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ABSTRACT 

The main expectations of applying proteomics technologies to clinical questions are the 

discovery of disease related biomarkers. Despite technological advancement to increase 

proteome coverage and depth to meet these expectations the number of generated 

biomarkers for clinical use is small. One of the reasons is that found potential 

biomarkers often are false discoveries. Small sample sizes, in combination with patient 

sample heterogeneity increase the risk of false discoveries. To be able to extract 

relevant biological information from such data, high demands are put on the 

experimental design and the use of sensitive and quantitatively accurate technologies.  

The overall aim of this thesis was to apply quantitative proteomics methods for 

biomarker discovery in clinical samples. A method for reducing bias by controlling for 

individual variation in smoking habits is described in paper I. The aim of the method 

was objective assessment of recent smoking in clinical studies on inflammatory 

responses. In paper II, the proteome of alveolar macrophages obtained from smoking 

subjects with and without the inflammatory lung disease chronic obstructive pulmonary 

disease (COPD) were quantified by two-dimensional gel-electrophoresis (2-DE). A 

gender focused analysis showed protein level differences within the female group, with 

down-regulation of lysosomal pathway and up-regulation of oxidative pathway in 

COPD patients. Paper III, a mass spectrometry based proteomics analysis of tumour 

samples, contributes to the molecular understanding of vulvar squamous cell carcinoma 

(VSCC) and we identified a high risk patient subgroup of HPV-negative tumours based 

on the expression of four proteins, further suggesting that this subgroup is characterized 

by an altered ubiquitin-proteasome signalling pathway. Paper III describes a data 

analysis workflow for the extraction of biological information from quantitative mass 

spectrometry based proteomics data. High patient-to-patient tumour proteome 

variability was addressed by using pathway profiling on individual tumour data, 

followed by comparison of pathway association ranks in a multivariate analysis. We 

show that pathway data on individual tumour level can detect subpopulations of 

patients and identify pathways of specific importance in pre-defined clinical groups by 

the use of multivariate statistics. In paper IV, the potentials and limits of quantitative 

mass spectrometry on clinical samples was evaluated by defining the quantitative 

accuracy of isobaric labels and label-free quantification. Quantification by isobaric 

labels in combination with pI pre-fractionation showed a lower limit of quantification 

(LOQ) than a label-free analysis without pI pre-fractionation, and 6-plex TMT were 

more sensitive than 8-plex iTRAQ. Precursor mixing measured by isolation 

interference (MS1 interference) is more linked to the quantitative accuracy of isobaric 

labels than reporter ion interference (MS2 interference). Based on that we could define 

recommendations for how much isolation interference that can be accepted; in our data 

<30% isolation interference had little effect the quantitative accuracy.   

In conclusion, getting biological knowledge from proteomics studies requires a careful 

study design, control of possible confounding factors and the use of clinical data to 

identify disease subtypes. Further, to be able to draw conclusions from the data, the 

analysis requires accurate quantitative data and robust statistical tools to detect 

significant protein alterations. Methods around these issues are developed and 

discussed in this thesis. 
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1 BACKGROUND 
 

1.1 CLINICAL PROTEOMICS 

 

Proteins (enzymes, receptors, transcription factors, etc.) are the most immediate 

effectors of the molecular phenotype and hence investigation of them is critical to 

understanding the wide spectrum of clinical phenotypes.  

 

Genomic-based studies such as genome-wide profiling for driver mutations, mRNA 

expression (microarray or RNAseq) profiling, or whole genome association studies 

investigating associations between single-nucleotide polymorphisms (SNPs) and 

disease, have defined disease susceptibility genes, and provided important targets for 

disease classification and biological insight (1). However, in many cases these methods 

are limited in providing information on clinical prognosis or driving the discovery of 

new drug targets. The likely reason for this is that DNA and RNA are not on its own 

the appropriate end-points to study for understanding disease mechanisms or the 

deregulated molecular pathways underlying them. In addition, cellular pathways are 

often integrated downstream from genes. Differential expression analysis by mRNA 

expression profiling gives an approximation to protein abundance alterations and 

identifies proteins deregulated at the transcriptional level. However, mRNA expression 

explains the variation in protein expression only to a limited extent (2, 3), and may not 

capture patterns of posttranslational deregulation. Additionally, proteomic approaches 

are useful in characterizing the mechanisms of disease, as they can be used to 

investigate cellular signalling and its pathways. 

 

Clinical proteomics, i.e. the application of proteomics approaches to clinical research, 

has the potential to successfully move from basic scientific knowledge to clinical 

applications for the benefit of the patient. The main expectations of applying 

proteomics technologies to clinical material and questions are regarding the early 

detection of disease, the prediction of disease development over time and how 

individual patients will respond to a given treatment, and the identification of novel 

pharmaceutical targets.  

 

A lot of effort has been put on technological advancement to increase proteome 

coverage and depth to meet these expectations. With global proteomics technologies, 

the goal is to analyse the complete set of proteins expressed in a specific organism, 

tissue or cell at a certain time point of physiological state or experimental condition. 

Today, a typical 2D-gel electrophoresis (2DE) can visualize approximately 3000 spots 

(4), although this is without identification. By performing proteomics by liquid-

chromatography mass spectrometry (LC-MS) protein profiling, the most advanced labs 

can detect and identify over 10,000 proteins in a human sample (5, 6). Considering that 

the number of protein coding genes in the human genome is 20,225 

(UniProtKB/SwissProt 2012-10-01), proteomics is approaching proteome coverage in 

the analysis.  
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But technological advancement does not solve all the problems. So far, potential 

biomarkers found by proteomics discovery studies mostly fail at the stage of validation 

in larger clinical cohorts (7). Moving from potential protein biomarkers in the 

discovery phase to a biomarker for the patients’ benefit is difficult for several reasons. 

One of the reasons is that the potential biomarkers found often are false discoveries 

from the data analysis; it is inevitable that technologies like mass spectrometry that 

survey thousands of different compounds turn up with false positives. Or, proteins can 

change their abundance correlating with a disease just in the sample cohort. That means 

candidate biomarkers must be validated, ideally at an early stage to save money and 

time.   

 

Small sample sizes in combination with patient sample heterogeneity increase the risk 

of false discoveries. The sample size is limited by the low throughput rate of current 

state of the art proteomics methods for biomarker discovery (8, 9), which is low due to 

time-consuming analysis methods required for reaching the low abundant proteins.  

 

To extract relevant biological information from such data, high demands are put on the 

experimental design and the use of technologies with the sensitivity and quantitative 

accuracy for low abundance proteins (10), as well as on data analysis. In addition, it is 

crucial that the samples are of high quality, well characterized and collected according 

to strict standard operating procedure. Clinical studies are dealing with large inter-

individual variation, as well as the variation due to disease. Ways to minimize 

(unwanted) variability and bias therefore has to be considered in the experimental 

design to ensure that the clinical characteristics of interest are investigated. In the 

analysis of tissues and bio-fluids, issues like tissue heterogeneity need to be considered. 

The experimental design should also consider the availability of samples for validation.  

 

For the data analysis, a biological interpretation of the proteomics results strengthens a 

statistical analysis. Thus, false negatives can be avoided at an early stage by putting the 

altered protein levels into a context and by linking related protein level alterations in the 

biological interpretation. For that, protein quantification is important. In particular, as 

small protein level changes may have large biological significance it is desirable that 

the quantitative methods can accurately quantify also small protein changes.    
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Figure 1. A quantitative proteomics workflow from research question to biological 

information. The workflow includes formulation of clinical research question and 

sample selection. Indicated in the figure is also a sample pre-fractionation step to 

reduce complexity. Important further data analysis steps are shown, such as detection of 

statistically significant protein alterations and software aided validation to the extract 

relevant biological information. Selected proteins are then validated by an orthogonal 

method, here exemplified by immunohistochemistry.  

 

 

1.1.1 Biomarker discovery 

The aim with biomarker discovery is to find molecular markers (protein or other) 

correlated with disease or clinical outcome. Potential biomarkers can be identified via 

different omics approaches; in which the whole genome, proteome or metabolome of 

several (clinical) samples is analysed and evaluated by statistical group comparisons. 

The molecular quantitative alterations that are determined statistically significant 

between the defined clinical groups may then be analysed by pathway mapping 

analysis for biological interpretation. Putative biomarkers are then evaluated on a larger 

material.  

 

Advances in mass spectrometry (MS), computational data analysis, and the availability 

of complete sequence databases for many species have done large-scale proteomics 

analyses possible (11-13). Technical advances has enabled analysis of low abundant 

proteins and thus, proteomics has become an important field for biomarker discovery 

(14, 15). It is today possible to quantify low abundant proteins which is the most 

important in biomarker discovery (16). Although omics-technologies such as 

proteomics and DNA microarrays have produced an estimated number of 150 000 
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scientific papers on putative biomarkers, less than 100 have been validated for clinical 

practice (17).  

 

Biomarkers are wanted for early detection of disease (diagnostic markers), for the 

prediction of disease development over time (prognostic markers) and to indicate how 

individual patients will respond to a given treatment (predictive markers). 

Individualized medicine, where each patient receives tailored therapy, relies on 

biomarkers (7).  

 

Most clinically used biomarkers are at nanogram [per millilitre plasma] levels or below. 

One example is prostate specific antigen (PSA) used to diagnose prostate cancer, for 

which the diagnostic cut-off is 4ng/mL. The normal total protein concentration in 

plasma is 50-100 mg/mL and total protein concentration ranges 12 orders of magnitude 

(18). When comparing that with the MS based quantitative proteomics methods, 

spanning 3-4 orders of magnitude and thus reaching down to low µg levels (19), it 

points out one of the difficulties with biomarker discovery. Inter-individual variation is 

another reason that PSA has limitations in both specificity and sensitivity (20). The 

overall concentration range in the cell is slightly lower; but still ranges 6-7 orders of 

magnitude (19, 21). Hence, biomarker discovery studies by proteomics require sub-

fractionation of the proteome and sensitive methods to reach the low abundance 

proteins. However, for the clinical application, i.e. after the discovery phase, antibody 

based methods are more likely to be used.  

