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ABSTRACT

Malaria, caused by the Plasmodium falciparum parasite, remains a leading cause of death
among children in Africa. To improve treatment efficacy and delay development and spread
of antimalarial drug resistance artemisinin artemisinin-based combination therapy (ACT) is
now globally recommended as first-line treatment of uncomplicated P. falciparum malaria as
a cornerstone in modern malaria control.

The aim of this thesis is to improve the understanding of the molecular basis of potential
evolution of P. falciparum resistance to ACT.

After the worldwide introduction of ACT several reports demonstrate that the multidrug
resistance protein 1 (pfindrl) and chloroquine resistance transporter (pfcrt) genes are under
selective pressure. This thesis describes the in vivo selective process for pfmdrl haplotype
coding for aminoacids 86N, 184F 1246D in reinfections after artemether-lumefantrine
treatment. The selective window is within 35 days after treatment during the elimination
phase of the partner drug.

PFMDR1 homologue model structures unveiled the functional interference of 86N, 184F and
1246D in antimalarial drug transport. This was further supported by in vitro susceptibility of
P. falciparum pfmdrl transfectants clones to aminoquinolines indicating that PFMDR1 may
act as a vacuolar importer.

Since the resistance mechanisms of P. falciparum to the major ACTs are largely unknown
other candidate genes were analysed. Therefore the multidrug resistance-associated 1
(pfmrpl) gene diversity in P. falciparum and its potential contribution to decreased ACT
sensitivity was studied. Some 21 nonsynonymous and 6 synonymous single nucleotide
polymorphisms were identified. The polymorphism 1876V appears to be significantly
(P<0.05) selected in reinfections after artemether-lumefantrine. The structural role of 1876V
polymorphism and impact for PFMRPI1 transport was then studied in bacterial ABC
transporter homologue, MsbA, and shown to be related to the nucleotide binding region of
ABC transporters.

To investigate mechanism of action of artemisinins in P. falciparum, parasite’s calcium
homeostasis was studied using techniques of live single cell imaging and flow cytometry. Our
work suggests that artemisinin triggers Ca”" signalling- dependent cell death in P. falciparum.
Parasite cell death was partially rescued (31%) by the Ca®* chelator Bapta.

In conclusion, P. falciparum is adapting to the new ACTs. Complex mechanisms of
pfmdrl/pfcrt are being selected by partner drugs and may represent entry points towards
alarming evolution of tolerance and resistance to ACT.

Key words: Plasmodium falciparum; ACT; antimalarial resistance; drug selection; evolution;
drug transporters
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1 MALARIA PROLOGUE

Malaria is generally recognized as a disease of poverty and is a major hindrance for economic
development [1]. The optimal conditions for the propagation of malaria overlap
geographically with countries, which have low gross domestic products. In spite of these
circumstances (and despite having limited access to treatment and other control tools), which
generate a situation of attrition for elimination attempts, poverty does not solely explain the
failure of malaria control initiatives.

Persistent malarial infections have been associated with a breakdown in antimalarial and
insecticidal efficacy [2]. As will be further discussed in this thesis, plans for malaria
eradication and control have failed several times due to antimalarial drug resistance. We are
now beginning a new era of optimism for malaria eradication, with the development of new
and different drugs, as well as increased use of bednets and insecticides. However, we are
still using the same old therapeutic strategies.

How can we assure the sustainable effectiveness of new malaria control tools? New and
increased efforts in applicable, basic research are required to develop a rational use
antimalarial for the control and cure of this disease. Insight into the complexity of malaria
pathogenesis is vital to understand the disease and will provide a major step towards its
control [3]. Those of us who work on pathogenesis must widen our approach and look for new
strategies to reduce the prevalence of this disease. The inability of many countries to fund
expensive campaigns and expensive antimalarial treatments require these new tools to be

feasible, highly effective and affordable.

The goal of the work presented in this thesis is to contribute to our general knowledge and
generate applicable data for rationalized drug policies aimed at obstructing anti-malarial drug

resistance in the era of ACT.



2 MALARIAETIOLOGY

Malaria is caused by obligate intracellular protozoan parasites of the genus Plasmodium and
belonging to the Apicomplexa group. Several mammals, birds and reptiles have their own
specific malaria parasite. The presence of specialized Plasmodium spp across different
taxonomic classes reveals an ancient common ancestor and millions of years of parasite/host
co-evolution [4].

Five different species of malaria parasites can infect, cause symptoms and eventually lead to
death in humans. These parasites are: Plasmodium falciparum, Plasmodium vivax,
Plasmodium malariae, Plasmodium ovale and Plasmodium knowlesi [5,6]. . Due to the
process of speciation, through bounce and the adaptation of parasites to different hosts, some
malaria species still remain capable of infecting their evolutionarily hosts. As an example of
this, Plasmodium knowlesi causes malaria in long-tailed macaques (Macaca fascicularis), but
it also can infect humans, in vitro [7] and naturally [8]. On the other hand, Plasmodium
falciparum was recently detected in wild gorillas [9].

Work on the fascinating biological complexity of this disease and its public health impact has
resulted in the recognition of five Nobel prizes thus far to the following researchers:

Ronald Ross, 1902: "For his work on malaria, by which he has shown how it enters the
organism and thereby has laid the foundation for successful research on this disease and
methods of combating it". Ronald Ross discovered the oocyst of a malaria parasite in the gut
wall of a mosquito on August 20, 1897 in Secunderabad, India.

Alphonse Laveran, 1907: "In recognition of his work on the role played by protozoa in
causing diseases". Laveran was the first to notice parasites in the blood of a patient suffering
from malaria on November 6, 1880 at Constantine, Algeria.

Julius Wagner-Jauregg, 1927: "For his discovery of the therapeutic value of malaria
inoculation in the treatment of dementia paralytica". A professor of psychiatry and neurology
in Vienna (Austria), Wagner-Jauregg developed methods for treating general paresis
(advanced stage of neurosyphilis) by inducing fever through deliberate infection of patients
with malaria parasites. This method was used in the 1920s and 1930s. In the 1940s, the advent
of penicillin and more modern methods of treatment made such "malaria therapy" obsolete.
Paul Hermann Mtiller, 1948: "For his discovery of the high efficiency of DDT as a contact

poison against several arthropods".



Camillo Golgi, 1906: Golgi shared the Nobel Prize with Santiago Ramoén Cajal for their

studies on the structure of the nervous system. Golgi made significant contributions to malaria

research as well.

3 THE MALARIA CAROUSEL

As is true for all cases of malaria, the disease in humans consists of three major components:

the human (host), the mosquito (vector) and the parasite. These constituents are essential for

the propagation of malaria as a human disease. Malaria control and elimination tools intend to

block this trilogy at the three different stage transitions [10]. Before entering into detail of

each of the parts, a broad view of the full life cycle will be described (Fig. 1).

The starting point occurs when a P. falciparum infected female Anopheles mosquito feeds on a

human. When this happens, sporozoites in the salivary glandules are injected into the host along

with the anti-coagulative saliva of the mosquito. Sporozoites enter the bloodstream and quickly

reach the liver where they invade hepatocytes. The sporozoites remain in the liver for 1-2 weeks

and undergo asexual replication (tissue schizogony) in which each sporozoite can give rise to

tens of thousands of merozoites.
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Figure 1 - The malaria life cycle, from Epidemiology of Infectious Diseases. Available at: http://ocw.jhsph.edu.
Copyright © Johns Hopkins Bloomberg School of Public Health. Creative Commons BY-NC-SA.




When the hepatocytes rupture, merozoites are released into the blood stream and can readily
invade erythrocytes. Once inside the erythrocyte, asexual replication begins and the parasite
develops through a series of specific stages (erythrocytic schizogony). The parasite matures
from a merozoite to an early trophozoite (ring stage), to the enlarged late trophozoite containing
hemozoin pigmentation, and further to a schizont containing 16-18 merozoites. The infected
erythrocyte is eventually lysed and merozoites are released into the bloodstream, where they can
infect further erythrocytes to continue the asexual replication. The intra-erythrocytic cycle of P.
falciparum takes approximately 48 hours. Erythrocytes infected at mature stages undergo
sequestration, i.e. adhesion to endothelial cells in deep blood vessels, to avoid clearance by the
spleen. Therefore, only the earlier parasite stages can normally be seen in peripheral blood and
not schizonts. A small proportion of the merozoites in erythrocytes eventually differentiate to
produce micro- (male) and macrogametocytes (female). In the Anopheles mosquito, it takes
approximately 10-18 days for gametocytes to be ingested and form a zygote. Then, the zygote
transforms into an ookinete that penetrates the wall of the midgut and develops into an oocyst

which produces more sporozoites to initiate this millennial uninterrupted cycle.

3.1 THE HUMAN HOST

Approximately half of the world's population is at risk of malaria infection, which is endemic
in more than 100 countries [11]. Human and parasite evolution are inextricably linked and one
piece of evidence in support of evolutionary theory.

Indeed, the reciprocal adaptation of parasite and host creates a magnificent, epic story in
biology. The mortality and morbidity caused naturally by malaria [12] is thought to be the
greatest selective pressure on the human genome in recent history [13]. Malaria parasites have
modulated the human genome, and vice-versa, as will be discussed here.

A classic example of the effect of the malaria parasite on the human genome is sickle-cell
disease [14]. In sickle-cell disease, a single nucleotide polymorphism (SNP) in the
hemoglobin beta (HBB) gene, which encodes the beta-globin subunit of hemoglobin,
promotes the polymerization of hemoglobin, deforming red blood cells (RBCs) into a "sickle"
shape [15]. Homozygote carriers have an inevitable haemolysis and a severe, most part fatal,
haemolytic anaemia. However, heterozygotes, which have both insoluble and normal
hemoglobin, with low or insignificant levels of anemia, have a greatly reduced chance of
serious malaria infection. Other mutations in the hemoglobin gene have also been identified

and reported to behave identically [16,17]. Genetic advantages are reflected by the high



prevalence of this allele in populations where malaria is endemic, creating a case of
heterozygote advantage.

Another well documented case of evolutionary selection is the Duffy antigen/chemokine
receptor (DARC) gene, also known as Fy glycoprotein (FY) or CD234 (Cluster of
Differentiation 234). This gene codes for a glycosylated protein that localizes to the
membrane of the RBC. The Duffy antigen is used as a non-specific receptor by Plasmodium
vivax and Plasmodium knowlesi to invade RBCs. Individuals who do not express Duffy
antigen on the RBC are completely resistant to P. vivax infection. As for the sickle cell
anemia, this genetic advantage has been evolutionary selected and is prevalent in almost all
African populations, while being rare in other populations.

Other blood disorders, such as Thalassaemias [18] and glucose-6-phosphate dehydrogenase
deficiency (G6PD) [19] have also been linked to protection against malaria. These disorders
are well-documented processes of evolutionary adaptation of humans to naturally resist
malaria [19,20]. In the present and future era of Genomics and high-throughput sequencing, it

seems reasonable to expect many others to be unveiled.

