumor suppressor expression123. Importantly, these cells 
did not undergo cell death and culturing MTH1-depleted cells in hypoxic conditions rescued 
the senescence phenotype121,123. 	

More recently, we and others have demonstrated that MTH1 may be a potent drug target in 
cancer cells124-130, where a dysfunctional redox environment can impose a reliance on 
oxidized nucleotide sanitation (Figure 8). The mechanistic link between initially described 
inhibitors and the dependence on MTH1 for their cell killing effect has been controversial. 
Subsequent reports using MTH1 inhibitors, TH287 and TH588, indicated that cancer-specific 
cell killing may be independent of MTH1 inhibition (i.e., through an off-target effect)131-133, 
while other, independent groups have also synthesized potent MTH1 inhibitors and saw lack 
of effect in cancer cells134-136. These recent reports have cast doubt on whether MTH1 is a 
bonafide cancer therapeutic target. That being said, depletion of MTH1 was recently shown 
to selectively increase telomere dysfunction and cell death in telomerase-positive cancer cells 
with shortened telomeres, thus representing a new potential avenue of inhibitor utilization50. 

 

Figure 8: The original MTH1 inhibitor mechanism proposed by Gad et al 124. In cancer cells, treatment with 
MTH1 inhibitors causes DNA damage and ATM-p53-mediated apoptosis due to incorporation of oxidized 
nucleotides. Reprinted by permission from Macmillan Publishers Ltd: Nature124, copyright (2014). 

1.3.2.2 Back-up enzymes to MTH1? 

Potential MTH1 back-ups include other members of the NUDIX family: NUDT15 (MTH2), 
NUDT18 (MTH3) and NUDT5. In vitro, each of these NUDIX enzymes is capable of 
hydrolyzing various oxidized nucleotides137-139 and knockdown in human cells was reported 
to increase 8-oxo-dGTP-induced mutations on a reporter plasmid140; however, compared to 
MTH1, the enzyme kinetics for these proteins are relatively underwhelming. In light of this, it 
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is fair to question if these proteins confer the same physiological importance to mammalian 
cells, and, indeed, this issue was raised in a recent review141. As the author rationalizes, the 
fact that a number of human NUDIX enzymes are capable of hydrolyzing oxidized 
substrates, albeit poorly, suggests an evolutionary link to a more primitive NUDIX hydrolase 
(e.g., MutT). As such, bias towards mutagenic oxidized bases may be obscuring the 
physiological roles of NUDIX enzymes that hydrolyze other substrates far more efficiently. 

1.3.2.3 NUDT15 (MTH2) 

NUDT15 (MTH2), originally described to hydrolyze 8-oxo-dGTP in mice137 and 8-oxo-
dGTP/dGDP in humans139,140, also has a previously overlooked dGTP activity137. Like 
MTH1, NUDT15 was proposed to sanitize the nucleotide pool of these oxidation products 
based on in vitro characterization137,139,140. It had the ability to revert mutagenesis on a 
bacterial plasmid when expressed in MutT-deficient E. coli 137 or increase mutagenesis of the 
same plasmid when depleted in HEK293T cells140. Furthermore, Nudt15 expression was 
upregulated in mouse kidney following intestinal ischemia and reperfusion injury, which 
produces a rapid burst of oxidative stress, suggesting NUDT15 transcription is triggered by 
acute oxidative damage142. Intriguingly, ethanol toxicity, due to ROS production during its 
metabolism, decreased expression of Nudt15 in adolescent mice but showed no difference in 
adult mice143. Meanwhile, longer-term depletion of MTH1 also resulted in a significant 
increase of NUDT15 messenger RNA (mRNA) expression124. Despite this evidence, 
investigations with human NUDT15 concluded that it had about 40-fold less enzymatic 
activity towards 8-oxo-dGTP compared to MTH1139. Thus, the role of NUDT15 in oxidized 
nucleotide metabolism, especially in humans, is far from clear. 

Expanding on potential functions of NUDT15, a more recent study demonstrated that 
multiple mouse NUDIX proteins, including Nudt15, could decap mRNA144, which is an 
important determinant of gene expression via regulation of mRNA half-life. Specifically, 
Nudt15 could cleave 7-methylguanosine-5’-monophosphate (m7GMP) and 7-
methylguanosine-5’-diphosphate (m7GDP) from methylated, capped RNAs144, signifying a 
potential alternative role for NUDT15 in mammalian cells. Another curious finding regarding 
NUDT15 is its interaction with the polymerase clamp PCNA (proliferating cell nuclear 
antigen)145, suggesting that sanitation of modified nucleotides could occur at distinct 
subcellular locations, such as at the replication fork. Binding of NUDT15 to PCNA appeared 
to protect the latter from degradation, whereas ultraviolet irradiation, but not other insults, 
caused dissociation of the NUDT15-PCNA complex and PCNA degradation145. Lastly, it was 
recently discovered that a missense mutant of NUDT15, R139C, is significantly correlated 
with thiopurine intolerance in acute lymphoblastic leukemia (ALL) and inflammatory bowel 
disease (IBD) patients of Asian descent146-148. This finding opens the enticing possibility that 
NUDT15 may play an important role in modulating the effectiveness of thiopurines and, 
potentially, other nucleoside analog therapeutics used to treat cancer and viral infections. As 
of this time, the physiological roles of NUDT15 have not been clearly elucidated, but these 
findings may hold important clues to reach that end. 
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1.3.2.4 NUDT18 (MTH3) 

First described in 2012 by Takagi and colleagues139, NUDT18 (MTH3) is able to hydrolyze 
8-oxo-dGDP and 8-oxo-GDP to their respective monophosphates at physiological pH (and 
with similar efficiency) but has no activity towards the relevant triphosphate species. This is 
particularly interesting given that MTH1 and NUDT15 have negligible hydrolysis activity 
towards the diphosphate forms, which are readily converted to triphosphates in cells34,139. 
Recent work by our group also suggests there is activity towards 8-oxo-dGDP, but also 8-
oxo-(d)GTP, albeit at low efficiency, and depletion of NUDT18 had negligible effects on cell 
viability and proliferation114. Until recently, there were no other reports describing biological 
roles for NUDT18 in human cells. Knockout of NUDT18 by CRISPR/Cas9 appears to cause 
a proliferation defect in HeLa cells but for reasons yet unknown149. 

1.3.2.5 NUDT5 

NUDT5, originally named YSA1H – after its yeast homolog, was first described as a 
homodimeric ADP-sugar hydrolase, with particular activity towards adenosine diphosphate 
ribose (ADP-ribose, ADPR) and ADP-mannose150-152. ADPR is an important component of 
nicotinamide adenine dinucleotide (NAD) and polyADP-ribose (PAR) metabolism153-155. 
Analysis of the NUDT5-ADPR co-crystal structure indicated that Glu166 functions as a 
catalytic base to deprotonate a water molecule, which then hydrolyzes between the α and β 
phosphates of ADPR156,157. It was also reported that several NUDIX hydrolases, including 
yeast Ysa1 and mouse Nudt5, but not human NUDT9, were able to efficiently hydrolyze O-
acetyl-ADP-ribose (OAADPR), the product of NAD-dependent sirtuin deacetylases158,159. 
NUDT9 is another NUDIX ADPR hydrolase that is localized to the mitochondria and shares 
sequence homology with the ADPR binding domain of the TRPM2 calcium channel160,161. 
Interestingly, ΔYsa1 yeast are highly resistant to exogenous ROS due to accumulation of 
ADPR and OAADPR, which inhibited the mitochondrial electron transport chain and 
upregulated production of the ROS scavenger, reduced glutathione162. 

In addition to ADPR, human NUDT5 has been proposed to hydrolyze 8-oxo-dGDP to 8-oxo-
dGMP138,140,163-165, utilizing the same techniques as for MTH1, NUDT15 and MTH3 
analyses. 8-oxo-7,8-dihydroxy-2’-deoxyadenosine-5’-diphosphate (8-oxo-dADP), 2-
hydroxy-2’-deoxyadenosine-5’-diphosphate (2-OH-dADP) and 5-formyl-2'-deoxyuridine-5'-
diphosphate (5-COH-dUDP) may also be NUDT5 substrates164,165. However, further analyses 
and comparison have demonstrated that ADPR has a 400-fold higher enzymatic efficiency 
than 8-oxo-dGDP and optimal 8-oxo-dGDP turnover occurs at pH 10.5141,165, suggesting that 
ADPR is the biologically relevant substrate. Nonetheless, NUDT5 is capable of hydrolyzing 
8-oxo-dGDP and, intriguingly, the modality of binding in the active site is noticeably 
different compared to the NUDT5-ADPR co-crystal structures – with the phosphates of 8-
oxo-dGDP being completely inverted compared to ADPR166. In this case, hydrolysis occurs 
at the β phosphate as opposed to the α phosphate during ADPR hydrolysis. Thus, as the co-
crystal and substrate competition studies imply, NUDT5 may be able to accommodate 
diverse substrates by different binding conformations in its active site165. 
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A limited number of cellular experiments have, thus far, supported a role for NUDT5 in 
ADPR, but not 8-oxo-guanine, metabolism. Reports of NUDT5 depletion in HeLa or IMR-90 
fibroblast cells causing a p53-mediated G1 cell cycle arrest were loosely linked to increases 
in 8-oxo-guanine, but, in combination with what is known from biochemical analyses, these 
conclusions were not convincing141,167,168. In addition, depletion of NUDT5 in HEK293T 
cells could increase the mutation frequency of a shuttle plasmid by about 1.5-fold140. While 
statistically significant, it is reasonable to express concern that this difference is not 
biologically important.  

In line with its originally described function, multiple lines of evidence suggest NUDT5 is 
intimately involved in ADPR metabolism. Besides the functions already described for yeast 
Ysa1, human NUDT5 is activated by ADP-ribosylation of its cysteine residues in response to 
both exogenously- and endogenously-generated nitric oxide in macrophage cells169, while 
similar experiments with ADPRase-I, a rat homolog of human NUDT9, indicated an 
inhibitory effect of ADP-ribosylation170. This might suggest that NUDT5 is selectively 
activated by nitric oxide, which, for example, is produced in macrophages that are stimulated 
by TNF-α/IFN-γ (interferon gamma) during an inflammatory response. Likewise, there are 
indications that NUDT5 (as well as NUDT9) is biologically active in the maintenance of ATP 
levels and mitochondrial energy homeostasis in response to PARP1 hyperactivation by 
alkylating agents154. The authors also demonstrated that interfering RNA (RNAi) knockdown 
of NUDT5/9 (or small molecule inhibition of NUDIX activity) in HeLa lysates blocked ATP 
exhaustion and AMP generation in response to treatment, implying that NUDIX ADPR 
hydrolases contribute to energetic failure and cell death in response to PARP activation. More 
recently, NUDT5 was implicated in the regulation of hormone-responsive genes and 
proliferation of breast cancer cells following stimulation with progestin or estradiol171. 
Interestingly, NUDT5 was found to synthesize nuclear ATP from PARP1- and polyADP-
ribose glycohydrolase (PARG)-derived ADPR, rather than hydrolyze it to AMP, in the 
presence of inorganic pyrophosphate (PPi). NUDT5 depletion caused a blockade of nuclear 
ATP generation, which is required by ATP-dependent chromatin remodeling complexes for 
gene regulation172-176, thus inhibiting proliferative responses from hormones in the breast 
cancer cells171.  

An additional thought-provoking finding, which was a side note in two recent studies, is that 
NUDT5 may also play a role in 6-thioguanine metabolism177,178. Utilizing clustered regularly 
interspaced short palindromic repeats (CRISPR)/Cas9 screening in cancer cells177 or haploid 
embryonic stem cells178, the researchers identified multiple guide RNAs (gRNAs) targeting 
NUDT5 that caused resistance to thioguanine selection, on par with disruption of the 
hypoxanthine phosphoribosyltransferase (HPRT) gene177. The authors proposed a model 
where NUDT5 ablation may cause depletion of phosphoribosyl pyrophosphate (PRPP), a 
required cofactor for HPRT to activate thioguanine, by decreasing cellular ribose-5-phosphate 
(R5P) production. This would imply that R5P generated via NUDT5 activity is more 
important than originally thought. While early, the expanding roles of NUDT5 in human cells 
represent exciting advances that should foster further exploration of its functions. 
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1.3.3 Other (d)NTP pool sanitizers and their clinical implications 

1.3.3.1 All-β dUTPases 

The all-β dUTPases, with remarkable specificity, prevent pooling of dUTP in cells (Figure 
9)179. dUTP is a non-canonical NTP resultant from thymidine biosynthesis and is a detriment 
to DNA integrity via the potential double-strand breaks formed following excision by uracil-
DNA glycosylases (UNG)180-182. This outcome was purported by the discovery that dUTPase 
function is essential for viability in both bacteria and yeast183-185. While human dUTPase is 
suggested to maintain DNA replication fidelity179, its singular importance in cell viability has 
not been explored extensively. For cancer cells, however, dUTPase appears to be crucial for 
survival in the presence of thymidylate synthase (TS) inhibitors, such as non-canonical 
fluorodeoxyuridine (FUdR), by producing dUMP for thymidine synthesis186. This has 
suggested that there is a window for anti-neoplastic therapies modulating the thymidine 
pool187-189. Indeed, dUTPase inhibitors, such as TAS-114, have been developed and are in 
clinical trials to potentiate the anticancer effects of TS inhibitors190,191.  

1.3.3.2 All-α NTP pyrophosphatases 

The all-α NTP pyrophosphatase superfamily includes MazG, the MazG-like hydrolases and 
dimeric dUTPases (Figure 9)192. Like the all-β dUTPases, all-α dUTPases hydrolyze dUTP 
but also can hydrolyse dUDP due to significant deviations in protein structure193. All-α 
dUTPases are expressed in select prokaryotic and eukaryotic organisms (usually where there 
are no all-β dUTPases present in the genome) and demonstrates the essential nature of this 
function. MazG and MazG-like enzymes are ubiquitously expressed and were believed to 
selectively hydrolyze canonical NTPs to their respective monophosphates192,194. This has 
changed with the recent discovery that mycobacterial MazG sanitizes cells of the oxidized 
pyrimidine, 5-OH-dCTP76,195, and that human DCTPP1 (XTP3-transactivated protein A, 
dCTPase) prefers modified cytidine triphosphates, including fluorinated or formylated 
species196 and 5-methyl-2’-deoxycytosine-5’-triphosphate (5-methyl-dCTP), which can affect 
global methylation and epigenetic signatures that promote breast cancer197. For this reason, 
dCTPase may have clinical significance and can be targeted with small molecule 
inhibitors198-200. 

