From DEPARTMENT OF MEDICINE
EXPERIMENTAL CARDIOVASCULAR RESEARCH UNIT
Karolinska Institutet, Stockholm, Sweden

EFFECTOR MECHANISMS
OF IMMUNITY IN
ATHEROSCLEROSIS

Daniel Johansson

I
éS\LA N"}\

»e Karolinska
¥ i Institutet

o 8

Stockholm 2012



All previously published papers were reproduced with permission from the publisher.
Published by Karolinska Institutet. Printed by Larseric Digital Print AB.

© Daniel Johansson, 2012
ISBN 978-91-7457-608-5



Till Mamma och Pappa






ABSTRACT

Atherosclerosis is a disease of the medium and large sized arterial vessels, characterized by cholesterol
deposition, inflammation and fibrosis. Low-density lipoprotein (LDL) particles carrying cholesterol are
trapped within the arterial wall. LDL has been shown to be a candidate antigen for immune responses
associated with atherosclerosis and elicits both innate as well as adaptive immune responses. These
studies have used different mouse models to unravel immune mechanisms involved in the progression
and protection of disease, and can lead to new therapeutic opportunities.

To explore the role of dendritic cells (DCs) in atherogenesis, in the context of an atherosclerosis-related
antigen, we injected hypercholesterolemic Apoe” mice with malondialdehyde (MDA)-LDL pulsed DCs.
This cell transfer induced immune responses specific for components of LDL that augmented local
inflammation in the vessel wall and accelerated growth of atherosclerotic lesions. This study shows that
DCs presenting the autoantigen LDL can augment atherogenesis.

DCs can be conditioned into a tolerogenic state by immunomodulatory mediators. HuB100"xLdIr" mice
were injected with DCs that had been made tolerogenic by treatment with 1L-10 and loaded with the
protein moiety of LDL, apolipoprotein B100 (ApoB100). One single injection led to a significant
reduction of atherosclerotic plaque burden in the aorta with decreased lesional as well as systemic
inflammation. This DC therapy diminished the autoreactive T cell response to ApoB100, showing that
tolerogenic DC presenting the protein part of LDL can attenuate atherosclerosis.

Animals that are immunized with LDL together with adjuvant are protected against atherosclerosis, but
the underlying mechanisms remain unknown. Rag2”’/Apoe” mice, lacking functional T as well as B cells,
and B cell-deficient uMT/Apoe™ mice were immunized with homologous oxLDL. Adaptive immunity
was shown to be obligatory for immunization-induced atheroprotection while humoral immunity was
dispensable.

Degradation of extracellular matrix (ECM) in the vessel wall is central to inflammatory vascular diseases.
SerpinA3 is an inhibitor of several immune cell-derived proteases involved in this process. SerpinA3
expression was detected in human atherosclerotic lesion, while its expression was decreased in human
aortic abdominal aneurysm (AAA). Overexpression of the murine orthologue serpinA3n had no effect on
atherosclerotic lesion size in Apoe” mice, but inhibited CaCl,-induced aneurysm formation.

In conclusion, we have studied the role of effector mechanisms of different immune cells in the
pathological process of atherosclerosis. Some of the findings may have applications in the clinic, as novel
therapeutic targets for cardiovascular disease. In brief, we found that LDL or components thereof
displayed by immunogenic DCs aggravate atherosclerosis, while their presentation by tolerogenic DCs
ameliorates disease. Protective immunization is dependent on adaptive, but no humoral immunity and
serpinA3 plays a role in inflammatory vascular disease.
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1 INTRODUCTION

Atherosclerosis is a slowly progressive chronic disorder of large and medium-sized
arteries, and the main underlying pathological process of cardiovascular diseases, such
as coronary artery disease and cerebrovascular disease. Cardiovascular disease is today
one of the leading causes of death and loss of productive life years globally.

It was for many years believed that atherosclerosis was merely passive accumulation of
cholesterol in the vessel wall. Today, the picture is much more complex, with
atherosclerosis being thought of as a chronic inflammatory disease. The understanding
that immune mechanisms play a decisive role in atherosclerosis has focused our
attention on the immune system as a possible novel target in prevention and treatment
of cardiovascular disease.

This thesis is focused on the role of different immune cells, as well as proteases that
they secrete, in the pathological process of atherosclerosis. Some of the findings
uncover mechanisms involved in the disease, while others illustrate potential
immunomodulatory strategies for atherosclerosis treatment.

An overview of the immune system is provided, followed by current knowledge of its
role in atherosclerosis. An emphasis is put on cells and molecules important for the
studies. In the end the importance of my own projects is discussed in the light of that
knowledge.



1.1 OVERVIEW OF THE IMMUNE SYSTEM [1]

The main function of the immune system is defense against harmful material and
infectious microbes, such as bacteria, viruses, fungi and parasites. The response of the
immune system to microbes or other substances is referred to as immune responses and
the protection achieved as immunity. An antigen is a substance that induces an immune
response. Defense against microbes is mediated by the early reactions of innate
immunity and the later responses of adaptive immunity. The cells and molecules of
innate and adaptive immunity cooperate efficiently and communicate by cell-to-cell
contact using surface molecules and by secreting soluble messengers called cytokines.
Inflammation consists of recruitment of leukocytes (immune cells) and plasma proteins
into a site of infection, and the activation of the leukocytes and proteins to eliminate the
infectious agent.

1.1.1 Innate immunity

Innate immunity is the initial responses to microbes. It consists of epithelial barriers,
circulating and tissue cells, as well as plasma proteins. These defense mechanisms exist
before an encounter with microbes, thereby allowing rapid activation.

Some components of innate immunity, such as epithelial barriers, are functioning at all
times, whereas other components of innate immunity require activation upon microbe
recognition. This is mediated through recognition of structures that are characteristic of
microbial pathogens (nonself), but not by structures present on mammalian cells (self).
The microbial substances that stimulate innate immunity are called pathogen-associated
molecular patterns (PAMPs), and the receptors that bind these conserved structures are
called pattern recognition receptors (PRRs). In addition, PRRs can recognize
endogenous ligands from host cellular debris from injured or dying tissue, termed
damage-associated molecular patterns (DAMPS) [2, 3].

The PRRs are encoded in germline DNA and recognize only a limited number (about
10%) of patterns. Some PRRs, such as the toll like receptors (TLRS), transmit activating
signals that promote inflammatory signals. Other PRRs, such as the scavenger receptors
(ScRs), mainly participate in the uptake of microbes into phagocytes.

1.1.1.1 Circulating proteins of innate immunity

Several different soluble proteins found in plasma and extracellular fluids bind PAMPs
and DAMPs and serve as effector molecules of the innate immune system. The major
components are the complement system, the collectins, the pentraxins, and the ficolins.

The complement system identifies microbes either by direct recognition of certain
microbial surface structures, or by detection of antibodies bound to the microbe. This
initiates an inflammatory process and promotes ingestion (phagocytosis) and lysis of
microbes.

The most common biomarker of inflammation measured in the clinic is C-reactive
protein (CRP). CRP belongs to the pentraxin family and its expression in the liver is
induced by leukocyte-derived cytokines such as interleukin-1 (IL-1) and IL-6. CRP
levels are very low in healthy individuals, but can increase up to 1000-fold in response
to inflammatory stimuli.



1.1.1.2 Cells of innate immunity

The most numerous effector cells of the innate immune system are bone marrow-
derived cells that circulate in the blood and migrate into tissues, by a process called
extravasation. Extravasation is induced by in tissues activated macrophages, endothelial
cells (ECs) and smooth muscle cells (SMCs) producing chemoattractants and
cytokines. Cytokines, such as tumor necrosis factor (TNF) and IL-1, induce endothelial
expression of adhesion molecules, e.g. E- and P-selection, and integrins, such as
vascular cell adhesion molecule 1 (VCAM-1) and intracellular adhesion molecule 1
(ICAM-1). This results in binding of leukocytes to endothelium, and their migration
into the tissue is subsequently activated by chemoattractants.

1.1.1.2.1 Innate like lymphocytes

T and B lymphocytes are the cells of adaptive immunity, but certain subsets of
lymphocytes have very little diversity in their antigen receptors and are more related to
the effector cells of innate immunity. They recognize PAMPs and are mostly located in
barrier epithelia and serosal cavities. Intraepithelial T cells are present in the epidermis
of the skin and in mucosal epithelia. The peritoneal cavity contains a population of
innate B lymphocytes, called B-1 cells. B-1 cells produce molecules, called natural
antibodies, which often bind structures shared by many types of bacteria, such as
lipopolysaccharide (LPS).

1.1.1.2.2 Natural Killer cells

Natural killer cells (NK cells) are a lineage of cells related to lymphocytes that
recognize cells with reduced expression of MHC class I, and respond by directly killing
these cells and by secreting inflammatory cytokines. They are a major source of the
cytokine interferon gamma (IFNy), which activates macrophages to Kill ingested
microbes.

1.1.1.2.3 Mast cells

Mature mast cells are found throughout the body and are involved in immune responses
to parasites and are mediating allergic reactions. Bone marrow progenitors migrate to
the peripheral tissues as immature cells and undergo differentiation in situ. There are
two major subsets of mast cells; the mucosal mast cells and the connective tissue mast
cells. Activation of mast cells results in secretion of their granula content, synthesis and
secretion of lipid mediators, and synthesis and secretion of cytokines

1.1.1.2.4 Phagocytes

Phagocytes, including neutrophils and macrophages, are cells whose primary function
is to identify, ingest (phagocyte), and destroy harmful material such as microbes, dead
cells and debris. In addition, phagocytes produce cytokines important both for innate
and adaptive immune responses.

Polymorphonuclear neutrophils are the most abundant population of circulating white
blood cells and mediate the earliest phases of inflammatory responses. Their production
is stimulated by granulocyte colony-stimulating factor (GM-CSF), and bone marrow-



derived neutrophils may migrate from bone marrow to sites of infection within a few
hours after the entry of microbes, where they function for a few hours and then die.
Neutrophils have granules, which contain presynthesized enzymes, such as elastase,
and other microbicidal substances. These will come in contact with the microbes upon
the formation of the phagosome or when the activated neutrophils secrete their granula
content.