 

1.1.2 Quantitative proteomics analysis 

Quantitative data is crucial in biomarker studies. The functionality and significance of 

the expressed proteins cannot be assessed simply by their qualitative identification. 

Quantitative data can constitute the absolute number of molecules in a specific sample; 

for example, when measuring diagnostic biomarkers one may strive to determine their 

amounts in nanograms per milliliter of blood. Quantitative protein analysis and 

determining differences in protein levels between two or more sample populations is 

among the most important tasks in proteomics.  

 

1.1.2.1 Workflow for peptide centric biomarker proteomics  

While a gel based proteomics analysis is performed on intact proteins, the proteome 

analysis by MS can be performed either on intact proteins (top-down) or on peptides 

(bottom-up, or shotgun proteomics). Due to the better separation and ionization 

properties of peptides compared to proteins in both the LC- and the MS-system (22, 

23), as well as the fact that peptides can be detected at lower levels compared to 

proteins (24), peptide-centric proteomics has accomplished the most extensive 

proteome coverage (25). In this thesis, the quantitative mass spectrometry based 

methods described are peptide-centric.  
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Figure 2. Quantitative proteomics methods. A. 2-DE workflow: Two-dimensional 

separation of proteins based on charge (pI) and size (Mw). Proteins are detected and 

quantified by post-separation staining or by labelling prior separation with fluorescent 

dyes. Selected proteins spots are excised, digested into peptides, and identified in a 

separate step. B. Peptide-centric workflow: Peptide separation by charge (pI), 

hydrophobicity (retention time in liquid chromatography, LC) and by mass (m/z) in two 

steps: first on intact peptides (MS) and then on fragment peptides (MS/MS).  

 

 

In a peptide-centric approach, a complex protein mixture is enzymatically digested into 

peptides. The peptides are then often fractionated to reduce sample complexity and 

increase overall proteome coverage prior to reverse-phase liquid-chromatography (LC) 

and analysis by mass spectrometry (MS). Sample complexity has an impact on the limit 

of quantification (LOQ; the limit at which a peptide can be confidently quantified), the 

dynamic range (the range between the highest signal and the lowest amount of a 

peptide detected in a single analysis) and the reproducibility of the experiment (26). 

The LC-MS/MS run is composed of thousands of repeating cycles made up of two 

basic units: an MS scan that determines the peptide intensity and the mass-to-charge 

ratios (m/z), and an MS/MS scan in which the precursor ion is isolated, fragmented and 

a spectrum of its fragments is obtained (27). Typically, 5-10 peptides are fragmented 

for each MS scan. The fragment data from one or up to hundreds of LC-MS/MS runs is 

then searched in an amino acid sequence database to determine the peptide identity.  

 

The amino acid sequence of the peptides is inferred from the fragment ion spectra. The 

assignment of fragment ion spectra to peptide sequences is performed by using 

database search engines such as Mascot or Sequest (28-30) to generate peptide-

spectrum matches (PSMs). Identified peptide sequences (PSM´s) are then assembled 

into proteins (31). Protein identifications are thus defined as assemblies of PSMs whose 

peptide sequences map to the same protein. Protein quantities are then assembled from 

peptide quantities, often using median values.  
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Two points in the above-described workflow often create disturbances in biomarker 

searches. First; neither PSM´s nor protein identifications are perfect. To assess the 

reliability of these identifications, these are therefore controlled for by estimations of 

false discovery rate (FDR). Second, due to the evolutionary recycling within the 

genome, identical peptides are occurring at several places in the proteome. This peptide 

redundancy underlie the protein inference problem (13), which practically means 

peptide-to-protein mismatching. A consequence of incorrect peptide-protein match is 

inaccurate quantification on the protein level. There is yet no consensus method for 

quality control of protein quantification. We use an in-house developed software (32) 

for the identification and exclusion of peptides judged to be mismatched as determined 

by their quantitative pattern over several samples. The FDR calculation and protein 

quantification by peptide quality control used in this study are described in the Methods 

section.  

 

1.1.2.2 Methods for relative quantification (in MS based proteomics) 

In mass spectrometry, there is a wide range of experimental as well as computational 

methods for relative quantification, which differ in their accuracy and applicability to 

various sample types (26, 33-35). MS-based quantification can be performed either 

using chemical modifications for peptide or protein labelling; or by using label-free 

approaches on un-labelled peptides.  

 

Another way to classify the quantification methods is based on whether the quantitative 

data is generated from the precursor ion (MS spectrum) or from the fragments of the 

precursor ion (MS/MS spectrum). MS based quantification methods are isotopic label 

methods and label-free quantification by peak intensity or feature detection. MS/MS-

based quantification methods are isobaric labelling and label-free quantification by 

spectral counting.  

 

Label-free quantification methods measure peptide abundance either by comparing 

peptide spectral counts or by comparing peptide intensities between separate LC-

MS/MS runs. In the first case, quantification is done by counting the number of 

identifications per peptide, which is performed in MS/MS. This is also called spectral 

counting (36). In the second case, precursor intensities are measured in the MS 

spectrum by peak area/height (37, 38). With appropriate computational tools, it is then 

possible to infer the difference in protein abundance between two samples from the 

precursor intensities (39-41).  

 

The use of labels benefits from multiplexing of the analysis, which reduces instrument 

time and limits technical variation. The degree of “multiplexing” in a labelling 

experiment describes how many samples can be differentially labelled, pooled and 

analysed in one experiment. Labelling of samples with stable isotopes or with isobaric 

labels creates versions of each peptide that differ in the mass (or fragment mass for 

isobaric labels) due to isotopic (isobaric tag) composition, but otherwise behave 

identically during sample preparation, separation and MS analysis. Stable isotope labels 

can be classified into two broad categories: chemical and metabolic labelling. In 
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chemical labelling, distinct tags are added to the proteins or the peptides after protein 

extraction, giving this method the advantage of being applicable to basically all types of 

protein samples from cells to body fluids (42). In metabolic labelling, heavy isotopes 

are integrated into the proteome in the process of protein turnover in the living cell (43, 

44), with the advantage of minimising experimental bias. In experiments using stable 

isotope tags, samples are labelled with a “light”, and a “heavy” isotope tag. The relative 

abundance of each sample can be determined by comparing their relative ion intensities 

in the mass spectrum. A popular method for metabolic labelling of proteins by isotopic 

labels is stable isotope labelling by amino acids in cell culture, SILAC (45).  

For isobaric labels, the quantification is measured by the intensities of fragment 

reporter ions from the labels in MS/MS. Isobaric labelling by tandem mass tagging 

(TMT), and isobaric tags for relative and absolute quantification (iTRAQ), is 

commonly used in clinical proteomics for peptide and protein quantification. Both 

TMT and iTRAQ have a high degree of multiplexing which makes them popular. 

iTRAQ allows 8-fold multiplexing (46), while TMT allows 6-fold multiplexing (47-

49). Recent developments has extended TMT to 8-plex (50) by also using isotopic 

mass shift. An advantage compared to labelling by isotopes is that the isobaric labels 

will not make the sample more complex than a non-labelled sample. 

Both relative and absolute quantitative measurements can be made using stable isotope 

or isobaric labels. Absolute quantification is often employed as a targeted analysis, i.e. 

focusing on a single or a few proteins only. A targeted approach is for instance more 

likely in a validation phase of a study where a few biomarker candidates are to be 

analysed on a large number of samples. 

 

1.1.2.3 Statistical analysis of the quantitative data 

An in-depth proteomics study helps to identify and quantify as many proteins as 

possible, but the selection of candidate biomarkers is equally important. Statistical 

analysis of acquired protein ratios are used to evaluate the significance of the detected 

differences between clinical groups. In the case of group comparisons and for 

identifying class discriminating proteins (i.e. a protein or set of proteins that differ 

between two types of clinical conditions), both Student´s t-test, in which one protein at 

the time across all samples is evaluated, and supervised multivariate methods which 

looks at all proteins simultaneously across all samples (such as orthogonal partial least 

squares analysis, OPLS), can be used to prioritize the combinations of biomarkers that 

best separates groups of patients. Unsupervised multivariate analysis (such as principal 

component analysis, PCA) can be used to get an overview of the data and to detect 

patterns and outliers in the data. The statistical analyses results in a list of proteins that 

then needs further analysis for obtaining meaningful information.  

 

 

1.2 BIOLOGICAL INTERPRETATION 

 

To extract meaningful information from the statistical analysis, from which the output 

often consists of lists of proteins up- or down regulated in different conditions; further 
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data analysis focused on the biological interpretation of the data is usually needed. 

Functional analyses by gene ontology (GO) enrichment analysis (51), cellular pathway 

mapping and network generation (52) can aid in extracting biological information from 

the quantitative data and put the proteins in a biological context. A biological oriented 

analysis in terms of pathways or networks is also a validation of the data from the 

statistical analysis. Software tools for network generation, pathway analysis and GO 

enrichment analysis are reviewed in (53). Based on the results from a software based 

validation, a small number of proteins that are most biologically relevant can be singled 

out and validated experimentally on a larger material by orthogonal methods such as 

immunohistochemistry or western blot analysis.  

 

Important issues in the pathway analysis are how often the database used to search 

against is updated and whether it is manually curated or not. Further, pathway mapping 

and network generation are knowledge based, and not all proteins are represented in the 

software databases. Another important point is whether the quantitative values (and not 

just the identities) of the proteins are considered in the analysis. 