1.3.3.3 ITPases 

ITPases efficiently hydrolyze the non-canonical purines, (d)ITP and (d)XTP, and prevent 
their incorporation into DNA and RNA (Figure 9)201,202. Resulting from deamination 
reactions in the cell and defects in purine synthesis203, misincorporation of these nucleotides 
does not cause mutations in E. coli204, but in higher organisms their incorporation is likely 
mutagenic and affects transcription of nascent mRNA, possibly by including ribonucleotide 
incorporation into DNA and vice versa203. This is suggested by the fact that ITPase null mice 
are embryonic lethal205. Additionally, one of the NUDIX enzymes, NUDT16, preferentially 
hydrolyses (d)IDP, which can otherwise cause incorporation-induced DNA damage206. 
Clearly, the redundancy of sanitation enzymes targeting deaminated purine species suggests 
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an important role in genome maintenance; however, the detailed physiological roles and 
ramifications of these nucleotide species in cells require further study. 

1.3.3.4 SAMHD1 

Beyond the pyrophosphatase sanitizing enzymes, particular hydrolases, such as SAMHD1, 
possess unique NTP triphosphohydrolase activity, reducing the nucleotide substrate to its 
nucleoside core (Figure 9)207. A member of the HD domain-containing superfamily208, 
SAMHD1 has broad substrate accommodation for canonical dNTPs, suggesting that it may 
oppose ribonucleotide reductase and tightly control dNTP pools209. However, it can 
hydrolyze modified dNTPs as well, such as O6-methyl-2’-deoxyguanosine-5’-triphosphate 
(O6-Me-dGTP), 5-Me-dCTP and 2-thio-2’-deoxythymidine-5’-triphosphate (2-Thio-
dTTP)210, but also the anti-cancer agent, clofarabine-5’-triphosphate (clofarabine)211. More 
recently, SAMHD1 has been implicated as a major barrier to cytarabine (cytosine 
arabinoside, araC) efficacy in acute myeloid leukemia (AML) patients by preventing 
accumulation of ara-CTP, the active species incorporated into DNA212,213. Subsequently, it 
was further confirmed to control the response of several other antimetabolite-based therapies 
for treating cancer or viral infections, including fludarabine, decitabine, trifluridine, 
vidarabine, nelarabine, aciclovir, and ganciclovir214-216. SAMHD1 regulates these responses 
in several manners. Some may be substrates of SAMHD1 (such as 5-aza-dCTP, decitabine 
triphosphate216), while others directly (allosterically) or indirectly (influence dNTP pools) 
regulate its triphosphohydrolase activity. Thus, at multiple levels, SAMHD1 is a critical 
determinant of efficacy with regard to nucleoside analog-based therapeutics and represents an 
immensely attractive drug target217. 

As the efficiency of hydrolysis between canonical and modified nucleotides is similar210, it 
remains an open question whether SAMHD1 has a physiological role in nucleotide pool 
sanitation. How this impacts upon its apparent tumor suppressor functions will also be an 
interesting avenue of study. These are outstanding questions that will need to be addressed by 
in-depth biochemical and cell-based characterization, but the importance of SAMHD1 in 
cancer and preventing viral propagation has clearly emerged in recent years217,218.  

1.3.3.5 Cytidine deaminase 

Cytidine deaminase (CDA) is an important component of the pyrimidine salvage pathway by 
irreversibly deaminating cytidine and deoxycytidine to uridine and deoxyuridine, respectively 
– the building blocks for nascent pyrimidines219. It has been typically viewed in a negative 
light as a resistance mechanism to cytidine analogue therapies220. Interestingly, while it is not 
a sanitation enzyme in the traditional sense, CDA may also provide cancer therapeutic 
opportunities with specific cytidine analogues (Figure 9). It was recently demonstrated that 
CDA deaminates 5-hydroxymethyl-2’-deoxycytosine (5-hydroxymethyl-dC, 5-OHMe-dC) 
and 5-formyl-2’-deoxycytosine (5-formyl-dC, 5-COH-dC) to their uridine counterparts, 
which are then phosphorylated and incorporated into DNA, causing cell death221. As 5-
OHMe-dU and 5-COH-dU are not substrates for dUTPase and CDA is expressed lower in 
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normal tissues, this appears a promising cancer therapeutic strategy; however, combining 
these with traditional cytidine analogues may provide the most effective strategy222.  

 

Figure 9: Nucleotide pool sanitation enzymes in the context of de novo nucleotide synthesis Sanitation 
enzymes depicted with orange ovals, generalized nucleotide biosynthesis enzymes with purple squares, 
canonical deoxynucleotides with green boxes, and potentially deleterious deoxynucleotides with red boxes. 
Generic modified species are marked with an asterisk (*). Reprinted with permission from Elsevier, from Rudd, 
Valerie and Helleday70. IMPDH—inosine monophosphate dehydrogenase; GMPS—guanine 
monosphosphate synthase; GUK—guanylate kinase; RNR—ribonucleotide reductase; NDPK—
nucleoside diphosphate kinase; AK—adenylate kinase; UK—uridine kinase; UMP-CMPK 
− uridinemonophosphate-cytidine monophosphate kinase; CTPS—cytidine triphosphate synthase; DCTD—
deoxycytidine monophosphate deaminase; TS—thymidine synthase; dTMPK—deoxythymidine monophosphate 
kinase; Pi—inorganic phosphate; PPi—inorganic pyrophosphate; PPPi—inorganic triphosphate. 

1.3.4 Future and therapeutic perspectives 

Nucleotide pool sanitation enzymes are clearly an important aspect of maintaining genome 
integrity. Recent studies have generated substantial progress in this field, yet as mentioned 
above, many outstanding questions remain. Detailed interrogation by an interdisciplinary 
approach may yield the most beneficial results. For example, substrates identified in 
biochemical screens can be related to phenotypes elicited from loss-of-function studies in 
cells, thus linking metabolism and novel biology. This is important to keep in mind for 
translational applications, especially when considering the number of nucleoside analogues 
used in the clinic223. In the context of cancer or combating viral infection, then, it is likely that 
sanitation enzymes may be therapeutically relevant as drug targets217. 
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1.4 THIOPURINES AS ANTI-METABOLITE THERAPEUTICS 

1.4.1 Discovery and clinical uses 

Nucleoside analogs (also known as antimetabolites) are a class of drugs that target 
proliferating cells by interfering with the synthesis of human or viral nucleic acids223. In the 
1950s, Elion and Hitchings initiated ground-breaking research into the synthesis and clinical 
utility of nucleoside analogs, including the discovery of the anti-herpes simplex virus (HSV) 
analog, acyclovir, and allopurinol for treatment of hyperuricemia and gout224-226. But it was 
the discovery of a new class of anti-cancer drugs, known as thiopurines, that would have the 
most therapeutic impact. Since this time, thiopurines have been a mainstay in clinical practice 
for treating various ailments, such as inflammation227 and cancer (ALL)228,229 but also 
functioning as immunosuppressants for organ transplants227,229. 

1.4.2 Metabolism and mechanisms of action 

Three variations of thiopurine prodrugs are routinely available in the clinic: azathioprine 
(AZA-T), 6-mercaptopurine (6-MP, mercaptopurine) and 6-thioguanine (6-TG, thioguanine). 
Metabolic conversion of thiopurine analogs is a relatively complex process that includes 
many purine salvage pathway components and reactive intermediates that can simultaneously 
improve or adversely affect treatment (Figure 10)230. AZA-T, 6-MP and 6-TG are 
metabolized slightly differently in cells; where thioguanine conversion is most 
straightforward and azathioprine is readily converted to mercaptopurine in cells by a non-
enzymatic reaction231. 

Although 6-methylthioinosine-5’-monophosphate (6-MTIMP), resultant from thiopurine S- 
methyltransferase (TPMT) conversion of 6-thioinosine-5’-monophosphate (6-TIMP), is a 
potent inhibitor of phosphoribosyl pyrophosphate amidotransferase (PPAT), the early and 
rate-determining step of de novo purine biosynthesis232, it is a common misconception that 
thiopurines exert their effects through blocking production of purine nucleotides. This is in 
spite of evidence in existence since the 1970s suggesting the contrary233. More recent clinical 
evidence demonstrated that de novo purine synthesis was unchanged in mercaptopurine-
treated patients, as compared to untreated individuals, and that methotrexate, a potent 
inhibitor of de novo purine biosynthesis, greatly potentiated thiopurine efficacy234. In fact, the 
accumulation of the thioguanine nucleotides (TGN), 6-thio-GTP and 6-thio-dGTP, not 6-
MTIMP, is highly correlated with cytotoxicity235,236. 
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Figure 10: An outline of thiopurine metabolism in human cells prior to this thesis. Thiopurines are 
converted to their active metabolites, 6-thio-GTP and 6-thio-dGTP, by multiple enzymes. Thiopurine prodrugs 
are boxed in gold, enzymes are labeled in blue and deactivating enzymes in red. Courtesy of Brent Page. HPRT 
– hypoxanthine phosphoribosyltransferase; IMPDH – inosine monophosphate dehydrogenase; GMPS – guanine 
monophosphate synthetase; GMPK – guanosine monophosphate kinase; RNR – ribonucleotide reductase; 
NDPK – nucleoside diphosphate kinase; XO – xanthine oxidase; AO – aldehyde oxidase; GD – guanine 
deaminase; TPMT – thiopurine methyltransferase; ITPase – inosine triphosphate pyrophosphatase; 6-MMP – 6-
methyl-mercaptopurine; 6-TUA – 6-thiouric acid; 6-TX – 6-thioxanthine; 8-OHTX – 8-hydroxythioxanthine; 6-
MTG – 6-methylthioguanine; 6-TIMP – 6-thioinosine-5’-monophosphate; 6-MTIMP – 6-methylthioinosine-5’-
monophosphate; 6-MTIDP – 6-methylthioinosine-5’-diphosphate; 6-MTITP – 6-methylthioinosine-5’-
triphosphate; 6-TIDP – 6-thioinosine-5’-diphosphate; 6-TITP – 6-thioinosine-5’-triphosphate; 6-TXMP – 6-
thioxanthosine-5’-monophosphate; 6-TGMP – 6-thioguanosine-5’-monophosphate; 6-MTGMP – 6-
methylthioguanosine-5’-monophosphate; 6-TGDP – 6-thioguanosine-5’-diphosphate; 6-TGTP – 6-
thioguanosine-5’-triphosphate; 6-TdGDP – 6-thio-2’-deoxyguanosine-5’-diphosphate; 6-TdGTP – 6-thio-2’-
deoxyguanosine-5’-triphosphate. 
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6-thio-dGTP is an efficient substrate for cellular DNA polymerases, replacing the occurrence 
of guanine nucleotides by up to 0.1%237-240; however, the incorporation itself is not 
particularly toxic or mutagenic229,238,241,242. Incorporation opposite thymidine and cytidine is 
roughly equal, but the problem arises when some of the 6-thio-dGTP is methylated by S-
adenosylmethionine (SAM), which, during the following DNA replication cycle, can create a 
6-MeThio-dG:dT mispair243,244. Highly similar to repair of O6-Me-dG mispaired lesions205, 
the cellular MMR system recognizes the misincorporation of thymidine opposite 6-MeThio-
dG and attempts to correct the pairing on the nascent DNA strand244; however, the correct 
match for this lesion cannot be made and the cell gets stuck in a futile repair cycle (Figure 
11)245-248. This results in unrepaired gaps left opposite of 6-MeThio-dG lesions and 
catastrophic DNA damage ensues during the next S-phase, when recombination events create 
lethal DNA structures229,247,249. Compared with most antimetabolites, cytotoxicity by 
thiopurines is noticeably delayed, requiring approximately three rounds of DNA replication 
for toxic effect229. Cytotoxicity is predominantly mediated by MMR245, although there is also 
evidence that 6-thio-GTP can complicate mRNA transcription250 and inhibit Rac1 GTPase 
activity251, which may explain residual toxicity in MMR-deficient cells. This multifaceted 
mechanism of action requires constant monitoring in the clinic to limit adverse side 
effects227,229,252.   

 

Figure 11: Mechanism of thiopurine-induced toxicity by futile mismatch repair. 6-thio-dGTP can be 
incorporated opposite thymidine and, upon methylation by SAM, cannot be repaired by MMR during the 
following S-phase. Gaps left from the unrepaired lesions result in irreparable DNA damage, G2 delay via ATR 
and Chk1 activation, and, inevitably, cell death by the third S/G2-phase. Green highlights indicate the nascent 
DNA strand. 

1.4.3 Pharmacogenetics and clinical thiopurine response 

Over time, key genetic determinants of thiopurine resistance and sensitivity have emerged 
that influence clinical regimens (Figure 11). Inactivating mutations to HPRT1, the gene that 
encodes the committal step in de novo purine biosynthesis and is required for active 
thiopurine metabolite conversion, are frequently found in vitro253, as there is only a single 
copy of the X-linked gene in cells. However, despite its utility to evaluate mutagenesis 
potential254, HPRT activity has little bearing on response to thiopurines in patients255. 
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TPMT can convert 6-TIMP, 6-TGMP, mercaptopurine and thioguanine to their inactive, 
methylated counterparts, thus, effectively removing them from the nucleotide pool256,257. The 
physiological function of TPMT is unknown, but loss-of-function mutations to the TPMT 
gene, particularly homozygous mutations, can be deadly to patients treated with 
thiopurines235,236. Although rare (approximately 1 in 300 patients or 0.3% incidence), patients 
homozygous for these mutations suffer from leukopenia and subsequent infections due to 
dangerously high TGN levels235,236. Therefore, many clinics now screen patients for TPMT 
mutations prior to administering thiopurine treatments for ALL or IBD258,259. 

Mutations to ITPase (ITPA or inosine triphosphate pyrophosphatase), particularly 94C>A 
(P32T), have also been associated with thiopurine intolerance for treatment of ALL and 
IBD260,261. This mutation is known to negatively affect the catalytic rate of ITPase, which 
causes two of its thiopurine-based substrates, 6-thioinosine-5’-triphosphate (6-TITP) and 6-
methylthioinosine-5’-triphosphate (6-MTITP), to accumulate in erythrocytes and cause 
toxicity in patients262-265. Interestingly, an additional contributing factor to the incidence of 
thiopurine sensitivity in patients may relate to reduced protein stability of the ITPase P32T 
mutant264.  

Mutations to TMPT and ITPA alone, however, cannot totally account for sensitivity to 
thiopurines, as only a quarter of European patients (and even fewer patients of Asian descent) 
suffering from thiopurine intolerance carry TPMT mutations266-268. More recently, missense 
mutations of the NUDT15 gene (R139C) correlated strongly with thiopurine sensitivity in 
leukemia and IBD patients146-148. The incidence rate of this mutation, particularly in East 
Asians (9.8%) and Hispanics (3.9%), is relatively high, and patients homozygous for this 
alteration can only tolerate 10% of a typical thiopurine dosing147. Combined, these studies 
have suggested that NUDT15 also plays a major role in thiopurine metabolism. 

