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ABSTRACT 

Autoantibodies against collagen type II (CII), a protein localized in the joint cartilage, 
play a major role in collagen-induced arthritis (CIA), one of the most commonly used 
animal models for rheumatoid arthritis (RA). The studies included in this thesis were 
undertaken to elucidate structural and functional requirements for B and T cells to 
recognize native CII structures during experimental arthritis as well as in human RA. 
To reveal in detail how CII-specific autoantibodies recognize CII, we determined the 
crystal structure of two pathogenic immune complexes occurring in arthritis. The two 
crystal structures reveal how autoantibodies target triple-helical CII and specifically 
which epitope sequences and CDR residues that are crucial for binding. Interestingly, 
although amino acid residues in the hypervariable regions of both autoantibodies were 
somatically mutated, the majority of the contacts with the epitope involve germline-
encoded structures. A recombinant CII peptide library was also generated in order to 
reveal the CII epitope specificity of polyclonal autoantibodies in CIA. This library was 
used to confirm already known CII epitopes occurring in CIA but also to investigate 
new CII epitope regions that could play a role in arthritis. Several new regions targeted 
by autoantibodies were found and interestingly, antibodies to these regions were also 
identified in non-human primate species with arthritis. Subsequently, autoantibodies to 
the major CII epitopes C1, U1, and J1 were analyzed in serum and synovial fluid from 
RA patients. The autoantibody levels to all three CII epitopes were significantly higher 
in synovial fluid compared to serum, in particular autoantibodies to the U1 epitope. 
Finally, we studied the CII-specific antibody responses as well as CII-specific T cell 
responses during different timepoints of CIA in two mouse strains, B10.Q and a 
humanized mouse strain B10.DR4.Ncf1*/*. The obtained data showed that the antibody 
and T cell responses investigated stayed relatively constant during the disease course 
and were dominated by T cells specific for non-modified (K264) and hydroxylated 
(HOK264) CII259-273 peptides in the humanized mice and to the galactosylated 
(GalOK264) CII259-273 peptide in the B10.Q mice. C1 specific antibodies dominated 
in both strains while antibodies to the U1 epitope was characteristic for the humanized 
mouse.  
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1 INTRODUCTION TO THE STUDY 

Rheumatoid arthritis (RA) is an autoimmune disorder characterized by persistent 
synovitis, systemic inflammation, and autoantibodies. The disease etiology, symptoms, 
and pathogenesis are complex and multifaceted. This can be demonstrated by the 
effectiveness of certain biological therapies in some patients but a complete lack of 
response in a large number of other patients (1). Discovering subtypes of RA patients is 
therefore today considered a central research area for the improvement of response to 
therapy (2,3). Several subtypes of RA patients have been identified based on particular 
clinical and molecular characteristics (4,5). The studies presented in this thesis are 
limited to a subgroup of RA patients developing an autoimmune response to the 
cartilage-specific protein collagen type II (CII) but can be extended to immune 
responses against other autoantigens as well. 
 
1.1 BACKGROUND  

RA is a complex disorder that if left untreated, severely affects cartilage and bone. CII-
specific cells from the immune system (B and T cells) as well as autoantibodies and 
cytokines they secrete can be detected in these local areas as well as in serum (6–10) 
and several lines of evidence confirm their contribution to the abnormal pathogenic 
events operating in and around the RA joints (6,11–16). The basic mechanisms 
occurring in such complex disorders can be studied in controlled animal model systems 
that provide insights into one or another particular aspect or phase of the “entire” 
disease. One of the models frequently used is collagen-induced arthritis (CIA). This 
model share immunological and pathological features with RA (17–20) but there are 
also differences between the two as CIA is a time-dependent model induced with CII. 
The latter makes is to a well suitable model for studies aiming at understanding CII-
specific autoimmunity.  
 
CIA is characterized by high levels of circulating autoantibodies against triple-helical 
CII, but the specific epitope location and sequences of the antibody binding sites have 
yet not been fully characterized. This is mainly due to 1) lack of screening systems that 
cover all possible epitope regions and 2) that studies are limited to the specificity of 
monoclonal antibodies established very early post immunization. Anti-CII antibodies 
are pathogenic in mice (18), and except for their characteristic effector functions such 
as binding and activation of complement, and the activation of FcγR-bearing cells, 
some of them can also disrupt articular cartilage without any mediators of inflammation 
(21). The way cartilage and CII is affected depends on the autoantibody specificity 
(15,16,21,22), suggesting that epitope locations could play a part in these processes. 
This is also relevant to RA where these types of autoantibodies occur. However, it 
might be more difficult to identify pathogenic effects in RA compared to CIA since RA 
is more complex with other pathogenic events that potentially cover the effects of the 
CII response.  
 
To fully dissect the CII epitope specific response occurring during both CIA and RA, 
earlier findings need to be complemented. In addition, although previous studies 
suggest that a consensus motif (R-G-hydrophobic) present in several of the known CII 
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epitopes, could be a recognition sequence for autoreactive B cells (23), its relevance in 
CIA and RA has not yet been confirmed.  
 
Not only B cells but also T cells play a critical role in CIA (24–27). The presence of 
activated CD4+ T cells as well as the correlation between RA and the expression of 
certain MHC class II alleles (in particular certain subtypes of HLA-DR4) (28,29) has 
raised the possibility that RA is caused by a T cell mediated immune response towards 
one or a few joint-specific antigens. Both human DR4 and the CIA susceptible mouse 
expressing H-2q molecules can present CII to autoreactive T cells (30). The 
immunodominant T cell epitope on CII (CII259-273) can be post-translationally 
modified on the lysine (K) residues leading to non-modified, hydroxylated or 
glycosylated epitopes. In general, the T cell response to the glycosylated T cell epitope 
dominates in RA and in H-2q restricted CIA (6,31) whereas the non-modified epitope 
dominates in the DR4 transgenic mouse (32). Although specific B and T cell responses 
can be measured at a certain disease timepoint those might not give the complete 
picture of how CII specific B and T cell responses occur over time nor their relevance 
to the disease. Thus, studies focusing on CII specific responses over a longer period of 
time could reveal how B and T cell responses relate to different disease phases and to 
each other.  
 
