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ABSTRACT

Elevated level of LDL is the most important risk factor for atherosclerosis. ApoB100 is the
only unexchangeable protein in LDL particle. Recent reports have shown that native peptides
of ApoB100 trigger activation of adaptive immune responses. Whether ApoB100 can activate
innate immune response is less-known.

In this thesis, we identified a native ApoB100 peptide from human ApoB100, named
ApoB100 danger associated signal-1 (ApoBDS-1), given its biological nature to trigger
innate proinflammatory responses in monocytes and macrophages. Besides macrophages,
ApoBDS-1 can also activate platelets and endothelial cells, eliciting proinflammatory
mediators and promoting platelet-leukocyte aggregates through complex molecular
mechanisms involving Ca*" flux, ROS production, MAPKSs activation, PI3K-Akt activation,
and microRNA regulations. ApoBDS-1 contributes to the activation of inflammatory
signaling in human atherosclerotic plaque. We showed that ApoBDS-1 exists in human
carotid plaques by immunofluorescence staining. Size-exclusion chromatography and
Western blot confirmed that some low molecular weight fractions isolated from plaque
contain ApoBDS-1 epitopes and possess ApoBDS-1-like bioactivity for induction of 1L-8.
These findings suggest that active ApoBDS-1 presents in atherosclerotic lesions. Analysis of
BiKE database indicates that inflammasome pathways are involved in atherosclerosis and
associated with the disease severity. Our studies show that ApoBDS-1 is an endogenous
activator of NLRP3 inflammasome, inducing IL-1f in monocytes and macrophages via
NLRP3-dependent caspase-1 activation. We also found that ApoBDS-1 could induce NLRP3
inflammasome complex formation in vivo, and activate NLRP3 inflammasome by induction
of K" efflux. Lastly, we explored the receptor/interacting protein for ApoBDS-1 using far
Western blot and 2-D electrophoresis and identified TNF receptor associated protein 1
(Trap1) as an ApoBDS-1 specific interacting protein. Trapl and ApoBDS-1 are colocalized
mainly in cytoplasm and also on cell surface membrane. Biacore SPR analysis suggests that
ApoBDS-1 binds to Trapl with a medium affinity depending on the last 5 amino acids in its
C-terminal domain. Trap1 is indispensable for ApoBDS-1 function since ApoBDS-1 induced
cytokine secretion and reactive oxygen species can be inhibited by Geldanamycin, an
inhibitor of Trap1 or by knocking down of Trap1 using specific shRNA.

Taken together, we have identified ApoBDS-1 as the innate immune activator in ApoB100.
Blocking the interaction of ApoBDS-1 and Trapl, or inhibition of ApoBDS-1 induced

signaling pathways may represent new therapeutic options for atherosclerosis treatment.
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1 INTRODUCTION

Cardiovascular diseases such as coronary heart disease, stroke and peripheral vascular disease
are the number one killer world-wide today. These cardiovascular diseases are caused
primarily by atherosclerosis, which inflicts the large and medium sized arteries'.
Development of atherosclerotic plaque initiates as sub-endothelial accumulation of low-
density lipoprotein (LDL) and modification of LDL within the vessel wall>. On the basis of
current understanding vascular inflammation in the early stage of disease may result from
LDL derived oxidized phospholipids and cholesterol crystals®. However, LDL has also a
large protein molecule, ApoB100, which is the unexchangeable protein of LDL and
subjective to enzymatic degradation in the vessel wall. The role of ApoB100 in the
atherosclerosis had been neglected for many years. Only in recent past ApoB100 was no
longer considered as a by-stander. Fredrikson et al, 2003 revealed that IgM or IgG circulating
autoantibodies from atherosclerotic patients could recognize in a sequence specific manner
over one hundred different native peptide fragments of ApoB100’. These findings indicate
that ApoB 100 derived peptides contribute to adaptive immune responses in atherosclerosis.
Since both innate immunity and adaptive immunity take part in the pathogenesis of
atherosclerosis, it is interesting to investigate the relevance of ApoB 100 peptides to the

innate immune responses.

This thesis is focused on the identification of an ApoB100 derived danger associated signal
(ApoBDS-1), the effect of ApoBDS-1 on monocytes/macrophages and platelets, the
mechanisms behind ApoBDS-1-induced inflammation, and the investigation of interacting
protein mediating the effect of ApoBDS-1. First, an overview of innate immunity in
atherosclerosis is provided, followed by an emphasis on the innate immune regulatory role of
LDL. In the end the importance of our studies is discussed in this context.

1.1 ATHEROSCLEROSIS IS AN INFLAMMATORY DISEASE

Atherosclerosis was for long time believed to occur due to sub-endothelial passive
accumulation of cholesterol®. Today the picture is much more complex and it is generally
accepted that atherosclerosis is a chronic inflammatory disease” '°. Atherosclerosis initiates
with the retention of LDL in the intima of large or medium sized arteries, mainly because of
interactions between LDL and extracellular matrix'"> 2. Early atherosclerotic lesions are
characterized by subendothelial depositions of lipids, cholesterol loaded foam cells and T
cells. The atherosclerotic lesion gradually progresses to a more complex plaque, with
apoptotic and necrotic cells, cell debris and cholesterol crystals in the core covered by a
fibrous cap composed of smooth muscle cells and collagen. The shoulder regions of the
plaque are usually infiltrated by activated T cells, macrophages and mast cells, which are the

sources of proinflammatory mediators and enzymes’ (Figure 1).

Plaques with thin fibrous cap and intense inflammatory activity are prone to rupture. When a
plaque ruptures, the thrombogenic material from the core is exposed to the blood stream and
this triggers platelet aggregation, activation of humoral coagulation and thrombus formation,



contributing to artery occlusion which causes ischemia in the heart, the brain or peripheral
organs and results in development of myocardial infarction, ischemic stroke or transitory
ischemic attacks, and peripheral artery disease, respectively’.
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Figure 1: Pathogenesis of atherosclerosis. (adapted from Figure 1 in reference’; reprinted by

permission )

1.2 INNATE IMMUNITY IN ATHEROSCLEROSIS

Both innate and acquired immunity are involved in all stages of atherosclerosis. The
atheroma contains abundant macrophages which are the major player in innate immunity.
Innate immunity is the first line of immune defense against microbes or danger signals. The
germline genome encodes the mediators of innate immunity, including pattern recognition
receptors which are constitutively expressed'. Thus, innate immunity can be mobilized in
minutes to hours. Rapidly mobilized arms of innate immunity involve phagocytic leukocytes,
complement, and proinflammatory cytokines, all that can contribute to atherogenesis'>.

LDL is an endogenous activator of adaptive immunity. LDL was viewed merely as an

autoantigen. But LDL can also activate innate immunity.

1.2.1 Danger signal and alarming

Innate immune responses are initiated when the body encounters danger signals and
recognizes signature molecules. In the past, innate immunity was thought to be the first line
of defense against foreign molecules and indeed many molecules that are recognized by
innate immunity are derived from microbes, i.e. pathogen-associated molecular patterns
(PAMPs). Later it was found that molecules from within the body can also cause immune
responses, such as self-molecules that share similar patterns as pathogens, or self-molecules
that are exposed or accessible to the immune system during cell injury or cell death, i.e.,

damage-associated molecular patterns (DAMPs)!* 1>, DAMPs include molecules that are



released in response to injury, such as heat shock proteins (HSPs) or high mobility group box

1 protein, or molecules that are newly generated or modified, such as advanced glycation end
products (AGEs) ',

In the context of atherosclerosis, LDL can be modified or oxidized to be oxidized LDL
(oxLDL) or be degraded to fragments. We identified a peptide from native ApoB100 protein
that induces proinflammatory innate immune response, which was named ApoB100 danger
associated signal 1 (ApoBDS-1)'. These are examples of DAMPs.

1.2.2 Activation of the innate immune system in response to LDL

Innate immunity comprises of several different cell types and cells of the mononuclear
phagocyte lineage are considered to be the most important effectors'?.

1.2.2.1 Monocytes

Monocytes are the main component of innate immune system and are involved in the
initiation and progression of atherosclerosis!’. Monocytes secret proinflammatory cytokines
and chemokines in response to bacteria, viruses and endogenous nucleic acids'®. They
phagocytose microbes, apoptotic cells and damage-associated molecules such as oxLDL or
otherwise modified LDL. Monocytes can be differentiated into macrophages, dendritic cells,
or endothelial progenitor cells. In male non-smokers, the presence of carotid atherosclerosis
has been associated with increased counts of all leukocyte, neutrophil and monocyte'.
Particularly, the peripheral monocyte count has emerged as an independent predictor of

carotid intima-medial thickness (IMT) and future plaque formation in healthy population®*2!,

Human monocytes can be classified as inflammatory/classical Mon1 (CD14""CD16),
intermediate Mon2 (CD14"CD16") and resident/nonclassical Mon3 (CD14"'CD16™"). Mouse
monocytes are distinguished into 2 main subpopulations, Ly6-C" and Ly6-C°". The majority
of monocytes that accumulate in atherosclerotic plaque are described to be the inflammatory
Monl or Ly6-C" monocytes'”. The CD16™ human monocytes and Ly6-C"" murine
monocytes express high level of CCR1 and CCR2 and are attracted to the atherosclerotic site
by MCP-1 secreted by resident macrophages!’. The human CD16* monocytes and mouse Ly-
6C'°" monocytes express high level of CX3CR1 and are attracted to endothelial cells by
CX3CL1". In mice, the Ly6-C™ monocytes represent 50% of monocytes normally while the
corresponding CD14""CD16” monocyte subset account for 95% of monocytes in humans?2.
Besides this, human monocytes and mouse monocytes have other discrepancies. In a
comparative transcriptome analysis of human and mouse monocyte subsets, the authors

found that some molecules from these two species were conversely expressed, including
CD36, CD9, CXCR4 and TREM-1 (The triggering receptor expressed on myeloid cells 1),
while others, e.g. the Peroxisome proliferator-activated receptor y (PPARY) signature is
prominent in mouse monocytes but not in humans?. Furthermore, a major difference lies on
the classical scavenger receptors and apoptotic cell recognition molecules. They are
expressed more on Ly-6C'" mouse cells while in human cells they are more highly expressed

(like signal-regulatory protein alpha (SIRPa), macrophage scavenger receptor 1 (MSR-1),



CD36, thrombospondin 1/Thbs 1) on CD16" cells or not differentially expressed®>. The
markedly different expression pattern of phagocytic recognition receptors may help explain
the different phagocytic capacity and functional relevance between human and mouse
monocyte subsets.