Another particularly influential alteration involves 5’-nucleotidase, cytosolic II (NT5C2), 
which removes the phosphate from purine nucleoside monophosphates and permits their 
excretion from cells269,270. NT5C2 is known to hydrolyze the thiopurine intermediates, 6-
TIMP and 6-TGMP, and, thus, is integral to thiopurine metabolism271. Missense mutations to 
NT5C2, encoding R367Q, R238W or K359Q, further activate enzyme activity and are 
strongly associated with relapse in ALL patients treated with thiopurines272,273. A recent 
publication demonstrating the clonal evolution of the NT5C2 mutations in response to 
thiopurines also identified that these relapsed leukemias can be treated with inhibitors of 
inosine monophosphate dehydrogenase (IMPDH), due to their increased reliance on purine 
biogenesis274. 
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1.5 TARGETING HORMONE RECEPTOR POSITIVE BREAST CANCER 

1.5.1 Hormone receptors drive breast carcinogenesis 

It is commonly assumed that breast cancer originates from deactivating mutations to tumor 
suppressors or activating mutations to oncogenes, such as PIK3CA275, TP53276, MAP3K1 277, 
GATA3278 or AKT1279; however, this may be an oversimplification of the disease280. Studies 
from approximately 30 years ago have indicated that around 30% of women aged 40 or older 
have ductal carcinoma in vitro (DCIS), a precancerous lesion, although roughly 1 in 8 women 
are actually diagnosed with breast cancer281. Already by this stage, cells in DCISs are laden 
with many of the same mutations and genetic rearrangements that are found in invasive breast 
cancer282, indicating that mutational load may not be sufficient for breast carcinogenesis280.  

Meanwhile, evidence implicating the steroid hormones, estrogen and progesterone, and their 
nuclear receptors as drivers of this disease can be inferred from the fact that the prevalence of 
breast cancer is on par with colon cancer until a woman reaches menopause, when incidence 
rate drops significantly283. Furthermore, supplementation of estrogens in combination with 
progestins (progesterone analogs), which is typical for hormone replacement therapies, 
increases breast cancer risk284, possibly due to cell proliferation in the breast epithelium285. 
This may be directly related to the increased stability of progestins280 and their ability to 
activate other nuclear receptors286, as supplementation with estrogens alone apparently poses 
no additional cancer risk287. 

Exposure of breast epithelial cells to estrogen or progesterone can induce expression of 
CCND1 (cyclin D1)288,289, which regulates G1-S cell cycle progression via cyclin-dependent 
kinase (CDK)-dependent and -independent functions290,291. Cyclin D1 is an established 
oncogene and is overexpressed in up to 50% of breast cancers, with high correlation to 
estrogen receptor (ER)-positive cancer cells291,292. Thus, in an intricate relationship with ER, 
cyclin D1 overexpression is believed to foster breast cancer proliferation by increasingly 
diverse mechanisms292. 

1.5.2 Therapeutic options for HR+ breast cancer 

In the clinic, breast cancers expressing one or both of these receptors are known as hormone 
receptor (HR)-positive and account for 60-75% of breast cancers (ER+ and 65% of these are 
also progesterone receptor [PR]+)293. Additionally, stratifying patients based on combined 
ER/PR status instead of expression of either alone may be a better discriminator of 
prognosis294. The current standard-of-care for HR-positive breast cancers includes surgery, 
followed by radiation and endocrine therapy293. Endocrine therapies target the ER: tamoxifen 
and raloxifene are competitive ER antagonists, while fulvestrant binding causes ER 
degradation. Alternatively, aromatase inhibitors block estrogen biosynthesis. However, it is 
known that these treatments are prone to resistance development295-297. Inhibitors of CDK4/6, 
which are regulated by cyclin D1, are also showing promising activity as breast cancer 
treatments, although resistance mechanisms to this novel therapy are already emerging298. All 
of these treatment options target the cell proliferation spurred by active hormone receptors. 
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1.5.3 Regulation of hormone-dependent transcription 

To transcribe genetic material, transcriptional machinery must be able to access genomic 
DNA. For this to occur, chromatin needs to be rearranged by direct modification of histones 
and the help of chromatin remodeling enzymes175,299. PARylation (polyADP-ribosylation) is 
one such modification regulating chromatin structure300, predominantly via PARP1301,302. 
PARP1 activity is crucial for gene regulation303, especially during development304, 
neurogenesis305 and by activated nuclear receptors306, such as the ER306 and PR171,174. 

Transcription of estrogen-dependent genes appears to involve the concerted efforts of a DNA 
topoisomerase IIβ (TOPOIIβ):PARP1 complex (Figure 12)306. Interestingly, in order to 
transcribe the estrogen-responsive pS2 gene, a transient DNA double strand break (DSB) 
formed by TOPOIIβ within the estrogen responsive element (ERE) of the pS2 promoter on 
nucleosome E (NucE) activates PARP1 to PARylate histone H1. Modification of histone H1 
by PARylation facilitates exchange with high mobility group B 1/2 (HMG1/2). Another 
possible explanation for exchange of histone H1 with HMG1/2 is that PARP1 competes with 
histone H1 for binding to nucleosomes and causes its exclusion303. Consequently, 
replacement with HMG1/2 permits repair of the DSB by the DNA-PKcs:Ku70/86 canonical 
non-homologous end joining (NHEJ) repair complex and access of ERα (along with its 
transcriptional coactivators) to transcribe the pS2 gene product306. 

 

Figure 12: PARP1 and TOPOIIβ cooperate to enable transcription of estrogen-responsive genes. Transient 
DSBs induced by TOPOIIβ activate PARP1, which facilitates replacement of linker histone H1 with HMG1/2 
and access by ERα transcriptional machinery. Reprinted with permission from the American Association for the 
Advancement of Science, from Ju et al.306. 

Roughly 85% of progestin-responsive genes depend on functional PARP1 for their 
transcription174. The remodeling of chromatin in response to the progestin, R5020, is transient 
(occurring over approximately 30 minutes) and mediated by a cohort of remodeling 
complexes (Figure 13)174,307. Initially, phosphorylated PR is recruited along with the 
nucleosome remodeling factor (NURF) and ASC-2/NCOA6 (ASCOM) complexes to 
chromatin, where they facilitate removal of the heterochromatin protein 1 gamma 
(HP1γ)/lysine demethylase 5 (KDM5) repressive complex. Simultaneously, the PR:CDK2 
complex binds to cyclin A and PARP1, and CDK2 phosphorylates PARP1 on Serine 785 and 
786, which, in turn, activates its PARylation activity. PARP1:CDK2 then 
phosphorylates/PARylates histone H1, preceding its displacement from chromatin308. Histone 
H2A/H2B is then displaced by ATP-dependent chromatin remodeling via the P300/CBP-
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associated factor (PCAF)/PR-SWI/SNF (BAF) complex. Following additional PARylation of 
other chromatin targets by PARP1, PAR chains are degraded and chromatin is returned to a 
repressive state following transcription174,307.  

The involvement of PARP1 in these diverse modes of transcriptional regulation and the 
varied mechanisms resulting in its activation highlights the essential nature of PARP1 
catalytic activity for these processes. For example, PARP1 is activated by transient DNA 
damage for ER-mediated transcription, whereas it is activated by phosphorylation via CDK2 
in response to progestins171,306. A central theme is the PARylation of linker histone H1, which 
after PARP1 itself, is one of the most heavily PARylated proteins in cells300,309. PARylation 
of histones causes loss of affinity for DNA and initial relaxation of chromatin structure300,310. 
This, in turn, facilitates further rearrangements by ATP-dependent chromatin remodeling 
complexes and completes access to DNA by transcriptional machinery307. 
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Figure 13: Progestin-mediated transcriptional events are dependent on PARP1 and CDK2. Following 
initial removal of the HP1γ/KDM5B repressive complex, activation of PARP1 by CDK2:cyclin A results in 
histone H1 displacement, facilitating histone H2A/H2B displacement by chromatin remodeling complexes and 
progestin-dependent gene transcription. Reprinted with permission from Taylor & Francis Online, from Wright 
and Beato307. 
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1.6 NUCLEAR ATP SYNTHESIS 

For decades, it has been a foregone conclusion that the ATP that fuels all of the cell’s 
activities arises from oxidative phosphorylation in mitrochondria, the powerhouse of the cell. 
However, nuclear ATP synthesis is a phenomenon that was first described in 1955 by Allfrey 
and Mirsky during their studies of protein synthesis in isolated thymus nuclei311,312. Nuclei 
were found to “possess a capacity for aerobic ATP synthesis”311 that could be inhibited by 
anaerobic conditions, similar to mitochondrial oxidative phosphorylation, but not by other 
agents that also blocked ATP synthesis in mitochondria312. Similarly, work by Betel 
suggested that the ribose-phosphate metabolized from nucleotides or nucleic acids may be 
responsible for this occurrence313. Interestingly, when the nuclei were treated with DNase 
they were unable to synthesize ATP, but this could be rescued by the addition of 
polynucleotides312, thus indicating that nucleic acids were the source of nuclear ATP 
generation that could be used to power nuclear functions. 

Years later, Sei-ichi Tanuma found that, in the presence of PPi and magnesium, degradation 
of PAR in HeLa S3 cell nuclei could produce ATP and R5P, which was catalyzed by a 
mysterious ADP-ribose pyrophosphorylase314. The author proposed that the catabolism of 
PAR to ADPR by PARG propelled the synthesis of ATP from ADPR and PPi. Intriguingly, 
addition of exogenous ATP, AMP, fluoride (phosphatase inhibitor) or R5P blocked the ATP 
synthesis reaction. It was hypothesized that, in addition to modifying chromatin structure, 
PAR functions as a reservoir for ATP, which may be utilized for ATP-dependent processes, 
such as DNA repair, replication and transcription. 

Subsequently, the same group reported that the ATP produced from PAR by the concerted 
efforts of PARG and ADPR pyrophosphorylase was required for DNA repair synthesis in 
isolated HeLa S3 nuclei315. Cells synchronized in G1-phase and treated with alkylating agent, 
N-methyl-N’-nito-N-nitrosoguanidine (MNNG), were found to generate ATP following PAR 
catabolism. This ATP was utilized for repair-mediated DNA synthesis within minutes of 
MNNG treatment, as measured by 3H-thymidine incorporation. In the absence of PPi or with 
the PARG inhibitor, Oen B, ATP synthesis was blocked, as was previously described314, but 
so was DNA synthesis for repair. Roughly 8% of the PAR was converted to ATP, which was 
maximal at around 20 minutes. A similar follow-up report demonstrated that nuclei 
supplemented with ATP in the presence of PPi could synthesize DNA normally, while loss of 
DNA synthesis occurred if a PARG inhibitor was used or if PPi was excluded from the 
reaction mixture316. This would collectively suggest that ATP specifically generated from 
PAR catabolism and PPi is required to maintain DNA replication. 

A direct requirement for PAR-derived ATP synthesis was similarly shown for DNA ligation 
following BER317. The findings were generally analogous to those presented before but with 
a few noteworthy differences: 1) the production of ATP from PAR required active DNA 
synthesis, which can generate copious amounts of PPi (although significantly less ATP could 
also be synthesized from exogenous addition of PPi), 2) only ADPR formed from PAR 
catabolism could create ATP (addition of exogenous ADPR could not generate ATP), 3) the 
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ATP generated during nick-induced DNA synthesis is specifically utilized for DNA ligation, 
which is ATP-dependent and rate-limiting for completion of BER. Thus, in replicating cells, 
PAR can act as an energetic store that is tapped under shortage of cellular ATP to complete 
DNA repair. 

More recently, work elucidating a mechanism for nuclear ATP synthesis from PAR-derived 
ADPR and PPi was described171. Catabolism of PAR formed from the stimulation of 
quiescent breast cancer cells by estradiol or progestin could generate nuclear ATP, which was 
required for ATP-dependent chromatin remodeling and gene regulation. The enzyme 
responsible in this phenomenon was NUDT5, previously known only to hydrolyze ADPR to 
AMP150,151. In response to hormone, NUDT5 formed a complex with NMNAT1, PARP1 and 
PARG, thus completing a self-sufficient unit that can singlehandedly process NAD+, PAR, 
ADPR and ATP. Therefore, PAR-derived ATP catalyzed by NUDT5 may be formed at local 
sites of chromatin, where immediate influx of ATP is required to expose transcriptionally 
accessible DNA. 
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2 DOCTORAL THESIS 
2.1 PURPOSE/AIMS 

Many of the human NUDIX enzymes outside of MTH1 are poorly understood, but some 
have been implicated in oxidized nucleotide sanitation in vitro, including NUDT5 and 
NUDT15. Therefore, the overall aim of this thesis is to elucidate the biological 
function(s) of NUDT5 and NUDT15 in human cells and to evaluate their potential as 
therapeutic targets for small molecule inhibitors. 

The specific aims are as follows: 

• Identify the biological function(s) of NUDT5/NUDT15 with specific focus on their 
involvement in oxidized nucleotide metabolism, as well as NAD/nucleotide and 
thiopurine metabolism, respectively 

o Identify substrates with biochemical substrate screening 
o Discern the effects of NUDT5/NUDT15 depletion on proliferation, cell cycle, 

DNA damage, cell death and oxidized nucleotide metabolism in cells 
o Relate biochemical and cellular data 

• Evaluate the potential involvement of NUDT5/NUDT15 in human disease(s) and as 
therapeutic targets, particularly for cancer 

• Assess and develop potent, specific small molecule inhibitors for NUDT5/NUDT15 
to further study their biological functions and potential for therapeutic targeting 

The above-mentioned aims were addressed in the component papers of this thesis and 
clarified by answering specific research questions, as follows: 

Paper I 

• Does NUDT15 (MTH2) possess similar substrate preferences to MTH1 in vitro? 
• Does the NUDT15 crystal structure explain the observed substrate preferences and 

why it is similar or different from MTH1? 
• Does depletion of NUDT15 by RNAi in cells phenocopy or enhance MTH1 

depletion? 
• Do the collective data suggest that NUDT15 is important for oxidized nucleotide 

sanitation, similar to MTH1? 
• Are there substrates for NUDT15 that indicate its physiological importance in cells? 

Paper II 

• What is the catalytic efficiency of NUDT15 towards 6-thio-GTP and 6-thio-dGTP 
compared to a known, endogenous substrate (dGTP)? 

• Can the co-crystal structure of 6-thio-GMP in the NUDT15 active site explain the 
preference for thionylated guanosine triphosphates? 
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• Does the NUDT15 R139C missense variant affect catalysis of substrate hydrolysis in 
vitro? 

