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ABSTRACT 

Dendritic cells (DC) are professional antigen-presenting cells that act as a “bridge” between innate and 

adaptive immunity by the induction and subsequent orchestration of immune responses. The ligation of 

Toll-like receptors (TLR) and other innate receptors on DC determines their immune-stimulating 

capacity. In the studies included in this thesis, TLR activation of DC and the different aspects of such 

activation were investigated. In paper I, we explored how low physiological temperatures, commonly 

found in the skin where DC reside, affect DC activation and function. We found that several cellular 

functions, including macropinocytosis, phagocytosis, podosome formation, migration, and antigen 

processing, were similar for unstimulated DC at 28°C and 37°C. However, when DC were stimulated 

with the TLR agonist LPS at 28°C the kinetics of macropinocytosis and TNF production were delayed. 

These altered responses are most likely explained by the observed delay in the kinetics of TLR signalling, 

e.g., via the MAPK signalling pathway at 28°C. In addition, other functions of DC were more severely 

affected by the low temperature, including a reduction in NO production, CD40 receptor upregulation, 

and degradation of the extracellular matrix by podosomes. Also, the capacity of DC to activate T-cells 

was reduced after TLR activation at 28°C. These data provide new insights into an area of DC biology 

with potential relevance for vaccine development. 

 

Cellular migration involves as series of events including the formation of podosomes, which are highly 

dynamic actin-filament scaffolds. In paper II, we examined the role of the actin-severing and capping 

protein gelsolin for podosom formation and function in DC. For this purpose, DC from mice deficient in 

gelsolin were used. In contrast to what was previously shown for osteoclasts, we found that DC form 

podosomes independently of gelsolin. Moreover, the formation and disassembly dynamics of podosomes 

are normal in DC deficient in gelsolin, as is their matrix-degrading function. Furthermore, we found that 

gelsolin is not required for TLR4-induced podosome disassembly. The actin cytoskeleton of podosomes 

involved in DC extracellular matrix degradation thus appears to be regulated in a different manner to the 

cytoskeleton in osteoclast podosomes that mediate bone resorption. 

 

In order to ingest particulate material via phagocytosis, for example apoptotic cells and microbes, DC 

depend on rearrangement of the actin cytoskeleton. It is known that upon pathogen recognition by TLR, 

DC undergo rapid actin cytoskeleton rearrangements. However, most studies on TLR stimulation and 

phagocytosis have focused on posttranscriptional effects, i.e., the upregulation of receptors involved in 

phagocytosis, rather than how the process of phagocytosis is affected directly after TLR activation. In 

paper III, we report that the stimulation of DC using soluble TLR ligands increased their capacity to 

phagocytose various substrates within minutes. These included polystyrene beads, sheep red blood cells, 

and apoptotic lymphoma B cells. We also found that signalling through both of the TLR4 adaptor 

molecules, MyD88 and TRIF, was necessary for optimal LPS-stimulated phagocytosis. Furthermore, we 

confirmed that stimulated phagocytic uptake proceeds independently of gene transcription, as 

actinomycin D, which blocks gene transcription, had no effect on the stimulated uptake. In summary, our 

data suggest that soluble TLR ligands induce enhanced phagocytic uptake, proximal to gene transcription. 

Thus, our study provides new information about the role of TLR engagement in modulating the 

phagocytic capacity of DC. 
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GENERAL INTRODUCTION 

 

The immune system is a remarkable defence mechanism found in all animals and it is 

constantly challenged by a myriad of surrounding potentially pathogenic 

microorganisms. Upon recognition of microorganisms the immune system can make 

rapid, highly specific, and often protective response against pathogens. Dendritic cells 

(DC) serve to orchestrate a repertoire of immune responses, linking innate and adaptive 

immunity [1-3]. The cells of the innate immune system, e.g., DC, neutrophils, and 

macrophages, detect conserved features of microbes using germ-line encoded pattern 

recognition receptors (PRR), such as the toll-like receptors (TLR), thus enabling these 

cells to respond rapidly but with limited specificity. In contrast, cells of the adaptive 

immune system, i.e., B and T cells, which generate receptors for antigen recognition de 

novo, respond later but with high specificity. In addition to recognize and respond to 

foreign molecules, the immune system also learns how to be tolerant to self. There is 

evidence supporting that DC are important in controlling inflammation-induced 

immunopathology through the generation of antigen-specific regulatory T cells. This 

includes the induction of IL-10 or TGF-! producing regulatory T cells that dampening 

immune effector mechanisms [4, 5]. Thus, DC partake in the induction of effective 

immunity against invading pathogens, as well as in preventing excessive inflammation 

and tissue pathology. Having a central role in orchestrating immune responses, DC are 

considered as potential targets for therapeutic interventions for a wide array of diseases 

[6]. Hence, discovering more about their biology is key. The aim of my thesis work 

was to increase the understanding of some aspects of DC biology, with a focus on 

innate activation and the subsequent effects of such activation.  To better understand 

the concepts discussed in this thesis, and as an attempt to set the data presented herein 

in relation to previous studies, a brief overview of the field of study is presented below. 

For a more comprehensive description of the immune system I recommend Janeway's 

immunobiology [7].  
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DENDRITIC CELL BIOLOGY 

 

The first observation of DC was made in the late 1880s by Paul Langerhans as he 

mistakenly identified these cells, residing in the epidermis, as cells of neurological 

origin and named them Langerhans cells [8, 9]. Dendritic cells as we recognize them 

today, however, were discovered in the early 1970s by Ralph Steinman, who showed 

that the DC are effective accessory cells involved in the priming of the adaptive 

immune response [10, 11]. It was not realized until later that the Langerhans cells 

present in skin are a distinct DC subpopulation [12, 13]. In many aspects, the 

Langerhans cells have become the archetypical DC. In fact, the DC life cycle that is 

most often described, also in this thesis, is often referred to as the “Langerhans cell 

paradigm” [14-16] (Figure 1). Dendritic cells in peripheral tissues, e.g., skin, express 

cellular receptors that allow the identification of microbes. In response to microbial 

stimuli DC undergo a process of cellular activation leading to cellular differentiation, a 

process termed maturation [17-19]. Upon maturation, DC transiently increase their 

capacity to internalize antigens, which is followed by increased migration and enhanced 

T cell stimulatory capacity [19, 20]. The maturing DC migrate from the periphery, via 

the lymphatics into the T cell-rich areas of lymph nodes, where they activate naïve T 

cells and direct the functional differentiation of antigen-specific effector T cells of 

various types (e.g. Th1, Th2, Th17 cells).  

 

Since the first evidence of the capacity of DC to induce immunity, was found, 

numerous studies using a wide array of experimental approaches have supported the 

notion of a pivotal role of DC in the initiation of adaptive immunity. However, the 

unique capacity of DC to activate naïve T cells has been challenged by studies which 

demonstrated that also other cell types such as macrophages, osteoclast, mast cells, and 

basophils also have the capacity to induce T-cell responses under certain conditions 

[21-27]. Although other cell types might have such a capacity to stimulate T cells, the 

consensus is that DC are unique in their capacity to prime naïve T cells and initiate 

primary T cell-mediated immune responses [16].  
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Figure 1. Schematic picture describing the “Langerhans cell paradigm”.  

 

Dendritic cells originate from haematopoietic bone marrow progenitors and are widely 

distributed throughout the body. Facultative DC progenitors are not restricted to the 

bone marrow but can be found in numerous locations in the body, e.g., the thymus, 

most visceral organs, and in the circulation [28-30], as reviewed by Alvarez et al. [31]. 

In the early studies by Steinman and others during the late 1970s and during the 1980s, 

DC were isolated from many different tissues, such as blood and peripheral lymphoid 

organs, using different techniques. However, it was difficult to obtain large yields of 

DC and due to the experimental limitations of the time, it was hard to exclude the 

possibility that other cell types were responsible for the immune stimulatory capacity of 

DC. When an in vitro system that allows the generation of large numbers of DC was 

described, using the granulocyte-macrophage colony-stimulating factor (GM-CSF) 

with or without IL-4, the field of DC biology underwent a rapid expansion [32, 33]. 