The cells of the mononuclear phagocyte system originate in the bone marrow, circulate
in the blood, and mature and become activated in various tissues. Once monocytes
enter tissues, they mature and differentiate into macrophages. Macrophages typically
respond to microbes nearly as fast as neutrophils do, but macrophages survive much
longer at sites of inflammation. Unlike neutrophils, macrophages are not terminally
differentiated and can undergo cell division at an inflammatory site.

1.1.1.2.5 Dendritic cells

Dendritic cells (DCs), first described by Ralph Steinman in the 1970s, play important
roles in innate responses to infections and other harmful material [4]. They are
specialized in antigen capture as immature cells by processes such as uptake by ScRs
and macropinocytosis [5]. DCs also express PRRs, and respond to microbes by
secreting cytokines. DCs are widely distributed in lymphoid tissues, mucosal
epithelium, and organ parenchyma. They are derived from the macrophage and DC
progenitor (MDP) in bone marrow. The MDPs give rise to both monocytes and the
common DC precursor (CDP). CDPs give rise to DCs, which migrate to the periphery
where they populate almost all organs and differentiate into several different subsets of
DCs. Some of the monocytes that enter tissues can differentiate into so called
monocyte-derived DCs [6].

The literature suggests the existence of a number of unique DC subsets, which differ in
cell-surface markers, anatomic location, and function. Heath et al argues for a more
generalized model where DCs can be divided into four subgroups, e.g. CD11b" DCs,
CD11b DCs, and monocyte-derived inflammatory DCs [7]. All myeloid DC express
the integrin CD11c, however CD11c can be expressed by other cell types, and there is
no single cell-surface antigen that identifies all DCs [7]. The fourth subgroup consists
of cells with plasma cell-like morphology called plasmacytoid DCs (pDCs) that
produce large amount of IFNa and 3 in response to viral and bacterial stimuli [8-10].

Activated DCs undergo both morphological and phenotypical changes leading to
functional maturation. Changes in expression of chemokine receptors and adhesion
molecules results in migration of the DCs to peripheral lymphoid organs [11]. DC
maturation also leads to decreased uptake function, while the ability for antigen
presentation is increased. The activated DCs enter the T cell areas of lymphoid organs
where they play an important role in initiating T immunity and serve a critical function
in linking innate and adaptive immune responses [12].



1.1.2 Adaptive immunity

Adaptive immune responses are more potent and specialized, and are able to eliminate
microbes that resist the defense mechanisms of innate immunity. The adaptive immune
system is able to recognize and react to a larger number of microbial and nonmicrobial
substances. In addition, its antigen receptors have an extraordinary capacity to
distinguish between different, even closely related, molecules, and for this reason it is
also called specific immunity. It also has an ability to “remember” and respond more
vigorously to repeated exposures to the same microbe.

The main components of adaptive immunity are cells called lymphocytes and their
secreted products. Lymphocytes are developed in the primary lymphoid organs; the
bone marrow and the thymus. Naive lymphocytes then circulate the periphery and are
activated upon antigen encounter in the secondary / peripheral lymphoid organs; lymph
nodes, spleen, mucosal and cutaneous immune systems.

The genes encoding the antigen receptors in lymphocytes are formed by recombination
of DNA segments during the maturation of these cells, resulting in the generation of
millions of different receptors and a highly diverse repertoire of antigen specificities
among different clones of lymphocytes. Each clone expresses antigen receptors of the
same specificity that are different from the receptors of other clones. The antigen
receptors can recognize different parts of a single antigen, called epitopes and the
lymphocyte clones can discriminate between 107-10° different epitopes within one
individual.

There are two types of adaptive immune responses, called humoral immunity and
cellular immunity, which are mediated by different components of the immune system
and function to eliminate different types of microbes.

1.1.2.1 Humoral Immunity

Humoral immunity is mediated by molecules in the blood and mucosal secretions,
called antibodies or immunogobulins (Ig), which are produced by lymphocytes called B
cells. It is the principal defense mechanism against extracellular microbes and their
toxins because secreted antibodies can bind and assist in their elimination.

The major subsets of B cells are follicular B cells, marginal zone B cells, and B-1 B
cells, each of which is found in distinct anatomical locations within lymphoid tissues.
They partially mature in the bone marrow, enter the circulation, and populate the
peripheral lymphoid organs where they complete their maturation. To avoid formation
of potentially dangerous autoantibodies, B cells that bind with high affinity to self-
antigens go into apoptosis, a process called negative selection.

Naive B cells require two signals for activation. Antigen binding by the B cell receptor
(BCR), which is a membrane bound antibody, delivers signal 1. Signal 2 is co-
stimulation (the most important being CD40 — CD40 ligand) from a T cell that has
recognized the same antigen. Certain immunogenic antigens can activate a B cell
without T cell help (T-independent antigens) [13].



Upon activation, B cells proliferate and differentiate. Some of the progeny of the
expanded B cell clones differentiate into antibody-secreting plasma cells. Each plasma
cell secretes antibodies that have the same antigen binding site as the BCR that initially
recognized the antigen. The antigen binding site of the BCR is in the variable region of
the N-terminal Fab domain of the antibody. The C-terminal Fc chain determines the
effector function, and can be exchanged in an activated B cell in a cytokine dependent
manner (isotype switch).

Mammalian B cells are able to produce several isotypes (or classes) of antibodies.

IgM, and IgD are the first isotypes synthesized upon B cell activation, but a subsequent
stimulation can induce isotype switch resulting in expression of 1gG, IgE, or IgA. Each
Ig isotype is specialized for particular modes of antigen removal. IgM activates
complement whereas 1gG, the most abundant isotype in serum, binds receptors on
phagocytic cells. Importantly 1gG antibodies can also cross the placenta to provide
maternal protection to the fetus. IgA antibodies are instead more abundant in secretions,
such as tears and saliva where they coat invading pathogens to prevent proliferation.
IgE antibodies bind basophils and mast cells to activate histamine release and are
involved in allergy and protection against parasites [14].

Some of the activated B cells undergo somatic hypermutation (SHM), a process in
which point mutations are introduced in the variable region of the BCR. This takes
place in compartments of lymphoid organs called germinal centers (GC). After SHM, B
cell clones undergo clonal selection, by which clones expressing high-affinity
antibodies are selected in a process termed affinity maturation. Thereafter, B cells
emigrate from the follicle and differentiate into long-lived plasma cells and memory B
cells. Memory B cells have extremely long lives (years) and maintain the ability to
respond rapidly to antigen re-exposure by differentiating into plasma cells [14, 15].

1.1.2.2 Cellular Immunity

Intracellular microbes, such as viruses and certain bacteria, can sometimes survive and
proliferate inside phagocytes and other host cells, where they are inaccessible to
circulating antibodies. Defense against such infections is a function of cellular
immunity, which promotes the destruction of intracellular microbes through killing the
infected cells and thereby eliminating reservoirs of infection and pathogen spread.

Cellular immunity is mediated by T lymphocytes. After leaving the bone marrow, T
cells first mature completely in the thymus and then enter the circulation to populate
peripheral lymphoid tissues. The two major T cell subsets are CD4" helper T
lymphocytes (Th cells) and CD8" cytotoxic T lymphocytes (CTLs). Both cell types
express an antigen receptor called the T cell receptor (TCR) that is a heterodimer
composed of either af or yo chains. T cells also express the pan-T cell marker CD3 that
together with the TCR dimer and the co-receptors (CD4 or CD8) forms the TCR
complex.

In response to antigenic stimulation, CTLs kill cells displaying particles recognized as
non-self, such as virus infected cells and tumor cells. Activated Th cells secrete
cytokines that stimulate the proliferation and differentiation of themselves. The Th cell-
derived cytokines also activate other cells, including B cells, macrophages, and other



leukocytes. Activated Th cells differentiate into several different subpopulations,
depending on the local environment. The first and best characterized subsets are the
Th1 and Th2 cells [16]. Several other subsets with different functions and cytokine
patterns (regulatory T cells, Th17, Th9, T follicular helper cells) have since then been
described [17] [18-20].

1.1.2.2.1 Antigen presentation

T cells have a restricted specificity for antigens; they recognize only denatured,
unfolded peptides presented by specific surface proteins of other cells, called major
histocompatibility (MHC) molecules. As a result, T cells recognize and respond to cell
surface-associated but not soluble antigens. A structure, called the immunological
synapse, forms between the T cell and the antigen presenting cell (APC) during the
recognition of the MHC:peptide complex by the TCR [21]. To fulfill their
physiological function, MHC proteins must first acquire their peptide antigens, a
function that is executed differently by two structurally distinct types of MHC
molecules; class | and class 11 [22].

MHC class | molecules, present on most nucleated cells, report intracellular events
(such as viral infection, the presence of intracellular bacteria or cellular transformation)
to CD8" T cells. The peptides in the peptide-binding groove of MHC class | molecules
are derived from cytosolic proteins, degraded by the proteasome complex, and are 8-11
amino acids long. For MHC class 1l molecules, the goal is to sample the extracellular
milieu and present antigens to CD4" T cells. The molecular expression of MHC class Il
molecules is mostly restricted to professional APCs, including macrophages, B cells,
DCs and thymic epithelial cells. After internalization by APCs, the exogenous antigens
are degraded in endocytic vesicles generating a large pool of peptide antigens. In
contrast to MHC class |, the peptide-groove of the MHC class Il molecule is open,
resulting in display of larger peptides, usually 13-17 amino acids long [23].

Certain T cell subtypes also recognize antigens presented on the molecule CD1, which
is a MHC-like molecule mostly restricted to APCs. In contrast to MHC molecules that
present peptides, it can instead display a broad range of lipid antigens to specific CD1-
restricted T cells. Invariant NKT (iNKT) cells, expressing surface molecules
characteristic of both NK cells and T cells, are the most extensively CD1-restricted T
cells studied [24].