• Does the NUDT15 R139C mutant express normally in cells? How does it compare to 
wild-type protein expression? 

• What is the cause of lower basal expression of the R139C mutant in cells? 
• How does NUDT15 expression affect cellular sensitivity to 6-thioguanine? Can 

depletion of endogenous, wild-type NUDT15 mimic the enhanced toxicity to 
thiopurines seen in NUDT15 mutant patients? 

Paper III 

• What are the preferred substrates for NUDT5 in vitro and how does the profile 
compare to MTH1? 

• Do RNAi experiments support the biochemical substrate profiles, particularly with 
regard to oxidized nucleotide sanitation and ADP-ribose metabolism? 

• Following medicinal chemistry optimization of hits from high-throughput screening, 
can cellular target engagement techniques be used to identify potent and cell-active 
molecules in lieu of phenotypic assays? 

• How can the structure of NUDT5 improve the design of our NUDT5 inhibitors? 
• Can top NUDT5 inhibitors identified by target engagement profiling confirm the 

emerging role of NUDT5 in hormonal gene regulation in breast cancer cells? Do the 
results match potency rankings from the target engagment analyses? 
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2.1 RESEARCH APPROACH 

The approaches to address the research questions of the doctoral thesis were truly 
multidisciplinary in nature and were comprised of multiple biochemical, 
biophysical/structural, molecular and cell biology and chemical biology methodologies. In 
this way, research questions could be addressed by several orthogonal methods and explored 
more in detail. Generally, the design of the research approach began from biochemical and 
structural understanding of NUDT5 and NUDT15, which then was related to phenotypic 
observations in cells by RNAi and with potent, small molecule inhibitors synthesized in the 
Helleday Laboratory. This process is outlined below: 

1. Biochemical evaluation with purified NUDT5 and NUDT15 
a. Substrate analyses by coupled enzymatic assay (malachite green) or high-

performance liquid chromatography (HPLC) 
b. Structural insight to substrate preference by in silico docking and co-

crystallography with substrates or products 
2. RNAi-mediated ablation in cells – relate back to biochemical results 

a. Investigate general effects on cell proliferation, survival, etc. 
b. Discern influence on oxidized nucleotide sanitation by analyzing markers of 

DNA damage and by modified alkaline comet assay 
c. Confirm phenotypic changes relate to substrate preferences in vitro – or not 
d. Cytostatic or cytotoxic effects on cancer cell lines? 

3. Compromise enzymatic activity with small molecule inhibitors – relate back to 
biochemical and RNAi data 

a. Confirm inhibition of enzyme by biochemical assays 
b. In addition to the RNAi points listed above, confirm intracellular target 

engagement and specificity 
c. Explore utility of inhibitors in combination with other cytostatic or cytotoxic 

agents 
4. Follow-up studies for confirmation of clinical relevance in animal models of disease 

(future work) 
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2.2 KEY METHODOLOGIES 

2.2.1 The OGG1 modified alkaline comet assay 

2.2.1.1 Background 

The comet assay has had many different variations published over the years but was first 
described by Östling and Johanson in 1984 to measure repair of DNA breaks following 
ionizing radiation (IR)318. The assay was based on the premise of the nucleoid structure 
observed upon loss of DNA supercoiling, which can be measured using electrophoresis319. 
Although the pH 9.5 buffer used was was clearly basic, DNA is not denatured at this pH, so it 
is often referred to as a “neutral” comet assay320. Singh et al. then first described the alkaline 
comet assay (pH>13) in 1988321, which is capable of converting more lesions to DNA breaks. 
Thus, the alkaline comet assay is suitable to detect a wider range of DNA lesions, namely, 
alkali-labile sites (ALS), which includes apurinic/apyrimidinic (AP) sites, and DNA-
DNA/DNA-protein cross-links320. In this way, the alkaline comet assay can provide more 
information regarding genotoxic treatments and is typically preferred322. 

That being said, there are many perceived misconceptions with regard to the variations of the 
comet assay, the most common of which stipulates that the neutral comet assay only detects 
DNA DSBs and the high pH of the alkaline comet assay is required to detect DNA 
SSBs322,323. IR, the insult used to exemplify both the neutral and alkaline comet assay318,321, 
induces many more SSBs than DSBs324 and give reproducible comets by either assay. 
Similarly, this misconception has been further put to rest by other studies with hydrogen 
peroxide and methyl methane sulfonate (MMS) that demonstrated the same result325. 

Other variants of the alkaline comet assay emerged that included incubation steps with DNA 
glycosylases320,322,323, including those associated with oxidation damage surveillance, such as 
formamidopyrimidine DNA glycosylase (Fpg)326, OGG1327 and endonuclease III (Endo 
III)328; repair of UV-induced damage, such as T4 endonuclease V329,330; and repair of uracil 
incorporation in DNA, such as UNG331. These inclusions have given added value to the 
comet assay, particularly with Fpg being utilized for human biomonitoring of oxidative 
damage to DNA322, but also to mechanistic studies affecting metabolism or repair of specific 
glycosylase substrates.  

2.2.1.2 General protocol (Figure 14) 

Cells are treated in culture and then harvested. Following washes with PBS, the cells are 
embedded in low melting point (LMP) agarose. Prior to this point, one can briefly treat cells 
on ice with hydrogen peroxide, potassium bromate, or the photosensitizer, Ro19-8022, and 
light as positive controls for the assay322,327,332,333. An initial layer of agarose is applied to a 
microscope slide, followed by the layer containing the cells of interest. The cells are then 
lysed with buffer containing Triton X-100 for at least 1-2 hours, but typically overnight, 
although lysis time appears to bear little effect on assay performance322. The cells are then 
incubated with enzyme buffer as a control or human OGG1 to assay for oxidized nucleotide 
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lesions in the DNA327. Next, the slides are submerged in alkaline buffer (pH>13) prior to 
electrophoresis in a comet assay tank. The incubation time prior to electrophoresis, as well as 
voltage and the duration of electrophoresis, has the greatest effect on assay 
variability322,334,335; therefore, incubation times were kept at 30 minutes and electrophoresis 
was constant at 25V for 30 minutes in all experiments. The cells are then incubated in a Tris-
buffered neutralization solution to stop the alkaline reaction. At this point, the slides can be 
kept in a humidified chamber at 4°C for several weeks; however, drying the slides prior to 
analysis may improve visualization on the microscope322. Addition of a fluorescent DNA dye, 
such as SYBR Gold or YOYO-1, prior to microscopy will permit visualization of the DNA. 
Analysis of the comets is performed with the aid of software, such as Comet Assay IV or 
OpenComet. Supercoiled DNA is found in the head and freed DNA loops and fragments 
comprise the comet “tail”336. Several metrics have been utilized to measure comets, including 
tail moment, Olive moment, and percent DNA in the tail337,338, but use of percent DNA in the 
tail is preferred since it is proportional to DNA break frequency322,338. Detailed protocols for 
the OGG1 modified comet assay used in the thesis work are found in Papers I and III. 

 

Figure 14: Graphical procedure of the modified (+ OGG1) alkaline comet assay. All points from the lysis 
step onwards are performed in the dark to limit background exogenous DNA damage. 
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2.2.1.3 Utility in the current studies 

The issue of accurately measuring 8-oxo-guanine is well known and is why the European 
Standards Committee on Oxidative DNA Damage (ESCODD) was established in the 
1990s320,322,325. Depending on the assay used, chromatographic methods could detect orders 
of magnitude higher 8-oxo-guanine than enzyme-based methods, such as the comet assay325. 
As 8-oxo-guanine is among the most common byproducts of oxidative damage and is useful 
as a biomarker for human diseases, it was vital to identify the most accurate method of 
detection, especially for endogenous, background levels. Chromatographic methodologies, 
such as HPLC or gas chromatography-mass spectrometry (GC-MS), are expected to be most 
accurate, due to their detection limits. These methods were compared with the alkaline 
elution, alkaline unwinding and comet assays for the ability and sensitivity in detecting 8-
oxo-guanine from multiple sources339-342. Antibody staining for 8-oxo-guanine, however, was 
not included in the evaluation. The results indicated that chromatographic methods, 
particularly HPLC, were more sensitive for detecting differences in 8-oxo-guanine in a dose-
dependent manner, especially for samples treated with exogenous oxidation320,322,340. 
However, the methods were unsuitable for measuring endogenous 8-oxo-guanine due to 
oxidation artifacts introduced during sample preparation340. Thus, while the comet assay is 
less sensitive than chromatographic means, it is very effective for measuring background 8-
oxo-guanine lesions322. 

The OGG1 modified alkaline comet assay had the most utility in the studies conducted for 
this thesis work due to its selectivity for 8-oxo-guanine327 and the tightknit relationship of 
MTH1, NUDT5 and NUDT15 to this nucleobase. From past studies, it was known that 
MTH1 depletion or inhibitors can induce selective comet tails in OGG1-treated 
samples124,129, suggesting an increased presence of 8-oxo-guanine in DNA, thus, they were 
used as controls.  

2.2.1.4 Issues/Complications 

One of the overarching issues with the comet assay, which has been touched upon in 
numerous reviews and commentaries, is the fact that there is very little standardization of the 
protocol320. Studies conducted to evaluate inter-laboratory variability of the comet assay 
showed that there was very little variability within the same lab, but, perhaps not surprisingly, 
there were major disparities among different labs343-347. The conclusions on the source(s) of 
discrepancy ranged from image analysis, staining, or protocol used343,344 to the duration of 
enzyme incubation348. Scoring of comets can also be time-consuming and subjective, 
especially if automated software is not used337. In light of the number of variations and 
modifications to the comet assay that have been introduced over the years, it is no surprise 
that this problem becomes magnified. The ESCODD and European Comet Assay Validation 
Group (ECAVG) consortia have highlighted these issues and have laid forth a framework for 
assay standardization. In principle, standardization should be extended to all variations of the 
comet assay to minimize problems with reproducibility among independent groups. 
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The second major problem arises from technical complications while performing the comet 
assay337. Among the most frequent issues are gels detaching from microscope slides and 
unexplainable variations in comet appearance, such as random highly damaged cells, large 
tails detected in unexposed control samples and comet tails extending in different 
directions337. Prolonged lysis times are known to increase the propensity of gels detaching 
from microscope slides, so care should be taken when extending lysis for longer than a 
day322. In some cases, especially when monitoring endogenous 8-oxo-guanine in DNA, we 
found that cells that had been in active culture for more than 3 or 4 weeks gave high 
background signals that masked the effects of adding OGG1 in the modified alkaline comet 
assay. Another important source of technical variability can appear in modified forms of the 
comet assay, where differences in purity or activity of glycosylase purification can have 
lasting impacts on comet measurement and inter-experimental variability320.   
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2.2.2 The cellular thermal shift assay (CETSA) 

2.2.2.1 Background 

In general, the efficacy of a candidate drug molecule can be directly related to its ability to 
bind specific target(s) inside cells349-352. Adverse toxicity may arise when target proteins 
become saturated by a ligand in certain cell types or may result from non-specific binding to 
other proteins or macromolecules. Thus, information regarding the potency and specificity of 
target engagement within cells is invaluable to drug development and clinicians349-352. 

The cellular thermal shift assay (CETSA) was born from the biophysical principle that 
ligands bound to a protein of interest can result in thermal stabilization353-357. As a particular 
protein is heated, the energy infusion will eventually cause unfolding and aggregation as the 
intramolecular bonds are broken. The temperature at which 50% of protein is aggregated is 
known as the aggregation temperature (Tagg)356,357. The thermal shift of proteins by a ligand is 
likely entropically-driven, as increasing ligand concentration raises the probability that the 
protein of interest is not unfolded358,359. Therefore, data from CETSA can complement 
thermal shift assays performed in vitro. Detection of a specific protein is possible with 
antibodies, and the typical readouts are western blotting (for lower-throughput studies) and 
AlphaScreen® technology, which utilizes antibody-conjugated donor and acceptor 
fluorescent beads and is best suited for higher-throughput screening applications357. The 
recent demonstration of its utility as a primary screening assay was reported in the search for 
stabilizers of TS360, whereas its use for monitoring target engagement in situ was also 
recently described361. Importantly, CETSA, like other cellular target engagement 
methodologies, permits indirect relation of target occupancy to relevant phenotypic events357. 

More recently, the principles of CETSA have been combined with the power of mass 
spectrometry to create a new technique known as thermal proteome profiling (TPP or mass 
spectrometry CETSA [MS-CETSA])362,363. This advancement has increased capacity for 
target engagement analysis from one protein of interest to nearly the entire proteome (roughly 
7000 proteins) in a single experiment. While the traditional CETSA assay is great for 
monitoring target engagement of a particular protein, TPP can provide information regarding 
off-target interactions of a given ligand and identify previously unknown targets of drugs 
currently used in the clinic362,363. Along these lines, phenotypic alterations and responses to 
an inhibitor or ligand may be inferred from clustering and mapping of the thermal proteomic 
profile363. Altogether, this showcases the potential power of CETSA when applied to the 
cellular proteome. 

Therefore, in many shapes and instances, the development of CETSA has transformed the 
way academia and industry approach and prioritize confirmation of cellular target 
engagement. The core methodology itself is straightforward and can be performed in virtually 
any laboratory that has a ligand for testing, high affinity antibodies for particular target(s) of 
interest and a gradient polymerase chain reaction (PCR) machine. As further applications of 
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the CETSA assay evolve and alternative assays spurred by its success arise, the scientific 
community as a whole will reap the benefits. 

2.2.2.2 General protocol (Figure 15) 

The basic principle of CETSA implies that two essential steps must occur: 1) Heating of cell 
samples in the absence or presence of a ligand to denature protein that is not bound by the 
ligand and 2) separation/clarification of aggregated protein from soluble, stabilized protein 
that is detected by an antibody357. Outside of these two basic tenets, there are many steps 
within the protocol that can be altered and require empirical optimization, as the biophysical 
properties of proteins and potential ligands vary tremendously357. In addition, there are 
several flavors of the CETSA assay that will yield different information regarding a ligand’s 
potential affinity for a protein of interest. First off, CETSA can be performed with intact cells 
or cell lysates, which, due to gross changes in environmental complexity, usually results in 
different melting temperatures for a given protein356,357,362,363. Traditional CETSA is 
predicated on a dose-dependent shift in a protein’s melt curve (Tagg) by a given ligand, 
whereas relative stabilizing potential and affinity may be evaluated by isothermal dose-
response fingerprint CETSA (ITDRFCETSA)356,357. ITDRFCETSA permits comparisons of ligand 
potency by monitoring protein stability at a single temperature.  

