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ABSTRACT 
 
Malaria, caused by the Plasmodium falciparum parasite, remains a leading cause of death 
among children in Africa. To improve treatment efficacy and delay development and spread 
of antimalarial drug resistance artemisinin artemisinin-based combination therapy (ACT) is 
now globally recommended as first-line treatment of uncomplicated P. falciparum malaria as 
a cornerstone in modern malaria control. 
 
The aim of this thesis is to improve the understanding of the molecular basis of potential 
evolution of P. falciparum resistance to ACT. 
 
After the worldwide introduction of ACT several reports demonstrate that the multidrug 
resistance protein 1 (pfmdr1) and chloroquine resistance transporter (pfcrt) genes are under 
selective pressure. This thesis describes the in vivo selective process for pfmdr1 haplotype 
coding for aminoacids 86N, 184F 1246D in reinfections after artemether-lumefantrine 
treatment. The selective window is within 35 days after treatment during the elimination 
phase of the partner drug. 
 
PFMDR1 homologue model structures unveiled the functional interference of 86N, 184F and 
1246D in antimalarial drug transport. This was further supported by in vitro susceptibility of 
P. falciparum pfmdr1 transfectants clones to aminoquinolines indicating that PFMDR1 may 
act as a vacuolar importer. 
 
Since the resistance mechanisms of P. falciparum to the major ACTs are largely unknown 
other candidate genes were analysed. Therefore the multidrug resistance-associated 1 
(pfmrp1) gene diversity in P. falciparum and its potential contribution to decreased ACT 
sensitivity was studied. Some 21 nonsynonymous and 6 synonymous single nucleotide 
polymorphisms were identified. The polymorphism I876V appears to be significantly 
(P<0.05) selected in reinfections after artemether-lumefantrine. The structural role of I876V 
polymorphism and impact for PFMRP1 transport was then studied in bacterial ABC 
transporter homologue, MsbA, and shown to be related to the nucleotide binding region of 
ABC transporters. 
 
To investigate mechanism of action of artemisinins in P. falciparum, parasite’s calcium 
homeostasis was studied using techniques of live single cell imaging and flow cytometry. Our 
work suggests that artemisinin triggers Ca2+ signalling- dependent cell death in P. falciparum. 
Parasite cell death was partially rescued (31%) by the Ca2+ chelator Bapta. 
 
In conclusion, P. falciparum is adapting to the new ACTs. Complex mechanisms of 
pfmdr1/pfcrt are being selected by partner drugs and may represent entry points towards 
alarming evolution of tolerance and resistance to ACT. 
 
 
Key words: Plasmodium falciparum; ACT; antimalarial resistance; drug selection; evolution; 
drug transporters 
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1 MALARIA PROLOGUE 

Malaria is generally recognized as a disease of poverty and is a major hindrance for economic 

development [1]. The optimal conditions for the propagation of malaria overlap 

geographically with countries, which have low gross domestic products. In spite of these 

circumstances (and despite having limited access to treatment and other control tools), which 

generate a situation of attrition for elimination attempts, poverty does not solely explain the 

failure of malaria control initiatives.  

Persistent malarial infections have been associated with a breakdown in antimalarial and 

insecticidal efficacy [2]. As will be further discussed in this thesis, plans for malaria 

eradication and control have failed several times due to antimalarial drug resistance. We are 

now beginning a new era of optimism for malaria eradication, with the development of new 

and different drugs, as well as increased use of bednets and insecticides.  However, we are 

still using the same old therapeutic strategies. 

How can we assure the sustainable effectiveness of new malaria control tools? New and 

increased efforts in applicable, basic research are required to develop a rational use 

antimalarial for the control and cure of this disease. Insight into the complexity of malaria 

pathogenesis is vital to understand the disease and will provide a major step towards its 

control [3]. Those of us who work on pathogenesis must widen our approach and look for new 

strategies to reduce the prevalence of this disease. The inability of many countries to fund 

expensive campaigns and expensive antimalarial treatments require these new tools to be 

feasible, highly effective and affordable. 

 

The goal of the work presented in this thesis is to contribute to our general knowledge and 

generate applicable data for rationalized drug policies aimed at obstructing anti-malarial drug 

resistance in the era of ACT.  
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2 MALARIA ETIOLOGY  

Malaria is caused by obligate intracellular protozoan parasites of the genus Plasmodium and 

belonging to the Apicomplexa group.  Several mammals, birds and reptiles have their own 

specific malaria parasite. The presence of specialized Plasmodium spp across different 

taxonomic classes reveals an ancient common ancestor and millions of years of parasite/host 

co-evolution [4]. 

Five different species of malaria parasites can infect, cause symptoms and eventually lead to 

death in humans. These parasites are: Plasmodium falciparum, Plasmodium vivax, 

Plasmodium malariae, Plasmodium ovale and Plasmodium knowlesi [5,6]. . Due to the 

process of speciation, through bounce and the adaptation of parasites to different hosts, some 

malaria species still remain capable of infecting their evolutionarily hosts. As an example of 

this, Plasmodium knowlesi causes malaria in long-tailed macaques (Macaca fascicularis), but 

it also can infect humans, in vitro [7] and naturally [8]. On the other hand, Plasmodium 

falciparum was recently detected in wild gorillas [9].     

Work on the fascinating biological complexity of this disease and its public health impact has 

resulted in the recognition of five Nobel prizes thus far to the following researchers: 

Ronald Ross, 1902: "For his work on malaria, by which he has shown how it enters the 

organism and thereby has laid the foundation for successful research on this disease and 

methods of combating it". Ronald Ross discovered the oocyst of a malaria parasite in the gut 

wall of a mosquito on August 20, 1897 in Secunderabad, India.  

Alphonse Laveran, 1907: "In recognition of his work on the role played by protozoa in 

causing diseases".  Laveran was the first to notice parasites in the blood of a patient suffering 

from malaria on November 6, 1880 at Constantine, Algeria.  

Julius Wagner-Jauregg, 1927: "For his discovery of the therapeutic value of malaria 

inoculation in the treatment of dementia paralytica". A professor of psychiatry and neurology 

in Vienna (Austria), Wagner-Jauregg developed methods for treating general paresis 

(advanced stage of neurosyphilis) by inducing fever through deliberate infection of patients 

with malaria parasites. This method was used in the 1920s and 1930s. In the 1940s, the advent 

of penicillin and more modern methods of treatment made such "malaria therapy" obsolete. 

Paul Hermann Müller, 1948: "For his discovery of the high efficiency of DDT as a contact 

poison against several arthropods". 
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Camillo Golgi, 1906: Golgi shared the Nobel Prize with Santiago Ramón Cajal for their 

studies on the structure of the nervous system. Golgi made significant contributions to malaria 

research as well. 

3 THE MALARIA CAROUSEL  

As is true for all cases of malaria, the disease in humans consists of three major components: 

the human (host), the mosquito (vector) and the parasite. These constituents are essential for 

the propagation of malaria as a human disease. Malaria control and elimination tools intend to 

block this trilogy at the three different stage transitions [10]. Before entering into detail of 

each of the parts, a broad view of the full life cycle will be described (Fig. 1). 

The starting point occurs when a P. falciparum infected female Anopheles mosquito feeds on a 

human. When this happens, sporozoites in the salivary glandules are injected into the host along 

with the anti-coagulative saliva of the mosquito. Sporozoites enter the bloodstream and quickly 

reach the liver where they invade hepatocytes. The sporozoites remain in the liver for 1-2 weeks 

and undergo asexual replication (tissue schizogony) in which each sporozoite can give rise to 

tens of thousands of merozoites.  

 

 
Figure 1 - The malaria life cycle, from Epidemiology of Infectious Diseases. Available at: http://ocw.jhsph.edu. 
Copyright © Johns Hopkins Bloomberg School of Public Health. Creative Commons BY-NC-SA. 
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When the hepatocytes rupture, merozoites are released into the blood stream and can readily 

invade erythrocytes. Once inside the erythrocyte, asexual replication begins and the parasite 

develops through a series of specific stages (erythrocytic schizogony). The parasite matures 

from a merozoite to an early trophozoite (ring stage), to the enlarged late trophozoite containing 

hemozoin pigmentation, and further to a schizont containing 16-18 merozoites. The infected 

erythrocyte is eventually lysed and merozoites are released into the bloodstream, where they can 

infect further erythrocytes to continue the asexual replication. The intra-erythrocytic cycle of P. 

falciparum takes approximately 48 hours. Erythrocytes infected at mature stages undergo 

sequestration, i.e. adhesion to endothelial cells in deep blood vessels, to avoid clearance by the 

spleen. Therefore, only the earlier parasite stages can normally be seen in peripheral blood and 

not schizonts. A small proportion of the merozoites in erythrocytes eventually differentiate to 

produce micro- (male) and macrogametocytes (female). In the Anopheles mosquito, it takes 

approximately 10-18 days for gametocytes to be ingested and form a zygote. Then, the zygote 

transforms into an ookinete that penetrates the wall of the midgut and develops into an oocyst 

which produces more sporozoites to initiate this millennial uninterrupted cycle. 

 

3.1 THE HUMAN HOST 
Approximately half of the world's population is at risk of malaria infection, which is endemic 

in more than 100 countries [11]. Human and parasite evolution are inextricably linked and one 

piece of evidence in support of evolutionary theory.  

Indeed, the reciprocal adaptation of parasite and host creates a magnificent, epic story in 

biology. The mortality and morbidity caused naturally by malaria [12] is thought to be the 

greatest selective pressure on the human genome in recent history [13]. Malaria parasites have 

modulated the human genome, and vice-versa, as will be discussed here. 

A classic example of the effect of the malaria parasite on the human genome is sickle-cell 

disease [14].  In sickle-cell disease, a single nucleotide polymorphism (SNP) in the 

hemoglobin beta (HBB) gene, which encodes the beta-globin subunit of hemoglobin, 

promotes the polymerization of hemoglobin, deforming red blood cells (RBCs) into a "sickle" 

shape [15]. Homozygote carriers have an inevitable haemolysis and a severe, most part fatal, 

haemolytic anaemia. However, heterozygotes, which have both insoluble and normal 

hemoglobin, with low or insignificant levels of anemia, have a greatly reduced chance of 

serious malaria infection. Other mutations in the hemoglobin gene have also been identified 

and reported to behave identically [16,17]. Genetic advantages are reflected by the high 
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prevalence of this allele in populations where malaria is endemic, creating a case of 

heterozygote advantage. 

Another well documented case of evolutionary selection is the Duffy antigen/chemokine 

receptor (DARC) gene, also known as Fy glycoprotein (FY) or CD234 (Cluster of 

Differentiation 234). This gene codes for a glycosylated protein that localizes to the 

membrane of the RBC. The Duffy antigen is used as a non-specific receptor by Plasmodium 

vivax and Plasmodium knowlesi to invade RBCs. Individuals who do not express Duffy 

antigen on the RBC are completely resistant to P. vivax infection. As for the sickle cell 

anemia, this genetic advantage has been evolutionary selected and is prevalent in almost all 

African populations, while being rare in other populations. 

Other blood disorders, such as Thalassaemias [18] and glucose-6-phosphate dehydrogenase 

deficiency (G6PD) [19] have also been linked to protection against malaria. These disorders 

are well-documented processes of evolutionary adaptation of humans to naturally resist 

malaria [19,20]. In the present and future era of Genomics and high-throughput sequencing, it 

seems reasonable to expect many others to be unveiled. 

 

Human genetic selection by malaria is driven by the disease's endemicity [21]. In nature, 

endemicity is established by the mosquito’s transmissibility. However, malaria control 

activities can play a major role in malaria endemicity. These activities, which include early 

diagnosis and treatment with insecticide-treated bed nets (ITNs), indoor residual spraying 

(IRS) and intermittent preventive treatment in pregnancy (IPTp), create evolutionary 

unbalances [22]. 