Human genetic selection by malaria is driven by the disease's endemicity [21]. In nature,
endemicity is established by the mosquito’s transmissibility. However, malaria control
activities can play a major role in malaria endemicity. These activities, which include early
diagnosis and treatment with insecticide-treated bed nets (ITNs), indoor residual spraying
(IRS) and intermittent preventive treatment in pregnancy (IPTp), create evolutionary

unbalances [22].

3.2 THE MOSQUITO VECTOR

About 80 mosquito species from the genus Anopheles transmit malaria to humans, of which
approximately 40 are significant vectors. Anopheles gambiae, A. arabiensis and A. funestus
transmit most instances of human malaria [23].

However, even within the same species, not all individuals can transmit malaria. Only the
female mosquito possesses the capacity to transmit malaria. This capability is due the
hematophagic (blood feeding) nature of the female, which is essential for egg production and
reproduction. For malaria, humans are an intermediate host whereas mosquitoes constitute the
definitive host where the sexual phase of the parasite occurs.

The period of development in the mosquito vector varies depending on the species and is

controlled by ambient temperature. A lower limit of 15°C has been determined for



development in P. vivax and P. malariae. For P. ovale, 16°C, and for P. falciparum, a
temperature of at least 18—21°C is necessary. The optimal ambient temperature for all malaria
parasites has been shown to be 25°C, although, different time periods are required for each
species to form infectious sporozoites [24]. In the case of P. vivax, it takes 9-10 days; for P.
falciparum, 10-12 days; for P. ovale, 12—16 days; and for P. malariae, it takes 15-21 days
until the process of sporogony is completed within the mosquito. With an ambient
temperature of only 20°C, these processes can take significantly longer, for example 1617
days (P. vivax), 22-28 days (P. falciparum), and 20-25 days (P. malariae) [25]. Alterations in
parasite development time lengthen the span of malaria infection risk.

Mosquitoes are under selective, evolutionary pressure from both parasite and man. Similar to
humans (chapter 3.1), mosquito populations are naturally affected by malaria parasites to
favor the acquisition of infection resistance mechansims [26].

Mosquitoes are the driving force responsible for malaria propagation and different
characteristics and behavior of the overall mosquito population in a certain setting determines
malaria endemicity [27]. Different species of mosquitoes are characterized by different
feeding habits. Some are predominantly indoor biters (4. gambiae and A. funestus) or
outdoors bitters (4. arabiensis); others are mainly anthropophagic bitters (4. gambiae and A.
funestus) or zoophagic bitters (4. arabiensis). This combined with factors related to their
intrinsic biology, such as life expectancy, life cycle, and reproductive behaviours, make
mosquitoes the prime conductors of transmission and determine malaria’s endemicity [28]. In
this sense, malaria can be stratified as: holo-endemic (>75%), where transmission occurs all
year long; hyper-endemic (50-75%), which is intense, but with periods of no transmission
during the dry season; meso-endemic (11-50%), with regular seasonal transmission; or hypo-
endemic (<10%), in which malaria transmission is very intermittent.

The importance of the mosquito for malaria transmission in the principle is the reason why
vector control is considered an essential tool in malaria control. In 1955, the WHO launched
The Global Malaria Eradication Programme with an emphasis on vector control with
dichlorodiphenyltrichloroethane (DDT) residual spraying. Development and use of
insecticides had an enormous impact and the work was rewarded with a Nobel Prize.
However, the massive use of insecticides led to the selection and propagation of genes
conferring resistance among the mosquito population. This program was abandoned in 1969

with insecticide resistance being a major factor for its failure.



3.3 THE PARASITES
The present thesis is focused on the main killer among all human parasites, Plasmodium
falciparum. The World Health Organization (WHO) estimates that in 2008, there were 243

million cases of malaria and 863.000 deaths, mostly among children under five years of age in

sub-Saharan Africa due to falciparum malaria [11].

Table 1 - P. falciparum selection process [22]
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Evolution and modulation of the P. Falciparum genome occurs naturally through immunity,
host death, mosquito availability and co-infection, and more recently through malaria control
actions (drugs) (Table 1) [22].

A major hurdle to overcome for the eradication of malaria is the parasites high adaptation
capacity to its highly heterogeneous natural environment. P. falciparum, undergoes 10
morphological transitions in five different host tissues, proliferates asexually within three of
these, and must propagate sexually at each transfer between hosts. The parasite can infect
most of its host population by reinvading people who have already mounted an immune
response during previous or existing infections, and from each infection it can transmit for
months and even years. Thus, this parasite has evolved the capacity to maximally exploit

human beings for its own reproduction [29,30] .



A strategy to elucidate selection is by evaluating low sequence diversity (bottleneck) in a
parasite gene and high linkage disequilibrium around the locus. These features indicate strong
directional selection on a gene inside that region. This may have occurred, for instance, due to
selective pressure by an antimalarial drug on a resistant parasite which could have led to a

bottleneck in the worldwide parasite population [31].

4 THEPLASMODIUM FALCIPARUM

4.1 THE INTRAERYTHROCYTIC PHASE

Most antimalarial drugs used today are extremely effective and particularly potent against the
P. falciparum intraerythrocytic phase. For this reason, more focus will the given to its cellular
and molecular constituents.

Classically, parasite morphology in the intraerythrocytic cycle is characterized in three main
stages: the trophozoite stage, the ring and mature stages and the schizont stage. In this phase
gametocytes are also produced.

After release from hepatocytes, the merozoites enter the bloodstream and subsequently infect
RBCs. At this point, the merozoites, being approximately 1.5 pm in length and 1 pm in
diameter, use the apicomplexan invasion organelle (apical complex, pellicle and surface coat)
to recognize and enter the host erythrocyte. The parasite first binds to the erythrocyte in a
random orientation. It then reorients itself such that the apical complex is in proximity to the
erythrocyte membrane. A tight junction is then formed between the parasite and erythrocyte
[32].

After invading the erythrocyte, the parasite loses its specific invasion organelles (the apical
complex and surface coat) and de-differentiates into a round trophozoite located within a
parasitophorous vacuole in the RBC’s cytoplasm (Fig. 2). The young trophozoite (or "ring"
stage) grows substantially after which it starts to replicate its DNA multiple times without
cellular segmentation, which occurs prior to undergoing schizogonic division. Schizonts then
undergo cellular segmentation and differentiation to form roughly 16-18 merozoite cells in the
erythrocyte. The merozoites burst from the RBC and proceed to infect other erythrocytes
quickly restarting (around 60 seconds) the cycle.

An important aspect of intraerythrocytic cycle is the fact that mature trophozoites and
schizonts are sequestered in various human tissues and organs [33]. For this reason, in

peripheral blood only early trophozoites can be detected and not mature stages. Sequestration



is caused by parasite-derived cell surface proteins being present on the RBC membrane which

bind to receptors on human cells.
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Figure 2 - Red Blood cell Infection by Plasmodium falciparum, from Malariology. Available at:
http://ocw.jhsph.edu. Copyright © Johns Hopkins Bloomberg School of Public Health. Creative Commons BY-
NC-SA. Adapted by CTLT from Parasitology Today, vol. 16, no. 10, 2000.

4.2 METABOLISM

Understand the basics of P. falciparum metabolism has been a principle goal toward looking
for potential targets for drug development. For this matter, unique aspects of parasite
metabolism are investigated in order to effect the parasite without effecting the human host.
The following will give a brief overview regarding important topics of P. falciparum

metabolism from the perspective of drug development.

4.2.1 Proteins

Within the RBC, parasite metabolism depends greatly on the digestion of haemoglobin. The
protein is cleaved into peptides, and the haeme group is released and detoxified by
biocrystallization in the form of hemozoin, creating the malaria pigment [34]. This process

occurs in the digestive vacuole and is mainly driven by aspartic acid proteases, i.e.



Plasmepsins [35]. Host uptake and haemoglobin degradation are the main sources of amino
acids for the malaria parasites. This notion is further supported by the lack of amino acid
biosynthesis machinery in the parasite. Genomic screening has revealed only the existence of
enzymes capable of performing glycine-serine, cysteine-alanine, aspartate-asparagine,

proline-ornithine, and glutamine-glutamate interconversions [29].

4.2.2 Carbohydrates

The earliest metabolic studies on malaria parasites examined their capacity for the uptake
glucose [36]. Whether this uptake occurs by passive equilibration or through an active process
is a matter of debate [37]. However, recently a hexose transporter (PfHT) was characterized in
P. falciparum which demonstrated that both processes take place [38].

The citric acid (TCA) cycle and oxidative phosphorylation are generally carried out in the
mitochondria of eukaryotes. These processes were generally assumed to be non-functional in
the blood-stage parasite as evidenced by the acristac mitochondria. However, recently a
functional electron transport chain and oxidative phosphorylation have been shown to exist in
the blood-stage parasite [39]. What is known as TCA, in P. Falciparum, was shown to be
branched in which the major carbon sources are the amino acids glutamate and glutamine and
not pyruvate [40].

In addition, the antimalarial drug atovaquone has been shown to inhibit electron transport and

to collapse the mitochondrial membrane potential in the malaria parasite [41].

4.2.3 Nucleic Acids

Deoxyribonucleic acid (DNA) is the blueprint for all known living organisms with the
exception of some viruses. DNA consists of two long polymers of nucleotides, the purines
(adenine and guanine) and the pyrimidines (cytosine and thymine). P. falciparum is unable to
biosynthesize purines [42]. Instead, the parasite hijacks the infected RBC to transport and
interconvert host purines. This process is mediated by the human equilibrative nucleoside
transporter (hENT1) and the human facilitative nucleobase transporter (hFNTI).
Hypoxanthine and adenine appear to enter erythrocytes mainly through the hFNT1 nucleobase
transporter whereas adenosine enters predominantly through the hENTI1 nucleoside
transporter [43].

With respect to the synthesis of pyrimidines, the parasite can produce these nucleotides de

novo using glutamine, bicarbonate, and aspartate.
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4.2.4 Lipids

The rapidly growing parasite requires large amounts of lipids to both its surface area and
volume of internal membranes. This huge demand for lipids makes lipid metabolism an
attractive intervention target for anti-malarial drugs. Several potential drugs targeting lipid
metabolism have been identified. Plasmodium parasites share common characteristics in
glycerophospholipid (GPL) metabolism with other eukaryotes, particularly with the lower
eukaryote, yeast. Plasmodium parasites do have the capacity to synthesize fatty acid (FA), and
have the genes encoding type II FA synthase (FAS), which are responsible for de novo fatty
acid synthesis in the apicoplast, a plastid-like organelle unique in Apicomplexa parasites [44].
In P. falciparum, the parasite shows quite unique and amazingly diverse features in its lipid
metabolism, some which share pathways with close similarities to the lower eukaryote, yeast

which belongs to fungi, and some which share close similarities to bacteria and plants.