1.2.2.2 Macrophages

Monocytes can transmigrate into the subendothelial space where the cells differentiate into
macrophages and take up accumulated lipoproteins becoming foam cells. Macrophages
express receptors that recognize a broad range of PAMPs and DAMPs. These pattern
recognition receptors include various scavenger (ScRs) and Toll-like receptors (TLRs)".
Whereas ligation of scavenger receptors leads to endocytosis and lysosomal degradation of
the molecules, engagement of TLRs usually activates NF-kB and mitogen-activated protein
kinase (MAPK) pathways which in turn leads to upregulated expression of genes involved in
leukocyte recruitment, reactive oxygen species production and phagocytosis'>. Activation of
TLRs will also elicit production of cytokines and induce apoptosis'®. Macrophages can also
synthesize proteases such as matrix metalloproteinases (MMPs), induce SMC apoptosis and
contribute to plaque destabilization**.

Macrophages engulfing LDL to become lipid-laden foam cells is an important step in the
development of atherosclerosis®. In this process, different ScRs are engaged when it
encounters different particles, for example, Acetyl-LDL is recognized by SR-A, MARCO,

SR-EC while oxLDL is recognized by SR-A1, MARCO, CD36, SR-B1, SR-PSOX, LOX-
1%,

1.2.2.3  Neutrophils

The number of neutrophils in atherosclerotic lesions is not as many as macrophages. Yet,
they have an important role in plaque destabilization especially due to their capacity to
release proteases and mediators that can degrade collagens and attract platelets. Thus,
neutrophil infiltration has been found to be associated with acute coronary events?’. Further,
neutrophil numbers are strongly associated with the histopathologic features of rupture-prone
atherosclerotic lesions, suggesting a role for neutrophils in plaque destabilization®®. Indeed,
neutrophils, but not eosinophils, basophils, monocytes, lymphocytes, or the total leukocyte
count have been shown to be significantly associated with long-term mortality?’.

1.2.2.4 Endothelial cells (ECs)

The normal endothelium regulates vascular tone and structure and exerts anticoagulant,
antiplatelet and fibrinolytic properties*’. Endothelial dysfunction is an early marker for
atherosclerosis. OXxLDL can induce endothelial dysfunction, stimulates the expression of
adhesion molecules and leads to endothelial cell death. Activated endothelial cells can secrete

chemokines and promote monocyte recruitment.



1.2.2.5 Platelets

Platelets play a critical role in innate immune response. The majority of TLRs are expressed
on the surface of platelets, such as TLR4, TLR9 and TLR23!.

Platelets participate not only in the end stage of atherothrombosis, but also in the initial and
progressive phases of the disease. Platelets facilitate monocyte recruitment to endothelial
cells and monocyte-platelet aggregate formation was significantly increased in patients with
stable coronary artery disease®2. Platelets synthesize and secrete many proinflammatory
mediators and interact with endothelial cells, smooth muscle cells (SMCs) and circulating
leukocytes. Platelet interaction with oxLDL results in platelet activation, morphological
changes and aggregation®®. Phospholipase C (PLC) signaling and calcium mobilization are

proposed to be the common mechanism for platelet activation®.

1.3 INNATE IMMUNE RECEPTORS INVOLVED IN LDL INDUCED INNATE
IMMUNE SIGNALING

1.3.1 Toll like receptors (TLRs) and NOD-like receptors (NLRs)

TLRs and NLRs (nucleotide-binding oligomerization domain (NOD)-like receptors) are

currently extensively studied innate immune receptors in atherosclerosis.

TLRs were the first discovered signaling pattern recognition receptors in mammals**. At least
14 TLRs have been identified in human. Among them, TLR1, TLR2, TLR4, TLRS and TLR6
are cell surface receptors, whereas the others are associated with the membrane of
intracellular organelles such as endosomal vesicles®. Several TLRs including TLR4, 2, 3, 7
and 9 have been shown with crucial roles in the pathogenesis of atherosclerosis***°, However
the ligands responsible for TLR activation in atherosclerosis remain to be defined. Minimally
modified LDL (mmLDL) induces TLR4 and TLR2 activation in macrophages leading to
release of cytokines and production of reactive oxygen species. OXLDL activates TLR4 in
macrophages and promotes cell migration. Furthermore, oxLDL induces calcification within
the plaque through TLRs*'. TLR4, TLR6 in cooperation with scavenger receptor CD36
mediate the chemokine expression and IL-1B production induced by oxLDL**. The
recognition of endogenous DAMPs like oxLDL by CD36 triggers the assembly of TLR4 and
TLR6, leading to increased nuclear factor-kB (NF-kB) activation which underlies pro-
inflammatory responses in atherosclerosis*. The induction of apoptosis by oxXLDL involves
CD36 and TLR2*.

NLRs are cytoplasmic PRRs. There are two main subgroups of NLRs based on their different
N-terminal effector domains: the caspase recruitment domains (CARD)-containing NLRC
group and the pyrin domain containing NLRP group®. NOD1 and NOD2 from the NLRC
family are best characterized. The expression of NOD2 is increased in atherosclerotic
lesions*, and stimulation of NOD2 promotes vascular inflammation and development of

necrotic core in atherosclerosis-prone mice*’. Interestingly, several NLRs can form



inflammasome which is involved in the activation of caspase-1 and production of the IL-1

family of inflammatory cytokines including IL-1B, IL-18 and 113344

1.3.2 Inflammasome activation and the role of IL-1B in atherosclerosis

Inflammasome is a multimeric protein complex usually consisting of an inflammasome
sensor molecule (mostly a NLR), procaspase-1 and an adaptor protein called Apoptosis-
associated speck-like protein containing a caspase activation and recruitment domain
(CARD), i.e. ASC or PYCARD. The inflammasome is formed in response to microbial
molecules or endogenous “danger” molecules®*2. The assembly of inflammasome
aggregates, in which the NALP interacts with ASC via the pyrin domain and the ASC
interacts with pro-caspase-1 via CARD, initiates procaspase-1 self-cleavage to generate
active caspase-1, which in turn proteolytically processes pro-IL-1f to generate mature I1L-1
and induces their release via a non-classical secretion pathway*®. The generation of bioactive
IL-1P 1s regulated by at least two signals. The first signal comes from various PAMPs
through activation of TLRs, resulting in the upregulation of pro-IL-1B. The secondary signal
usually provided by DAMPs leads to inflammasome formation and activation of caspase-1°*
>4, Besides NLRs, PYHIN (pyrin and HIN domain-containing protein) family members can
be included in inflammasomes such as the inflammasome absent in melanoma 2 (AIM2) and
the inflammasome IFNy-inducible protein 16 (IF116). In addition to inflammasomes that are
involved in generating IL-1p, the Retinoic acid-inducible gene I (RIG-I) inflammasome and
IF116 inflammasome induce type I interferon (IFN) response*®.

Caspase 1 is one of the inflammatory caspases and is the main caspase recruited to
inflammasome. Additionally, NLRP1 can recruit and activate caspase 5°°. Caspase 8 can also

mediate IL-1p processing>®.

Of all the inflammasomes, nucleotide-binding leucine-rich repeat-containing pyrin receptor 3
(NLRP3) inflammasome is the best characterized and has been much investigated in
atherosclerosis. The NLRP3 inflammasome signaling promotes the disease progression**,
Chimeric mice with NLRP3-deficient bone marrow exhibit 69% reduction in atherosclerotic
lesion size at aortic sinus compared with the mice that received wild-type bone marrow>’.
Contradictorily, global deletion of NLRP3 in atherosclerosis-prone Apoe-/- mice did not
affect lesion size’®. However, studies showed that NLRP3 inflammasome was activated in the
infiltrated macrophages and neutrophils in ischemic myocardium and that statins inhibited in
a direct manner the formation of cholesterol crystals in vivo*. Thus, compiling data argue for
a crucial role of NLRP3 inflammasome in atherosclerosis**.

A wide variety of microbial or endogenous stimuli can activate NLRP3 inflammasome, like
lipopolysaccharide (LPS), extracellular ATP, monosodium urate (MSU) crystal®, calcium
pyrophosphate dehydrate (CPPD)*°, cholesterol crystals®, and oxidized LDL. OxLDL induces
the upregulation of pro-IL-1f and promotes the formation of cholesterol crystals and
therefore provides the both signals required for NLRP3 inflammasome activation®.



Moreover, oxLDL induces production of ROS and causes lysosomal damage which are also
linked with NLRP3 inflammasome®.

Several hypotheses for the activation of inflammasome have been proposed. Mitochondria
plays an important role in inflammasome activation. Mitochondria provides a platform for
inflammasome components and mitochondria-derived mROS, mitDNA and cadiolipin®' are
suggested to be essential in inflammasome activation®’. Mitochondrial antiviral-signaling
protein (MAVS)® is involved in NLRP3 relocation from the cytosol to mitochondria and
guanylate binding protein 5 (GBP5) promotes NLRP3 signaling to ASC%2. Considering the
wide array of activators for NLRP3, it is generally accepted that these PAMPs and DAMPs
cause disturbance of cellular homeostasis which in turn activates NLRP3 inflammasome®.
One of these cell stresses is endoplasmic reticulum (ER) stress which activates NLRP3
inflammasome through a pathway that is independent of unfolded protein response®?.
Besides, increased intracellular Ca®>" and/or decreased intracellular K* are also proposed to be

required for NLRP3 inflammasome activation®? 6493,

Activation of inflammasome results in production of IL-1p. Apart from exogenous innate
immune activators such as lipopolysaccharides (LPS) from microbes, endogenous stimuli

1°7, chylomicrons®, triglycerides®” and high glucose have also been

such as oxLLDL, cholestero
shown to influence IL-1P generation®®. IL-1p is a potent proinflammatory cytokine. It has
important effects on crucial cellular processes in the development of atherosclerotic lesions,
among which IL-1f can activate endothelial cells, promote foam cell formation, induce
smooth muscle cell proliferation, induce IL-6, TNF and C-reactive protein and attract
inflammatory cells to the plaque®® . Lack of IL-1p or inhibition using anti- IL-1pB depleting
antibodies in ApoE-/- mice results in diminished atherosclerotic lesions and reduced vascular
inflammation compared with controls’"’!, Individuals bearing the -1473 CC IL-1B
polymorphism likely have a pronounced atherosclerotic process because this single
nucleotide polymorphism is associated with increased fasting lipids and IL6 (eftector of IL-

1B) in the elderly population’ 7>

Contradictory evidence for the detrimental role of IL-1f also exist. In humans, neutralization
of IL-1P in the acute phase of myocardial infarction has been shown to promote the
progression of left ventricular remodeling, suggesting that IL-1 is protective in the acute
phase of the disease’®. However, this result was also proposed to be due to effects mediated
by IL-10. IL-1ra is a natural antagonist for both IL-1a and IL-1p. In another study, the MRC
ILA-HEART study, patients with NSTEMI were given daily subcutaneous injection of IL-1ra
for 2weeks and had a trend decrease in myocardial infarction and major adverse cardiac
events compared with placebo’. Yet, the precise role of IL-1B and IL-1ra needs to be
clarified further.

Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS), an ongoing
clinical trial of IL-1p blockade in cardiovascular disease®, already shows encouraging
results. The inhibition of IL-1p leads to reduced hsCRP, IL-6 and fibrinogen without an
apparent impact on LDLC or HDLC’®. Once completed, it will provide critical insights into



the inflammatory mechanisms in atherothrombosis and probably widen the current range of
therapies for cardiovascular disease.

1.4 THE IMMUNE REGULATORY ROLE OF LDL IN ATHEROSCLEROSIS

1.4.1 Lipoproteins, LDL and ApoB

Cholesterol and triglycerides are transported in the circulation by water-soluble lipoprotein
particles. Lipoprotein particles have a highly hydrophobic core which is packed with apolar
lipids, mainly cholesteryl esters and triglycerides. The surface of lipoproteins consists of

polar molecules, primarily free cholesterol, phospholipids and apolipoproteins’’ (Figure 2).

Figure 2: Structure of lipoprotein (adopted from

Figure 1 in reference’®)

The plasma lipoproteins have different density, size, electrophoretic mobility, lipid content
and apolipoprotein composition. According to the density, lipoproteins can be divided in
chylomicrons, very low-density lipoproteins (VLDL), low-density lipoproteins (LDL),
intermediate density lipoproteins (IDL) and high-density lipoproteins (HDL).

Dietary fat is absorbed in the intestine, packaged into chylomicrons and secreted into the
lymph to enter the general circulation. The chylomicrons contain apolipoprotein B48, apoE
and triglyceride, etc. In the circulation the particles are hydrolyzed and become smaller and
finally taken up by the liver. In the endogenous pathway in lipid metabolism, cholesterol and
triglycerides are secreted from the liver to the circulation in VLDL particles which also
contain apoB100, apoC and apoE. VLDL is hydrolyzed and cholesterol is enriched. VLDL
becomes IDL and gradually LDL is formed. LDL is rich in cholesteryl esters and contains
apoB100 which is the only unexchangeable lipoprotein. In the end the apoB100 on the LDL
surface is recognized by LDL receptors to mediate the uptake of LDL in the liver or in other
tissues. Finally cholesterol from extrahepatic tissues can be reversely transported back to the
liver by help of HDL particles.

In humans about two thirds of the plasma cholesterol is transported in LDL particles. The
LDL particle has an outer surface layer composed of phospholipid headgroups, an interfacial
layer of interpenetrating core and surface lipid fatty acids and cholesterol, and a core of
randomly oriented hydrophobic lipids, mainly triglycerides and cholesterol esters’’. The LDL



particle has a single copy of ApoB100 protein and ApoB100 is predicted to have some parts
in each of these layers of the LDL particle’.

In general, LDL particles assume a globular shape with an average particle diameter of about
22nm (range from 18 to 25nm)”’. LDL can be quite heterogeneous and consists of 3
subclasses based on density: large LDL (LDL1 and LDL2 with d=1.018-1.030g/mL),
intermediate LDL (LDL3 with d=1.030-1.040g/mL), and small, dense LDL (LDL4 and
LDL5 with d=1.040-1.065g/mL)*. It has been proposed that small, dense LDL can penetrate
more easily into the subendothelial space of the vascular wall and are more prone to

oxidation®°,

There are two forms of ApoB: apoB100 synthesized by the liver and apoB48 synthesized by
the intestine. ApoB100 and ApoB48 are encoded by the same gene and the ApoB48 is
generated via RNA editing by the APOBEC1 enzyme®'. Thus the ApoB48 corresponds to the
N-terminal 48% of the full length apoB100. ApoB 100 is a large protein and has 4536 amino
acids. ApoB100 mediates the interaction of LDL and LDL receptor via the two regions on
ApoB100, namely aa 3147-3157 and aa 3359-3369%2. Researches on those two regions are
extensive. For example, the peptide aa 3359-3369 was found to be able to trigger transient
activation of p38MAPK and cytosolic phospholipase A2 on platelets®.

1.4.2 Modified LDL

1.4.2.1 Generation of modified LDL

LDL accumulated in the arterial wall is susceptible to modifications such as oxidation,

enzymatic and non-enzymatic cleavage, glycation, lipolysis and aggregation.

LDL particles undergo oxidation by the lipoxygenase and myeloperoxidase pathways.
Various components in LDL can be oxidized, such as apoB, phospholipids, cholesterol and
unsaturated fatty acids®’. Cholesterol can be oxidized to form oxysterols, especially at the 7-
position®’. The polyunsaturated fatty acids in cholesterol esters, phospholipids, and
triglycerides (TG) can be subject to free radical-initiated oxidation®. Lipid peroxides can
undergo a second oxidation and breakdown, eventually giving rise to degradation molecules
(3-9 carbon long fragments), including reactive aldehydes, such as malondialdehyde
(MDA)®. These modified products can react with ApoB. The aldehydes can form Schiff
bases with the g-amino groups of lysine residues, creating cross-links between lipid and
protein or among lipid molecules®. There are assays to detect MDA-modified LDL, copper-
oxidized LDL (oxLDL), Ne(carboxymethyl) lysine (CML)-modified LDL, and advanced
glycosylation end product (AGE)-modified LDL¥. Studies showed that oxXLDL and AGE-
LDL levels in immune complex were strong predictors of increased progression of carotid
IMT in patients with type 1 diabetes, and that levels of MDA-LDL in immune complex
predict future MI and acute cardiovascular events in patients with type 2 diabetes®.
Oxidation of LDL can generate a number of new innate immune activators, including lipid
oxidation products such as lysoPC, 4-hydroxy-2-nonenal (4HNE)®¢. Oxidation of LDL makes



the particle more negatively charged, increasing its affinity to scavenger receptors on
macrophages, and contributing to foam cell formation’.

Besides oxLLDL, there are other oxidized low-density lipoprotein markers for cardiovascular
disease such as the serum amyloid A-LDL (SAA-LDL) complex which is formed from the
oxidative interaction between SAA and LDL, and the al-antitrypsin-LDL (AT-LDL)
complex which is formed by the binding between oxidized al-antitrypsin and LDL in the
arterial intima®’.

Numerous hydrolytic enzymes and pro-oxidative agents are present in atherosclerotic
lesions’’. These modifying substances transform the LDL particles into the extracellular lipid
droplets and vesicles in the arterial intima’’. The aggregation and fusion of the particles

strengthen the binding to extracellular matrix and promote atherosclerosis®®.

1.4.2.2 Relevance of modified LDL to vascular inflammation in atherosclerosis

The atherogenic property of LDL has been ascribed to the modification of LDL particles.
Accumulating data have shown that immune responses to modified LDL such as oxLDL are
important in atherosclerosis® '%3% %, OxLDL acts as an early activator of vascular
inflammation®®. Modified LDL can induce endothelial cell activation, impairs endothelium-
dependent arterial relaxation, and is cytotoxic to endothelial cells’!. OXLDL is a
chemoattractant for circulating monocytes and induces monocyte recruitment to the
atherosclerotic site which is supported by the observation that macrophages can be often
detected close to regions rich in oxLDL-derived epitopes®. OXLDL induces monocyte
differentiation into macrophages, promote foam cell formation and increases macrophage
growth?!. OxLDL can induce abundant amounts of proinflammatory mediators, activate ECs,
SMCs, macrophages, lymphocytes and other leukocytes to foster cytokine production,
destabilize plaques and trigger thrombosis®.

The degree of oxidation in oxLDL varies. The lipid components have been suggested to
undergo oxidation in the initial phase, followed by oxidative changes of amino acid side
chains and finally the cleavage of peptide bonds®?. Minimally modified LDL (mmLDL) may
contain lipid oxidation products without extensive protein modification’>. Mm LDL induces
IL-1B, IL-6 and IL-10 secretion in human monocytes and macrophages through activation of
CD14, TLR4 and TLR2%. MmLDL (acetylated LDL) can also prime NLRP3 inflammasome
and increase the expression of pro-IL-1pB in macrophages®” ®. Electronegative LDL, a minor
modified LDL in the circulation, induces cytokine release in monocytes via CD14 and
TLR4%,

The inflammatory responses may be elicited in part by the oxidation of LDL derived
phospholipids such as 1-palmitoyl-2(5-oxovaleroyl)-sn-glycero-3-phosphorylcholine
(POVPC), 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphorylcholine (PGPC), 1-palmitoyl-2(5,
6-epoxyisoprostane E2)-sn-glycero-3-phosphorylcholine (PEIPC)**. POVPC and PEIPC
induce monocyte recruitment and PGPC induces monocyte and neutrophil recruitment to

endothelial cells®. These oxidized phospholipids are increased in atherosclerotic lesions and
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induce production of MCP-1 and IL-8 in endothelial cells through the lipid-dependent
transcription factor peroxisome proliferator-activated receptor-a”>. OXLDL also contains
platelet-activating factor (PAF)-like phospholipids that can activate PAF receptors on
platelets, monocytes and leukocytes’.

Phosphatidylcholine (PC) is the major phospholipid in LDL. Oxidized PC-containing
phospholipids such as oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine (Ox-
PAPC) are strong regulators of endothelial cell function®’. OxPAPC is present in minimally
modified LDL and is found in atherosclerotic plaques. Ox-PAPC regulates genes involved in
unfolded protein response, redox signaling, inflammation and angiogenesis which lead to
plaque instability?’. POVPC induces foam cell formation and ox-PAPC induces cytokines
from macrophages’’. Ox-phospholipids also induce thrombotic processes”’. Although the
phospholipids (PL) have some protective role, the net effect is pro-atherosclerotic. CD36,
TLR2 and TLR4 are among the most well studied receptors for ox-PL?’.