Among the APCs, DCs are the best activators of naive T cells. They are two orders of
magnitude more potent than other cells in eliciting specific T-cell effector responses
[25]. Immature DCs are found in most tissues where they engulf antigens and migrate
to draining lymph nodes. PRR ligation induces maturation of a DC leading to a cell
with less ability of uptake and increased capacity to stimulate and present antigens to T
cells. This is achieved by higher expression of MHC molecules, combined with
upregulation of co-stimulatory molecules and secretion of inflammatory cytokines.

1.1.2.2.2 Co-stimulation

When the MHC:peptide complex is transported to the APC surface it can interact with
T cells via the TCR and become activated, thereby receiving signal 1. However,



specific antigen recognition by the TCR is not enough for initiation of T cell responses.
Accessory molecules, that facilitate signaling by the TCR complex, provide “second
signals” to fully activate T cells. These are called co-stimulatory molecules and the
most studied are the B7.1 (CD80) and B7.2 (CD86) molecules, expressed by APCs,
that bind to the CD28 molecule on T cells [26]. The interaction delivers signals to the T
cells that induce expression of anti-apoptotic proteins, production of growth factor and
cytokines, and promote T cell proliferation and differentiation. The most important
growth factor released by T cells is IL-2 that acts in an autocrine fashion, by binding to
the IL-2R, to further clonally expand the T cells [27].

Another important family of co-stimulatory molecules, upregulated after T cell
activation, is the tumor necrosis factor superfamily (TNFSF), including
CD137/CD137L, OX40/0X40L, CD30/CD30L, CD27/CD70, and CD40/CD40L.
CDA40L binding to CD40 leads to activation of the responding cell including antibody
production of B cells and increased destruction of phagocytosed microbes in
macrophages [28].

1.1.2.3 Immune tolerance

Reactions that can cause damage to the host, such as exaggerated immune responses to
microbes or destruction by self-reactive lymphocytes, have to be regulated. Tolerance
to self-antigens is a fundamental property of the normal immune system, and failures
thereof cause autoimmunity.

One mechanism of self-tolerance or excessive immune responses to foreign is
determined in a cell-intrinsic manner. For example, some lymphocytes are programmed
to die by apoptosis when exposed to self-antigens during their development in the
primary lymphoid organs (central tolerance) [29]. Those that have escaped clonal
deletion in the bone marrow and thymus can be rendered anergic (functionally
inactivated) upon exposure to self-antigen in the periphery (peripheral tolerance).
Activation-induced cell death, inhibitory receptors and negative signaling molecules
may also contribute to increased activation thresholds or decreased survival of
lymphocytes.

Another mechanism is cell-extrinsic; the normal immune system produces a population
of T cells, called regulatory T cells (Tregs), that actively keep in check the activation
and expansion of aberrant or overreactive lymphocytes [17]. Tregs produced in the
thymus, CD4" natural Tregs (nTregs), are characterized by their expression of the
transforming growth factor-p (TGFp)-regulated transcription factor forkhead box P3
(FoxP3), and many of them also express the IL-2 receptor a-chain (CD25) [30]. Tregs
induced from naive FoxP3'CD25CD4" T cells in the periphery (iTregs) can also
acquire FoxP3 expression and consequently regulatory function. In addition to nTregs
and iTregs, other types of regulatory T cells have been described that do not require
FoxP3 expression; Th3 cells, CD8"CD103" suppressor T cells, and 1L-10 producing
Trl cells [31-37].

Treg-mediated suppression can be either antigen-specific or non-specific, and the target
cell is usually other T cells. Tregs regulate immune responses by secreting inhibitory
cytokines and molecules, such as TGFp, IL-10, galectin and cAMP [38-41]. Through



their high expression of CD25 they can starve T effector cells by depriving them of IL-
2 that is needed for survival [42]. Tregs can also suppress APC function via
downregulation of co-stimulatory molecules or by inducing immunoinhibitory
molecules, for example through binding to CD80/86 with the inhibitory molecule
CTLA-4 [43].

1.1.2.3.1 Tolerogenic dendritic cells

Although DCs were originally recognized as the most potent stimulators of adaptive
immunity, DCs play an important role in regulating immunity. These so called
tolerogenic DCs regulate immunity by their ability to induce and maintain immune
tolerance.

Tolerogenic DCs play for example fundemental role in negative selection and induction
of Tregs in the thymus [44]. DCs with tolerogenic functions are also critical in
maintaining peripheral tolerance by producing low levels of pro-inflammatory
cytokines, expressing higher ratio of immunoinhibitory to co-stimulatory molecules
and through the generation of anergic and regulatory T cells [45]. The tolerogenic
properties of DCs can depend on their maturation state. During steady state, immature
suppressing DCs are believed to continuously present self-antigens to circulating T
cells [46]. This mechanism can be manipulated and several reports demonstrate that
exposure to anti-inflammatory and immunosuppressive agents can condition DCs to a
tolerogenic state [47-49].



1.2 ATHEROSCLEROSIS - AN INFLAMMATORY DISEASE

Atherosclerosis is a slow progressive chronic disorder of large and medium-sized
arteries, and the main underlying pathological process of cardiovascular diseases
(CVD), such as coronary artery disease (CAD) and cerebrovascular disease [50]. 16.7
million people are believed to die from CVD each year, making it the leading cause of
mortality worldwide [51, 52].

Observational data support a strong association between plasma lipid levels and the risk
of CVD, and for many years it was believed that atherosclerosis was merely a passive
accumulation of cholesterol in the vessel wall. Today, the picture is much more
complex, with atherosclerosis being thought of as a chronic inflammatory disease [50].

Genetically modified animals are helpful for dissecting pathological processes, and the
most commonly used for atherosclerosis research are the hypercholesterolemic mice
deficient in either the apolipoprotein E (Apoe"') or the LDL receptor (Ldlr"').
Experiments in animal models as well as clinical and histopathological studies of
patients groups have identified inflammatory mechanisms as being pathogenetically
important in atherosclerosis. Components of both innate and adaptive immunity are
involved in the disease process [50].

Classical epidemiology has established that hypertension, high plasma levels of LDL,
cigarette smoking and diabetes are the most important risk factors for CVD [51, 53].
However, several biomarkers of inflammation have been suggested to carry a
predictive value for CVD, such as CRP [54], IL-6 [55, 56], lipoprotein-associated
phospholipase A2 and matrix metalloproteinase (MMP)-9 [56]. Treatment of
individuals having high plasma values of CRP but no hyperlipidemia, with a lipid-
lowering statin significantly reduced major cardiovascular events such as myocardial
infarction (MI) [54]. This study showed that CRP measurements could identify
individuals who are not eligible for therapy according to traditional approaches but who
could benefit from treatment with a statin that has potent LDL-lowering and anti-
inflammatory effects [57].

Further examples come from small and medium-sized genetic association studies
which show that several inflammatory or immune-related genes contribute to CAD,
such as genes for the cytokine I1L-6 [58], OX40L important for T cell activation [59],
enzymes involved in the biosynthesis of inflammatory leukotrienes [60-62], and the
MCH Il transactivator important for antigen presentation to T cells [63]. Furthermore, a
recent report illustrated that variants in the chromosome 9p21 region, shown to be
associated with risk of MI in genome-wide association studies, impaired IFNy signaling
[64].

In addition, studies showing more cardiovascular morbidity in patients with chronic
inflammatory disease, such as systemic lupus erythematosus (SLE), rheumatoid
arthritis (RA) and psoriasis, point to a disease-promoting role for systemic
inflammation in atherosclerosis [65-68].
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1.2.1 Pathogenesis of atherosclerosis

The artery wall is composed of three layers. The inner layer, the tunica intima, is lined
by a monolayer of endothelial cells (ECs) that is in contact with blood overlying a
basement membrane. The middle layer, tunica media, contains SMCs embedded in a
complex ECM. The outer layer, tunica adventitia, contains immune cells, nerve endings
and microvessels [57, 69].

Atherogenesis is the formation of a plaque or lesion in the intimal layer of the vessel
wall (Figure 1), and can be divided into several stages. The first macroscopically
identifiable atherosclerotic alteration of the arterial is depositions of lipids in the intima
called fatty streaks. These early lesions can in some cases even be found in the arteries
of small children [70].

Cholesterol is transported in the blood mainly by LDL. These particles contain
esterified cholesterol and triglycerides surrounded by a shell of phospholipids, free
cholesterol and the high-molecular-weight apolipoprotein B100 (ApoB100).
Circulating LDL particles can accumulate in the vessel wall, where ApoB100 binds to
proteoglycans of the ECM through ionic interactions [71-73]. This is an important
initiating factor in early atherogenesis [74].
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Figure 1. The atheroma has a core of lipids, including cholesterol crystals, living and apoptotic cells and
a fibrous cap with smooth muscle cells and collagen. Plasma lipoproteins accumulate in the
subendothelial region. Several types of cells of the immune response are present throughout the atheroma
including macrophages, T cells, mast cells and DCs. The atheroma builds up in the intima, the innermost
layer of the artery. Outside the intima, the media contains smooth muscle cells that regulate blood
pressure and regional perfusion, and further abluminally, the adventitia continues into the surrounding
connective tissue. Here, cells of the immune response accumulate outside advanced atheroma and may
develop into tertiary lymphoid structures with germinal centers. APC, antigen-presenting cell. Reprinted
by permission from Macmillan Publishers Ltd: Nature Immunology, Hansson et al. 2011 Mar;12(3):204-
12, Copyright 2011.

11



As a consequence of this subendothelial retention, LDL particles are trapped in the
intima, where they are prone to oxidative modifications caused by enzymatic attacks or
by reactive oxygen species [75, 76]. The modifications generate pro-inflammatory
components such as truncated lipids, bioactive peptides and molecular species, e.g.
malondialdehyde (MDA) adducts and 4-hydroxynonenal, forming on lysyl residues of
ApoB100 [77-79]. Modified LDL components activate ECs and macrophages to
produce adhesion molecules (E-selectin, VCAM-1) and chemokines (CCL2, CCL5,
CXCL10, CX3CL1, SCF) [80-85].

