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ABSTRACT

Pneumocystis jirovecii is a human specific, atypical fungus with a worldwide
distribution that causes disease in immunocompromised individuals. The fungus
proliferates in the lungs where it binds to epithelial alveolar cells, provoking severe
pneumonia, denoted pneumocystis pneumonia (PCP). As there is no in vitro culture
system for the organisms, and no morphological means to differentiate between P.
jirovecii strains, we have used molecular tools to study the fungus in patient samples.
For this purpose we have been targeting different loci in the P. jirovecii genome (ITS,
DHPS and MSG) to address different aspects of P. jirovecii infections.

The nucleotide sequence of the internal transcribed spacers (ITS) in P. jirovecii has
been useful for isolate genotyping. We investigated the genetic diversity in Sweden by
analyzing 408 cloned ITS sequences, from 64 clinical specimens. Several globally
common haplotypes (combination of ITS1 and ITS2) and one local ITS2 were found.
No correlations between certain haplotypes and patient characteristics or geographical
associations were uncovered. In this context, a model describing the genealogic
relationships of the strains was presented. During this process, we found that the typing
system was generating artifactual sequences. We established a set of criteria to
determine “bona fide” haplotypes, and optimized the typing method to avoid the
generation of artifactual recombinants. These improved tools have enabled a more
correct assessment of the overestimated genetic diversity of P. jirovecii populations.

Trimethoprim-sulfamethoxazole (TMP-SMX) is the most widely used drug for
prevention and treatment of PCP. Non-synonymous substitutions in the
dihydropteroate synthase (DHPS) gene of P. jirovecii have been found to be associated
with sulpha exposure. It has been suggested that this is the result of the fungus
developing resistance towards the drug. We conducted a study to investigate the
presence of P. jirovecii DHPS mutations in the Swedish population and 104 specimens
from patients with a suspected PCP were screened. All of the specimens (100%)
showed a wild-type DHPS pattern, suggesting that there is no, or a very low prevalence
of DHPS mutations in the country.

One surface molecule of P. jirovecii with a probable key function in the colonization of
the alveoli and in immune evasion is the major surface glycoprotein (MSG). The MSGs
are encoded by the msg-gene family, and transcription is limited to a single msg-gene
located in a unique expression site. To investigate the expressed msg-genes and the
extent of the variability of the MSG antigen, we analyzed msg-genes located at the
expression site. First, we analyzed a short segment of the 5’-end of the msg-genes in 13
patient samples. Second, we extended these studies to two full-length msg-sequences
from two different patients. We concluded, from these analyses, that there is
considerable variation in the potentially expressed MSG-proteins, but that a substantial
amount of conservation can be found in the msg-gene family, even in samples of
unrelated origins.

In conclusion, the complexity of P. jirovecii populations has been overestimated but
typing fidelity can easily be improved. The numbers of ITS haplotypes in Sweden are
restricted, and a model depicting the relationships between strains is proposed.
Furthermore, P. jirovecii DHPS mutations are very rare or possibly even absent in
Sweden. Finally, the expressed msg-genes display both a remarkable variation and
conservation.
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1 INTRODUCTION TO THE FIELD

1.1 HISTORY OF PNEUMOCYSTIS
1.1.1 1909 - 1980

Pneumocystis was identified for the first time in 1909 by Carlos Chagas, while he was
studying a new disease that affected railroad workers in Brazil. Chagas identified cysts
in the lungs of guinea pigs that had been inoculated with Trypanosoma cruzi infected
blood. Initially, he thought what he saw was a new life form of Trypanosomes (36). He
also found morphologically similar cyst forms in the lungs of a human case of
trypanosomiasis (35). In 1910 Antonio Carini identified the same organisms in the
lungs of rats infected with Trypanosoma lewisi and supported Chagas’ finding that they
were a stage in the trypanosome life cycle (28). However, two years later, Marie and
Pierre Delanoé at the Pasteur Institute in Paris reviewed the finding of Chagas and
Carini and inoculated trypanosome-free rats by these kinds of cysts and could conclude,
that they in fact, constituted a new microorganism unrelated to Trypanosomes (54).
Delanoés named this new microorganism Pneumocystis carinii to honor Antonio
Carini. Subsequently both Chagas and Carini retracted their first conclusions and
provided new data that supported the research by Delanoés (8, 25, 33). In the late 1930s
an epidemic form of interstitial plasma cell pneumonia in malnourished children was
described in Europe (6, 18) and some years later, an association between Pneumocystis
cysts and plasma cell pneumonia could be demonstrated, histologically, for the first
time by van der Meer and Brug (130). Although the association had been described by
van der Meer and Brug, three Czeck researchers Vanék, Jirovec and Lukes are most
credited for the first description of Pneumocystis as a causal agent of human disease
(25). In 1952 they described the association between Pneumocystis in the lungs of
premature and malnourished children with plasma cell pneumonia in nursing homes in
Central and Eastern Europe (210). Pneumocystis was thereafter described as an
important cause of epidemic pneumonia in malnourished and premature children during
and after the Second World War. Until the 1980s, starvation and premature birth were
the most important predisposition for Pneumocystis pneumonia (PCP) (65, 68, 166). In
1958 Ivady and Paldy discovered that the drug pentamidine, that had previously been
used to treat trypanosomiasis and leishmaniasis, was also useful to treat infections with
Pneumocystis (87). The use of this drug led to decreasing mortality of PCP and the
improvement in life quality in Europe after the war, and this treatment, led to the
disappearance of epidemic PCP among children. In the late 1960s and early 1970, PCP
was a rare disease with fewer than 100 cases per year in the USA. However, sporadic
cases of PCP began to be described among immunodeficient children and
immunosuppressed adults (84, 98, 207). Since pentamidine treatment is associated with
high incidence of severe adverse side-effects, Hughes et al. discovered in 1975 the
efficacy of the combined treatment of trimethoprim-sulfamethoxazole that then became
the basis for today’s treatment and prophylaxis of PCP (85).



1.1.2 1981 - Today

In 1981 Sandra Ford, a drug technician at the Centers for Disease Control (CDC) in
Atlanta, USA, observed an unusual high number of requests for the drug pentamidine,
used in the treatment of the rare disease PCP. Clinicians in the country also reported an
increase of PCP and Kaposi’s sarcoma in previously healthy men (31, 32, 69, 125).
This was the first evidence of the onset of the AIDS epidemic. After this point the
number of cases exploded as PCP became one of the hallmarks of AIDS, and in
addition to this a common complication of cancer chemotherapy and organ
transplantations. The incidence peaked in 1990 with ~ 20.000 cases reported to the
CDC (11, 98). Following that, due to the widespread use of PCP prophylaxis and the
introduction of the highly active antiretroviral therapy (HAART) in 1995 and 1996, the
incidence started to decrease. However, PCP is still a common problem among those
infected with HIV who either are not receiving or are not responding to HAART
treatment, and among those who are unaware of their HIV status (21, 23, 98). In
Europe, 2.9% of HIV infected persons have been reported to be infected with
Pneumocystis (140). In another study, among 924 HIV infected patients who died, 56
were caused by Pneumocystis infection (21). In a study of HIV patients in the USA
from 1994 — 2005, 17% of hospitalizations were due to opportunistic infections and
among these, 36% were Pneumocystis (24). In Africa, rates between 10% — 39% of
Pneumocystis infections have been reported among HIV infected patients with
respiratory symptoms (1, 37, 121, 122, 209, 218, 224). Pneumocystis has also been
reported to be the cause of pneumonia in 10% - 40% of patients without HIV (141,
222). The increasing number of patients in the other risk groups such as transplant
recipients, patients receiving more aggressive therapies for cancer and other conditions,
or in patients with HIV-unrelated immune deficiencies result in an increasing number
of individuals at risk for PCP (29, 164, 166, 222).