 

The biological analysis can be done on sample groups by looking at fold changes and 

proteins significant for differentiating between defined sample groups as determined by 

statistical analysis. The biological analysis can also be done on an individual level, with 

network building of pathway mapping of each individual sample, as described in paper 

III. By using an individual analysis, more proteins can in most cases be used in the 

analysis since one is not limited to proteins shared by all samples. This increases the 

statistical strength of the analysis in the pathway mapping. On a biological level, the 

benefit of an individual pathway analysis is that individual differences are not averaged 

out.  

 

 

1.3 CANCER 

 

In a multicellular organism, the cell growth needs to be regulated. A cell that does not 

adapt itself to the needs of the organism but grows autonomously is a cancer cell. The 

hallmarks of cancer have been summarized to six biological capabilities: sustaining 

proliferative signalling, evading growth suppression, resisting cell death, replicative 

immortality, angiogenesis and activating invasion and metastasis (54). Two additional 

features have been proposed: reprogramming of the energy metabolism and evading 

immune destruction (55). Further, other tumour infiltrating cells have been emphasized 

to be of importance for the tumour growth.  

 

The causative agents of cancer is not always known, although many risk factors are 

known; both lifestyle factors (i.e. smoking) and genetic (i.e. mutant RB1 allele). A 

driving force for cancer development is genomic instability. Most of the cells’ acquired 

capabilities are consequences of genetic alterations that alter the functions of the 

protein products of those genes. Despite the diversity in pathogenesis, there are some 

specific regulatory proteins in the cells that often are disrupted; disruptions of these 



 

  9 

lead to acquiring the hallmarks of cancer. Oncogenes (e.g. MYC) are often overactive 

in cancer, typically due to mutation or overexpression, causing sustained proliferative 

signalling. In normal cells, the protein products of these genes are involved in cell 

growth. Tumour suppressor genes (e.g. TP53 coding for the protein p53 and RB1 

coding for retinoblastoma protein pRb) are often inactivated in cancer cells. These 

genes are responsible for the cancer-defence in normal cells; p53 is involved in cell 

cycle arrest and induction of apoptosis in response to DNA damage, and pRb controls 

proliferation. Deregulation of p53 and pRb leads to cancer hallmarks such as resistance 

to cell death and sustained proliferative signalling. The protein p53 is mutated in >50% 

of all cancers (56).  

 

 

1.3.1 Protein biomarkers and targeted therapy in cancer 

Predicting tumour development and extracting information on tumour-driving 

molecular changes is one of the biggest challenges in oncology. The hallmarks of 

cancer are relatively few, but they are the cause of a multitude of phenotypic 

alterations. Tumour proteomics provides information on phenotype level that combines 

genetic alterations and environmental effects and therefore gives valuable information 

guiding tumour characterization. However, comparative proteomic studies on clinical 

material suffer from large inter-individual variation, and also tumours are  

heterogeneous (57). This can cause a bias when sampling, as a single biopsy may not 

be representative for the whole tumour.  

 

Protein biomarkers currently in clinical use include CA125 for ovarian cancer, CA19-9 

for pancreatic cancer, carcinoembryonic antigen for colon cancer and prostate-specific 

antigen for prostate cancer. However, these all have limited utility for cancer screening 

(58), largely due to their low sensitivity and specificity in early cancer. Nevertheless, to 

find biomarkers for early diagnosis, tumour classification and therapy guidance is 

essential for both individualized medicine (14) and for finding new pharmacological 

targets. It has been shown for many cancers that the tumours can be divided into 

subgroups with different properties and prognosis. Thus, the development of new 

targeted drugs requires the identification of patients with molecularly defined cancers 

that can be selected for clinical trials to evaluate the new drugs (59).  

 

The hallmarks of cancer have been made targets of cancer therapy. For example, 

sustaining of proliferative signalling is targeted by inhibitors of epidermal growth factor 

receptor (EGFR) mediated signalling (60), which can be described as an oncogenic 

pathway in cancer. Another example is Tamoxifen, a treatment for breast cancer that 

targets the estrogen receptor (ER). However, clinical responses are often transient and 

followed by relapse. This could be due to redundant signalling pathways; meaning that 

the targeted therapy does not completely shut down the hallmark because of parallel 

pathways that maintain the function. Also, cancer cells within the same tumour can 

have different cancer driving pathways activated (57).  
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1.3.2 Human papilloma virus (HPV) induced cancers 

Although not a major cause of cancer, there are also viral causes of cancer. One such 

virus is the human papilloma virus (HPV), a sexually transmitted DNA virus that 

infects squamous epithelium. HPV infection is in most cases transient, but a sub-group 

of oncogenic HPV strains can cause cancer. HPV is the cause of the majority of 

cervical carcinomas (99% are HPV positive), and 25 % of head and neck cancers, and 

play a role also in other malignancies (61). The recently introduced vaccination 

program against HPV infection is expected to reduce the number of HPV induced 

cancers in general, although it is developed against cervical cancer and currently 

restricted to vaccination of girls and young women.  

 

The oncogenic pathways induced by the human papilloma virus (HPV) are well 

studied; for a review see (62). The oncogenic features of HPV primarily lie in the viral 

proteins E5, E6 and E7 (Figure 3). E6 and E7 target two of the major cellular tumour 

suppressor proteins: pRb and p53, which are consequently deregulated in HPV induced 

cancers (62). E6 and E7 also target the antiviral defences by suppressing interferon 

(IFN)-mediated immune responses (63). Although much information on HPV induced 

oncogenic pathways exist on mRNA level, there are few in-depth proteomic studies on 

clinical material.  

 

 
 

Figure 3. The functional inactivation of tumour suppressor proteins pRb and p53 

by the HPV viral proteins E7 and E6. The protein E7 binds to the retinoblastoma 

tumour suppressor gene product pRb, with a preference for the active (non-

phosphorylated) form of pRb. The E6 proteins associate with the p53 tumour 

suppressor protein. This interaction promotes the degradation of p53.  

 

 

1.3.2.1 Vulvar squamous cell carcinoma 

Vulvar squamous cell carcinoma (VSCC) is a gynaecological skin tumour. VSCC can 

be divided into two sub-groups; one HPV positive and one HPV negative (64). The 

reported proportion of vulvar cancer linked to HPV infection varies widely (65-72), but 

in Nordic studies 22-52% of VSCC tumours are HPV positive (66, 70, 71, 73). Several 

studies indicate a positive correlation between HPV related VSCC and favourable 
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prognosis (70, 73-75). But the link is uncertain as there also are studies showing no 

prognostic importance of HPV status (68, 76, 77). 

 

Based on clinical and histopathological features the two VSCC subtypes, which are 

preceded by their own type of pre-malignant lesion, are postulated to develop via 

separate intracellular signalling pathways (64). The two VSCC types differ in age 

distribution, with HPV related vulvar carcinoma linked to younger age (approx. 65 yrs.) 

compared to HPV negative carcinoma (approx. 75 yrs.) (73, 76, 78).  

 

The main treatment of VSCC is surgery, but depending on disease stage, adjuvant 

radiation and chemotherapy may be given (79). Identification of patients with low risk 

of relapse could allow for less radical surgery. A report on the first trial of a targeted 

therapy for VSCC was recently published (80). The evaluated drug was Erlotinib, an 

EGFR inhibitor. The results, where 27% of the patients showed partial response (which 

was the best outcome), emphasizes the need for stratification of patients prior to clinical 

trials.  

 

 

1.4 SMOKE INDUCED INFLAMMATION AND COPD 

 

Smoking is a major factor in cardiovascular and chronic lung diseases, and the 

association of smoking and inflammation is well known (81). The acute effects of 

smoking have an impact on a number of inflammatory markers in the lung (82, 83).  

The cigarette smoke induced lung inflammation is a normal response that appears to be 

modified in patients who develop chronic obstructive pulmonary disease (COPD), 

which is one of the consequences of smoking and chronic inflammation (84). In these 

individuals a chronic inflammatory response is induced that may lead to destruction of 

the lung parenchyma (leading to emphysema) and disruption of repair mechanisms 

(leading to small airway fibrosis) (85, 86). The consequences are progressive airflow 

limitation and air trapping. In general, these inflammatory and structural changes of the 

airways increase with disease severity and persist on smoking cessation.   

 

Clinically, the definition of COPD is:  

 

“a preventable and treatable disease with some significant extrapulmonary effects that 

may contribute to the severity in individual patients. Its pulmonary component is 

characterized by airflow limitation that is not fully reversible. The airflow limitation is 

usually progressive and associated with an abnormal inflammatory response of the lung 

to noxious particles or gases” (87).  

 

A number of inflammatory cells are involved in the inflammation in COPD (Figure 3), 

as injury of the airway epithelial cells leads to release of danger-associated molecular 

patterns and cytokines, which recruits dendritic cells, neutrophils and macrophages to 

the site (85). Proteolytic enzymes and reactive oxygen species are released which will 

cause further damage if they are not counterbalanced. The immune response further 



 

12 

involves T-lymphocytes that together with the neutrophils and macrophages release 

inflammatory mediators and enzymes and interacts with structural cells of the airways 

(e.g. fibroblasts) and the lung parenchyma (88). Macrophages from COPD patients 

secrete more inflammatory and elastolytic proteins than those from healthy smokers 

(89). In contrast to macrophages from never- and healthy smokers, the release of 

inflammatory mediators is not inhibited by corticosteroids in macrophages from COPD 

patients (90), rendering the treatment used to maintain other chronic inflammatory 

airways diseases such as asthma, inefficacious in COPD patients (91). 

 

 
 

Figure 3. Major cells involved in smoke induced inflammation in COPD. Alveolar 

macrophages are activated as a consequence of the epithelial damage caused by 

cigarette smoke. By cytokine release, other immunological cells are activated 

(neutrophils and T-cells). Neutrophils and macrophages release proteases leading to 

tissue destruction and perpetuated inflammation. Also fibroblasts are activated by the 

epithelial damage and show an altered response to the cytokine microenvironment, 

leading to deregulated repair mechanisms.  