1.2 PURPOSE OF THE STUDY 

This thesis was undertaken in order to further dissect autoimmunity to CII in CIA and 
RA. The main purposes as well as relevant research questions are outlined below. 
 
The main purposes of the study were to:  
 

I. Validate and build a more comprehensive understanding of earlier discoveries 
of biologically significant CII epitopes in CIA  

II. Investigate the anti-CII antibody specificities in different species and mouse 
strains with arthritis in order to reveal that this model is relevant and matches 
the events operating in the human disease.  

III. Perform long-time studies of the CII epitope specific response in order to reveal 
if epitopes could be categorized into different phases.  

IV. Determine how pathogenic autoantibodies recognize triple-helical CII in order 
to elucidate how specificities and diversities operate in such immune 
complexes.  

V. Investigate the magnitude and specificity of the CII specific B and T cell 
responses over time in different mouse strains and investigate the dissimilarities 
between sick and healthy mice.  

 
Relevant research questions: 
 

1) Could a more comprehensive CII epitope screening library be generated to 
complement earlier findings?  

2) Could such a system be useful to screen for all potential CII epitopes detected 
during different disease phases and help us to understand whether some CII 
regions are more exposed and susceptible for antibodies to bind?  
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3) Could such a system also be used to investigate CII epitope specificities in 
different species?  

4) Could we get a more structured overview of recognition motifs on CII and 
reveal the existence of early and late phase epitopes?  

5) Can the CII specific antibody responses vary in different compartments in the 
body? If so, is that relevant to the disease pathogenesis?  

6) Could we crystallize anti-CII antibodies together with triple helical CII 
peptides?  

7) Could such crystal structures clearly describe the crucial immune complex 
interactions? 

8) Do we see the same magnitude and specificity to the native and modified 
variants of the T cell epitope over time in CIA compared to RA? Will the 
response differ between mouse strains?  
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2 INTRODUCTION TO THE IMMUNE SYSTEM 

2.1 INNATE AND ADAPTIVE IMMUNITY 

If your body is affected by an infection (could be virus, bacteria, fungi, protozoa, etc.) 
the components of the innate immune system will recognize structures on the 
invading pathogens so-called pathogen associated molecular patterns (PAMPs). This 
system also recognize endogenous (self) molecules created upon tissue injury called 
damage-associated molecular patterns (DAMPs) (33–35). These structures are 
recognized by pattern recognition receptors (PRRs) of which the family of Toll-like 
receptors (TLRs) has been studied most extensively (36,37). The intracellular signaling 
cascades triggered by these PRRs lead to expression of inflammatory mediators that 
coordinate the elimination of pathogens and infected cells. In some cases processes that 
control the inflammatory response work inefficiently, which can lead to 
immunodeficiencies and induction of autoimmunity (i.e. an immune response against 
the body´s own cells and/or tissues). The primary cells of the innate immune system are 
concentrated at epithelial surfaces including the skin, respiratory tract, and 
gastrointestinal tract. Dendritic cells (DCs) are most important because of their ability 
to take up and process foreign material, then present antigens for a primary immune 
response (38–41). Further cells in the innate immune system are macrophages, 
neutrophils, natural killer (NK) cells, basophils, mast cells and eosinophils. Also γδ-T 
cells (42) and NK T cells (43) might be considered part of the innate immune system. 
Not only cells but also the complement system, comprising plasma and membrane 
proteins plays a key role in innate and adaptive response (44,45) where they have an 
important role to eliminate pathogens and apoptotic cells. Contribution of complement 
to the development of RA have been described (46), as well as to the development of 
CIA in mice and other similar rodent models (47–56).  
 
The adaptive immunity provides additional protection due to its capability to respond 
more specifically and diverse. The molecules responsible for this specific and diverse 
recognition of antigens are antibodies expressed and secreted by B cells, and T cell 
antigen receptors (TCRs) expressed on T cells. The process describing how antibody 
specificity and diversity operate will be discussed further in the sections below as well 
as in study II and IV. Adaptive immunity can be divided into humoral immunity and 
cell-mediated immunity. Secreted antibodies are the effector molecules of humoral 
immunity, capable of neutralizing and eliminating extracellular pathogens by activating 
various effector mechanisms. The cell-mediated immunity becomes active when 
pathogens survive inside cells and T cells mediate this type of immunity.  
 
2.2 B AND T CELL DEVELOPMENT 

B cells (bursa or bone marrow-derived) express B cell antigen receptors (BCRs), 
which recognize a wide variety of macromolecules and small chemicals. Their origin 
can be traced back to the evolution of adaptive immunity in jawed vertebrates more 
than 500 million years ago (57). T cells (thymus-derived) are a population of cells 
expressing T cell receptors (TCRs) recognizing small peptides loaded onto major 
histocompatibility complexes (MHCs) molecules. 
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B and T cells originate from multipotent hematopoietic stem cells in the bone marrow 
and go through a well-controlled development and educational process before they 
become fully mature cells ready to be activated and perform their effector functions.  
 
After exiting the bone marrow progenitor T cells enter the thymus as TCR- CD4- CD8- 
cells. In the thymic cortex, these T cells will rearrange their TCR genes and 
differentiate into double positive CD4+ CD8+ cells (58). It is not completely understood 
how the division into single positive CD4+ and CD8+ T cells occurs. However it is 
believed that the faith of double positive cells is divided between two options; either it 
dies due to neglection if thymic epithelial cells (TEC) do not interact with it (59), or it 
interacts with MHC I or MHC II on a TEC initiating its development into a CD4+ or 
CD8+ cell (60). The minor portion of T cells that survive thymic selection exit the 
thymus as single positive CD4+ or CD8+ T cells expressing cell surface receptors that 
facilitate their entry into secondary lymphoid organs in the periphery (61) where they 
recognize antigens. Naïve CD4+ T cells or T helper (TH) cells exert their effector 
functions mainly through secreting cytokines and chemokines that activate and/or 
recruit target cells. TH cells have four (and possible more) distinct fates that are 
determined by the pattern of signals they receive during their initial interaction with 
antigen. These four populations are Th1, Th2, Th17 and induced regulatory T cells 
(iTreg) (62–64).  
 