1.1.3 Pneumocystis infection in Sweden

PCP is not a notifiable disease in Sweden; there are therefore no available statistics on
its incidence in the whole country. The Swedish Institute for Communicable Disease
Control (SMI) in Stockholm is responsible for roughly one third to one half of all
laboratory analyses for Pneumocystis infection in Sweden. For the last 15 years,
approximately 50 to 100 cases have been diagnosed per year at SMI; the incidence
peaking in 2004 with 97 cases. In addition to morphologic identification of the
organisms in the specimens by immunofluorescence (IF) using a monoclonal antibody,
100 to 300 specimens per year are found to be positive by polymerase chain reaction
(PCR) (nested PCR or more recently real-time PCR). The number of PCR positive
samples is augmenting, probably reflecting the increasing number of specimens that are
analysed each year, rather than an increase in the actual incidence of Pneumocystis
infection. The higher sensitivity of the PCR method also makes it possible to detect P.
jirovecii DNA at lower concentrations including cases of subclinical colonization. The
largest group of patients suffering from PCP during the year 2010 was patients with
haematological malignancies  (29%). Other underlying causes included



immunosuppression due to HIV infection (12%), inflammatory diseases (12%) and
solid tumors (4%). During the last 15 years, HIV positivity among confirmed
Pneumocystis infections (IF + PCR positive cases), has decreased from 50% to 6%,
reflecting a shift in the principal cause of P. jirovecii infection. In a retrospective study
that identified 118 episodes of PCP in Gothenburg between 1991 and 2001, the number
of PCP cases did not increase during the time period, and in total, 75% of the patients
were HIV negative, a number that was 0% the first year, 33% the second year and
increased to 83% at the last year of the study (137). In conclusion, we estimate that
there are between 100 and 300 confirmed PCP cases per year in Sweden. This
incidence has been stable during the last 15 years but the most common cause of
underlying disease causing immunosuppression has shifted from HIV to
haematological malignancies.

1.2 PNEUMOCYSTIS PNEUMONIA (PCP)

Pneumocystis causes a severe infection in the lungs of immunocompromised persons,
which is characterized as an alveolar interstitial pneumonia. During infection, the
alveolar membrane is infiltrated with leucocytes, and some observations, seem to
indicate that this inflammation contributes more to the lung injury than the organisms
themselves. Chest radiography usually demonstrates diffuse bilateral infiltrates,
described as “ground glass infiltrates”. PCP typically presents with fever, fatigue, non-
productive cough and tachypnea, evolving to dyspnea and cyanosis. The symptoms
usually progress slowly over weeks to months. However, in patients without HIV, the
disease can have a more acute and rapid onset, developing over days, although they
tend to harbour less organisms in the lungs than do AIDS patients (99, 161, 165).
Diagnosis is based on identification of P. jirovecii in bronchopulmonary secretions,
primarily induced sputum or bronchoalveolar lavage (BAL), by staining of the
organisms or by PCR detection of their DNA (30, 58, 176). Untreated, the infection is
fatal due to a progressive asphyxia (suffocation). The first drug of choice for both
treatment and prophylaxis of PCP is trimethoprim-sulfamethoxazole, given either
intravenously or orally. One of the few alternative drugs is still pentamidine. Primary
prophylaxis should be given to HIV infected patients with CD4+ cell counts of <200
cells/pl. Primary prophylaxis should also be given to all solid organ transplant
recipients during a period of at least six months. Prophylaxis is also recommended for
high risk groups such as patients undergoing stem cell transplantation, with acute
lymphatic leukaemia, lymphoproliferative diseases treated with T-cell suppressing
drugs or high dose steroids, and children with primary immunodeficiency with a T-cell
dysfunction (30, 118). Secondary prophylaxis is given after PCP infection for six
months, or until the underlying immunosuppression has been corrected (30, 118).
Mortality rates for HIV patients with PCP have been reported to be 10% to 20% during
initial infection and increase to 60% if the patient needs mechanical ventilation (45,
164, 193). Among other patients with PCP, the mortality rates lie between 30% to 60%,
with a greater risk among patients with cancer (164, 193). Extra-pulmonary infections
are rare, but have been described and result from dissemination of the infection from
the lungs to other organs (42, 190).



1.3 PNEUMOCYSTIS JIROVECII
1.3.1 Fungus versus protozoon

From the beginning it was thought that Pneumocystis was a protozoal organism, due to
its morphological appearance and the response to the antiprotozoal drug, pentamidine.
Today it is known that the organism is related to fungi rather than protozoa. This re-
classification was initially based on several independent findings made in the late 1980s
and early 1990s. For example, the ribosomal RNA of Pneumocystis is more related to
those of fungi than to protozoa (57, 183), and that mitochondrial gene sequences also
show homology with fungal DNA (154, 201). All recent phylogenetic analyses also
place Pneumocystis within the fungal kingdom. The Pneumocystis carinii genome
project confirms the homology of Pneumocystis to fungi (46, 48, 49, 156).
Pneumocystis is now classified within the phylum Ascomycota, in a unique class, order
and family (Pneumocystidomycetes, Pneumocystidales, Pneumocystidaceae,
respectively) with the fission yeast Schizosaccharomyces pombe as the closest relative
(115, 192). Today, considered belonging to the kingdom of fungi, Pneumocystis
remains an atypical fungus with several unusual features. For example, the organism is
unable to grow in vitro in fungal culture media, it responds to antiparasitic agents and
the cell wall contains cholesterol rather than ergosterol unlike other fungi (89), and is
therefore resistant to the typical antifungal drug amphotericin B.

Figure 1. Pneumocystis jirovecii cysts recovered
from lung alveoli stained with Toulidine Blue. Photo
by Marianne Lebbad.



1.3.2 Host specificity

Several different species of Pneumocystis exists. Historically it was speculated that
Pneumocystis causing disease in humans was a zoonosis, but now it is clear that the
fungus is host specific. A unique Pneumocystis species has been identified in about
every mammal investigated; humans, rats, mice, rabbits, dogs, ferrets, rhesus macaques
etc. Each of the species has diverse genetics and stringent host specificity (52, 62, 67,
192). Earlier, all species of Pneumocystis were denoted Pneumocystis carinii and the
different ones infecting different hosts were designated with the forma specialis (f.sp).
For example, Pneumocystis carinii f.sp carinii was the form that infects rats,
Pneumocystis carinii f.sp murina was the form infecting mice and Pneumocystis carinii
f.sp hominis the form infecting humans. There has now been a name change and the
Pneumocystis species infecting humans is denoted “Pneumocystis jirovecii”, after the
Czech pathologist Jirovec, one of the first to describe the organism in humans (63,
179). The form in rats (Rattus norvegicus), first described by Antonio Carini, has
retained the name “Pneumocystis carinii”. Three more species have been formally
described; P. wakefieldiae also infecting rats (Rattus norvegicus), P. murina in mice
(Mus musculus) and P. oryctolagi in rabbits (Oryctolagus cuniculus) (47, 52, 93).

1.3.3 Challenges

Still there is no in vitro model for cultivating Pneumocystis in the laboratory, which of
course is hampering the studies on this organism (82, 175). Currently, infected animal
models remain the main source of organisms for laboratory studies. A complication
with this, as described previously, is that the different species of Pneumocystis are host
specific and not able to infect another mammal. Therefore, no animal model exists for
P. jirovecii. The genome of P. carinii has been sequenced (156), but no genome for P.
jirovecii is available yet. Most of the knowledge we have on the biology of
Pneumocystis are generated in animal models. The majority of this can probably be
extended to the biology of the human form P. jirovecii, although one has to consider
that both phenotypic and genotypic differences exist between the different species
described (33). To study P. jirovecii, the main source of organisms are clinical
respiratory samples as BAL, sputum, tracheal/bronchial aspirate and in special cases,
transbronchial and open or autopsy lung biopsies. Since the P. jirovecii organisms
collected from these samples cannot be taken for cultivation in vitro, or in animal
models, investigations are restricted by these circumstances.