 

 

It is approximated that up to 50% of all smokers will have developed COPD at the age 

of 70-80 years (92). This suggests a genetic background, which is strengthened by 

studies showing an increased risk of airway limitation among siblings to patients with 

COPD (93), and the identification of a single-nucleotide polymorphism in the gene 

coding for metalloproteinase 12 as a protective factor (94). Other risk factors for COPD 

are air pollution (95), tuberculosis (96) and passive smoking (97). Although not studied 

yet, premature birth may show to be a risk factor for developing COPD later in life, as 

the pre-and perinatal periods are important for the growth and development of the lung 

(98).   
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The prevalence of COPD has historically been higher in men than in women. However, 

due to the fact that the smoking habits of women have changed, the prevalence is now 

equal (99). There are also studies indicating that women are more sensitive to smoking 

than men (100-102), which could be due to that women in general have smaller lungs. 

In addition, women seem to have more airway symptoms, with thicker small airways, 

while men have more pronounced emphysema (103).  

 

Diagnosis and classification of COPD is today based on measurements of the lung 

function by spirometry. For COPD diagnosis, the ratio FEV1/FVC < 0.7; where FEV1 

=forced expiratory volume in 1s, and FVC=forced vital capacity. For classification of 

disease severity into stages I-IV, FEV1 as percentage of predicted is used for staging 

according to the following: stage I is mild disease (FEV1<80% of predicted); II 

moderate (FEV150-80%), III severe (FEV130-50%) and IV (very severe, FEV1<30%).   

 

COPD is presently the fourth leading cause of death world-wide and predicted by 

WHO to become the third leading cause of death by 2030 (104). Despite being one of 

the most common chronic diseases in the world; the exact molecular mechanisms of the 

disease are unknown. The analysis of the mechanisms of the disease is challenged by 

the presence of multiple phenotypically distinct subgroups within the disease. There is 

a broad variation in clinical phenotypes of COPD. The pulmonary components of 

COPD can be divided into two parts: small airway fibrosis which lead to airway 

obstruction or parenchymal destruction (emphysema) (105). These components are 

present in varying degree among patients. As indicated by the definition of the disease, 

COPD also cause systemic inflammation and extrapulmonary manifestations, including 

ischaemic heart disease, osteoporosis and skeletal muscle wasting (106). Obviously, 

spirometry does not cover extrapulmonary symptoms or clinical subtypes, which 

explain why clinical features such as rate of decline in health in patients with COPD do 

not correlate well with FEV1 (107). In the new GOLD guidelines for COPD (87) it is 

now indicated that in the management of the disease also symptoms and history of 

exacerbations (episodes of disease worsening) should be considered, recognizing the 

limitations of spirometry alone as diagnostic tool.  

 

There is hence an urgent need for identifying biomarkers for early detection, and for the 

identification of the different phenotypes of the disease. Besides smoking cessation 

there is no treatment of COPD that modifies disease progression. Current 

pharmacotherapy is, with some exceptions, developed for asthma and based on inhaled 

bronchodilators, and corticosteroids (108). A characterization of the different 

pathophysiological features behind the subtypes on a molecular level is therefore 

desirable.   
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2 THE PRESENT STUDY 
 

2.1 AIMS 

The overall aims of this thesis were to apply quantitative proteomic methods for 

biomarker discovery in clinical samples. Further; to minimise bias and confounding 

factors in the sample selection; to develop a data analysis workflow for the extraction 

of biological information from quantitative mass spectrometry data and to evaluate the 

potentials and limits of quantitative mass spectrometry based methods.   

 

The specific aims were: 

 

Paper I: To use carbon monoxide levels in exhaled air as a tool to discriminate 

between short term abstinence and continued smoking, and establish a cut-off level for 

classifying recent smokers from smokers having refrained from smoking >8 hours.  

 

Paper II: To identify biomarkers for early detection of chronic obstructive pulmonary 

disease by investigating the soluble proteome of pulmonary cells by quantitative 2D-gel 

electrophoresis; focusing on gender-specific protein alterations. 

 

Paper III: To identify biomarkers for relapse risk and to investigate the molecular 

alterations underlying human papilloma virus (HPV) positive and HPV negative vulvar 

squamous cell carcinoma through in-depth tumour protein profiling by quantitative 

mass spectrometry. 

 

Paper IV: To find the limits and factors affecting the quantitative accuracy and linear 

range for two principally different and commonly used methods for clinical mass 

spectrometry-based proteomics: label-free quantification and isobaric labelling. 
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2.2 MATERIAL AND METHODS 

 

This section introduces and describes selected aspects of applied methods. 

Methodological details are found in each of the papers I-IV.   

 

2.2.1 Study design 

2.2.1.1 Sample selection 

Paper I. Measurements of carbon monoxide (CO) levels in exhaled air were performed 

on individuals from 2 study groups: Group 1 consisted of 13 individuals: 6 non-

symptomatic current smokers and 7 non-smokers. Group 2 consisted of 86 individuals 

of which 29 were healthy non-smokers, 38 current smokers with normal lung function 

and 19 were current smokers with COPD of GOLD stage I and II (mild to moderate 

disease) (109)). As the study in paper I was performed in conjunction to paper II, 

group 2 partially overlap with the study subjects in paper II. 

 

Paper II. Clinical samples were selected from a cohort of 120 individuals matched in 

terms of age (45-65 years) and gender. The study subjects consisted of never-smokers 

with normal lung function, smokers with normal lung function, and COPD patients 

(current smokers and ex-smokers with mild to moderate disease (GOLD stage I-II, 

FEV1=50-100% and FEV1/FVC < 0.7). All subjects underwent clinical examination, 

chest X-ray, CT, and spirometry. COPD patients and healthy smokers were matched in 

terms of smoking history (>10 pack years (1 pack year corresponds to 20 cigarettes/day 

for 1 year) and >10 cigarettes/day the past 6 months).  

 

Paper III. We selected the clinical samples from a cohort of 37 tumour specimens: 7 

human papilloma virus (HPV) positive and 7 HPV negative; with relapse as an 

independent clinical factor. We could then look at relapse regardless of HPV status.  In 

the pair-wise sample selection we considered 14 clinical variables to match the patients 

from the two groups.  

 

2.2.1.2 Cell samples 

In paper II, lung cells were obtained by bronchoalveolar lavage (BAL). During this 

procedure, a bronchoscope is wedged into a middle-lobe bronchus and a physiological 

saline solution is instilled and aspirated. The aspirate contains inflammatory cells and 

airway exudates from the distal parts of the lung. The sampling of cells close to the site 

of disease is an advantage, as material from the lung otherwise is difficult to access in a 

non-invasive way. If the fluid recovery is low, the material originates from more 

proximal parts which alter the BAL cell composition. Therefore, if recovery was <40%, 

the sample was excluded. The cellular fraction of the BAL includes macrophages, 

lymphocytes and neutrophils. The majority (72-96%) of the BAL cells in healthy 

individuals are macrophages (110), and the percentage is even higher in smokers; 

>90% (111).  

 

In paper III tumour samples were obtained from surgery. Intra-sample heterogeneity 

is a considerable difficulty when profiling tumour tissue proteome. To avoid intra-
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sample heterogeneity caused by infiltrating immune- and stromal cells, we inspected 

adjacent tissue sections regarding tumour cell percentage during the initial sample 

selection. 

 

Paper IV. The human breast cancer cell line MCF7 was used as representative 

complex proteome background, into which we spiked 57 standard proteins in amounts 

spanning 5 orders of magnitude. 

 

2.2.1.3 Sampling of carbon monoxide in exhaled breath 

Carbon monoxide (CO) is a constituent of cigarette smoke that is eliminated almost 

exclusively via breathing. CO in exhaled air can therefore be used as an indicator of 

smoking. CO is also produced endogenously during inflammation and can be affected 

by intake of certain food, but compared to smoking, these effects are relatively small. In 

paper I, CO levels were measured using a portable device, Smokerlyzer Micro EC50 

(Bedfont Scientific Ltd, Kent, U.K.). Subjects hold their breath for 20 seconds to allow 

COHb to form equilibrium with alveolar CO. They then exhale into the mouthpiece of 

the instrument during which the CO levels are recorded (as ppm). As calculated from 

triplicate measurements, the CV in our study was <10% for smokers. For non-smokers 

the CV was 150%, which is explained by the low absolute levels close to the detection 

limit (0-3 ppm).  

 

2.2.2 Pre-fractionation by peptide isoelectric focusing  

Isoelectric focusing (IEF) involves the separation of proteins or peptides based on their 

isoelectric point, pI. This can be performed by applying the proteins or peptides on an 

immobilized pH gradient (IPG) gel. An electric current is applied, which causes the 

protein or peptide to migrate in the IPG gels until reaching the pH where it has no net 

charge and thus stops migrating (it is focused). Isoelectric focusing is the first 

dimension of separation in 2-DE. In our mass spectrometry based analytical workflow 

for protein quantification of complex proteomes, we use high-resolution or narrow 

range isoelectric focusing of peptides prior to MS analysis to reduce sample complexity 

and thereby increase proteome coverage  (112, 113). By reduction of the sample 

complexity we are able to detect the low-level proteins (6). After focusing, the peptides 

are passively eluted into 72 contiguous fractions, using an in-house constructed IPG 

extractor robotics (GE Healthcare Biosciences AB, prototype instrument). The peptides 

that focus in the applied pH range represent 96% of the proteome, but have been 

reduced to one third in number (112). Furthermore, peptide pI adds information that 

aids in identification (114, 115) and can be used to reduce the database search space in 

the peptide identification (6, 116).  