The immature B cell expresses IgM and IgD antibodies on its surface as it migrate from 
the bone marrow and enters the secondary lymphoid organ, the lymph node. In this 
organ B cells are activated by T helper (TH) cells, follicular dendritic cells (FDC), or 
antigens. Following activation it will start to proliferate. The activation induced 
(cytidine) deaminase (AID) will introduce point mutations on the variable region of the 
DNA to increase their collective affinity for a particular antigen and any of its close 
variants (also called somatic hypermutation). AID is also involved in the class-switch 
recombination in which B cells change their expression from IgM to IgG or other 
isotypes. The B cell will then differentiate into a plasma cell or a memory B cell with a 
different type of antibody class. 
  
2.2.1 Antibody structure 

From the earliest studies of antibody structure it was clear that all antibody domains, 
whether variable or constant, form compact globular structures with a characteristic 
fold, termed the immunoglobulin fold (65–68). Each domain consists of a stable 
arrangement of hydrogen-bonded, anti-parallel β-strands that forms a bilayer structure, 
which is further stabilized by a disulfide bond between the two layers. 
Immunoglobulins (Igs) or antibodies (abs) can be divided into five major classes 
(isotypes): IgM, IgG, IgA, IgD, and IgE. The IgG class has been most extensively 
studied and is also the most abundant in the circulation of normal individuals. The IgG 
consists of two identical “light” chains (L) and two identical “heavy” chains (H) 
(Figure 1). Both the L-chain and the H-chain consist of variable and constant regions 
(VL, CL, VH, and CH domains). Disulphide bonds (S-S) are covalently linking the four 
individual chains together. Enzymatic digestion of the molecule results in three 
fragments, each with a molecule weight of approximately 50kDa. Two of these 
fragments are identical and are called the Fab fragments and the third is called Fc. 
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Each Fab fragment consists of a complete L-chain and the N-terminal half of a H-chain. 
The Fab fragment retains the antigen binding activity of the parent molecule, although 
it can only behave as a monovalent antibody. The Fabs are linked to the Fc by the 
hinge region, which varies in length and flexibility in the different antibody classes and 
isotypes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Simplified illustration of an immunoglobulin recognizing its antigen. The 
IgG consists of two identical “light” chains (L), colored in pink and two identical 
“heavy” chains (H) colored in green.  
 
The antigen binding sites (paratopes) are located at the tips of the Fabs. Comparative 
studies on H-chains of the same class have shown that the sequence of the constant H-
chain domains CH1, CH2 and CH3 remain constant whereas the VH regions display 
variability. Just as in the L-chain, the variable region of the H-chain occurs at the N-
terminal end of the molecule, is approximately 110 amino acid residues in length and 
contains hypervariable regions (69,70). The antigen-binding site is confined to the VL 
and the VH regions and these hypervariable regions specify the conformation of the 
antigen binding site of immunoglobulin molecules (antigen complementarity regions, 
CDRs) (69–71).  
 
2.2.2 Antibody development 

The development process starts in the bone marrow where DNA encoding the heavy 
and light chains of the antibodies is rearranged. Diversity (D) and joining (J) gene 
segments are recombined (D-J joining) followed by adding a variable (V) joining 
segment to the heavy chain DJ complex. Diversity of the antibodies is produced by the 
use of different combinations of V, D, and J gene segments in different clones of B 
cells. The recombination of V and J or V, D, and J, gene segments is mediated by a 
group of enzymes collectively called VDJ recombinase. The B and T cell-specific VDJ 
recombinase is composed of the recombinase-activating gene (RAG)-1 and RAG-2 
proteins, and they are responsible for these recombination steps (49–51). Additional 
diversity is produced by sequence changes, and this generates more sequences than are 
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present in the germline genes. This “junctional” diversity remove or add nucleotides 
and as a result of these mechanisms, the nucleotide sequence at the site of V(D)J 
recombination in antibody or TCR molecules made by one clone of B and T cells 
differs from the sequence at the V(D)J site of antibody or TCR molecules made by 
every other clone. The junctional sequences encode the amino acids of the CDR3 loop, 
which are the most variable of the CDRs and the one most important for antigen 
recognition. Thus, junctional diversity maximizes the variability in the antigen-binding 
regions of antibodies and TCRs.  
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3 RHEUMATOID ARTHRITIS 

Although the name rheumatoid arthritis (RA) was introduced in the 1850s (75), 
classification criteria were only developed 50 years ago (76,77). RA is a complex 
autoimmune disorder characterized by inflammatory damage to joints but also by 
systemic features such as inflammation of blood vessels, lungs, and other tissues. RA is 
best considered as a clinical syndrome covering several disease subsets (78). These 
subsets involve several inflammatory cascades (79), which all lead towards a final 
common pathway.  
 
RA affects about 0.5-1% of the population (80,81), and the prevalence varies 
geographically (82,83). The disease is common in northern Europe and North America 
compared with parts of the developing world, such as rural west Africa (84,85). RA is 
more common in women than in men with a ratio of about 3:1 (86). The primarily 
inflammatory site in RA is the synovial membrane (Figure 2) and as RA proceeds 
hydrops, hyperemia, cartilage destruction and bone erosion and at a later stage 
malalignment of the connected bones occur.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Simplified illustration of a normal joint and an RA-affected joint  

 

3.1 RELEVANT RISK FACTORS FOR DEVELOPING RA 

RA is a complex disorder with disease susceptibility being linked to genetic, 
environmental, and immunological factors as well as to stochastic events. The most 
important genetic risk predisposing to RA is ascribed to the MHC class II region, 
especially to genes encoding HLA-DR molecules. It has been found that all HLA 
DRB1 alleles that are associated with RA risk (28) encode a conserved sequence of 5 
amino acids (positions 70-74) that surrounds the peptide-binding pocket of the antigen-
presenting molecule. The presence of this so-called “shared epitope” suggests that the 
molecules containing it might bind the same antigen (29) or alter the peptide affinity 
that could have a role in promoting autoreactive responses. One of the strongest genes 
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linked to autoimmunity outside the HLA is the tyrosine phosphatase non-receptor, type 
22 (PTPN22) (87). The first reported association of PTPN22 with RA was found in 
2004 (88). Other genes that have been proposed to be associated with RA are cytotoxic 
T lymphocyte-associated antigen-4 (CTLA-4), peptidyl arginine deaminase, type IV 
(PADI4), and macrophage migration inhibitory factor (MIF) (89).  
 