1.3.4 Genotypes

No functional or morphological means for determination of phenotypic diversity of P.
jirovecii exist. To date, investigations on the epidemiology of this pathogen rely on
application of molecular typing techniques. Several different typing systems, at
different loci in the P. jirovecii genome, have been described for strain characterization.
These genetic loci include the mitochondrial large subunit rRNA (mt LSU rRNA) (200,
202), the major surface glycoprotein (MSG) (66), cytochrome b (CYB) (204),



dihydropteroate synthase (DHPS) (119), dihydrofolate reductase (DHFR)(119) and the
internal transcribed spacers (ITS) (108, 109, 116, 195). The mt LSU rRNA and ITS loci
are frequently used because they are assumed not to be under genetic selection, and are
therefore useful for studies on molecular evolution in circulating strains. The nucleotide
sequence of the ITS1 and ITS2 regions, which in P. jirovecii exists as single copy
DNA, shows the highest level of diversity and is considered to be the most
discriminatory DNA loci for genotyping. The ITS1 region is located between the
conserved genes encoding the 18S and 5.8S and ITS2 between 5.8S and 26S on the
nuclear ribosomal RNA complex. These noncoding loci are spliced during rRNA
biogenesis. Today, up to 100 different ITS haplotypes, i.e. the combination of ITS1 and
ITS2, have been reported from 15 countries in Europe, America, Africa, Asia and
Australia, with some globally common as well as some locally existing types (70, 79,
109, 126, 149, 150, 159, 173, 194, 208). Infections with more than one strain at a time
have also been shown to be quite common. The ITS types have been useful when
investigating outbreaks, subclinical colonization and the epidemiology of PCP.
Whether certain genotypes have an epidemiological implication is still unclear.
Alternative typing systems using multilocus genotyping have also been described (59,
200), and could be an alternative for P. jirovecii strain characterization.

1.3.5 Lifecycle

There are two visible life cycle forms in the lungs of infected hosts: the trophic form
and the cyst form with intracystical bodies. The terms “trophozoite” and “cyst” remain
from the time when Pneumocystis was thought to be a protozoon, while the correct
fungal nomenclature would in fact be “trophic cell” and “ascus”, respectively. Because
of the difficulties with an in vitro system, these forms have been identified by
morphological criteria and are found extracellular in the lungs of infected hosts.
Trophozoites are 1-4 um in diameter and mature cysts, 8-10 um. During infection of
the lung, there are more trophic forms than cysts (~ 10:1) (192) and most of the trophic
forms are haploid (221). Three intermediate cyst stages have been visualized by
electron microscopy, with 2, 4 and 8 nuclei, respectively (127, 223).

Figure 2. Pneumocystis jirovecii cysts in a lung section stained with Toulidine Blue (A) and
immunofluorescence (B).



Pneumocystis is proposed to reproduce by two life cycles (Figure 3). One life cycle
when the throphozoites reproduce asexually by binary fission and the other one is the
sexual cycle when two trophozoites conjugate to form the cysts and undergo meiosis
and subsequently mitosis. As the mature cyst rupture, eight new trophozoites emanate
from the intracystical bodies. Many genetic factors involved in meiosis and mitosis
regulation, as well as genes or proteins potentially involved in both sexual and asexual
replication have been identified (2, 33). Hence, Pneumocystis seems to resemble other
ascomycotic fungi.
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Figure 3. The proposed life cycle of Pneumocystis.



1.4 PNEUMOCYSTIS — HOST INTERACTIONS

1.4.1 Interactions with lung cells of the host

In an infected host, Pneumocystis resides in the alveoli of the lungs. The organisms
adhere tightly to type | pneumocytes (205) and usually do not invade the host cells.
This binding is facilitated by the interaction of fibronectin and vitronectin that bind to
the surface of the Pneumocystis organisms and mediate the attachment to integrin
receptors present on the pneumocytes (82, 114). The attachment of Pneumocystis
inhibits the growth of the lung epithelial cells without destroying the cells (15, 110) and
is thought to be required for proliferation of the trophozoites (97, 112, 193). Surface
molecules, such as B-glucan and major surface glycoprotein (MSG), in the cell wall of
Pneumocystis appears to be important factors for the initiation of an inflammatory
response during the infection (192). The interaction of the fungus with pneumocytes
and alveolar macrophages initiate numerous cascades of cellular responses in both
Pneumocystis and in the lung cells. The host immune response involves complex
interactions between alveolar macrophages, T-lymphocytes and neutrophils.

1.4.2 Immune response by the host
1.4.2.1 Macrophages and innate immunity

Alveolar macrophages play an important role in the clearance of the Pneumocystis
organisms from the lungs (101, 102, 106, 111). Macrophages can bind and phagocytose
the organisms through the interaction of the mannose receptor of the macrophage and
the Pneumocystis major surface glycoprotein (MSG), as well as the interaction of
macrophage dectin-1 receptor with glucans in the Pneumocystis cell wall. This uptake
may be facilitated by lgG-opsonization. When the fungus is taken up by the
macrophage, it is incorporated into the phagolysosome and degraded (192). These
studies have been performed in animal models where the clearance of Pneumocystis
was shown to be markedly impaired in macrophage-depleted rats (111). Such a
mechanism is also likely to occur in humans infected by P. jirovecii. In addition to their
phagocytic role, and their ability to present antigens, macrophages produce a large
variety of proinflammatory cytokines and chemokines, such as, TNF-a. TNF-a plays a
major role in the clearance of the fungus during the infection (40, 78, 96), such as
promoting the recruitment of neutrophils, lymphocytes and monocytes to the site of
infection. These immune cells are crucial for the elimination of Pneumocystis, however,
the release of oxidants, cationic proteins and proteases by these same cells can also
damage the lung cells. Indeed, the number of recruited neutrophils has been shown to
correlate with lung injury in humans and severity of PCP (9, 19, 113).

1.4.2.2 Lymphocytes and adaptive immunity

Essential for the defence against Pneumocystis are the CD4+ T-lymphocytes. They are
recruited and activated by TNF-a and interleukin-1 (17, 20, 73, 82, 160). The risk of



infection in humans substantially increases with a CD4+ count of <200 cells/pl and
treatment of HIV patients with HAART that replete the T-cells, decreases the risk of
PCP in these individuals again. Several investigations in animal models support the fact
that the lack of CD4+ T-cells is a prime mean by which individuals develop PCP (82).
CDA4+ T-cells coordinate the host inflammatory response by recruiting and activating
additional immune effector cells that eliminate the Pneumocystis organisms. T-cells are
necessary for clearance of infection but additional investigations have also shown that
the T-cell response can also lead to significant pulmonary impairment during disease
(16, 20, 165, 220). CD8+ T-lymphocytes may also have a role during inflammation but,
whether or not CD8+ cells directly contribute to the defence (14, 20) or just cause lung
injury (16, 220), is not yet clear. B-lymphocytes may also participate in the clearance of
the fungus during infection (117). Healthy members of the general population show a
high prevalence of serum antibodies to P. jirovecii, and some studies have shown that
these antibody titers rise with a clinical PCP, and decrease in between two episodes of
disease (152, 206). The role of B-cells has been proposed not only to be the production
of antibodies, but also to regulate the CD4+ immune response by antigen presentation
during Pneumocystis infection (117). Further studies will provide more information

about the significance of the role played by the B-cell in the host immune response to
this organism. An effective elimination of Pneumocystis from the lungs, without
adverse consequences for the host, may reside in an adequate balance between pro- and
anti-inflammatory immune responses.