 

2.2.3 Protein quantification by 2D-gel electrophoresis 

Two-dimensional gel electrophoresis (2-DE) is a proteomics separation method, based 

on separation of intact proteins with respect to their isoelectric point (pI) (by isoelectric 

focusing) and molecular weight (by SDS-PAGE) (117). The separation of proteins in 

two dimensions results in a 2D-map of spots where ideally each spot represents an 

individual protein species. The spots are thereafter visualized by staining and quantified 
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by specific 2-DE analysis software that matches spots across gels. Selected proteins 

may be excised and identified using mass spectrometry.  

 

One of the most common methods for relative protein quantification is 2-D difference 

gel electrophoresis (DIGE) (118). This was the method applied in paper II. It allows 

covalent labelling of samples with three spectrally separated fluorescent dyes, which 

are co-separated on the same 2-DE gel. This enables analysis of differences in protein 

abundance between samples, avoiding inter-gel variation by using the same gel. The 

use of a sample pool as an internal reference standard can facilitate gel-to-gel matching 

and make it possible to multiplex beyond the number of available labels in larger 

experimental designs (i.e. compare more than 3 samples) (119). For compatibility with 

MS-based identification of selected spots, minimal labelling strategies are used (120). 

 

The 2-DE technique has limitations particularly regarding sample throughput; it is 

labour intensive and time consuming. Further, it is not coupled to identification. Other 

limitations are difficulties in resolving hydrophobic proteins, proteins with extreme pI 

(>9.5), large molecular weight proteins (>250 000 Da) and low abundance proteins. A 

typical 2-DE can visualize approximately 3000 spots (4), which means that many 

proteins overlap or co-migrate. Approximately 1000 copies of a protein have to be 

present in a cell to be detected by 2-DE (121). By using isoelectric focusing with single 

pH unit strips and very large gels, the detection limit has been reduced to >300 

copies/cell with resolution of up to 6000 protein spots (122, 123).  

 

2.2.4 Protein quantification by mass spectrometry 

2.2.4.1 The mass spectrometer  

Mass spectrometry separates gas phase ions in vacuum based on their mass-to-charge 

ratio (m/z). Basically, the mass spectrometer consists of three parts: an ion source, a 

mass analyser and a detector. In the ion source, the peptides (or other analytes) become 

ionized, which is a requirement for their subsequent separation in the mass analyser. 

Electrospray ionization (ESI) is a frequently used ion source because it is a soft 

ionization method (i.e. the ionization process leaves the molecular ions intact) and 

because of the added benefit of direct coupling to reversed-phase liquid 

chromatography (RPLC). RPLC is a method based on hydrophobicity (C18 columns) 

and is used for sample clean-up and separation of peptides prior to MS analysis. Nano-

ESI, the low flow rate (e.g. 400 nl/min) version of ESI was the ionization technique 

used in this thesis (papers III and IV).  

 

In the mass analyser, the ions are separated based on their m/z. There are several types 

of mass analysers, all which have their pros and cons. The instrument used for the mass 

spectrometry analyses in this thesis (paper III and IV) was an LTQ-Orbitrap. The 

LTQ-Orbitraps are hybrid instruments (124, 125), having two kinds of mass analysers. 

The LTQ (linear quadropole ion trap) traps the ions in “packets”, and is a modification 

of a quadropole ion trap instruments, with improved sensitivity in the low mass range. 

Other strengths of the ion trap are speed and large trapping capacity. In the ion trap, 

tandem mass spectra (MS/MS) for the purpose of peptide identification are generated 
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by collision induced dissociation (CID). In addition to the standard CID, the LTQ-

Orbitrap is capable of a special fragmentation method (higher-energy collisional 

dissociation, HCD) that makes it suitable for the use of isobaric tags (126-132). The 

Orbitrap mass analyser measures mass by the way the ions oscillate in an electrostatic 

field; the frequency of the oscillations is converted to m/z by Fourier transformation. 

The strengths of the Orbitrap are high mass accuracy, high resolving power, high 

sensitivity and wide dynamic range.  

 

The ion trap and the Orbitrap use different kinds of detection. In the ion trap, after 

separation in the mass analyser by their m/z, the ions hit the detector (a type of electron 

multiplier, that amplifies the signal of each ion hit), which registers the number of hits 

at any given m/z value. In the Orbitrap, the detector consists of two metal electrodes 

that register the oscillation of the ions as they pass by one or the other, thereby 

producing a sine wave type of signal. This transient signal is then reverse Fourier 

transformed into the usual mass spectrum with m/z on the x-axis and ion count on the 

y-axis.  

 

2.2.4.2 The mass spectrum 

The mass spectrum is an abundance plot of mass separated ions. The y-axis shows ion 

counts (intensity). The x-axis shows mass-to-charge ratio (m/z), i.e. mass units divided 

by the charge of the ion, which when using ESI can carry several charges. In acidic 

solutions amine groups will be protonated and positively charged. Because trypsin 

cleaves after arginine and lysines residues, tryptic peptides will be able to carry at least 

two positive charges, i.e. both at the peptide N-terminus and the arginine or lysine side-

chain. An LC-MS experiment also has a time dimension, as mass spectra are recorded 

continuously during LC-separation. Each time point in the LC chromatogram 

corresponds to a single mass spectrum recorded at that time.  

 

2.2.4.3 Quantification in MS and MS/MS 

For a peptide, the quantitative response can be obtained by determining the area under 

curve for the LC-MS peak, or by measuring peak height. As a rule of thumb about 15 

data points (individual spectra) should be recorded across the peak for sufficient 

quantitative accuracy. Thus it may be necessary to adjust the scan speed (the time used 

to record a single mass spectrum) depending on the speed of the chromatographic 

separation. Making several measurements will improve quantitative accuracy as well as 

mass accuracy. If the sample is complex there is a risk that two co-eluting peptides will 

have the same mass. Overlapping peaks shift the observed mass value and cause 

inaccurate quantification. For quantification very low intensity peaks can be difficult to 

measure. Also very high intensity peaks can be problematic because at some point the 

detector will reach saturation.  

A quantitative measure can also be obtained from the MS/MS fragment spectra. This 

can be done by counting the number of MS/MS fragmentations for a peptide (spectral 

counting) or by relative quantification of reporter ions generated from the 

fragmentation of isobaric labels as described. The advantage with MS/MS 
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quantification is that the MS/MS spectra contain less noise, which leads to and 

increased signal-to-noise ratio. Another advantage is that both peptide identification 

and quantification can be performed on the same tandem mass spectrum, simplifying 

optimization. Quantification may however be skewed due to co-isolation of other ions 

which are also fragmented, i.e. precursor mixing. In addition, LC-MS instruments 

require time to generate an MS/MS spectrum. For samples of high complexity, 

peptides eluting at the same time as another peptide is being fragmented will be 

missed. So even if the same sample is run twice, there is no guarantee that all of the 

same peptides will be fragmented in the second run, which may lead to poor overlap 

between LC-MS/MS runs. 

2.2.4.4 Quantification by isobaric labelling  

In papers III and IV, MS-based quantification was performed by isobaric labelling. 

Isobaric labels consist of three parts: a linker (an N-hydroxy succinimide ester group 

that makes them reactive towards N-terminal amines and the amine group of lysine 

residues), a reporter (with a mass unique for each tag) and a balance group (adjusted so 

that the net mass is identical among the tags). Peptides labelled with isobaric tags are 

thus equal in mass and will be observed as a single peak in MS. When fragmented, the 

reporter group of the tag is released and the corresponding reporter ions are observed in 

the low mass region (m/z range 113–121 for iTRAQ, and 126-131 for TMT). 

Quantification is then based on the relative intensities of those reporter ions. Thus, to be 

quantified, a peptide has to be fragmented to generate MS/MS data.  

 

Co-selection of precursors leads to unidentified fragments in the MS/MS spectra, and 

thereby lowers the number of identifications (133, 134). It also has a negative effect on 

quantification, as the reporter ions from co-selected precursor ions superimpose on the 

“true” reporter ions. Because most of the proteins in a biological sample are 

unregulated, the co-isolated peptides often create reporter tags with equal relative 

intensity. Consequently, precursor co-isolation has in several studies been shown to 

cause systematic underestimation of ratios (131, 135, 136). In an experiment where the 

aim is to detect proteins that exhibit quantitative changes, ratio compression can lead to 

false negatives. The problem with poor accuracy linked to precursor mixing was 

recently discussed in a review (137). The frequency of co-fragmentation is increased by 

high sample complexity, and consequently reduced by sample pre-fractionation (138).  

 

Other considerations in chemical labelling include side-reactions of the label. In the 

original publication (139), the authors stated low degrees (<3 %) of tyrosine 

derivatisation and of un-reacted N-terminal and lysine amines.  

 

2.2.4.5 Label-free peptide quantification  

Measuring precursor ion intensities in the first MS dimension (37, 38) is considered the 

most accurate quantification of low abundant proteins (140). These are the proteins of 

interest in most biomarker discovery, and this was the label-free quantification strategy 

that we evaluated in paper IV. Precursor ion intensities are calculated from either peak 

height or peak area of ion count for peptide precursor peaks measured during LC 
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elution. In the software that we used in the label-free quantification (MaxQuant) in 

paper IV, peptide abundance is estimated from peak area.  