For the sake of simplicity, the protocols employed in Paper III used the originally-described 
settings for heating to investigate NUDT5 inhibitors, namely a 3-minute heating 
duration356,357. CETSA with cell lysates was performed by collecting HL-60 leukemic cells, 
washing them with PBS, and resuspending them in Tris-buffered saline (TBS) complemented 
with protease inhibitors. The addition of protease inhibitors ensures degradation of proteins 
does not impact protein levels following cell lysis. In some cases, where other post-
translational modifications may influence protein stability, phosphatase or deubiquitination 
inhibitors may also be added to the buffer to ensure their integrity364. Next, the cells were 
aliquoted in PCR tubes and lysed by freeze-thaw cycles with a dry ice/ethanol bath and 37°C 
water bath. To clarify the cellular debris from the released proteins, centrifugation was 
performed and the lysates were transferred to new PCR tubes. Clarified lysates were then 
incubated with NUDT5 inhibitors of interest or the equivalent volume of dimethyl sulfoxide 
(DMSO) for 30 minutes at room temperature to allow for inhibitor binding equilibration. 
Following incubation, the samples were heated in a gradient PCR machine at the given 
temperatures for 3 minutes, followed by a 3-minute temperature equilibration step at room 
temperature. Another high-speed centrifugation step pellets the aggregated proteins, and the 
resulting lysate is used for western blotting with anti-NUDT5 antibody and anti-superoxide 
dismutase 1 (SOD1) antibody, as a loading control due to its high thermostability365. 

Experiments with intact HL-60 cells, including the ITDRFCETSA studies, followed many of 
the same steps as above. Particular differences included the treatment of cells in culture for 3 
hours with DMSO or NUDT5 inhibitor. When collecting for analysis, the cells were washed 
twice with PBS to remove excess compound. This was a necessary step because cell 
membranes are ruptured at higher temperatures, including the range where NUDT5 
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stabilization is seen356,357. The cells were prepared in TBS buffer with protease inhibitors as 
before, heated for 3 minutes, cooled, and immediately freeze-thawed to lyse the cells. 
Following centrifugation, the clarified protein lysates were analyzed by western blotting. The 
ITDRFCETSA experiments were performed at 83°C, as most of the NUDT5 protein had 
aggregated at this temperature. 

 

Figure 15: Graphical procedure for CETSA experiments performed during the thesis work. Prior to lysis 
or heating, all cells were resuspended in TBS complemented with protease inhibitors to minimize proteolysis 
during sampler preparation. 
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2.2.2.3 Utility for the current studies 

CETSA ended up being a crucial assay for evaluation of NUDT5 inhibitors. Due to the lack 
of information regarding its biological functions at the time, functional or phenotypic 
screening assays were simply not possible. However, CETSA gave us the opportunity to 
evaluate the NUDT5 inhibitors in cells without the need of understanding its function.  

We realized early on that gradation of the CETSA assay was possible and could be useful to 
screen our NUDT5 inhibitor library to distinguish the most active compounds. The screening 
funnel we devised started with NUDT5 stabilization in cell lysates, followed by stabilization 
in intact cells, and, lastly, qualitatively ranking inhibitors that cleared the first two phases by 
their ability to stabilize NUDT5 at the lowest treatment dose with ITDRF. To facilitate more 
rapid screening of our inhibitor library, we utilized an isothermal temperature of 83°C to 
evaluate NUDT5 inhibitors at a single 20 µM dose and compared NUDT5 protein levels to a 
37°C control and 83°C DMSO-treated control. This, in effect, gave relative stabilizing ability 
without requiring full melt curve analyses for every compound. Importantly, however, one 
cannot accurately determine relative affinity from these single points, as the aggregation 
curves may differ. Absolute affinity can be derived from dose-dependent shifts in the melting 
curves (not magnitude of shifts alone), whereas relative comparison is possible with 
ITDRF353,356. As a result of this CETSA-guided approach, we identified our lead inhibitor, 
TH5427, and confirmed its ability to dose-dependently shift the Tagg of NUDT5. 

2.2.2.4 Issues/Complications 

Despite all of the abilities that CETSA has introduced, there are still drawbacks inherent to 
the fundamentals of the concept or that may be improved upon with newer iterations of the 
assay. The key for CETSA to work as advertised is for the user to have access to a high 
affinity antibody to probe for a native protein357. In many cases, as with proteins that are not 
commonly studied or in high demand, obtaining good antibodies may prove difficult. Using a 
less-than-acceptable antibody will complicate all iterations of the CETSA assay and 
convolute interpretation of results. One way of getting around this is to express a recombinant 
protein that is fused to an epitope tag. Antibodies recognizing epitope tags are commonplace 
and alleviate affinity concerns, as we have experienced in our lab with other projects. 
Nonetheless, the user would have to engineer cell lines in order to achieve this workaround. 

The number of variables required for optimization of a CETSA protocol for a particular 
protein may be very complex. These areas include ligand exposure times, heating 
temperature, and duration of heating, among others357,359. Furthermore, while CETSA is quite 
suitable for soluble proteins, there may be further optimization required to extract chromatin-
bound or membrane-bound proteins, although measures to incorporate these classes of 
proteins in CETSA analyses, including addition of detergents, have been recently 
described366,367. 
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2.3 SUMMARY OF RESEARCH PAPERS  

2.3.1 Crystal structure, biochemical and cellular activities demonstrate separate 
functions of MTH1 and MTH2 

NUDT15 (MTH2) had been proposed as a “back-up” enzyme to MTH1 that sanitizes 
oxidized nucleotides from the dNTP pool137,139,140. The incorporation of oxidized bases into 
nucleic acids causes transversion mutations and, potentially, cell death34,41,44-49,79. In this 
study, we reported that NUDT15 is very different from MTH1 and has a minimal role in 8-
oxo-dGTP sanitation, which can be primarily attributed to poor fit of the 8-oxo-guanine 
nucleobase in the enzyme active site. This data was further verified by biochemical and cell 
biology experimentation to assess NUDT15 functions. 

First, we explored the substrate activities of NUDT15, MTH1 and closely related NUDIX 
enzymes, NUDT17 and NUDT18, by the malachite green assay (MG assay) and HPLC 
(Figure 16a, b). The MG assay measures inorganic phosphate (Pi) levels in aqueous solution 
and was employed by coupling a NUDIX hydrolase and an additional phosphatase to 
generate free Pi. Compared to MTH1, NUDT15 (and the others) had virtually no hydrolysis 
activity towards 8-oxo-dGTP or 2-OH-dATP. Substrate saturation and HPLC experiments 
further confirmed that both MTH1 and NUDT15 hydrolyzed dGTP at similar efficiencies but 
MTH1 is approximately 230-fold more efficient at hydrolyzing 8-oxo-dGTP. 

To understand if structural differences could account for the distinct substrate preferences, we 
next solved the crystal structure of NUDT15 to 1.8 Å by X-ray crystallography (Figure 16c, 
d). Despite high sequence similarity to MTH1, NUDT15 was confirmed to be a homodimer 
by both crystallography and size-exclusion chromatography. The overall structure of 
NUDT15 was highly similar to MTH1, but major differences in the substrate binding site of 
NUDT15 (namely, the orientation of Gln44 and differences in key residues forming the base 
of the active site) suggested that 8-oxo-dGMP would be a poor fit. 

We then wanted to determine if the limited activity towards 8-oxo-dGTP in vitro was 
reflected in cells when NUDT15 was depleted by siRNA. NUDT15 depletion had no effect 
on overall survival in multiple cancer cell lines by clonogenic survival assay, but also did not 
further decrease the survival of MTH1 depleted cells. In addition, NUDT15 knockdown had 
no effect on cell cycle progression or proliferation (flow cytometry), and NUDT15 protein 
expression did not fluctuate over the cell cycle (double thymidine block and western blot). 
We then tested the effect of NUDT15, MTH1 or combined knockdown on induction of the 
DNA damage response by immunostaining for RPA and 53BP1 foci. While MTH1 
knockdown increased these markers, NUDT15 knockdown had no effect alone or in 
combination with MTH1 siRNA. Similarly, OGG1-specific lesions were quantified using the 
modified alkaline comet assay, and as before, MTH1 depletion induced a significant increase 
in comet tail moment with OGG1 treatment124 but NUDT15 depletion had no effect (Figure 
16e). Cumulatively, these data suggest NUDT15 has a very different role from MTH1 in 
cells, as there there appears to be no effect on oxidized nucleotide metabolism. 
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In an attempt to identify true substrates for NUDT15, we screened a larger panel of NUDIX-
like substrates by malachite green assay and HPLC (Figure 16f). Interestingly, NUDT15 
showed moderate activity hydrolyzing the canonical nucleotides, dGTP, dTTP and dUTP, but 
very low activity against 8-oxo-dGTP and other oxidized nucleosides, especially when 
compared to MTH1. However, we also saw that NUDT15 had activity in hydrolyzing 6-thio-
(d)GTP, the active species in thiopurine treatments, in line with recent reports that patients 
possessing NUDT15 missense mutations were hypersensitive to thiopurine treatments146-148. 
The crystal structure also indicated that the primary point mutation, Arg139Cys (R139C), 
was located within alpha helix 2 of the protein. Thus, altogether, this work demonstrated that 
NUDT15 is likely not an oxidized nucleotide pool sanitation enzyme like MTH1. 

 

Figure 16: NUDT15 is biochemically, structurally and biologically distinct from MTH1. a, Enyzmatic 
activities of MTH1, NUDT15, NUDT17 and NUDT18 against canonical and oxidized nucleoside substrates by 
malachite green assay. b, Substrate saturation curves compare the enzyme kinetics of MTH1 and NUDT15 in 
hydrolyzing 8-oxo-dGTP and dGTP. c, Comparison of the enzyme binding pockets of MTH1 (purple) and 
NUDT15 (cyan). d, Comparing 8-oxo-dGMP bound in the MTH1 active site with key binding interactions 
(purple) and the structural dissimilarity of the same residues in the NUDT15 active site (cyan). e, OGG1-specific 
lesions identified by modified alkaline comet assay with knockdown of NUDT15 or MTH1 in U-2 OS cells. f, 
Broadened screening of potential NUDT15 substrates by malachite green assay. 

  

activity with oxidized nucleotides compared with the correspond-
ing canonical nucleotides (Supplementary Fig. 1b). This activity,
however, is very low. Taken together, these data suggest that while
other NUDIX enzymes show some biochemical activity against
oxidized nucleoside diphosphates and triphosphates, the activity
of these enzymes are very modest in comparison with the activity
of MTH1 towards 8-oxo-dGTP and 2-OH-dATP.

The structure of NUDT15 is similar but distinct from MTH1.
Although NUDT15 is similar in sequence to MTH1, we have
demonstrated that NUDT15 has a remarkably low activity
towards 8-oxo-dGTP. To gain insight into the substrate pre-
ference of NUDT15, we determined the structure of the human
NUDT15 protein (Fig. 2). NUDT15 was crystallized in sitting
drop vapour diffusion experiments at 18 !C after 2 days in the
conditions described in the Methods section. Crystals were
analysed using the beamline 14.1 at Bessy, Germany, at 100 K.
The structure was solved in a P1 space group at a resolution of
1.8 Å. Structure and refinement statistics can be found in Table 1.

The most striking difference between MTH1 and NUDT15 is
that NUDT15 forms a homodimer (Fig. 2a–c). Analysis of the
NUDT15 dimer interface with PISA (protein interfaces, surfaces
and assemblies, an EBI service)18 demonstrates a solvation-free
energy gain of 16.2 kcal mol! 1 and a P value upon formation

of the dimer of 0.186, with an interface area of 1,578.5 Å2.
Size-exclusion chromatography and small-angle X-ray scattering
(SAXS) experiments confirm that the dimeric assembly observed
in the crystal structure is also present in solution (Supplementary
Fig. 2).

The overall structure of the NUDT15 monomer follows a
typical NUDIX fold with an a-helix, b-sheet, a-helix arrange-
ment, where the helices reside on opposing sides of a mixed
b-sheet (Fig. 2a,c). NUDT15 also has multiple small regions of
310-helices. The NUDIX box (GX5EX7REUXEEXGU) is located
in the first a-helix relative to the N terminus and contains
residues responsible for magnesium coordination and substrate
hydrolysis. Four magnesium ions are present in the NUDIX box
region (Fig. 2d and Supplementary Fig. 3). Three out of
four magnesium ions exhibited octahedral coordination: Mg1
coordinates Glu63 and 5 water molecules; Mg2 coordinates
Glu63, Glu67 and 4 water molecules; and Mg3 coordinates Glu67,
the carbonyl oxygen of Glu47 and 4 water molecules. The fourth
magnesium ion, Mg4, has trigonal bipyramidal coordination
(equatorial coordination angles that average 119.6!) and
coordinates five water molecules, two of which are bridged with
Mg1 and one is bridged with Mg2. While the presence of four
magnesium ions may not be physiologically relevant, the
structural differences between MTH1 and NUDT15 may have
profound impact on the biological roles of these enzymes.
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Figure 1 | Comparison of NUDIX protein activity with nucleotide substrates. (a) Nucleotide substrate (50 mM) was incubated with 5–500 nM NUDIX
protein depending on enzyme. Hydrolysis was monitored by detecting phosphate generated. The depicted data are representative of two independent
experiments showing the same result. Data are presented as v (hydrolysed substrate (mM) per minute) per [enzyme] (mM). (b) Saturation curves and
kinetic parameters of MTH1- and NUDT15-mediated hydrolysis of 8-oxo-dGTP (left) and dGTP (right). NUDT15 (8 nM) or MTH1 (0.25 nM) was incubated
with 8-oxo-dGTP at concentrations ranging from 0 to 100mM in assay buffer, and initial rates were determined in duplicate. Inset highlights NUDT15
activity on a smaller activity scale. NUDT15 (8 nM) and MTH1 (2 nM) were incubated with dGTP in assay buffer ranging from 0 to 400 mM, and initial rates
were determined in duplicate. Data are presented as v (hydrolysed substrate (mM) per second) per [enzyme] (mM), and are representative of data
collected from at least two independent experiments. (c) Kinetic parameters of MTH1 and NUDT15 for dGTP and 8-oxo-dGTP hydrolysis. The Michaelis–
Menten equation was applied to saturation curves using the GraphPad Prism software and kinetic parameters were calculated. Data presented are
average±s.d. from two independent experiments. (d) HPLC chromatograms showing the activity of NUDT15 and MTH1 against 8-oxo-dGTP and dGTP. The
depicted data are representative of three independent experiments and show that MTH1 rapidly hydrolyses 8-oxo-dGTP; however, no significant activity is
observed with NUDT15. Both MTH1 and NUDT15 can hydrolyse dGTP.
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carried out using recombinant, purified enzymes, and differences
from the in vivo activity cannot be ruled out.

