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ABSTRACT 

Hematopoietic stem cell transplantation (HSCT) is a curative treatment for several malignant 

and non-malignant disorders. However, transplantation related morbidity and mortality limit its 

use.  The complications of the HSCT procedure can be caused by several factors including 

toxicity of the conditioning regimen and allogeneicity. Despite the fact that 50% of the 

transplanted patients are conditioned with chemotherapy, the majority of transplantation models 

are based on radiation. In the present thesis, we utilized a HSCT mouse model following 

conditioning using busulfan-cyclophosphamide (Bu-Cy) to explore mechanisms and factors 

that might affect graft versus host disease (GVHD) and/or treatment related toxicity, thus 

altering transplantation outcome.    

Study I:  Was designed to investigate early cell dynamics during the development of GVHD 

after allogeneic HSCT. We found an early expansion and activation of dendritic cells (DCs) 

that peaked by day +3 post HSCT. The T cell expansion started later and reached its peak by 

day +5 post HSCT. The majority of these cells were donor CD8+ cells. The inflammatory 

cytokines (IL-2, INF-γ and TNF-α) also reached maximum levels by day +5. The results 

showed the important role of donor DCs in GVHD.    

Study II: We studied the early histopathological changes in several organs at different time 

points from conditioning, as well as during the development of GVHD, until day +21. The 

study showed that the liver and spleen were the most affected organs; however, no 

morphological effects were detected in the pancreas, heart, lungs or kidneys after the 

conditioning regimen. Histopathological changes such as vasculitis, inflammation and apoptotic 

cell forms in the liver, spleen, pancreas, lungs and heart were observed during GVHD 

development, however, only hypocellular spleen and extramedullar hematopoiesis were 

detected in syngeneically transplanted animals. No morphological changes were observed in the 

kidneys in either HSCT setting. These results may help in understanding mechanisms 

underlying the development of GVHD.     

Study III: We investigated the toxicity of Bu-Cy conditioning regimen on the arteries. We 

found that the conditioning regimen enhanced acetylcholine relaxation in the mesenteric 

arteries through the increased expression of endothelial nitric oxide. In contrast, the sensitivity 

of the aorta to the acetylcholine was similar between the Bu-Cy treated group and the controls. 

However, the aortas from the treated animals had a higher sensitivity to noradrenalin. The Bu-

Cy treated animals had lower blood pressure, lower hematocrit and more endothelial damage 

compared to the controls. These results might help in developing prophylactic treatment for 

cardiovascular complications. 

Study IV: We studied the effect of omega-3 on the Bu-Cy conditioning regimen and on the 

allogeneic HSCT outcome focusing on GVHD. We used corn oil and standard food as controls. 

The mice that were fed omega-3 food had the lowest survival rate and showed early signs of 

GVHD. Omega-3 enhanced the effect of the conditioning regimen by increasing its 

myeloablative properties, decreasing the expression of CD4+CD25+FoxP3+ T cells and 

reducing their function. Less GVHD and a higher rejection rate were observed in the corn oil 

group. The higher death rates in the omega-3 fed group might be explained by a greater 

myeloablative effect and increased severity of acute GVHD. 

 

Taken together, these studies increase our knowledge of GVHD and conditioning related 

toxicity. This may improve treatment strategies and hence the clinical outcome of HSCT.  

 

Key words: Busulfan, cyclophosphamide, conditioning regimen, HSCT, vascular, 

omega-3, GVHD, mouse model, treatment related toxicity. 
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Figure 1: 1950s – 60s history of stem cell transplantation 

 

 

1 INTRODUCTION 

1.1 HEMATOPOIETIC STEM CELL TRANSPLANTATION 

1.1.1 History 

The use of the atomic bomb in World War II was the beginning of understanding 

radiation and cell biology and subsequently the discovery of hematopoietic stem cell 

transplantation (HSCT) [1-2]. After lethal radiation dose, E. Donnall Thomas in 1957 

[3] was able to rescue the mice by infusing stem cells. HSCT was originally used as the 

last choice of treatment for malignancies. Since then, the application of stem cell 

transplantation has increased to cover a wide range of diseases including genetic and 

metabolic disorders, hematological malignancies and solid tumors. However, the 

progress from the experimental treatment to clinical practice was dependent on the 

development of several areas such as the histocompatibility system, drug development 

and mechanisms underlying different diseases [4-6]. The following diagram (Figure 1) 

illustrates the development of hematopoietic stem cell transplantation in 1950s and 

1960s [7].   

 

 

 

 

1.1.2 Indication  

The use of HSCT is continuously expanding to cover a broader range of diseases [8]. 

The diseases treated with HSCT are either acquired diseases or inherited disorders [9-

11]. Acute and chronic leukemia, multiple myeloma and lymphomas are among the 

most common hematological malignancies indicated for HSCT. While, Hurler, Hunter, 

Goucher, SCID, thalassemia and aplastic anemia belong to the most common non 

malignant disorders that are indicated for HSCT.    

 

1.1.3 Stem cell biology and cell therapy 

Following the success of HSCT, stem cell therapy has become a new promising 

approach for the treatment of several disorders. Today, stem cell therapy has entered  
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Figure 2: Stem cell plasticity 

clinical trials for tissue repair and 

other clinical applications. 

Mesenchymal stem cells (MSC), 

for example, are used in clinical 

trials for the treatment of cartilage 

damage, cancer, diabetes, 

neurodegenerative diseases [12-

13], tissue toxicity and graft versus 

host disease (GVHD) [14-16]. 