1.4.3 ApoB degradation

ApoB100 is mainly synthesized in the liver and the majority of newly synthesized apoB
undergoes rapid intracellular degradation in a pre-Golgi or ER compartment®®. The
posttranslational degradation of apoB may involve at least two steps’®. The first step occurs
while apoB is partially translocated from ER to the Golgi and is sensitive to N-acetyl-
leucinyl-leucinyl-norleucinal (ALLN). And the second step takes place in the ER lumen and
is dithiothreitol (DTT)-sensitive’®. The degradation of partially translocated apoB generates a
70-kDa amino-terminal fragment that is mainly degraded in the ER lumen by a DTT-
sensitive pathway”®.

The degradation of ApoB100 can be modulated by multiple factors. Docosahexaenoic acid
(DHA), a dietary polyunsaturated fatty acid (PUFA) lowers VLDL secretion by inducing
presecretory ApoB100 degradation which is dependent on PUFA-derived lipid peroxides like
superoxide (SO)”. The lipid lowering drug Niacin increases intracellular ApoB degradation
by inhibiting triacylglycerol synthesis'®. Protease inhibitors lead to hyperlipidemia in HIV
patients because they not only inhibit proteasomal degradation of nascent apoB but also
inhibit the secretion of apoB which is associated with inhibition of cholesteryl-easter

synthesis and microsomal triglyceride transfer-protein activity'*!.

ApoB100 is also subjected to degradation in atherosclerotic lesions. There are numerous
proteases in atherosclerotic plaques such as cathepsin cysteine proteases!??, secretory
sphingomyelinase (SMase)!%, phospholipases!®, plasmin'® 1% chymotrypsin, thrombin,
kallikrein'%’, metalloproteinase MMP-12!% that can degrade ApoB100 and promote
aggregation of modified LDL. By Western blot, Nishi et al showed that while intact apoB100
band can be detected in patients’ plasma and control plasma, the 500-kD apoB band
disappears in macrophage-rich carotid plaque homogenates with smear-staining in the lower

molecular weight range (200kD to less than 20kD), indicating that ApoB100 is partially
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degraded!?. It has been shown that the degradation of ApoB100 is associated with
macrophages and oxLDL level, and that the degraded apoB is accumulated in lysosomes'®.

In addition to endogenous proteases, apoB100 can be degraded by proteases secreted from
pathogens. Porphyromonas gingivalis (P. gingivalis) is the primary pathological agent in
adult periodontitis which is associated with increased atherosclerosis supported by
epidemiological studies. Intravenous injection of wild-type P. gingivalis increased
atherosclerotic lesions and increased the serum LDL cholesterol which is due to selective
proteolysis of apoB100 in LDL particles by cysteine proteases like Arg-gingipain (Rgp)

produced by P. gingivalis''°.

1.4.4 Heat shock proteins are crucial for ApoB protein stability

Heat shock proteins (Hsp) are molecular chaperones that play an important role in protein
homeostasis and quality control. They facilitate protein folding and prevent misfolding and
aggregation of nascent polypeptides. HSPs can bind exposed hydrophobic residues of
substrate proteins or peptides and thus deliver antigenic peptides to MHC class I molecules
for presentation to lymphocytes!!'!. HSPs are also involved in TLR recognition for
hydrophobic ligands like lipid molecules or hydrophobic residues from lipoproteins!!!.
Despite different molecular masses, cellular locations and specificity for protein binding, the
HSPs share common functional domains: one adenine nucleotide-binding domain which
interacts and hydrolyzes ATP, and the other peptide-binding domain which interacts with

exposed hydrophobic residues of substrate proteins'!!.

Hsps have been implicated in ApoB100 degradation or stabilization. Studies showed that Hsp
70s and Hsp 90s facilitate apoB degradation'!?. Through the increase of the ER chaperones,
78-kDa glucose-regulated protein (Grp78 or Heat shock 70kDa protein 5, HSPAS) and
Grp94, glucosamine treatment leads to proteasomal degradation of ApoB100 dramatically''?.
Grp78 reduces the translocational efficiency of apoB100 in the ER and promotes proteasomal
degradation of apoB100, thus decreasing both cellular and secreted apoB100 significantly''?.
Hsp110 is an Hsp70 homolog and is efficient in preventing protein aggregation but lacks the
folding activity of Hsp70'*. The Hsp110 and Hsp70 differs in peptide substrate binding
properties that the Hsp110 exhibits fast kinetics of substrate binding and release and prefers
aromatic residues''*.

Hsp110 associates with and stabilizes apoB. Overexpression of Hsp110 enhanced apoB
secretion'!>. It is likely that chaperones within different complexes can play distinct roles

during ER-associated degradation.

1.4.5 The immune regulatory role of ApoB100 in atherosclerosis

ApoB100 is present in VLDL, IDL, LDL and lipoprotein (a) [Lp(a)], all of which are

116

atherogenic or potentially atherogenic''®. The level of ApoB100 predicts ischemic

cardiovascular events and it is better than LDL cholesterol alone'!”- 118,
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Both native apoB100 and modified ApoB100 can be target of the immune responses!' !’
Immunization of ApoB100 and Hsp60 peptides effectively inhibited atherosclerosis in animal
models'®. ApoB100 can also be modified or oxidized, resulting in loss of recognition by
LDL receptor and generating epitopes for recognition by the scavenger receptor'?!.
Moreover, due to a conformational change that occurs during sphingomyelin hydrolysis,
ApoB100 mediates the formation of LDL aggregates that may contribute to retention of LDL

in the arterial intima'®.

Researchers in Lund University created a peptide library consisting of 302 peptides that cover
the full-length of apoB100’. They found that the level of circulating autoantibodies against
apoB100 peptides is associated with the severity of atheorosclerosis!?*!?*, Treatment with

apoB100 peptide vaccines inhibited the development of atherosclerosis'*>1%,

We did a screening of the library and found that the peptide at the position aa 3226-3245 is
the most potent one that can activate monocytes/macrophages and other innate immune
cells'® 3. We name it ApoB100 danger associated signal 1 (ApoBDS-1). The thesis is about
the identification of ApoBDS-1, the inflammatory effects of ApoBDS-1 on monocytes and
platelets, the activation of inflammasome pathway by ApoBDS-1 and finally the interacting
protein of ApoBDS-1.
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2 HYPOTHESIS AND AIMS

The studies included in this thesis aimed to investigate the role of LDL in the modulation of
innate immune responses in atherosclerosis.

More specifically the aim of the studies was to:

¢ Identify the innate immune stimuli in ApoB100 peptides (paper I)

e Examine the effect of ApoBDS-1 on platelets (paper II)

e Investigate the impact of ApoBDS-1 on inflammasome activation (paper I1I)

e Define the molecular basis (receptor or interacting protein) that mediates the activity
of ApoBDS-1 (paper 1IV)

14



3 MAIN METHODOLOGY

This chapter highlights the state-of-the-art and interdisciplinary methods in protein/peptide
research and molecular biology that we employed to conduct the thesis work.

3.1 APOB100 PEPTIDE LIBRARY

ApoB100 is the largest protein component in human lipoproteinst®® 131, Previous studies have
focused on the sequences on ApoB100 that are crucial for the LDL receptor binding, i.e. aa
3147 — 3157 and aa 3359-3367'%2. However, the function of the other sequences of the
ApoB100 with its 4536 amino acids’’ has largely been undetermined. Peptide library is a
technique for protein related study. Fredrikson et al” have created an ApoB100 peptide library
with 302 peptides covering the full-length of ApoB100. Each peptide has 20 amino acid with
5 aa overlapping with the neighbor peptide (Figure 3).

Detailed sequences of the ApoB100 peptides are found in papers” 163,

N-terminus
of apo-B100

C-terminus
of apo-B100

apo-B100

Lipid Core
cholesteryl esters (CE)
and triglycerides (TG)