This new technique was pivotal since it made it easy to generate a large number of 

immature primary DC that could be investigated in much greater detail. 
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Are DC superior to other APC in the activation of naïve T cells? 

 

Early data suggested that DC were cells with a superior capacity to stimulate both CD4+ 

and CD8+ T-cell proliferation [34-38], compared to other antigen-presenting cells 

(APC) such as B cells and macrophages [11, 39, 40]. This notion was further solidified 

in the early 2000s, when Jung and colleagues studied the role of DC in initiating 

immunity in mice expressing the simian diphtheria toxin receptor (DTR) in DC under 

the control of the CD11c promoter (CD11c-DTR). This enables the “selective” 

depletion of DC when injecting the diphtheria toxin [41].  The authors used this 

technique to show that mice lacking CD11c+ cells were unable to mount CD8+ T-cell 

responses towards the intracellular bacterium Listeria monocytogenes or the malaria 

parasite Plasmodium yoelii [41].  In the years that followed, these data were further 

strengthened by several other studies. By using this technique, it was also shown that 

DC are important in induction of the immune response when infected with 

Mycobacterium tuberculosis, experimental cerebral malaria, and Herpes simplex virus 

[42-44]. It was also shown that DC are important for secondary immune responses 

towards L. monocytogenes, Vesicular stomatitis virus, and Influenza virus [45]. When 

considering data obtained using the CD11c-DTR experimental model it is important to 

mention that several cell types other than DC express low levels of CD11c, e.g., NK 

cells and some macrophages, which can also lead to the depletion of these cells. 

Therefore, caution is needed when interpreting these results. However, the wealth of 

data from both in vivo and in vitro studies, using isolation techniques, in vitro derived 

DC, and the CD11c-DTR-depletion system, collectively points to the fact that DC have 

key roles in immune regulation, both in the case of infection and during steady state 

homeostasis.  

 

 

Dendritic cell expression of PRR 

 

In peripheral tissues, such as the skin, Langerhans cells and dermal DC reside in an 

immature state, probing their surroundings using PRR, which recognize pathogen-

associated molecular patterns (PAMP) and danger-associated molecular patterns 

(DAMP). Innate immune cells, such as the DC, use a limited numbers of germ-line 

encoded receptors specific for conserved molecular structures expressed on microbes to 

recognize invading pathogens, whereas the adaptive immune system uses randomly 
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generated, highly specific receptors that are clonally expressed to fight infection [46, 

47]. The PRR consist of a growing number of receptor families, such as the membrane 

bound Toll-like receptors (TLR) and C-type lectin receptors (CLR), and the 

cytoplasmic NOD-like receptors (NLR) and the RIG-like receptors (RLR). Of note, 

there is emerging evidence to suggest that cross-talk between PPR families is key in 

shaping pathogen-specific responses [48]. Dendritic cells uses their TLR to sense their 

surroundings when they patrole the barrier surfaces of the body in search of invading 

microbes [49]. The TLR are the most frequently studied family of the PRR and they are 

also the focus of the studies herein.  

 

 

Toll-like receptors and signalling 

 

The TLR are a class of membrane spanning receptors that recognize conserved non-self 

molecules derived from microbes such as viruses and bacteria. In the mid-1990s, Jules 

Hoffmann and co-workers showed that the “toll” gene was involved in the immune 

response against fungi in fruit flies [50]. Subsequent studies by Medzhitov and Janeway 

in mice showed that TLR signalling induced the activation of genes involved in the 

adaptive immunity [51]. In a study the year after, in 1998, Bruce Beutler and colleagues 

showed for the first time that a mutation in the TLR4 gene, render mice (C3h/HeJ 

mice) unresponsive to the bacterial product lipopolysaccharid (LPS) [52]. This showed 

that mammalian cells have germ-line encoded receptors that recognize non-self 

microbially derived products. In 1989 Janeway had already hypothesized that because 

of the randomly generated antigen recognition receptors used by the adaptive immune 

system it could not reliably distinguish between self and non-self. Hence, Janeway 

hypothesized that the adaptive immune cells must be instructed of the origin of the 

antigen in order to elicit an appropriate immune response to clear infections and at the 

same time protect from autoimmunity [53]. He argued that this instruction might be 

provided by the innate immune system, which at that time was relatively understudied. 

Since then much data have supported his hypothesis [54]. To date, 13 different TLR 

receptors have been observed in mice and 10 in humans, many of which are expressed 

by DC [55]. The localization of TLR seems to differ depending of which molecules 

they recognize: TLR1, 2, 4, 5, and 6 are all present on the surfaces of the cells, 

recognizing molecules on the surfaces of the microbes, whereas TLR3, 7, 8, and 9 all 

reside intracellularly on membranes, recognizing nucleic acids (Figure 2). Emerging 
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evidence suggests that the localization and trafficking of TLR are key for the initiation 

of adequate responses to microbes, and is reviewed elsewhere [56].  

 

 

Figure 2. Schematic picture describing the localization of TLR. 

 

At the molecular level, TLR activation can trigger two distinct, but to some degree 

overlapping, intracellular signalling pathways through the recruitment of 

Toll/interleukin-1 receptor-like domain (TIR)-containing adaptor molecules to the TIR 

domain of the TLR. Binding of the adaptor protein MyD88 leads to downstream 

signalling events that activate nuclear factor-kappa B (NF-!B), leading to the 

transcription of genes encoding pro-inflammatory cytokines and chemokines. The TIR-

domain-containing adaptor protein-inducing interferon (TRIF)-dependent pathway 

leads to the activation of genes involved in the production of IFN-! [57-59]. Toll-like 

receptor 4 is the only TLR that signals via both MyD88 and TRIF. Most other TLR 

only signal via MyD88, with one exception: TLR3, which utilizes TRIF signalling to 

activate NF-!B and interferon-regulatory factor 3 (IRF3) [56, 60]. Interestingly, it has 

recently been shown that signalling through MyD88 and TRIF pathways down-stream 

of TLR4 is spatially and temporally separated [57]. The actvation of TLR4 first induces 

TIR domain-containing adaptor protein (TIRAP)/Mal-MyD88 signalling at the plasma 

membrane to initiate NF-!B and it is then endocytosed to activate TRIF-related adaptor 

molecule- (TRAM)-TRIF signalling from early endosomes to initiate IRF3 [57].  
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Consequences of TLR ligation for DC function 

 

Our understanding of how microbial and inflammatory stimuli affect and regulate the 

function of DC is continuously developing, as reviewed in [61-63]. At the site of 

infection DC start to produce inflammatory cytokines, e.g., TNF and IL-1!, and 

participate in recruiting other immune cells to the site of infection by producing 

chemokines [64]. It is now clear that TLR signalling not only induces the production of 

cytokines, chemokines, and co-stimulatory molecules, but it also leads to the activation 

of a numerous of changes in the cytoskeleton and vacuolar system, and also protein 

degradation. The first studies to examine the effects of TLR stimulation in DC with 

LPS on DC functions such as antigen capture and presentation were performed in the 

late 1990s [65, 66]. It has since been shown that in DC, endocytic activity is transiently 

increased upon TLR stimulation [67, 68]. Furthermore, West et al. showed that the 

simultaneous exposure to antigen and LPS enhanced antigen uptake and the subsequent 

processing of the antigen acquired for both MHC class I and class II peptide 

presentation [68]. Thus, DC have the capacity to perform a whole set of complex 

functions immediatly after TLR activation. It was later shown by Blander et al. that the 

presence of TLR ligands in the phagosome affects phagosome maturation and 

subsequent antigen processing and presentation [69, 70].  Of note, however, this finding 

has been the subject of debate [71-74]. It is reasonable to suggest that from an 

immunological perspective it would be beneficial if TLR signalling from the 

phagosome would affect the maturation of the phagosome, and thus the subsequent 

antigen processing and presentation. In particularly, since antigen uptake by DC can be 

quite unspecific [68] (paper III). Moreover, it is clear that phagosomes are cellular 

compartments from where TLR signalling also occure. Interestingly, data published 

earlier this year suggest that TLR signalling from phagosomes can lead to the 

recruitment of mitochondria via TRAF6 and the subsequent induction of mitochondrial 

reactive oxygen species (mROS) production, which increase the intraphagosomal 

killing of the bacterium Salmonella typhimurium [75]. Collectively, these findings 

further solidify the notion that intraphagosomal TLR activation might affect the 

maturation and function of the phagosome. 
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Endocytic processes in dendritic cells 

 

As mentioned earlier, the capacity of DC to ingest extracellular material is key for 

efficient intracellular antigen processing, the loading of antigens onto MHC molecules, 

and presentation to T cells. Dendritic cells use different endocytic pathways for antigen 

uptake, i.e., phagocytosis, macropinocytosis, and receptor-mediated endocytosis. 