Importantly, when comparing the activity of NUDT15 to
MTH1, it is clear that NUDT15 has a distinct selectivity profile
from MTH1 (Fig. 5c). Unlike MTH1, NUDT15 was not active
towards adenosine nucleotides. Of the substrates tested, low
activity was observed towards dCTP, dTTP and 8-oxo-dGTP. The
strongest activity was observed against dGTP, 6-thio-dGTP,
6-thio-GTP and dUTP. Two independent studies have recently
identified NUDT15 as a pharmacogenetic determinant of
thiopurine sensitivity20,21. The particular mutation of NUDT15
leading to sensitivity to thiopurine therapy (Arg139Cys) is located
in helix a2, which forms the base of the substrate binding pocket
(Fig. 5d). This mutation could lead to the formation of a disulfide
bond with the adjacent cysteine residue (Cys140) that may impact
the structure of the enzyme active site. Such structural perturbation
would likely reduce NUDT15 hydrolysis of 6-thio-dGTP in the
cell, causing increased sensitivity to thiopurine treatment.

Discussion
Since the MTH1 protein is a validated target for anticancer
treatments13,22, it is critically important to explore other
proposed dNTP pool sanitation enzymes and assess their
relevance as possible cancer therapeutic targets. Also, these
enzymes may greatly influence the efficiency of MTH1 inhibitors
in the clinic. Here we profiled enzymes suggested to sanitize the
oxidized dNTP pool. Although our data confirm that NUDT15

and NUDT18 have the ability to hydrolyse 8-oxo-dGTP or
8-oxo-dGDP in biochemical assays, this activity was
extremely weak when compared with MTH1 and is not likely
to have physiological relevance. Of the proposed MutT
homologues, NUDT15 had the second highest activity towards
8-oxo-dGTP, but displayed much higher activity towards
canonical dGTP. In fact, NUDT15 displays a nearly 10-fold
preference for dGTP rather than 8-oxo-dGTP as a substrate
(kcat/Km¼ 32,400 M" 1 s" 1 for dGTP and 3,600 M" 1 s" 1 for
8-oxo-dGTP). This is in stark contrast to MTH1 where the
kcat/Km is over 40 times greater for 8-oxo-dGTP than for dGTP.
This may be especially relevant in a biological setting where the
amount of 8-oxo-dGTP is expected to be only a small fraction of
the total dGTP pool. The kinetic values obtained in our
experiments are in agreement with those previously published17,19

for MTH1 activity. Our experiments were conducted at the
physiological pH of 7.5 in which we detected a reaction rate of
8-oxo-dGTP hydrolysis by MTH1 (8.6 s" 1) in between the
published kcat values at pH 7.2 (2.1 s" 1) and pH 8.0 (12.3 s" 1)
while the Km value is similar to that previously reported17. At pH 8,
Fujikawa et al., observe a 13.5-fold preference of 8-oxdGTP over
dGTP as substrate for MTH1. This preference for 8-oxo-dGTP
seems to be more pronounced at pH 7.5 based on the results
presented here. No kinetic parameters of human NUDT15 for any
substrate have been reported previously. However, Takagi et al.12

estimate that MTH1 is B40-fold more active with 8-oxo-dGTP
than NUDT15, which is in agreement with our results.
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Figure 3 | Structural comparison and sequence alignment of NUDT15 and MTH1. (a) Sequence alignment of human NUDT15 with human MTH1
(29% overall sequence identity). The secondary structure of NUDT15 is displayed above the sequence alignment and that of MTH1 below the alignment.
Sequence similarity is represented by yellow boxes, strict sequence identity in red boxes, beta sheets (b) as arrows, alpha-helices (a) and 310-helices (Z) as
squiggles. (b ) Superimposition of MTH1 (purple) and NUDT15 (chain A, cyan) with the NUDT15 Mg2þ coordination is shown. Major structural deviation is
observed in helix a2 that affects the depth of the putative binding pocket. (c) Comparison of NUDT15 and MTH1 binding pocket depth. Cut view of surface
representation highlights the variation in binding pocket depth of MTH1 (purple) and Nudt15 (cyan). (d) Comparison of NUDT15 and MTH1 binding pocket
composition. MTH1 helix a2 residues W117, P118, D119, D120 and N33 (grey) are involved in 8-oxo-dG (green) binding. NUDT15 helix a2 residues F135,
W136, G137, L138 and Q44 (grey) form the bottom of the putative binding pocket and are unable to make the equivalent hydrogen bonding network
observed in MTH1 binding to 8-oxo-dGMP.
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Furthermore, while MTH1 depletion led to marked reduction
in clonogenic survival and increased levels of 8-oxo-dG in DNA,
siRNA knockdown of NUDT15 had no effect on cell cycle
progression, clonogenic survival, 8-oxo-dG content of DNA or
DNA damage. Altogether, these data call into question the

importance of NUDT15 in 8-oxo-dGTP sanitation and suggest a
non-vital role of NUDT15 in this realm.

The poor activity of NUDT15 towards 8-oxo-dGTP can be
explained by studying the crystal structure. While NUDT15 and
MTH1 share a similar overall fold, a shift in NUDT15 helix a2
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results in distortion of the substrate binding pocket
compared with MTH1. In addition, MTH1 and NUDT15 have
different residues that make up the base of their active sites,
thereby conferring different substrate recognition. MTH1
has no direct contacts with the 8-oxo group of 8-oxo-dGTP;
however, the crystal structure and mutational studies have
demonstrated the importance of Asp119 and Trp117 in 8-oxo-
dGTP recognition19,23. It has been suggested that the 8-oxo
modification results in electronic changes that strengthen the
hydrogen bonding interactions and/or the base-stacking
interactions of 8-oxo-dGTP compared with dGTP19,24.
NUDT15 lacks similar hydrogen bonding capabilities and does
not maintain the same stacking interaction provided by Trp117 of
MTH1, so it does not exhibit the same affinity for the oxidized
nucleotides.

Since it appears that NUDT15 is not primarily involved in
8-oxo-guanine metabolism, we analysed its activity against a
panel of potential NUDIX substrates. We conducted two
independent substrate screens: one monitoring the formation of
pyrophosphate using a malachite green-based assay and the other
monitoring substrate hydrolysis by HPLC. Both assays showed
that NUDT15 had low activity towards dTTP, dCTP and 8-oxo-
dGTP, and higher activity towards dGTP, 6-thio-dGTP and 6-
thio-GTP. While these represent novel NUDT15 substrates, the
activity of NUDT15 against these substrates was quite low in
comparison with MTH1 activity against 8-oxo-dGTP and 2-OH-
dATP. The activity of NUDT15 towards 6-thioguanine species is
especially interesting given that a NUDT15 mutation was recently
identified as a sensitivity factor in thiopurine therapy20,21. While
our data support a role for NUDT15 in thiopurine metabolism,

further investigation into this topic is of great interest, as
thiopurines are used in the treatment of cancer and autoimmune
disease.

In conclusion, we demonstrate that MTH1 is the major, and
perhaps only, NUDIX family member with a cellular role as a
sanitizer of the oxidized dNTP pool. We demonstrate that
NUDT15 is structurally distinct from MTH1, explaining the
different substrate profile of NUDT15. We show that NUDT15
has a nonessential role in the survival of cancer cells but may be a
mediator of thiopurine therapeutic effectiveness.

Methods
Expression and purification of recombinant NUDIX proteins. The bacterial
expression construct pNIC28hNUDT15 was a kind gift from the Structural
Genome Consortium (Stockholm, Sweden). cDNAs encoding NUDT17 and
NUDT18 were optimized for expression in E. coli, purchased from GeneART
(Life Technologies) and subcloned into pET28a(þ ) (Novagen). The constructs
were verified by sequencing. His-tagged MTH1, NUDT15, NUDT17 and NUDT18
were expressed in E. coli BL21 (DE3) T1R pRARE2 cells at 18 !C overnight after
induction with 0.5 mM isopropyl-b-D-thiogalactoside. Cultures were grown in a
LEX system, harvested and lysed using Immobilized metal ion affinity chromato-
graphy (IMAC) lysis buffer (100 mM HEPES (pH 8.0), 500 mM NaCl, 10 mM
imidazole, 10% glycerol and 0.5 mM Tris(2-carboxyethyl)phosphine hydrochloride
(TCEP)), and pulsed sonication was performed. His-tagged proteins were affinity
purified using HisTrap HP (GE Healthcare) followed by gel filtration using HiLoad
16/60 Superdex 75 (GE Healthcare) in gel filtration buffer (20 mM HEPES (pH
7.5), 300 mM NaCl, 10% glycerol and 0.5 mM TCEP). The His-tag was removed by
TEV protease or thrombin digestion and separated using a Ni-NTA column or gel
filtration using HiLoad 16/60 Superdex 75 (GE Healthcare). Purity of protein
preparations was examined on SDS–polyacrylamide gel electrophoresis gel
followed by Coomassie staining and concentration was determined using
NanoDrop. The correct mass of the protein preparations was confirmed using mass
spectrometry analysis.
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Figure 5 | Activity of NUDT15 towards potential NUDIX family substrates. (a) Substrate hydrolysis after 30 min incubation at 22 !C was monitored by
coupling the reaction to an excess of bovine alkaline phosphatase or E. coli pyrophosphatase and measuring inorganic phosphate using malachite green
reagent. Data are presented as v (hydrolysed substrate (mM) per minute) per [NUDT15] (mM). Depicted data are mean±s.d. of triplicates. Experiment was
performed twice with similar results. (b) Relative activity of NUDT15 by HPLC analysis. Activity of 10 nM NUDT15 protein against a panel of potential
NUDIX substrates was measured by HPLC after 30 min incubation at 37 !C. Enzymatic activity was stopped by addition of trifluoroacetic acid (5%) and
samples were ran under conditions indicated in Methods section. Per cent hydrolysis was calculated by subtracting the peak area at 30 min from the area at
time 0 and dividing this by the area at time 0; (n¼ 2). (c) Substrate hydrolysis after 20 min incubation at 22 !C with NUDT15 (black bars) or MTH1 (white
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phosphate as described above. Experiments were performed in duplicate and data are presented as v (hydrolysed substrate (mM) per minute) per
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carried out using recombinant, purified enzymes, and differences
from the in vivo activity cannot be ruled out.

Importantly, when comparing the activity of NUDT15 to
MTH1, it is clear that NUDT15 has a distinct selectivity profile
from MTH1 (Fig. 5c). Unlike MTH1, NUDT15 was not active
towards adenosine nucleotides. Of the substrates tested, low
activity was observed towards dCTP, dTTP and 8-oxo-dGTP. The
strongest activity was observed against dGTP, 6-thio-dGTP,
6-thio-GTP and dUTP. Two independent studies have recently
identified NUDT15 as a pharmacogenetic determinant of
thiopurine sensitivity20,21. The particular mutation of NUDT15
leading to sensitivity to thiopurine therapy (Arg139Cys) is located
in helix a2, which forms the base of the substrate binding pocket
(Fig. 5d). This mutation could lead to the formation of a disulfide
bond with the adjacent cysteine residue (Cys140) that may impact
the structure of the enzyme active site. Such structural perturbation
would likely reduce NUDT15 hydrolysis of 6-thio-dGTP in the
cell, causing increased sensitivity to thiopurine treatment.

Discussion
Since the MTH1 protein is a validated target for anticancer
treatments13,22, it is critically important to explore other
proposed dNTP pool sanitation enzymes and assess their
relevance as possible cancer therapeutic targets. Also, these
enzymes may greatly influence the efficiency of MTH1 inhibitors
in the clinic. Here we profiled enzymes suggested to sanitize the
oxidized dNTP pool. Although our data confirm that NUDT15

and NUDT18 have the ability to hydrolyse 8-oxo-dGTP or
8-oxo-dGDP in biochemical assays, this activity was
extremely weak when compared with MTH1 and is not likely
to have physiological relevance. Of the proposed MutT
homologues, NUDT15 had the second highest activity towards
8-oxo-dGTP, but displayed much higher activity towards
canonical dGTP. In fact, NUDT15 displays a nearly 10-fold
preference for dGTP rather than 8-oxo-dGTP as a substrate
(kcat/Km¼ 32,400 M" 1 s" 1 for dGTP and 3,600 M" 1 s" 1 for
8-oxo-dGTP). This is in stark contrast to MTH1 where the
kcat/Km is over 40 times greater for 8-oxo-dGTP than for dGTP.
This may be especially relevant in a biological setting where the
amount of 8-oxo-dGTP is expected to be only a small fraction of
the total dGTP pool. The kinetic values obtained in our
experiments are in agreement with those previously published17,19

for MTH1 activity. Our experiments were conducted at the
physiological pH of 7.5 in which we detected a reaction rate of
8-oxo-dGTP hydrolysis by MTH1 (8.6 s" 1) in between the
published kcat values at pH 7.2 (2.1 s" 1) and pH 8.0 (12.3 s" 1)
while the Km value is similar to that previously reported17. At pH 8,
Fujikawa et al., observe a 13.5-fold preference of 8-oxdGTP over
dGTP as substrate for MTH1. This preference for 8-oxo-dGTP
seems to be more pronounced at pH 7.5 based on the results
presented here. No kinetic parameters of human NUDT15 for any
substrate have been reported previously. However, Takagi et al.12

estimate that MTH1 is B40-fold more active with 8-oxo-dGTP
than NUDT15, which is in agreement with our results.
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Figure 3 | Structural comparison and sequence alignment of NUDT15 and MTH1. (a) Sequence alignment of human NUDT15 with human MTH1
(29% overall sequence identity). The secondary structure of NUDT15 is displayed above the sequence alignment and that of MTH1 below the alignment.
Sequence similarity is represented by yellow boxes, strict sequence identity in red boxes, beta sheets (b) as arrows, alpha-helices (a) and 310-helices (Z) as
squiggles. (b ) Superimposition of MTH1 (purple) and NUDT15 (chain A, cyan) with the NUDT15 Mg2þ coordination is shown. Major structural deviation is
observed in helix a2 that affects the depth of the putative binding pocket. (c) Comparison of NUDT15 and MTH1 binding pocket depth. Cut view of surface
representation highlights the variation in binding pocket depth of MTH1 (purple) and Nudt15 (cyan). (d) Comparison of NUDT15 and MTH1 binding pocket
composition. MTH1 helix a2 residues W117, P118, D119, D120 and N33 (grey) are involved in 8-oxo-dG (green) binding. NUDT15 helix a2 residues F135,
W136, G137, L138 and Q44 (grey) form the bottom of the putative binding pocket and are unable to make the equivalent hydrogen bonding network
observed in MTH1 binding to 8-oxo-dGMP.
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2.3.2 NUDT15 hydrolyzes 6-thio-deoxyGTP to mediate the anticancer efficacy of 
6-thioguanine 

From Paper I, we knew that NUDT15 does not have a substantive role in hydrolyzing 
oxidized nucleotides but could catalyze hydrolysis of thiopurine triphosphates. The 
ramifications of this activity, and of the recently-identified NUDT15 missense variant, 
R139C, on thiopurine toxicity in cells required further investigation. 