As earlier mentioned not only genes, but also environmental factors are believed to play 
an important role in the susceptibility to developing RA. One of the highest 
environmental risk factor in RA is smoking (90–92), which like other forms of 
bronchial stress (e.g. exposure to silica) increases the risk of developing RA among 
patients with susceptible HLA-DR4 alleles (93). The influence of other environmental 
factors such as infections, hormones, and dietary factors on RA is still unclear.  
 
3.2 AUTOANTIBODIES IN RA 

Autoantibodies are commonly observed in autoimmune diseases. Rheumatoid factor 
(RF), the first autoantibody recognized in RA, was described by Waaler in 1940 (94). 
Identification and characterization of RF as an autoantibody that binds the Fc portion of 
IgG was the first direct evidence that autoimmunity might play a role in RA. Long-time 
studies show that production of RF and other autoantibodies can precede the onset of 
RA by many years (95). But although they can be detected in 60–80% of RA patients 
(IgM-RF) (96), there is no clear evidence that RFs are involved in the initial events 
triggering the disease process of RA. However, it has been shown that RF seropositive 
patients have more severe clinical disease and complications than seronegative patients 
included cardiovascular problems (97). RF is not RA-specific and occurs in various 
infectious diseases (98), other autoimmune diseases most notably Sjögren´s syndrome 
(99) (transiently) and in healthy individuals following immunization (100,101). 
 
Citrullination of proteins is a physiological process that also occurs in inflammation 
and is therefore not specific for RA. However, presence of anti-citrullinated protein 
antibodies (ACPAs) is highly correlated with classical RA (102,103) whereas RF is 
more common but less specific since it is present in other diseases. In similarity with 
RF, the formation of ACPAs precedes the development of RA (95,104–106). ACPAs 
are found in 70–90% of RA patients and have high disease specificity and sensitivity 
(107,108). As with RF, they are associated with more erosive RA (78,109,110). ACPAs 
are locally produced in RA joints, where proteins are citrullinated during the 
inflammatory process (111). The major citrullinated protein in the joint was found to be 
fibrin (112). Additionally, various other synovial and non-synovial proteins such as 
collagen type II, vimentin, nuclear proteins and stress proteins have been shown to be 
targets of citrullination in vivo (113).  
 
Autoantibodies to collagen type II (CII), a fibrous collagen protein located in the 
joint cartilage can be detected in serum (7,8,14,114,115) and synovial fluid (7,9,10,116) 
of patients with RA. The reported incidence of these autoantibodies have varied greatly 
(3-71%) and this is believed to be dependent on the immunological technique used as 
well as types and species of native or denatured collagen (114,117–122). Support for a 
pathogenic role of these antibodies is obtained by that they can precede radiological 
changes (13,123) or the appearance of rheumatoid factor (RF) (124) and their 
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frequency has been correlated in RA with the presence of HLA alleles that confer 
susceptibility to disease (14). Furthermore, injection of human anti-CII antibodies into 
arthritis susceptible mice induce a mild inflammatory arthritis (12). Similarly, recent 
studies have also demonstrated the arthritogenicity of plasma/serum from active RA 
patients in FcγRIIb-deficient mice, and the IgG rich fraction has been identified as the 
pathogenic factor (11). Moreover, studies have shown that anti-CII positive patients can 
have a distinct clinical phenotype characterized by an early acute phase response that 
might be driven by anti-CII containing immune complexes in joint cartilage (125).  
 
3.3 TREATMENT OF RA 

Advances in understanding the pathogenesis of the disease have encouraged the 
development of new therapies, with improved outcomes. To prevent damage to joints, 
maintain functional status, and decrease pain, treatment guidelines recommend the use 
of disease-modifying anti-rheumatic drugs (DMARDs) immediately after the RA 
diagnosis has been made (126,127). One of the most common DMARDs, 
methotrexate, remains the first-line medication for moderate-to-severe RA (128). 
Biological agents have also been introduced that specifically target cytokines in the 
inflammatory cascade in RA. The primary target of this type of therapy is tumour 
necrosis factor alpha, TNF-α (129) and there are currently five approved biological 
(antibody or soluble receptor) for the treatment of RA, which specifically neutralize 
TNF-α (Etanercept, Infliximab, Adalimumab, Certolizumab, and Golimumab). 
Anakinra, an IL-1 receptor antagonist, and Tocilizumab, a neutralizing monoclonal 
anibody against human IL-6, are also approved biologicals for the treatment of RA, and 
in particular Tocilizumab, has been shown to be a good alternative for the treatment of 
nonresponders to TNF-α inhibitors (130,131). Also Rituximab, a chimeric monoclonal 
antibody against the CD20 antigen on all B cells except plasma cells, is used as an 
effective treatment of RA patients (132,133). 
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4 COLLAGEN INDUCED ARTHRITIS (CIA) 

Collagen induced arthritis (CIA) is one of the most common animal models for RA. 
It can be induced in rodents and non-human primate species by immunization with 
CII emulsified in adjuvant, generally complete Freund´s adjuvant (CFA) (134–136).  
 