Phagocytosis and macropinocytosis are two distinct endocytic processes, which are 

utilized by DC to ingest various antigens [76, 77]. In general, DC internalize small 

soluble extracellular antigens via macropinocytosis, including viruses, proteins, and 

fragments from bacteria and apoptotic cells [78-82], whereas the uptake of particulate 

material larger than 0.5 µm occurs via phagocytosis [76] (Figure 3).  

 

 

Figure 3. Schematic figure showing antigen uptake via macropinocytis and phagocytosis. 

 

Macropinosomes form as a result of plasma membrane ruffles that curve into open cups 

that then close and fuse, thereby trapping extracellular material [77, 83].  Thus, 

macropinocytosis proceeds independently of the material ingested particles. In contrast, 

phagosome formation is initiated and shaped by the particles they ingest [77]. At the 

molecular level, signalling in phagocytosis is localized in well defined short-range and 

medium-range membrane regions close to the particles that are internalized, whereas 

signalling for the regulation of macropinocytosis seems to be distributed more 

randomly [77]. Furthermore, phagocytosis can be subdivided into three distinct 

subtypes, i.e., “zipper phagocytosis”, “triggered phagocytosis”, and “sinking 

phagocytosis”. Despite the different spatial requisites for inducing signals that regulate 

the processes of macropinocytosis and phagocytosis, they share common signalling 

pathways, all of which are affected by TLR signalling [84]. 
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DC migration from peripheral tissues 

 

Toll-like receptor signalling initiates a process of morphological and functional 

maturation, leading to changes in the chemokine receptor profile that initiate migration 

from peripheral tissues towards the draining lymph nodes, where the DC activate the 

adaptive arm of the immune system [61, 85, 86]. During maturation, DC upregulate the 

chemokine receptor CCR7, in turn making them responsive to CCL19 and CCL21, 

which drives their migration to the draining lymph node T cell areas where antigens are 

presented to T cells [87-90]. Complementary roles in DC migration have also been 

suggested for CCR8-CCL1, CXCR4-CXCL12, and S1P-S1P1/3 [91-93]. However, 

CCR7 seem to be most pivotal [94]. In the absence of CCR7 DC fail to reach the lymph 

nodes, and DC in the spleen remain located in the marginal zone outside of the white 

pulp and T cell areas [95, 96]. Exactly how DC execute this complex journey from 

peripheral tissues to the T cell areas of lymph nodes is not fully understood. It has been 

shown that endothelial cells of lymph vessels upregulate adhesion molecules, e.g., 

ICAM-1 and VCAM-1, E-selectin, and chemokines, e.g., CCL5, CCL20, and CXCL5, 

in response to cytokine stimulation [97]. Moreover, it was shown that neutralizing 

antibodies to ICAM-1 and VCAM-1 hindered DC adhesion to and migration through 

the endothelium of lymph vessels both in vitro and in vivo [97]. A long these lines, it 

was also shown that mice deficient in ICAM-1 have impaired trafficking of Langerhans 

cells to the draining lymph nodes [98]. In contrast, earlier data by Erdmann et al. 

suggests that Langerhans cell migration into lymph nodes is not impaired in mice 

deficient in selectin ligands [99]. Moreover, it was recently been shown that DC 

deficient in all integrin heterodimers migrate to the lymph node in an unimpaired 

manner [100]. Thus, it is believed that DC can migrate from peripheral tissues into 

lymph nodes independently of integrins [31], suggesting that more of an amoeboid type 

of migration is utilized [100, 101]. An important feature of cellular movement and 

navigation through dense tissues is the capacity to degrade extracellular matrix. It has 

been speculated that specialized cellular protrusions, the so-called podosomes are of 

importance in this process. Podosomes are highly dynamic, large actin dense adhesion 

structures (Figure 4) that are found in a variety of cell types, such as osteoclasts, 

macrophages, and DC, all of which needs to degrade extracellular matrixes [102, 103]. 

In Rous sarcoma virus transformed cells, where podosomes were first described, the 

podosomes were found on the ventral surface [104-106]. Podosomes have since then 

been linked to different functions such as resorbtion of bone and trans-cellular 
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migration [107, 108]. Osteoclasts use their podosomes, for bone degradation [107, 

109]. In DC, however, podosomes thought to be used to enable migration through 

dense tissues [110]. This process involves matrix metalloproteinases (MMP), which are 

concentrated at the podosomes in order to degrade the connective tissue matrix [110-

112]. It has been suggested that podosomes act as pathfinders in DC and enable 

degradation of the extracellular matrix at the front of the moving cell to facilitate 

movement in dense connective tissues [110]. 

 

 

 

Figure 4. (A) Confocal microscopy picture of phalloidin-stained podosomes. (B) Transmission electron-

microscopy (TEM) high-resolution picture of a single pososomes. (C) Schematic figure of the actin 

cytoskeleton and some of the actin associated proteins, involved in the podosme structure.    

 

On their way to the lymph nodes DC process the antigens acquired for peptide loading 

onto MHC class I and class II molecules and for the subsequent presentation to CD8+ 

and CD4+ T cells, respectively [16, 19, 113]. The ingested antigen is degraded and 

either loaded onto MHC class II molecules in specialized lysosomal compartments 

[114-117], or can be transferred into the MHC class I presentation pathway through a 

process referred to as cross-presentation [78, 118, 119]. The MHC class I molecules are 

synthesized de novo and, after peptide loading in the endoplasmic reticulum, MHC-

I/peptide complexes are transported to the cell membrane. In contrast, newly 
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synthesized MHC class II molecules are transported to endolysosomal compartments 

where the peptides are loaded, followed by the transportation to the cell membrane. 

Toll-like receptor stimulation increases the efficiency of antigen processing and 

presentation for both the MHC class I and class II presentation pathways. Upon TLR 

activation both class I and class II molecules are stabilized on the cell surface, whereas 

in the absence of TLR activation MHC/peptide complexes are rapidly internalized and 

degraded [65, 120-122]. Furthermore, the generation of peptides for MHC class I and 

class II presentation is further enhanced by altered proteasome activity and lysosomal 

processing capacity, respectively [123-125]. On their way to the lymph nodes, TLR-

activated DC also starts to upregulate co-stimulatory molecules including CD80 and 

CD86, which are important for the activation of naïve T cells [126]. Toll-like receptor 

activation also triggers the induction of the co-stimulatory molecule, CD40, on DC, 

which interacts with CD40L on helper T cells.  The CD40-CD40L interaction leads to 

the further upregulation of co-stimulatory molecules and the production of cytokines by 

DC, which are key for the induction of adaptive immunity [61, 127]. Thus, when DC 

arrive in the lymph node they are ready for the activation of T cells. 
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INTRODUCTION TO THE WORK IN THIS THESIS  

 

In order to give an overview of the work I undertook for my thesis, in this section I 

will present the studies included. My thesis is composed of three studies that focused 

on different aspects of DC activation and the consequent downstream effects of such 

activation. Briefly, in paper I, the effect of low physiological temperature on key DC 

functions associated with both innate and adaptive immunity, was explored. In paper 

II, podosome formation and function in DC derived from mice lacking the actin-

severing and capping protein gelsolin, were analysed. In paper III, the effect of 

soluble TLR ligands, such as LPS, on the phagocytic capacity of DC, was 

investigated. In the following sections, I will start with an overview of the three 

papers included in the thesis, and explain the rationale and relevance of these 

projects. Then, the results will be presented and discussed in relation to existing 

literature in this field of research. Finally, I will describe the materials and methods 

used in these studies. For detailed descriptions of the studies on which my thesis is 

based, please read the papers that are included as appendices at the end of the thesis. 
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BACKGROUND TO THE PAPERS 

 

Dendritic cells are widely distributed throughout most tissues and have important 

functions in both immunity and tolerance; they are also considered candidate targets in 

new immunotherapy protocols [128]. However, DC in different locations of the body 

operate under various conditions and the route of administration of a DC-based 

vaccination is often via intra-dermal or subcutaneous injections in sites that have 

significantly lower temperatures than the core temperature. In the skin, the temperature 

can be as low as 26°C at the extremities at an ambient temperature of 20°C [129-131]. 