Leukocytes, such as monocytes and T cells that adhere to the endothelium are induced
by chemokines, e.g. CCL2, CXCL10, and SCF, to migrate into the intima. Oxidation of
LDL increases binding to ScRs, especially SR-A1 and CD36, which results in
endocytosis by monocyte-derived macrophages [86, 87]. The ensuing cholesterol
accumulation eventually turns these macrophages into foam cells. DCs that patrol
arteries may also take up LDL components for subsequent antigen presentation in
regional lymph nodes.

With time a more complex plaque develops, with apoptotic as well as necrotic cells and
cholesterol crystals forming a necrotic core of the lesion. The core is covered by a
fibrous cap of variable thickness and its shoulder region are infiltrated by activated T
cells, macrophages, mast cells, DCs and NKT cells which produce pro-inflammatory
mediators and enzymes [88-93].

Plaque generally cause clinical manifestations by producing flow-limiting stenosis
(narrowing of the lumen) that lead to tissue ischemia, or by rupture which exposes pro-
coagulant material in the plaque’s core to coagulant proteins in the blood, triggering
thrombosis [94]. Plaques that rupture typically have thin, collagen-poor fibrous caps
with few SMCs but abundant in macrophages. The inflammatory cells induce plaque
disruption by production of collagenolytic enzymes that can both degrade collagen and
generate mediators that provoke death of the SMCs, the source of arterial collagen. A
thrombus can either interrupt blood flow locally or detach to become an embolus that
can block blood flow in distal arteries [57].

1.2.2 Innate immunity in atherosclerosis

Innate immune responses have a major role in the initiation of atherosclerosis [95].
Monocytes/macrophages, the major cell type in atherosclerotic lesions, participate in all
stages of plague development [83]. Their ScRs serve major roles as mediators of
intracellular cholesterol accumulation, however, gene-knockout studies have provided
contradictory results on their in vivo role in atherogenesis [96]. Many cell types in the
plaque express TLRs (TLR1, TLR2, TLR3, TLR4, TLR5, TLR7 and TLR9), and
become activated when binding PAMPs and/or DAMPs [97, 98]. TLRs are believed to
be pro-atherogenic, however, recent studies have also shown disease-attenuating effects
by certain TLR family members [98, 99].

In the context of atherosclerosis, the most interesting DAMP is probably oxLDL. LDL
that is minimally modified by oxidation induces TLR4 and TLR2 activation in
macrophages [100-104] and this detection of oxLDL appears to be mediated in
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combination with ScRs such as CD36 [105]. Given that oxLDL is a complex structure
that contains a mixture of possible ligands, including apolipoproteins, cholesterols, and
phospholipids, it is difficult to determine the exact ligand that mediates receptor
binding.

Mast cells are also important in the atherosclerotic process and these cells are believed
to contribute to local inflammation by releasing proteases, lipid mediators and
cytokines [83, 84, 106, 107]. Mast cells found in atherosclerotic plaques are mostly
connective-tissue-type mast cells and are generally chymase and tryptase positive [108,
109].

Even though NK cells and NKT cells belong to the less common cell populations in the
plaque, they are important producer of pro-inflammatory cytokines during
atherogenesis [110-113]. Other important innate components of atherosclerosis are the
complement system, from which certain member proteins have been found in the
lesions [114]. Data from experimental models suggest a dual role for the complement
system in atherosclerosis development [115, 116]. Recent reports also indicate a role
for neutrophils in atherogenesis [117]. DCs are also present in the plaque where they
most likely take part in presenting antigens to T cells, thereby activating the adaptive
arm of the immune system [118].

1.2.2.1 Dendritic cells in atherosclerosis

DCs are key initiators and regulators of immune processes in atherosclerosis [119]. In
the wall of healthy arteries, DCs reside in the intima and the adventitia where they
survey the blood and surrounding tissue for danger signals [120-122]. DCs are more
frequent in the plaque than in healthy vessel wall and may migrate to draining lymph
nodes to present antigen to T cells and initiate a response of the adaptive immune
system [119, 123]. However, studies show that emigration of DCs through nearby
lymphatic vessels is impaired in atherosclerosis [124]. T cell activation might also
occur within the atherosclerotic plaque as clustering of DCs and T cells has been
observed [118, 120]. Depletion of the DC chemokine receptor CX3CRL1, or the myeloid
DC marker CD11c resulted in reduced atherosclerosis [125, 126]. In contrast, depletion
of pDC accelerated lesion development in LdIr’ mice [127]. These and other findings
highlight a role for DCs in the disease development.

1.2.3 Adaptive immunity in atherosclerosis

Components of adaptive immunity are present in lesions throughout the course of
atherosclerosis, and antigen-specific adaptive immune responses most likely play an
important role in the atherogenic process [50, 128]. When Ragl™ or Scid/Scid mice,
two different models lacking functional T and B cells, were crossed with
atherosclerosis prone Apoe” or LdIr”™ mice, early atherosclerotic lesions formation was
significantly reduced. [129, 130] [131, 132]. Furthermore, a large body of evidence
suggests that both humoral and cellular immunity have a role in lesion development.
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1.2.3.1 B cells in atherosclerosis

Atherosclerosis is associated with B cell activation [50, 133]. A low number of B cells
are found in atherosclerotic plaques of mice and humans. These cells seem to be
localized preferentially in the adventitia of the aorta were they have been described to
form small lymphoid follicles [134-138]. Antibodies, both IgM and IgG, are also
present within atherosclerotic plaques at all stages of lesions development [134, 139].

Several studies support a protective role of humoral immune responses in the disease
development. Splenectomy accelerate atherosclerotic lesion formation, whereas transfer
of splenic B cells from aged atherosclerotic Apoe™ mice reduced disease development
in splenectomized recipients [140]. Bone marrow transfer from B cell deficient uMT
mice into LdIr’™™ mice showed that B cells and/or antibodies are protective in both early
and late atherosclerosis [141]. A marked decrease in the number of B cells following
interference with B-1 cell IgM production accelerated atherosclerotic lesion formation
[142].

Recent reports demonstrate that different B cell subpopulations exert opposing effects
on disease. B cell depletion by anti-CD20 antibody treatment was atheroprotective, and
whereas transfer of B-2 cells aggravated disease, injection of B-1a cells was
atheroprotective [142-144].

1.2.3.2 T cells in atherosclerosis

T cells of the atherosclerotic plaque are of the memory-effector phenotype and are
mostly positive for TCRafp and CD4 [145]. Clonal expansion of T cells has been
demonstrated in lesions from both human and Apoe” mice, suggesting that antigen-
specific reactions are taking place [146, 147]. Animal studies suggest that the T-cell
response is pro-atherogenic. Absence of CD4" Th cells leads to reduced atherosclerosis,
while transfer of the same cell type into Scid/Scid/Apoe™ mice accelerated lesion
development, with homing of T cells to the lesions [131, 148, 149].

Most of the CD4" T cells in lesions are of the Th1 type, and the signature Th1 cytokine
IFNy is also present [145]. IFNy has long been implicated in atherogenesis and its pro-
atherogenic effects are many including; reduction in collagen fiber formation, increased
expression of MHC 11, enhanced protease and chemokine secretion, upregulation of
adhesion molecules, induction of pro-inflammatory cytokines, and enhanced activation
of macrophages and ECs [145]. Mouse studies using either gene-knockouts or cytokine
treatments to study one of the subsequent molecules; IFNy and its receptor, the Thl-
promoting cytokines IL-12 and IL-18, or the Thl-differentiating transcription factor T-
bet, have shown pro-atherogenic effects of Thl responses [150-159].

Studies on other Th cell subsets have generated conflicting data and further studies are
required to fully understand their function in atherogenesis. Th2 cells, known to secrete
IL-4, IL-5, IL-10 and IL-13, are predicted to be protective against atherosclerosis, but
their role is not completely clear. More recently, the role of Th17 cells has been
evaluated, showing both pro- and anti-atherogenic roles [160]. Furthermore, CD8" T
cells can also be found in lesions and are believed to play a pathogenic role in the
disease [160-164].
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Clearer roles have been described for various subsets of Tregs in models of
atherosclerosis, where several studies have demonstrated a protective effect of these
cells. Antibody depletion of Tregs significantly increases atherosclerotic plaque size,
and transfer of natural FoxP3" Tregs is protective [165, 166]. In addition, 1L-10 or
TGFp, the two cytokines responsible for most of the effects mediated by Tregs, have
been shown to have potent anti-atherogenic activities [167-171].

1.2.4 Antigens in atherosclerosis

The clonal expansion of T cells and their clustering in close proximity to DCs and
macrophages point to a local immune response in the plaque [50]. Several candidate
antigens have been linked to the disease. Some of them are microbial molecules
derived from both bacterial pathogens, such as Chlamydophila pneumonia, and viral
pathogens, such as cytomegalovirus [172, 173].

Although studies have implicated the involvement of infectious microorganisms in the
atherosclerotic process, a large body of evidence suggests that self-antigens are the
major target, and atherosclerosis can to some extent be seen as an autoimmune disease
[174]. Acute manifestations of atherosclerotic disease does not show the same
association with a restricted number of human leukocyte antigen types (MHC) as type |
diabetes and rheumatoid arthritis, suggesting the involvement of multiple rather than
single autoantigens [175]. However, the two autoantigens pointed out to be the most
important are heat-shock protein 60 (hsp60) and LDL [50].

1.2.4.1 Low density lipoprotein — an autoantigen

LDL is the antigen that has gained most attention in the atherosclerotic process. LDL
contains both B cell and T cell epitopes, thereby eliciting both cellular and humoral
responses during the course of atherosclerosis.