4.1 CIA IN MICE 

The CIA model share several immunological and pathological features with RA (17–
20,134,136) such as synovitis, cartilage breakdown and bone deformities but there are 
also differences between the two as CIA is a time-dependent model induced with CII.  
CIA, like human RA, is MHC dependent and only occurring in animal strains with the 
proper class II. The susceptibility is linked to the H-2q and H-2r haplotypes (27). 
These haplotypes are also permissive for the induction of arthritis with homologous 
mouse CII, and development of a strong autoantibody response to CII occurs (137). 
Furthermore, transgenic mice expressing the human HLA-DR4 (DRB1*0401) or DR1 
(DRB1*0101) are susceptible to CIA (138–140). Some of these susceptible mouse 
strains will be discussed in more detail in study III. Both the human MHC II (DRB1) 
and the mouse H-2q bind an immunodominant CII peptide located at position 259-273 
on triple helical CII (CII259-273) (30,140–142). Immune response to this peptide has 
also been detected in RA patients (6,143,144). The CII259-273 peptide binds to the 
DR4*0401 molecule with the major MHC anchors shifted three amino acids as 
compared with the binding of the same peptide to the H-2q molecule but the T cell 
receptor recognition sites are partly shared (140,145,146). Thus, these humanized 
mouse strains provide us with a CIA model that shares molecular structures of possible 
critical importance for the human disease. 
 
4.1.1 Anti-CII antibodies in CIA 

The need of B cells in CIA has been demonstrated in B cell deficient mice (147) and a 
strong B cell response to CII occur after CIA induction (23,148,149). Several studies 
have revealed detailed CII epitope analysis using the technique of monoclonal 
antibody production (23,150–155). To date, the most characterized and dominant CII 
epitopes recognized by autoantibodies in CIA are denoted C1, U1, and J1. Additional 
CII epitopes have been discovered and are discussed in more detail in study I. The 
antibodies bind to conformation-dependent epitopes at distinct positions along the 
native molecule (156) and do not crossreact to either denatured CII or to other 
collagens. The structural importance of the anti-CII recognition has also been shown, as 
CIA cannot be induced in rats and mice by denatured CII (157,158).  
 
There are several studies demonstrating the pathogenic nature of autoantibodies to 
CII directly in vivo (55,159–165). These studies show that anti-CII antibodies can 
induce arthritis in mice. As an example, injection of a cocktail of anti-CII monoclonal 
antibodies induce an very acute arthritis denoted collagen antibody induced 
arthritis (CAIA) (161,164). There is also evidence that the epitope specificity of the 
antibodies could have a major role in disease development since it previously was 
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shown that co-injection of a monoclonal antibody specific for epitope F4, denoted 
CII-F4 reduced the induction of arthritis in mice. Interestingly, antibodies to the F4 
epitope were in fact negatively associated with RA whereas antibodies to epitope C1, 
J1 and U1, were positively associated (166). Autoantibodies to C1, U1, and J1 are 
well-characterized and dominates the response in CIA in mice (167,168) and rats 
(169). Monoclonal antibodies against these major CII epitopes show unique 
arthritogenic capacities. For instance the monoclonal antibody CIIC1 (discussed in 
detail in study II) show degradative effects in vitro on cartilage synthesis, and 
disorganization of fibrils in the extracellular matrix (16). Another pathogenic 
monoclonal antibody denoted M2139 (discussed in detail in study I and IV) cause 
thickening and aggregation of CII fibrils in the extra cellular matrix and abnormal 
chondrocyte morphology (170). Furthermore, a monoclonal antibody against the U1 
epitope, UL1 induced proteoglycan depletion in vivo independent of inflammation 
(22), discussed more in study I.  
 
4.1.2 T cell epitope on CII 

The T cell epitope on CII was discovered by Michaëlsson et al (30) and consists of a 12 
amino acid long sequence GIAGFKGEQGPK located at positions 259-270 on triple 
helical CII. The CII molecule can be posttranslationally modified (at position 264 and 
270) by lysine hydroxylation and glycosylation. It was previously shown that the K at 
position 264 is the key amino acid residue for CII-specific T cell recognition in H-2q 
and HLA-DR4 mouse models (32,171). The modifications generate many possible T 
cell epitopes that seem to be recognized by specific T cell clones (171,172). Most of the 
T cells activated after immunization with heterologous CII react with the CII259-273 
peptide.  
 
4.2 CIA IN NON-HUMAN PRIMATES 

CIA can also be induced in non-human primate species, most known and characterized 
is the rhesus monkey (Macaca mulatta). The animals are immunized with CII 
emulsified in CFA and swelling of joints develops after 3-4 weeks (173). The target 
tissue of disease onset is the synovium. Removal of the synovium by gene therapy in 
rhesus monkeys with clinically active CIA abolishes joint inflammation (174). Rhesus 
monkeys (of Indian/Burmese origin) positive for the Mamu B26 MHC class I marker 
are resistant to the development of clinical arthritis (175). The resistance is associated 
with the incapacity to produce an adequate IgM antibody response against the 
immunizing CII. By selecting animals lacking the Mamu B26 marker, a reproducible 
induction of the disease at an incidence > 95% can be obtained. CII-specific antibodies 
of the IgM isotype play a pivotal role in rodent models of CIA (176) and also in rhesus 
monkeys (177) and common marmosets (178).  
 
Recently a new CIA model was introduced in the New World primate species, the 
common marmosets (178). This model shares many characteristics with the rhesus 
monkeys but at the level of histopathology, less cartilage and bone destruction is 
observed compared with the rhesus monkeys. Anti-CII antibody responses in these two 
strains will be discussed in study I.  
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5 COLLAGEN TYPE II (CII) 

Collagens are a large group of proteins that can be divided into several subgroups 
characterized by structure and function. Collagen type II (CII) belongs to the group 
called fibril-forming collagens. The group of fibril-forming collagens includes type I-
III, V, and XI collagen. They are all similar in size and, they all contain large triple 
helical domains with about 1000 amino acids per chain (179). Already in the intra-
cellular space they are going through modification and assembly, events involving 
post-translational hydroxylation and glycosylation, association of polypeptide chains, 
and folding of the triple helix. Collagens of this group are first synthesized as 
procollagen, characterized by non-helical extensions and the N- and C-termini that are 
then cleaved by specific proteinases after secretion (Figure 3). Extracellularly, they 
will self-assemble into fibrils followed by crosslinking of the fibrils. Another shared 
characteristic is that each molecule is displaced about one-quarter of its length relative 
to its nearest neighbor along the axis of the fibril (180).  
 