4.2.5 Calcium (Ca*") homeostasis

Movement of Ca®" between different cellular organelles often produces a very adaptable cell
signal that conveys information regulating numerous cellular processes [45,46,47]. These
signals can be modulated by the concerted actions of Ca®" transporters and Ca®"-binding
proteins to produce specific messages that trigger downstream molecular events. The
parasite’s ability to control its cytosolic Ca**-level in relation to the host’s Ca®"-level using
various internal stores and cytosolic compartments is crucial to the parasites survival [48,49].
During the parasite’s maturation, changes in Ca®" levels between these stores and
compartments fluctuate according to developmental steps though the ring-stage, the
trophozoite stage and the schizont [49,50]. During early maturation, the compartment between
the parasitophorous vacuole (PV) membrane and parasite membrane appears to contain
relatively more Ca®" than at later stages. The internal Ca®" stores are thought to be the
endoplasmic reticulum (ER), the digestive vacuole (DV) and so called acido-calcisomes,
which are located in the parasite’s cytosol. Although there is some conflicting evidence, the
erythrocyte, parasite cytosol and DV are estimated to contain about 90 nM, 350 nM and 400
nM free Ca”", respectively [51]. The relatively high free Ca>* levels of the parasite cytosol are
thought to be confounded by superposition of extensive ER networks which are crucial for the

high rate protein synthesis occurring during parasite maturation.
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4.3 MALARIA TREATMENT AND DRUG RESISTANCE

The most important aspect to retain from this background is the fact that parasite survival
happens due to adaption to constant selection and an ever-changing host environment [22].
The process of survival, metabolic adaption and establishment to a new environment, with a

perspective of anti-malarial drug usage, is defined as resistance.

4.4 ANTIMALARIAL DRUGS
This chapter will give an introduction to the main antimalarial drugs with a focus on those

used as partner drugs in ACT.

4.4.1 Quinolines
Quinoline is a heterocyclic aromatic organic compound mainly used as a building block for
other molecules. This backbone is the basic structure for many of the antimalarial drugs

commercially available and in use nowadays (Fig. 3).

N
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N

Figure 3 - Quinoline ring structure

4.4.2 Quinine

Quinine (QN) (Fig. 4) became world famous by the hand of the Jesuit brother Agostino
Salumbrino (1561-1642), an apothecary living in Peru who observed the Quechua Indians
using the bark of the cinchona tree. The cinchona bark became known as Jesuit's bark and
came to be one of the most valuable commodities shipped from Peru to Europe [52]. QN was
first introduced to Europe around 1640 and was used to treat malaria in Italy where the
disease was endemic to the swamps and marshes surrounding the city of Rome.

The name of the bark gave origin to the pathological condition caused by overdose of quinine,
Cinchonism. Symptoms of mild cinchonism include flushed and sweaty skin, ringing of the
ears (tinnitus), blurred vision, impaired hearing, confusion, reversible high-frequency hearing
loss, headache, abdominal pain, rashes, drug-induced lichenoid reaction (lichenoid
photosensitivity), vertigo, dizziness, dysphoria, nausea, vomiting and diarrhea. All adverse

events are reversible and disappear once quinine is withdrawn [53,54].

12



As with other quinoline anti-malarial drugs, the therapeutic mechanism of quinine has not
been fully resolved. The most widely accepted hypothesis of how quinine acts is based on the
well-studied and closely related quinoline drug, chloroquine, which acts inside the digestive

vacuole of the parasite, as explained in the next chapter 4.4.3.
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Figure 4 - Quinine molecule

4.4.3 Chloroquine

Chloroquine (CQ) (Fig. 5) has been, by far, the most used antimalarial medication. It was
discovered in 1934 by Hans Andersag and co-workers at the Bayer laboratories and given the
name "Resochin". Being a synthetic drug, it is cheap to produce and relatively well tolerated
as compared with QN. This made CQ a very attractive antimalarial drug. During World War
II, when malaria was a major concern for soldiers, the United States Government rapidly
understood the benefits of CQ and promoted its testing, development and extensive use.
Chloroquine gained special significance as part of the WHO Malaria Eradication Program
begun in 1955 [55].

Besides malaria treatment, CQ is also used for treatment of other diseases including arthritis,
viral infections and cancer [56].

Before the main mechanism of CQ action was identified, many congeners of the parent
compound were synthesized in an attempt to improve its efficacy. Theories concerning CQ’s
mode of action included the DNA-binding theory, and theories involving inhibition of protein
synthesis, inhibition of polyamine metabolism, inhibition of haemoglobin degradation and
formation of a toxic haeme-chloroquine complex. It is now accepted that chloroquine disrupts
of the detoxification function of the malaria parasites. Plasmodium trophozoites take up large

amounts of haemoglobin into their digestion vacuoles during their intraerythrocytic cycle and
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release the toxic degradation by-product haematin. This process occurs by means of
polymerization and binding of inert hemozoin crystals and presumably through an additional
degradation process facilitated by glutathione. Chloroquine binds to haematin gamma-
oxodimers and is deposited on the surface of the hemozoin crystals. This ultimately destroys
the parasites [57].

CQ may cause side effects such as: dizziness, nausea, temporary hair loss, diarrhea, and worse

psoriasis [53,54].
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Figure 5 - Chloroquine molecule

4.4.4 Amodiaquine and desethylamodiaquine

Amodiaquine (AQ) (Fig. 6), which is structurally related to CQ, was developed in the late
1940s. AQ is not presently used in prophylaxis, owing to previous reports of the rare but
serious toxic side effects (1:2000) agranulocytosis and hepatitis. From testing in animal
models, AQ toxicity has been explained by its 4-hydroxyanilino moiety, which undergoes P-
450 catalyzed oxidation to a reactive amodiaquine quinoneimine (AQQI), followed by the
nucleophilic addition of glutathione. The formation of this conjugate in vivo, and its
subsequent binding to cytosol macromolecules could affect the cellular function either
directly or by immunological responses that initiate hypersensitivity reactions and cause
myelotoxicity [53,54,58].

AQ is categorized as a prodrug, since it is readily metabolized in the liver into
desethylamodiaquine (DEAQ) (Fig. 6), an oxidation step performed mainly by CYP2CS8. AQ
has a short half-life (4-12h) compared with its metabolite DEAQ (3-12 days). This aspect is of
particular interest because, since DEAQ retains its antimalarial capacity longer and is

responsible for post-treatment prophylaxis [59].
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Figure 6 - Amodiaquine (left) and its metabolite Desethylamodiaquine (right).

4.4.5 Antifolates

This class of drug interferes with the synthesis of folic acid and as a consequence with the
synthesis of nucleotides required for DNA synthesis. Folate metabolism of malaria parasites
provides two targets for current antimalarial therapy: dihydropteroate synthase (DHPS) and
dihydrofolate reductase (DHFR). Sulfa drugs, sulfadoxine or dapsone, act as DHPS inhibitors
while pyrimethamine or chlorcycloguanil are DHFR inhibitors [60] (Fig. 7).

In 1951, the first field trial of pyrimethamine monotherapy was carried out in African children
[61]. The effectiveness of pyrimethamine as a prophylactic agent against P. falciparum was
subsequently confirmed wunder controlled conditions [62]. During the 1950-1960s,
pyrimethamine was mainly used as a causal prophylaxis of P. falciparum infection or for
mass drug administration (MDA) due to the effectiveness of chloroquine in all endemic
regions [63,64,65].

In 1959, sulfadoxine was found to potentiate the schizontocidal effect of pyrimethamine
[66,67]. After that, faster schizontocidal activity and improved clinical response to P.
falciparum infection were evident when sulfadoxine was used in combination with
pyrimethamine[68]. In the late 1960s, an antifolate combination of sulfadoxine and
pyrimethamine, SP, was first introduced in Thailand where the increased frequency of

chloroquine-resistant P. falciparum infections reached an unacceptable level.
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Figure 7 - Structure of pyrimethatmine (left) and sulfadoxine (right)
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4.4.6 Arylaminoalcohols

The latest antimalarials to be adapted worldwide and used for the treatment of malaria are the
arylaminoalcohols, such as mefloquine (MQ) and lumefantrine (Lum) (Fig. 8).

MQ emerged from the US Army’s enormous drug discovery programme at the time of the
Vietnam War between 1963 and 1976 when over a quarter of a million potential antimalarial
compounds were screened [69]. The earliest reported trials of MQ were carried out on US
prisoners [70]. MQ first became generally available for European travellers in 1985 [71] and
is still broadly used mostly in South-east Asia. The side effects associated with MQ include
adverse neuropsychiatric symptoms [53,54].

MQ is absorbed with a half-life of 1 to 4 hours and reaches peak concentration before 24
hours and has a terminal elimination half-life of 2 to 3 weeks in patients with malaria [69].
Lum is slowly and erratically absorbed, requiring 18 hours to complete maximal absorption.
Low and variable bioavailability is the major factor contributing to interindividual
inconsistency in pharmacokinetics. Food intake has a significant effect on the bioavailability
of Lum, which is increased by a factor of 16 when the drug is taken with a high fat meal
compared with that in fasting individuals. Because of variable bioavailability, the terminal

elimination half-life may also vary from 30h to 107h depending on the population [72].

Figure 8 - Structures of mefloquine (left) and lumefantrine (right)

4.4.7 Sesquiterpene lactones

Artemisinin (ART) (Fig. 9), isolated from the plant Artemisia annua, is an herb described in
traditional Chinese medicine which makes it one of the oldest antimalarial used by man. Also
known as qinghaosu, ART and its derivatives are a group of drugs that possess the most rapid

action of all current drugs against falciparum malaria. The pharmacokinetics of artemisinins
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have unique features, characterized by a very short half-life and auto-inducible elimination
properties [73]. Its antimalarial activity resides in the endoperoxide bridge structure.

Artemisinins are generally well tolerated at the doses used to treat malaria. The side effects
from the artemisinin class of medications are similar to the symptoms of malaria itself:
nausea, vomiting, anorexia, and dizziness. Mild blood abnormalities have also been noted

[53].

Figure 9 - Artemisinin structure

Use of artemisinins as a monotherapy is well known to have poor efficacy. casein addition,
the WHO has recommended cessation of monotherapy (press release 20.1.2006) in an attempt
to limit emergence of artemisinin resistance. Recrudescences following monotherapy tend to
occur rather late, and studies following patients up to day 42 detect a higher proportion of
recrudescences than those stopping at 28 days. Estimates of recrudescence rates after short
course artemisinin monotherapy at 28 days follow-up are 20-40% in Africa [73,74,75] and
about 20% in Southeast Asia [76,77,78]

Duration of therapy has been reported to be of critical importance in efficacy of artemisinin
based monotherapies, with extensions of 7 days improving cure rates significantly [79,80,81] .
Artemisinin derivatives are presently only used in combination therapy as will be further

discussed.

5 ANTIMALARIAL DRUG RESISTANCE

Eradication efforts based on the use of CQ faltered in the 1960s due to the development of
drug-resistant parasites. Nowadays, resistance to all main antimalarials used has been

reported.
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Recent genetic and genomic advances have paved the way for discoveries into the origins and

spread of antimalarial drug resistance and the underlying molecular mechanisms.

5.1 QUINOLINES

Awareness and comprehension regarding the public health impact of antimalarial resistance
came following the emergence of CQ resistant parasites. In 1969, the WHO declared that the
major world effort to eradicate malaria, The Global Malaria Eradication Programme, had
failed in part due to CQ resistance.