The activated humoral immunity against LDL results in formation of antibodies that
recognize MDA-lysine and other oxidatively generated epitopes of LDL particles.
These autoantibodies can be found in circulation of humans and experimental animals
[176, 177] [178, 179]. B-1 B cells produce natural IgM antibodies against oxidized
phospholipids, present not only on oxLDL but also in the cell wall of Streptococcus
pneumonia and on apoptotic cells [180]. Antibodies to native and MDA-modified
ApoB100 are mostly of the 1gG isotype [181]. Screening of a peptide library resulted in
binding of autoantibodies to more than 100 different ApoB100 peptides [182].
Experimental studies in mice suggest that oxLDL-autoantibodies, especially of the IgM
isotype, are atheroprotective [183, 184]. However, their association with atherosclerosis
and CVD remains unclear [185, 186].

The presence of 1gG antibodies recognizing LDL and components thereof implies that
isotype switching must have been activated by T cells specific for the same antigen.
There is today clear evidence that LDL-reactive T cells exist in circulation and
lymphoid organs, as well as in atherosclerotic plaques [187, 188]. Several reports
propose that they are detrimental; adoptive transfer of CD4" T cells from MDA-LDL
immunized mice accelerated atherosclerosis in Scid/Scid/Apoe” mice while in vivo
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blocking of ApoB100 reactive T cells reduced plaque burden [189, 190]. Recently, it
was shown that these autoreactive T cells recognize peptide motifs of native LDL
particles and ApoB100, and that oxidation extinguishes rather than promotes LDL-
dependent T cell activation [189].

1.2.5 Immunomodulation as a treatment for CVD

The treatment of atherosclerosis is currently based on lipid lowering by statins —
inhibitors of hydroxymethyl glutaryl coenzyme A (HMG-CoA) reductase, involved in
cholesterol metabolism. However, even in patients treated with statins a considerable
residual burden of cardiovascular disease remains [57]. Besides effective LDL
lowering, statin treatment reduces CRP levels in humans, and several studies suggest
that some of their clinical benefits accrues from an anti-inflammatory action [191, 192].
This finding, together with discoveries of inflammatory pathways in atherosclerosis
development may pave the way for immunomodulation as a new potential therapeutic
approach against atherosclerosis. However, no existing systemic anti-inflammatory
strategy, such as glucocorticoids, non-steroidal and anti-inflammatory drugs, or anti-
cytokine agents has been proven as an ideal candidate for atherosclerosis treatment
[57]. Many of them create unwanted side-effects, such as dyslipidemia, hypertension,
and diabetes [193] [57]. Since it is now evident that atherosclerosis involves
autoimmune reactions against LDL particles accumulating in the artery wall, new
clinical applications targeting this aberrant antigen specific response would be
appealing.

A very effective strategy in other disease pathologies is vaccination. Modern vaccines
are cheap, highly specific, and have generally few adverse effects. A vast amount of
experiments in animal models shows protective effects of vaccination with LDL or
components thereof [194-199]. The underlying mechanism is not fully understood, but
suggests effects on cholesterol levels and induction of protective antibodies [183, 184].
Consistent with this, injection of antibodies recognizing modified LDL components
have resulted in reduced plaque burden in mouse models of atherosclerosis [200-202].

LDL is, however, a complex particle with an antigen composition that is difficult to
standardize and it may potentially also contain harmful components. The use of
ApoB100 peptides would be one way to bypass this problem, but the recent
identification of an ApoB100 peptide able to trigger pro-atherogenic responses [85],
emphasizes the importance in characterizing the precise epitopes involved in the
induction of atheroprotective immunity

An alternative mechanism in atheroprotection by LDL immunization is alteration of the
balance between pro-inflammatory and anti-inflammatory T cell subtypes [203, 204]. A
frequently used method to induce antigen-specific Tregs is mucosal immunization.

Induction of LDL-specific Tregs was achieved by mucosal administration of a fusion
protein with a peptide sequence of native LDL, and paralleled with decelerated
atherosclerosis development [205]. Unfortunately, experience from other autoimmune
diseases points to difficulties in developing mucosal tolerance-based immunotherapy
for humans. Antigen-specific Tregs can also be induced by DCs made tolerogenic in
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the presence of anti-inflammatory cytokines, and several reports show amelioration of
autoimmune disease when such DCs were loaded with disease associated antigens
[206-209]. Therefore, DC-based therapy has the potential of being an attractive option
for treating atherosclerosis.

A potential disadvantage when using approaches to trigger T cell specific responses is
that it may turn out to be necessary to perform HLA genotyping of patients before
treatment since usage of T cell epitopes, such as ApoB100 peptides, may need to be
individualized depending on HLA type. Nonetheless, applying treatment strategies
directed against antigen-specific mechanisms remains attractive. A vaccine candidate
(CVX-210H), based on an ApoB100 peptide, has already been developed [182], and an
antibody against MDA-modified ApoB100 (BI-204) is currently in phase Il of clinical
development [210].
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2 AIMS

The studies included in this thesis have investigated the role of different immune cells,
as well as proteases they secrete, in the pathological process of atherosclerosis. More
specifically, the aims were to;

e Determine the role of immunogenic dendritic cells presenting modified LDL in
the development of atherosclerosis.

e Assess the role of tolerogenic dendritic cells presenting apolipoprotein B100 in
the development of atherosclerosis.

e Determine the role of adaptive immunity in immunization-induced
atheroprotection.

e Evaluate the role of serine protease inhibitor A3 (serpinA3) in atherosclerosis
and aneurysm formation.
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3 METHODOLOGICAL CONSIDERATIONS
3.1 MURINE MODELS OF ATHEROSCLEROSIS

Murine models constitute the most widely used experimental system to study
atherosclerosis and their main advantages include reproducibility and the availability of
transgenic technology to dissect the relevant pathologic processes. Generally, mice are
resistant to atherogenesis. So far, very few strains are known to develop atherogenesis
after feeding with an atherogenic diet. One of these strains is the C57BI/6 mouse, which
is the standard model for atherosclerosis research, and is the background of all mouse
models used in this thesis. However, the C57BI/6 strain only develops small fatty
streaks, and it was not until the production of several gene knockouts and transgenic
mice became available that the wide spread use of mouse models in atherosclerosis
research started. The genetically modified mice displayed remarkable effects on plasma
lipoproteins and could develop larger and more complex lesions. Thus far, 239 strains
for atherosclerosis research have been published on the Jax Laboratory webpage.
Among them, mice deficient in apolipoprotein E (Apoe™), LDL receptor (LdIr”), and
human apoB100 transgenic mice (huB100') display marked atherogenesis throughout
their arterial tree [211, 212].

However, limitations of genetically modified mouse models should be kept in mind
when translating findings in mouse studies to human atherosclerosis. The mouse
immune system diverges in many ways from that of humans, and the cholesterol levels
required for atherogenesis in mice exceed those encountered in the clinic, and does not
reflect the chronic nature or complexity to the human disease [57]. Most importantly,
plaque rupture with thrombosis — one of the main causes of clinical manifestations by
atherosclerosis — seldom develop in experimental mouse models [57].

3.1.1 Apoe” mice (paper I, lIl, IV)

The mouse Apoe gene was the first mouse gene successfully deleted for atherosclerosis
research [213, 214}. ApoE is the ligand for clearance of remnant lipoproteins by the
liver and the Apoe™ mouse develops severe hypercholesterolemia. These mice
spontaneously develop atherosclerosis on a normal chow diet (low fat and low
cholesterol diet) and at 20 weeks of age display fibrous plaques similar to human
atherosclerosis, both in phenotype and distribution [215].

Disadvantages with this model are that the lipoprotein profile is dominated by elevated
VLDL, whereas humans carry most their cholesterol in the LDL fraction, and the
involvement of ApoE in other processes such as immune activation and proliferation of
stem cells in the bone marrow is also lost [216, 217].

3.1.2 pMT/Apoe’ mice (paper Il

UMT mice are knockouts for the gene encoding the p-chain of the B cell receptor and
therefore their B cell development is arrested already at the stage of pre-B-cell
maturation. By crossing the tMT mouse with an Apoe”” mouse you get an
atherosclerotic mouse model completely deficient in mature B cells and antibodies. The
UMT/Apoe” mouse used in paper 111 were provided Drs Francis Bayard and Rima
Elhage in Toulouse, France[218].
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3.1.3 Rag-2"/Apoe™ mice (paper Il

Recombinase activator gene 2 (Rag-2) is necessary for lymphocyte-specific V(D)J
recombination in normal developing lymphocytes, and Rag-2 deficiency results in lack
of functional T, as well as B cells [219]. The ApoE- and RAG-2-(B6-Rag2™) deficient
mice (Rag2”/Apoe™) used in paper 111 was backcrossed into a C57BL/6J background
for six generations [220].

3.1.4 huB100“xLdlIr-/- mice (paper II)

LdIr” mice do not develop significant atherosclerotic lesions on a normal chow diet
[221]. However, in response to a high fat diet, they develop more severe
hypercholesterolemia and robust atherosclerotic lesions throughout the aortic tree [222-
224]. Mice transgenic for human ApoB100 show humanized lipoprotein profiles and
enables studies on cellular immune responses to human LDL-derived epitopes [225].
Just as the Ldlr” mice, these mice require a high fat diet for atherosclerosis
development [226]. In paper 11 we used huB100%“xLdIr"" mice, a cross between
huB100" and LdIr” mice, with an additional mutation in the APOB100 gene that
hinders the ApoB100 mRNA editing into ApoB48, a process that occurs in mouse but
not human liver [74]. This mouse strain develops atherosclerosis spontaneously on a
chow diet [227], but when fed high fat diet this results in accelerated atherosclerosis
development.

3.1.5 SerpinA3n transgenic mice (paper V)

To study the role of serine protease inhibitor A3 (serpinA3) in atherosclerosis and
aneurysm disease, we generated transgenic mice. In mice, the serpinA3 gene has
undergone extensive duplication and diversification resulting in a family of 13 closely
related inhibitors with differing tissue distribution and protease specificity [228, 229].
Gene expression and functional studies suggest that serpinA3n is the closest murine
orthologue of human serpinA3 [229, 230].