The collagen triple helix is formed from three identical polypeptide chains that are each 
coiled around each other to form a right-handed super helix resembling a rope-like rod 
(181,182). Formation of this super-helical structure is facilitated by the presence of a 
glycine as every third amino acid. Due to the absence of a side-chain only glycine is 
small enough to fit in at specific positions in the center of the triple helix where the 
three chain come together. The amino acid proline is frequently in the X-position of 
the - Gly-X-Y- sequence and 4-hydroxyproline is frequently in the Y-position. The 
rigidity of these two amino acids favors specific backbone conformations and limits 
rotation of the polypeptide chains. A regular hydrogen-bonding network between the 
chains further stabilizes the triple helix. The conformation of the triple helix places the 
side-chains of amino acids in the X- and Y- positions on the surface of the molecule. 
This arrangement explains the ability of many collagens to polymerize, since the 
multiple clusters of hydrophobic and charged side-chains directly self-assemble into 
precisely ordered structures. The triple helix is relatively rigid. In some contexts, the 
resistance of the molecule to extension or compression is important for the biological 
function of the protein. In many collagens, the triple helix is interrupted by globular 
sequences that make the molecule more flexible.  
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Figure 3 Simplified illustration of how CII self assembles into fibrils and fibers. Three 
pro α-chains (A) self assemble and the procollagen triple helix forms (B). Specific 
proteinases cleave the non-helical ends of the triple helix (C) and the triple helical 
molecule self assemble into fibrils that can covalently crosslink to each other (D). 
Finally the fibrils aggregate to form CII fiber (E).  
 



 

 15 

6 PRESENT INVESTIGATION 

6.1 METHODOLOGIES 

Methods used in paper I-IV are described in detail in the respective “Materials and 
Methods sections. Here follows an overview of the methods that mainly were used in 
this thesis with reference to the papers in which they were applied:  
 
Animal experiments (I, III, IV) Induction and assessment of CIA, organ 

dissection, serum collection 
Circular dichroism (CD) (II) Analysis of the secondary structure of 

proteins 
Fab preparation (II, IV) Antibody digestion using papain and 

purification of Fab fragments 
Gel filtration chromatography (I, II) Purification technique to separate proteins 

according to size 
Monoclonal antibody production (I, IV) Process by which large quantities of 

antibodies can be produced by fusion of 
single antibody producing cells with 
tumor cells grown in culture 

Polymerase chain reaction (PCR) (II, IV) Amplification of DNA generating 
thousands to millions copies of a 
particular DNA sequence 

Radioactive proliferation assay (III) Assay to measure the proliferation rate of 
cells in vitro by incorporation of 3H-
thymidine into the cell DNA 

Recombinant protein production (I-II, IV) Cloning, expression and purification of 
recombinant proteins  

Sequencing (II, IV) Determining the nucleotide sequence of a 
gene using labeled probes 

Site-directed mutagenesis (II, IV) Methods to introduce mutations at specific 
sites in plasmid DNA 

Sodium dodecyl sulphate polyacrylamide 
gel electrophoresis (SDS-PAGE) (I-II) 

Analysis of protein size and purity 
 

Solid phase enzyme-linked 
immunosorbent assay (ELISA) (I-IV) 

Analysis of antibody binding capacities to 
various targets in vitro 

Statistical analysis (I-IV) One-way Anova (Kruskal-Wallis test), 
Dunn’s multiple comparison tests, 
Wilcoxon singed rank test, Mann-
Whitney test 

T cell in vitro assays (III) 
 
 
 
 

Assay based on re-stimulation of cell 
cultures with various agents, followed by 
measuring cytokines in the supernatant 
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X-ray crystallography (II, IV): 
Protein crystallization by hanging and 
sitting drop vapour diffusion 

Technique to generate protein crystals for 
use in X-ray crystallography 
 

Molecular replacement (MR) X-ray crystallography method using 
diffraction data from crystals of a protein 
in combination with an already solved 
crystal structure of a homologue for 
structural determination 

Model building and refinement  
 

Computer analysis using the obtained 
electron density maps to build a first 
model of the structure. The model is then 
refined (improved) through statistical 
adjustment of the atomic coordinates  
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6.2 STUDY I  

Analysis of autoantibodies to the joint specific protein collagen II in experimental 
and rheumatoid arthritis 
This study was undertaken in order to obtain a more comprehensive understanding of 
CII epitope specific responses in mice and monkeys with CIA and in patients with 
established RA. The work was based on the generation of a recombinant CII peptide 
library covering overlapping sequences from the entire triple-helical region of CII. CIA 
was induced in B10.Q (BALB/c x B10.Q) N2 developing a chronic relapsing disease 
and in B10.Q developing an acute arthritis. Sera were collected at different disease 
timepoints and analyzed for autoantibody specificity. Autoantibodies specific for 
several hitherto unknown CII epitopes were discovered and earlier discovered CII 
epitopes were confirmed. The epitope predominance varied during the disease course. 
The specific autoantibody response detected in mice was also apparent in non-human 
primate species (rhesus monkeys and common marmosets) with CIA. Furthermore, 
immunodominant CII epitopes with known biological significance in mice were tested 
for autoantibody reactivity in serum and synovial fluid of patients with established RA. 
All three investigated CII epitopes (C1, U1, and J1) were detected in a subgroup of 
patients and interestingly they were all significantly increased in the synovial fluid, in 
particular autoantibodies against epitope U1 with frequencies reaching close to 70%.  
 