  

3.2 THE MOSQUITO VECTOR 
About 80 mosquito species from the genus Anopheles transmit malaria to humans, of which 

approximately 40 are significant vectors. Anopheles gambiae, A. arabiensis and A. funestus 

transmit most instances of human malaria [23]. 

However, even within the same species, not all individuals can transmit malaria. Only the 

female mosquito possesses the capacity to transmit malaria. This capability is due the 

hematophagic (blood feeding) nature of the female, which is essential for egg production and 

reproduction. For malaria, humans are an intermediate host whereas mosquitoes constitute the 

definitive host where the sexual phase of the parasite occurs. 

The period of development in the mosquito vector varies depending on the species and is 

controlled by ambient temperature. A lower limit of 15°C has been determined for 
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development in P. vivax and P. malariae. For P. ovale, 16°C, and for P. falciparum, a 

temperature of at least 18–21°C is necessary. The optimal ambient temperature for all malaria 

parasites has been shown to be 25°C, although, different time periods are required for each 

species to form infectious sporozoites [24]. In the case of P. vivax, it takes 9–10 days; for P. 

falciparum, 10–12 days; for P. ovale, 12–16 days; and for P. malariae, it takes 15–21 days 

until the process of sporogony is completed within the mosquito. With an ambient 

temperature of only 20°C, these processes can take significantly longer, for example 16–17 

days (P. vivax), 22–28 days (P. falciparum), and 20–25 days (P. malariae) [25]. Alterations in 

parasite development time lengthen the span of malaria infection risk. 

Mosquitoes are under selective, evolutionary pressure from both parasite and man. Similar to 

humans (chapter 3.1), mosquito populations are naturally affected by malaria parasites to 

favor the acquisition of infection resistance mechansims [26].  

Mosquitoes are the driving force responsible for malaria propagation and different 

characteristics and behavior of the overall mosquito population in a certain setting determines 

malaria endemicity [27]. Different species of mosquitoes are characterized by different 

feeding habits.  Some are predominantly indoor biters (A. gambiae and A. funestus) or 

outdoors bitters (A. arabiensis); others are mainly anthropophagic bitters (A. gambiae and A. 

funestus) or zoophagic bitters (A. arabiensis).  This combined with factors related to their 

intrinsic biology, such as life expectancy, life cycle, and reproductive behaviours, make 

mosquitoes the prime conductors of transmission and determine malaria’s endemicity [28]. In 

this sense, malaria can be stratified as: holo-endemic (>75%), where transmission occurs all 

year long; hyper-endemic (50-75%), which is intense, but with periods of no transmission 

during the dry season; meso-endemic (11-50%), with regular seasonal transmission; or hypo-

endemic (<10%), in which malaria transmission is very intermittent. 

The importance of the mosquito for malaria transmission in the principle is the reason why 

vector control is considered an essential tool in malaria control. In 1955, the WHO launched 

The Global Malaria Eradication Programme with an emphasis on vector control with 

dichlorodiphenyltrichloroethane (DDT) residual spraying. Development and use of 

insecticides had an enormous impact and the work was rewarded with a Nobel Prize. 

However, the massive use of insecticides led to the selection and propagation of genes 

conferring resistance among the mosquito population. This program was abandoned in 1969 

with insecticide resistance being a major factor for its failure. 
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3.3 THE PARASITES 
The present thesis is focused on the main killer among all human parasites, Plasmodium 

falciparum. The World Health Organization (WHO) estimates that in 2008, there were 243 

million cases of malaria and 863.000 deaths, mostly among children under five years of age in 

sub-Saharan Africa due to falciparum malaria [11]. 

 
Table 1 - P. falciparum selection process [22] 

 Evolution and modulation of the P. Falciparum genome occurs naturally through immunity, 

host death, mosquito availability and co-infection, and more recently through malaria control 

actions (drugs) (Table 1) [22].  

A major hurdle to overcome for the eradication of malaria is the parasites high adaptation 

capacity to its highly heterogeneous natural environment. P. falciparum, undergoes 10 

morphological transitions in five different host tissues, proliferates asexually within three of 

these, and must propagate sexually at each transfer between hosts. The parasite can infect 

most of its host population by reinvading people who have already mounted an immune 

response during previous or existing infections, and from each infection it can transmit for 

months and even years. Thus, this parasite has evolved the capacity to maximally exploit 

human beings for its own reproduction [29,30] . 

 Parasite adaptation 
 Parasite Variation Selection Constraints and trade-offs 

Within 
genome 
within host 

• Multigene families • Invasion and adhesion 
receptors 

• Diversity vs. function 
• Recombination 

Between 
genome 
within host 

• Antibody type 
• Ligands 
• Virulence 
• Drug resistance 
• Competitive ability 

• Antibody 
• Host death 
• Drugs 
• RBCs 
• Receptors 
• General Immunity 

• Diversity vs. Function 
• Mutation rate 

Between 
host within 
population 

• Antigenic repertoire 
• Drug resistance genes 
• Virulence 
• Transmission potential 

• Antibody 
• Host death 
• Drugs 
• General Immunity 
• Co-infections 
• Host genetics 

• Deletions vs. function 
• Virulence vs. transmissibility 
• Gametocytes vs. persistence 
• In-host ant. Diversity vs. future 
infection 
• Transmission bottlenecks 
• Recombination 

Between 
populations 

• Antigenic repertoire 
• Drug resistance 
frequencies 
• Virulence 
• Transmission potential 

• Antibody cross-reactivity 
• Drugs 
• Proportion of immune host 
• Vector abundance 
• Host mortality 
• Co-infections 

• Migration and gene flow vector 
• Abundance 
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A strategy to elucidate selection is by evaluating low sequence diversity (bottleneck) in a 

parasite gene and high linkage disequilibrium around the locus. These features indicate strong 

directional selection on a gene inside that region. This may have occurred, for instance, due to 

selective pressure by an antimalarial drug on a resistant parasite which could have led to a 

bottleneck in the worldwide parasite population [31]. 

4 THE PLASMODIUM FALCIPARUM  

 
4.1 THE INTRAERYTHROCYTIC PHASE 
Most antimalarial drugs used today are extremely effective and particularly potent against the 

P. falciparum intraerythrocytic phase. For this reason, more focus will the given to its cellular 

and molecular constituents. 

Classically, parasite morphology in the intraerythrocytic cycle is characterized in three main 

stages: the trophozoite stage, the ring and mature stages and the schizont stage. In this phase 

gametocytes are also produced. 

After release from hepatocytes, the merozoites enter the bloodstream and subsequently infect 

RBCs. At this point, the merozoites, being approximately 1.5 μm in length and 1 μm in 

diameter, use the apicomplexan invasion organelle (apical complex, pellicle and surface coat) 

to recognize and enter the host erythrocyte. The parasite first binds to the erythrocyte in a 

random orientation. It then reorients itself such that the apical complex is in proximity to the 

erythrocyte membrane. A tight junction is then formed between the parasite and erythrocyte 

[32].  

After invading the erythrocyte, the parasite loses its specific invasion organelles (the apical 

complex and surface coat) and de-differentiates into a round trophozoite located within a 

parasitophorous vacuole in the RBC´s cytoplasm (Fig. 2). The young trophozoite (or "ring" 

stage) grows substantially after which it starts to replicate its DNA multiple times without 

cellular segmentation, which occurs prior to undergoing schizogonic division. Schizonts then 

undergo cellular segmentation and differentiation to form roughly 16-18 merozoite cells in the 

erythrocyte. The merozoites burst from the RBC and proceed to infect other erythrocytes 

quickly restarting (around 60 seconds) the cycle.  

An important aspect of intraerythrocytic cycle is the fact that mature trophozoites and 

schizonts are sequestered in various human tissues and organs [33]. For this reason, in 

peripheral blood only early trophozoites can be detected and not mature stages. Sequestration 
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is caused by parasite-derived cell surface proteins being present on the RBC membrane which 

bind to receptors on human cells. 

 
Figure 2 - Red Blood cell Infection by Plasmodium falciparum, from Malariology. Available at: 
http://ocw.jhsph.edu. Copyright © Johns Hopkins Bloomberg School of Public Health. Creative Commons BY-
NC-SA. Adapted by CTLT from Parasitology Today, vol. 16, no. 10, 2000. 
 

4.2 METABOLISM 
Understand the basics of P. falciparum metabolism has been a principle goal toward looking 

for potential targets for drug development. For this matter, unique aspects of parasite 

metabolism are investigated in order to effect the parasite without effecting the human host. 

The following will give a brief overview regarding important topics of P. falciparum 

metabolism from the perspective of drug development. 

  

4.2.1 Proteins 
Within the RBC, parasite metabolism depends greatly on the digestion of haemoglobin. The 

protein is cleaved into peptides, and the haeme group is released and detoxified by 

biocrystallization in the form of hemozoin, creating the malaria pigment [34]. This process 

occurs in the digestive vacuole and is mainly driven by aspartic acid proteases, i.e. 
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Plasmepsins [35]. Host uptake and haemoglobin degradation are the main sources of amino 

acids for the malaria parasites. This notion is further supported by the lack of amino acid 

biosynthesis machinery in the parasite. Genomic screening has revealed only the existence of 

enzymes capable of performing glycine-serine, cysteine-alanine, aspartate-asparagine, 

proline-ornithine, and glutamine-glutamate interconversions [29]. 

 

4.2.2 Carbohydrates 
The earliest metabolic studies on malaria parasites examined their capacity for the uptake 

glucose [36]. Whether this uptake occurs by passive equilibration or through an active process 

is a matter of debate [37]. However, recently a hexose transporter (PfHT) was characterized in 

P. falciparum which demonstrated that both processes take place [38]. 

The citric acid (TCA) cycle and oxidative phosphorylation are generally carried out in the 

mitochondria of eukaryotes. These processes were generally assumed to be non-functional in 

the blood-stage parasite as evidenced by the acristae mitochondria. However, recently a 

functional electron transport chain and oxidative phosphorylation have been shown to exist in 

the blood-stage parasite [39]. What is known as TCA, in P. Falciparum, was shown to be 

branched in which the major carbon sources are the amino acids glutamate and glutamine and 

not pyruvate [40]. 

In addition, the antimalarial drug atovaquone has been shown to inhibit electron transport and 

to collapse the mitochondrial membrane potential in the malaria parasite [41]. 

 

4.2.3 Nucleic Acids 
Deoxyribonucleic acid (DNA) is the blueprint for all known living organisms with the 

exception of some viruses. DNA consists of two long polymers of nucleotides, the purines 

(adenine and guanine) and the pyrimidines (cytosine and thymine).  P. falciparum is unable to 

biosynthesize purines [42].  Instead, the parasite hijacks the infected RBC to transport and 

interconvert host purines. This process is mediated by the human equilibrative nucleoside 

transporter (hENT1) and the human facilitative nucleobase transporter (hFNT1). 

Hypoxanthine and adenine appear to enter erythrocytes mainly through the hFNT1 nucleobase 

transporter whereas adenosine enters predominantly through the hENT1 nucleoside 

transporter [43]. 

With respect to the synthesis of pyrimidines, the parasite can produce these nucleotides de 

novo using glutamine, bicarbonate, and aspartate. 
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4.2.4 Lipids 
The rapidly growing parasite requires large amounts of lipids to both its surface area and 

volume of internal membranes. This huge demand for lipids makes lipid metabolism an 

attractive intervention target for anti-malarial drugs. Several potential drugs targeting lipid 

metabolism have been identified. Plasmodium parasites share common characteristics in 

glycerophospholipid (GPL) metabolism with other eukaryotes, particularly with the lower 

eukaryote, yeast. Plasmodium parasites do have the capacity to synthesize fatty acid (FA), and 

have the genes encoding type II FA synthase (FAS), which are responsible for de novo fatty 

acid synthesis in the apicoplast, a plastid-like organelle unique in Apicomplexa parasites [44]. 