1.4.3 Transmission

Almost all children at two years of age are already seropositive to Pneumocystis
antigens (129, 133, 152, 153). This indicates frequent exposure to the organism. This
primary infection is either asymptomatic or manifested as a self-limiting upper
respiratory tract infection (105). This high prevalence of seropositivity in children is
one of the reasons why P. jirovecii, historically, was thought to colonize individuals
early in life, establishing a latent infection that eventually caused PCP when the
person’s immune system failed. However, now both animal and human studies have
shown that the fungus is eliminated after infection (39, 151), and the theory of
reactivation of latent infection is no longer valid. At present, animal models and human
studies favour an airborne transmission route for infection and PCP. Several outbreaks
of PCP in immunosuppressed patients have been reported and molecular analyzes have
shown nosocomial infections (7, 22, 38, 51, 76, 77, 158, 163, 172). Humans are most
likely the reservoir and the source for transmission with an airborne person-to-person
spread, although acquisition from environmental sources cannot be completely ruled
out. Recent data also indicate that transplacental transmission may be possible (142).
PCP patients are most likely not the only human source for transmission. The role of
asymptomatic carriers and colonization is also being considered important for
transmission of P. jirovecii. Colonization and clearance of P. jirovecii has been
demonstrated in humans (34), and many reports have now shown that P. jirovecii DNA
can be detected in the respiratory tract in humans without clinical PCP. Some groups
of adult patients seem to be at higher risk of P. jirovecii colonization. HIV infected



patients are at higher risk, including those receiving PCP prophylaxis (81, 143, 157,
200). Another high risk group is patients with chronic lung diseases (26, 144, 155, 170,
171, 215). Smoking also increases the risk of P. jirovecii colonization and infection
(135, 136, 143, 215). Colonization has also been shown in patients with diabetes
mellitus, multiple myeloma, chronic lymphoid leukemia, sarcoidosis and asthma (148).
Corticosteroid treatment and pregnancy also seem to facilitate colonization (123, 214).
Even colonization in healthy individuals is now also under consideration. Transmission
from PCP patients leading to P. jirovecii colonization in immunocompetent health care
workers has also been shown (138, 213). The high seroprevalence of antibodies to P.
jirovecii in children, and the detection of P. jirovecii DNA in healthy children, suggest
that colonization occurs more frequently in children (212). Even the general adult
population could potentially be a source of infection. Immunocompetent individuals
usually clear the infection of P. jirovecii but they may transmit the organisms before
they have fully eliminated them. The prevalence of colonization in a healthy population
has been demonstrated to be 20% (128), although this high prevalence does not seem to
be ubiquitous (147). In conclusion, PCP patients, patients colonized without symptoms
of pneumonia, young children, and even healthy adults carriers are all possible sources
of transmission of P. jirovecii. For as long as they remain infected, they may transmit
the organisms either to other transient carriers or immunosuppressed persons at risk of
developing PCP.

1.4.4 Escape from the human immune response
1.4.4.1 Antigenic variation

Pneumocystis is believed to harbor a system for antigenic variation as a mean to escape
the immune response by the host. The phenomenon of antigenic variation is the ability
of a pathogen to systematically change the antigens that are exposed to the immune
system of the host so that the host does not recognize it and therefore cannot eliminate
it (53). This hypothesis fits well with the model of Pneumocystis colonization of
healthy persons or immunocompetent patients. Individuals with a functional immune
system will immediately mount a strong immune reaction against invading
Pneumocystis organisms. This immune response would target antigens on the cell
surface of the organisms and eliminate them from the lungs. Many reports, both from
animal studies as well as from studies on P. jirovecii, indicate that Pneumocystis can
generate antigenic variants to evade the immune response. Antigenic variation can be
generated by different mechanisms, such as phase variation or alternate expression of
different antigenic variants of a given surface molecule. Many organisms rely on
switching members of a gene family to alter their appearance. These gene families
make up the holding tank of antigenic variants that lead the immune system on “wild
goose chase”. For example, the bacteria Borrelia hermsii and Neisseria gonorrhoeae,
the protozoan parasites Trypanosoma brucei, Plasmodium sp., Giardia lamblia and
Babesia bovis, as well as the fungi Candida albicans and Candida glabrata, all have
multicopy gene families in their genome as a mechanism to vary their surface proteins
to avoid immune recognition (3, 10, 12, 53, 61, 132, 146, 184, 189). In Pneumocystis, a
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multicopy gene family has been identified that encodes the major surface glycoprotein
(MSG) (66, 100, 181, 182, 186, 197). The MSG proteins are supposed to be involved in
various biological functions including antigenic variation.

1.4.4.2 Major Surface Glycoprotein (MSG) gene family

In Pneumocystis, P. carinii has been the primary model for studies on antigenic
variation, but some information regarding the other species, including P. jirovecii, is
also available, as reviewed in (178, 180). The MSG is an important cell-surface
molecule and most likely the key player in immune evasion and colonization of the
host. The MSG is the most abundant protein expressed on the surface of P. jirovecii,
with molecular masses ranging from 95-120 kDa. MSG appears to act as an attachment
ligand to the alveolar pneumocytes and is a target of both humoral and cellular immune
responses by the host. The msg-gene family consists of up to 100 copies located in the
sub-telomeric regions of all chromosomes (95, 100, 180, 185, 186, 196, 197).
Transcription is probably limited to a single msg-gene, at a given time, and the active
copy is found in a unique expression-site located at a specific telomere-end (185). The
expression-site contains a transcriptional promoter, the upstream conserved sequence
(UCS) with a translational start codon, and an attached variable msg-gene. The
expression-site, including the UCS is present only once in the genome (56, 185, 199)
and therefore probably only one MSG protein can be expressed at any time in a single
organism, whereas all the other members of the msg-gene family remain silent. The
UCS encodes a putitative signal-peptide and an invariant part that is removed, en route,
to the surface of the organism (56, 180, 199). A conserved recombination junction
element (CRJE), present at the 3’-end of the UCS, encodes the amino acids
MARPVKRQ, including a site putative for protease cleavage which may be the
mechanism for how the UCS is removed from the mature antigen. This CRJE is also
present in the 5’-end of all the silent msg-copies in the genome and may act as the
upstream integration point for silent copies into the expression site. Recombination may
play a role in generating further msg diversity (94, 104, 178, 198) including genetic
exchange between different paralogous copies resulting in mosaic genes. Msg gene
families with similar organization have been identified in P. carinii, P. murina,
Pneumocystis from ferret and P. jirovecii (56, 71, 103, 219). The MSG gene family,
with its restricted expression and ability to generate immense diversity, has the
potential of being an antigenic variation system to avoid immune recognition and
elimination by the host.

1.5 DRUG RESISTANCE

As mentioned before, widespread prophylaxis and treatment for P. jirovecii with sulfa-
containing drugs have effectively decreased the incidence of PCP. Trimethoprim-
sulfamethoxazole (TMP-SMX) is the most effective and widely used drug for
prevention and treatment. Sulfamethoxazole is considered to be the active agent
against P. jirovecii and is a structural analogue of para-aminobenzoic acid (pABA).
pPABA is the natural substrate of the enzyme 6-hydroxymethyl-7,8-dihydropteroate
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synthase (DHPS), an essential component of the folate synthesis pathway (174). The
action of sulfamethoxazole is to competitively inhibit DHPS (124).
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Figure 4. Inhibition of folate synthesis by sulfamethoxazole and trimethoprim.
Modified from Masters et al. (124).