This fact is often ignored and most studies on DC biology so far have only been 

performed at 37°C or at fever-range temperatures [132-135]. To the best of our 

knowledge, no studies have thus far examined how low physiological temperatures 

affect DC antigen handling and immune stimulatory capacities. This prompted us to 

examine some key DC functions at a low physiological temperature of 28°C (paper I). 

Although we found that several DC functions are intact at this low temperature, we also 

found that several functions were affected by low physiological temperature. This 

includes NO production, podosome activity, and the capacity of DC, activated at 28°C, 

to elicit T cell proliferation. We observed that several DC functions were slightly 

delayed but otherwise they were relatively unaffected by low physiological 

temperatures, whereas other functions important for activation of the adaptive 

immunity were impaired. Collectively, our study demonstrates that temperature 

changes within the physiological range have the capacity to modulate DC functions.  

 

In order to activate T cells in the lymph nodes, DC migrate from peripheral tissues to 

the T cell areas of the draining lymph nodes. It is believed that podosomes facilitate 

migration through dense tissues and enable cells to penetrate barriers such as basement 

membranes and the endothelium [111]. However, their exact function in DC remains 

elusive. Several proteins involved in actin cytoskeleton remodelling have been 

suggested to be important for podosome dynamics and function [107, 136-140]. Since 

it was shown that the actin-severing and capping protein gelsolin is key for podosome 

formation and function in osteoclasts [107], gelsolin is commonly mentioned in the 

literature as an essential protein for podosome function [141-146]. Furthermore, in a 

paper by Hu and colleagues, a theoretical model for the regulation of podosome 
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dynamics that is dependent on the severing of actin filaments by gelsolin was presented 

[146]. Gelsolin was found to localize to podosomes already in the early studies of these 

structures, and gelsolin was also found in podosomes expressed by DC [110, 147]. 

However, it was reported that functions dependent on actin cytoskeleton rearrangement 

in DC seem to be independent of gelsolin [148]. This paper also reported that 

“podosome-like” structures were present in DC lacking gelsolin, but these structures 

were however not further investigated. Therefore, we investigated whether or not 

functional podosomes form in gelsolin-deficient DC. The actin-rich structures observed 

by West et al. [148], were indeed confirmed to be podosomes. Furthermore, we show 

that the dynamics and functions of the podosomes in DC are regulated independently of 

gelsolin.   

 

Phagocytosis is an important function of DC for sampling antigens for subsequent 

antigen presentation to T cells. Upon the recognition of microbial danger products by 

TLR the cytoskeleton of DC rapidly starts to reorganize, leading to the dissolution of 

podosomes, increased ruffling, and increased uptake of extracellular bulk fluids via 

macropinocytosis [68]. The studies of the effects of TLR activation on phagocytosis, 

however, show somewhat contradictory results. It was shown that macrophages 

phagocytosed TLR4 ligand–expressing Neisseria meningitidis in an TLR4 independent 

manner [149]. Moreover, phagocytic uptake of TLR2-stimulating Zymosan proceeded 

normally in TLR2- or MyD88-deficient macrophages [150]. In contrast, when 

RAW264.7 cells were stimulated with LPS, for 24h before adding Escherichia coli, the 

phagocytic uptake was stimulated in a TLR4-dependent but MyD88-independent 

manner [151]. A long these lines, it was shown that TLR ligands stimulate the 

phagocytic uptake of E. coli and Staphylococcus aureus, while having negligible 

effects on the phagocytic uptake of latex beads [152, 153]. Although, many studies 

have been performed to explore the consequences of TLR activation and phagocytosis, 

these studies were all carried out after several hours of pre-activation. Thus, these 

studies mainly reflect the results of the induction of gene programmes and the 

subsequent synthesis of proteins involved in phagocytosis, e.g., upregulation of 

phagocytic receptors, rather than the immediate consequences of pathogen recognition. 

However, the process of phagocytosis is likely to be influenced within minutes of TLR 

ligation and an immediate increase in antigen uptake might be beneficial to the host 

both in terms of limiting the infection as well as in boosting antigen processing and 

presentation. In the case of bacterial infection, the active portion of TLR2 binding 
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lipoprotein when anchored in the bacterial membrane, remain unreachable for the 

ligation to TLR2 and, similarly, the TLR4-binding portion of LPS, i.e., lipid A, is 

integrated in the lipid bi-layer of Gram-negative bacteria, remaining inaccessible for 

TLR4 ligation. Consequently, lipoprotein and LPS ligation to the respective TLR most 

likely occurs when released due to disruption of the bacterial membrane. Thus, it may 

be of relevance to examine TLR ligation with soluble TLR ligands. Herein we study 

how soluble TLR ligands affect the phagocytic machinery in DC, proximal to gene 

transcription. 
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PRESENTATION OF THE PAPERS 

 

Paper I: DC function at low physiological temperatures 

 

The temperature of the body is tightly regulated. It is known that an increased body 

temperature modulates a wide array of immune functions. However, how physiological 

temperatures below the core temperature affect cells of the immune system remains 

unclear. In order to investigate whether or not a low physiological temperature affects 

the innate functions of DC we started by examining the capacity of DC to respond to 

TLR activation. Although we observed a delay in activation of the ERK and p38 

MAPK pathways downstream of TLR activation at 28°C compared to 37°C, the DC 

also responded to TLR stimulation at 28°C. Therefore, we investigated whether or not 

cellular processes, which are dependent on TLR signalling, were affected by delayed 

phosphorylation and activation. The results showed a delayed, but not impaired, TNF 

secretion and macropinocytic uptake in response to TLR stimulation. Our cytokine data 

are along the lines of some previous studies, which showed that temperature modulates 

cytokine production and secretion in different cell types [154]. However, published 

data on cytokine secretion are somewhat contradictory, where some studies showed 

increased cytokine production whereas others showed decreased cytokine production. 

For example, Yan et al. showed that a temperature within the fever-range (39.5°C) 

promoted TLR4 expression and MAPK signalling in DC leading to the increased 

production of IL-6, IL-10, and IL-12 [155]. In contrast, studies by Hagiwara et al. on 

RAW264-7 cells, suggested that the cytokine release of HMGB1, IL-1!, IL-6, and TNF 

was reduced following LPS stimulation at 40°C and 34°C compared to 37°C [156]. In 

study by Kirkley et al., who also used RAW264-7 cells, it was shown that TNF 

secretion was increased at 31°C compared to 37°C, while TNF secretion was decreased 

at 39°C. However, in the same study, IL-6 secretion was decreased at 31°C compared 

to 37°C and remained unchanged at 39°C. Moreover, the authors showed that IL-10 

secretion was decreased on either side of 37°C, thus suggesting that temperature 

alterations might have different effects on cytokine secretion [157]. In addition, it was 

also shown that fever-range thermal conditions differentially regulate the cytokine 

production in immature or mature murine bone marrow-derived DC, suggesting that 

fever might have a direct regulatory capacity on DC [135]. In the present study, we 

observed a delayed TNF production but the levels of secreted TNF were similar to 
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those cells kept at 37°C, 8 hours after LPS activation. If cytokine secretion in our study 

had been measured only at one time point, i.e., at 4 h, 8 h, or at 18 h after TLR 

activation, the interpretation of the results would have been quite different depending 

on which time point was analysed (Figure 5) This may explain the varying results in the 

abovementioned studies, and it stresses the importance of performing adequate kinetic 

measurements.  

 

 

 

Figure 5. Adapted from Figure 3, paper I. Kinetics of TNF production after TLR activation at 28°C and 

37°C. 