6.3 STUDY II 

Crystal structure of an arthritogenic anti-collagen immune complex 
Little is known about the structural specificity of a pathogenic autoantibody when 
interacting with CII. This study was therefore performed to investigate how one of the 
most pathogenic autoantibodies in mice, CIIC1 recognizes its epitope (C1) on cartilage 
CII. The CIIC1fab was produced and mixed with the triple-helical C1 peptide and the 
crystal structure of the complex was determined to 2.2 Å resolution, revealing how 
antibody and epitope interact in molecular detail. The importance of the observed 
interactions was further investigated using site directed mutagenesis of a recombinant 
C1 peptide. The antibody binding to the C1 peptide did not introduce any significant 
conformational changes in the antibody although the peptide, which retained its typical 
triple-helical conformation upon antibody binding, penetrated rather deep into the 
pocket. All three peptide chains forming the epitope were in contact with the antibody. 
The antibody contacts the CII peptide primarily via germline-encoded residues. 
Interestingly the antibody clearly recognized the sequence “R-G hydrophobic”, a motif 
that has been suggested to be a consensus recognition sequence in CII epitopes and 
potentially a recognition site for autoantibodies. The arginine at position 360 (R360) 
from all three chains contributed significantly to the binding. Its crucial role was further 
confirmed by site directed mutagenesis, showing that substitution of R360 by alanine 
completely destroys the interaction between the antibody and the peptide. All six CDRs 
interacted with the triple-helical peptide. CDRs H2 and L3 contribute most to the area 
buried upon peptide binding, while CDR L2 contributes less, mainly because the loop 
residues are located rather far away from the epitope.  
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6.4 STUDY III 

Comparative analysis of collagen type II-specific immune responses during 
development of collagen-induced arthritis in two B10 mouse strains 
In this study we wanted to understand the magnitude and specificity of how CII-
specific T cells respond to modified variants of the T cell epitope in CIA, but also how 
autoantibodies recognize major CII epitopes over the course of arthritis. The specific T 
and B cell response was investigated in two mouse strains, B10.Q and a humanized 
transgenic strain B10.DR4.Ncf1*/* after CII immunization. Serum and draining lymph 
nodes were collected at four timepoints during the disease course and used for analysis 
of the CII-specific T cell as well as antibody response in the two mouse strains. The 
analyses revealed no clear shift in either antibody specificity or T cell reactivity 
between the phases in either of the two strains. Instead, the T cell recall response stayed 
rather constant with dominant response to the non-modified (K264) and the 
hydroxylated (HOK264) CII259-273 peptide in the humanized mice and to the 
glycosylated CII259-273 (GalOK264) peptide in the B10.Q mice. One was noted at the 
initial stage of CIA in B10.Q mice when a relatively equal T cell reactivity to non-
modified (K264) and to the galactosylated (GalOK264) was detected. The C1 epitope 
was the most recognized of the epitopes investigated in both strains. Antibodies to 
epitope J1 were almost negligible and the concentration of antibodies to epitope U1 
was elevated at all timepoints investigated in the humanized mouse model. In addition, 
we revealed that the T cell response had much higher magnitude in B10.DR4.Ncf1*/* 
compared to B10.Q. Moreover, titers of anti-CII antibodies as well as anti-C1 
antibodies were significantly higher in arthritic mice compared with healthy mice, and 
so was also the antibody response to U1 and J1 in the transgenic mice.  
 
6.5 STUDY IV 

Immunoglobulin heavy chain V gene polymorphism controls epitope specific 
antibody response  
It was recently shown that production of anti-CII antibodies, in particular antibodies 
specific for the J1 epitope, strongly associate with the IgHv locus on mouse 
chromosome 12 (168). These studies were performed using high resolution mapping in 
a heterogeneous stock (HS) mouse cohort (183). In order to better understand this 
finding we investigated the specific anti-CII response to the arthritogenic J1 epitope on 
CII in detail.  
 
Sequencing of J1-specific monoclonal antibodies revealed a common IgHv gene usage. 
Comparing this sequence with those encoded by the same gene in all strains comprising 
the HS, two major polymorphisms were found in the CDR1 domain (S31R and W33T). 
In order to investigate the impact of these two polymorphisms upon antibody binding a 
pathogenic monoclonal antibody M2139fab were crystallized together with the triple 
helical J1 peptide. The crystallized M2139fab–J1 complex confirmed a strong 
interaction of these two amino acid residues with the triple helical J1 peptide. By 
modeling, almost all interactions were lost after replacing the two polymorphic sites in 
the CDR1 region suggesting that these positions are major contributors to the M2139fab 
-J1 affinity. This was further confirmed using recombinant single chain fragments 
(ScFv) and site-directed mutagenesis.  
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The crystal structure was also used to compare the immune complex with the CIIC1fab-
C1 antibody complex described earlier (184). We observed clear differences in how the 
collagen peptides are oriented in the antibody-combining site, with C1 remaining 
relatively straight and the J1 peptide bending into the pocket. Although the structures of 
both fab fragments superimpose remarkably well and the CDR sequences show a 
considerable degree of structural and sequence conservation, none of the crucial 
interactions with the peptide are conserved. M2139fab -J1 makes only about half as 
many polar interactions to the J1 peptide than CIIC1 forms with C1. The major 
recognition motif also markedly differed with M2139fab compared to CII-C1 was 
detected. The major recognition motif also markedly differed with M2139fab primarily 
binding to I26A27G28 and CIIC1fab recognizing the R18G19L20. 
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7 DISCUSSION AND FUTURE PERSPECTIVE 

Unraveling CII autoimmunity is an important task in order to understand the basic 
mechanisms operating in autoimmune diseases such as RA. The research I have 
performed during my PhD have answered several important questions and provided 
new insights into these areas but they have of course also raised new questions. I will 
below outline my views of the result obtained and further suggest how to continue with 
the research within this field.  
 