In P. jirovecii, two nonsynonymous point mutations in the fas gene, which encodes the
DHPS enzyme, are associated with prior exposure to sulfa drugs (44, 74, 80, 91, 120,
145, 217). These mutations, at nucleotide positions 165 and 171, cause the amino acid
substitutions Thr55Ala and Pro57Ser in the DHPS protein and are assumed to lead to
structural changes in the active site of the enzyme resulting in decreased affinity for the
sulfa derivate and reduced inhibitory activity (Figure 5). Concerns have now been
raised if these mutations are the result of P. jirovecii developing resistance to sulfa
drugs (177). Point mutations in the DHPS-encoding genes of microorganisms such as
Plasmodium falciparum, Staphylococcus aureus, Mycobacterium leprae, and
Escherichia coli have been shown to confer resistance to sulfonamides (50, 72, 88,
211). The prevalence of P. jirovecii DHPS mutations reported from different countries
ranges widely, from 0% to 81% (4, 5, 13, 43, 44, 55, 60, 64, 74, 83, 92, 107, 145, 187,
203, 208, 216). As P. jirovecii cannot yet be cultured, conventional in vitro
susceptibility tests cannot be utilized and studies of drug resistance in this organism rely
on the use of genetic markers and suitable models. Functional complementation of
either DHPS-disrupted Escherichia coli with a mutant P. jirovecii fas gene or FOL1-
disrupted Saccharomyces cerevisiae with the fol1 gene mutated at position analogous to
position 165 and 171 in fas results in the loss of susceptibility to sulfa (86, 131). Many
studies are now supporting the suspicion that P. jirovecii is developing resistance to the
drugs but the confirming evidence of DHPS mutations associated with treatment failure
is still lacking since a number of studies have shown contradictory results and more
studies are therefore needed (4, 74, 91). Even with some key evidences missing, many
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findings are now pointing towards the fact that P. jirovecii is developing resistance to
sulfa-containing drugs which is of major concern.

TCT °°Aca cGG '"cCT GGT
S > rR P G

TCT °°Gca CGG '"''TCT GGT
S A R s G

Figure 5. Non-synonymous mutations at
codon 55 and 57 in the P. jirovecii DHPS
gene.
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2 SCOPE OF THE THESIS

When we started these studies there were many relevant questions regarding
epidemiology, susceptibility to drugs and pathogenesis concerning P. jirovecii and PCP
that needed and still need to be answered. There was no knowledge about the strains
causing PCP in Sweden, and whether epidemiological relationships between episodes
of clinical P. jirovecii infections existed in the country. Not much was either explored
concerning the identification of genetic markers of virulence. The fact that different P.
jirovecii genotypes exist had led to speculations that some genotypes may be more
pathogenic or more transmissible than others. The identification of the msg-gene
family, with its restricted expression pattern, had also introduced the theory that the
fungus is undergoing antigenic variation as a mean to evade the host’s immune system.
Further, evidence had been gathered suggesting that the fungus is developing resistance
to sulfa-containing drugs, and that the resistance is associated with mutations, but
nothing was known about how common these mutations were among strains circulating
in Sweden. An important aspect within this field is the lack of an in vitro culture
system, and the fact that there are no morphological means for the determination of P.
jirovecii strains, which is impeding the studies.

Specific aims

To approach some of the above-mentioned questions different loci of the P. jirovecii
genome was targeted. We chose three loci; the Internal Transcribed Spacers (ITS) in
the nuclear ribosomal DNA gene complex, the Dihydropteroate Synthase (DHPS) gene

and the Major Surface Glycoprotein (MSG) gene family with the following objectives
to study:

I.  The epidemiology and genetic diversity of P. jirovecii in Sweden.
Il.  The relevance of the ITS strain characterization system.
I1l.  The prevalence of P. jirovecii DHPS mutations in Sweden.

IV.  The antigenic variation of the MSG-gene family.
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3 EXPERIMENTAL PROCEDURES

Here follows a short description of the material and methods used in the studies. All
experimental procedures are described in detail in the different papers that this thesis is
based upon (I-1V).

3.1 ETHICAL APPROVALS

An ethical approval for using the specimens in these studies was obtained from the
ethical committee of Karolinska Institutet.

3.2 SPECIMENS

Bronchoalveolar lavage (BAL), bronchial aspirate and sputum specimens from
patients with suspected PCP were collected as part of routine diagnostic procedures at
different clinical centra in Sweden between 1996 and 2003. P. jirovecii infection was
assessed in all cases by both immunofluorescence and by PCR at the Swedish
Institute for Communicable Disease Control (SMI) in Stockholm. The specimens
were mixed with DTT to dissolve the samples and ethanol was added for the
inactivation of HIV. DNA from the specimens was extracted with the purification
system QlAamp DNA Mini Kit (QIAGEN) as part of the routine diagnostic analysis.

3.3 MOLECULAR PROCEDURES

3.3.1 Real-time PCR for detection of P. jirovecii

Real-time PCR targeting the large ribosomal subunit (LSU) of P. jirovecii is
conducted as a routine diagnostic analysis of PCP at SMI, and is described in detail in
Paper 1.

3.3.2 PCR amplification

PCRs, single or nested, of the different loci were either conducted according to an
existing protocol previously published, or newly designed for this study. All PCRs are
described in detail in the different Papers.

3.3.3 Cloning and sequencing of PCR products

The PCR products from the different genes (Paper |, Paper Il and Paper IV) were
cloned into the pCR®2.1-TOPO® plasmid vector using the TOPO TA Cloning kit
(Invitrogen). The selected bacterial colonies were screened with M13 vector-specific
primers by PCR, described in detail in the Papers. Recombinants were sequenced from
both directions using M13 primers and dye terminator chemistry at the core facility of
SMI or at Agowa GmbH, Germany. The PCR products from the full length UCS-msg
amplification (Paper 1V) were purified and cloned into the pCR®-XL-TOPO® plasmid
using the TOPO XL PCR Cloning Kit (Invitrogen). The selected bacterial colonies
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were screened with a forward M13 vector-specific primer and a reverse primer
targeting downstream the insert by PCR, described in detail in Paper I\VV. Colonies were
cultured over night in LB media including kanamycin and the plasmids were purified
with the Quantum Prep Plasmid Miniprep (Biorad). For confirmation of long inserts the
plasmid preparations were amplified with M13 vector specific primers. Five plasmids
from each specimen with long inserts were sequenced in both flanks by M13 primer
and BigDye Terminator reaction to confirm the identity of the insert. One clone from
each specimen was completely sequenced with dye terminator chemistry from both
directions by primer walking at Agowa GmbH, Germany.

3.3.4 Sequencing by pyrosequencing technology

Pyrosequencing (Biotage), which is a sequencing-by-synthesis technique is a fast and
accurate sequencing method for short DNA sequences and was chosen for sequencing
of the polymorphic positions in the DHPS region (Paper IllI). The PCR product
generated in the nested PCR was biotinylated at one strand and ~160 bp long which is
suitable for this method. The PCR products were prepared for pyrosequencing
analysing using a dedicated vacuum prep workstation (Biotage) and processed for
sequencing analysis in a PSQ96 MA (Multi-Application) using the PSQ96 SQA
Reagent Kit (Biotage) as described in detail in Paper I11.