In P. falciparum, the parasite shows quite unique and amazingly diverse features in its lipid 

metabolism, some which share pathways with close similarities to the lower eukaryote, yeast 

which belongs to fungi, and some which share close similarities to bacteria and plants. 

 

4.2.5 Calcium (Ca2+) homeostasis 
Movement of Ca2+ between different cellular organelles often produces a very adaptable cell 

signal that conveys information regulating numerous cellular processes [45,46,47]. These 

signals can be modulated  by the concerted actions of Ca2+ transporters and Ca2+-binding 

proteins to produce specific messages that trigger downstream molecular events. The 

parasite’s ability to control its cytosolic Ca2+-level in relation to the host’s Ca2+-level using 

various internal stores and cytosolic compartments is crucial to the parasites survival [48,49]. 

During the parasite’s maturation, changes in Ca2+ levels between these stores and 

compartments fluctuate according to developmental steps though the ring-stage, the 

trophozoite stage and the schizont [49,50]. During early maturation, the compartment between 

the parasitophorous vacuole (PV) membrane and parasite membrane appears to contain 

relatively more Ca2+ than at later stages. The internal Ca2+ stores are thought to be the 

endoplasmic reticulum (ER), the digestive vacuole (DV) and so called acido-calcisomes, 

which are located in the parasite’s cytosol. Although there is some conflicting evidence, the 

erythrocyte, parasite cytosol and DV are estimated to contain about 90 nM, 350 nM and 400 

nM free Ca2+, respectively [51]. The relatively high free Ca2+ levels of the parasite cytosol are 

thought to be confounded by superposition of extensive ER networks which are crucial for the 

high rate protein synthesis occurring during parasite maturation. 
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4.3 MALARIA TREATMENT AND DRUG RESISTANCE 
The most important aspect to retain from this background is the fact that parasite survival 

happens due to adaption to constant selection and an ever-changing host environment [22]. 

The process of survival, metabolic adaption and establishment to a new environment, with a 

perspective of anti-malarial drug usage, is defined as resistance.  

 

4.4 ANTIMALARIAL DRUGS 
This chapter will give an introduction to the main antimalarial drugs with a focus on those 

used as partner drugs in ACT.  

 

4.4.1 Quinolines  
Quinoline is a heterocyclic aromatic organic compound mainly used as a building block for 

other molecules. This backbone is the basic structure for many of the antimalarial drugs 

commercially available and in use nowadays (Fig. 3).  

 

 
Figure 3 - Quinoline ring structure 

 

4.4.2 Quinine 
Quinine (QN) (Fig. 4) became world famous by the hand of the Jesuit brother Agostino 

Salumbrino (1561–1642), an apothecary living in Peru who observed the Quechua Indians 

using the bark of the cinchona tree. The cinchona bark became known as Jesuit's bark and 

came to be one of the most valuable commodities shipped from Peru to Europe [52]. QN was 

first introduced to Europe around 1640 and was used to treat malaria in Italy  where the 

disease was endemic to the swamps and marshes surrounding the city of Rome.  

The name of the bark gave origin to the pathological condition caused by overdose of quinine, 

Cinchonism. Symptoms of mild cinchonism include flushed and sweaty skin, ringing of the 

ears (tinnitus), blurred vision, impaired hearing, confusion, reversible high-frequency hearing 

loss, headache, abdominal pain, rashes, drug-induced lichenoid reaction (lichenoid 

photosensitivity), vertigo, dizziness, dysphoria, nausea, vomiting and diarrhea. All adverse 

events are reversible and disappear once quinine is withdrawn [53,54]. 
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As with other quinoline anti-malarial drugs, the therapeutic mechanism of quinine has not 

been fully resolved. The most widely accepted hypothesis of how quinine acts is based on the 

well-studied and closely related quinoline drug, chloroquine, which acts inside the digestive 

vacuole of the parasite, as explained in the next chapter 4.4.3. 

 

 
 
Figure 4 - Quinine molecule 

 

4.4.3 Chloroquine 
Chloroquine (CQ) (Fig. 5) has been, by far, the most used antimalarial medication. It was 

discovered in 1934 by Hans Andersag and co-workers at the Bayer laboratories and given the 

name "Resochin". Being a synthetic drug, it is cheap to produce and relatively well tolerated 

as compared with QN.  This made CQ a very attractive antimalarial drug. During World War 

II, when malaria was a major concern for soldiers, the United States Government rapidly 

understood the benefits of CQ and promoted its testing, development and extensive use. 

Chloroquine gained special significance as part of the WHO Malaria Eradication Program 

begun in 1955 [55]. 

Besides malaria treatment, CQ is also used for treatment of other diseases including arthritis, 

viral infections and cancer [56]. 

Before the main mechanism of CQ action was identified, many congeners of the parent 

compound were synthesized in an attempt to improve its efficacy. Theories concerning CQ’s 

mode of action included the DNA-binding theory,  and theories involving inhibition of protein 

synthesis, inhibition of polyamine metabolism, inhibition of haemoglobin degradation and 

formation of a toxic haeme-chloroquine complex. It is now accepted that chloroquine disrupts 

of the detoxification function of the malaria parasites. Plasmodium trophozoites take up large 

amounts of haemoglobin into their digestion vacuoles during their intraerythrocytic cycle and 
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release the toxic degradation by-product haematin. This process occurs by means of 

polymerization and binding of inert hemozoin crystals and presumably through an additional 

degradation process facilitated by glutathione. Chloroquine binds to haematin gamma-

oxodimers and is deposited on the surface of the hemozoin crystals. This ultimately destroys 

the parasites [57]. 

CQ may cause side effects such as: dizziness, nausea, temporary hair loss, diarrhea, and worse 

psoriasis [53,54]. 
 

 
Figure 5 - Chloroquine molecule 

 

4.4.4 Amodiaquine and desethylamodiaquine  
Amodiaquine (AQ) (Fig. 6), which is structurally related to CQ, was developed in the late 

1940s. AQ is not presently used in prophylaxis, owing to previous reports of the rare but 

serious toxic side effects (1:2000) agranulocytosis and hepatitis. From testing in animal 

models, AQ toxicity has been explained by its 4-hydroxyanilino moiety, which undergoes P-

450 catalyzed oxidation to a reactive amodiaquine quinoneimine (AQQI), followed by the 

nucleophilic addition of glutathione. The formation of this conjugate in vivo, and its 

subsequent binding to cytosol macromolecules could affect the cellular function either 

directly or by immunological responses that initiate hypersensitivity reactions and cause 

myelotoxicity [53,54,58]. 

AQ is categorized as a prodrug, since it is readily metabolized in the liver into 

desethylamodiaquine (DEAQ) (Fig. 6), an oxidation step performed mainly by CYP2C8. AQ 

has a short half-life (4-12h) compared with its metabolite DEAQ (3-12 days). This aspect is of 

particular interest because, since DEAQ retains its antimalarial capacity longer and is 

responsible for post-treatment prophylaxis [59]. 
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Figure 6 - Amodiaquine (left) and its metabolite Desethylamodiaquine (right). 

 

4.4.5 Antifolates 
This class of drug interferes with the synthesis of folic acid and as a consequence with the 

synthesis of nucleotides required for DNA synthesis. Folate metabolism of malaria parasites 

provides two targets for current antimalarial therapy: dihydropteroate synthase (DHPS) and 

dihydrofolate reductase (DHFR). Sulfa drugs, sulfadoxine or dapsone, act as DHPS inhibitors 

while pyrimethamine or chlorcycloguanil are DHFR inhibitors [60] (Fig. 7).  

In 1951, the first field trial of pyrimethamine monotherapy was carried out in African children 

[61]. The effectiveness of pyrimethamine as a prophylactic agent against P. falciparum was 

subsequently confirmed under controlled conditions [62]. During the 1950–1960s, 

pyrimethamine was mainly used as a causal prophylaxis of P. falciparum infection or for 

mass drug administration (MDA) due to the effectiveness of chloroquine in all endemic 

regions [63,64,65]. 

In 1959, sulfadoxine was found to potentiate the schizontocidal effect of pyrimethamine 

[66,67]. After that, faster schizontocidal activity and improved clinical response to P. 

falciparum infection were evident when sulfadoxine was used in combination with 

pyrimethamine[68]. In the late 1960s, an antifolate combination of sulfadoxine and 

pyrimethamine, SP, was first introduced in Thailand where the increased frequency of 

chloroquine-resistant P. falciparum infections reached an unacceptable level. 

 

 
Figure 7 - Structure of pyrimethatmine (left) and sulfadoxine (right) 
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4.4.6 Arylaminoalcohols  
The latest antimalarials to be adapted worldwide and used for the treatment of malaria are the 

arylaminoalcohols, such as mefloquine (MQ) and lumefantrine (Lum) (Fig. 8).  

MQ emerged from the US Army’s enormous drug discovery programme at the time of the 

Vietnam War between 1963 and 1976 when over a quarter of a million potential antimalarial 

compounds were screened [69]. The earliest reported trials of MQ were carried out on US 

prisoners [70]. MQ first became generally available for European travellers in 1985 [71] and 

is still broadly used mostly in South-east Asia. The side effects associated with MQ include 

adverse neuropsychiatric symptoms [53,54]. 

MQ is absorbed with a half-life of 1 to 4 hours and reaches peak concentration before 24 

hours and has a terminal elimination half-life of 2 to 3 weeks in patients with malaria [69]. 

Lum is slowly and erratically absorbed, requiring 18 hours to complete maximal absorption. 

Low and variable bioavailability is the major factor contributing to interindividual 

inconsistency in pharmacokinetics. Food intake has a significant effect on the bioavailability 

of Lum, which is increased by a factor of 16 when the drug is taken with a high fat meal 

compared with that in fasting individuals. Because of variable bioavailability, the terminal 

elimination half-life may also vary from 30h to 107h depending on the population [72]. 

 

 
Figure 8 - Structures of mefloquine (left) and lumefantrine (right) 

 

4.4.7 Sesquiterpene lactones  
Artemisinin (ART) (Fig. 9), isolated from the plant Artemisia annua, is an herb described in 

traditional Chinese medicine which makes it one of the oldest antimalarial used by man. Also 

known as qinghaosu, ART and its derivatives are a group of drugs that possess the most rapid 

action of all current drugs against falciparum malaria. The pharmacokinetics of artemisinins 
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have unique features, characterized by a very short half-life and auto-inducible elimination 

properties [73]. Its antimalarial activity resides in the endoperoxide bridge structure.  

Artemisinins are generally well tolerated at the doses used to treat malaria. The side effects 

from the artemisinin class of medications are similar to the symptoms of malaria itself: 

nausea, vomiting, anorexia, and dizziness. Mild blood abnormalities have also been noted 

[53].  

 
Figure 9 - Artemisinin structure 

 

Use of artemisinins as a monotherapy is well known to have poor efficacy. casein addition, 

the WHO has recommended cessation of monotherapy (press release 20.1.2006) in an attempt 

to limit emergence of artemisinin resistance. Recrudescences following monotherapy tend to 

occur rather late, and studies following patients up to day 42 detect a higher proportion of 

recrudescences than those stopping at 28 days. Estimates of recrudescence rates after short 

course artemisinin monotherapy at 28 days follow-up are 20–40% in Africa [73,74,75] and 

about 20% in Southeast Asia [76,77,78] 

Duration of therapy has been reported to be of critical importance in efficacy of artemisinin 

based monotherapies, with extensions of 7 days improving cure rates significantly [79,80,81] . 

Artemisinin derivatives are presently only used in combination therapy as will be further 

discussed. 