 

Comparisons between LC-MS/MS analyses are performed by matching precursor 

peaks defined by LC retention time and m/z between samples. These areas/peaks 

defined by chromatographic retention time and m/z are also called MS1 features. The 

MS1 features are matched across different LC-MS/MS analyses for relative 

quantification. The matching puts high demands on reproducibility and good 

alignment-methods to be able to match features. Shifts due to technical variance occur 

in m/z, LC retention time and intensity. By calibration of the mass spectrometer, m/z 

shifts are typically very small, while drifts in the retention time are larger and may 

require more sophisticated alignment, especially in larger studies. The latter is crucial 

particularly in clinical studies where the individual variation makes it necessary to 

analyse samples from many individuals to be able to pick up disease specific 

differences in protein amounts between sample groups. Intensity normalization to make 

abundances comparable across samples in often done by global normalization to equal 

mean or median ion counts between samples (141). Comparisons have shown that 

linear normalization regression methods work well for LC-MS data (142, 143), and 

may be improved by including run order in the normalization (142).   

 

2.2.5 Protein identification and quantification  

2.2.5.1 Estimating false discovery rates (FDR) 

The peptide spectrum-matches (PSM´s) from database matching of spectra and peptide 

sequences are associated with false positives, particularly when the database is large. 

The fraction of false positives among the true positives (false discovery rate, FDR) is 

usually estimated using a target-decoy database containing the real database plus a 

database of equal size to which no matches are expected (for example the reverse 

sequences of the “target” database). A cut-off level giving an acceptable FDR is then 

set; common for biological samples are setting cut-off at 5% FDR.  

 

There is a distinction between the FDR of PSM´s and of protein identifications. 

Depending on whether the statistical analysis is performed on protein or peptide level, 

peptide or protein FDR is preferred. While setting protein-identification FDR is critical 

in applications such as biomarker discovery or proteome profiling, setting peptide-

identification FDR is important for label-free quantification (144). The biologically 

relevant outcomes of a peptide-centric proteomics approach are on the protein level. To 

estimate the false discovery rate of the protein identifications in Paper III, we used a 

specific software for estimating the false discovery rate on protein level, MAYU (145). 

In paper IV, we calculated the peptide and protein FDR in MaxQuant (45).  

 

2.2.5.2 Protein quantification by peptide quality control 

An in-lab developed algorithm, PQPQ (32) was used to improve the quantitative 

accuracy by the identification of protein isoforms. PQPQ checks all the peptides 

matched to a protein by analysing the quantitative pattern over samples. Based on the 

assumption that the quantitative pattern of peptides from the same protein should 
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correlate, PQPQ identifies outlier peptides and clusters of peptides with differing 

patterns over samples.  

 

2.2.6 Pre-processing of quantitative proteomics data 

The output data from the MS instrument is already pre-processed by the instrument 

software to a certain extent. The label-free data is acquired in profile mode. The same 

can be said for the gel based data, which is based on spot volume, where the imaging 

software removes artefacts. The MS/MS data used in the isobaric quantification is 

acquired in centroid mode, which means that the data is reduced to peak height.  

 

Mean centering of the data (paper II, III), is done to shift the quantitative data 

towards the mean in multivariate analysis. Mean centering is done by taking the 

average value of each variable (protein) and subtract the obtained value from each data 

point.  

 

Scaling. Unit variance (UV) scaling of the quantitative data (paper II and III) is done 

to make each variable equally important (i.e. a protein level alteration that is small 

becomes as relevant as a protein level alteration that is large). UV scaling is based on 

the standard deviation of each variable (protein).  

 

Normalisation of the samples can be done based on different assumptions depending 

on study and sample. In paper IV normalisation of label-free quantification data was 

performed against the total intensity of the LC-MS run, assuming equal peptide 

amount. By normalization we corrected for differences in overall intensities due to 

instrument drift during the analyses. In paper I normalisation of CO values was 

performed assuming equal reduction of CO elimination rates during the night in all 

individuals. By normalization we corrected for differences in at which time of the day 

sampling was performed on the two study groups 

 

Log-transformation of quantitative data can be done to make the data normally 

distributed. It was for example done in paper IV to plot the LOQ curves. A risk with 

transformation is that noise may be enhanced.  

 

2.2.7 Statistical analyses of quantitative data 

2.2.7.1 Students t-tests and related nonparametric tests 

T-tests and corresponding nonparametric tests compare two sets of measured data. For 

comparing three or more groups, ANOVA or related nonparametric tests are used. 

 

Parametric tests 

Parametric tests (t-tests and ANOVA) assume that the data follow normal distribution. 

If the data is not normally distributed, log-transformation of the data can be used to 

make it normal distributed; which was performed in papers II and IV.  

 

Students t-test: A t-test show the probability that a test is true. This also includes a 

small probability that the test is false. If many significance tests are done, as in a 
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proteomics study (one per protein), a correction for multiple testing is required to 

control for false positives. This is often done by estimations of false discovery rate 

(FDR). There are tools for t-tests that correct for multiple testing such as significance 

analysis of microarray (SAM) (146, 147) used in paper III. SAM performs t-test with 

permutation based correction for multiple testing. Another tool is Mass Conductor: 

http://translationalmedicine.stanford.edu/Mass-Conductor; a web tool for calculating t-

test and local FDR. The latter method for estimating FDR is preferred when if the 

sample groups are small, i.e. <5 individuals in each group.  

 

ANOVA: is a statistical test of whether or not the means of several groups are all equal, 

and therefore generalizes t-test to more than two groups. ANOVA was used to test if 

the separation of clinical groups were significant, based on the cross-validation of the 

OPLS-model in paper III.  

 

Non-parametric tests  

Non-parametric tests do not assume normal distribution. In this approach, values are 

ranked from low to high, and the analyses are based on the distribution of ranks. Thus, 

the nonparametric test only looks at rank and makes no difference whether the values 

higher or a lot higher. 

 

Mann-Whitney test: is a nonparametric test to compare two groups (that are not 

including paired data). It was used in paper I.  

 

Kruskal-Wallis test: a nonparametric test that compares the means of three or more 

unmatched groups. The Kruskal-Wallis test can only tell you that there is an overall 

significant difference. The Dunn´s post test then compares each pair of groups and tells 

which of these pairwise differences are significant. It was used in paper I. 

 

Spearman correlation; used in paper I, is a non-parametric test to calculate 

correlation coefficients. Pearson is the corresponding parametric correlation. 

 

2.2.7.2 Regression analysis 

Linear regression: The goal of linear regression is to adjust the values of slope and 

intercept to find the line that best predicts Y from X.  

Non-linear regression: The goal of nonlinear regression is to fit a model to XY data. 

The model is expressed as an equation that defines Y as a function of X and one or 

more parameters.  

2.2.7.3 Multivariate statistical analysis 

Principal component analysis (PCA). Principal component analysis is an 

unsupervised statistical method used to describe the variation in a data set, regardless of 

the sample type. PCA is used to get an overview of the data, to detect clustering of the 

data and to identify outliers. In a PCA the data matrix, which consists of observations 

(samples) in rows and variables (proteins) in columns, is plotted along orthogonal 

http://translationalmedicine.stanford.edu/Mass-Conductor
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vectors (principal components). The first component describes the largest variation in 

the data; and is a line that approximates the data by linear regression, fitted using the 

least squares approach. The second component is orthogonal to the first and describes 

the second largest variation in the data and so on. The number of principal components 

describing the data depends on the variation in the data set. Scores describe the 

observations, and loadings are used to describe the relation among the variables in the 

data set. The further away from the origin a score or a loading is; the stronger is its 

impact on the model. The loadings-plot show which x-variables that contribute to the 

variation among the observations. PCA was performed in papers II and III.  

 

Orthogonal partial least squares methods (OPLS). The OPLS is a supervised 

method that describes the variation across samples; with X as the variables (proteins) 

and Y as the response (i.e. relapse or non-relapse). The X variables that are the most 

important for predicting Y, i.e. the variables that co-varies with the response, are 

modelled in the first OPLS component. The variance in X that is orthogonal to Y (un-

correlated variation or noise) is modelled separately in orthogonal PLS components. 

OPLS was performed in papers II and III. 

 

Cross validation. Cross validation was used in paper I for validating the CO decline 

models, and in paper III for validation of the OPLS models. Cross-validation is a way 

of testing a model with a test set and a training set despite of limited sample number. In 

cross validation, one part of the data is held out from the analysis while a model is built 

based on the rest of the data. The generated model is then used to predict the held out 

data and the predictive ability is calculated. This is repeated until all samples have been 

predicted once. ANOVA of the cross validated models is then performed to obtain a p-

value indicating the probability that the model is the result of chance only.  

 

Variable influence on projection (VIP) –plot. The VIP-plot shows the influence of 

each X-variable on the (OPLS) model. The amount of explained Y-variable is taken 

into account. The VIP plot was used to select important variable to optimize the OPLS 

models in papers II and III.  

 

Analysis of shared and unique structures (SUS-plot). The SUS-plot is a 

visualization tool used to identify shared and unique loadings between two different 

OPLS models. It was used in paper II. Variables (proteins) on the diagonal show that 

the same proteins that are affecting both models. Loadings that do not correlate are 

unique for the respective OPLS model.  

 

PLS inner relation was used in paper II to evaluate if Y (clinical parameters on BAL 

cell content) co-varied with the X variables (proteins).  

 

2.2.7.4 Receiver Operator characteristics (ROC) analysis  

The receiver-operator characteristic (ROC) curves are used to visualize the trade-off 

between sensitivity and specificity for different cut-off values for discriminating 



 

24 

between two groups. In Paper I, ROC curves were used to select cut-off for 

differentiating recent smokers from those that had refrained from smoking.  

 

The ROC curves plots sensitivity vs. 1-specificity. Sensitivity is defined as the fraction 

of true positives, and the specificity as the fraction of true negatives. The area under the 

ROC curve quantifies the overall ability of the test. A test that is no better than flipping 

a coin has an area of 0.5. A perfect test has an area of 1.00.  

 

2.2.8 Pathway analysis 

Matching to canonical pathways was performed in paper III. By matching of the 

experimental protein dataset to canonical pathways, the proteins are matched and 

displayed within well-established signalling or metabolic pathways. We used a web 

based software from Ingenuity Systems (Ingenuity Pathway Analysis, IPA, 

www.ingenuity.com). In most pathway analysis software, the experimental data 

(protein ID´s) are mapped against the database of well known (canonical) pathways. 