The first studies in antimalarial resistance were conducted on the quinolines. It took more than
30 years to go from clinical recognition of CQ resistance to the identification of the molecular
cause, the chloroquine resistance transporter gene (pfcrt) [82]. A specific mutation of lysine to
threonine (K76T) was shown to confer in vivo [83] and in vitro [84] CQ resistance to the
extent that it became an established biomarker.

Recent studies, analyzing a large number of geographically diverse pfcrt alleles and
microsatellite genotypes from parasite isolates, have identified at least three additional
independent foci of resistance [31,85]. Origins of CQ resistance (CQR) have so far been
discovered in the Thai—-Cambodian border region (eventually spreading westward into
Africa), Papua New Guinea, the Philippines, Colombia and Peru [86].

Pfcrt was discovered in the search for mechanisms of CQ resistance, however, broader studies
revealed that this transporter can also modulate drug susceptibility and tolerance to

chemically unrelated antimalarials [84,87,88].

5.2 ANTIFOLATES

Sulfadoxine-pyrimethamine (SP) resistant parasites rapidly spread from Southeast Asia and
South America in the 1970s—1980s and to Africa in the last two decades [89]. Unlike CQ,
where resistance is due to a mutated transporter protein, SP resistance is driven by mutations
of the drug target. Mutations in the DHFR and DHPS determine resistance to SP in P.
falciparum [90,91,92] .

Five mutations in pfdhfr and five in pfdhps are the main determinants for SP resistance. For
pfdhfr, an amino acid change at position 108 from serine to asparagine (S108N) represents the
initial mutation. This necesary mutation raises the parasite’s resistance to a certain level,
however, additional mutations are required to enhance resistance further. Additional
mutation(s) at positions 50, 51, 59, and 164 synergistically increase the levels of resistance

[93,94,95,96].
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For pfdhps, an amino acid change at position 437 (A437G) represents the initial mutation for
sulfadoxine resistance [92,97]. And additional mutation(s) at positions 436, 540, 581, and 613
elevate levels of sulfadoxine resistance.

The origin of resistance to SP seems to be more complex than that observed for CQ, with

different foci discovered even within the same continent [89].

5.3 ARYLAMINOALCOHOL

The mode of action of arylaminoalcohols in P. falciparum is not currently known. However,
genetic determinants of resistance in P. falciparum correlate with mutations in pfcrt and the
multidrug resistance gene 1 (pfindrl).

This association was demonstrated by classical genetics, selection studies and reverse
genetics. It was noted that parasite lines 3D7 and HB3, the parents of a genetic cross, differ in
sensitivity to the hydrophobic arylaminoalcohol (mefloquine, halofantrine and lumefantrine)
[98]. A particularity of this cross is that the parental lines have a pfcrt wild type background.
P. falciparum reverse genetic analysis has confirmed these observations [99,100].
Importantly, in these studies mutations introduced into the chloroquine sensitive line were
unable to confer chloroquine resistance. Nevertheless, introduction of pfimdrl wild-type
polymorphisms in a chloroquine resistance line, resulted in the reduction of chloroquine
resistance, suggesting that pfmdrl, although important in conferring higher levels of
chloroquine resistance, is not sufficient to confer resistance [101].

There are two ways in which pfindrl gene polymorphisms may lead to drug-resistance,
through gene amplification and/or through mutation [102,103]. Amplification of pfindrl was
found to occur through multiple and independent events, suggesting it has arisen in several
independent places [104].

In vivo, pfmdrl copy number variation (CNV) determines parasite resistance to MQ [105] and

Lum [106].

5.4 ARTEMISININS

Artemisinin’s (ART) structure is completely different from all other antimalarial described
here (not based in the quinoline backbone) and therefore is expected to have a different
mechanism of action. The first insight into ART’s mode of action involved the establishment
of the structural endoperoxide bridge [107]. Since peroxides are a known source of reactive
oxygen species such as hydroxyl radicals and superoxide [108]. This observation suggests that

free radicals might somehow be involved in the mechanism of action. Artemisinin interacts
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with intraparasitic haeme, suggesting that intraparasitic haeme or iron might function to
activate artemisinin inside the parasite to generate toxic free radicals [109]. When ART or its
derivatives are incubated with haeme or iron, they decompose in a fashion that suggests the
generation of free radical intermediates [110]. Despite these findings, artemisinin treatment of
living intraerythrocytic P. falciparum caused no change in hemozoin, suggesting that haeme
metabolism might not be the major intracellular target [111].

Six malaria specific proteins were detected as targets of ART. These are not highly abundant
proteins, suggesting that ART reacts selectively [112].

The first protein to be suggested as a target for artemisinins is the malarial translationally
controlled tumour protein (TCTP), a protein that binds haeme [113,114]. It is likely that the
reaction between artemisinin and TCTP occurs because of an association between TCTP and
haeme, since both are localized to the food vacuole. TCTP is involved in calcium binding and
microtubule stabilization [115]. Despite that increased expression of TCTP correlates with
artemisinin resistance, no genetic alterations have been described.

Membrane containing structures such as the plasma membrane, endoplasmic reticulum,
nuclear envelope, food vacuolar membrane and mitochondria appear to be most sensitive to
the action of artemisinin derivatives [116,117,118].

Structural similarities of ART to thapsigargin, which is also a sesquiterpene lactone, lead to
the identification of another candidate target related to the endoplasmic reticulum, the
sarco/endoplasmic reticulum Ca*"-ATPase (SERCA) encoded by the pfd TPase 6 gene in P.
falciparum [119]. The function of the SERCA pump is to transport Ca** from the cytosol to
the lumen of the endoplasmic reticulum [120]. Thapsigargin is a well described specific
inhibitor of the mammalian SERCA pump [121]. Inhibition of the SERCA pump by
thapsigargin is characterized by a transient Ca>" increase in the cytosol.

ART and thapsigargin share the same binding pocket in the SERCA protein as demonstrated
by competition assays [119]. Additional structural analysis on the binding pocket of different
Plasmodium spp, using the rabbit SERCA pump crystal structure, further supports SERCA as
a drug target in malaria parasites [122].

The S769N mutation in pf4TPase 6, noted exclusively in French Guiana, was reported to be
associated with decreased sensitivity to artemisinins. /n vitro studies of mutant pf4TPase 6
also showed an alteration of the half maximal effective concentration (ECsg) to artemisinins
[123].

In rodent malaria, the ubp-1 gene encoding the P. falciparum orthologue of the

deubiquitinating enzyme was also associated with artemisinins resistance [124].
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Despite the fact that clinical failures to artemisinins has been reported [125,126], so far only
pfert and pfmdrl have correlated with artemisinin sensitivity in vitro. Contrary to restistance
to CQ, the allele K76 correlates with artemisinins resistance. For pfindrl, increase in the gene
copy number variation promotes P. falciparum resistance to artemisinins. SNP in pfindrl
associated with arylaminoalcohols are associated also with artemisinin resistance

[87,98,99,127].

6 ANTIMALARIAL RESISTANCE GENES

So far, the two main molecular players of antimalarial resistance in P. falciparum are the
chloroquine resistance transporter gene (pfcrt) and the multidrug resistant gene 1 (pfindrl). In
the next subchapter, the genetic and physiological characteristics of these two genes will be

described.

6.1 PfCRT

A major breakthrough in the search for the genetic basis of CQR in P. falciparum was the
identification of Plasmodium falciparum chloroquine resistance transporter gene (pfcrt),
which encodes a putative transporter or channel protein [82]. PfCRT is a 48 kDa protein
containing 424 aminoacids, 10 predicted transmembrane-spanning domains and is localized to
the DV membrane in erythrocytic stage parasites [82,87]. Fifteen polymorphic amino acid
residues in PfCRT are associated with CQR in field isolates. These vary significantly
depending on the geographic location and selection history, while CQ sensitive (CQS) strains
maintain an invariable wild-type allele (Table 2) [31,85,128,129]

A K76T mutation appears to be necessary for the resistance phenotype, and is the most
reliable molecular marker of resistance among the various pfcrt mutations [83,130].

Mutant pfcrt was associated with low CQ accumulation in the P. falciparum, however, only
recently was conclusive evidence found for a role of PfCRT as an antimalarial vacuolar efflux
transporter [131]. The endogenous role of PfCRT in the malaria parasite has yet to be
revealed despite the wealth of epidemiological and in vitro drug response data demonstrating
the critical role of mutations in pfcrt which lead to CQR. PfCRT homologues in plants seem
to play a role in glutathione and redox stress [132]. An understanding of the natural role of
PfCRT in normally functioning P. falciparum parasite will provide a clearer picture of how

drug resistance works in the malaria parasite.
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It now becoming clear that pfcrt is a major determinant of resistance not only for CQ but most

probably also for other antimalarial including quinolines and arylaminoalcohols [88].

6.2 PfMDR1

In cancer cells, drug resistance frequently arises from the presence of an over-expressed P-
glycoprotein. This molecule is an ABC transporter is capable of actively expelling a wide
range of structurally and functionally diverse chemotherapeutic agents in a verapamil-
sensitive manner [133]. Inspired by the apparent phenotypic similarities between multi-drug
resistance in cancer cells and CQ resistance in P. falciparum, it was once thought that a P.
falciparum homologue of the mammalian P-glycoprotein, later termed PIMDR1 or Pgh-1,
could be a major candidate molecule for conferring resistance to CQ [103]. Although this
hypothesis was not completely accurate, it is now accepted that PFIMDRI1 can contribute to
CQ resistance dependent on the genetic background of the parasite strain [99,100].
Mammalian P-glycoproteins localize within the plasma membrane and their nucleotide
binding domains face the cytoplasm which aids in the export drugs out of the cell (Higgins,
2007). However, PIMDRI1 is present on the parasite’s digestive vacuolar membrane [134] and
that the topology of the protein leaves its ATP-binding domain facing the cytoplasm [135].
The molecular basis of CQR raised a lot of uncertainty regarding the exact role of PFMDR1
in drug resistance.