 

Next, the capacity of DC to ingest antigens via phagocytosis and macropinocytosis was 

assessed at 28°C and 37°C. We found that phagocytosis of opsonized sheep red blood 

cells (SRBC) by DC was unaffected at 28°C compared to phagocytosis at 37°C. 

Moreover, although delayed, the TLR stimulated dextran uptake via macropinocytosis 

reached similar levels at 28°C and 37°C. However, the total amount of material 

ingested by the DC did not appear to decrease at the lower physiological temperature. 

The results of studies on how different physiological temperatures affect antigen uptake 

via phagocytosis are similar to the results of studies on cytokine secretion also 

somewhat contradictory. On the one hand it was shown that murine peritoneal 

macrophages increase their phagocytic uptake by 40% when incubated at 39°C 

compare to when kept at 37°C; and on the other hand, when incubated at 41°C the 

levels of uptake decreased [158, 159]. Collectively, this suggests that even small 

differences in temperature could have significant effects on phagocytosis. In contrast to 

this, Utoh and Harasaki observed no significant alterations in the phagocytosis of 

opsonized latex beads by human neutrophils of were to be found in the range of 25-
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42°C [160]. We found that antigen uptake is unaffected by low physiological 

temperature. This might appear to be rather surprising from a biochemical point of 

view, since membrane fluidity could be affected by a decrease in temperature. 

However, from an immunological perspective, our results might be less surprising since 

28°C is a common temperature in parts of the skin, thus, if the endocytic capacity was 

compromised at this temperature one could envisage that subsequent functions of DC, 

important in the induction of adaptive immunity, would be impaired.  

 

Dendritic cells produce NO during the early defense against pathogens after TLR 

activation [161, 162]. If low physiological temperatures affects NO production remain 

unclear. Interestingly, we observed that production of the NO metabolite nitrite after 

TLR stimulation was severely impaired at 28°C (Figure 6). One could speculate that 

lower temperature might modulate and hinder NO production in order to ensure 

appropriate immune activation.  

 

 

 

Figure 6. Adapted from Figure 3, paper I. NO production after the indicated time points at 28°C or 37°C, 

LPS treated and untreated. 

 

The migration and homing of lymphocytes and DC to lymphoid organs are key for the 

induction of immunity and tolerance. Fever-range temperatures have been shown to 

increase the homing of circulating lymphocytes to lymph nodes by increasing L-

selectin-dependent adhesive interactions between lymphocytes and high endothelial 

venules (HEV) [163, 164]. Chen and colleagues recently showed that fever-range 

temperatures increase the display of intercellular adhesions molecule 1 (ICAM-1) and 
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CCL21 specifically in HEV. This suggests that HEV are sensitive to thermal changes 

and that increase in temperature intensifies immune surveillance by increasing 

lymphocyte trafficking to lymphoid organs during inflammation [165]. A long these 

lines, it was also shown that DC migration, similar to lymphocyte migration, is 

stimulated by fever-range hyperthermia [132]. Hence, it is not surprising that treatment 

at fever-range temperature enhances both humoral and cellular immune response [164, 

166]. Although, it has been show that hypothermia leads to a decrease in lymphocyte 

circulation [167], no studies have to my knowledge addressed the effects of low 

physiological temperature on DC. It has, however, been shown that neutrophils display 

a significant impairment of migration at 29°C in vitro [168]. We observed that 28°C did 

not affect DC migration through uncoated transwell filters and podosome formation 

was not affected. However, we also found that the capacity of podosomes to degrade 

the matrix and the ability of DC to migrate through Matrigel-coated transwell-

membranes were impaired at 28°C compared to at 37°C. These data suggest that an 

increase in temperature in peripheral tissues, as a consequence of inflammation, might 

enhance the ability of DC to migrate to lymphoid organs.  

 

We next examined the effect of 28°C on the antigen uptake and processing capacity of 

DC by studying the presentation of the HEL (46-61) epitope on H-2 I-Ak using the 

specific antibody C3H4 [169]. We found no inhibitory effect of low temperature on the 

generation of I-Ak/HEL (46-61) complexes in unstimulated DC, suggesting that steady-

state antigen processing and presentation, which are important for the maintenance of 

peripheral tolerance [2]. A consistent trend of higher generation of the HEL (46-61) 

epitope was, however, observed at 37°C after LPS stimulation in five experiments, 

although this trend did not reach statistical significance (p>0.05). When studying the 

surface molecule expression of co-stimulatory molecules, we observed that the 

upregulation of CD40 was reduced when the DC were activated and incubated at 28°C, 

but that this upregulation was rescued when the DC were moved to 37°C after 4 h of 

activation at 28°C. This experimental setup was used to mimic the local increase in 

temperature during inflammation, or when DC migrates to deeper tissues with a higher 

temperature, i.e., from the skin to draining lymph nodes. Because the CD40-CD40L 

interaction is important in the activation of naïve T cells, the lack of upregulation of 

CD40 at a low temperature could prevent inappropriate naïve T-cell activation by DC 

in the skin.  
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These temperature shift experiments imply that the inhibitory effect of low temperature 

can be reversed if the temperature is increased. However, the capacity of DC that had 

taken up antigens and been activated by TLR at 28°C and then shifted to 37°C after 4 

hours to activate T cells was decreased. This observation was also confirmed using an 

allogenic setting, suggesting that temperature modulations of the ability of DC to 

activate T cells are not only dependent on antigen processing and presentation. Thus, 

other factors important for the T cell-stimulatory function of activated DC are 

suppressed when DC are activated at 28°C. The proliferation of T cells has been shown 

to be sensitive to lower 29-33°C temperatures, however, effector cytolytic activity of T 

cells is markedly insensitive to temperature changes. Hence, it has been speculated that 

fever or local tissue inflammation might act to temporarily ablate the cooler portions of 

normal thermal gradients, thereby selectively amplifying the emergence of T cell 

immunity in peripheral tissues [170]. Collectively, our results suggest that differences 

in temperature need to be taken into account when developing immunotherapeutic 

strategies that target DC at different locations. In particular, DC that have taken up 

antigens and been activated at 28°C have an impaired ability to activate T cells. 
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Paper II: Gelsolin-independent podosome formation in DC  

 

The actin-severing and capping protein gelsolin is an actin-cytoskeleton-regulating 

protein that has been reported to localize to podosomes in several cell types. It has also 

been reported to be important for the formation and function of podosomes in osteclasts 

[107, 147]. Moreover, in a paper by Hu et al., a theoretical model for podosome 

regulation was postulated in which gelsolin played a central role [146]. Thus, gelsolin 

is often mentioned in the literature as an essential protein for podosome formation [143, 

144, 171-174]. In a previous paper by West et al. podosome-like structures were 

observed in gelsolin-deficient DC; however, these structures were not characterized 

[148]. Thus, we decided to study these podosome-like structures in DC in order to 

clarify whether or not they were indeed podosomes and, if so, whether or not they were 

functional. In contrast to what was previously shown in osteoclasts, we concluded in 

paper II that gelsolin is dispensable for podosome formation and function in DC, 

suggesting that podosomes are differentially regulated in DC and osteoclasts.  

 

In the paper by West et al. actin was stained using phalloidin in gelsolin-deficient DC 

and showed structures that resembled podosomes [148]. We confirmed that these 

structures were indeed podosomes by using an antibody specific for the podosome-

associated protein vinculin [173]. The number of cells presenting podosome structures 

was quantified and no difference was found between gelsolin-deficient and wild-type 

DC. Furthermore, the podosomes were visualized using transmission electron 

microscopy (TEM). The podosomes were clearly identifiable in both the wild-type and 

the gelsolin-deficient DC. After having established that the formation of podosomes in 

DC is independent of gelsolin, we continued these studies by investigating the 

dynamics of podosome assembly and disassembly in gelsolin-deficient DC. Dendritic 

cells were transduced using a retroviral vector coding for GFP-actin, after which the 

cells were studied using live-cell imaging. The quantitative analysis of the life-time of 

podosomes in DC revealed that the dynamics of podosome assembly and disassembly 

in DC are unaffected by a lack of gelsolin. In DC, it was shown that podosomes are 

negatively regulated by signalling downstream of TLR. Hence, the activation of DC 

with soluble TLR ligands leads to a rapid and transient disassembly of podosomes and 

the concomitant loss of migratory capacity [68, 112]. One could speculate that this 

transient halt in migration might serve to prevent DC from migrating from the site of 

infection for a short period and to focus them on acquiring antigens via 
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macropinocytosis and/or phagocytosis, which are boosted upon TRL activation [68] 

(paper III), (Figure 7). 