One of the purposes of this thesis was to build a more comprehensive understanding of 
biological significant CII epitopes in CIA and RA. As earlier discoveries were limited 
to analyses using large CII fragments and specificity of monoclonal antibodies 
established from the very initiative phase of CIA, we decided to generate a library 
consisting of 70 overlapping CII peptides covering the entire triple-helical region of CII 
that are fused with a foldon trimerization domain (185). This library allowed detection 
of specific epitope binding and revealed the autoantibody response at different time 
points in a chronic mouse model of CIA. The results indicate that the three CII epitopes 
C1, U1, and J1, known to be the most common epitopes, become “challenged” by 
several others that appear as strong or stronger. The majority of the newly identified 
epitopes are localized on the cyanogen bromide (CB) fragment 11, a region where 
several important epitopes are located (23). This region seems to more easily attract 
arthritogenic antibodies. The study further shows the epitope specificity during 
different stages of the disease. Clearly, we show that some CII epitopes are more 
frequently recognized in early CIA whereas others appear later in the chronic phase of 
the disease. This could perhaps depend on the epitope location on CII. Some parts of 
the CII molecule might not be accessible for binding until cartilage breakdown has 
been ongoing for a while whereas others are more easily recognized and accessible. If 
this is the case, different epitopes could be used as markers for different stages of the 
disease. In order to get a better picture of CII epitope specificities in arthritis it is of 
course very important to continue discovering the new epitope regions and to study the 
cartilage degradation effect/s of autoantibody binding to these epitopes. The CII-
specific studies were continued by analysis of the epitope specific response (C1, U1, 
and J1) in serum and synovial fluid from RA patients. A clear overrepresentation of all 
three CII epitopes was found in the synovial fluid with surprisingly high frequencies of 
the U1 epitope suggesting that there is local antibody production. To date, we do not 
have a direct explanation for the elevated levels measured for epitope U1. But these 
findings could just reflect the importance of investigating CII-specific responses using 
smaller peptides rather than the entire CII or CB fragments. Earlier results using CII 
have given inconsistent results partly depending on the not 100% pure CII batches 
used, leading to contaminants such as other matrix molecules surrounding CII. These 
molecules could potentially mask the epitopes. So maybe the pure peptide antigens give 
the more correct response? The library could also be used to reveal CII specific 
responses in non-human primate species although the assay was partly modified due to 
crossreactivities to the foldon domain attached at one end of the triple-helical peptides. 
Although the library generated could be used for many purposes, we suggest 
introducing an even more comprehensive library including additional CII epitopes that 
are posttranslationally modified (glycosylated, citrullinated, and hydroxylated). 
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Moreover it is important to generate even better and more sensitive assays to exactly 
reveal how RA patients respond to the CII determinants. The way CII peptides are 
synthesized should also be taken into account to reach the best results.  
 
In the next two studies we wanted to structurally determine how pathogenic 
autoantibodies recognize native CII in its triple-helical state. These studies were 
initiated using recombinant CII peptides attached to the foldon domain. However, the 
resolution reached was not enough to clearly see the interactions between antibody and 
antigen, thus we used synthetic triple helical CII peptides also for the crystallographic 
studies. M2139fab-J1 and CIIC1fab-C1 complexes share some common characteristics 
but have completely different recognition sequences. It has earlier been proposed that 
the so called “R-G-hydrophobic” motif found in almost all discovered epitopes could 
be a recognition sequence for autoreactive B cells (23). From the two crystal structures 
and from finemapping analysis it is clear that anti-CII antibodies do not necessarily 
share recognition residues in their epitopes. The postulated recognition motif could be 
of importance for most but not all CII autoantibodies, as indicated by the completely 
different recognition sequence of antibody M2139. However, although differences exist 
between the two complexes our finemapping studies still argue for that “R-G”, not 
necessarily followed by a hydrophobic residue, is a common and crucial recognition 
motif for at least some anti-CII antibodies. This amino acid selection could partly be 
explained by the surface exposure of arginine (R) due to its long side chain and charged 
guanidinium group. We already have projects ongoing that aim at the structure 
determination of more pathogenic anti-CII antibodies, and hopefully this will increase 
our knowledge base and understanding of these characteristics in even more detail. In 
this study we also revealed that contribution of the CDRs to the interaction with the 
peptides differs: in the M2139 complex VH1 and VL3 provided most to the area buried 
upon peptide binding, in CIIC1 VH2 and VL3. Although the CII epitopes are not 
identical it has earlier been shown earlier that anti-CII antibodies commonly derive 
from the same V-gene family. That could be based on the similarity of CII epitopes 
with regard to being located on a conserved triple helical molecule with high 
prevalence of repeated sequences. 
 
The main purpose of this thesis was to describe structural requirements for how 
autoreactive B cells recognize CII. However, since both B and T cells are important for 
CIA we undertook one additional study aiming to analyze both CII-specific B and T 
cell responses. CIA was induced in two mouse strains B10.Q and the humanized 
DR4.Ncf1*/* on a B10 genetic background and autoantibodies and IFN-γ levels were 
measured at different timepoint during the disease course. We show in this study that 
both T and B cell responses are clearly present but both the magnitude and specificity 
of the T cell response differ remarkably between the two strains. The B10.DR4.Ncf1*/* 
shows higher levels of IFN-γ at all phases investigated compared with B10.Q. The 
reason for this difference is entirely clear but one could suggest that the Ncf1 mutation 
has an effect of the results since it regulates susceptibility and severity of CIA (188). 
Another explanation could be differences in the number of T cells expressing CD4+ co-
receptors between the two strains. In the humanized mouse model all T cells including 
CD8+, express CD4+ co-receptor on the cell membrane leading to that also CD8+ T 
cells could be responsible for the observed response. Therefore the magnitude in T cell 
responses between these transgenic and non-transgenic mice needs to be optimized 



 

 22 

before results can be conclusive. One way to circumvent this bias could be by 
establishing a DR4 (and human CD4) knock-in mouse instead of using a transgene. 
This would lead to a more physiological expression of the proteins. When investigating 
the extent to which T cells recognize posttranslational modifications of CII in DR4 and 
B10.Q mice during the disease course we revealed that the non-glycosylated CII259-
273 peptide was clearly immunodominant in DR4 at all phases investigated whereas 
the galactosylated epitope dominated in H-2q expressing mice. Thus the H-2q mice 
show more similarities to the CII-specific T cell response observed in human RA (6). 
The explanation for this biased result is currently unknown but maybe also in this case 
non-physiological expression of the DR4 transgene might influence which CII peptides 
that will become immunodominant.  
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