N
~~~~~ —
free cholesterol (FC)

phospholipid (PL) monolayer

‘ApoBDS-1 (P216)

PL SHDEL PRTFQ IPGYT VPVVN VEVSP FTIEM SAFGY VFPKA VSMPS FSILG...... P302
P215 p217

P216a VPVVN VEVSP
P216b VEVSP FTIEM
P216c FTIEM SAFGY

Figure 3: Schematic representation of the ApoB100 peptide library with the sequence for ApoBDS-1
(aa 3226-3245) and truncate peptides. (modified from Figure 1 in reference*?)

3.2 EXVIVO PLAQUE CULTURE

To identify the innate immune activating ApoB100 peptide and to characterize its effect on
inflammatory response, we used monocytic cell line THP-1, human PBMC and ex vivo
human carotid plaque cultures. Human atherosclerotic lesions have a variety of cell types
creating a complex inflammatory milieu. The atherosclerotic plaques are rich in
CD68+CD14+ macrophages which are not always the same with human macrophages in
culture'®*. Besides macrophages, there are smooth muscle cells, endothelial cells, fibroblasts,
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collagens, lipoproteins, proteases, extracellular matrix, abundant cytokines and chemokines in
plaques which have more diverse effect than isolated cells' 1*>13%, The ex vivo plaque cultures
provide a method to study the impact of the agent molecule in a systemic and complex
inflammatory milieu with high clinical relevance. Like any other experiment using human
tissues, the heterogeneity of the plaques and/or plaque related cells is unavoidable although
equal amount of tissue (about 0,1g per well in 48-well plate) was seeded in plaque culture.
And the ex vivo culture per se may select certain cells and eliminate other cells which are
short-lived and prone to environmental change. To mimic the in vivo situation as much as
possible, extra care should be taken when doing the plaque culture and the total ex vivo time
should not be too long. Therefore, ex vivo culture of plaques may be a strong complementary
tool to the traditional cell line and primary cell cultures.

For the work presented in this thesis, plaques were obtained from Biobank of Karolinska
Carotid Endarterectomies (BiKE). Detailed information about BiKE is found in '3%143,

The ex vivo plaque culture method was used in paper I1'® and paper III.

3.3 IMMUNOFLUORESCENCE STAINING

Immunofluorescence staining is a widely used method to visualize cellular proteins or tissue
structures in situ. We used it to localize ApoBDS-1 in human carotid plaque sections or in
monocytes/macrophages (paper I, IIT) and to investigate the interaction between ApoBDS-1
and other proteins including Trap1 (paper IV).

Apart from qualitative visual inspection of immunofluorescence images which showed highly
specific immunostaining of proteins under study with high sensitivity due to fluorescence
signals, quantitative analysis of these images was also performed to facilitate sample

comparisons.

For quantification of fluorescence parameters in immunofluorescence images, two major
computational methods using MATLAB 2010a scripts (MathWorks, Massachusetts, USA)
were employed in the thesis. In paper I, to evaluate the expression levels of proteins inside
cells, images with comparable areas of interests were selected for comparison, and for a
particular image, fluorescent intensities at all pixels that passed an automatically-set threshold
to separate noises from signals by Otsu's method'** were summed together. The advantages
of Otsu's method for noise and signal separation include that no human supervision is needed
therefore it is not a subjective approach and it is purely statistical based on the images
themselves that the algorithm searches for the optimum threshold separating the two classes
(noises and signals) at which the intra-class variance is minimal. Intensities below the
threshold were discarded as noises to minimize their impact on protein expression level
comparison. The intensity noises were likely due to photon noises of detectors or very weak
unspecific binding of fluorescently labeled antibodies to the specimens or glass surfaces. In
paper 111, to evaluate the degree of protein interactions in cells imaged by
immunofluorescence staining, Pearson correlation coefficients'* for protein pairs under study

were calculated. The advantage of Pearson correlation coefficient for co-localization
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determination is that it calculates the correlation of two signals instead of relies on the
absolute intensities and thus not very sensitive to the strength of either signal.

3.4 FAR-WESTERN BLOT

Western blot is another commonly used method in protein analysis and is one of the methods
I used most in the thesis work. Far Western blot is a method for detection of protein-protein

1. The protein blotting procedure is similar to that of

interactions described by Wu Y et a
regular Western blot but with additional denature and renature steps so that the prey protein
on the membrane can retain natural spatial structures and thus possible to bind the bait protein
which is added in this step. And then using an antibody against the bait protein, the prey
protein is detected on the membrane because of the bait-prey protein complex. After that, the
membrane is stripped and the protein complex is thereby destroyed. The prey protein can be
detected again using antibody against it. Here the prey protein can be used as endogenous

control as the two images from the far western blot should have identical molecular weight.

A comparison of commonly used methods to detect protein-protein/peptide interaction is
provided in Table 1.

Advantages Disadvantages

Co-immunoprecipitation Cell lysates, can A tag is usually needed and 2-
(co-IP) detect binding in a false-positive or false-negative ~ 3days
complex can occur. Cannot distinguish
direct binding or binding in a
complex
Far western blot Cell lysates, detect Purified bait protein is needed  2-
direct binding 3days
Fluorescent resonance Live cells Weeks to months to construct ~ 30min
energy transfer (FRET) the expression vectors and

optimize the transfection of
fluorescence labeled proteins

Biacore surface plasmon Monitor the Purified protein, sensor chips 30min
resonance (SPR) interaction in real and special instrument are
time and label-free. needed

Can be used for
screening

Table 1: Comparison of methods to detect protein-protein/peptide interactions
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In this thesis, we used a biotin labeled ApoBDS-1 peptide in Far western blot to find out
ApoBDS-1 receptor or interacting protein (paper IV). The advantage of far western in the
project is that we can study the native state of the interaction in addition to the precision
controlled by the molecular weight.

3.5 TWO DIMENTIONAL ELECTROPHORESIS

Two-dimentional (2-D) electrophoresis is a standard method to separate proteins from
biological samples in proteomics'*’. Proteins are separated first according to the charge by
isoelectric focusing (IEF) and then according to the size by sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE)'*®, Identification of protein is done by mass
spectrometry which employs spectra of the mass-to-charge ratio and bioinformatics.

We applied 2-D electrophoresis and mass spectrometry to identify the ApoBDS-1 interacting
protein in paper IV. We used total protein from THP-1 cells. Alternatively we could extract
membrane protein and investigate membrane protein exclusively. But it is complicated to
isolate membrane proteins and we don’t know whether the interacting protein is a membrane

protein or a protein in the cytosol or other compartment. So we used whole protein lysates.

At first we tried to stain the 2-D gel after electrophoresis with fluorescence dye and then did
far western blot using the same gel. After the staining and scanning, the gel is detached from
the plastic backing for following far western blot. Then the gel becomes delicate for handling
since it is large (26cm*20cm) and thin (less than 0,65cm), and lacks plastic backing. It easily
breaks during washing. Therefore we used parallel gels which we performed under exactly
the same conditions. One gel is for silver staining which gives more protein spots than the
Coomassie blue staining. The other is for far western blot. Although extra care is taken during
all the experiments, systemic errors can occur especially during the alignment of the images.
For example, when the 2-D gel is detached from the plastic backing, the size of the gel can be
changed slightly. When the proteins on the gel are transferred to the PVDF membrane, the
size can be slightly changed. Then when we visualize the bands using ECL and the film, the
image on the film can slightly differ from the position of the membrane. To increase the
precision, we used the marker, the edge of the gel and the membrane, and beta actin from
western blot image as alignment help. The location information of Coomassie blue stained
gel image and Western blot image of ERK was also compared to minimize the imprecision.

The detailed method for 2-D electrophoresis and mass spectrometry can be found in paper
IV and reference'’.

3.6 BIACORE SPR

Biacore’s surface plasmon resonance (SPR)-based protein interaction technology provides a
method to monitor protein-protein or protein-peptide interaction in real time'*.
Experimentally, the method consists of immobilizing one molecule of a binding pair on the
sensor chip surface ("ligand") and injecting a partner molecule ("analyte") over the surface.
Alterations in the index of refraction at the binding surface are detected and recorded in
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resonance unit (RU). The comparison of Biacore SPR and other methods is provided in Table
1.

We did Biacore experiment to examine the binding of ApoBDS-1 and Trap1 and
characterized the kinetics/affinity of the binding in paper IV. There are 2 or 4 flow cells on
the sensor chips. The 1* flow cell has no protein immobilized. Trap1 was immobilized on the
surface of the 2nd flow cell as “ligand”. “Analyte” was ApoBDS-1 or running buffer that was
flowed over the both surfaces sequentially, first control flow cell, then Trap1 flow cell. Then
the sensorgram from the trap1 flow cell was subtracted by the sensorgram from the blank
flow cell, to get the adjusted sensorgram.

The method is very sensitive. Therefore in experiments with DMSO added to the PBS-P+
buffer, the concentrations of DMSO in the buffer and samples were matched or solvent
corrections were performed.

The detailed method is found in paper I'V.

3.7 GENE SILENCING, RECONSTITUTION AND OTHER METHODS

Gene silencing is a commonly used method to study the regulation of gene expression. Gene
silencing can occur on the transcription or translation level. I used NLRP3 siRNA in paper
III and Trap1 shRNA in paper IV to determine whether NLRP3 or Trapl is required in
ApoBDS-1 induced proinflammatory response. Detailed methods can be found in respective

papers.

Besides gene silencing and inhibition experiments, other methods to study the function of
gene expression include over-expressing, and gene reconstitution and alike. In paper II1, I
used HEK 293 cells which lack the inflammasome components and reconstituted the
inflammasome machinery with expression plasmids. Detailed methods for gene

reconstitution are found in paper III and references!>® 151 152,

Other methods used in the thesis included cell culture experiments of primary cells and cell
lines (paper I-IV), ELISA to measure the concentration of cytokines and chemokines (paper
I-IV), Western blot to investigate intracellular signaling pathways (paper I-1V), flow
cytometry for surface expression of leukocyte markers and functional assays of ROS