 

5 ANTIMALARIAL DRUG RESISTANCE 

Eradication efforts based on the use of CQ faltered in the 1960s due to the development of 

drug-resistant parasites. Nowadays, resistance to all main antimalarials used has been 

reported. 
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Recent genetic and genomic advances have paved the way for discoveries into the origins and 

spread of antimalarial drug resistance and the underlying molecular mechanisms. 

 

5.1 QUINOLINES 
Awareness and comprehension regarding the public health impact of antimalarial resistance 

came following the emergence of CQ resistant parasites. In 1969, the WHO declared that the 

major world effort to eradicate malaria, The Global Malaria Eradication Programme, had 

failed in part due to CQ resistance.  

The first studies in antimalarial resistance were conducted on the quinolines. It took more than 

30 years to go from clinical recognition of CQ resistance to the identification of the molecular 

cause, the chloroquine resistance transporter gene (pfcrt) [82]. A specific mutation of lysine to 

threonine (K76T) was shown to confer in vivo [83] and in vitro [84] CQ resistance to the 

extent that it became an established biomarker.  

Recent studies, analyzing a large number of geographically diverse pfcrt alleles and 

microsatellite genotypes from parasite isolates, have identified at least three additional 

independent foci of resistance [31,85]. Origins of CQ resistance (CQR) have so far been 

discovered in the Thai–Cambodian border region (eventually spreading westward into 

Africa), Papua New Guinea, the Philippines, Colombia and Peru [86]. 

Pfcrt was discovered in the search for mechanisms of CQ resistance, however, broader studies 

revealed that this transporter can also modulate drug susceptibility and tolerance to 

chemically unrelated antimalarials [84,87,88]. 

 

5.2 ANTIFOLATES  
Sulfadoxine-pyrimethamine (SP) resistant parasites rapidly spread from Southeast Asia and 

South America in the 1970s–1980s and to Africa in the last two decades [89]. Unlike CQ, 

where resistance is due to a mutated transporter protein, SP resistance is driven by mutations 

of the drug target. Mutations in the DHFR and DHPS determine resistance to SP in P. 

falciparum [90,91,92] .  

Five mutations in pfdhfr and five in pfdhps are the main determinants for SP resistance. For 

pfdhfr, an amino acid change at position 108 from serine to asparagine (S108N) represents the 

initial mutation. This necesary mutation raises the parasite’s resistance to a certain level, 

however, additional mutations are required to enhance resistance further. Additional 

mutation(s) at positions 50, 51, 59, and 164 synergistically increase the levels of resistance 

[93,94,95,96]. 
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For pfdhps, an amino acid change at position 437 (A437G) represents the initial mutation for 

sulfadoxine resistance [92,97]. And additional mutation(s) at positions 436, 540, 581, and 613 

elevate levels of sulfadoxine resistance.  

The origin of resistance to SP seems to be more complex than that observed for CQ, with 

different foci discovered even within the same continent [89].  

 

5.3 ARYLAMINOALCOHOL 
The mode of action of arylaminoalcohols in P. falciparum is not currently known. However, 

genetic determinants of resistance in P. falciparum correlate with mutations in pfcrt and the 

multidrug resistance gene 1 (pfmdr1).  

This association was demonstrated by classical genetics, selection studies and reverse 

genetics. It was noted that parasite lines 3D7 and HB3, the parents of a genetic cross, differ in 

sensitivity to the hydrophobic arylaminoalcohol (mefloquine, halofantrine and lumefantrine) 

[98]. A particularity of this cross is that the parental lines have a pfcrt wild type background.   

P. falciparum reverse genetic analysis has confirmed these observations [99,100]. 

Importantly, in these studies mutations introduced into the chloroquine sensitive line were 

unable to confer chloroquine resistance. Nevertheless, introduction of pfmdr1 wild-type 

polymorphisms in a chloroquine resistance line, resulted in the reduction of chloroquine 

resistance, suggesting that pfmdr1, although important in conferring higher levels of 

chloroquine resistance, is not sufficient to confer resistance [101]. 

There are two ways in which pfmdr1 gene polymorphisms may lead to drug-resistance, 

through gene amplification and/or through mutation [102,103]. Amplification of pfmdr1 was 

found to occur through multiple and independent events, suggesting it has arisen in several 

independent places [104].  

In vivo, pfmdr1 copy number variation (CNV) determines parasite resistance to MQ [105] and 

Lum [106]. 

 

5.4 ARTEMISININS  
Artemisinin’s (ART) structure is completely different from all other antimalarial described 

here (not based in the quinoline backbone) and therefore is expected to have a different 

mechanism of action. The first insight into ART’s mode of action involved the establishment 

of the structural endoperoxide bridge [107]. Since peroxides are a known source of reactive 

oxygen species such as hydroxyl radicals and superoxide [108]. This observation suggests that 

free radicals might somehow be involved in the mechanism of action. Artemisinin interacts 
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with intraparasitic haeme, suggesting that intraparasitic haeme or iron might function to 

activate artemisinin inside the parasite to generate toxic free radicals [109]. When ART or its 

derivatives are incubated with haeme or iron, they decompose in a fashion that suggests the 

generation of free radical intermediates [110]. Despite these findings, artemisinin treatment of 

living intraerythrocytic P. falciparum caused no change in hemozoin,  suggesting that haeme 

metabolism might not be the major intracellular target [111].  

Six malaria specific proteins were detected as targets of ART. These are not highly abundant 

proteins, suggesting that ART reacts selectively [112]. 

The first protein to be suggested as a target for artemisinins is the malarial translationally 

controlled tumour protein (TCTP), a protein that binds haeme [113,114]. It is likely that the 

reaction between artemisinin and TCTP occurs because of an association between TCTP and 

haeme, since both are localized to the food vacuole. TCTP is involved in calcium binding and 

microtubule stabilization [115]. Despite that increased expression of TCTP correlates with 

artemisinin resistance, no genetic alterations have been described. 

Membrane containing structures such as the plasma membrane, endoplasmic reticulum, 

nuclear envelope, food vacuolar membrane and mitochondria appear to be most sensitive to 

the action of artemisinin derivatives [116,117,118].  

Structural similarities of ART to thapsigargin, which is also a sesquiterpene lactone, lead to 

the identification of another candidate target related to the endoplasmic reticulum, the 

sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) encoded by the pfATPase 6 gene in P. 

falciparum [119]. The function of the SERCA pump is to transport Ca2+ from the cytosol to 

the lumen of the endoplasmic reticulum [120]. Thapsigargin is a well described specific 

inhibitor of the mammalian SERCA pump [121]. Inhibition of the SERCA pump by 

thapsigargin is characterized by a transient Ca2+ increase in the cytosol.  

ART and thapsigargin share the same binding pocket in the SERCA protein as demonstrated 

by competition assays [119]. Additional structural analysis on the binding pocket of different 

Plasmodium spp, using the rabbit SERCA pump crystal structure, further supports SERCA as 

a drug target in malaria parasites [122].  

The S769N mutation in pfATPase 6, noted exclusively in French Guiana, was reported to be 

associated with decreased sensitivity to artemisinins. In vitro studies of mutant pfATPase 6 

also showed an alteration of the half maximal effective concentration (EC50) to artemisinins 

[123]. 

In rodent malaria, the ubp-1 gene encoding the P. falciparum orthologue of the 

deubiquitinating enzyme was also associated with artemisinins resistance [124]. 
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Despite the fact that clinical failures to artemisinins has been reported [125,126], so far only 

pfcrt and pfmdr1 have correlated with artemisinin sensitivity in vitro. Contrary to restistance 

to CQ, the allele K76 correlates with artemisinins resistance. For pfmdr1, increase in the gene 

copy number variation promotes P. falciparum resistance to artemisinins. SNP in pfmdr1 

associated with arylaminoalcohols are associated also with artemisinin resistance 

[87,98,99,127]. 

 

6 ANTIMALARIAL RESISTANCE GENES 

So far, the two main molecular players of antimalarial resistance in P. falciparum are the 

chloroquine resistance transporter gene (pfcrt) and the multidrug resistant gene 1 (pfmdr1). In 

the next subchapter, the genetic and physiological characteristics of these two genes will be 

described. 

 

6.1 PfCRT 
A major breakthrough in the search for the genetic basis of CQR in P. falciparum was the 

identification of Plasmodium falciparum chloroquine resistance transporter gene (pfcrt), 

which encodes a putative transporter or channel protein [82]. PfCRT is a 48 kDa protein 

containing 424 aminoacids, 10 predicted transmembrane-spanning domains and is localized to 

the DV membrane in erythrocytic stage parasites [82,87]. Fifteen polymorphic amino acid 

residues in PfCRT are associated with CQR in field isolates. These vary significantly 

depending on the geographic location and selection history, while CQ sensitive (CQS) strains 

maintain an invariable wild-type allele (Table 2) [31,85,128,129] 

A K76T mutation appears to be necessary for the resistance phenotype, and is the most 

reliable molecular marker of resistance among the various pfcrt mutations [83,130]. 

Mutant pfcrt was associated with low CQ accumulation in the P. falciparum, however, only 

recently was conclusive evidence found for a role of PfCRT as an antimalarial vacuolar efflux 

transporter [131]. The endogenous role of PfCRT in the malaria parasite has yet to be 

revealed despite the wealth of epidemiological and in vitro drug response data demonstrating 

the critical role of mutations in pfcrt which lead to CQR. PfCRT homologues in plants seem 

to play a role in glutathione and redox stress [132]. An understanding of the natural role of 

PfCRT in normally functioning P. falciparum parasite will provide a clearer picture of how 

drug resistance works in the malaria parasite. 
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It now becoming clear that pfcrt is a major determinant of resistance not only for CQ but most 

probably also for other antimalarial including quinolines and arylaminoalcohols [88].  

 

6.2 PfMDR1 
In cancer cells, drug resistance frequently arises from the presence of an over-expressed P-

glycoprotein.  This molecule is an ABC transporter is capable of actively expelling a wide 

range of structurally and functionally diverse chemotherapeutic agents in a verapamil-

sensitive manner [133]. Inspired by the apparent phenotypic similarities between multi-drug 

resistance in cancer cells and CQ resistance in P. falciparum, it was once thought that a P. 

falciparum homologue of the mammalian P-glycoprotein, later termed PfMDR1 or Pgh-1, 

could be a major candidate molecule for conferring resistance to CQ [103]. Although this 

hypothesis was not completely accurate, it is now accepted that PfMDR1 can contribute to 

CQ resistance dependent on the genetic background of the parasite strain [99,100]. 

Mammalian P-glycoproteins localize within the plasma membrane and their nucleotide 

binding domains face the cytoplasm which aids in the export drugs out of the cell (Higgins, 

2007). However, PfMDR1 is present on the parasite’s digestive vacuolar membrane [134] and 

that the topology of the protein leaves its ATP-binding domain facing the cytoplasm [135]. 

The molecular basis of CQR raised a lot of uncertainty regarding the exact role of PFMDR1 

in drug resistance.  