 

 

 

Figure 7. Adapted and modified from West et al. [68]. Transient boost in macropinocytic uptake after 

LPS stimulation and concomitant podosome disassembly. 

 

Podosome dynamics were further studied by the quantifying the percentage of wild-

type and gelsolin-deficient DC that exhibited podosomes after LPS stimulation. The 

cells were stimulated for 20 min, as this is the peak time-point when most cells present 

no podosomes. No difference in podosome disassembly was found in the presence or 

absence of gelsolin. Thus, the actin severing activity of gelsolin is dispensable in 

podosome disassembly induced by TLR signalling.  

 

Finally, the functionality of podosomes in the absence of gelsolin was investigated. In 

order to address this, the capacity of DC to degrade extracellular matrix was quantified. 

Glass cover-slips were coated with Oregon-green gelatin, after which DC were seeded 

on top and incubated over night before analysis. Fluorescence microscopy was used to 

quantitatively analyse the total area of degraded gelatin (Figure 8).  
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Figure 8. a) Actin stained with phalloidin, b) Oregon-green gelatin, c) nuclei stained with dapi, d) over-

laying picture showing how the DC have degraded an area of gelatin. The area of degraded gelatin could 

then be measured and quantified.   

 

Gelsolin-deficient DC were found to be able to degrade the gelatin as efficiently as 

wild-type DC. In paper I, we showed that the migration of DC migration in a transwell 

system correlates well with the matrix degrading activity of their podosomes. To 

further investigate the functionality of DC deficient in gelsolin, we asked whether or 

not gelsolin is required for this capacity to degrade extracellular matrix in order to 

migrate through dense tissue matrixes. In order to address this, a transwell migration 

assay, where the membranes were coated with a dense layer of Matrigel, was used. We 

found that gelsolin-deficient DC and wild-type DC migrate equally well from the upper 

chamber with the Matrigel-coated membrane to the lower chamber.  

 

In conclusion, the actin-severing and capping protein gelsolin is dispensable for 

podosome formation, dynamics, and function in DC. Our data suggest that podosomes 

in different cell types may be differentially regulated. It is possible that rather than 

being one structure found in many cell types, as described in the current literature, 

podosomes could actually be a family of structures with many similarities but also 

many differences. Thus, the data obtained on podosomes from experiments on one cell 

type may not necessarily apply for podosomes in all other cell types.  
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Paper III: Toll-like receptor stimulated phagocytosis in dendritic cells 

 

It has previously been shown that TLR activation with soluble LPS leads to a rapid and 

transient increase in the capacity of DC to ingest extracellular fluids via 

macropinocytosis [68]. Whether or not the stimulation of DC using soluble TLR 

ligands also affects the uptake of particulate material via phagocytosis has not yet been 

shown. The studies on TLR and their role in phagocytosis have so far examined 

whether or not TLR ligands affect the phagocytic capacity post protein synthesis, i.e., 

several hours after pathogen recognition. It is possible that when a pathogen is to be 

ingested, it would be favourable for the host cell to increase its phagocytic activity 

immediately after pathogen recognition. However, most studies on TLR activation and 

phagocytosis have studied phagosome maturation or phagocytic capacity after a period 

of 12 to 24 h post-TLR activation [69, 70, 73, 149-153]. 

 

It is well known that many of the molecules involved in cytoskeletal reorganization are 

activated upon TLR activation. More recently, a quantitative examination of the 

macrophage phosphoproteome also showed profound global changes in the 

phosphoregulation in cells downstream of TLR activation [84, 175]. In a study by 

Weintz et al., 1850 phosphoproteins with 6956 phosphorylation sites were identified. It 

was shown that TLR activation caused major dynamic changes in the 

phosphoproteome, with about 24% being upregulated and 9% being downregulated, 

identifying the cytoskeleton as a major hotspot of LPS regulated phosphorylation [84]. 

These studies further solidify previous speculations that TLR activation could affect the 

processes of phagocytosis [176-178]. 

 

In order to investigate whether or not TLR engagement could affect phagocytosis in 

DC, the phagocytic capacity of DC stimulated with the TLR4 agonist LPS for 30 min 

was studied. We found that LPS stimulation results in a significant transient increase in 

DC that ingests polystyrene beads shortly after activation. In order to confirm that the 

beads associated with DC were indeed internalized, the actin polymerization inhibitor 

cytochalasin D was used, and showed that the association with three or more beads 

represents a reliable measure of internalization; therefore, three beads were therefore 

set as a cut-off level for phagocytosis in the following experiments. Moreover, the 

inhibitor dimethyl amelioride (DMA), which specifically blocks macropinocytosis 

[179], was used to exclude the possibility that the beads were taken up via 
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macorpinocytoisis and not phagocytosis. Similar results to those found in previous 

studies [180, 181], were obtained, where the uptake of dextran was markedly decreased 

in the presence of DMA whereas the uptake of beads was not affected, demonstrating 

the functionality of DMA. Thus, we concluded that the LPS-stimulated uptake of 

polystyrene beads by DC was indeed mediated via phagocytosis. Internalization of the 

beads was further confirmed using immunofluorescence microscopy (Figure 9). We 

also confirmed that the stimulation of DC with LPS for 20 minutes, results in uptake of 

significantly more beads. We, thus, conclude that stimulation of DC with LPS leads to 

enhanced phagocytic uptake of 1 µm polystyrene beads early (20-30 min) on after 

stimulation.  

 

 

 

Figure 9. Adapted from Figure 1, paper III. Microscopy analysis of the capacity of DC to phagocytose 

polystyrene beads. A, Immunofluorescence images of Alexa 647-stained untreated or LPS-activated DC 

that had phagocytosed polystyrene beads. B, Quantification of the numbers of beads ingested by 

untreated (open bars) or LPS-treated (black bars) DC.  

 

Next, we studied whether also other TLR ligands could stimulate phagocytosis. Indeed, 

all four TLR ligands studied, TLR1/2, TLR4, TLR6/2, and TLR9 ligands, were all 

capable of inducing increased phagocytic uptake in DC. Since LPS was the most 

effective stimulus for inducing enhanced phagocytosis, all subsequent assays were 

performed using LPS as the model TLR ligand. Next, we studied the kinetics of LPS-

stimulated phagocytosis in DC. When studying the kinetics of phagocytosis, we found 

that the stimulation of DC was rapid; 10 min after LPS stimulation a significant 

increase in phagocytosis was observed. This suggests that the rapid and transient boost 

in phagocytic capacity most likely precedes gene transcription. This was confirmed by 

studying phagocytic uptake in the presence of actinomycin D, which blocks gene 
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transcription [182]. Thus, we concluded that the TLR-stimulated boost in phagocytic 

uptake precedes the effects of gene transcription.  

 

The ligation of TLR4 results in a trans-membrane signalling transduction, which 

activates intracellular signalling via TIRAP-MyD88-dependent and TRAM-TRIF-

dependent pathways [183, 184]. It has previously been shown that TLR4 activation has 

the capacity to regulate gene programmes involved in phagocytosis, independently of 

MyD88 [151]. However, since TLR4 signalling downstream of both MyD88 and TRIF 

is complex and to some extent overlaps, studies on MyD88-deficient cells alone, such 

as those of Kong et al. [151], may not reveal alterations in the process of phagocytosis 

of pathogens expressing TLR4 ligands. Hence, the participation of TLR4, MyD88, and 

TRIF on the LPS-stimulated phagocytosis were investigated using mice deficient in 

either MyD88 or TRIF, as well as in a mouse strain deficient in both MyD88 and TRIF, 

i.e., a “double knock-out” mice. First, we confirmed that the LPS-stimulated uptake 

only depended on TLR4 by studying the uptake in DC derived from mice deficient in 

TLR4. Next, we observed that in DC deficient in MyD88 or TRIF the stimulation of 

phagocytosis was only partially decreased, while in DC deficient in both MyD88 and 

TRIF the stimulation of phagocytic uptake was completely ablated. Thus, TLR4 

signalling through both adaptor molecules, MyD88 and TRIF, was required for the 

optimal stimulation of phagocytosis proximal of protein synthesis.  