The murine serpinA3n cDNA sequence was amplified from C57BI/6 mice and cloned
into the plasmid chicken beta-actin promoter plasmid pCAGIPuro, in which serpinA3n
expression is driven by a human cytomegalovirus immediate cytomegalovirus early
enhancer (HCMVIEE) coupled to the chicken beta-actin promoter. The sequence was
confirmed by sequencing. Using DNA microinjection into C57BI/6 fertilized oocytes of
the beta-actin promoter-HCMVIEE-serpinA3n fragment, we obtained two founder
mice positive for the serpinA3n transgene. The SerpinA3n transgenic mice were
identified by PCR. Functional overexpression of serpinA3n was confirmed by
measurements, in plasma and aorta, of serpinA3n gene and protein, as well as activity
of the enzymes it is known to inhibit. Both transgenic strains were used to study
aneurysm formation, and one of the serpinA3n transgenic mouse strains was crossed
with Apoe” mice to study atherosclerotic lesion development.

3.2 LDL PREPARATIONS (PAPERS I-llI)

In experiments such as immunization or in vitro culture of cells where LDL was used, it
was always freshly prepared either from mouse or human plasma. Murine LDL
obtained from Apoe” mice was used in paper | and paper 11 to reduce the risk for inter-
species interactions. LDL was isolated from plasma by ultracentrifugation using either
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a one-step or a two-step method. In the former technique the plasma was centrifuged
through a discontinuous NaCl gradient for 20 h with subsequent collection of the
fraction between 1.020 mg/ml and 1.063 mg/ml. This density cutoff should contain
mainly LDL particles. In the two-step centrifugation method plasma is first centrifuged
12 h through 1.020 mg/ml of KBr and then in a second round through 1.063 mg/ml
[231]. After the first round chylomicrons and VLDL are removed from the top, and
after the second round the LDL particles are removed from the top. In preparations of
native LDL, 1 mM EDTA was always present in preparations, and protease inhibitors
were added in the plasma for all preparations used. The purified LDL was used for
MDA-modification or isolation of ApoB100.

3.2.1 MDA-modification of LDL (paper | and Ill)

MDA-modification results in adducts that are known to be present in oxLDL in vivo
[232, 233]. MDA was produced by acid hydrolysis of malondialdehyde-bis-
dimethylacetal, and LDL was incubated with 0.5 M MDA for 3 h at 37°C to generate
MDA-LDL. Unbound MDA was removed by running the sample over a PD10 buffer
exchange column in order to avoid any potential side effects induced by free MDA.

3.2.2 ApoB preparation (paper Il)

ApoB100 is not a soluble protein and needs certain measures to stay soluble after
delipidation. We used a standard chloroform/methanol/water extraction protocol to
remove lipids from LDL. The unsoluble extracted ApoB100 was then resuspended in a
minimal volume of 10% SDS until it dissolved completely. This unclean preparation
was run on a PD-10 desalting column to remove excess SDS, and then purified on a
Superdex 200 size-exclusion column using Tris-HCI buffer. The purified ApoB100 was
always tested in cell cultures to see to control for toxicity due to remaining SDS in the
preparation. It is reasonable to believe that some SDS will remain bound to the protein
in order to keep it solubilized in salt solutions. However, the ApoB100 preparations
were more than 90% pure and kept at pH 7.4.

3.3 T CELL ASSAYS (PAPERS I-1ll)

Most of our T cell studies focused on proliferation of antigen-specific T cells. We either
used total splenocytes, or purified T cells together with irradiated splenocytes as APC,
in the presence of antigen. In our experience it is better to use a coherent system such as
total splenocytes, rather than purified T cells. The usage of splenocytes is a more in
vivo-like system and less vulnerable compared to cumbersome purification of specific
cell types. It is also easy to analyze specific populations of spleen in the flow cytometer
when needed. However in some cases (paper | and 111) where CD4" T cells were
absolutely needed, purification was performed. In this case a commercially available
column was used that negatively selected T cells in order to minimize activation of the
T cells. Proliferation was measured by *H-Thymidine incorporation as detected by a -
counter. In some instances we also measured IL-2 to estimate T cell activation, or other
cytokines that would suggest T effector differentiation such as IFNy, IL-10, IL-5 and
others. Data were sometimes presented as stimulation index (SI) when baseline value
varied between groups. Sl is calculated by subtracting the baseline value from the
stimulated value and dividing by the baseline value. In all T cell assays except those
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with T hybridoma cells, we used serum-free medium supplemented with ITS (insulin,
transferrin and selenium). This medium worked much better than regular fetal calf
serum containing medium, since small amount of LDL in the latter medium caused
high background proliferation.

3.4 GENERATION AND TREATMENT OF DC (PAPERS | AND II)

In order to generate high amount of murine DCs, bone marrow was cultured in the
presence of GM-CSF and IL-4. This cytokine environment will also induce
differentiation of other myeloid cells including granulocytes and macrophages [234].
For this reason we purified DC by density centrifugation in Optiprep (commercially
available sugar solution). More than 70% of the resulting fraction of DCs expressed the
surface markers CD11c, I-A® and co-stimulatory molecules, indicating that many cells
were in a mature state. They could however take up antigen and were effective in
presentation to T cells. This was not the case for the cells that remained unselected after
density gradient purification. Antigens were added to DCs and incubated overnight
together with LPS, which was used to induce complete maturation and to avoid antigen
specific maturation effects. In paper 11 we reduced the concentration of LPS by titration
to lowest possible, yet able to trigger maturation. We also changed the purification
protocol from density gradient to CD11c purification column. These measures allowed
us to receive more than 95% pure DCs that contained a mix of immature cells and
mature cells that were slightly pushed into maturation. It was necessary not to have
highly matured DCs during treatment with IL-10 in the antigen pulse. Consequently,
during antigen pulse we waited a few hours before adding the low LPS concentration,
which also allowed us to have more efficient uptake by immature DC. Compared to the
previous protocol the mature DCs were equally good presenters of antigen to T cells
and expressed similar levels of co-stimulatory molecules. In paper | we used MDA-
LDL as antigen and in paper Il we prepared the pure protein ApoB100 for antigen
pulsing of DCs. This together with the changed procedure for DC purification and
maturation will render comparisons in treatment results somewhat difficult and must be
kept in mind when interpreting data from papers | and II.

3.5 IMMUNIZATIONS (PAPER III)

For immunizations, 100 ug MDA-LDL, emulsified in Freund’s adjuvant at a volume
ratio of 1:1, was subcutaneously injected per mouse. MDA-LDL was emulsified in
complete Freund’s adjuvant (CFA) for the first injection and in incomplete Freund’s
adjuvant (IFA) for booster injections. Since Freund’s adjuvant itself has been shown to
have effects on atherogenesis [148, 180, 235], one control group was treated with
adjuvant alone, and one group of mice remained untreated. PMT/Apoe™ mice were
injected with a two-week interval, which has been shown to be protective in both Apoe”
" and CD4™/ Apoe™ mice [148, 198]. Rag2”/Apoe” mice were instead injected with a
four-week interval. The prolonged time intervalwas necessary due to new ethical rules
for animal experiments issued by Jordbruksverket, the governmental board supervising
animal experiments in Sweden, but despite this the atheroprotective effect in Apoe™
mice was retained.
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4 RESULTS AND DISCUSSION
4.1 MDA-LDL PULSED DC AGGRAVATE ATHEROSCLEROSIS (PAPER I)

DCs are the most potent activators of naive T cells [25]. DCs are present in
atherosclerotic plaques, in which they take up antigens and present them to T cells,
either in the draining lymph nodes or locally in the plaque [118]. One of the most
important antigens in atherosclerosis is LDL, and LDL-reactive T cells are suggested to
be deleterious for the disease [189, 190]. However, immunization of LDL or
components thereof emulsified in adjuvant is atheroprotective [194-198].

To explore the role of DCs in atherosclerosis, we pulsed bone marrow-derived DCs
with MDA-LDL, a model antigen of oxLDL, and injected these DCs subcutaneously
into Apoe”” mice. The effect on atherosclerosis development was compared to mice
injected with DCs pulsed with the disease irrelevant antigen keyhole limpet
hemocyanin (KLH), or to mice that remained untreated.

Mildly oxidized LDL is able to induce maturation of DC [236, 237]. Activation of DCs
is also induced by ligation of a TLR ligand, such as LPS [238, 239]. To be able to study
the effect of a disease-related antigen versus a disease irrelevant antigen on the outcome
on atherosclerosis, and not due to a difference in DC maturation level, all DCs also
received a high dose of LPS.

In vivo detection studies have shown that injected antigen-bearing DCs migrate to
draining lymph nodes where they interact with antigen-specific T cells [240]. In our
study the induction of IL-6 in the inguinal lymph nodes of DC-immunized mice
suggested that the treatment initiated an immune response in the draining lymph nodes.
Mice that receive antigen-pulsed DCs show increased T cell responses to the cognate
antigen [240]. In line with this, T cells purified from draining lymph nodes of mice
treated with MDA-LDL or KLH loaded DCs, proliferated in vitro to MDA-LDL and
KLH respectively. This response was accompanied by a burst of IFNy secretion and an
induction of circulating antigen-specific antibodies.
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Figure 2. Effects of pulsed DC-transfer on atherosclerosis lesion development. Morphometric
quantitation of lesion size (um?) in the aortic root of Apoe™ mice.
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Only immune induction by the disease-related antigen MDA-LDL affected the
atherosclerotic process. Treatment with MDA-LDL pulsed DCs, but not with KLH
pulsed DCs, worsened atherosclerotic disease since the mice exhibited significantly
larger and more inflamed atherosclerotic lesions compared to untreated animals (Figure
2).

Our treatment with MDA-LDL pulsed DCs accelerates atherogenesis, while we and
others have shown that parental immunization with modified LDL emulsified in
adjuvant reduce atherosclerosis development. Remarkably, both treatment strategies
results in increased antigen-specific T cell and antibody responses [194-198]. However,
when comparing the two different regimens, we found that only MDA-LDL emulsified
in CFA lead to induction of CD4"CD25"FoxP3" Tregs (Figure 3), which could explain
the atheroprotective effects of this regimen and the lack of protection by MDA-DC
pulsed DCs. Indeed, several reports have shown the atheroprotective potential of Tregs
[165-171].
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Figure 3. Proliferation of T cells in vitro in response to antigen. Fold induction in percentage of
CD4"CD25"FoxP3" T cells of total CD3" T cells.