It is now becoming evident that vectorial transport by PfMDR1 is, therefore, inwardly 

directed, into and not out of the digestive vacuole [136,137]. This new insight into the cellular 

physiology of PfMDR1 caused a rethinking of its contribution to the molecular mechanism of 

antimalarial resistance. 
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Table 2 - Geographic distribution of pfcrt mutations. Mutant aminoacids are shown highlighted with grey 
background. Adapted from [138] 

 

 

pfcrt aminoacid positions 
Origin Clones 

72 74 75 76 77 97 144 148 152 160 163 194 220 271 275 326 333 352 356 371

CQS 

Honduras HB3 C M N K I H A L T L S I A Q P N T Q I R 

Sudan 106/1 C I E K I H A L T L S I S E P S T Q I I 

Labclones 106/1-IR R I E I I H A L T L S I S E P S T Q I I 

 106/1-IK C I E I I H A L T L S I S E P S T K I I 

 K1AM C I E T I H A L T L R I S E P S T Q V I 

 K1Hf C I E T I H A L A L R I S E L S T Q I I 

CQR 

Mali S35CQ C I E T  H A L T L S I S E P N T Q I  

SouthAfrica RB8 C I E T I H A L T L S I S E P S T Q I  

Labclones 106/1-N C I E N I H A L T L S I S E P S T Q I  

 106/1-I C I E I I H A L T L S I S E P S T Q I  

Thailand Dd2 C I E T I H A L T L S I S E P S T Q T  

Thailand TM93-C1088 C I E T  L A   L   S E  S   T  

Cambodia 783 C I E T  H A L    I S E  N T  T  

Cambodia 738 C I D T  H A I    T S E  N S  I  

Cambodia 734 C I D T  H F I    T S E  N S  I  

Cambodia 176 C I E T T                

Cambodia 108 C I D T I                

Cambodia 36 C T N T I                

Morong PH1 C M N T  H T   Y   A Q  D   I  

Morong PH2 S M N T  H T   Y   A Q  D   I  

Lombok Field isolate C M N N                 

Tamika 2300 C I K T                 

Armopa CQ076 S I E T                 

Solomon PNG4 S M N T I H A L T L S I A Q P D T Q L  

Ecuador Ecu1110 C M N T I H A L T L S I S Q P D T Q L  

Colombia Jav C M E T I Q A L T L S I S Q P N T Q I  

Brazil 7G8 S M N T I H A L T L S I S Q P D T Q L  

Guyana Field isolate S M I T                 

Guyana Field isolate R M N T                 
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Polymorphisms at amino acids 86, 184, 1034, 1042, and 1246 of PfMDR1 alter in vitro 

susceptibility to antimalarial drugs, including quinine, halofantrine, mefloquine and 

artemisinin [98,99,100,139]. In particular, the N1042D substitution seems to play a prominent 

role in quinine resistance [100], while the N86Y substitution has been implicated in 

contributing to resistance to lumefantrine and high levels of CQ [140,141]. Amplification of 

pfmdr1 is associated with in vitro resistance to quinine, mefloquine, and halofantrine 

[105,142,143,144]. 

A single amino acid change, substituting the wild-type asparagine at position 86 for the 

aromatic amino acid tyrosine, completely alters the substrate specificity from quinine and CQ 

to  halofantrine transporting capability [145]. 

PfMDR1 itself may also be a target of antimalarial drugs, including quinine and mefloquine, 

as demonstrated in competition studies which suggest that some of the drugs that interact with 

PfMDR1 may function as both substrates and inhibitors [137,145]. An analogous finding has 

been reported for human P-glycoprotein [146] where it was shown that the common drug 

binding site can accommodate several substrates of the same or different type, and at the same 

time [147]. 

 

6.3 PfMRP1 
The first ABC protein shown to confer resistance to multiple natural product drugs used in the 

treatment of cancer was the 170 kDa P-glycoprotein, originally described in 1976 [148]. 

Cases of multidrug resistance in the absence of P-glycoprotein overexpression together with 

studies that failed to detect P-glycoprotein in a variety of human tumors, suggested the 

existence of other multidrug resistance-conferring proteins [149,150]. 

Shortly thereafter, transfection experiments provided unequivocal evidence that over-

expression of a second ABC protein could cause multidrug resistance in mammalian cells 

[151]. This new class was defined as the multidrug resistance-associated proteins (MRPs). 

MRP proteins have just recently begun to be studied and early reports indicate a correlation, 

both in vivo and in vitro, with antimalarial resistance [152,153] 

7 ARTEMISININ COMBINATION THERAPIES (ACTs) 

The need to suppress antimalarial resistance and increase the efficacy of malaria 

chemotherapy led to the development and global implementation of artemisinin combination 

therapies (ACTs) as the principle strategy for the treatment of malaria in endemic countries. 
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ACTs are intended to improve the efficiency of individual components and provide some 

protection for individual components against the development of higher levels of resistance 

[154]. 

In the beginning of this century the WHO started to financially support and strongly 

recommend switching protocols to include artemisinin-based combination therapy (ACT) 

claiming that these drug combinations are more effective, allow for shorter treatment courses, 

and protect against drug resistance. 

 

7.1 ARTEMISININS IN ACT 
ART derivatives have been used in ACT in place of ART itself. This decision is based on two 

characteristics: derivatives can have a higher hydrophilic capacity and/or can be more potent 

than ART itself. Most used ACTs have in its formulation derivatives of ART like artesunate, 

dihydroartemisinin or artemether. After administration and unlike artemisinin, artesunate and 

artemether convert to dihydroartemisinin [73]. Artemisinin compounds have several 

advantages over other antimalarial drugs for use in combinations as follows [155]: 

- They are very active at reducing parasite numbers; more than the other antimalarial, 

approximately 104 per asexual cycle. 

- They reduce considerably gametocyte carriage and thus transmissibility. 

- Resistance has not yet spread 

- These drugs are very rapidly eliminated and thus provide no opportunity for parasites to be 

exposed to sub-therapeutic concentrations if the dosage is correct. 

- They have operational advantages: they produce a rapid clinical response, which encourages 

acceptance, and they have an excellent safety and side-effect profile that encourages 

compliance. 

 

7.2 PARTNER DRUGS IN ACT 
The most common antimalarials used in combination therapy are: artemether-lumefantrine 

(AL), artesunate-amodiaquine (AS-AQ), artesunate-mefloquine (ASMQ), artesunate-

sulfadoxine-pyrimethamine (AS-SP) and dihydroartemisinin-piperaquine (DHA-PQ). Lately, 

most countries have been adopted AL or AS-AQ as first-line therapy. 

In the last decade, a large number of efficacy clinical trials were performed with ACTs to 

define baseline characteristics of the treatments. In general, ACT performed well; being in 

most cases above the 90% efficacy required by WHO for an ACT to be introduced as a first 

line treatment [11].  
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The most important conclusion regarding this initial work is that partner drugs efficacy by 

itself is an important determinant factor for ACT performance. This idea is supported by 

clinical trials where partner drugs have resulted in decreased efficacy, as in the cases of SP 

and AQ.    

 

7.3 RATIONALE FOR COMBINATION THERAPY 
The rationale for using drugs in combination is well established for the treatment of 

tuberculosis, infection by the human immunodeficiency virus (HIV), and cancer. The 

probability of a parasite arising that is resistant simultaneously to two drugs with unrelated 

modes of action is the product of the per parasite mutation frequencies multiplied by the total 

number of parasites exposed to drugs. Therefore, if the probability of a parasite being resistant 

to drug A is one in 109 and to drug B is one in 109 then the probability that a parasite will be 

simultaneously resistant to both is one in 1018, representing a billion-fold reduction in 

probability. As such, ACT fundaments towards resistance were based in the probability that 

resistance events to ACT parts are based in independent events [156] which can be 

mathematically described as P ACT-R= PART-R* P Partner drug resistance. The implication of this 

assumption will be taken in consideration and discussed in this thesis.  

Figure 10 represents the difference in total parasite biomass reduction to a long half life 

antimalarial in combination with artemisinins (salmon line) or by itself (blue line). In ACT, it 

is expected that the fast reduction in parasite biomass, in a patient with malaria, promotes the 

exposure of more tolerant parasites to higher levels of the partner drug (salmon triangle) than 

if artemisinins were not used (purple triangle) [156]. 

 
Figure 10 - Scheme of parasite biomass reduction in ACT (salmon) and non-ACT (blue) treatments. The 
blue line refers to biomass reduction by partner drug in monotherapy. Salmon line describes reduction of 
biomass in combination with artemisinins. The triangles show the fraction of parasite biomass remaining after 
antimalarial exposure and expected to be more resistant. 
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7.4 ACT IMPACT 
So far, the introduction of ACT as first line treatment has being very successful. Countries 

where ACT and other malaria controls activities have been introduced have seen malaria 

endemicity reduced [157]. There is again a new wave of optimism as seen in the middle of the 

last century after initiation of The Global Malaria Eradication Programme. From lessons taken 

at that time, we should be well aware and be able to develop a sustainable system enabling us 

to fully control and eventually eliminate malaria.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 28 
 

8 AIMS OF THE THESIS 

 

8.1 OVERALL AIM 
To improve the understanding in the molecular basis of P. falciparum resistance to ACT. 

 

8.2 SPECIFIC OBJECTIVES: 
 

Paper 1- To determine the importance of pfmdr1 natural polymorphisms, as markers in P. 

falciparum associated with clinical lumefantrine tolerance/resistance. 

 

Paper 2- To study the structural impact of natural polymorphisms in PfMDR1. 

 

Paper 3- To explore polymorphisms in the pfmrp1 gene as new molecular markers associated 

with ACT in vivo resistance/tolerance. 

 

Paper 4- To study the impact of dihydroartemisinin in P. falciparum calcium homeostasis. 

 

9 MATERIAL AND METHODS 

 
9.1 STUDY SITES 
Zanzibar is located outside the coast of mainland Tanzania and consists of two large islands, 

Unguja and Pemba, and numerous small ones. Paper I and III includes a clinical drug efficacy 

trial conducted in two sites; Kivunge Hospital on Unguja and Micheweni Hospital on Pemba. 

Both hospitals are located in densely populated rural areas. The trial was performed in October 

2002 to February 2003, when chloroquine and SP was still supplied to the study sites by the 

government. Antimalarial drugs were available in the private sector with exception to ACTs. 

Later in 2003 Zanzibar became one of the first regions in Africa to implement ACT, with 

artesunate-amodiaquine as first line treatment and artemether-lumefantrine as second line 

treatment for uncomplicated P. falciparum malaria.  

Paper III includes a clinical trial conducted in Fukayosi Primary Health Care Centre in April to 

July 2004. Fukayosi is a village located in a relatively scarcely populated rural area in 

Bagamoyo district, on mainland Tanzania. At the time of the study SP was the first line 
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treatment for uncomplicated P. falciparum malaria and amodiaquine the second line treatment 

in Tanzania and ACTs were not available in the governmental health care. In 2006 Tanzania 

adopted artemether-lumefantrine as first line treatment. 

 

9.2 In vivo FOLLOW UP TRIALS 
The two clinical trials performed in Zanzibar and mainland Tanzania respectively, included 

children with microscopically confirmed uncomplicated P. falciparum malaria. All enrolled 

children had a parasitaemia of 2000-200 000 asexual parasites/µl blood and an axillary 

temperature of 37.5°C or a history of fever the last 24 hours. Children with severe malaria 

were not included in the trial. Follow-up visits after initiation of treatment were conducted on 

days 1, 2, 3, 7, 14, 21, 28, 35, 42 and on any day of recurrent illness occurring during the 42-

day follow-up period. On every visit blood smear was collected for the assessment of 

parasitaemia through microscopy. Parasites were counted against 200 white blood cells and 

parasitaemia was calculated with the assumption that one µl of peripheral blood contains 8000 

white blood cells. Finger prick blood was collected on filter paper for molecular analysis.  

In Zanzibar, the clinical trial was performed between October 2002 and February 2003 and 

included 200 children aged 12 to 59 months, with a body weight of at least 9 kg. The children 

were treated under supervision with a fixed combination of 20 mg/120mg artemether-

lumefantrine (Coartem®) twice a day for three consecutive days. Children between ≥9kg and 

<15 kg were treated with one tablet, while children between ≥15 and <25 kg were treated with 

two tablets. 

 

9.3 In vitro STUDIES 
 

9.3.1 Parasites cultures 
P. falciparum in vitro culturing and experiments were used for Paper II and Paper IV. The 

different clones were acquired from Malaria Research and Reference Reagent Resource 

Center (MR4). Parasites were cultured in 4 ml or 12 ml flasks with Rh0+ erythrocytes 

(washed three times) to 5 % hematocrite with culture media (Invitrogen, RPMI-1640 with 

phenol red) supplemented with 10 % human serum. Cultures were maintained in continuous 

cultures at 37°C. Parasite densities were monitored by microscopic assessment by Giemsa-

stained smears. 
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9.3.2 Susceptibility testing  
For drug susceptibility test and growth experiments, cell growth was calculate by relative 

quantification of P. falciparum histidine rich protein 2 pfHRP2 [158], analysed in a Multiskan 

EX (Thermo Electron Corporation) ELISA reader. 