The canonical pathways most enriched among the proteins are identified, and then 

displayed in order of statistical significance.  In IPA, the degree of matching is ranked 

by –log(p), where p is a measure of the probability that the pathway is associated with 

the dataset by random chance (Fisher's exact test, right-tailed). The higher the -log(p), 

the stronger is the canonical pathway-dataset matching. The statistical significance (p-

values) of the pathways returned is determined by calculating the extent to which the 

pathways associated with your dataset deviate from what was expected by chance 

alone.    

 

It can be noted that the pathway naming is not ontology driven, which means that there 

can be different pathway names for different softwares.  

 

2.2.9 Immunohistochemistry 

In paper III, we used immunohistochemistry (IHC) staining as an orthogonal method 

to validate the mass spectrometry data. We selected our antibodies from the Human 

Protein Atlas, http://www.proteinatlas.org/  from where we also selected the positive 

and negative controls (148). IHC links the quantitative protein information to cell-type 

and sub-cellular localisation. This information is lost in the mass spectrometry analysis 

unless preceded by cell sorting. IHC staining depends on multiple factors, such as 

antibody specificity, antigen retrieval, fixation of tissue etc. IHC is a semi-quantitative 

method. Therefore percentage of staining is preferred to staining intensity, which very 

much depends on the experimental conditions.  

 

http://www.ingenuity.com/
http://www.proteinatlas.org/
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2.3 RESULTS AND DISCUSSION 

 

2.3.1 Paper I 

 

Assessing recent smoking status by measuring exhaled carbon monoxide levels 

 

An objective way to classify smokers from non-smokers is measuring CO, a constituent 

of cigarette smoke, in exhaled air (149). With this study our aim was to evaluate 

whether carbon monoxide (CO) levels in breath could be used to discriminate between 

short term abstinence and continued smoking. The goal was to establish an objective 

measure of the study subjects’ recent smoking status, to be used in clinical studies on 

chronic inflammatory disorders.  

 

We performed an initial study on 6 smoking individuals, and monitored CO decline by 

hourly measurements during one day of smoking abstinence (Figure 4). The decay 

could be described as a mono-exponential decay (r
2
 = 0.7) with a half-life of 4.5 hours, 

in agreement with the literature (150). We also measured CO decline on a second study 

group consisting of 38 smokers with normal lung function, and 19 smokers with 

COPD. As CO is produced also during oxidative stress and inflammation (149), we 

investigated the potential impact of endogenously produced CO from the  COPD-

related inflammation. However, no significant difference in CO was detected when 

comparing smokers with normal lung function and smokers with COPD. This is in 

agreement with that increased levels of CO in exhaled air are associated with 

exacerbations of the diseases (151). In our study, exacerbations within three months 

prior to sampling were an exclusion factor.  

 

In the second study group, CO was measured at three separate visits to the clinic. 

Hence, this data was discontinuous. An initial model of decline gave longer CO half-

life (7-9 hrs) compared to the first study. Based on literature showing that CO declines 

faster during the day (152), we chose to use a correction factor of 1.33 for 

measurements performed in the afternoon. This correction factor was based on the 

measurements performed on the first study group. After normalisation, the half-lives 

were comparable between the two groups. We tested the upper 95% prediction limit of 

the decline model at 8 hours since smoking, corresponding to 12 ppm CO, as a cut-off 

by receiver operator curve (ROC) analysis. The 12 ppm cut-off gave a model of high 

specificity (94%) and sensitivity (90%).  

 

Objective measures of smoking habits are desirable in clinical studies on chronic 

inflammation as smoking has acute effects on the immune system (153). Due to 

individual differences in smoking habits it is difficult to set generic cut-offs, however 

individual cut-offs are not practical in clinical settings. Further evaluation of the 

proposed cut-off should include additional measurements performed in the critical time 

range 3-7 hours since smoking, for which very few measurements were performed.  
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Figure 4. Decline of CO in exhaled air during one day of smoking cessation. Empty 

circles: measurements performed in the morning (>8 hours since smoking). Filled 

circles: measurements performed after the smoking of one cigarette, which is indicated 

by the dotted line. 
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2.3.2 Paper II  

 

Gender differences in the bronchoalveolar lavage cell proteome of patients with COPD  

 

In paper II, a proteomics analysis of the protein level alterations of alveolar 

macrophages in COPD was performed. The proteome of lung cells obtained by 

bronchoalveolar lavage (BAL) was quantified by 2D-gelelectrophoresis using 

fluorescent dyes (DIGE) for relative protein quantification. The study population from 

which the BAL samples were collected consisted of 23 non-smokers, 33 smokers with 

normal lung function, 15 actively smoking COPD patients and 6 ex-smoking COPD 

patients.  

 

In total 404 protein "spots" with quantitative information were detected on the gels; 152 

protein spots were selected for identification by mass spectrometry. Of those, 115 

proteins were identified. The quantitative data was analysed by Student´s t-test and 

multivariate statistics to identify differentially expressed proteins between the patient 

groups. All statistical analyses were performed comparing smoking and non-smoking 

individuals separately. An OPLS analysis for classification of healthy smokers and 

smoking COPD patients resulted in an efficient model with poor predictive power 

(Q
2
=0.45, p(CV-ANOVA)= 0.0003). However, limiting the analysis to female subjects 

resulted in the identification of 19 proteins with significant protein level alterations that 

separated smoking subjects with normal lung function from smoking subjects 

diagnosed with COPD with good predictive power (Q
2
=0.78, p(CV-ANOVA)= 

0.0001). Corresponding analysis on the male cohort detected no proteins with 

significantly altered levels. A SUS-plot comparing the two models showed that these 

proteins were classifiers unique for the female group (Figure 5). Further, because of the 

gender difference observed in the literature regarding COPD phenotype, a correlation 

analysis of the computerised tomography (CT) data on emphysema with the proteomics 

results was performed. No correlation was found.  

 

A pathway mapping of 148 protein spots with VIP >1 in the OPLS model for 

separation of smokers with normal lung function and smokers with COPD (females) to 

well-known signalling pathways showed an enrichment of 9 proteins to the lysosomal 

pathway (p <0.0001), and 7 proteins to the oxidative phosphorylation pathway (p 

<0.0001). Biologically, the findings suggest an up-regulation of the oxidative 

phosphorylation pathway and a down-regulation of the lysosomal pathway in early 

stages of COPD in this female subgroup. The alterations of the protein cathepsin B 

from the lysosomal pathway was confirmed by western blot analysis.  

 

This study suggests a number of proteins and pathways involved in early stages of 

COPD. We conclude that search for new markers should be performed by a gender-

specific approach. For future studies an increased depth in the proteome analysis could 

be achieved by performing a mass spectrometry based study.  
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Figure 5. Analysis of shared and unique structures (SUS). SUS–plot for comparison 

of the protein patterns of high importance to the OPLS models for classifying male 

smokers with normal lung function vs. male smokers with COPD (x-axis) and female 

smokers with normal lung function vs. female smokers with COPD (y-axis). This SUS-

plot shows that the two models share few significant proteins. The shared structures 

between the compared models should have appeared at the diagonal. The variables 

(proteins) unique to the models appear along the x- and y-axis in the plot. Marked 

variables are those most influential on the models for the differentiation of male (italic) 

and female (bold) smokers.  
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2.3.3 Paper III 

 

Tumor proteomics by multivariate analysis on individual pathway data for 

characterization of vulvar cancer phenotypes  

 

In paper III, the biological aim was to increase the understanding of molecular 

pathways in the gynaecological cancer vulvar squamous cell carcinoma (VSCC) and 

identify the driving pathways in human papilloma virus (HPV) positive and HPV 

negative VSCC. A second aim was to investigate whether patient sub-groups that do or 

do not relapse could be discriminated. In this project we further developed a novel data 

analysis strategy for group level comparison of individual tumour protein expression 

profiles. 

 

14 VSCC tumour samples (7 HPV positive and 7 HPV negative) with relapse as an 

independent clinical factor, were quantified by mass spectrometry using 8-plex iTRAQ 

labelling. In total, 1579 proteins were regarded accurately quantified and analysed 

further. Of the 1579 proteins, 449 were present in both iTRAQ sample sets and used for 

comparison of clinical sample groups defined by HPV and/or relapse status. T-test with 

correction for multiple testing lead to relatively few significant proteins between the 

groups (4 proteins for relapse and HPV classification, respectively) and high FDR 

values, likely because of large inter-individual variation. Due to the relatively poor 

overlap between the sample pools (449 proteins) we decided to also perform the 

individual tumour protein analysis presented in this paper.   

 

In the individual analysis, we performed biological pathway mapping on individual 

tumour level. The significance measure of the matching pathway database-

experimental protein data was then used in a multivariate analysis. The multivariate 

analysis on the pathway data was performed both unsupervised to detect clustering 

(PCA) and supervised (OPLS) to detect significant pathway alterations between HPV 

and relapse status groups. The analysis performed on overlapping proteins identified 

four proteins with increased expression (LGMN, MX1, STAT1 and PSMA5) 

associated with cancer relapse.  