production and caspase-1 activity (paper II-IV), BiKE database analysis for inflammasome
related genes (paper III), and so on. Detailed methods can be found in respective papers.
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4 RESULTS AND DISCUSSION

4.1 IDENTIFICATION OF APOBDS-1 (PAPERI)

In order to find the innate immune activator(s) in ApoB100 protein, a screening of the
ApoB100 peptide library for the secretion of IL-8 in THP-1 cells was performed. A strong
effect on IL-8 production was found specifically with the peptide p216 (aa 3226-3245) which
was later named ApoB100 danger associated signal 1 (ApoBDS-1). The bioactivity of
ApoBDS-1 was confirmed using different concentrations in THP-1, human peripheral blood
mononuclear cells (PBMCs), monocyte-differentiated macrophages, also in ex vivo plaque
cultures. We also found that MDA modification debilitated its effect. Furthermore the
truncated fragments of ApoBDS-1 failed to elicit IL-8 production (Figure 4).

PBMC
8000-

BB ApoBDS-1 (50ug/mL)
BB ApoBDS-1 (25ug/mL)
[ ApoBDS-1 (12,5ug/mL)
[ ApoBDS-1 (6,25ug/mL)

6000+

4000+

IL-8 (pg/mL)

2000+

Figure 4: ApoBDS-1 is capable of inducing IL-8 secretion from PBMCs and the bioactivity is

sequence dependent

To exclude the possibility that the effect of ApoBDS-1 was due to contamination of
lipopolysaccharide (LPS), we first tested 4 independent batches of synthetic ApoBDS-1 and
found no evidence for coincidental LPS contamination. Furthermore, we showed that
ApoBDS-1 induced IL-8 production was not affected by the LPS inhibitor polymyxin B'>?
(Figure 5). Lastly, we demonstrated that ApoBDS-1 alone could not induce IL-8 in TLR4!>*
or TLR2'* transfected human embryonic kidney cells (HEK293) (Figure 5). These results
confirmed that the effect of ApoBDS-1 was not attributed to LPS contamination.
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Figure 5: The effect of ApoBDS-1 is not due to LPS contamination. A: Polymycin B (10pg/mL)
didn’t inhibit ApoBDS-1 induced IL-8 production in THP-1 cells. B: ApoBDS-1 didn’t induce IL-8
secretion in HEK293 cells without/ with TLR2 or TLR4 transfection. LPS or peptidoglycan (PGN)
used as positive control.

Previous studies have identified native and MDA modified ApoB100 peptides that can be
recognized by circulating IgM or IgG autoantibodies from patients with atherosclerosis’. In
this project, we identified a native ApoB100 peptide ApoBDS-1 with potent activity for
induction of inflammatory responses in monocytes and macrophages. This finding suggests
that fragmented ApoB100 may generate danger signals contributing to the regulation of
innate immune responses in atherosclerosis. It is interesting that neither neighbour peptides
nor truncate peptides of ApoBDS-1 have the bioactivity although they also share some amino
acids with ApoBDS-1, raising a question as to the core sequence and the fundamental
structure that determine ApoBDS-1 bioactivity.

4.2 THE INFLAMMATORY PROPERTIES OF APOBDS-1 (PAPER I-IV)

To extend the knowledge of ApoBDS-1, we characterized the responses of monocytes/
macrophages, endothelial cells and platelets to ApoBDS-1.

4.2.1 ApoBDS-1 activates monocytes/macrophages, endothelial cells and
platelets

4.2.1.1 The effect of ApoBDS-1 on monocytes/macrophages

To study the responses of monocyte/macrophage to ApoBDS-1, 12 chemokines and
cytokines were measured by cytometric bead array and ELISA in PBMCs, THP-1 cells and
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PMA-differentiated THP-1 cells treated with ApoBDS-1 at the indicated time points.
Interestingly, ApoBDS-1 seems responsible for a selective innate immune signature!,
characterized by a preferential activity for induction of IL-6, IL-8, CCL2 (monocyte
chemotactic protein-1, MCP-1) and IL-1B. And the impact of ApoBDS-1 is not equal on
different cytokines and chemokines. While concentration of secreted IL-1f induced by
ApoBDS-1 is usually less than 100pg/mL, the amount of IL-6 can be 10 times more, and the
strongest effect is seen on IL-8 and MCP-1 which can be as much as more than 100 times of
IL-1B (Figure 6). Interestingly, IL-1receptor antagonist (IL-1ra) preincubation in ApoBDS-1
stimulated ex vivo plaque cultures tended to decrease IL-6 and IL-8, suggesting that the
production of the subset of chemokines could be a secondary response to IL-1p.
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Figure 6: ApoBDS-1 induces cytokines and chemokines in PBMCs at 8h. grey: ApoBDS-1
(25pg/mL). black: ApoBDS-1 (50pg/mL)

In connection to inducing cytokines and chemokines in monocytes and macrophages,
ApoBDS-1 in the range 10-100pg/ml could elicit concentration-dependent transwell
migration of PBMCs.

Taken together, these data propose that ApoBDS-1 can attract monocytes and neutrophils to

atherosclerotic lesion by induction of chemokines.

4.2.1.2 The effect of ApoBDS-1 on endothelial cells

Human aortic endothelial cells respond to ApoBDS-1 by increased expression of IL-6, MCP-
1, ICAM-1, VCAM-1, COX2, MCP-1, CCL5, CCL20 mRNA and secretion of IL-6 and
MCP-1. However, ApoBDS-1 didn’t induce IL-8 secretion in endothelial cells, which is
different from that in monocytes and macrophages. And the ApoBDS-1 is not the only
peptide that induces proinflammatory response in endothelial cells, as the neighbor peptide
p217 showed stronger effect than ApoBDS-1 in the induction of IL-8, VCAM-1, CHOP and
XBPs.

4.2.1.3 The effect of ApoBDS-1 on platelets

ApoBDS-1 also exerts prothrombotic effects and proinflammatory effects on platelets. This
has been demonstrated by the facts that ApoBDS-1 increased platelet aggregation, GPIIb/IIIa
activation, fibrinogen binding and surface expression of procoagulant phosphatidylserine.
ApoBDS-1 also induced P-selectin (CD62P), CD40L, IL-1p and CD11b. ApoBDS-1
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facilitated platelet-neutrophil and platelet-monocyte aggregates (Figure 7), and increased
neutrophil adhesion and transmigration.
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Figure 7: ApoBDS-1 increased P-selectin-dependent platelet-neutrophil aggregates and platelet-
monocyte aggregates. (adopted from reference?)

4.2.2 Mechanisms for ApoBDS-1 induced proinflammatory response

As summarized in Figure 8, our studies suggest that multiple signaling pathways are involved
in ApoBDS-1 induced proinflammatory responses. The signaling mechanism of ApoBDS-1
seems more complex than initially thought.
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Figure 8: Multiple signaling pathways are involved in ApoBDS-1 induced proinflammatory response
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4.2.2.1 Ca2+ mobilization

Calcium signaling is critical for the activation of transcriptional regulatory pathways!*®.
ApoBDS-1 treatment rapidly increased Ca>" flux within 30 seconds in PBMCs, suggesting
Ca?* flux as an initial signaling in response to ApoBDS-1. And ApoBDS-1 induced IL-8
production was completely abrogated in the presence of BAPTA, a calcium chelator. Ca®*
flux was shared in the process of platelet activation upon ApoBDS-1 stimulation. However,
mechanisms by which ApoBDS-1 triggers Ca®" signaling have remained elusive.

4.2.2.2 MAPK

Ca?"signaling is implicated in the modulation of MAPK pathways. Incubation of ApoBDS-1
with THP-1 cells led to activation of ERK1/2 and JNK at 10min and 60min, followed by p38
which was fully activated at 60min. When MAPK inhibitors were used, only the inhibitor of
p38 MAPK completely abolished ApoBDS-1 induced IL-8 mRNA and protein, suggesting
that p38 MAPK mediates ApoBDS-1 induced IL-8 production in monocytes.

Platelets are more sensitive to stimuli and react swiftly. The activation of ERK was detected

already after 1min of ApoBDS-1 stimulation (Figure 9). Subsequently, activation of Akt and
p38 occurred in platelets within 5 min. In different from monocytes, JNK was not affected in
platelets when treated with ApoBDS-1.
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Figure 9: ApoBDS-1 induced p-ERK, p-p38 and p-Akt in platelets.

4.2.2.3 PLC-PI3K-AKT

Pharmacological inhibition demonstrated that activation of PI3K, Akt and PLC is critical for
mediating ApoBDS-1-induced inflammatory responses monitored by P-selectin expression.

4.2.2.4 ROS

Reactive oxygen species (ROS) is involved in inflammatory pathways. We found that
ApoBDS-1 dose-dependently increased ROS in platelets and THP-1 monocytes.

4.2.2.5 miRNA

In order to find out the mechanism for ApoBDS-1 induced inflammatory response in
endothelial cells, we performed microRNA (miRNA) array analysis and compared regulated
miRNA in presence of ApoBDS-1. We found that hsa-miR-494, hsa-miR-382, hsa-miR-15a
are decreased by ApoBDS-1 treatment while hsa-miR-126, hsa-miR-146a'*’, hsa-miR-196b
are increased by ApoBDS-1 treatment. Target gene analysis indicated that SOCS6 may be a
target of these microRNA. Hence, by qPCR analysis we confirmed that SOCS6 mRNA was
upregulated by ApoBDS-1 (Figure 10). SOCS6 was previously found to be regulated by
JAK-STATS3 signaling and involved in inflammation.
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Another possible target from microRNA array and chemokine array is LDL receptor-related
protein 6 (LRP6), which is involved in Wnt signaling and chemokine production. ApoBDS-1
treatment increased LRP6 mRNA in endothelial cells (Figure 10). These findings may
suggest a potential role for ApoBDS-1 involved in the regulation of endothelial cell function.
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Figure 10: ApoBDS-1 increased gene expression of SOCS6 and LRP6 in HAECs. grey: ApoBDS-1
(25ug/mL). black: ApoBDS-1 (50ug/mL)

4.2.2.6 Inflammasome (see 4.2.3 ApoBDS-1 activates inflammasome)
4.2.2.7 TRAPI (see 4.3 the receptor/ interacting protein for ApoBDS-1

4.2.2.8 Phagocytosis

ApoBDS-1 can be taken up by monocytes and macrophages. We incubated PMA-
differentiated THP-1 cells or PBMCs with biotin conjugated ApoBDS-1 and detected
presence of ApoBDS-1 inside the cells after 30min by immunofluorescence staining (Figure
11A). And ApoBDS-1 was colocalized with mitochondria (Figure 11B). Using cytochalasin
D which inhibits phagocytosis, we found that ApoBDS-1 induced IL-6 secretion was
suppressed, suggesting that phagocytosis may be partly attributed to ApoBDS-1 bioactivity.

-

Figure 11: ApoBDS-1 can enter cells and is colocalized with mitochondria. Scale bar: Sum

4.2.2.9 Other mechanisms

Our results suggest that ApoBDS-1 induced platelet activation involves platelet ADP
signaling and TxA2 signaling since inhibition of TxA2 production using acetylsalicylic acid



or inhibition of purinergic receptors P2Y'1 and P2Y 12 partially suppressed ApoBDS-1
induced P-selectin surface expression on platelets.

4.2.3 ApoBDS-1 activates inflammasome (paper lll)

IL-1P is an important cytokine in atherosclerosis and other inflammatory diseases. We found
that ApoBDS-1 induces IL-1p release in human monocytes and macrophages. Bioactive IL-
1B is generated from a precursor by caspase-1 cleavage. We then investigated whether
caspase-1 is activated by ApoBDS-1. First we examined caspase-1 enzymatic activity in
THP-1 cells by flow cytometry based quantitative analysis of cleaved FAM-YVAD-FLICA,
a caspase-1 selective substrate. ApoBDS-1 increased the caspase-1 activity as early as 30min
and the activity remained high with time. Then we confirmed the results using another
fluorometric assay. ApoBDS-1 treatment significantly activated caspase-1 which is reflected
by the fluorescence of free AFC cleaved from YVAD-AFC. The third method we used to
measure caspase-1 activity is Western blot. Caspase-1 is proteolytically activated from a