This finding illustrates that repeated immunization with antigen-loaded immunogenic
DCs increases atherosclerosis. In contrast, it was recently reported that immunogenic
DCs loaded with oxLDL reduced lesions induced when a collar was surgically attached
to the carotid artery of hypercholesterolemic mice [241]. These DCs were prepared in a
different way compared to our protocol, as well as injected by another route in a
different mouse model. The study also failed to show any differences in the aorta of
treated mice, which suggests that the local environment determines the outcome.

In addition, our results showing detrimental properties of immunogenic DCs confirm
and extend studies showing that immunogenic DCs loaded with an artificial antigen
expressed transgenically in the artery wall accelerated atherosclerosis [164], and that an
extended lifespan of DCs affected plaque inflammation and cholesterol metabolism
[242].
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4.2 TOLEROGENIC APOB100 PULSED DC ATTENUATES
ATHEROSCLEROSIS (PAPER 1)

In the normal artery, resident DCs are thought to maintain peripheral tolerance to self-
antigens by silencing T cells [45] [50]. However, danger signals generated during
atherogenesis may activate DC, leading to a switch from tolerance to the activation of
adaptive immunity [50]. This could explain the existence of autoreactive LDL-specific
T cells in humans and mouse models of atherosclerosis [189].

Tolerogenic DCs generate anergic and regulatory T cells by producing low levels of
pro-inflammatory cytokines and by expressing higher ratio of coinhibitory to co-
stimulatory molecules [45]. Several reports demonstrate that DCs can be conditioned
into a tolerogenic state by exposure to immunosuppressive and anti-inflammatory
agents, such as 1L-10 [47-49, 243]. IL-10 has been shown to downregulate DC
expression of MHC class Il, co-stimulatory molecules such as CD80/CD86,
chemokines, and pro-inflammatory cytokines, such as IL-6, IL-12 and TNFo. [243].
This enables inhibition of both Thl and Th2 immune responses by IL-10 treated DCs
[243].

To investigate the role of tolerogenic DCs in atherosclerosis, we pulsed IL-10
stimulated bone marrow-derived DCs with ApoB100, the protein moiety of LDL, and
injected these DCs intravenously into huB100“xLdIr” mice. One group of mice was
left untreated, while the other control groups received injections of DC that were
treated with 1L-10 or ApoB100 alone, or kept in medium only. All DCs were also
stimulated with the lowest possible LPS concentration needed for induction of
maturation.

We hypothesized that by treating DCs with ApoB100 in the presence of IL-10 to create
tolerogenic ApoB100-specific DC, we could modulate the aberrant cellular immune
responses against LDL. Human ApoB100 was chosen as an antigen instead of oxLDL,
since recent rapports have shown that atherogenesis is driven by autoreactive T cells
that recognize peptide motifs of native, rather than oxidized, LDL particles and
ApoB100 [189]. The huB100%“xLdIr”" mouse model enabled the use of human
ApoB100 as an antigen.

IL-10 treatment of bone marrow-derived DCs reduced their secretion of TNFa and
CCL-2, and completely abrogated IL-12 production. However, no reduction in the
expression of MHC class Il or the co-stimulatory molecules CD80/CD86 was detected,
presumably due to the co-administration of LPS to all DCs. Activated CD4" T cells that
were incubated with such tolerogenic DCs significantly reduced their secretion of IFNy
and upregulated the expression of PD-1 as compared to controls. PD-1 is a co-
inhibitory molecule essential for the control of T cell activation and generation of
FoxP3" Tregs [244]. Tolerogenic DC also induced a de novo generation of
FoxP3'CD4" T cells. Interestingly, 1L-10 induced tolerogenic DCs could suppress the
proliferation of effector T cells, indicating induction of anergy. This is in line with
previous observations [208, 245].

When tolerogenic DCs pulsed with ApoB100 were injected into huB100“xLdlr” mice,
the splenic population of ApoB100-specific T cells became less prone to proliferate
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against ApoB100. Th1l as well as Th2 responses were also decreased from in vitro re-
challenged splenic T cells. Mice that received IL-10-treated DCs had significantly
decreased plasma levels of IFNy and increased mRNA levels of IL-10, TGFf and
FoxP3 in the spleen, which shows that the DCs induced a regulatory and anti-
inflammatory machinery. In line with this, we could demonstrate that CD4" T cells
purified from spleens of mice treated with tolerogenic DCs pulsed with ApoB100, and
not from any of the other groups, could suppress the activation of a T cell hybridoma
that responds to ApoB100 (Figure 4). This indicates an antigen-dependent suppression
of activation. In addition, in vitro presentation of ApoB100 by tolerogenic DCs
significantly abolished the response of the ApoB100-specific T cell hybridoma.
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Figure 4. Tolerogenic DCs generate antigen-specific suppressor regulatory T cells and downregulate
antigen-specific T helper responses. DCs pulsed with or without ApoB100 and IL-10 were transferred
intravenously to recipient mice. One week later, 2x10° cells of the ApoB100-specific T hybridoma 48.5
were seeded together with 1x10* DCs and 20 pug/mL ApoB100 in 96-well plates. CD4" T cells purified
from spleens of DC-treated mice were coincubated at different ratios with the T hybridoma effector cells.
Antigen-specific T-cell activation was measured 24 hours later by interleukin-2 (IL-2) secretion in the
supernatant.

Since IL-10 induced tolerogenic DCs modulated the cellular immunity to LDL-derived
ApoB100 in such a way that peripheral tolerance to the antigen was increased, we
hypothesized that their administration would slow down atherogenesis. Indeed, one
single injection of tolerogenic ApoB100 pulsed DCs resulted in a significant, 70%
reduction of lesions in the descending thoracic aorta, as compared to all other groups
that received DCs, and a 50% reduction compared with untreated mice (Figure 5).
Disease amelioration was paralleled by reduced CD4" T cell infiltration into lesions,
suggesting that activation and recruitment of effector T cells into lesions are of major
importance for the atheroprotective effect of tolerogenic DCs.
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Figure 5. Tolerogenic DCs reduce atherosclerotic lesion formation in the thoracic aorta of
huB100tgxLdlr—/— mice. Mice received one intravenous injection with DCs loaded with or without
ApoB100 and/or IL-10 and were fed a Western diet for 10 weeks.

Mice that received DCs pulsed with ApoB100 had a modest increase in atherosclerosis
development. This is in line with the notion from our previous results (paper 1) and by
others, which show that immunogenic antigen-pulsed DCs aggravate inflammatory
disease [164].

Antigen loaded DCs injected intravenously have also been shown to migrate to thymus,
where they are involved in clonal deletion of developing antigen-specific T cells [246].
Maturation status influenced the ability of DCs to home to the thymus — stimulation
with a high dose of LPS resulted in a smaller number of injected DCs in thymus [246].
One may presume that the decreased T cell responses against ApoB100 seen after
transfer of ApoB100 pulsed tolerogenic DCs, may be due to increased central tolerance
to ApoB100. It would be interesting to explore the effect on chemokine receptor
expression and migration patterns of ApoB100-pulsed DCs stimulated with IL-10.

In conclusion, the present study show that tolerogenic DC therapy that targets immune
reactions to the ApoB100 protein present in LDL, can attenuate systemic inflammation
and significantly reduce atherosclerotic plaque burden.

4.3 ADAPTIVE IMMUNITY IN ATHEROPROTECTION BY IMMUNIZATION
(PAPER III)

One of the first pieces of evidence that manipulating the immune system could be used
as potential therapeutics for cardiovascular disease came from studies in which
hypercholesterolemic rabbits were immunized with oxLDL emulsified in adjuvant. The
conductors of that study were surprised when they found that oxLDL-vaccinated
animals developed a partial protection against atherosclerosis. This observation has
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subsequently been confirmed in a number of different animal models of atherosclerosis,
including Apoe” mice [194-198].

The underlying mechanism of atheroprotection is, however, still not fully understood.
LDL contains both B cell and T cell epitopes and protection is associated with
activation of both humoral and cellular immunity. Atheroprotection after vaccination in
mice correlates with titers of anti-oxLDL IgG antibodies, implying that antibody
isotype switch is induced by activated antigen specific CD4" T cells [140, 247, 248].
Several experimental studies in mice suggest that oxLDL-autoantibodies are
atheroprotective [183, 184]. Interestingly, immunization-induced atheroprotection still
remains in the absence of CD4" T cells. Despite the absence of Th cells, increased
levels of 1gG antibodies specific for MDA-LDL were formed [148].

To explore the role of adaptive immunity in atheroprotection by oxLDL vaccination,
different mouse models were used. pMT/Apoe” mice, lacking functional B cells and
antibodies, were used to study the role of humoral immunity. Rag2”/Apoe” mice,
which lack both functional T and B cells, were used to investigate whether adaptive
immunity is critical for the protective effect.

The immunization protocol shown to be protective in Apoe™ mice and CD4™/ Apoe™
mice [148, 198], was used to treat PMT/Apoe”” mice. MDA-LDL was emulsified in
Freund’s adjuvant (CFA) for the first injection and in incomplete Freund’s adjuvant
(IFA) for booster injections. Since Freund’s adjuvant itself has been shown to have
effects on atherogenesis [148, 180, 235, 249], one control group was treated with
adjuvant alone, and one group of mice remained untreated.
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Figure 6. Lesion development in uMT/Apoe” mice. Morphometric quantitation of lesion size (um?) in
the aortic root.
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We show that oxLDL vaccination resulted in reduced plaque burden in pMT/Apoe™
mice (Figure 6). This shows that oxLDL vaccination-induced atheroprotection is not
dependent on B cells and antibodies. This is in line with another study where
immunization with native LDL inhibited lesion development without inducing
antibodies to oxLDL [250]. The treatment did not reduce local inflammation in the
lesions, as there was no difference in lesional VCAM-1 expression between the groups.