 

After validation of the mass spectrometry results by immunohistochemistry (IHC), we 

could single out a patient subgroup of HPV negative and relapse (HPV-/Rel+), Figure 

6. These patients may be detected before treatment and might benefit from being 

treated as a separate group also in terms of clinical therapy. With the exception of 

STAT1, the proteins stained predominantly tumour cells in VSCC. This may explain 

why the correlation between IHC and iTRAQ data, which was strong for proteins 

LGMN and MX1 (R
2
 0.95 and 0.87, respectively), was more modest for STAT1 and 

PSMA5 (R
2
 0.56 and 0.66, respectively). Other reasons could be iTRAQ ratio 

underestimation (135). The strong correlation between the two methods for LGMN and 

MX1 however indicate that a larger clinical validation could be performed by IHC.   
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Two pathways were identified by both individual pathway analysis and analysis on 

overlapping proteins as major classifiers of relapse status: the proteasome/ubiquitin 

pathway and the interferon signalling pathway. These pathways included the validated 

proteins PSMA5, STAT1 and MX1. Both pathways are existing targets for anti-cancer 

therapy, although not for VSCC. Hence, the potential implementation of this data in 

further studies can be performed using existing drugs. Proteasome inhibitors are under 

evaluation for treatment against squamous cell carcinoma tumours (154-156), 

confirming the relevance of the proteasome in these cancers. The interferon signalling 

pathway with STAT1 and MX1 are known from mRNA level studies to be repressed 

by HPV proteins E6 and E7 (157).  

 

This study suggests pathways and proteins significant for classifying relapse patient 

groups from non-relapsing patient groups. We also detected proteome level effects of 

the HPV virus. Further, we show that pathway fingerprinting on individual tumour 

level adds biological information that can strengthen a generalized protein analysis. 

 

 

 

 

 
 

Figure 6. Correlation between mass spectrometry (iTRAQ ratio) and 

immunohistochemistry (staining percentage) data for proteins STAT1, PSMA5, 

MX1, and LGMN. The ellipses show patient subgroup classification based on IHC 

and MS data by sample subgroup mean (dots) and measured protein level differences 

within the patient groups (ellipses, +/- one standard deviation).  
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2.3.4 Paper IV  

 

Mass spectrometry based protein quantification in complex samples: the impact of 

labelling and precursor interference 

 

By the study in paper IV, the aim is to find the limits and factors affecting the 

quantitative accuracy and linear range for two commonly used strategies for clinical 

mass spectrometry-based proteomics: label-free quantification by peak area and 

isobaric labelling with iTRAQ and TMT. A complex biological background 

(mammalian cell lysate) spiked with 57 standard proteins in amounts spanning 5 orders 

of magnitude was used for the evaluation. To evaluate the impact of precursor mixing 

on the quantitative accuracy, iTRAQ and TMT labelled peptides were co-analysed. 

Further, pre-fractionation was performed on labelled samples by normal (pI 4-7) or 

narrow (pI 3.7-4.9) range isoelectric focusing, as sample complexity has an impact on 

precursor mixing. The narrow range IPG fractions were run using either 45 or 90 

minutes LC-gradients. Label-free samples were separated on a 4 hour LC gradient. A 

total of 3386 proteins were identified with the label-free quantification approach, 5961 

with 6-plex TMT and 4466 with 8-plex iTRAQ.  

 

The investigation of the impact of precursor ion interference was performed by looking 

at the degree of contaminating reporter ions in the MS/MS fragment spectra. From that 

the reporter ion interference was calculated as contaminating reporter ion 

intensity/total (TMT + iTRAQ) reporter ion intensity. This was compared with the 

interference in the MS precursor selection window; the isolation interference. Our 

results show that precursor mixing measured by isolation interference and reporter ion 

interference does not correlate. Our explanation to these results is that this may be due 

to that a significant proportion of the contaminating ions in the MS precursor selection 

window do not give rise to reporter ions.  

 

We further investigated the effect of precursor mixing on quantitative accuracy. From 

our results it appears that precursor mixing measured by isolation interference (MS 

interference) is more linked to quantitative accuracy than reporter ion interference 

(MS/MS interference). Generally, up to 30% isolation interference did not affect the 

limit of quantification (LOQ) and quantitative accuracy. But, our results indicate that 

precursor mixing in terms of isolation interference has an impact on the accuracy at 

lower protein levels. Another observation is that iTRAQ quantification appears less 

sensitive towards isolation interference compared to TMT.  

 

Our results show that quantification by isobaric labels in combination with pI pre-

fractionation has a lower limit of quantification (LOQ) than the label-free quantification 

analysis. For individual proteins quantified in a high complexity sample, the LOQ is 

roughly estimated to 1 femtomole for TMT, 2 femtomoles for iTRAQ, and 4 

femtomoles for label-free quantification.  
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Based on those results, we conclude that the 6-plex TMT was more sensitive than 8-

plex iTRAQ. The label-free quantification approach was least sensitive, and needs to be 

optimized by fractionation to reach down to the same levels as the isobaric approach as 

shown here.  
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Figure 7. Correlation between spiked and measured amounts of protein standards 

added to a complex background and quantified by the isobaric label TMT. 

Colouring is according to protein ID. Samples had been fractionated by narrow range 

isoelectric focusing, and LC gradient length 45 min.   
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2.4 GENERAL CONCLUSIONS AND FUTURE PERSPECTIVES 

 

The overall aims of this thesis were to 1) apply quantitative proteomics for biomarker 

discovery in clinical samples, 2) develop data analysis workflows for the extraction of 

biological information from quantitative proteomics data; and 3) evaluate the potentials 

and limits of mass spectrometry based methods for quantitative proteomics. The 

general conclusions of this thesis can thus be summarized into methodological and 

biological conclusions. 

 

2.4.1 Methodological conclusions 

Novel analysis workflow for quantitative proteomics data using multivariate analysis. 

The application of multivariate analysis methods on pathway data in paper III showed 

that individual protein profiles can be used for detecting subpopulations of patients 

without a priori knowledge of patient subgrouping. It can also be used to identify 

cellular signalling pathways of specific importance in pre-defined clinical groups. 

Advantages of analysing within the context of pathways is that it can help to relate 

proteome data to future targeted cancer therapies, and biomarkers can be selected from 

the identified pathways. Further, more proteins can be used in the analysis which is not 

limited to overlapping proteins. This strengthens the statistical confidence in the 

pathway mapping.  

 

Evaluation of the quantitative accuracy and limit of detection for mass spectrometry 

methods for clinical proteomics. To quantify biologically relevant protein alterations, a 

certain depth of analysis must be reached. The current workflow in our lab includes 

iTRAQ-labelling and in depth-proteome profiling by narrow range isoelectric focusing 

followed by LC-MS/MS. With that we reach the depth to detect significant protein 

alterations relevant for disease as shown in paper III. One drawback with the label 

based quantification was observed in the analysis of many samples. The use of an 

internal reference standard allows analysis of more samples than available tags, but we 

observed a relatively poor overlap between LC-MS/MS runs. Clinical studies have to 

handle large between-sample variation within the clinical groups. This requires 

relatively large study groups which could be done by a label-free quantification 

approach. As shown in paper IV, we do not yet reach as deep in the proteome with the 

label-free setup without narrow range isoelectric focusing as with the label based with 

narrow range isoelectric focusing. 

 

Controlling bias in sample cohorts to avoid false discoveries due to confounding 

conditions. Strategies to reduce bias in this study include the measurement of CO in 

exhaled breath (paper I) to verify (and control for) smoking status and measure 

individual differences in smoking habits. In the experimental designs of papers II and 

III possible confounders such as gender, age, HPV status, smoking status and disease 

stage were considered. For heterogeneous diseases such as COPD (paper II) and 

cancer (paper III), it might be necessary to select subgroups to avoid confounders and 

too diverse clinical groups. To limit down to studying just one subgroup, if possible, is 

an alternative way to find biomarkers despite heterogeneity.  
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2.4.2 Biological conclusions 

Moving from experimental data on clinical samples to biological knowledge is difficult 

and requires a careful study design and sample selection. In addition, sensitive and 

accurate quantification methods are necessary to reach the low abundant proteins. 

Further, to be able to draw relevant conclusions from the data, the data analysis requires 

accurate quantitative data and robust statistical tools to detect significant protein 

alterations. Finally, software tools are required to interpret the protein data; both 

assigning proteins to biological functions by putting them in a biological context, but 

also by connecting proteins to each other.  

 

Chronic Obstructive Pulmonary disease (COPD).  In paper II, down-regulation of the 

lysosomal pathway and up-regulation of the oxidative phosphorylation pathway were 

linked to early stages of COPD in female smokers. These findings were unique for the 

female study group and indicate that future studies on COPD should consider 

phenotypic gender differences.   

 

Vulvar squamous cell carcinoma (VSCC). The study in paper III contributes to the 

molecular understanding of VSCC and provides a number of potential proteins and 

pathways that could potentially result in targeted treatment of patient sub-groups. A 

high risk patient subgroup of HPV-negative tumours was identified based on the 

expression of four proteins, and the results suggest that this subgroup is characterized 

by an altered ubiquitin-proteasome signalling pathway.  

 

2.4.3 Future perspectives 

The emphasis in the clinical studies presented in this thesis lies on having in-depth 

proteomics coverage with many protein identities, with a trade off in the number of 

samples. Alternative ways to design a study is to have many patients, on the cost of 

analytical depth. This would increase the statistical power; which together with 

quantitative accuracy is key in the statistical analysis aimed for biomarker discovery. 

However, reducing analytical depth may lead to that the low level proteins, among 

which we believe disease markers are, may be missed in the analysis.  

To make it practically feasible to increase the number of clinical samples, future 

biomarker studies requires a more high-throughput proteomics workflow. Such a 

proteomics workflow could be achieved by reducing the number of pI-fractions that are 

analysed by LC-MS/MS, which today are 72. Further, faster database searches could be 

achieved by using the pI to reduce the search space. This also makes it possible to 

extend the database to include for instance isoforms and post translational 

modifications.  

The advances in high-throughput technologies have led to the generation of large 

amounts of data. The challenge is now to extract information from the data, to measure 

differences but still be able to draw general conclusions; and to single out biomarkers 

that are most relevant for further validation and in the end leads to new biological 

knowledge.  
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