In Paper II, using wild-type (WT) NUDT15 purified protein, we confirmed that NUDT15 
hydrolyzed 6-thio-(d)GTP to 6-thio-(d)GMP by HPLC (Figure 17a). We then showed that 
the R139C mutant still possessed catalytic activity and could hydrolyze 6-thio-(d)GTP, as 
well as the canonical nucleotide, (d)GTP, with little difference in activity when compared to 
NUDT15 WT protein by substrate saturation kinetics analyses (Figure 17b). This suggested 
that the R139C mutation did not directly affect NUDT15 catalytic activity. We then 
confirmed that 6-thio-GTP was a NUDT15 substrate by solving the co-crystal structure of the 
6-thio-GTP hydrolysis product, 6-thio-GMP, in complex with NUDT15. Overall, the binding 
was very similar to that of dGTP except that the preference for 6-thionylated substituents can 
be explained by the greater accommodation of this group by a hydrophobic pocket in the 
NUDT15 active site, comprised of the residues Phe135, Leu138 and Gln44368.  

 

Figure 17: NUDT15 preferably hydrolyzes 6-thio-(d)GTP and the R139C missense mutant maintains 
catalytic function. a, Catalyzed hydrolysis of 6-thio-dGTP to 6-thio-dGMP and 6-thio-dG by NUDT15 with 
HPLC. b, Substrate saturation curves comparing wild-type and R193C NUDT15-catalyzed hydrolysis of 6-thio-
(d)GTP compared to (d)GTP. 

Next, we wanted to understand how the R139C mutation sensitized patients to thiopurines, 
since it is still capable of hydrolyzing 6-thio-(d)GTP in vitro. We then over-expressed 
doxycycline (DOX)-inducible HA-tagged NUDT15 WT and R139C in HCT116 colon 
carcinoma cells. Upon DOX treatment, WT NUDT15 protein was robustly expressed but the 
R139C mutant was barely detectable by western blot (Figure 18a). mRNA expression of WT 
and R139C transcripts was virtually identical, so we then considered that changes in protein 
turnover of R139C may be the cause. Indeed, when we treated the HCT116 cells expressing 
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NUDT15 WT and R139C with MG-132, a proteasome inhibitor369, we could rescue the 
protein levels as early as 3 hours following addition (Figure 18b). p53 protein, which is also 
rapidly turned over in cells by MDM2370, was blotted as a control. Thus, we concluded that 
the R139C mutant is expressed in cells but rapidly degraded by the proteasome. 

Due to the fact that R139C had activity in vitro but was degraded when expressed in cells, we 
considered that the mutation, which replaces an arginine within helix α2 with a cysteine, may 
be destabilizing the protein structure. When we studied the thermal stability of NUDT15 WT 
and R139C by differential scanning fluorimetry (DSF), we saw that WT NUDT15 had a Tm 
of 58°C, while the R139C mutant had a melting temperature (Tm) of 46°C (Figure 18c). We 
also noticed that the basal fluorescence for NUDT15 R139C was drastically higher than for 
the WT protein. Sypro orange dye preferentially binds to hydrophobic surfaces of proteins as 
they unfold371. Thus, the increased basal fluorescence from the R139C mutant suggests that 
the structure may be more loose and open than the WT counterpart.  

Mutagenesis of Arg139 to serine or alanine had the same effect as mutation to cysteine, while 
mutation to lysine could mostly restore the thermal stability of NUDT15 (Figure 18c). 
Arg139 is important for several intramolecular interactions in the protein structure, most 
notably, an ionic interaction with Asp132, which is on an adjacent alpha helix (Figure 18d). 
Arginine and lysine are able to make this interaction while the other mutants cannot. Thus, 
the R139C mutation destabilizes the NUDT15 protein structure likely due to loss of 
stabilizing intramolecular bonding networks.  

 

Figure 18: NUDT15 R139C is unstable and rapidly degraded in cells due to loss of key intramolecular 
bonding. a, HA-tagged NUDT15 WT and R139C expression in HCT116 cells. b, HCT116 cells expressing HA-
tagged WT or R139C mutant NUDT15 were subjected to MG-132 treatment. p53 protein was blotted as a 
control. c, DSF with WT NUDT15 and various Arg139 mutants. d, Arg139 of NUDT15 makes a key intrahelical 
bond with Glu143 and interhelical ionic interaction with Asp132 of the adjacent alpha helix (bonds in yellow). 
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We next sought to understand how loss of NUDT15 would affect 6-thioguanine toxicity. 
Mismatch repair (MMR)-deficient and -proficient HCT116 and HCT116 3-6 cells, 
respectively, have been used extensively for studying 6-thioguanine toxicity244,247,372-374 and 
were transduced with Control or NUDT15 shRNA. Toxicity of thioguanine was assessed in 
both cell lines by clonogenic survival assay (Figure 19a). As expected, shControl-expressing 
HCT116 3-6 cells were more sensitive to thioguanine than MMR-deficient HCT116 cells. 
Depletion of NUDT15 rendered the HCT116 3-6 cells extremely sensitive to thioguanine, 
while even the parental HCT116 cells displayed some increased sensitivity.  

Futile repair cycling and prolonged G2 checkpoint activation are signatures of thiopurine 
DNA incorporation in MMR-proficient cells245-248. We then performed a time course to see if 
a very low dose of thioguanine (150 nM) could selectively affect the G2 DNA damage 
checkpoint response in NUDT15 knockdown cells (Figure 19b). Thioguanine addition 
robustly induced phosphorylation of Chk1 and then Chk2, as well as subsequent G2 phase 
accumulation (indicated by inhibitory CDK2 phosphorylation)375, in a time-dependent 
manner in the NUDT15-depleted cells but less so in control cells.  

 

 

Figure 19: NUDT15 depletion greatly 
sensitizes cells to thioguanine treatment. a, 
Mismatch repair-deficient HCT116 and –
proficient HCT116 3-6 cells were treated with 
control or NUDT15 shRNA by doxycycline 
induction and exposed to different doses of 
thioguanine by clonogenic assay. b, HCT116 
3-6 cells depleted of NUDT15 (or not) were 
treated with 150 nM thioguanine for up to 72 
hours and prepared for western blot. c, 
Overview of NUDT15 involvement in 

cellular thiopurine metabolism. 
 

Therefore, NUDT15 appears to be a barrier to the anti-cancer efficacy of thioguanine by 
hydrolyzing the cell-active metabolites, 6-thio-GTP and 6-thio-dGTP, to inactive 
monophosphates (Figure 19c). Our data suggests that patients homozygous for the NUDT15 
R139C mutation are hypersensitive to thiopurine treatments due to inherent protein instability 
from loss of key intramolecular bonding interactions and subsequent protein degradation. 
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2.3.3 Targeted NUDT5 inhibitors block hormone signaling in breast cancer cells 

NUDT5 is another member of the NUDIX family implicated in oxidized nucleotide pool 
sanitation138,140,163-165; however, the physiological relevance of this activity, and ambiguity 
surrounding its substrate preferences141, has not been extensively evaluated.  

In Paper III, we first assessed the substrate specificity of NUDT5 by MG assay and HPLC. 
Distinct from MTH1, NUDT5 was unable to hydrolyze any of the oxidized or canonical 
nucleoside substrates tested but efficiently hydrolyzed ADP-ribose (Figure 20a). Similarly, 
we compared NUDT5-mediated hydrolysis of the two proposed substrates, ADP-ribose and 
8-oxo-dGDP, and identified hydrolysis products by HPLC. Matching with the MG data, 
NUDT5 hydrolyzed ADP-ribose to AMP but had no activity towards 8-oxo-dGDP.  

NUDT5 was then depleted in U-2 OS cells before assessing DNA damage markers by 
immunofluorescence microscopy and OGG1-specific lesions in DNA by the modified 
alkaline comet assay. Knockdown of NUDT5 with two specific siRNAs caused no increases 
in γH2A.X, RPA or 53BP1 foci, nor was there an increase in OGG1-specific DNA lesions by 
modified alkaline comet assay when compared to MTH1 inhibitor, TH1579 (karonudib; 
Figure 20b)129.  

 

Figure 20: NUDT5 preferentially hydrolyzes ADPR. a, Relative enzymatic activities of NUDIX substrates by 
MTH1 (blue) and NUDT5 (red) by in vitro malachite green assay. b, U-2 OS cells treated with MTH1 inhibitor, 
TH1579 (karonudib), or depleted of NUDT5 were analyzed by the modified alkaline comet assay, which 
includes an hOGG1 incubation step (red) and is compared to buffer-treated samples (blue). 

To assess NUDT5 function with regard to ADP-ribose hydrolysis in a cellular context, we 
depleted NUDT5 by siRNA, prepared cell lysates for enzymatic reactions with spiked ADP-
ribose and analyzed the hydrolysis by HPLC. As we expected, NUDT5-depleted U-2 OS 
cells hydrolyzed ADP-ribose less efficiently than control cells and this effect could be 
completely rescued by addition of purified NUDT5 protein to the reaction mixture. 
Altogether, the data suggest that NUDT5 is minimally involved in oxidized nucleotide 
metabolism and that ADP-ribose is a primary substrate. 

In conjunction with Laboratory for Chemical Biology Karolinska Institutet/Chemical Biology 
Consortium Stockholm (LCBKI/CBCS), we performed a small molecule high-throughput 

2-O
HATP

2-O
HdA

TP

8-o
xo

dG
DP

8-o
xo

dG
TP

8-o
xo

GTP
dA

TP
dG

TP
GDP

GTP 

ADPR

0
50

100
150
200
250
300
350
400

v/
[E

to
t] 

(m
in

-1
)

MTH1
NUDT5

a

DMSO
+siNeg

500 nM
TH1579

siNUDT5
#1

siNUDT5
#7

0

3

6

9

12

15

Re
la

tiv
e 

ta
il 

m
om

en
t ****

ns
ns

b



 

  46 

screen of approximately 72,000 compounds utilizing a screening-compatible, enzyme-
coupled MG assay. From hit compound, TH1167, medicinal chemistry efforts to improve 
biochemical potency were focused on diversification at the 8-position of the theophylline 
core and the far tail-end of the molecule. We obtained a co-crystal structure of TH1713 in the 
active site of the NUDT5 homodimer, and the theophylline ring (present in all compounds 
within this series) was firmly anchored in place by pi-stacking and hydrogen bonding 
interactions. The theophylline 8-position, meanwhile, was directed towards the solvent space. 

With limited biological roles for NUDT5 established in the literature, we utilized a compound 
screening funnel that prioritized cellular target engagement by CETSA356,357 to identify 
potent, cell-active NUDT5 probes (Figure 21a). We selected several compounds with IC50 ≤ 
100 nM by the MG assay. These compounds were analyzed by CETSA with HL-60 cell 
lysates and tested for their ability to stabilize intracellular NUDT5 at 83°C and 20 µM. 
Notably, three compounds, TH5423, TH5424 and TH5427, stabilized NUDT5 to greater than 
50% of 37°C NUDT5 protein levels. These three compounds, and TH1659, were then tested 
for their ability to stabilize NUDT5 with intact HL-60 cells at 20 µM, and, again, TH5423-
5427 stood out from TH1659. Each of these compounds was then tested by ITDRFCETSA to 
determine which compound was able to stabilize intracellular NUDT5 at the lowest 
concentration (Figure 21b). Indeed, TH5427 was clearly the most potent and stabilized 
NUDT5 at < 1µM, both by CETSA and by DARTS, a protease degradation-based cellular 
target engagement assay376 (Figure 21c).  

 

Figure 21: CETSA-guided screening of top NUDT5 inhibitors identifies TH5427 as a lead agent. a, 
Screening funnel for top NUDT5 inhibitors with successive CETSA. b, ITDRFCETSA for NUDT5 inhibitors with 
intact HL-60 cells. c, CETSA with TH5427 at 2.5 or 20 µM in intact HL-60 cells. 
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Having now identified potent, cell-active NUDT5 inhibitors, we needed to test them in a 
biological context. To this end, we established a collaboration with the Miguel Beato lab at 
the Center for Genomic Regulation in Barcelona. They recently discovered that NUDT5 can 
synthesize ATP in the nucleus following hormone stimulation of breast cancer cells, and this 
PAR-derived nuclear ATP is required to power ATP-dependent chromatin remodeling and, 
thus, hormone-dependent gene regulation and cell proliferation171 (Figure 22).  

NUDT5 is able to synthesize ATP from ADP-ribose in the presence of PPi in vitro. Thus, we 
tested if TH5427 could block the formation of AMP and ATP from the ADP-ribose formed 
from 32P-PAR and bovine PARG by thin layer chromatography and radiography. Addition of 
TH5427 completely abrogated NUDT5 activity and reinforced the fundamental biological 
role for NUDT5 in producing AMP and ATP from ADP-ribose. With a nuclear-targeted 
luciferase reporter377, we showed that TH5427 blocked nuclear ATP formation following 
R5020 stimulation at just 1.5 µM in T47D breast cancer cells. Additionally, it impeded the 
displacement of histone H1 from DNA 30 minutes following hormone addition, as assayed 
by ChIP with 5 different histone H1-interacting regions173. Then 6 hours following R5020 
addition, TH5427 blocked the transcription of the progesterone-dependent genes, EGFR and 
MMTV-luc. Finally, TH5427 was able to completely inhibit progesterone-dependent cell 
proliferation by BrdU incorporation 24 hours post-R5020 treatment. 

 

Figure 22: NUDT5 is required for hormone-dependent, PAR-derived nuclear ATP synthesis and gene 
regulation in breast cancer cells. In response to hormone, NUDT5 synthesizes ATP from ADPR, which is 
required for ATP-dependent chromatin remodelling and subsequent gene regulation and proliferation. 