3.4 ANALYSES

The sequence inserts obtained from the various PCRs were edited and analyzed with
the BioEdit Sequence Alignment Editor (version 7.0.4.1). Sequence alignments were
performed using the ClustalW software (Paper Il) or the MAFFT sequence alignment
tool (Paper 1V, (90)) with default settings. Phylogenetic trees were constructed by the
Neighbor Joining method with the MEGA3.1 (Paper 1l) or MEGAS (Paper 1V, (188))
software. In order to estimate robustness, bootstrap proportions were computed after
1000 or 500 replications. Genealogical relationships (Paper 11) were constructed with
the TCS software (41), using the algorithm of Templeton et al. (191). Identities and
similarities (Paper V) were calculated with the Matrix Global Alignment Tool
(MatGAT, (27)). Statistical analyses were performed using SigmaStat software (Paper
I) or Stata 9.2 software (Paper Il and Paper IV). Data were analysed statistically using
the nonparametric Mann-Whitney rank sum test (Paper | and Paper IV) or the chi-
square and f-test (Paper Il). p-values of <0.05 were considered significant. Diversity
(Paper 1) was calculating using the Shannon-Weiner (167) and Simpson (169)
diversity indexes, which are dependent on richness (number of different types) and
evenness (how many of each type).
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4 RESULTS AND DISCUSSIONS
4.1 EPIDEMIOLOGY AND GENETIC DIVERSITY OF P. JIROVECII

Paper | and Paper Il

To study the biodiversity of P. jirovecii in Sweden 64 specimens, eight specimens per
year, collected during the years 1996 to 2003 were chosen for the analysis. The
specimens’ DNA were amplified with a nested PCR as described by Lee et al. (109) for
the internal transcribed spacers (ITS), subsequently cloned and sequenced. In total 408
sequences were analyzed and compared to already established genotypes and
haplotypes, i.e. the combination of ITS1 and ITS2 genotypes. Overall, 41 different
haplotypes were found in the clinical material. The result also showed that many of the
specimens were co-infected with more than one haplotype and among these co-infected
specimens there were sequences that we thought were recombinants. These
recombinants were seen as rare haplotypes that appeared to be the combination of more
common haplotypes also present in the same specimen (Figure 6). Even though a
sexual replication cycle in Pneumocystis probably exists, that could generate
recombinants, the high frequency of the recombinants that we saw made us consider
that some of these recombined haplotypes maybe had been generated during the
genotyping procedure. It is well established that recombination, or chimera formation,
can occur during PCR when the template is a mixture of similar sequences rather than a
single target (134, 162, 168). This led us to further investigate if the ITS typing system
commonly used was generating artifactual recombinants.
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Figure 6. Recombination between two haplotypes within a specimen.

4.1.1 Invitro recombination during ITS genotyping
Paper |
To answer the question whether the recombinant sequences we observed were indeed

generated in vitro we started up by mixing specimens with known haplotypes and
typing them according to the standard protocol (109). By mixing two single infected
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specimens we could show that recombinant sequences of these mixed haplotypes also
were generated during the typing procedure. We could show that up to 37% of
produced sequences actually were artifactual DNA sequences. We further investigate at
what step in the genotyping protocol these artifacts were produced, and showed that the
recombinants were mainly generated during the PCR elongation step, but that a small
amount also could be generated later on during the cloning step. Finally, we
investigated if it was possible to suppress the chimera formation during the typing
procedure. We tested several modifications of the standard protocol and found that the
number of in vitro generated recombinants could be almost abolished by using longer
elongation time, less cycles, higher denaturation temperature and higher primer
concentrations during the PCR. In addition to the chimera formation, the ITS region
seems to be more prone to misincorporations compared to another gene we tested. The
implication of this is that artifactual haplotypes, as well as artifactual 1TS1 and ITS2
genotypes, probably have been erroneously reported as new identified strains, when
using the ITS genotyping system. Therefore, the diversity in P .jirovecii populations
has in all likelihood previously been overestimated.

4.1.2 Genetic diversity of P. jirovecii isolates
Paper Il

In the clinical material made up of the 64 respiratory specimens, 10 ITS1 and 12 ITS2
previously established genotypes were found. In addition to these genotypes a novel
ITS2 sequence was found and denoted “v”, according to the nomenclature put forward
by Lee et al. (109). Among the 41 haplotypes identified, nine were found in several
specimens each and at least once as a single infection. Haplotype Eg was the most
frequent one followed by Ne, Bi, Eb, Al, Ea, Ec, Jf and lv, the latter including the novel
ITS2v. Since 50% of the specimens were co-infected with more than one strain, and
considering our findings with respect to the in vitro generated recombinants, we made
efforts to exclude potential artifacts from the more complex specimens. To differentiate
between genuine and artifactual haplotypes we set up some criteria for the definitions
of a “bona fide” haplotype. Bona fide haplotypes were defined as haplotypes that are
found in single infections, or those that cannot have been generated by in vitro
recombination from other haplotypes found in the same specimen. By these criteria
three more haplotypes (Gg, Kf and Eh) were also considered genuine haplotypes albeit
occurring at lower frequency. In conclusion, only 12 haplotypes defined the essential
structure of the local population of P. jirovecii organisms in Sweden (Table 1).

18



Table 1. P. jirovecii bona fide haplotypes detected in Sweden.

Specimens (n=64) Clones (n=408)

ITS haplotype 0 % 0 %
Eg 28 44 106 26
Ne 10 16 61 15
Bi 9 14 38 9
Eb 9 14 44 11
Ai 6 9 24 6
Ea 5 8 15 4
Ec 5 8 23 6
Jf 5 8 24 6
Iv (new ITS2) 4 6 17 4
Eh 1 1.6 2 0.5
Gy 1 1.6 3 0.7
Kf 1 1.6 2 0.5

It has been suggested that certain ITS haplotypes may be associated with patient
demographics, or be more or less virulent than others (139, 208), but no such
correlation has been established (75, 203). In an attempt to investigate if there was any
association between haplotypes and other parameters we tested our material in this
respect, but could not find any correlation between particular ITS haplotypes in co-
infection cases and we detected no differences in age, sex or underlying condition of
the patients. We also compared frequencies of the most common haplotypes in different
regions of Sweden covered in this work, as well as those in every year during the time
span of this study, but no geographical, temporal or seasonal clustering of haplotypes
was observed. However, the numbers in these calculations are relatively small so the
absence of correlations between certain haplotypes and clinical or demographic
correlations does not necessarily mean that the correlation is missing, and more studies
are therefore needed.

We also wanted to investigate the relationships between all major ITS types found
worldwide, including those found in Swedish strains. In this analysis we included all
bona fide haplotypes found in Sweden as well as sequences described in international
studies that fulfilled our criteria of bona fide haplotypes, present at frequencies of >4%.
The stringent inclusion criteria were chosen to be sure not to include potential
artifactual haplotypes that could influence the results of the analysis. In total 27
haplotypes were included and among them 11 were locally existing types from
Thailand (Ip, Ir and Rp), Japan (Fus, luz and Use), South Africa (Eu), Portugal (Pb),
Awustralia (Isyd2), India (DEL1r) and the Swedish type Iv. At first we used classical
phylogenetic approaches and constructed trees by Neighbor-Joining analysis with
maximum parsimony and maximum likelihood algorithms. These trees only showed
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weak bootstrap values and did not provide sufficient intraspecies resolution for
haplotype grouping. Instead we tested if coalescence theory could be used in describing
how Pneumocystis strains are related. Coalescent theory attempts to trace all alleles of a
gene shared by all members of a population to a single ancestral copy, the most recent
common ancestor, still present in the population. For this purpose we used the TCS (41)
analysis software that uses haplotype frequency and parsimony to infer relationships
between sequences. The same haplotypes as for the phylogenetic trees were included in
the analysis but at frequencies corresponding the rates of the different epidemiological
studies. The coalescent analysis showed that Eg occupies a central position in the
population and that Eg represents the most recent common ancestor, which is consistent
with other studies (70, 159, 208). The gene genealogy did not resolve all relationships
but showed five groups of haplotypes or clades (Figure 7). There were no apparent
differences between Swedish types and types from other origin, which precludes the
establishment of a geographical pattern, and is consistent with the notion that most of
the haplotype are present worldwide.
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Figure 7. Genealogy of P. jirovecii ITS haplotypes. The network was derived by
coalescent analysis using the TCS program. Lines connecting haplotypes are
equivalent to one mutational difference. Empty nodes represent genotypes not found
in the population. The size of ovals/square corresponds to haplotype frequency. The
most likely recent common ancestor is depicted by a square (Eg). The introduction of
haplotype Ee results in the relationships between types in clade 11 as shown in inset a.
The types identified in Sweden are shown in gray.
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There were two unresolved loops indicative of homoplasy or recombination in the
network. One of the loops is introduced in the network when haplotype Ee is included
in the analysis. Haplotype Ee is a special haplotype since it satisfies the criteria for a
bona fide haplotype, but is the combination of the two most common haplotypes
worldwide (Eg and Ne). In our material we hypothesize that Ee is a recombinant
generated in vitro but that is found more frequently due to the fact that the parental
sequences are so common. However, this variant could also be the result of
recombination during a sexual replication. Convergence could also be anticipated to
explain the presence of Ee since the sequences are so closely related and is a possibility
that cannot be dismissed (Figure 8). Anyhow, Ee is a haplotype that one should keep an
extra eye on and elucidate further whenever it is identified in a clinical material.