 

In order to address whether or not TLR activation could boost the phagocytic uptake of 

larger and, to some extent, more physiological substrates, we used SRBC labelled with 

PKH26 or apoptotic cells labelled with CFSE. Of note, all extracellular SRBC were 

removed by lysis before analysis to ensure that only internalized SRBC were counted. 

The number of DC that phagocytosed SRBC upon LPS stimulation was significantly 

increased. A long these lines, we observed that TLR4-stimulated DC more efficiently 

phagocytosed apoptotic A20 cells. Thus, TLR4 activation has the capacity to augment 

the phagocytic uptake of cellular substrates. The target substrates studied above all 

share the common feature of being relatively weak inducers of phagocytosis, although 

one could argue that apoptotic cells trigger phagocytosis comparatively well. In order 

to examine whether or not TLR activation also has the capacity to stimulate the uptake 

of opsonized particles, which are potent inducers of phagocytosis, we used anti-SRBC 

antisera. We found that the effect of stimulating phagocytic uptake with TLR4 

activation, as seen when studying the non-opsonized SRBC, decreased with increasing 
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concentrations of anti-SRBC antisera, suggesting that the TLR stimulation of 

phagocytosis is more prominent when the target substrates are poor inducers of 

phagocytosis. Similarly, it was previously shown that LPS is unable to augment the 

phagocytic uptake of particles opsonized with IgG [185]. Thus, considering all of the 

above, it is reasonable to suggest that TLR signalling does not further increase Fc-

receptor-mediated phagocytosis. In summary, we provide evidence to show that soluble 

TLR ligands have the capacity to rapidly boost the phagocytosis process in DC, 

proximal to gene transcription. 
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MATERIALS AND METHODS 

 

A brief description of the methods used in these studies is provided below. For a more 

detailed description, please see the “Materials and methods” section in each of the 

papers included in the thesis. 

 

Mice and bone marrow–derived DC 

 

In these studies, we chose to use DC derived from murine bone marrow using the GM-

CSF, initially described by Inaba et al. [32]. This pivotal discovery provided a robust 

experimental system that has been of tremendous importance for the studies of DC 

biology. Furthermore, this system has the advantage of generating large numbers of 

DC, beneficial for the experimental setup used in our studies. In addition, it is still the 

most frequently used technique for generating primary DC, thus, enabling us to readily 

compare the data obtained to data from other studies within this field. More recently, it 

was been shown that the DC derived using this system seem to be equivalent to certain 

DC that emerge in vivo, in particular those that emerge upon inflammation [186]. 

Retrospectively, the Flt3-ligand-derived DC could also have been used for these studies 

as the DC derived using the Flt3-ligand might better represent the DC found at steady-

state; however, these cell cultures are less homogenous and give rise to two DC 

subsets: CD24lowCD11bhigh and CD24highCD11blow [186].  

 

The mice used were six to ten weeks old, breed and housed under specific pathogen-

free conditions. In paper I, C57BL/6 (B6) and C3H/hen mice, were used and housed at 

the Department of Microbiology Tumour Biology and Cell Biology Animal Facility, 

Karolinska Institutet. In paper II, B6 and gelsolin knock-out mice with a B6 

background were housed in the animal facility at the Translational Medicine Division, 

Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School or 

at the Institute of Genetics, University of Bonn. In paper III, B6 and B6.TLR4-/-, 

B6.MyD88-/-, B6.TRIF-/-, and B6.MyD88-/-TRIF-/- mice were bred and housed at the 

Department of Microbiology, Tumour Biology, and Cell Biology Animal Facility, 

Karolinska Institutet or at the Immunobiology Laboratory, London Research Institute, 

Lincoln’s Inn Fields Laboratories, London. The DC were generated from murine bone 
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marrow from femur and tibia as previously described [32], and also described in the 

papers.  

 

Analysis of TNF and NO secretion (paper I) 

 

In paper I, the capacity of DC to secrete TNF and NO in response to LPS stimulation 

at 28°C and 37°C was evaluated using and enzyme linked immunosorbent assay 

(ELISA) and Griess assay, respectively.  

 

Internalization assays (paper I and paper III) 

 

In both papers I and III, we studied the uptake of particles, including polystyrene 

beads and SRBC, via phagocytosis and the uptake of fluorescein isothiocyanate 

(FITC)-dextran via macropinocytosis. The TLR4 ligand LPS was used throughout 

paper I as the model TLR ligand, whereas, in paper III, other TLR ligands other than 

LPS (TLR1/2, TLR2/6 and TLR9) were also used. In order to study phagocytosis, after 

the DC were stimulated with TLR ligands, 1 µm yellow/green fluorescent polystyrene 

beads were added to each well at a bead to DC ratio of 40-50:1 and incubated for 30 

minutes. For the studies on macropinocytosis, 70-kDa FITC-dextran was used and 

added to the cells for 20 minutes. The uptake of FITC-dextran is commonly used to 

investigate uptake via macropinocytosis [187-189]. The cells were washed before 

staining on ice with anti-CD11c mAb, followed by an additional washing step. 

Polystyrene bead uptake by the DC was quantified by flow cytometry using a 

FACSCalibur cytometer and CellQuest software. In paper III a variety of compounds 

that inhibit various molecular processes were used to determine the phagocytic uptake 

process. Moreover, dimethylamelioride was used to inhibit macropinocytosis, 

specifically. The inhibitors were added to the cells 30 minutes before TLR stimulation. 

 

To study the phagocytic uptake of cells we used non-opsonized or opsonized SRBC or 

apoptotic cells. The SRBC were stained using PKH-27; and for opsonization the SRBC 

were incubated with an anti-SRBC antisera. The DC were harvested and transferred to 

a 96-well plate as described above. The SRBC were added to the DC at an SRBC to 

DC ratio of 20-30:1 and incubated for 30-45 min, after which the cells were spun down 

and any extracellular SRBC were lysed with RBC lysis buffer. The cells were then 
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washed twice before staining with anti-CD11c mAb and incubated on ice, after which 

the cells were washed extensively. Phagocytosis was quantified using flow-cytometry 

as described above. In order to study the uptake of apoptotic cells, the A20 cell line, an 

Fas apoptosis sensitive B cell lymphoma [190, 191], was used. These cells were first 

stained with CFSE after which FasL mAb was added to the cells to induce apoptosis. 

The cells were incubated for 8 h, washed twice, added to the DC at a apoptotic cell to 

DC ratio of 20:1 and incubated for 30-45 min. The DC were then stained, washed and 

analysed by flow cytometry, as described above.  

 

Immunofluorescence microscopy analysis of phagocytosis (paper III) 

 

For the immunofluorescence microscopy, DC were processed in a similar way to the 

bead uptake assay described above. After washing in PBS the cells were fixed with 4% 

PFA in PBS for 15 min. The cells were then washed again with PBS and permeabilized 

using Triton X-100 in TBS. The actin cytoskeleton was stained with Alexa 647 

phalloidin. The cells were then washed in TRIS buffered saline (TBS), resuspended in 

ProLong Gold anti-fade mounting medium containing DAPI on glass slides, and 

overlaid with glass coverslips. The cells were then allowed to set at room temperature 

in the dark overnight. Cells were imaged with a Delta Vision Spectris microscope, and 

the image stacks were deconvolved with the Delta Vision SoftWorks software. The 

deconvolved stacks of images taken through the cells were then further analysed with 

ImageJ software.  

 

Western blot analysis (paper I and paper II) 

 

In paper I and paper II Western blot analysis was performed in order to study 

phosphorylation status of ERK and MAPKAP2 (paper I) Western blotting was also 

used to confirm the presence of gelsolin in wild-type DC as well as absence of gelsolin 

in gelsolin-deficient DC (paper II). 