It is now becoming evident that vectorial transport by PfMDRI is, therefore, inwardly
directed, into and not out of the digestive vacuole [136,137]. This new insight into the cellular
physiology of PEIMDRI1 caused a rethinking of its contribution to the molecular mechanism of

antimalarial resistance.
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Table 2 - Geographic distribution of pfcrt mutations. Mutant aminoacids are shown highlighted with grey
background. Adapted from [138]

pfcrt aminoacid positions
Origin Clones
72|74‘75|76‘77|97‘144‘148‘152‘160|163‘194|220‘271‘275‘326‘333|352‘356‘371
CcQs
Honduras HB3 CIMIN|K|IT|[H] A L T L S I Al Q P N T | Q | R
Sudan 106/1 Ci{I|E|K|I|H]|] A L T L S | S E P S T | Q | |
Labclones 106/1-IR RIIT|E|I|[I |H]|] A L T L S | S E P S T | Q | |
106/1-IK CII|E|[I|IT|H|A]|L|T L S | S E P S T | K | |
K1AM CII|E[T|I]|H|A L T L R | S E P S T|Q |V |
K1Hf C{I|E|T|[I|H|]A L A L R | S E L S T | Q | |
CQR
Mali S35CQ C|I|E|T H| A L T L S | S E P N T | Q |
SouthAfrica RB8 C{I|E|T|[I|H|]A L T L S | S E P S T | Q |
Labclones 106/1-N C{I|E|N|[I |[H]|] A L T L S | S E P S T | Q |
106/1-I CII|E|[I|IT|H|A]|L|T L S | S E P S T | Q |
Thailand Dd2 CII|E|[T|I|H|A L T L S | S E P S T | Q T
Thailand TM93-C1088 [C || |E | T L| A L S E S T
Cambodia 783 C|{I|E|T H| A L | S E N T T
Cambodia 738 C|{I|D|T H| A | T S E N S |
Cambodia 734 C|I|D|T H| F | T | S E N S |
Cambodia 176 C{I|E|T|T
Cambodia 108 C|lI[(D|T]|1I
Cambodia 36 C|T[N|[T]|I
Morong PH1 C{M|N|T H| T Y Al Q D |
Morong PH2 S| M|[N|T H| T Y Al Q D |
Lombok Field isolate | C [M | N | N
Tamika 2300 CllI|K|T
Armopa CQO076 S|{I|E|T
Solomon PNG4 S IM{N|T|I|H|A L T L S | Al Q P D T | Q L
Ecuador EculllO CIM|IN|T|[I |H]|] A L T L S | S Q P D T | Q L
Colombia Jav CIM|E|[T|I|Q|A | L | T]|L S | S| Q| P|N|T|Q |
Brazil 7G8 SIM|N|T]|I A L T L S | S Q P D T | Q L
Guyana Fieldisolate [ S (M| I | T
Guyana Fieldisolate |R M| N | T
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Polymorphisms at amino acids 86, 184, 1034, 1042, and 1246 of PfMDRI alter in vitro
susceptibility to antimalarial drugs, including quinine, halofantrine, mefloquine and
artemisinin [98,99,100,139]. In particular, the N1042D substitution seems to play a prominent
role in quinine resistance [100], while the N86Y substitution has been implicated in
contributing to resistance to lumefantrine and high levels of CQ [140,141]. Amplification of
pfmdrl is associated with in vitro resistance to quinine, mefloquine, and halofantrine
[105,142,143,144].

A single amino acid change, substituting the wild-type asparagine at position 86 for the
aromatic amino acid tyrosine, completely alters the substrate specificity from quinine and CQ
to halofantrine transporting capability [145].

PfMDRI1 itself may also be a target of antimalarial drugs, including quinine and mefloquine,
as demonstrated in competition studies which suggest that some of the drugs that interact with
PfMDR1 may function as both substrates and inhibitors [137,145]. An analogous finding has
been reported for human P-glycoprotein [146] where it was shown that the common drug
binding site can accommodate several substrates of the same or different type, and at the same

time [147].

6.3 PfMRP1

The first ABC protein shown to confer resistance to multiple natural product drugs used in the
treatment of cancer was the 170 kDa P-glycoprotein, originally described in 1976 [148].
Cases of multidrug resistance in the absence of P-glycoprotein overexpression together with
studies that failed to detect P-glycoprotein in a variety of human tumors, suggested the
existence of other multidrug resistance-conferring proteins [149,150].

Shortly thereafter, transfection experiments provided unequivocal evidence that over-
expression of a second ABC protein could cause multidrug resistance in mammalian cells
[151]. This new class was defined as the multidrug resistance-associated proteins (MRPs).
MRP proteins have just recently begun to be studied and early reports indicate a correlation,

both in vivo and in vitro, with antimalarial resistance [152,153]

7  ARTEMISININ COMBINATION THERAPIES (ACTs)

The need to suppress antimalarial resistance and increase the efficacy of malaria
chemotherapy led to the development and global implementation of artemisinin combination

therapies (ACTs) as the principle strategy for the treatment of malaria in endemic countries.
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ACTs are intended to improve the efficiency of individual components and provide some
protection for individual components against the development of higher levels of resistance
[154].

In the beginning of this century the WHO started to financially support and strongly
recommend switching protocols to include artemisinin-based combination therapy (ACT)
claiming that these drug combinations are more effective, allow for shorter treatment courses,

and protect against drug resistance.

7.1 ARTEMISININS IN ACT

ART derivatives have been used in ACT in place of ART itself. This decision is based on two
characteristics: derivatives can have a higher hydrophilic capacity and/or can be more potent
than ART itself. Most used ACTs have in its formulation derivatives of ART like artesunate,
dihydroartemisinin or artemether. After administration and unlike artemisinin, artesunate and
artemether convert to dihydroartemisinin [73]. Artemisinin compounds have several
advantages over other antimalarial drugs for use in combinations as follows [155]:

- They are very active at reducing parasite numbers; more than the other antimalarial,
approximately 10* per asexual cycle.

- They reduce considerably gametocyte carriage and thus transmissibility.

- Resistance has not yet spread

- These drugs are very rapidly eliminated and thus provide no opportunity for parasites to be
exposed to sub-therapeutic concentrations if the dosage is correct.

- They have operational advantages: they produce a rapid clinical response, which encourages
acceptance, and they have an excellent safety and side-effect profile that encourages

compliance.

7.2 PARTNER DRUGS IN ACT

The most common antimalarials used in combination therapy are: artemether-lumefantrine
(AL), artesunate-amodiaquine (AS-AQ), artesunate-mefloquine (ASMQ), artesunate-
sulfadoxine-pyrimethamine (AS-SP) and dihydroartemisinin-piperaquine (DHA-PQ). Lately,
most countries have been adopted AL or AS-AQ as first-line therapy.

In the last decade, a large number of efficacy clinical trials were performed with ACTs to
define baseline characteristics of the treatments. In general, ACT performed well; being in
most cases above the 90% efficacy required by WHO for an ACT to be introduced as a first

line treatment [11].
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The most important conclusion regarding this initial work is that partner drugs efficacy by
itself is an important determinant factor for ACT performance. This idea is supported by

clinical trials where partner drugs have resulted in decreased efficacy, as in the cases of SP

and AQ.

7.3 RATIONALE FOR COMBINATION THERAPY

The rationale for using drugs in combination is well established for the treatment of
tuberculosis, infection by the human immunodeficiency virus (HIV), and cancer. The
probability of a parasite arising that is resistant simultaneously to two drugs with unrelated
modes of action is the product of the per parasite mutation frequencies multiplied by the total
number of parasites exposed to drugs. Therefore, if the probability of a parasite being resistant
to drug A is one in 10° and to drug B is one in 10 then the probability that a parasite will be
simultaneously resistant to both is one in 10'® representing a billion-fold reduction in
probability. As such, ACT fundaments towards resistance were based in the probability that
resistance events to ACT parts are based in independent events [156] which can be
mathematically described as P act-r= PArRT-R™ P partner drug resistance. The implication of this
assumption will be taken in consideration and discussed in this thesis.

Figure 10 represents the difference in total parasite biomass reduction to a long half life
antimalarial in combination with artemisinins (salmon line) or by itself (blue line). In ACT, it
is expected that the fast reduction in parasite biomass, in a patient with malaria, promotes the
exposure of more tolerant parasites to higher levels of the partner drug (salmon triangle) than

if artemisinins were not used (purple triangle) [156].

Drug level

Parasite Biomass

Figure 10 - Scheme of parasite biomass reduction in ACT (salmon) and non-ACT (blue) treatments. The
blue line refers to biomass reduction by partner drug in monotherapy. Salmon line describes reduction of
biomass in combination with artemisinins. The triangles show the fraction of parasite biomass remaining after
antimalarial exposure and expected to be more resistant.
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7.4 ACT IMPACT

So far, the introduction of ACT as first line treatment has being very successful. Countries
where ACT and other malaria controls activities have been introduced have seen malaria
endemicity reduced [157]. There is again a new wave of optimism as seen in the middle of the
last century after initiation of The Global Malaria Eradication Programme. From lessons taken
at that time, we should be well aware and be able to develop a sustainable system enabling us

to fully control and eventually eliminate malaria.
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8 AIMS OF THE THESIS

8.1 OVERALL AIM

To improve the understanding in the molecular basis of P. falciparum resistance to ACT.

8.2 SPECIFIC OBJECTIVES:

Paper 1- To determine the importance of pfimdrl natural polymorphisms, as markers in P.

falciparum associated with clinical lumefantrine tolerance/resistance.

Paper 2- To study the structural impact of natural polymorphisms in PIMDRI1.

Paper 3- To explore polymorphisms in the pfmrpl gene as new molecular markers associated

with ACT in vivo resistance/tolerance.

Paper 4- To study the impact of dihydroartemisinin in P. falciparum calcium homeostasis.

9 MATERIAL AND METHODS

9.1 STUDY SITES

Zanzibar is located outside the coast of mainland Tanzania and consists of two large islands,
Unguja and Pemba, and numerous small ones. Paper I and III includes a clinical drug efficacy
trial conducted in two sites; Kivunge Hospital on Unguja and Micheweni Hospital on Pemba.
Both hospitals are located in densely populated rural areas. The trial was performed in October
2002 to February 2003, when chloroquine and SP was still supplied to the study sites by the
government. Antimalarial drugs were available in the private sector with exception to ACTs.
Later in 2003 Zanzibar became one of the first regions in Africa to implement ACT, with
artesunate-amodiaquine as first line treatment and artemether-lumefantrine as second line
treatment for uncomplicated P. falciparum malaria.

Paper III includes a clinical trial conducted in Fukayosi Primary Health Care Centre in April to
July 2004. Fukayosi is a village located in a relatively scarcely populated rural area in

Bagamoyo district, on mainland Tanzania. At the time of the study SP was the first line
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treatment for uncomplicated P. falciparum malaria and amodiaquine the second line treatment
in Tanzania and ACTs were not available in the governmental health care. In 2006 Tanzania

adopted artemether-lumefantrine as first line treatment.

9.2 Invivo FOLLOW UP TRIALS

The two clinical trials performed in Zanzibar and mainland Tanzania respectively, included
children with microscopically confirmed uncomplicated P. falciparum malaria. All enrolled
children had a parasitaemia of 2000-200 000 asexual parasites/ul blood and an axillary
temperature of 37.5°C or a history of fever the last 24 hours. Children with severe malaria
were not included in the trial. Follow-up visits after initiation of treatment were conducted on
days 1, 2, 3, 7, 14, 21, 28, 35, 42 and on any day of recurrent illness occurring during the 42-
day follow-up period. On every visit blood smear was collected for the assessment of
parasitaemia through microscopy. Parasites were counted against 200 white blood cells and
parasitaemia was calculated with the assumption that one pl of peripheral blood contains 8000
white blood cells. Finger prick blood was collected on filter paper for molecular analysis.