45kDa proenzyme to generate a tetramer of its two active subunits, p20 and p10. We showed
that ApoBDS-1 treatment increased the active caspase-1 p20 significantly at 2h (Figure 12).
Inhibition of caspase-1 by z-YVAD-FMK abolished ApoBDS-1 induced IL-1f in both PMA-
differentiated THP-1 cells and PBMCs, suggesting that ApoBDS-1 triggered IL-18
production is dependent of caspase-1 activity. RIP2 is involved in IL-1 production but RIP2
inhibitor Necrostatin did not affect the IL-1f secretion induced by ApoBDS-1.
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Figure 12: ApoBDS-1 activates caspase-1 in macrophages as early as 2h.

Caspase-1 is usually activated by inflammasome. Of them, NLRP3 inflammasome has been
suggested to be activated by oxLDL'® and cholesterol crystals®. By searching Biobank of
Karolinska Carotid Endarterectomies (BiKE)!**!*3 database, we analyzed mRNA levels of
genes encoding the currently defined components of inflammasome pathways in 125 human
carotid plaques. The expression of inflammasome genes was generally very low in the
arteries without evident atherosclerosis. In contrast, all inflammasome related genes were
highly expressed in the plaque. In specific, carotid plaques were characterized by increased
expression of major canonic inflammasome sensors including NLRP1, NLRP3, NLRC4,
AIM2, but also IFI16, a non-canonic inflammasome sensor which is a host DNA sensor with
critical roles in the generation of IFN-B and IL-1B">* 1%, Importantly, NLRP3, NLRC4 and
[F116 inflammasome genes are associated with the severity of atherosclerosis. We also noted
that monocyte/macrophage marker CD14 was positively correlated with NLRP3, ASC,
caspase-1 and IL-1p. Immunofluorescence staining confirmed that NLRP3, ASC and CD68
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were colocalised in plaque lesional macrophages, implying that NLRP3 inflammasome seems
in an activated state in atherosclerotic plaques.

To determine whether NLRP3 inflammasome is involved in ApoBDS-1 induced
proinflammatory response, we performed siRNA silencing experiment. Knock down of
NLRP3 led to complete inhibition of IL-1f production in ApoBDS-1 stimulated PBMCs and
PMA-primed THP-1 cells (Figure 13).
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Figure 13: Knock down of NLRP3 abolished ApoBDS-1 induced IL-1 production in PMA
differentiated THP-1 cells.

We then did NLRP3 inflammasome reconstitution by transfection of HEK293 cells with
expression plasmids encoding pro-caspase-1, pro-IL-13, ASC and NLRP3. We showed that
ApoBDS-1 stimulated in a concentration dependent manner the NLRP3 inflammasome-
mediated IL-1p generation (Figure 14).
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When inflammasome is activated, the formation of a multiprotein complex can be visualised
in the form of ASC specks. Immunofluorescence staining of ASC and NLRP3 in different
time points of ApoBDS-1 treatment showed that intracellular ASC and NLRP3 were
increased as early as lh in response to ApoBDS-1 in PMA-differentiated THP-1 cells.
Quantification of the colocalization of ASC and NLRP3 also showed that ApoBDS-1

treatment increased their colocalization significantly (Figure 15).
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Potassium (K*) efflux is proposed as a common mechanism whereby a variety of substances
activate NLRP3 inflammasome®’. We showed that blocking efflux of intracellular K*
virtually abolished the stimulatory effect of ApoBDS-1 on IL-1p production, suggesting that
K" efflux is a central mechanism underlying ApoBDS-1 activated inflammasome.

4.3 THE RECEPTOR/INTERACTING PROTEIN FOR APOBDS-1 (PAPER IV)

We have known that ApoBDS-1 stimulates macrophages inducing inflammatory cytokine
and chemokine responses, and activates platelets boosting their inflammatory responses. The
next question is whether there is a receptor or interacting protein for ApoBDS-1.

Performing far western blot, we assessed the ApoBDS-1 interacting proteins in macrophage
lysates and noted that one band near 75 kDa could be constantly recognized by the ApoBDS-
1-biotin. Interestingly, this protein seems only detected by far western blot but not in regular
western blot. Based on these results, this ApoBDS-1-recognized protein has to be in a
properly re-natured structure when interacting with ApoBDS-1. Furthermore the observed
interaction with ApoBDS-1 was

10 pH 53

highly specific as confirmed by
competing with 10-fold excess - - 13c
concentration of unlabeled

ApoBDS-1 (Figure 16 left).
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Figure 16: Left: ApoBDS-1 interacting protein was detected by far western blot and the interaction
was inhibited by incubation with 10-times excess concentration of unlabeled ApoBDS-1. Right:
Representative of 2-D electrophoresis that illustrates the far western blot mapped ApoBDS-1 reactive
spots.

Subsequently, the identity of ApoBDS-1 interactive proteins was verified by 2-Dimentional
(2-D) electrophoresis and mass spectrometry. 2-D electrophoresis of THP-1 lysate generated
a high resolution of cellular protein profile (Figure 16 right). Thereafter, the ApoBDS-1
interactive proteins were probed, and mapped to a parallel 2-D gel stained with silver. By this
approach, in total 5 ApoBDS-1 interactive protein spots from two independent 2D gels were
retrieved and identified by MALDI-TOF mass spectrometry and Peptide mass fingerprint
analysis (PTMs).

Among the identified proteins, TRAP1 (Tumor necrosis factor receptor-associated protein 1)
was characterized with the highest score to be ApoBDS-1 interactive protein.

Trapl was originally found to interact with TNF receptor. It resides mainly in mitochondria.
Previous researches revealed that Trap1 can also exist in the ER'®!, cytosol or extracellular
space'®2. Trap1 and TBP7 were found to interact directly in the ER, indicating that Trapl is
involved in protein quality control for mistargeted/misfolded mitochondria-destined
proteins'!. Trap1 may facilitate the ER-mitochondria crosstalk. Trap] interacts with client
proteins that play key role in signaling pathways. For instance, by interacting with Sorcin'3,
a calcium sensor, whereby it is implicated in the regulation of Ca?" homeostasis in the heart.

Perturbation of Trap] activity has been linked to neurodegenerative diseases'®* 16>

167,168 169

, vascular

and autoimmune disease

disorder'®, several cancers . But the relevance of Trapl1 to

atherosclerosis is ambiguous.

Figure 17:
Colocalisation of
ApoBDS-1 and Trapl in
PMA-differentiated
THP-1 cells. Scale bar:
7.5um

Bioinformatics indicated that ApoBDS-1 has a mitochondrion targeting sequence. Indeed, we
found that ApoBDS-1 was colocalised with mitochondria, and also colocalised with Trap1
intracellularly and on the membrane (Figure 17). It is possible that ApoBDS-1 travels into the
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cell by forming complex with TRAP1. The majority of the colocalisation exist in the cytosol
suggesting that the binding mostly takes place inside the cells. Since the hydrophobic
property of ApoBDS-1, it is likely that TRAP1 shields ApoBDS-1 from being aggregated and
degraded quickly, maintaining ApoBDS-1 in an active form in the cells.

We then characterized the interaction of ApoBDS-1 and Trap1 using Biacore surface plasma
resonance analysis. By immobilizing TRAP1 on biosensor surface and flowing ApoBDS-1
and related peptides or molecules over the blank control and the immobilized TRAP1, we
demonstrated that ApoBDS-1 directly interacted with TRAP1 with a binding strength of 8
resonance unit (RU). The binding specificity was controlled using a third flow cell
immobilized with Conalbumin, an unrelated protein with the same molecular weight as
TRAPI (75 kDa). And the binding of ApoBDS-1 to its specific antibody was used as positive
control. Furthermore, two neighboring peptides of ApoBDS-1, p215 and p217 showed
minimal binding to TRAP1. Collectively, these data indicate that the interaction with TRAP1
is a unique property of ApoBDS-1.

To find out which domain is critical in the interaction with Trap1, we tested ApoBDS-1
truncate peptides. P216¢, which spans the last 10 amino acids in the C-terminus of ApoBDS-
1, exhibited the strongest affinity to TRAP1 in contrast to p216a and p216b (Figure 18).
These results suggest that the binding of ApoBDS-1 to TRAPI relies primarily on the C-
terminal domain of ApoBDS-1.
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Figure 18: Biacore SPR showed that ApoBDS-1 interacts with Trap1 and p216c is the critical

sequence.

Next we determined the kinetics/affinity of the truncate peptide p216c. The interaction of
p216¢ and TRAPI1 has some heterogeneity with one portion dissociating slowly (Figure 19).
Therefore it could not be simulated by 1:1 binding algorithm. To estimate the kinetics, we
performed stead state affinity analysis, and the dissociation constant (KD) was estimated as
28.77+0.833 uM (KD + SEM) with increased concentrations ranging from 1.875 to 30uM.
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Figure 19: Kinetics of p216¢ binding to TRAP1. Steady state affinity analysis was performed.

We also characterized ApoBDS-1 binding site in TRAP1. Like other proteins in the HSP90
family, TRAP1 has ATPase activity and 4 ATP binding sites. Hydrolysis of ATP will lead to
a conformational change in TRAP1, as a consequence, the rearrangement of client protein
binding site. Utilizing Geldanamycin, a HSP90/TRAP1 ATPase domain inhibitor!”® we
showed that ApoBDS-1 did not compete with Geldanamycin on the binding to TRAP1,
indicating that the interaction between ApoBDS-1 and TRAP1 leaves its ATPase domain

intact.

Having confirmed the interaction between ApoBDS-1 and TRAP1, we investigated the
functional relevance of TRAP1-ApoBDS-1 interaction. TRAP1 protein was silenced in
PBMC using TRAP1 specific shRNAs. This led to 40% reduction of TRAP1 protein from the
basal level in PBMC and nearly 80% reduction in the ApoBDS-1 treated PBMCs (Figure 20).
Coincided with knocking down TRAP1, ApoBDS-1 induced IL-1f production was
completely inhibited (Figure 20).
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Figure 20: Trap1 knock down inhibited ApoBDS-1 induced IL-1f production in PBMCs.

Besides knock down experiment, we also used pharmacological inhibitors to test the function
of TRAPI1. Preincubation of PBMCs or THP-1 cells with Geldanamycin inhibited ApoBDS-1
induced IL-1pB, IL-8 and MCP-1 production, suggesting that TRAP1 is required in ApoBDS-1
induced proinflammatory response.
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Mitochondria generated reactive oxygen species (ROS) have important physiological
functions and are involved in cytokine and chemokine production. We observed that
ApoBDS-1 promoted in a concentration dependent manner an increase in the generation of
ROS in the monocytic cells and platelets. It is worth of noting that ApoBDS-1-induced ROS
was also blocked by Geldanamycin (Figure 21), suggesting that TRAP1 plays a regulatory
role in the process of ROS production, which in turn may mediate ApoBDS-1 induced
proinflammatory response.
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Lisanti et al recently report that deletion of TRAPI results in a compensatory metabolic
reprogramming, with a compensatory increased recruitment of cytoprotective chaperones
Hsp90 and Hsp27 to mitochondria, a global compensatory upregulation of an oxidative
phosphorylation transcriptome, increased aerobic glycolysis and ATP production!”".

Consistent with their studies, we found that knock-down of TRAP1 using shRNA silencing
abolished ApoBDS-1 induced proinflammatory IL-1 secretion. And Geldanamycin, an