Altogether, the data suggest that TH5427 is a potent, selective and cell-active NUDT5 inhibitor that 
can be used to probe PAR and ADP-ribose metabolism, novel NUDT5 biology and uncover novel 
therapeutic strategies for treating human diseases. 
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2.4 DISCUSSION AND IMPLICATIONS 

At the time this thesis work commenced, the best-characterized function of human NUDIX 
hydrolases was the sanitation of the oxidized nucleotide pool by hydrolysis of mutagenic 8-
oxo-(d)GTP and 2-OH-(d)ATP to their respective monophosphate 
species44,45,48,49,64,112,113,119,124,138,141,378, thus preventing their incorporation into nucleic acids 
by DNA and RNA polymerases. This makes sense because the first described NUDIX 
protein, E. coli MutT45,64,116, performed this function and, prior to renaming to NUDIX by 
Bessman and colleagues112, they were called the MutT family of proteins. Thus, human 
NUDIX proteins were identified by sequential and structural homology and initially tested for 
their ability to hydrolyze oxidatively-damaged nucleotides like MutT. In turn, this led to the 
discovery of MTH1 (MutT homology 1; NUDT1)119 and, later, other NUDIX hydrolases that 
could also facilitate hydrolysis of 8-oxo-guanine species, including NUDT15 
(MTH2)137,139,140 and NUDT5138,140,157,163-166 – work pioneered by Sekiguchi, Kamiya, and 
Nakabeppu, among others.  

It should be no surprise, then, that functional analyses of NUDIX proteins were biased 
towards oxidized nucleotide pool sanitation and 8-oxo-G-centric in nature. This inclination 
for a particular phenotype likely obscured the relevant functions of several of the human 
NUDIX proteins, as was recently alluded to in a review by Alex McLennan141, who has 
contributed immensely to our understanding of NUDIX enzyme biochemistry and function. 
Nonetheless, this phase served as an important starting point and generated tremendous 
interest in establishing the relevance of the NUDIX superfamily, particularly with respect to 
cancer.  

It was also this perspective that generated our lab’s interest in studying MTH1 and, soon 
thereafter, NUDT15 and NUDT5, as potential anticancer targets for small molecule inhibitors 
synthesized in-house. The early success in the lab regarding the potential of small molecule 
inhibitors targeting MTH1124,129 led us to pursue the possibility that NUDT15 and NUDT5 
may be MTH1 redundancy factors that could serve as a resistance mechanism to MTH1 
inhibitors. Instead, as was addressed in the component papers of this thesis, NUDT15 and 
NUDT5 appear to be important for diverse functions that are unrelated to oxidized nucleotide 
metabolism, at least, under the tested conditions and cell lines. 

2.4.1 NUDT15 (MTH2) 

Papers I and II highlighted that NUDT15 has a prominent role in regulating thiopurine 
efficacy in cells, namely by hydrolyzing the active metabolites, 6-thio-GTP and 6-thio-dGTP, 
to their respective monophosphates368,379. This was in line with initial papers identifying the 
NUDT15 R139C mutation as a highly correlated predisposition factor for thiopurine-induced 
leukopenia146-148 and is now further substantiated by numerous follow-up studies with 
patients of different ethnic backgrounds. Like other factors influencing thiopurine toxicity, 
such as TPMT or ITPA, screening patients for NUDT15 missense mutations will likely 
become common clinical practice. 



 

  49 

Just prior to publishing Paper II, another group published a highly similar story380. In most 
respects, their findings agreed with our own, except with regard to the reason for sensitivity 
seen in NUDT15 R139C patients. Their conclusions were that R139C was not enzymatically 
active due to thermoinstability, but this did not affect protein expression in cells. The reasons 
for this disparity are likely due to key differences in experimental approaches. First of all, the 
in vitro enzymatic assays were performed at 37°C and not room temperature (20-21°C), as 
was done in our studies379. Given the lowered protein stability of R139C, it would make 
sense that we saw activity and the other group did not. A logical conclusion, then, is that the 
R139C mutation does not directly affect enzyme catalysis, but, at physiological temperature, 
unfolding of the protein would compromise enzyme function. It was puzzling, therefore, that 
the other group did not see degradation of R139C when expressed in cells, as the proteasome 
system should flag the protein for destruction381. One reason for this could be that they 
utilized a transient transfection approach or, perhaps, the choice of protein fusion tag. In any 
case, greater perspective will be gained if these studies are reproduced by a third, independent 
group. 

One of the other objectives within the NUDT15 project was the development and evaluation 
of NUDT15 inhibitors, which was alluded to in another thesis from our research group382 and  
is not included as part of this thesis. Identical to methods with RNAi, NUDT15 inhibitors can 
potentiate the effects of thiopurines by increasing the active triphosphates, with further 
sensitization seen in MMR-proficient leukemias than in MMR-deficient cells382. An 
interesting question becomes then – if NUDT15 inhibitors were developed to a pre-clinical 
stage, would there be any interest in using them? The answer is likely complicated on 
multiple levels. For one, thiopurines are a cytotoxic therapy that will also affect rapidly 
proliferating normal cells, such as in the gut and bone marrow, which is the reason doses 
have to be lowered or treatment completely halted, in some cases. Additionally, patients with 
nonfunctional NUDT15 are deathly sensitive to thiopurines146-148. The only way this would 
be practical is if expression of NUDT15 was higher in cancer cells than in normal cells; 
however, this has yet to be properly studied. Furthermore, long-term side effects, such as the 
photoreactivity of thiopurines and their effects on DNA, proteins, and lipids, have to be 
considered, especially since children are among those typically treated with the drug229,383,384. 
Another possibility is that thiopurine dosing regimens could be titrated down if combined 
with NUDT15 inhibitors, which may curb some of the negative side effects. However, 
thiopurines are used as maintenance therapies for ALL, not primary treatments, and 90+% of 
childhood ALL cases are cured with the current standard-of-care228,229. Thus, there is very 
little incentive to experiment further with dosing and risk losing an already-great cure rate.  

A logical follow-up question following the role in thiopurine metabolism is: Does NUDT15 
influence the efficacy of other nucleoside analogs? This question is readily apparent when 
considering the multiple nucleoside analog drugs that are directly or indirectly regulated by 
SAMHD1211-216,385. Interestingly, thioguanine triphosphates are not substrates of 
SAMHD1213, which may explain why NUDT15 is relevant in this circumstance. Extensive 
screening of both clinical and generic nucleoside analogs may yield further direct substrates 
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of, not only NUDT15, but other NUDIX proteins as well, which may be informative 
regarding clinical utility or for determining endogenous substrates. 

Quite frustratingly, very little progress was made on the physiological function(s) of 
NUDT15 during the course of this thesis, as thiopurines are not endogenously-occuring 
metabolites. Based on experiments performed by myself and others, blockade of NUDT15 
function by RNAi368,379 or potent NUDT15 inhibitors382 had no discernable effects on cell 
cycle, proliferation, or cell survival for up to several weeks with numerous cell types368,379,382. 
This by no means excludes the possibility that NUDT15 has important functions in cells but 
suggests that whatever changes occur following loss of NUDT15 are not significantly 
impacting normal cellular processes under tested conditions. Still, though, the linkage to 
oxidative damage metabolism is ever-present137,139,140,142, most recently exemplified by 
NUDT15 CRISPR/Cas9 knockout cells being sensitized to hydrogen peroxide149. As was the 
case with our experiences, NUDT15 knockout cells had no changes to their proliferation 
rate149. Clues to NUDT15’s cellular function(s) may be uncovered by substrate profiling, 
which has thus far suggested that dGTP, dTTP, and dUTP are endogenous NUDT15 
substrates368; however, the relative importance of NUDT15 in modulating dNTP pools is still 
unclear. Nonetheless, the work from this thesis has cast doubt on the role for NUDT15 in 
metabolizing oxidized nucleotides and defined how NUDT15 affects thiopurine treatments in 
patients. 

2.4.2 NUDT5 

In Paper III, we reported the first small molecule inhibitors of NUDT5 and utilized them to 
confirm its role in generating nuclear ATP for chromatin remodeling in response to progestin 
in breast cancer cells386. We used an unorthodox approach to evaluate our compound library: 
a CETSA-guided screening funnel. Initially, this was chosen out of necessity because there 
were no known NUDT5-linked phenotypic assays that could reliably inform about the 
cellular activity of our inhibitors. However, we later realized that this approach could 
alleviate any potential biases that might arise from performing a phenotypic screen. Why try 
and define what we think NUDT5 inhibitors are doing in cells, when we can reliably select 
out the compounds that bind NUDT5 in cells with the most potency? Our goal was to identify 
the best, cell-active NUDT5 inhibitor, and then use it to further interrogate NUDT5 cellular 
functions. 

To our knowledge, no one has reported utilizing CETSA prioritization as a primary screening 
method in cells for a focused library of small molecule inhibitors. From the initial publication 
in 2013, one of the recognized advantages of CETSA was the ability to rank inhibitors by 
using the ITDRF method to determine relative target engagement potency356,357,359,364. More 
recently, CETSA with AlphaScreen® was used as a primary screen to identify ligands that 
stabilized TS360, and the authors were able to identify mM inhibitors. What this implies is that 
one can screen any set of molecules against a protein of interest in cells and not just identify, 
but also rank, inhibitors without knowing anything about the protein’s function. It cannot be 
understated just how powerful that is. On that note, it is well established that targeted 
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therapies are only as good as their ability to bind the target in cells, which is why prioritizing 
target engagement, not just confirming it, should be a goal for inhibitor and drug 
development programs349-352. 

By identifying potent, cell-active NUDT5 inhibitors, we were able to confirm a new function 
for NUDT5 that was recently reported171. The ability for cells to synthesize ATP in the 
nucleus has been conveyed over several decades but has never gained momentum as a 
bonafide source of ATP production, likely because it was assumed that this ATP was from 
mitochondrial contamination or passive diffusion. However, looking back at the series of 
manuscripts on the topic, one can see a clear pattern that has developed and led to the point 
we are today. Allfrey and Mirsky first saw that HeLa nuclei could generate their own ATP 
from DNA312 and Betel added that it was dependent on ribose-phosphate313. Tanuma and 
colleagues identified that ATP could be formed in nuclei from PAR catabolism via an 
enzyme called ADPR pyrophosphorylase, which catalyzes the formation of ATP from ADPR 
and PPi314. This ATP appeared to be important for facilitating repair synthesis of DNA315,316. 
Oei and Ziegler demonstrated that PAR-derived ATP was dependent on active DNA 
replication and required for ligation following DNA repair317. Now, we have helped confirm 
that PAR catabolism and PPi can make ATP via NUDT5171,386, bringing the process full 
circle. 

The ability of NUDT5 to synthesize ATP from ADPR and PPi is certainly unexpected, not 
just because NUDT5 is a hydrolase, but also because the reaction is energetically 
unfavorable171. For hydrolysis, approximately 22 kJ/mol of energy is released but for ATP 
synthesis, 12 kJ/mol is required for the reaction to occur171. Wright and colleagues concluded 
that loss of a phosphorylation on Thr45 may result in a NUDT5 conformational change that 
can facilitate PPi binding and ATP synthesis171,387. However, in light of the high melting 
temperature and resistance to proteolysis seen in Paper III, it is difficult to envision that a 
single phosphorylation event will cause inversion of the NUDT5 dimer171,387. In fact, the 
model proposed by Wright and colleagues would completely disrupt the NUDT5 active sites, 
as they are composed of residues from both monomers at the dimer interface156,157,165,166,386. 
As these conclusions were based on in silico modeling, crystallographic structure 
determination studies would be immensely insightful. Another possibility is that energetic 
coupling during PAR hydrolysis by PARG propels the unfavorable ATP synthesis reaction; 
since NUDT5 can form a complex with NMNAT1, PARP and PARG171 and PAR 
degradation is absolutely required to produce nuclear ATP314-316 (addition of exogenous 
ADPR is not enough317).  

An interesting scientific question revolves around the purpose of PAR formation. It is well 
known that PARylation orchestrates chromatin dynamics and recruitment of DNA modifying 
enzymes, but could it also be an emergency energy store, as Tanuma, Oei and Ziegler 
proposed314,317? During chromatin remodeling, which occurs during transcription, replication, 
and repair processes, among others; the cell likely requires large quantities of ATP in close 
proximity to the dependent enzymes at a moment’s notice171,387. As PAR is involved in 
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coordinating most, if not all, of these processes, could it be the source of ATP (via NUDT5) 
for all of them? In the presence of excess ATP, ATP synthesis from PAR catabolism does not 
occur, which could indicate that this process is only activated when local ATP concentrations 
are low314,316,317. Further supporting this possibility is the fact that ATP, at physiologically-
relevant concentrations of 1-10 mM, can inhibit PARP1 catalysis of PAR303,388, likely by both 
indirect and direct binding to the enzyme active site388. Kim et al. also proposed that PARP1 
was a sensitive metabolic switch that could modulate transcriptional activity of chromatin 
depending on local ATP concentrations303. Collectively, this may indicate an unappreciated 
purpose of PAR formation. 

With the tools we currently have available, such as the ATP389 and NAD+390 FRET probes, it 
will be interesting to see what other PARP-related functions require ATP production from 
NUDT5. PARP1, for example, which is known to complex with NUDT5, is well 
characterized for its role in repairing DNA damage, but also regulating chromatin structure, 
transcription, proteasomal degradation and mitochondrial function391. PAR itself is also 
implicated in numerous other functions – including spindle assembly during mitosis, 
translational elongation, macromolecular complex assembly, and regulation of RNA 
splicing391-393. Most, if not all, of these processes also require large amounts of ATP, so it is 
conceivable that NUDT5, or some other unknown protein, may also produce ATP from PAR 
in these circumstances. Even if we restrict the scope of NUDT5 and PAR-derived ATP 
synthesis to the process of transcription, it is entirely possible that transcriptional programs of 
several nuclear receptors, like the androgen, retinoic acid, thyroid, and AP-1 receptors306 – 
are activated in the same fashion as estrogen-responsive gene regulation171,306,387. It is 
tempting to speculate whether NUDT5-mediated ATP synthesis is required for chromatin 
remodeling, ligation of the transient DSB formed prior to transcription (as suggested for 
BER317), or possibly both, during this process. 

As for the development and future of NUDT5 inhibitors, we are currently working towards 
suitable pre-clinical candidates. Early in vivo characterization of TH5427 is promising, but 
further experiments are required, both for pre-clinical efficacy and for selectivity profiling. Of 
immediate interest is the confirmation that NUDT5 is an important determinant for breast 
cancer proliferation, which has been previously suggested in animal studies394, and if the ATP 
synthesis mechanism is responsible for this effect. Should this be the case, one argument may 
be that PARP inhibitors should be just as effective at blocking hormone-dependent breast 
cancer growth. The counterargument is that PARP1/2 are involved in several processes 
beyond hormone-dependent transcriptional regulation391-393 (see above) and clinical-grade 
PARP inhibitors trap PARP to DNA as part of their effective mechanism395,396, both of which 
would entail unwanted side effects. Thus, a NUDT5 inhibitor will likely be a better option in 
this regard. Nonetheless, TH5427 represents a selective NUDT5 probe molecule that can be 
used to uncover the intricacies of NUDT5, ADPR and PAR biology. 
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