 

9.3.3 Blood sampling and storage 
All blood samples were collected on 3MM filter paper for parasite genotyping. After the 

blood had dried, the filter papers were stored in individual sealable plastic bags in room 

temperature. 

 

9.3.4 DNA extraction 
Samples were extracted using the ABI PRISM 6100 Nucleic Acid PrepStation (Applied 

Biosystems). The extraction was performed according to the manufacturer's recommendations 

with some modifications adjusted for filter paper: the filter paper with dried blood were cut in 

pieces and put in distilled water. The lysing mixture was incubated for 1 hour at 58°C and the 

lysed samples were incubated at 4°C overnight before performing the extraction. The samples 

were stored at -20°C for long term storage or in 4°C for shorter storage time. 

 

9.3.5 pfmsp1 and pfmsp2  analysis  
For categorisation of recurrent infections as recrudescences or reinfections, the pfmsp2 was 

analysed as described [159]. Pfmsp2 is a single copy gene that is highly polymorphic both in 

sequence and size. First the outer conserved region of polymorphic repetitive block 3 was 

amplified followed by two separate nested reactions. One pair of oligonucleotide primers 

specific for the FC27 allelic type was used in one of the nested reactions while one pair 

specific for the IC/3D7 type was used in the other. The polymerase chain reaction (PCR) 

products were separated by gel electrophoresis and visualized by UV transillumination, after 

staining with ethidium bromide. Samples with at least one matching band from samples from 

day 0 and day of recurrent infection respectively were interpreted as recrudescences; all other 

samples were interpreted as reinfections.  

However, studies showed that two markers should be used for the discrimination between 

recrudescences and reinfections [160]. For that reason additional analysis of pfmsp1 diversity 

was made. Similar to the analysis of pfmsp2, the outer conserved region of the polymorphic 

repetitive block 2 was amplified, followed by 3 separate nest amplifications. The nest 

amplifications were specific for the allelic type of MAD20, K1 and RO33.  
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9.3.6 PCR- Restriction Fragment Length Polymorphism (RFLP) 
PCR-RFLP is, equipment wise, a simple way to analyse SNPs and is therefore a suitable 

method to use in the field.  

All analyses were based on nested PCR, except for the analysis of PfATP6 where a seminest 

was used. The nested PCR products were incubated over night at the conditions described by 

the restriction endonucleases manufacturer, New England Biolabs (NEB) or Fermentas. The 

restriction enzymes that were used are listed in Table 3. After incubation, restriction 

fragments were analysed on 2%–2.5% agarose gels with ethidium bromide and were 

visualized by UV transillumination in a BioRad GelDoc 2000. 

 
Table 3 Restriction enzymes used for RFLP 

SNPs 

cleaved allele marked in bold 

Restriction enzymes 

(manufacturer) 

Pfcrt K76T ApoI (NEB) 

Pfcrt S163R HinfI (NEB) 

Pfmdr1 N86Y ApoI (NEB) 

Pfmdr1 Y184F Tsp509I (NEB)/TasI (Fermentas) 

Pfmdr1 S1034C DdeI (NEB) 

Pfmdr1 N1042D AseI (NEB)/VspI (Fermentas) 

Pfmdr1 D1246Y EcoRV (NEB) 

PfATP6 S769N RsaI (NEB) 

  

9.3.7 Real-time PCR 
Assessment of pfmdr1 copy number, was performed with TaqMan® probe based real-time 

PCR as described in [105] with minor modifications. The analysis was performed using an 

ABI PRISM 7000 Sequence Detection System. The machines, TaqMan® buffer and probes 

were from Applied Biosystems. 

Briefly, this technology is based on oligonucleotide probes with a reporter dye covalently 

ligated at the 5´-end and a quencher dye at the 3´-end. The proximity between them 

suppresses the emission of fluorescence by the reporter dye. During PCR, the primers and 

probes specifically hybridise to their complimentary DNA sequence and as the DNA 

polymerase extends the primers, the hybridised probe is cleaved. This separates the reporter 

dye and the quencher dye, resulting in increased fluorescence from the reported dye. For 

analysis of pfmdr1 copy number, TAMRA® probes were used. The pfmdr1 probe was labelled 
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with FAM® and the probe for the endogenous control, β-tubulin, was labelled with VIC®. The 

P. falciparum clone 3D7 was used as a one copy calibrator for pfmdr1 and Dd2 was used as a 

multi-copy control. All samples were run in triplicate. The comparative ΔΔCt (cycle 

threshold) method was used. Ct is the cycle number where the fluorescent crosses a set 

threshold. The amount of target (pfmdr1) is: 2-ΔΔCt. Where ΔCt = Ctpfmdr1 - Ctβ-tubulin and ΔΔCt 

= ΔCtsample – ΔCt3D7. Results of triple replicate samples were excluded if: (1) more than one 

replicate exhibited a Ct > 35; (2) the triple replicate samples had Ct SD > 0.5 and the Ct 

difference between the two remaining replicates was > 0.7 after the removal of any outlier. 

The parasites were considered to have an amplified pfmdr1 gene if copy number was > 1.5. 

 

9.3.8 Pyrosequencing 
Pyrosequencing is a method that can be used for SNP analysis, where short fragments of DNA 

are sequenced directly from a PCR product. One of the PCR primers used in the PCR reaction is 

biotinylated, which enables the purification of specific PCR products since Streptavidin 

Sepharose Beads binds to biotin and single stranded PCR products can then be separated in a 

vacuum based system. A sequencing primer is further hybridized to the PCR product and 

incubated with reagents containing enzymes and substrates. One deoxynucleotide triphosphate 

(dNTP) is added to the reaction at a time and is incorporated into the DNA strand if it is 

complementary to the base in the template strand. The incorporation results in a release of 

pyrophosphate (PPi) that is converted to ATP, which drives conversion of the substrate luciferin 

to oxyluciferin that generates light. The light is proportional to the number of nucleotides 

incorporated and is visualised as a peak in a pyrogram. (www.pyrosequencing.com) 

Consequently, e.g. the incorporation of three consecutive dTTPs into the DNA strand results in 

a peak that is three times higher than the incorporation of one dTTP. 

 

9.3.9 Sequencing 
Sequencing was used to evaluate the accuracy of PCR-RFLP method and in prospective 

studies as Paper III to identified new mutation in the candidate genes. The method used was 

dye-terminator sequencing, each of the four dideoxynucleotide chain terminators is labelled 

with fluorescent dyes, each of which with different wavelengths of fluorescence and emission. 

Sequencing was performed at Center for Genomics and Bioinformatics, Department of Cell 

and Molecular Biology, Karolinska Institutet, Stockholm, Sweden or by Macrogen, Inc, 

Seoul, South Korea. 
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9.3.10  Statistical analysis of mixed infections 
There is no consensus on how to consider mixed genotypes derived from mixed infections i.e. 

where both mutant and wild type allele are present. In view of that, the calculations with 

mixed infections have been handled slightly different for the clinical trials. In Paper I, 

detected mixed infections were calculated to contribute equally to each of the allele.  

In Paper III, we choose to remove the mixed infections from the association analyses of the 

particular genotype that was mixed. The rationale can be explained having as example of 

pfmrp1 I876V analysis. Selection of I876 is based on the principle that parasite populations 

carrying the I876 allele survive, while all parasites carrying 876V tend to be eliminated. 

Elimination of parasites carrying 876V will occur independently if only these parasites are 

infecting (pure) or if there are also parasites with I876 in the infection (mixed). Mixed 

infections with I876 and 876V should consequently become pure I876 after selection. Thus we 

suggest that in vivo, the selected genotype should be analysed against the mixed infections 

together with the non-selected genotype. 

Proportions were compared using Yates’s corrected χ2 testing (Microstat ®software, release 4; 

Ecosoft) and confidence intervals were calculated with the Confidence Interval Analysis 

(CIA) program (version 1.1). Fisher’s exact test was determined with GraphPad QuickCalcs 

software; GraphPad Software. Statistical significance was defined as P ≤ 0.05. 

 

9.3.11  In silico 
P. falciparum genome sequence became available in 2002. Thousands of genes are specific 

for P. falciparum, although several still homologous to well studied proteins in prokaryotes 

and/or eukaryotes organisms. Crystallography data is available (www.pdb.org) from some of 

these homologous to P. falciparum proteins and enables the structural studies by 

computational homology. In Paper II and Paper III these strategy was used to unveil the 

importance of PfMDR1 and PfMRP1 polymorphisms based in the bacterial homologous ABC 

transporter MsbA. For this purposes programs as Modeller which performs comparative 

protein structure modelling by satisfaction of spatial restraints, WinCoot and Yasara were 

used. 

 

9.3.12  Ca2+ records 
To perform Ca2+ measurements in P. falciparum the Ca2+ indicator Fluo-3 was used. Fluo-3 

was developed by Tsien (Nobel laureate) and colleagues for use with visible-light excitation 

sources in flow cytometry and confocal laser-scanning microscopy.   Since being introduced 
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in 1989, Fluo-3 imaging has revealed the spatial dynamics of many elementary processes in 

calcium signalling.  The most important properties of fluo-3 in these applications are an 

absorption spectrum compatible with excitation at 488 nm by argon-ion laser sources, and a 

very large fluorescence intensity increase in response to Ca2+ binding. Unlike the ultraviolet 

light-excited indicators fura-2 and indo-1, there is no accompanying spectral shift. The 

fluorescence intensity increase on Ca2+ binding is typically >100-fold.   

 

9.3.13  Mitochondrial membrane potential measurements 
Mitochondrial transmembrane potential was assessed by uptake of TMRE (25 nM; 

Invitrogen), a lipophilic, cationic fluorescent dye that is only taken up by mitochondria having 

an intact electrochemical gradient. Infected RBCs were double labelled with 5 μM Hoechst 

33342 and incubated for 30 min with TMRE and fluorescence analysed in a LSR-II flow 

cytometer (BD Biosciences) before and after challenging parasites with 72 µM DHA. 

Acquired fluorescence-activated cell sorting (FACS) data was analysed in FlowJo software 

v.5.7.2. 

 

9.3.14  Cytochrome C (CytC) detection 
Anti- CytC antibody (BD Pharmingen) was used to study CytC release from mitochondria by 

flow cytometry and microscopy. Flow cytometry of the parasites was performed on a LSR II 

(Becton-Dickinson) equipped with a 488nm argon laser and a 358 nm ultraviolet light source. 

Parasite slides were mounted using the Prolong Antifade Kit (Molecular Probes) and scanned 

in a Zeiss LSM510 and Olympus Fluorview F1000 confocal microscope equipped with C-

Apochromat 60X/1.2 water immersion objectives (Zeiss and Olympus). 

 

9.4 ETHICAL CONSIDERATIONS 
Ethical approval for Paper I and Paper III was obtained from ethical committees in the endemic 

countries and from Karolinska Institutet, Sweden. All samples were obtained upon informed 

consent of the patients or their guardians. 
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10 RESULTS 

 

10.1 PAPER I 
The aim of this study was to explore the selection of other known mutations in pfmdr1 and 

pfcrt following artemether-lumefantrine treatment. In addition, PfATP6 S769N, suggested to 

be associated with decreased susceptibility to artemether (Jambou 2005) was also 

investigated. 

Recurrent infections classified as recrudescences by pfmsp2 genotyping, were subjected to 

additional pfmsp1 genotyping. Only 2 out of 11 remained recrudescences, while 7 were 

reclassified as reinfections and 2 were PCR negative for pfmsp1. 