+ 230 240 250 260 270 280 290 300 310 +32O

Figure 8. The relatedness of haplotypes Eg, Ne and Ee

Lastly we applied two different diversity indexes onto the material to investigate
whether there was a difference in the diversity in Sweden compared to other countries,
or if the diversity in Sweden had changed over time. Analysis of the Shannon-Weiner
and Simpson Diversity indexes (167, 169), which are dependent on both richness
(number of different types) and evenness (how many of each type), revealed no
difference in Sweden compared to other countries.

4.1.3 Summary

The diversity of P. jirovecii has previously been overestimated due to the problem of
ITS recombinants that are produced in vitro during the typing procedure. We elucidated
this and made some changes to the standard protocol that suppresses the formation of
these artifactual recombinants. We defined a set of criteria to discriminate genuine
“bona fide” haplotypes from erroneous non-existing ones. In the Swedish material
made up of 64 clinical respiratory specimens, 12 bona fide ITS haplotypes, consisting
of 10 ITS1 and 12 ITS2 genotypes, were revealed, nine of which were common,
recurring in several specimens. One new ITS2 sequence denoted “v” was found in four
specimens. Half of the specimens were infected with more than one type. There were
no associations between haplotypes and patient age, sex, underlying disease or
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geographical origin, and no differences in diversity between Sweden and other
countries based on Shannon and Simpson index analysis. We also presented a model
depicting the genealogic relationships of bona fide ITS haplotypes existing worldwide.

4.2 PREVALENCE OF P. JIROVECII DHPS MUTATIONS IN SWEDEN
Paper Il

It has been suggested that Pneumocystis can develop resistance to sulfa drugs, and that
this resistance is due to mutations at two positions in the P. jirovecii dihydropteroate
synthase (DHPS) gene (177). The DHPS gene including the polymorphic positions is
located within the fas-gene that codes for several components of the folate synthesis
pathway (124, 217). We decided to investigate whether these mutations are prevalent in
the clinical material from Sweden. The DNA of 103 randomly chosen clinical
respiratory specimens, collected between 1996 and 2003, were successfully amplified
for the fas gene, and included in the study. The patients had different underlying causes
of immunosuppression; haematological diseases (30%), HIV (17%), inflammatory
diseases (8%), solid tumors (8%), organ transplantation (2%) and other diseases (2%).
A part of the DHPS region in the fas gene, including the polymorphic positions 165 and
171, was subsequently amplified and sequenced. All of the specimens (100%) showed
a wild-type DHPS pattern. This suggests that there is no or a very low prevalence of
DHPS mutations among P. jirovecii strains circulating in Sweden. This is a very low
prevalence compared to other studies from different parts of the world. Only a study in
Brazil has shown no DHPS mutations (216), but other countries have reported
prevalence’s ranging from 4% — 81% (5, 44). It is noteworthy that in Denmark, despite
its geographical proximity to Sweden, a prevalence as high as 20% of strains that carry
a mutated DHPS-gene have been reported (74).

P. jirovecii DHPS mutations have been associated with prior exposure to sulfa drugs in
several studies (44, 74, 80, 91, 120, 145). Many of these studies were made exclusively
in HIV positive patients. In our material only 17% of the patients were HIV positive,
and it is possible that we would have found a higher frequency of mutations if the study
had been conducted only on HIV patients. However, in Sweden there are a relatively
low number of people living with HIV (0.06% of the Swedish population in the year
2009). Nevertheless, none of the 19 patients diagnosed with a HIV infection in the
study carried a strain of P. jirovecii with a mutated DHPS-gene.

Extensively PCP prophylaxis or treatment with TMP-SMX alone is probably not the
only cause leading to a high prevalence of mutant P. jirovecii strains. It has been
postulated that a selective pressure exerted by sulfa-containing drugs to treat other
infections than PCP contributes to the occurrence of P. jirovecii DHPS mutations (55).
Hence, the absence of mutations in Sweden might be a result of the restricted policy of
antibiotic management. In Sweden, TMP-SMX is not widely used to treat other
diseases than PCP, which also is a quite rare disease, and the restricted use of this drug
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probably contributes to the apparent absence of P. jirovecii strains carrying a mutant
DHPS. It is also noteworthy that not all studies showing the highest prevalence of P.
jirovecii DHPS mutations have the highest prevalence of patients on PCP prophylaxis
(Paper 11, Table 1). In fact, two studies with material from HIV patients from two
different countries showed the same prevalence of patients being on prophylaxis (33%),
but with DHPS mutations prevalence’s of 81% and 17%, respectively (4, 44).

4.2.1 Summary

The prevalence of mutant DHPS P. jirovecii strains in Sweden was very low. This low
prevalence might be due to the low number of HIV patients in Sweden, and potentially
the result of a restricted policy of antibiotic management.

4.3 THE ANTIGENIC VARIATION OF THE MSG-GENE FAMILY
Paper IV

The MSG is encoded by the msg-genes, which belong to a multicopy gene-family that
are believed to exert antigenic variation. There is only one expression locus in the
genome, where the msg-gene that is expressed is located; probably resulting in the
MSG protein that is exposed on the surface of the organism (180). Little is known
about the expression and variability of this gene-family of Pneumocystis, and in
particular P. jirovecii. This has been in part due to the inability to obtain sufficient
quantities of undegraded RNA preparations from human-derived organisms, and the
lack of a culture system. We wanted to investigate the diversity of the msg-gene family
in some of the clinical specimens. Since we were primarily interested in the expressed
genes we designed a PCR amplification set-up targeting the msg-copy located in the
expression site, excluding all the probably silent copies (Figure 9).