In Zanzibar, the clinical trial was performed between October 2002 and February 2003 and
included 200 children aged 12 to 59 months, with a body weight of at least 9 kg. The children
were treated under supervision with a fixed combination of 20 mg/120mg artemether-
lumefantrine (Coartem®) twice a day for three consecutive days. Children between >9kg and
<15 kg were treated with one tablet, while children between >15 and <25 kg were treated with

two tablets.

9.3 Invitro STUDIES

9.3.1 Parasites cultures

P. falciparum in vitro culturing and experiments were used for Paper II and Paper IV. The
different clones were acquired from Malaria Research and Reference Reagent Resource
Center (MR4). Parasites were cultured in 4 ml or 12 ml flasks with RhO" erythrocytes
(washed three times) to 5 % hematocrite with culture media (Invitrogen, RPMI-1640 with
phenol red) supplemented with 10 % human serum. Cultures were maintained in continuous
cultures at 37°C. Parasite densities were monitored by microscopic assessment by Giemsa-

stained smears.
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9.3.2 Susceptibility testing

For drug susceptibility test and growth experiments, cell growth was calculate by relative
quantification of P. falciparum histidine rich protein 2 pfHRP2 [158], analysed in a Multiskan
EX (Thermo Electron Corporation) ELISA reader.

9.3.3 Blood sampling and storage
All blood samples were collected on 3MM filter paper for parasite genotyping. After the
blood had dried, the filter papers were stored in individual sealable plastic bags in room

temperature.

9.3.4 DNA extraction

Samples were extracted using the ABI PRISM 6100 Nucleic Acid PrepStation (Applied
Biosystems). The extraction was performed according to the manufacturer's recommendations
with some modifications adjusted for filter paper: the filter paper with dried blood were cut in
pieces and put in distilled water. The lysing mixture was incubated for 1 hour at 58°C and the
lysed samples were incubated at 4°C overnight before performing the extraction. The samples

were stored at -20°C for long term storage or in 4°C for shorter storage time.

9.3.5 pfmspl and pfmsp2 analysis

For categorisation of recurrent infections as recrudescences or reinfections, the pfmsp2 was
analysed as described [159]. Pfinsp2 is a single copy gene that is highly polymorphic both in
sequence and size. First the outer conserved region of polymorphic repetitive block 3 was
amplified followed by two separate nested reactions. One pair of oligonucleotide primers
specific for the FC27 allelic type was used in one of the nested reactions while one pair
specific for the IC/3D7 type was used in the other. The polymerase chain reaction (PCR)
products were separated by gel electrophoresis and visualized by UV transillumination, after
staining with ethidium bromide. Samples with at least one matching band from samples from
day 0 and day of recurrent infection respectively were interpreted as recrudescences; all other
samples were interpreted as reinfections.

However, studies showed that two markers should be used for the discrimination between
recrudescences and reinfections [160]. For that reason additional analysis of pfmspl diversity
was made. Similar to the analysis of pfimsp2, the outer conserved region of the polymorphic
repetitive block 2 was amplified, followed by 3 separate nest amplifications. The nest

amplifications were specific for the allelic type of MAD20, K1 and RO33.
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9.3.6 PCR- Restriction Fragment Length Polymorphism (RFLP)

PCR-RFLP is, equipment wise, a simple way to analyse SNPs and is therefore a suitable
method to use in the field.

All analyses were based on nested PCR, except for the analysis of PfATP6 where a seminest
was used. The nested PCR products were incubated over night at the conditions described by
the restriction endonucleases manufacturer, New England Biolabs (NEB) or Fermentas. The
restriction enzymes that were used are listed in Table 3. After incubation, restriction
fragments were analysed on 2%-2.5% agarose gels with ethidium bromide and were

visualized by UV transillumination in a BioRad GelDoc 2000.

Table 3 Restriction enzymes used for RFLP

SNPs Restriction enzymes
cleaved allele marked in bold (manufacturer)
Pfcrt K76T Apol (NEB)
Pfert S163R Hinfl (NEB)
Pfmdrl N86Y Apol (NEB)
Pfmdrl Y184F Tsp5091 (NEB)/Tasl (Fermentas)
Pfimdrl S1034C Ddel (NEB)
Pfmdrl N1042D Asel (NEB)/Vspl (Fermentas)
Pfmdri D1246Y EcoRV (NEB)
PfATP6 ST6ON Rsal (NEB)

9.3.7 Real-time PCR

Assessment of pfindrl copy number, was performed with TagMan® probe based real-time
PCR as described in [105] with minor modifications. The analysis was performed using an
ABI PRISM 7000 Sequence Detection System. The machines, TagMan® buffer and probes
were from Applied Biosystems.

Briefly, this technology is based on oligonucleotide probes with a reporter dye covalently
ligated at the 5-end and a quencher dye at the 3’-end. The proximity between them
suppresses the emission of fluorescence by the reporter dye. During PCR, the primers and
probes specifically hybridise to their complimentary DNA sequence and as the DNA
polymerase extends the primers, the hybridised probe is cleaved. This separates the reporter
dye and the quencher dye, resulting in increased fluorescence from the reported dye. For

analysis of pfindrl copy number, TAMRA" probes were used. The pfindr] probe was labelled
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with FAM" and the probe for the endogenous control, S-tubulin, was labelled with VIC®. The
P. falciparum clone 3D7 was used as a one copy calibrator for pfmdrl and Dd2 was used as a
multi-copy control. All samples were run in triplicate. The comparative AACt (cycle
threshold) method was used. Ct is the cycle number where the fluorescent crosses a set
threshold. The amount of target (pfmdrl) is: 2728t Where ACt = Ctypinart = Ctpnupuin and AACt
= ACltsample — ACtsp7. Results of triple replicate samples were excluded if: (1) more than one
replicate exhibited a Ct > 35; (2) the triple replicate samples had Ct SD > 0.5 and the Ct
difference between the two remaining replicates was > 0.7 after the removal of any outlier.

The parasites were considered to have an amplified pfmdrl gene if copy number was > 1.5.

9.3.8 Pyrosequencing

Pyrosequencing is a method that can be used for SNP analysis, where short fragments of DNA
are sequenced directly from a PCR product. One of the PCR primers used in the PCR reaction is
biotinylated, which enables the purification of specific PCR products since Streptavidin
Sepharose Beads binds to biotin and single stranded PCR products can then be separated in a
vacuum based system. A sequencing primer is further hybridized to the PCR product and
incubated with reagents containing enzymes and substrates. One deoxynucleotide triphosphate
(dANTP) is added to the reaction at a time and is incorporated into the DNA strand if it is
complementary to the base in the template strand. The incorporation results in a release of
pyrophosphate (PP1) that is converted to ATP, which drives conversion of the substrate luciferin
to oxyluciferin that generates light. The light is proportional to the number of nucleotides
incorporated and is visualised as a peak in a pyrogram. (Www.pyrosequencing.com)
Consequently, e.g. the incorporation of three consecutive dTTPs into the DNA strand results in

a peak that is three times higher than the incorporation of one dTTP.

9.3.9 Sequencing

Sequencing was used to evaluate the accuracy of PCR-RFLP method and in prospective
studies as Paper III to identified new mutation in the candidate genes. The method used was
dye-terminator sequencing, each of the four dideoxynucleotide chain terminators is labelled
with fluorescent dyes, each of which with different wavelengths of fluorescence and emission.
Sequencing was performed at Center for Genomics and Bioinformatics, Department of Cell
and Molecular Biology, Karolinska Institutet, Stockholm, Sweden or by Macrogen, Inc,

Seoul, South Korea.
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9.3.10 Statistical analysis of mixed infections

There is no consensus on how to consider mixed genotypes derived from mixed infections i.e.
where both mutant and wild type allele are present. In view of that, the calculations with
mixed infections have been handled slightly different for the clinical trials. In Paper I,
detected mixed infections were calculated to contribute equally to each of the allele.

In Paper III, we choose to remove the mixed infections from the association analyses of the
particular genotype that was mixed. The rationale can be explained having as example of
pfmrpl 1876V analysis. Selection of 1876 is based on the principle that parasite populations
carrying the 1876 allele survive, while all parasites carrying 876V tend to be eliminated.
Elimination of parasites carrying 876V will occur independently if only these parasites are
infecting (pure) or if there are also parasites with 1876 in the infection (mixed). Mixed
infections with 1876 and 876V should consequently become pure 1876 after selection. Thus we
suggest that in vivo, the selected genotype should be analysed against the mixed infections
together with the non-selected genotype.

Proportions were compared using Yates’s corrected y” testing (Microstat “software, release 4;
Ecosoft) and confidence intervals were calculated with the Confidence Interval Analysis
(CIA) program (version 1.1). Fisher’s exact test was determined with GraphPad QuickCalcs

software; GraphPad Software. Statistical significance was defined as P < 0.05.

9.3.11 In silico

P. falciparum genome sequence became available in 2002. Thousands of genes are specific
for P. falciparum, although several still homologous to well studied proteins in prokaryotes
and/or eukaryotes organisms. Crystallography data is available (www.pdb.org) from some of
these homologous to P. falciparum proteins and enables the structural studies by
computational homology. In Paper II and Paper III these strategy was used to unveil the
importance of PEIMDR1 and PfMRP1 polymorphisms based in the bacterial homologous ABC
transporter MsbA. For this purposes programs as Modeller which performs comparative
protein structure modelling by satisfaction of spatial restraints, WinCoot and Yasara were

used.

9.3.12 Ca* records
To perform Ca*" measurements in P. falciparum the Ca*" indicator Fluo-3 was used. Fluo-3
was developed by Tsien (Nobel laureate) and colleagues for use with visible-light excitation

sources in flow cytometry and confocal laser-scanning microscopy. Since being introduced
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in 1989, Fluo-3 imaging has revealed the spatial dynamics of many elementary processes in
calcium signalling. The most important properties of fluo-3 in these applications are an
absorption spectrum compatible with excitation at 488 nm by argon-ion laser sources, and a
very large fluorescence intensity increase in response to Ca2+ binding. Unlike the ultraviolet
light-excited indicators fura-2 and indo-1, there is no accompanying spectral shift. The

fluorescence intensity increase on Ca2+ binding is typically >100-fold.

9.3.13 Mitochondrial membrane potential measurements

Mitochondrial transmembrane potential was assessed by uptake of TMRE (25 nM;
Invitrogen), a lipophilic, cationic fluorescent dye that is only taken up by mitochondria having
an intact electrochemical gradient. Infected RBCs were double labelled with 5 pM Hoechst
33342 and incubated for 30 min with TMRE and fluorescence analysed in a LSR-II flow
cytometer (BD Biosciences) before and after challenging parasites with 72 uM DHA.
Acquired fluorescence-activated cell sorting (FACS) data was analysed in FlowJo software

v.5.7.2.

9.3.14 Cytochrome C (CytC) detection

Anti- CytC antibody (BD Pharmingen) was used to study CytC release from mitochondria by
flow cytometry and microscopy. Flow cytometry of the parasites was performed on a LSR II
(Becton-Dickinson) equipped with a 488nm argon laser and a 358 nm ultraviolet light source.
Parasite slides were mounted using the Prolong Antifade Kit (Molecular Probes) and scanned
in a Zeiss LSM510 and Olympus Fluorview F1000 confocal microscope equipped with C-

Apochromat 60X/1.2 water immersion objectives (Zeiss and Olympus).