The PfMDR1 N86, 184F and D1246 alleles were observed to be selected after artemether 

lumefantrine treatment. When calculating mixed infections to contribute equally to each 

allele, the selection of PfMDR1 mutation comparing D0 with reinfections was as follow: 

PfMDR1 N86 increase from 23.4% to 47.4% (P = 0.004). PfMDR1 184F showed a 

statistically significant increase from 16.6% at D0 to 35.5% among reinfections (P = 0.027). 

Likewise, the PfMDR1 Dl246 allele increased from 66.8% to 83.9% (P = 0.086). 

An association between the N86/184F haplotype and reinfections was seen. The statistically 

significant selection of this haplotype (P = 0.001) was followed by a similar decrease in the 

prevalence of 86Y/Y184 (P = 0.009), while the other two haplotypes (86Y/I84F and 

N86/YI84) were not affected. The D1246 in combination with N86 was also significantly 

selected in reinfections (P = 0.001). This selection was not at the cost of any specific allele. 

The two recrudescences analysed had N86/Y184/D1246 and 86Y/Y184/1246Y respectively. 

No pfmdr1 gene amplification was detected. No polymorphism was found for PfMDR1 

S1034C, 1042D, Dl246Y, PfCRT SI63R and PfATP6 S769N. 

The selection of mutations in PfMDR1 was seen to occur in time fashion. This observation 

lead was to describe the selective window for PfMDR1 N86, 184F and D1246 of being within 

the 35 days after artemether-lumefantrine treatment (Fig. 11). 
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Figure 11 Selection of PfMDR1 after artemether-lumefantrine treatment. Distribution of PfMDR1 N86Y, 
Y184F and D1246Y SNPs of the 28 pfmsp2 adjusted P. falciparum reinfections during the 42-day follow-up 
period. Infections with PfMDR1 86N alleles are being selected particularly in the early reinfections, while in the 
later reinfections on day 42 the 86Y and 86N frequencies have returned towards the baseline frequency. A 
similar finding was seen for PfMDR1 Y184F. 
 

10.2 PAPER II 
For this paper was considered the importance of polymorphism in pfmdr1 (position 86, 184, 

1034, 1042 and 1246) selected by lumefantrine in Paper I and analysed its importance in the 

transporter structure and for antimalarial resistance in general.  

PfMDR1 is constituted by 12 transmembranes (TMs). Our results show that transmembrane 

(TM) 11 (harbor polymorphisms position 1034 and 1042) are close to TM1 in the open 

conformation of the transporter. On the top of TM1 locates residue 86 (polymorphism). The 

structural clustering of mutations in residues 86, 1034 and 1042 in this conformation suggests 

their role in the docking of antimalarial. To better understand the role of 1034 and 1042 we 

hypothesize TM11 as being part of a drug binding pocket. Our in silico docking results show 

that MQ, QN, CQ docked in the proposed binding site, preferentially interacting with residue 

1042. The energies of docking for best pose were estimated to be in Kcal/mol: -6.89 for CQ 

(Fig. 12A), -7.86 for QN (Fig. 12B) and -5.69 for MQ (Fig. 12C). 

Residue 1246 happens to be located in the nucleotide-binding domain (NBD) 2. It is part of a 

cleft that interacts with the loop formed by TM4 and TM5. This particularity relates to residue 

184 in TM3. The TM3 is located in the middle of TMD1 surrounded by TM1-TM2 in one 
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side and TM4-TM6 in the other. TM4 and TM5 come close to TM3 in the nucleotide bound 

conformation. 

Our results support the hypothesis of PfMDR1 being a vacuolar importer of antimalarial. To 

acquire further evidence we evaluate the index of resistance for different aminoquinolines 

known to target the digestive vacuole, as CQ, AQ and DEAQ. The correspondent Log D (pH 

7.2) values for these drug are CQ: 0.045 < DEAQ: 1.183 < AQ: 2.60. The contribution of 

PfMDR1 mutations 1034, 1042 and 1246 for index of resistance was higher for more 

hydrophobic (AQ and DEAQ) (Fig. 13) supporting the hypothesis that PfMDR1 is an 

importer which requires active transport for the vacuole. The contribution of PfMDR1 was 

also shown to be dependent on PfCRT background. 

Figure 12  - Docking of antimalarial in TM11. Residues 1042 and 1034 are show in TM11 being a serine and 
aspartic acid respectively together with CQ (A), QN (B) and MQ (C) docks. The energies of docking for best 
pose were estimated to be -6.89 Kcal/mol for CQ, -7.8 Kcal/mol for QN and -5.69 Kcal/mol for MQ.  
 

 
Figure 13 - Resistance Index for 1034/1042/1246 pfmdr1 haplotype.  Index was determined as the EC50 ratio 
of isogenic transfectants CDY over SND for the different antimalarial. 
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10.3 PAPER III 
Paper III is the first comprehensive study of pfmrp1 diversity. The pfmrp1 open reading frame 

(ORF) was sequenced in 103 P. falciparum infections originating from most malaria endemic 

regions and in 47 fresh P. falciparum isolates from Mae Sot, Thailand and 30 from Gulu, 

Uganda. pfmrp1 was observed to harbor significant biodiversity with 23 non-synonymous 

SNPs, 8 synonymous SNPs and one insert were identified in the gene. The distribution of the 

SNPs showed distinct geographic patterns (Table 4). In Africa the most common SNPs were 

I876V and K1466R, with no other SNP seen in more than two samples. K1466R was only 

found in Africa and Papua New Guinea (PNG). In South America no SNPs in pfmrp1 were 

observed. 

The majority of SNPs were identified in samples with origin in Asia and Oceania. There the 

most common SNPs were H191Y and S437A, which were linked and mutated in almost all 

samples. Distinct haplotypes of pfmrp1 SNPs in aminoacid positions 785, 876, 1007 and 1390 

were observed. Either they were all wild-type, mutated in positions 876 and 1390 or mutated in 

positions 785, 876 and 1007 with or without mutation in position 572.  

I876V was the most spread SNP worldwide, present in all parasite populations.  

PfMRP1 I876V and K1466R, were analyzed in P. falciparum samples from malaria-infected 

patients, in two clinical drug efficacy trials in Tanzania (n=106) and Zanzibar (n=408), treated 

with artemether-lumefantrine vs. SP or artemether-lumefantrine vs. artesunate-amodiaquine, 

respectively. 

There were no statistically significant changes in frequency of K1466R after artemether-

lumefantrine or artesunate-amodiaquine treatment. We observed a statistically significant 

positive selection of the pure I876 allele in the recurrent infections (92.1%) of the artemether-

lumefantrine arm compared to the baseline (76.9%) (P= 0.038) in Zanzibar. In Tanzania the 

same tendency was detected after artemether-lumefantrine treatment, although it was not 

statistically significant. Pooling the two independent studies supplied robust evidence for a 

strong selection of the pure I876 in recurrent infections (89.5%) compared to the baseline 

(75.9%) (P= 0.007).  

Residue 876 is located in nucleotide-binding domain (NBD) 1, immediately downstream of the 

Walker B motif between the LSGGQ motif and the H loop, an important region for ATP 

binding and hydrolysis. We then analysed the importance of this region analysing the dynamics 

of MsbA protein crystals trapped in different conformation (Fig. 14A). Our results show that 

this region is highly mobile required for nucleotide bound-unbound in the transporter. 
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In silico analysis suggested that variation in residue 876 (Fig. 14B) may influence ATP docking 

and consequently the catalytic cycle and potentially the overall protein function.  
Table 4 – Geographic genetic diversity of pfmrp1 

PfMRP1 polymorphisms 
Origin N 

37 191 202 325 437 572 785 876 1007 1390 1431 1466 

Africa              

Africa 19 P H K N S F H I T F K K 

Benin 1 P H K N S F H I T F K R 

Gambia 1 P H K N S F H V T I K K 

Ghana 1 P H K N S F H I T F K R 

Guinea Conakry 1 P H K N S F H I T F K R 

Kenya 1 P H K N S F H V T F K R 

Malawi 1 P H K N S F H V T F K R 

Uganda 9 P H K N S F H I T F K K 

 9 P H K N S F H V T F K R 

 9 P H K N S F H I T F K R 

 5 P H K N S F H V T F K K 

Middle East              

Iran 2 P Y K N A F H I T F K K 

 1 P Y K N A F H V T F K K 

 1 P Y K N A F H V M F K K 

Yemen 1 P H K N S F H I T F K K 

South East Asia              

Cambodia 3 P Y K N A F N V M F K K 

 2 P Y K N A L N V M F K K 

 2 P H K N S F H I T F K K 

 1 P Y K N A F H V T I K K 

 1 P Y K S A F H I T F K K 

Thailand 14 P Y K N A L N V M F K K 

 8 P Y K N A F H V T I K K 

 7 P Y K S A F H I T F K K 

 6 P Y K N A F N V M F K K 

 2 P Y K N A F H I T F K K 

 2 P H K N S F H I T F K K 

 1 P Y K S A L N V M F K K 

 1 P Y K N A F N V T I K K 

 1 P Y K S A L N V T F K K 

 1 P Y K S A F H V T I K K 

 1 P Y K S A F H I T F K K 

Oceania              

Papau New Guinea 3 S Y E N A F H V T I K K 

 1 P Y K N A F H V T F K R 

 1 P H K N S F H I T F K R 

Vanuatu 6 P Y K N A F H V T I I K 

 1 P Y K N A F H V T I K K 

South America              

Colombia 13 P H K N S F H I T F K K 

Surinam 1 P H K N S F H I T F K K 
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Figure 14 - Mobility of NBD in ABC transporters. (A) MsbA structural alterations at NBD of open (3B5W) 
and close (3B60) conformations. Localization of ATP molecule is shown linked to the structures by a Mg2+ 
bridge (yellow) (B) Visualization of V876I mutation model. 
 

10.4 PAPER IV 
In Paper IV we evaluate the impact of dihydroartemisinin (DHA) in P. falciparum. When 

parasites were treated with DHA a similar transient Ca2+ increase was observed as for 

thapsigargin (TG) (Fig. 15). 

 
Figure 15 - Induction of a Ca2+ transient by DHA 

 

ART inhibits cell growth of P. falciparum. To examine if this effect caused by ART was 

dependent on cytosolic Ca2+ signalling we next treated the cells with the Ca2+ chelator 

BAPTA/AM and measured parasite growth using an ELISA assay. Although we block 

intracellular Ca2+ with BAPTA P. falciparum parasites were able to grow to a certain extent 

(Fig. 16). 
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Figur 16 – DHA induced cell death rescued by Bapta. 

 

In order to further elucidate the Ca2+ signalling pathway evoked by ART we monitored 

mitochondria membrane potential after challenge parasites to DHA 72 µM. FACS data 

analysis revealed that DHA was able to increase the TMRE signal 26 %. The DHA-induced 

TMRE increase was blocked when pretreating the cells with BAPTA. The time lapse FACS 

recordings showed that hyperpolarisation of mitochondrial membrane by DHA 72 µM was 

rapid and suppressed by BAPTA (Fig. 17).  

 

 
Figur 17 – Mitochondrial membrane potencial disruption by DHA 

 

To evaluate the mitochondrial reaction to Ca2+ signal inducted by DHA we tracked CytCin 

P. falciparum. Approximately 10 % - 30 % of all DAPI stained parasites were staining 

positive for CytC. Treating the cells with DHA showed that CytC was released into the 
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cytosol of the cell and DNA fragmentation was apparent following DAPI staining of DHA 

treated cells. The CytC release effect was abolished when cells were pre-treated with BAPTA 

(Fig. 18). 

 

 
Figure 18 - CytC release induced by DHA in P. falciparum. 
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11 DISCUSSION 

With the enactment of ACT was hypothesized to delay the spread of drug resistant malaria 

parasites. We have now evidence that this is not the case for the African continent. 