Tregs are known to be atheroprotective [165, 166], and in paper | we showed that
immunization with MDA-LDL in immunocompetent Apoe”™ mice induces antigen-
specific Tregs. However, to which degree cellular immunity is affected in absence of B
cells is controversial - while some studies reveal a critical role for B cells in T cell
responses [251, 252], others indicate that absence of B cells has little effect on T cell
responsiveness [253-255]. We could detect proliferation of T cells from MDA-LDL
immunized pMT/Apoe™ mice when these were re-challenged with the cognate antigen
in vitro, although the responses was not as strong as those measured after immunization
in Apoe”” mice. Importantly, induction of antigen-specific Tregs was seen after oxLDL
vaccination in pMT/Apoe™ mice, suggesting that they may play a protective role also in
this mouse model. The importance of Tregs for the atheroprotective effects of
vaccination is supported by a recent study where the atheroprotective effect of
immunization with an ApoB100-peptide in Apoe” mice was abolished by
administration of an antibody depleting Tregs [204].

We then wanted to investigate if oxLDL vaccination could elicit protection in complete
absence of adaptive immunity. Due to new ethical rules by the governmental board
supervising animal experiments in Sweden time intervals between immunizations had
to be prolonged in Rag2”/Apoe™ mice. To ensure that longer time intervals retained the
protective effect, we immunized a new batch of Apoe” mice and demonstrated that this
immunization protocol still resulted in reduced atherosclerosis development with
lowered lesional inflammation. In contrast, immunization of immunodeficient Rag2™”
/Apoe™ mice with oxLDL had no effect on atherogenesis (Figure 7). This finding
illustrates that complete lack of adaptive immunity abolishes the protective effect.
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Figure 7. Lesion development in Rag2”/Apoe™ mice. Morphometric quantitation of lesion size (um?) in
the aortic root.
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The mechanism of vaccination against oxLDL is complex. Although protection
remained in the absence of CD4" T cells or B cells, we could demonstrate that it is
dependent on adaptive immunity. This suggests that it is a combination of cellular and
humoral immunity that mediate the protective effects. Further studies are necessary to
extend our knowledge about protective immune responses of atherosclerosis. For
instance, nothing is known about the role of other components of adaptive immune
responses, such as CD8" T cells and NKT, in vaccination-induced atheroprotection.

4.4 SERPINA3 IN ATHEROSCLEROSIS AND ANEURYSM DISEASE
(PAPER IV)

Remodeling of extracellular matrix by proteases plays an important role in
atherosclerosis [50]. Serine protease inhibitor 3A (serpinA3), also referred to as al-
antichymotrypsin [256], is an inhibitor of several proteases involved in this process,
such as elastase, cathepsin G and chymase derived from mast cells and neutrophils
[230].

We detected an increase in expression of serpinA3n, the mouse orthologue of human
serpinA3, in atherosclerotic lesions from immunodeficient Scid/Scid/Apoe™ mice
compared to lesions from Apoe™ mice. Scid/Scid/Apoe” mice display smaller and less
inflamed atherosclerotic plaques [131]. In addition, expression analysis by RT-PCR
showed 14-fold induction of serpinA3n mRNA levels in atherosclerotic lesions
compared to healthy vessels in Apoe” mice. SerpinA3 expression was also detected in
human carotid lesions, and was significantly increased in lesions from patients with
minor stroke or transitory ischemic attacks (TIA), compared to asymptomatic patients.

SerpinA3 mRNA and protein was found in two of the main cell types of atherosclerotic
lesions, namely smooth muscle cells (SMCs) and endothelial cells (ECs). EC-derived
expression of serpinA3 was increased by stimulation with TNFa, a pro-inflammatory
cytokine shown to accelerate atherosclerosis development [257].

To study the role of serpinA3 in atherogenesis, we generated two transgenic mice
overexpressing serpinA3n on a C57BI/6 background, and crossed one of these with
Apoe™ mice. SerpinA3n expression in these mice is driven by a human
cytomegalovirus immediate early enhancer (HCMVIEE) coupled to the chicken beta-
actin promoter. Transgenic mice had 10 times higher gene expression of serpinA3n in
aorta, and higher SerpinA3n protein levels in aorta and plasma compared to wild-type
(Wt) mice.

We hypothesized that overexpression of serpinA3n would result in attenuated
atherosclerotic development, since several of the enzymes it targets are involved in
atherogenesis [107, 258, 259]. There was however no difference in atherosclerotic
lesion size, neither in aortic root nor in thoracic aorta, between Apoe” mice and Apoe™
littermates overexpressing serpinA3n that had been fed a chow diet for 20 weeks. 20
week old Apoe” mice display advanced fibrous plaques, and it cannot be ruled out that
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serpinA3n affects early lesion development. It would also be interesting to study if
serpina3n affects lesion composition; speculatively serpina3n overexpression could
influence the formation of a more stable plague phenotype.

Degradation and remodeling of ECM by mast cell- and neutrophil-derived proteases
have also been implicated in aneurysm disease [260-266]. Aortic aneurysms are
permanent and localized aortic dilatations, and their expansion and rupture results in
high morbidity and mortality rates [261]. Like stenotic atherosclerotic lesions,
abdominal aortic aneurysm (AAA) accumulate inflammatory cells, and atherosclerosis
is a risk factor for AAA [267].

Human AAA samples had a marked decrease in levels of both serpinA3 mRNA and
protein, as compared to control samples from healthy aortas. The difference in
serpinA3n expression between atherosclerotic lesions and aneurysm samples is in line
with the disease-specific aspects of SMC fate. While the AAA lesion is characterized
by decreased numbers of vascular SMCs — SMC apoptosis being one of the hallmarks
of AAA - there is clear evidence of proliferation of intimal SMCs in the atherosclerotic
process. Human AAA samples also contain fewer ECs [268, 269]. Since serpinA3 also
is secreted by the liver as an acute phase plasma protease inhibitor, we examined if
vascular disease could alter plasma levels. However, no difference in plasma
concentrations was detected between healthy individuals and patients with either AAA
or myocardial infarction.

A frequently used method to experimentally induce AAA in a controlled fashion is
CaCl,-induced aneurysm in mice [270]. CaCl, administration on the abdominal aorta
resulted in aorta dilation in Wt C57BI/6 mice, accompanied by a high elastase and
cathepsin G activity, lower amounts of elastin and increased protein expression of mast
cell tryptase in the aorta. Mast cell chymase activity was also induced in plasma.
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Figure 8. Abdominal aorta diameter in wild-type and serpinA3n transgenic mice treated with CaCl, or
NaCl measured with ultrasound.
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Overexpression of serpinA3n suppressed CaCl,-induced protease activity, which
reduced degradation of elastin. One of the dominant histological features of AAA
includes extensive elastin fragmentation [261]. Most importantly, overexpression of
serpinA3n completely abrogated aortic dilatation (Figure 8). Interestingly, a recent
finding showed that administration of recombinant serpinA3n reduced aortic rupture in
Angiotensin Il-induced AAA formation in mouse [271].

These results support the importance of proteases derived from neutrophils and mast
cells in AAA, and illustrate that their inhibition by serpinA3 ameliorates aneurysm
disease.
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5 CONCLUDING REMARKS

It is now generally accepted that atherosclerosis is a chronic inflammatory disease of
the arterial wall, and involves both innate and adaptive immunity. It has become clear
that the immunology of atherosclerosis includes not only pro-inflammatory processes
but also anti-inflammatory and immune-regulatory components. Dissection of immune
mechanisms involved in the pathogenesis of this disease is important for development
of new immunomodulatory therapies. Mouse models are efficient means of unraveling
those mechanisms and have hence been used in the studies of this thesis.

In paper | we showed that immunogenic DCs presenting modified LDL induce
antigen-specific immunity that augments local inflammation and atherosclerosis
development when injected into Apoe™ mice. We conclude that DC uptake and
presentation of LDL-derived peptides may take part in the progression of the
atherosclerotic process.

In paper 11 we demonstrated that ApoB100 presentation by DCs conditioned into a
tolerogenic state dampens the inflammatory cellular immune response to ApoB100 and
attenuates atherosclerosis when injected into huB100%xLdIr”" mice. We conclude that
the status of DCs presenting LDL-derived peptides is important for atherosclerosis
lesion development.

In paper 111 we utilized different immunodeficient mouse models to demonstrate that
the atheroprotection achieved by immunization with modified LDL is dependent on
adaptive immunity but not on B cells and antibodies. We conclude that other immune
mechanisms besides production of antibodies accounts for the protective effects
achieved by vaccination.

In paper IV we investigate the role of immune-derived proteases and show that their
inhibition by serpinA3 is protective against aneurysm formation, but does not affect
atherosclerotic lesion development in Apoe” mice. We conclude that protease
inhibition by serpinA3 leads to amelioration of aneurysm disease.

Since it is now evident that atherosclerosis involves autoimmune reactions against LDL
particles accumulating in the artery wall, new clinical applications targeting this
aberrant antigen specific response would be appealing. The studies presented in this
thesis demonstrate that DCs are key players in the immune processes involved in
atherosclerosis. In addition, the status of an LDL-presenting DC can be altered to shift
the balance from pro-atherogenic immune reactions to anti-atherogenic immune
responses. The use of LDL loaded DCs constitutes a potential new treatment strategy
for atherosclerosis. Another attractive approach for atherosclerosis treatment is
vaccination with LDL. Even though a LDL-derived peptide already has been developed
as a vaccine candidate the mechanisms of atheroprotection achieved by immunization
is not fully understood. The finding presented in this thesis illustrates that antibodies
are not necessary for the protective effects caused by vaccination and further studies
could lead to the design of a more effective vaccine. To translate experimental therapies
into the clinic it is of great importance to understand the specific inflammatory
pathways involved in the disease, and | hope the studies included in this thesis
contributed to deeper knowledge about these processes.
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