9.4 ETHICAL CONSIDERATIONS
Ethical approval for Paper I and Paper 11l was obtained from ethical committees in the endemic
countries and from Karolinska Institutet, Sweden. All samples were obtained upon informed

consent of the patients or their guardians.
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10 RESULTS

10.1 PAPERI

The aim of this study was to explore the selection of other known mutations in pfindrl and
pfert following artemether-lumefantrine treatment. In addition, PFATP6 S769N, suggested to
be associated with decreased susceptibility to artemether (Jambou 2005) was also
investigated.

Recurrent infections classified as recrudescences by pfmsp2 genotyping, were subjected to
additional pfmspl genotyping. Only 2 out of 11 remained recrudescences, while 7 were
reclassified as reinfections and 2 were PCR negative for pfimsp]1.

The PfMDR1 N86, 184F and D1246 alleles were observed to be selected after artemether
lumefantrine treatment. When calculating mixed infections to contribute equally to each
allele, the selection of PfMDR1 mutation comparing Dy with reinfections was as follow:
PfMDR1 N86 increase from 23.4% to 47.4% (P = 0.004). PfIMDRI1 184F showed a
statistically significant increase from 16.6% at Dy to 35.5% among reinfections (P = 0.027).
Likewise, the PEIMDRI1 DI246 allele increased from 66.8% to 83.9% (P = 0.086).

An association between the N86/184F haplotype and reinfections was seen. The statistically
significant selection of this haplotype (P = 0.001) was followed by a similar decrease in the
prevalence of 86Y/Y184 (P = 0.009), while the other two haplotypes (86Y/I84F and
N86/Y184) were not affected. The D1246 in combination with N86 was also significantly
selected in reinfections (P = 0.001). This selection was not at the cost of any specific allele.
The two recrudescences analysed had N86/Y 184/D1246 and 86Y/Y 184/1246Y respectively.
No pfimdrl gene amplification was detected. No polymorphism was found for PfMDRI1
S1034C, 1042D, DI1246Y, PfCRT SI63R and PfATP6 S769N.

The selection of mutations in PfIMDR1 was seen to occur in time fashion. This observation
lead was to describe the selective window for PEIMDR1 N86, 184F and D1246 of being within
the 35 days after artemether-lumefantrine treatment (Fig. 11).
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Figure 11 Selection of PFMDR1 after artemether-lumefantrine treatment. Distribution of PIMDR1 N86Y,
Y184F and D1246Y SNPs of the 28 pfmsp2 adjusted P. falciparum reinfections during the 42-day follow-up
period. Infections with PfIMDRI1 86N alleles are being selected particularly in the early reinfections, while in the
later reinfections on day 42 the 86Y and 86N frequencies have returned towards the baseline frequency. A
similar finding was seen for PIMDR1 Y 184F.

10.2 PAPER I

For this paper was considered the importance of polymorphism in pfindri (position 86, 184,
1034, 1042 and 1246) selected by lumefantrine in Paper I and analysed its importance in the
transporter structure and for antimalarial resistance in general.

PfMDRI1 is constituted by 12 transmembranes (TMs). Our results show that transmembrane
(TM) 11 (harbor polymorphisms position 1034 and 1042) are close to TM1 in the open
conformation of the transporter. On the top of TM1 locates residue 86 (polymorphism). The
structural clustering of mutations in residues 86, 1034 and 1042 in this conformation suggests
their role in the docking of antimalarial. To better understand the role of 1034 and 1042 we
hypothesize TM11 as being part of a drug binding pocket. Our in silico docking results show
that MQ, QN, CQ docked in the proposed binding site, preferentially interacting with residue
1042. The energies of docking for best pose were estimated to be in Kcal/mol: -6.89 for CQ
(Fig. 12A), -7.86 for QN (Fig. 12B) and -5.69 for MQ (Fig. 12C).

Residue 1246 happens to be located in the nucleotide-binding domain (NBD) 2. It is part of a
cleft that interacts with the loop formed by TM4 and TMS. This particularity relates to residue
184 in TM3. The TM3 is located in the middle of TMD1 surrounded by TM1-TM2 in one
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side and TM4-TM6 in the other. TM4 and TMS5 come close to TM3 in the nucleotide bound
conformation.

Our results support the hypothesis of PEIMDR1 being a vacuolar importer of antimalarial. To
acquire further evidence we evaluate the index of resistance for different aminoquinolines
known to target the digestive vacuole, as CQ, AQ and DEAQ. The correspondent Log D (pH
7.2) values for these drug are CQ: 0.045 < DEAQ: 1.183 < AQ: 2.60. The contribution of
PfMDR1 mutations 1034, 1042 and 1246 for index of resistance was higher for more
hydrophobic (AQ and DEAQ) (Fig. 13) supporting the hypothesis that PfMDRI1 is an
importer which requires active transport for the vacuole. The contribution of PfIMDR1 was

also shown to be dependent on PfCRT background.
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Figure 12 - Docking of antimalarial in TM11. Residues 1042 and 1034 are show in TM11 being a serine and
aspartic acid respectively together with CQ (A), QN (B) and MQ (C) docks. The energies of docking for best
pose were estimated to be -6.89 Kcal/mol for CQ, -7.8 Kcal/mol for QN and -5.69 Kcal/mol for MQ.
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Figure 13 - Resistance Index for 1034/1042/1246 pfmdrl haplotype. Index was determined as the ECs ratio
of isogenic transfectants CDY over SND for the different antimalarial.
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10.3 PAPER Il

Paper II1 is the first comprehensive study of pfmrpl diversity. The pfmrpl open reading frame
(ORF) was sequenced in 103 P. falciparum infections originating from most malaria endemic
regions and in 47 fresh P. falciparum isolates from Mae Sot, Thailand and 30 from Gulu,
Uganda. pfmrpl was observed to harbor significant biodiversity with 23 non-synonymous
SNPs, 8 synonymous SNPs and one insert were identified in the gene. The distribution of the
SNPs showed distinct geographic patterns (Table 4). In Africa the most common SNPs were
I876V and K1466R, with no other SNP seen in more than two samples. K1466R was only
found in Africa and Papua New Guinea (PNG). In South America no SNPs in pfmrpl were
observed.

The majority of SNPs were identified in samples with origin in Asia and Oceania. There the
most common SNPs were H191Y and S437A, which were linked and mutated in almost all
samples. Distinct haplotypes of pfinrpl SNPs in aminoacid positions 785, 876, 1007 and 1390
were observed. Either they were all wild-type, mutated in positions 876 and 1390 or mutated in
positions 785, 876 and 1007 with or without mutation in position 572.

I876V was the most spread SNP worldwide, present in all parasite populations.

PfMRP1 1876V and K1466R, were analyzed in P. falciparum samples from malaria-infected
patients, in two clinical drug efficacy trials in Tanzania (n=106) and Zanzibar (n=408), treated
with artemether-lumefantrine vs. SP or artemether-lumefantrine vs. artesunate-amodiaquine,
respectively.

There were no statistically significant changes in frequency of K1466R after artemether-
lumefantrine or artesunate-amodiaquine treatment. We observed a statistically significant
positive selection of the pure 1876 allele in the recurrent infections (92.1%) of the artemether-
lumefantrine arm compared to the baseline (76.9%) (P= 0.038) in Zanzibar. In Tanzania the
same tendency was detected after artemether-lumefantrine treatment, although it was not
statistically significant. Pooling the two independent studies supplied robust evidence for a
strong selection of the pure 1876 in recurrent infections (89.5%) compared to the baseline
(75.9%) (P=0.007).

Residue 876 is located in nucleotide-binding domain (NBD) 1, immediately downstream of the
Walker B motif between the LSGGQ motif and the H loop, an important region for ATP
binding and hydrolysis. We then analysed the importance of this region analysing the dynamics
of MsbA protein crystals trapped in different conformation (Fig. 14A). Our results show that

this region is highly mobile required for nucleotide bound-unbound in the transporter.
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In silico analysis suggested that variation in residue 876 (Fig. 14B) may influence ATP docking

and consequently the catalytic cycle and potentially the overall protein function.

Table 4 — Geographic genetic diversity of pfmrpl

PfMRP1 polymorphisms

437

Origin

785 876 1007 1390 1431 1466

572

191 202 325

37

Africa

19

Africa

Benin

Gambia
Ghana

1

Guinea Conakry

Kenya

Malawi

Uganda

Middle East

Iran

Yemen

South East Asia

Cambodia

14

Thailand

Oceania

Papau New Guinea

Vanuatu

South America

13

Colombia

Surinam
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Figure 14 - Mobility of NBD in ABC transporters. (A) MsbA structural alterations at NBD of open (3B5W)
and close (3B60) conformations. Localization of ATP molecule is shown linked to the structures by a Mg2+
bridge (yellow) (B) Visualization of V8761 mutation model.

10.4 PAPER IV
In Paper IV we evaluate the impact of dihydroartemisinin (DHA) in P. falciparum. When
parasites were treated with DHA a similar transient Ca®" increase was observed as for

thapsigargin (TG) (Fig. 15).

Figure 15 - Induction of a Ca2+ transient by DHA

ART inhibits cell growth of P. falciparum. To examine if this effect caused by ART was
dependent on cytosolic Ca®" signalling we next treated the cells with the Ca®" chelator
BAPTA/AM and measured parasite growth using an ELISA assay. Although we block
intracellular Ca** with BAPTA P. falciparum parasites were able to grow to a certain extent

(Fig. 16).
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Figur 16 — DHA induced cell death rescued by Bapta.

In order to further elucidate the Ca®" signalling pathway evoked by ART we monitored
mitochondria membrane potential after challenge parasites to DHA 72 uM. FACS data
analysis revealed that DHA was able to increase the TMRE signal 26 %. The DHA-induced
TMRE increase was blocked when pretreating the cells with BAPTA. The time lapse FACS
recordings showed that hyperpolarisation of mitochondrial membrane by DHA 72 uM was
rapid and suppressed by BAPTA (Fig. 17).
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Figur 17 — Mitochondrial membrane potencial disruption by DHA

To evaluate the mitochondrial reaction to Ca2+ signal inducted by DHA we tracked CytCin
P. falciparum. Approximately 10 % - 30 % of all DAPI stained parasites were staining
positive for CytC. Treating the cells with DHA showed that CytC was released into the
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cytosol of the cell and DNA fragmentation was apparent following DAPI staining of DHA
treated cells. The CytC release effect was abolished when cells were pre-treated with BAPTA
(Fig. 18).
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Figure 18 - CytC release induced by DHA in P. falciparum.
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11 DISCUSSION

With the enactment of ACT was hypothesized to delay the spread of drug resistant malaria
parasites. We have now evidence that this is not the case for the African continent.
Artesunate+sulfadoxine-pyrimethamine (AS-SP) treatment is an adequate regime to evaluate
the capacity of ACT to reduce drug resistance spread since the mechanism of resistance for
SP is well defined and associated with the targets, DHFR and DHPS. AS-SP was introduced
in Mozambique in 2004 due to its high efficacy and its adequate clinical and parasitological
response of 98% at 42 days, estimated between 2003 to 2004 [161]. After 4 years following
its introduction, malaria prevalence decreased, however, dhfr/dhps “quintuple” mutations
(related with high SP resistance) increased from 11.0% in 2004 to 75.0% by 2008 (P< 0.0001)
[162]. Based on the case of AS-SP and artemether-lumefantrine (Paper I) in this thesis, it is
apparent that ACT does not prevent the spread of partner drug resistance markers. The
determinant factor detected in Paper I driving pfindrl haplotype selection is the time to
reinfection. We described a selective window of 35 days, during which lumefantrine is in its
terminal elimination phase reaching sub-therapeutical levels. The selection of pfmdrl markers
related to lumefantrine resistance fit exactly within these 35 days. As opposed to Southeast
Asia, where transmission and consequent reinfection rate is low, in Africa, reinfections after
treatment are common suggesting that a fraction of the parasite population is exposed to sub-
therapeutical dosages of antimalarials, promoting antimalarial resistance and spread.