Artesunate+sulfadoxine-pyrimethamine (AS-SP) treatment is an adequate regime to evaluate 

the capacity of ACT to reduce drug resistance spread since the mechanism of resistance for 

SP is well defined and associated with the targets, DHFR and DHPS. AS-SP was introduced 

in Mozambique in 2004 due to its high efficacy and its adequate clinical and parasitological 

response of 98% at 42 days, estimated between 2003 to 2004 [161]. After 4 years following 

its introduction, malaria prevalence decreased, however, dhfr/dhps “quintuple” mutations 

(related with high SP resistance) increased from 11.0% in 2004 to 75.0% by 2008 (P< 0.0001) 

[162]. Based on the case of AS-SP and artemether-lumefantrine (Paper I) in this thesis, it is 

apparent that ACT does not prevent the spread of partner drug resistance markers. The 

determinant factor detected in Paper I driving pfmdr1 haplotype selection is the time to 

reinfection. We described a selective window of 35 days, during which lumefantrine is in its 

terminal elimination phase reaching sub-therapeutical levels. The selection of pfmdr1 markers 

related to lumefantrine resistance fit exactly within these 35 days. As opposed to Southeast 

Asia, where transmission and consequent reinfection rate is low, in Africa, reinfections after 

treatment are common suggesting that a fraction of the parasite population is exposed to sub-

therapeutical dosages of antimalarials, promoting antimalarial resistance and spread.  

We showed in Paper III that this ACT selection is not confined to pfmdr1. Other genes, 

iuncluding pfmrp1, are also under such pressure.  

A more worrying scenario is that unlike SP, lumefantrine seems to have cross resistance with 

artemisinins, at least to a certain extent. This fact brings us back to the basics. An assumption 

for ACT deployment is the fact that the probability of ACT resistance was estimated to occur 

based upon independent resistance mutations to artemisinins and partner drugs. However, the 

involvement of PfMDR1 to lumefantrine and artemisinin seems to be cross related 

[140,141,144]. In these terms, it is reasonable to conclude that in some cases ACT resistance 

might not be based on independent resistance events but rather on linked events. Thus, the 

probability for a parasite developing resistance to a particular ACT should be assumed to be 

the probability of this parasite’s resistance to artemisinin in the context of resistance to its 

partner drug. Described mathematically as P ACT-R= PART-R* (P Partner drug resistance | PART-R), this 

important assumption is of major implication in the context of drug policy establishment. 

Choice of the partner drug should then be considered in this perspective. Reducing the 
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probability of associated resistance (partner drug and artemisinins) may aid in slowing down 

the probability of resistance to ACT.  

This fact is further supported by work from our laboratory in AS-AQ selection. Our data 

shows that following AS-AQ treatment, the opposed haplotype of pfmdr1 occurs [163]. In 

which background (PfMDR1/PfMRP1/PfCRT) ART resistance is more prompt to happen we 

do not know, although it is reasonable to assume that there might exist a preferable genetic 

background promoting resistance development.  

It is certain that unveiling the mode of action of antimalarial drugs is of extreme importance 

to improve and rationalize drug policies. In the context of PfMDR1, in Paper II, we tried to 

uncover more information concerning the structure and function of this transporter. Our data 

support the notion of PfMDR1 as a vacuolar importer. Its contribution seems to be dependent 

on the PfCRT, which acts as a vacuolar efflux pump. The vacuolar accumulation of 

antimalarials is of major importance especially for aminoquinolines. The dynamics of 

antimalarial influx/efflux determine the net accumulation of drug in the vacuole and is a topic 

for future study. 

A relevant physiological feature of PfMRP1 is that it does not localize to the digestive 

vacuole, instead it is present on the plasma membrane. The three transporters 

(PfMDR1/PfMRP1/PfCRT) studied here enclose a broad spectrum of substrates enabling us 

to propose a general mechanism for antimalarial flux in P. falciparum (Fig. 19). 

 
Figure 19 - Physiologic model of antimalarial transport in P. falciparum.  

 

PfMRP1 was never found to be a determinant of antimalarial resistance which might be due to 

the fact that P. falciparum is an intracellular parasite. As opposed to other ABC resistant 
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pumps in other organisms, PfMRP1 does not pump to the extracellular milieu; instead, it 

expels its substrates to the cytosol of the hosting RBC. Increased oxidative stress on RBCs by 

antimalarials may also affect the integrity of the host cell, something which is vital for 

parasite’s survival. This hypothesis is further supported by the fact that PfMDR1 pumps drugs 

into the digestive vacuole, protecting the hosting RBC. A balance between vacuolar 

accumulation and RBC accumulation may be required for overall P. falciparum antimalarial 

resistance. 

This perspective of parasite and host as one entity brings forward once more the complexity 

of malaria.  Survival of malaria parasites to xenobiotics is a result of concerted complex 

events leading to antimalarial resistance.  

 

Artemisinins have a complex mechanism of action. In this thesis, we describe additional 

details regarding their impact on P. falciparum calcium homeostasis and downstream effects. 

It is known that Artemisinin resistance in Toxoplasma gondii is related to calcium 

homeostasis [164]. All proposed target proteins for artemisinins resistance in P. falciparum 

directly or indirectly involve Ca2+. TCTP is a Ca2+ binding protein and SERCA is a Ca2+ 

pump. In Paper IV, we evaluate the effect of artemisinin on overall intracellular calcium. 

Artemisinins induce a cytosolic Ca2+ increase in P. falciparum-infected erythrocytes. We 

analysed the downstream effects of DHA-induced Ca2+ signalling and demonstrate that 

damages at the mitochondrial level triggers a cell death pathway. These observed effects were 

abolished by chelating intracellular Ca2+ with BAPTA.  Subsequently, parasite viability was 

rescued. 

Calcium is an almost universal intracellular messenger that controls a vast number of cellular 

processes from fertilization to cell death. Cells create large calcium concentration gradients 

(~10000 to 1) between the extracellular fluid, cytoplasm, and internal calcium stores by 

means of calcium-pumps located in the plasma membrane and in the membranes of internal 

calcium stores. These gradients provide ideal conditions for the use of calcium as cellular 

currency that supports the propagation of intracellular calcium waves. The concerted actions 

of calcium transporters located in the plasma membrane and in the membranes surrounding 

internal stores, including the endoplasmic and sarcoplasmic reticulum, the mitochondria, and 

the nucleus, can generate controlled calcium oscillations for cellular regulation and 

homeostasis. Deregulation of these processes can often lead to cell death. 

 In the case of artemisinin, calcium deregulation does cause parasite death. Convincing 

genetic factors for artemisinin resistance have not been reported yet. We showed that 
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increased resistance to DHA could be achieved chemically by chelating Ca2+. We hypothesize 

that parasites may biologically mimic this event at critical points of Ca2+ homeostasis control 

resulting in increased resistance towards artemisinins. Ca2+ related targets in P. falciparum 

(SERCA and TCTP) were reported, however, the Ca2+ dependent mechanisms of resistance 

might occur up or downstream of these targets. 

The recently reported in vivo and in vitro resistance to artemisinins has been related to general 

biological features: hyper-parasitaemia [165] and dormancy state [166]. These features of cell 

proliferation are well known to be controlled by intracellular Ca2+ signals whilst increased cell 

proliferation, like tumour cells, correlates with altered intracellular Ca2+ regulation [167]. In 

the case of P. falciparum, information on the regulation of cell proliferation by Ca2+ signalling 

in the erythrocytic cycle is scarce. The role of Ca2+ within artemisinin’s mechanism of action 

and antimalarial resistance, in general, potentiates the interest and constitutes a great area of 

scientific interest for the near future. 
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12 CONCLUSIONS 

 

12.1 OVERALL CONCLUSION 
The antimalarial drug resistance proteins PfMDR1, PfCRT and PfMRP1 are under selective 

pressure by ACT partner drugs. For artemisinins, intracellular Ca2+ in P. falciparum plays a 

role in its mode of action. 

 
12.2 SPECIFIC CONCLUSIONS 
 

Paper 1- pfmdr1 haplotype coding for 86N, 184Y, 1246D is selected for in re-infections after 

artemether-lumefantrine treatment. 

 

Paper 2- Different haplotypes in pfmdr1 correlates with two distinct functional modulation 

mechanisms at the protein level, one allosteric and another directly related to the drug binding 

pocket.  

 

Paper 3- The I876V polymorphism in PfMRP1 is selected for in re-infections after 

artemether- lumefantrine treatment. We examine the importance of this residue for ATP 

hydrolysis at the transporter nucleotide binding domain. 

 

Paper 4- Dihydroartemisinin disrupts calcium homeostasis in P. falciparum and induces cell 

death.   

 

 

 

 

 

 

 

 

 

 

 



 48 
 

13 PERSONAL VIEWS AND FUTURE PERSPECTIVES 

Enormous efforts were needed to convince international organizations to start a new era of 

malaria elimination and eradication after the failure of the World Malaria Eradication 

Program in the middle of last century. Now we have the opportunity to apply more than one 

century of research in malaria to jeopardized common goal. Due to its extreme complexity, to 

eliminate or even control malaria requires effective concerted interventions within the host, 

the mosquito and the parasite. To fully achieve these requirements, a deep understanding of 

the fundamentals of malaria is mandatory.   

The studies presented in this thesis were focused on the parasite response to ACT with the 

intention of contributing to our basic knowledge of antimalarial selection and resistance. In 

brief, we described how the parasite population has been modulated by partner drugs due to 

the use of ACTs and further how alterations of intracellular Ca2+ regulation could contribute 

to resistance to artemisinins. 

Unfortunately, there is more and more evidence that the durability of ACT efficacy might not 

be what was previously thought. The Efficacy of artemisinins seem to be degrading in 

Southeast Asia and resistance has been reported to the most used partner drugs. In a more 

cautious perspective, is wise to take into consideration that the parasite population is adapting 

to ACT and resistance may well happen sooner than previously expected. The question now 

is: what can we do to slow down this process and promote ACT sustainability? The Malaria 

Research Group at Karolinska Institute has made significant contributions in this field, 

reporting on the opposed selection of pfmdr1 and pfcrt, which are also oppositely related 

regarding susceptibility, for the partner drugs amodiaquine and lumefantrine.  

In Africa, transmission is a major driving force for the mechanism of selection of resistant 

haplotypes to ACT partner drugs. The identification of these two factors, parasite genetics and 

transmission, redefines the concept of time to re-infection of different resistant haplotypes. 

This new concept promotes the generation of new understanding and vision of antimalarial 

resistance and selection. In the future, time to re-infection may be an important tool to access 

populational parasite drug susceptibility in a longitudinal perspective. Evaluation of the 

importance of the terminal elimination phase of different partner drugs and risk of resistance 

selection might give us more information regarding the correct choice of partner drugs and 

long term planning of ACT deployment. 

Artemisinin efficacy has been looked upon as the mainstay for ACT resistance. Our very little 

knowledge regarding the mechanism of artemisinin makes it difficult to define what 
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artemisinin resistance actually is. If we reflect on the definition of resistance: “Diminished or 

failed response of an organism, disease or tissue to the intended effectiveness of a chemical or 

drug”, (From the MeSH® online dictionary (Medical Subject Headings) 

(http://www.nlm.nih.gov/cgi/mesh/2010/MB_cgi)) we may say that indeed resistance to 

artemisinin has always been present, as recognized by the WHO, and not recommended as a 

monotherapy because of its low effectiveness.  

ACT effectiveness should then be looked at as a whole, focusing on all aspects, artemisinin 

and partner drug pharmacologic characteristics, the parasite’s background and transmission. 

In a more broad research perspective, antimalarial resistance is one case in the scientific 

challenge of translational research where distinct areas of scientific knowledge converge in a 

multidisciplinary fashion to create a truly translational science. 
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