UCS-F1 UCS-F2 <— msg-R3
> > <—msg-R1 // msg3’-R1
ucs msg //
~ 3000 bp //
UCS-msg
~ 350 bp
— N120
UCS-N120

Figure 9. Schematic display of the experimental setup. The PCR allows exclusive amplification of
the msg-genes translocated into the expression site. Horizontal arrows are depicting the primers.
Striped boxes are showing conserved fragments downstream the Upstream Conserved Sequence
(UCs).
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4.3.1 N120 sequences

We started by choosing 12 clinical specimens that were known to be single infections,
as defined by ITS typing. We chose other ITS haplotypes than Eg, which is by far the
most common one, as a mean to approach clonal infections of P. jirovecii as possible.
In addition, a multiple infected specimen was included in the study. These 13
specimens were amplified with a PCR generating an amplicon of ~ 430 bp, made up by
74 bp of the upstream conserved sequence (UCS) of the expression site and
approximately 350 bp of the variable msg-gene. A total of 521 recombinant clones, 25
to 52 per sample, were sequenced and analyzed. Since we were interested in the msg-
genes, we manually removed the UCS part of the sequence. The resulting 5’-region of
the msg-gene, including the recombination junction element (CRJE), was denoted
N120. The N120 nucleotide sequences generated from the 13 clinical specimens
clustered into obvious groups. Within the groups there was some microvariation, up to
5 nucleotide differences per sequence. This variation can be either due to biological
polymorphisms or due to PCR generated errors. To simplify further analysis, sequences
with less than 5 differences at the nucleotide level were assembled into different sets
denoted groups (455 sequences assembled into 57 groups). From each group the most
common sequence was chosen for further analyses, and referred to as a “type
sequence”. The remaining 66 sequences were singletons occurring only once in a given
specimen. In total, 123 type sequences and singletons were found in the material. In
almost all of the specimens more than one N120 sequence were expressed, with a
maximum of 18 sequences (7 type sequences and 11 singletons). Only one specimen
contained one single N120 type sequence.

Interestingly, we also found out that some type sequences were present in more than
one specimen. These sequences were denoted N120a-h. The N120a sequence was
found in 4 different specimens (Paper 1V, Figure 2). This sequence was found as two
different variants with two single nucleotide polymorphisms (SNPs). All N120a clones
within a specimen showed the same variant, therefore excluding the possibility that
these sequences were generated by cross contamination of samples. These specimens
were not related because they were collected from different patients, in different years
and at different geographic locations. The N120b-h sequences were present in two
specimens each. The finding of recurring sequences indicates that some N120
sequences are more frequently expressed than others. Expressing these more frequent
msg-genes seems also to be a common feature since 10 out of 13 samples expressed at
least one of the N120a-h sequences. Since identical type sequences occurred in more
than one sample, the number of non-recurring sequences after removal of the duplicates
was 50 unique type sequences. Surprisingly, several of the type sequences also
corresponded to sequences that have been reported previously by Kutty et al. (i.e.
Rucl2, Rucl5, Rucl10, Rucl18, Rucl22, Rucl25, Rucl38 and Rucl41 (104)).

In the material we could see what appeared to be evidence of recombination. Two

examples of possible single cross over recombination events of N120 sequences, from
two specimens are shown in Paper 1V, Figure 6. Two more specimens showed evidence
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of single cross-overs (data not shown), whereas another sample displayed no less than
nine potential recombinational events (Figure 10). This multitude of recombinational
events suggested that many of these are artifacts generated during the PCR-
amplification. However, since it is likely that hybrid genes can be generated not only in
vitro, but also as a result of biological processes, the recombinational event in the
N120-segment should be further investigated before they are discarded.
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Figure 10. N120 recombinants found in one specimen. M and P refer to the parental
sequences whereas R1 to R9 represent recombinant variants. The figure shows the
gradual changes in difference between the parent “M” and parent “P”.

To further analyze the diversity of the N120-segment we looked at the pairwise
identities of the sequences. In this analysis we included all the 57 type sequences. The
reason to include duplicate sequences, 50 unique type sequences and the recurring
N120a-h from each sequence, was to be able to compare differences within a specimen
as well as all the sequences in the study. The average pairwise nucleotide identity was
69 %, ranging from 59 % to 100 %. Of the 57 nucleotide type sequences three could
not be translated, probably PCR artifacts. The remaining 54 amino acid sequences had
an average pairwise identity of 53 %, ranging from 37 % to 100 %, and a similarity of
71 %, ranging from 53% to 100%. In contrast to what we speculated, there was no
statistical difference in the average pairwise identity between sequences within a
specimen (intra) and sequences from different specimens (inter), p >0.05. Finally we
generated a model of the relationship between the N120-protein sequences by
phylogenetic trees that were constructed by Neighbour-Joining analysis, but we did not
see any particular grouping.

In conclusion, there was a high degree of variability in the N120-segment with no

apparent grouping. Several type sequences occurred more than once. Some of the
variants showed a high degree of homology to material from another published report
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(104). The overall variation was higher at the protein level compared to the nucleotide
level, which is to be expected. It was notable that the variability within a sample was as
high as in the whole material.

4.3.2 Full length msg sequences

To further investigate the expressed msg-genes, we looked at two full-length genes
located in the expression site. The same forward primers were used as for the N120-
segment but a new primer at the 3’-end on the full-length msg-gene were designed and
used (Figure 9). This allowed us to amplify the full-length msg-gene that presumably is
the one being expressed. We chose two specimens for this analysis, that we thought
would be interesting, based on the N120 screening. Both specimens were single
infections according to the ITS typing. Firstly we chose the specimen that only
expressed one N120 type sequence. When we screened the inserts generated from the
full-length amplification and cloning, unexpectedly several clones contained another
sequence than the previous N120-sequence. Surprisingly, this sequence was another
N120a sequence. We thought that this sequence was of highly interest and decided to
sequence this one. The second specimen chosen had two different N120-sequences and
one of them was successfully amplified, cloned and fully sequenced. Pairwise
comparisons of these two full-length msg-sequences showed 44% identity and 66%
similarity for the amino acids, as well as a nucleotide identity of 61%. We also
compared these sequences with the full-length silent msg-sequences described by Kutty
et al. (104). These 24 sequences fall into two groups “A” and “B” in the phylogenetic
analysis (104) and our two sequences fall into one group each. We also split the
sequences into segments of approximately 330 amino acids and made three
independent trees. These trees showed that recombination probably had taken place
between different msg-genes, and one potential crossover is shown in Paper IV, Figure
5. This recombination may not represent recent events but could have occurred between
similar segments of different genes at any time. We finally divided the msg-genes into
different short regions, a conserved, a variable and a semi-variable, and investigated the
variability influenced by different selective pressures. The pairwise nucleotide and
protein identities showed that different regions are subjected to various selective
pressures. There are both highly conserved protein regions, where the protein identity is
higher than the nucleotide identity, and other regions with very low protein identities
and even higher diversity at the nucleotide level.

4.3.3 Summary

In total, 113 partial expressed msg-genes were identified, among these 50 unique “type
sequences” and 66 singletons. Most of the clinical single infected specimen showed
several expressed N120-sequences at the same time. Some sequences occurred more
frequently and some sequences were also closely related to sequences from another
study conducted in another country. The average pairwise nucleotide identity was 69%,
protein identity 53% and similarity 71%. Sequences generated from one specimen were
not closer related than all the sequences in general. The overall variation was higher at

27



the protein level than the nucleotide level, indicating that there is a selective pressure to
generate new variants of the MSG-protein. We also saw some traces of recombination
between msg-gens, that can have occurred in the past, and recombination within the
N120-segment, which should be further investigated.

In conclusion, there is a considerable variation in the expressed msg-genes, which is

consistent with the hypothesis that one of the functions of the msg-gene family is
immune evasion, but at the same time there is a substantial amount of conservation.

28



5 CONCLUSIONS

To investigate the atypical fungus Pneumocystis, causing PCP in humans, different loci
of the P. jirovecii genome were analyzed. The targeted loci were ITS, DHPS and MSG
and they were separately used to address different aspects of P. jirovecii infections
leading to the following conclusions;

m The complexity of P. jirovecii populations has been overestimated.
m Typing fidelity can be improved by straightforward measures.

m  The numbers of ITS haplotypes in Sweden are restricted.

m A model depicting the relationships between strains is proposed.

m P.jirovecii DHPS mutations are very rare or absent in Sweden.

m The msg-gene family displays a remarkable variation and
conservation at the same time.
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