We showed in Paper III that this ACT selection is not confined to pfimdrl. Other genes,
tuncluding pfmrp1, are also under such pressure.

A more worrying scenario is that unlike SP, lumefantrine seems to have cross resistance with
artemisinins, at least to a certain extent. This fact brings us back to the basics. An assumption
for ACT deployment is the fact that the probability of ACT resistance was estimated to occur
based upon independent resistance mutations to artemisinins and partner drugs. However, the
involvement of PfMDRI to lumefantrine and artemisinin seems to be cross related
[140,141,144]. In these terms, it is reasonable to conclude that in some cases ACT resistance
might not be based on independent resistance events but rather on linked events. Thus, the
probability for a parasite developing resistance to a particular ACT should be assumed to be
the probability of this parasite’s resistance to artemisinin in the context of resistance to its
partner drug. Described mathematically as P act.r= Part-r™ (P partner drug resistance | PART-r), this
important assumption is of major implication in the context of drug policy establishment.

Choice of the partner drug should then be considered in this perspective. Reducing the
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probability of associated resistance (partner drug and artemisinins) may aid in slowing down
the probability of resistance to ACT.

This fact is further supported by work from our laboratory in AS-AQ selection. Our data
shows that following AS-AQ treatment, the opposed haplotype of pfindrl occurs [163]. In
which background (PfMDR1/PfMRP1/PfCRT) ART resistance is more prompt to happen we
do not know, although it is reasonable to assume that there might exist a preferable genetic
background promoting resistance development.

It is certain that unveiling the mode of action of antimalarial drugs is of extreme importance
to improve and rationalize drug policies. In the context of PIMDRI, in Paper II, we tried to
uncover more information concerning the structure and function of this transporter. Our data
support the notion of PIMDRI1 as a vacuolar importer. Its contribution seems to be dependent
on the PfCRT, which acts as a vacuolar efflux pump. The vacuolar accumulation of
antimalarials is of major importance especially for aminoquinolines. The dynamics of
antimalarial influx/efflux determine the net accumulation of drug in the vacuole and is a topic
for future study.

A relevant physiological feature of PEIMRP1 is that it does not localize to the digestive
vacuole, instead it is present on the plasma membrane. The three transporters
(PfMDR1/PfMRP1/PfCRT) studied here enclose a broad spectrum of substrates enabling us

to propose a general mechanism for antimalarial flux in P. falciparum (Fig. 19).

% Digestive vacuole

Figure 19 - Physiologic model of antimalarial transport in P. falciparum.

PfMRP1 was never found to be a determinant of antimalarial resistance which might be due to

the fact that P. falciparum is an intracellular parasite. As opposed to other ABC resistant
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pumps in other organisms, PIMRP1 does not pump to the extracellular milieu; instead, it
expels its substrates to the cytosol of the hosting RBC. Increased oxidative stress on RBCs by
antimalarials may also affect the integrity of the host cell, something which is vital for
parasite’s survival. This hypothesis is further supported by the fact that PEIMDR1 pumps drugs
into the digestive vacuole, protecting the hosting RBC. A balance between vacuolar
accumulation and RBC accumulation may be required for overall P. falciparum antimalarial
resistance.

This perspective of parasite and host as one entity brings forward once more the complexity
of malaria. Survival of malaria parasites to xenobiotics is a result of concerted complex

events leading to antimalarial resistance.

Artemisinins have a complex mechanism of action. In this thesis, we describe additional
details regarding their impact on P. falciparum calcium homeostasis and downstream effects.
It is known that Artemisinin resistance in Toxoplasma gondii is related to calcium
homeostasis [164]. All proposed target proteins for artemisinins resistance in P. falciparum
directly or indirectly involve Ca*". TCTP is a Ca*" binding protein and SERCA is a Ca®'
pump. In Paper IV, we evaluate the effect of artemisinin on overall intracellular calcium.
Artemisinins induce a cytosolic Ca*" increase in P. falciparum-infected erythrocytes. We
analysed the downstream effects of DHA-induced Ca®’ signalling and demonstrate that
damages at the mitochondrial level triggers a cell death pathway. These observed effects were
abolished by chelating intracellular Ca*" with BAPTA. Subsequently, parasite viability was
rescued.

Calcium is an almost universal intracellular messenger that controls a vast number of cellular
processes from fertilization to cell death. Cells create large calcium concentration gradients
(~10000 to 1) between the extracellular fluid, cytoplasm, and internal calcium stores by
means of calcium-pumps located in the plasma membrane and in the membranes of internal
calcium stores. These gradients provide ideal conditions for the use of calcium as cellular
currency that supports the propagation of intracellular calcium waves. The concerted actions
of calcium transporters located in the plasma membrane and in the membranes surrounding
internal stores, including the endoplasmic and sarcoplasmic reticulum, the mitochondria, and
the nucleus, can generate controlled calcium oscillations for cellular regulation and
homeostasis. Deregulation of these processes can often lead to cell death.

In the case of artemisinin, calcium deregulation does cause parasite death. Convincing

genetic factors for artemisinin resistance have not been reported yet. We showed that
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increased resistance to DHA could be achieved chemically by chelating Ca*". We hypothesize
that parasites may biologically mimic this event at critical points of Ca*" homeostasis control
resulting in increased resistance towards artemisinins. Ca*" related targets in P. falciparum
(SERCA and TCTP) were reported, however, the Ca*" dependent mechanisms of resistance
might occur up or downstream of these targets.

The recently reported in vivo and in vitro resistance to artemisinins has been related to general
biological features: hyper-parasitaemia [165] and dormancy state [166]. These features of cell
proliferation are well known to be controlled by intracellular Ca®* signals whilst increased cell
proliferation, like tumour cells, correlates with altered intracellular Ca®" regulation [167]. In
the case of P. falciparum, information on the regulation of cell proliferation by Ca*" signalling
in the erythrocytic cycle is scarce. The role of Ca®* within artemisinin’s mechanism of action
and antimalarial resistance, in general, potentiates the interest and constitutes a great area of

scientific interest for the near future.
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12 CONCLUSIONS

12.1 OVERALL CONCLUSION
The antimalarial drug resistance proteins PEIMDR1, PfCRT and PfMRP1 are under selective
pressure by ACT partner drugs. For artemisinins, intracellular Ca** in P. falciparum plays a

role in its mode of action.
12.2 SPECIFIC CONCLUSIONS

Paper 1- pfimdri haplotype coding for 86N, 184Y, 1246D is selected for in re-infections after

artemether-lumefantrine treatment.

Paper 2- Different haplotypes in pfindri correlates with two distinct functional modulation
mechanisms at the protein level, one allosteric and another directly related to the drug binding

pocket.
Paper 3- The 1876V polymorphism in PfMRPI is selected for in re-infections after
artemether- lumefantrine treatment. We examine the importance of this residue for ATP

hydrolysis at the transporter nucleotide binding domain.

Paper 4- Dihydroartemisinin disrupts calcium homeostasis in P. falciparum and induces cell

death.
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13 PERSONAL VIEWS AND FUTURE PERSPECTIVES

Enormous efforts were needed to convince international organizations to start a new era of
malaria elimination and eradication after the failure of the World Malaria Eradication
Program in the middle of last century. Now we have the opportunity to apply more than one
century of research in malaria to jeopardized common goal. Due to its extreme complexity, to
eliminate or even control malaria requires effective concerted interventions within the host,
the mosquito and the parasite. To fully achieve these requirements, a deep understanding of
the fundamentals of malaria is mandatory.

The studies presented in this thesis were focused on the parasite response to ACT with the
intention of contributing to our basic knowledge of antimalarial selection and resistance. In
brief, we described how the parasite population has been modulated by partner drugs due to
the use of ACTs and further how alterations of intracellular Ca®" regulation could contribute
to resistance to artemisinins.

Unfortunately, there is more and more evidence that the durability of ACT efficacy might not
be what was previously thought. The Efficacy of artemisinins seem to be degrading in
Southeast Asia and resistance has been reported to the most used partner drugs. In a more
cautious perspective, is wise to take into consideration that the parasite population is adapting
to ACT and resistance may well happen sooner than previously expected. The question now
is: what can we do to slow down this process and promote ACT sustainability? The Malaria
Research Group at Karolinska Institute has made significant contributions in this field,
reporting on the opposed selection of pfmdrl and pfcrt, which are also oppositely related
regarding susceptibility, for the partner drugs amodiaquine and lumefantrine.

In Africa, transmission is a major driving force for the mechanism of selection of resistant
haplotypes to ACT partner drugs. The identification of these two factors, parasite genetics and
transmission, redefines the concept of time to re-infection of different resistant haplotypes.
This new concept promotes the generation of new understanding and vision of antimalarial
resistance and selection. In the future, time to re-infection may be an important tool to access
populational parasite drug susceptibility in a longitudinal perspective. Evaluation of the
importance of the terminal elimination phase of different partner drugs and risk of resistance
selection might give us more information regarding the correct choice of partner drugs and
long term planning of ACT deployment.

Artemisinin efficacy has been looked upon as the mainstay for ACT resistance. Our very little

knowledge regarding the mechanism of artemisinin makes it difficult to define what
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artemisinin resistance actually is. If we reflect on the definition of resistance: “Diminished or
failed response of an organism, disease or tissue to the intended effectiveness of a chemical or
drug”, (From the MeSH® online dictionary (Medical Subject Headings)
(http://www.nlm.nih.gov/cgi/mesh/2010/MB_cgi)) we may say that indeed resistance to
artemisinin has always been present, as recognized by the WHO, and not recommended as a
monotherapy because of its low effectiveness.

ACT effectiveness should then be looked at as a whole, focusing on all aspects, artemisinin
and partner drug pharmacologic characteristics, the parasite’s background and transmission.
In a more broad research perspective, antimalarial resistance is one case in the scientific
challenge of translational research where distinct areas of scientific knowledge converge in a

multidisciplinary fashion to create a truly translational science.
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