 

In order to detect gelsolin, day 6 DC derived from wild-type or gelsolin-deficient mice 

were analysed. The DC were, without prior treatment, prepared in sample buffer, 

separated on gel, transferred to membranes, and stained with anti-gelsolin antisera. To 

assess the activation status of the ERK and P38 MAPK pathways, DC were activated 
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with LPS for the indicated time points at 37°C or 28°C. The cells were then prepared in 

sample buffer, separated on gel, transferred to membranes, and stained anti-phospho-

ERK or anti-phospho-MAPKAPK2 antisera. Equal loading was confirmed by actin 

staining. The chemiluminescent signals were captured with a digital LAS 4000 system 

(Fuji Film Life Science), and the signal intensity was analysed with ImageJ software 

(http://rsbweb.nih.gov/ij/).  

 

Podosome visualization and evaluation  (paper I and paper II)  

 

In paper I, sterilized glass coverslips were placed in bottom of each well of 24 well 

tissue culture plates, and cell suspensions containing day 6 DC were added. The cells 

were then incubated at 37°C or 28°C after which the cells were fixed for 15 min using 

pre-warmed (37°C) 4% PFA. The actin cytoskeleton was stained with phalloidin 

followed by a step of extensive washing, using PBS. In paper II, the podosomes were 

visualized by vinculin staining using an FITC anti-vinculin antibody followed by 

staining of the actin cytoskeleton with TRITC-phalloidin. The staining procedures were 

followed by extensive washing using PBS. The coverslips were then mounted with 

ProLong Gold antifade containing DAPI. The morphology of the actin cytoskeleton 

and the podosome structures were observed using a Delta Vision Spectris microscope 

and analysed with ImageJ software. The percentage of DC that exhibited podosome 

structures was calculated. To visualize and evaluate the capacity of podosomes to 

assemble and disassemble in paper II, DC from gelsolin-deficient and wild-type mice 

were transduced with a GFP-actin encoding retrovirus. The DC were then seeded in 

glass-bottom petri dishes and monitored using a DeltaVision Spectris live cell imaging 

system. The podosome lifetime was quantified from the videos obtained using the 

MTrackJ analysis plugin for ImageJ software (http://imagej.nih.gov/ij/). 

 

Extra-cellular matrix (ECM)-degrading capacity (paper I and paper II) 

 

The capacity of podosomes to degrade extracellular matrix was evaluated using a 

model in which degradation of fluorescent gelatin is measured and quantified. This 

approch has previously been described [192], although some modifications were made 

for the present study. Ethanol-sterilized coverslips were coated with Oregon-green 

gelatin. After an extensive washing procedure to remove PFA, used to stabilize the 



 

 32 

gelatin, a day 6 DC cell suspension was added onto the gelatin-coated coverslips and 

incubated overnight before fixing. Then the cells were stained with phalloidin and 

mounted as described above. Images were acquired using a Delta Vision Spectris 

microscope. In paper II, the percentage of the image area that lacked a fluorescent 

signal from the Oregon-green gelatin, i.e., degradation as result of podosome function 

was analysed and quantified using ImageJ software.  

 

Transmission electron microscopy of the podosome ultra-structure (paper I) 

 

In paper II, the ultra-structure of the podosomes expressed in gelsolin-deficient DC 

compared to the wild-type was assessed using transmission electron microscopy 

(TEM).  The cytoskeleton connected to the ventral cell surface membrane of the DC 

was prepared as previously described [193], with some modifications. In brief, ventral 

membrane preparations were made by mechanical fragmentation of the cells 

(”unroofing”) followed by fixation. The samples were rapidly frozen on a helium-

cooled block, freeze-dried, rotary shadowed with either platinum to tantalum-tungsten, 

and stabilized with 5 nm of carbon without rotation. The preparations were picked up 

on grids and viewed in the EM at 80 kV. 

 

Migration assay (paper I and paper II) 

 

In order to study migration, two transwell systems were used in paper I.  Transwell 

membrane inserts were coated with a thin layer of Matrigel, just covering the filter area, 

or they were left untreated. In the uncoated transwell system the DC could freely 

migrate from the insert to the lower chamber, whereas in the Matrigel-coated system, 

the cells needed to degrade and penetrate the Matrigel in order to reach the lower 

chamber. Thus, this system provides a functional readout of the collagenolytic activity 

of the cells, followed by migration. The cells were harvested and seeded into the 

transwell inserts, and then incubated for the indicated times. The cells that had migrated 

to the lower chamber were counted in Bürker-chambers using trypan blue exclusion. In 

paper II, only the Matrigel coated system was used, and the cells counted Bürker-

chambers and flow-cytometry. The cells were stained with anti-CD11c mAb and 

analysed by flow cytometry using a FACSCalibur cytometer and CellQuest software. 
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Evaluation of the cell surface expression, of DC maturation markers (paper I) 

 

The DC were activated with LPS as described above and incubated overnight at 37°C 

or 28°C. The Fc receptors were blocked using 2.4G2 Fc blocking antibody before 

staining for the flow cytometric analysis. The cells were stained with anti-CD40 PE, 

anti-CD86 FITC and anti-CD11c Alexa 647. All stainings were performed on ice, after 

which the cells were washed and analysed by flow cytometry using a FACSCalibur 

cytometer and CellQuest software. 

 

Antigen processing and presentation (paper I) 

 

To measure antigen processing and the subsequent loading of peptides onto MHC class 

II at different temperatures, Hen egg lysozyme (HEL) and DC from C3H/HeN mice (I-

Ak) were used. Different concentrations of HEL were used and the DC were either 

activated using LPS or they were left untreated. The DC were then incubated overnight 

at 37°C or 28°C, after which the cell surface expression of I-Ak/HEL (46–61) peptide 

was measured by staining with Alexa 647-conjugated C4H3 mAb, which recognizes 

this peptide-MHC class II complex [169]. The DC were analysed using a FACSCalibur 

cytometer and CellQuest software. 

 

T-cell proliferation assay (paper I) 

 

To study whether or not low physiological temperature affects the capacity of DC to 

induce T cell proliferation, the DC were incubated with ovalbumin (OVA) in the 

presence of LPS at 28°C or 37°C for 4 hours. The DC were then washed and seeded 

into 96-well plates at different concentrations in triplicate. The T cell receptor-

transgenic OT-II T cells were added to the wells, and the cells were incubated at 37°C 

for 72 hours. Importantly, the T cells were not exposed to lower temperatures. 

Allogenic stimulation was performed using bone marrow derived DC from C57BL/6 

mice and C3H/HeN spleen CD4+ T cells. The allogenic DC were seeded into 96-well 

plates in triplicates. The DC were stimulated with LPS or left untreated for 4 hours at 

28°C or 37°C and then, the DC were then washed extensively, after which purified 

CD4+ T cells were added, and incubated at 37°C for 72 hours. Then, [3H]thymidine was 

added to each well of the T-cell cultures during the last 16 h. The cells were harvested 
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with a TOMTEC cell harvester onto filters, and scintillation sheets were added. The T 

cell proliferation was then measured using a !-counter. 

 

Ethics statement 

 

All animal experiments were performed in accordance with national and institutional 

guidelines. In papers I-III the experiments were approved by the Stockholm Animal 

Ethical Committee North (Stockholms Norra Djurförsöksetiska Nämnd), application 

numbers; N269/07 and N64/11. In paper II, the wild-type and gelsolin knock-out mice 

were bred and used in accordance with the guidelines at the Translational Medicine 

Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical 

School, Boston, Massachusetts, USA, or at the Institute of Genetics, University of 

Bonn, Bonn, Germany. Moreover, in paper III, the MyD88 and TRIF knock-out mice 

were bred and used in accordance with the guidelines at the Immunobiology 

Laboratory, London Research Institute, Lincoln’s Inn Fields Laboratories, London.   

 

Statistical analysis 

 

In paper I, the statistical analysis was performed using the single factor ANOVA test 

plugin in Microsoft Excel. In Papers II and III, the statistical analysis was performed 

using Graphpad Prism v.5 software and the two-tailed non-parametric Mann-Whitney 

test.  
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