inhibitor of TRAP1 by inhibiting ATPase activity also blunted ApoBDS-1 induced ROS
production and IL-18, IL-8 and MCP-1 production. It is possible that these recruited
protective chaperones can neutralize or hinder the proinflammatory effects of ApoBDS-1.
But whether ApoBDS-1 interacts with Hsp90 or Hsp27 directly or how these chaperones
crosstalk with each other remain to be determined.

Based on our data, we propose a function model for TRAP1 in the regulation of ApoBDS-1
activity. Our model suggests ApoBDS-1 recruitment to TRAP1 as a crucial process that
keeps intracellular ApoBDS-1 in a stabilized and bioactive state. Perturbation of TRAP1
function then leads to the dissociation of ApoBDS-1, subsequently resulting in ApoBDS-1
ubiquitinated and degraded. An unsolved question of the present study is how ApoBDS-1 is
degraded after dissociation from TRAP1. We speculate that it is likely by a similar
mechanism responsible for ApoB100 degradation. ApoB100 is regulated mainly by the co-
translational degradation mechanism via the ubiquitin-proteasomal pathway'’2. During
translation, the N terminus of ApoB is translocated into the ER lumen'”> ! where BiP, a
chaperone protein, stabilizes hydrophobic sites!’* 17>,

NLR orthologues in plants, which lack adaptive immunity, are R proteins that form a
complex with suppressor of G2 allele of S-phase kinase-associated protein 1 (SGT1) and
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HSP90 for detection of pathogens!”®. The complex formation is required for R protein
stability and activation of signaling. Several mammalian NLRs, including NOD2, IL-1§-
converting enzyme protease-activating factor (IPAF), NALP3 and Monarch-1 (NLRP12),
also form a pre-activation complex with homologues of SGT1 and HSP90'7S. It is proposed
that NLRs need to form complex and indirectly sense PAMPs'”. It is possible that NLRP3
and Trapl form a complex and facilitate ApoBDS-1 activation of inflammasome. This needs

to be investigated further.

44 THE RELEVANCE OF APOBDS-1 WITH ATHEROSCLEROSIS (PAPER I,
11)]

We showed that ApoBDS-1 is capable of inducing proinflammatory responses in

monocytes/macrophages, platelets, endothelial cells. We also found that ApoBDS-1 elicited

IL-6, IL-8, and PGE2 in ex vivo atherosclerotic plaque cultures.

A

Figure 22: ApoBDS-1 is present in
atherosclerotic plaques (A) and the
signal is inhibited by incubation with
both ApoBDS-1 antibody and excess
ApoBDS-1 peptide (B). C shows the
quantification of fluorescence intensity.
D shows ApoBDS-1 (red) is colocalized
with CD68 (green).
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To further explore the relevance of ApoBDS-1 to atherosclerosis, we examined whether
ApoBDS-1 is present in atherosclerotic lesions. Using ApoBDS-1 specific antibody, we
showed that ApoBDS-1 exists in the macrophage-rich region of atherosclerotic plaque
sections. ApoBDS-1 signals were observed in extracellular and intracellular spaces (Figure
22), and the intracellular ApoBDS-1 was predominantly colocalized with CD68 positive
macrophages.

To further verify the presence of ApoBDS-1 in atherosclerotic plaques, we analyzed plaque
homogenates by western blot and size-exclusion chromatography and found that several
bands/fractions between 10kDa and 42kDa from the plaque homogenates can be recognized
by ApoBDS-1 specific antibody. We then collected these ApoBDS-1 positive
chromatographic fractions. Incubation of PBMCs with these fractions elicited similar IL-8
production as ApoBDS-1 and the response can be inhibited by ApoBDS-1 truncate peptide
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p216c¢ (Figure 23), implying that fragments with ApoBDS-1 bioactivity can be found in
atherosclerotic plaques.
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Figure 23: ApoBDS-1 positive peptides exist in atherosclerotic plaque homogenates. A. western blot.
B. size-exclusion chromatography. C. ApoBDS-1 positive fragments induce IL-8 in PBMCs and the
response can be inhibited by truncate peptide.

These data suggest that ApoBDS-1 positive fragments are present in atherosclerotic plaques
and these fragments also have proinflammatory bioactivity like ApoBDS-1.

The analysis of BiKE database suggests that several inflammasome pathways may be active
in atherosclerotic lesions. NLRP3 inflammasome related genes and caspase-1 are dominant in
plaques and have obvious correlation with CD14. Ex vivo plaque culture showed that
ApoBDS-1 induced IL-1 at 100pg/mL. It is possible that ApoBDS-1 also plays a role in
inflammasome activation in atherosclerotic lesions.

ApoBDS-1 is a synthesized peptide. So far we haven’t found the evidence that it exists as a
free form in peripheral blood, which might be beneficial as the body avoids being activated
continuously by an innate immune activator. We did find several ApoBDS-1 containing
fragments in plasma after we incubated plasma with neutrophils or macrophages. We also
generated ApoBDS-1 positive fragment about 10kD from ApoB100 incubated with trypsin or
neutrophil elastase. Neutrophil elastase can be produced by monocytes, macrophages and
vascular endothelial cells and is found in macrophage-rich shoulders of atheromatous
vulnerable plaques'”’. It is possible that LDL or oxLDL particles which are entrapped in
intima undergo a series of modification including enzymatic degradation of neutrophil
elastase and other proteases generating neo-fragments that may contain ApoBDS-1 or
ApoBDS-1 epitopes. The relevance of ApoBDS-1 to atherosclerosis has been suggested by
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the existence of endogenous ApoBDS-1 containing peptides with pro-inflammatory property
in human carotid plaques'®. Yet, it still needs to be investigated in which form the ApoBDS-1
sequence exists in atherosclerotic lesions, whether it is the same sequence of ApoBDS-1 in
vivo, and how it is generated in vivo, etc.
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5 CONCLUDING REMARKS

We identified a native peptide ApoBDS-1 from ApoB100 protein of LDL particle that
induces innate immune responses. ApoBDS-1 is present in atherosclerotic plaques. ApoBDS-
1 activates monocytes/macrophages, endothelial cells and platelets via multiple pathways.
ApoBDS-1 is capable of activating NLRP3 inflammasome leading to IL-1 production which
may elicit cytokine and chemokine secretion. We identified Trapl as ApoBDS-1 interacting
protein and targeting Trapl may become therapeutic option for atherosclerosis in the future.
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Figure 24: The role of ApoBDS-1 in atherosclerosis.

In the presence of risk factors for atherosclerosis, LDL particles are trapped in the intima and
become modified by enzymes or oxidative stress. ApoB100, the unexchangeable protein of
LDL, can be broken down by extracellular proteases or intracellular machinery, releasing or
exposing ApoBDS-1. ApoBDS-1 interacts with chaperone protein Trapl to initiate the innate
immune response. ApoBDS-1 induces Ca®" flux, increases ROS production and increases
MAPKSs phosphorylation. ApoBDS-1 also activates caspase-1 via NLRP3, leading to IL-1
secretion. The consequences are that ApoBDS-1 induces endothelial cells to secrete MCP-1
and other chemokines to attract more leukocytes. ApoBDS-1 activates platelets and promotes
platelet-monocyte aggregates or platelet-neutrophil aggregates. ApoBDS-1 induces
monocytes and macrophages to secrete IL-8, IL-6, MCP-1 and other chemokines and attract
leukocytes to the site, which propagate the inflammation and form a vicious circle. Thus

ApoBDS-1 may represent a new LDL derived innate immune activator which aggravates
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atherosclerosis. Blockage of ApoBDS-1 pathways, like targeting Trapl, accelerating
ApoBDS-1 degradation, or neutralizing ApoBDS-1, may provide new therapeutic

alternatives.
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known inflammatory factor in atherosclerosis. However, the causal components derived from
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recently identified and demonstrated that ‘ApoB100 danger-associated signal 1° (ApoBDS-
1), a native peptide derived from Apolipoprotein B-100 (ApoB100) of LDL, induces
inflammatory responses in innate immune cells. Platelets are critically involved in the
development as well as in the lethal consequences of atherothrombotic diseases, but whether
ApoBDS-1 has also an impact on platelet function is unknown. In this study we examined the
effect of ApoBDS-1 on human platelet function and platelet-leukocyte interactions in vitro.
Stimulation with ApoBDS-1 induced platelet activation, degranulation, adhesion and release
of proinflammatory cytokines. ApoBDS-1-stimulated platelets triggered innate immune
responses by augmenting leukocyte activation, adhesion and transmigration to/through
activated HUVEC monolayers, under flow conditions. These platelet-activating effects were
sequence-specific, and stimulation of platelets with ApoBDS-1 activated intracellular
signaling pathways, including Ca2+, PI3K/Akt, PLC, and p38- and ERK-MAPK. Moreover,
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syndrome, and insulin resistance, resulting from activation of macrophage inflammasome by
oxidized low density lipoprotein (oxLDL). However, a comprehensive understanding of
inflammasome pathways in human atherosclerotic lesion is lacking, and the molecular
identity responsible for oxLDL-induced IL-1 production is still unclear. We recently
discovered that LDL contains an alarming signal, called Apolipoprotein B 100 danger
associated signal 1 (ApoBDS-1) given its activity in triggering macrophage-mediated innate
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inflammasome pathways are linked with severe human atherosclerosis, and that LDL related
peptide ApoBDS-1 is an activator of NALP3 inflammasome, possibly contributing to oxLDL
induced IL-1p production in atherosclerosis. Information from Biobank of Karolinska Carotid
Endarterectomies (BiKE) database showed that many inflammasome genes are expressed in
atherosclerotic plaques, among which NLRP3 inflammasome is positively correlated with
monocytes/macrophages. Using fluorometric assay and flow cytometry we found that
ApoBDS-1 is capable of activating caspase-1 in monocytes and macrophages, leading to
caspase-1 dependent IL-1B production. Immunofluorescence staining analysis demonstrated
that ApoBDS-1 could induce assembly of NLRP3 inflammasome in macrophages. Knocking
down NLRP3 gene abolished ApoBDS-1 induced IL-1f production. Further, by
reconstituting NLRP3 inflammasome in HEK 293 cells, we confirmed that NLRP3
inflammasome is indispensable to ApoBDS-1 induced IL-1f production. Mechanistically,
ApoBDS-1 activates NALP3 inflammasome as a consequence of altered potassium efflux
and mitochondrial membrane potential. Collectively, these findings reveal this ApoB100-
derived peptide as an LDL originated activator of NALP3 inflammasome, possibly
contributing to the inflammatory roles of oxXLDL in atherosclerosis.
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amino acids at c-terminus of ApoBDS-1 are crucial for the binding with Trap1, confirming a
sequence dependent specific interaction between ApoBDS1 and Trapl. Cell culture
experiments showed that ApoBDS-1 induced cytokine secretion and reactive oxygen species
can be inhibited by geldanamycin, an inhibitor of Trap1l. Knocking down of Trap1 using
specific shRNA also suppressed the ApoBDS-1 induced IL-1p production. In summary, we
identified Trap1 as an ApoBDS-1 interacting protein that mediates ApoBDS-1 induced
proinflammatory response.
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