Neural stem cells are also used in 

phase I and II trials for several 

diseases including chronic spinal 

cord injury, advanced Parkinson 

disease and stroke [17-19], 

however, several challenges such 

as adequate cell survival in the 

recipient and proliferation have to be solved. There are several types of stem cells 

depending on source, function or developmental stage. Germ cells have the ability to 

develop into all body cell types and they are called totipotent cells [20-21]. Embryonic 

stem cells are pluripotent [22] and they have the ability to produce different types of 

cells and tissues. Somatic or adult stem cells are more tissue specialized cells. Adult 

stem cells have been identified in different tissues such as brain, bone marrow, 

peripheral blood, blood vessels, skeletal muscle, skin, teeth, heart, gut, liver, ovarian 

epithelium and testis. These cells reside in a special place called a stem cell niche. Stem 

cells remain quiescent and leave the niche when there is a requirement from the body 

due to any type of stress. Neural stem cells, hematopoietic stem cells and fat stem cells 

are all examples of more specialized types of stem cells. Although these stem cells are 

tissue specific, there is enough evidence to conclude that these stem cells have trans-

differentiation potential. Hematopoietic stem cells, for example, can be trans-

differentiated into hepatocytes [23].  

 

Natural trans-differentiations or reprogramming is a promising strategy in cell therapy 

for different kinds of injuries and diseases. Although embryonic stem cells have a 

higher capacity than adult stem cells to produce other tissues, their use is limited due to 

ethical and technical problems. Research continues to challenge and mimic the stem 

cell properties in vitro to achieve better treatment. Induced pluripotent stem cells 

(iPSCs) are in vitro modified stem cells with similar properties to mouse and human 

embryonic stem cells [24]. The therapeutic window for these cells is wide, as they have 

the potential to regenerate different tissues and thus to be used for the treatment of 

different types of diseases [25-28]. Somatic or adult stem cells also attract attention in 

scientific research, and due to their potential for so far incurable diseases. All types of 

stem cells have common properties in that they are capable of renewing themselves and 

supplying needs of the body whenever required. Stem cell self renewal is divided into 

long- and short-term self renewal. Long-term stem cells are not specialized, and they 

have the capacity to self renewal for an extended period of time, this feature is lost 

during specialization. The other common feature is that stem cells can differentiate to 

produce specific tissues. Better understanding of stem cell biology would improve the 

therapeutic approaches in regenerative medicine and in the treatment of cancer and 
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many other diseases. Figure 2 illustrates the plasticity of adult stem cells [29] and 

Figure 3 illustrates stem cell division and differentiation into different cell lineages 

[30].  

 

 

 

 

 

 

1.1.4 MHC system 

Histocompatibility matching is one of the factors that play a major role in 

transplantation outcome [6]. There is a large cluster of genes defined as a major 

histocompatibility complex (MHC) and has a high degree of polymorphism. This 

cluster of genes plays very important role in transplantation, immunity, inflammation, 

infection and different diseases [31-32].The complex region is divided conventionally 

into three classes; class I, II and III, each containing a cluster of genes with related 

functions.  Class I proteins are found on all body nucleated cells and present 

endogenous antigens that are processed by the proteasome to the cytotoxic CD8+ T 

cells. The exogenous antigens taken up by endocytosis or phagocytosis are degraded 

and loaded onto MHC class II, which are found in the immune cells such as B cells, 

dendritic cells and endothelial cells, then presented to helper CD4+ T cells. Class III 

genes encode the components of the complement system that target foreign cells and 

break their membranes. In humans, the MHC system is called a human leukocyte 

antigen (HLA) system and is located on the short arm of chromosome 6. It spans over 

four million base pairs of DNA and contains over 128 functional genes. The MHC 

Figure 3: Stem cell hierarchy  
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Class I 
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Figure 4: A represent human MHC and B represent mouse MHC 

complex in the mouse is known as H2, and is located on chromosome 17. Class I 

encodes the K, D and L and class II encodes the Ia (I-A and I-E) antigens [33]. BALB/c 

mice express the d haplotype whereas C57Bl/6 express the b haplotype in their gene 

products [34]. Figure 4 A & B represent human and mouse MHC, respectively.  

Due to the limited number of suitable donors and the risk of developing graft versus 

host disease (GVHD), MHC compatibility is still one major barrier to the success of 

HSCT. Consequently, there is extensive research to overcome this barrier; one 

approach is in vitro expansion of stem cells aiming to increase the number of cells, 

especially in cord blood transplantation [35]. Another aim is to produce cells that have 

less immunogenicity in order to overcome GVHD. However, there are several obstacles 

limiting this process, such as the function of the cells in vivo. Moreover, the expansion 

of specific required cells is still difficult according to current defined phenotype and 

technical limitations. [36-39]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.5 Hematopoietic stem cells (HSCs) 

Stem cells can be retrieved from bone marrow (BM), peripheral blood (PB) and cord 

blood (CB) [40], as well as from other sources. Bone marrow was the first established 

source for stem cells followed by peripheral blood [41-44]. Cord blood as a stem cell 

source was established later, and is used mainly in pediatric transplantation due to the 

limited cell content. Cord blood is also used in adult transplantation; however, two 

units have to be combined for one recipient [45-47]. Numerous studies have compared 

the three sources of HSCs. The CB was reported to have lower GVHD intensity and 

treatment related mortality [48-49]. However, both Takahashi’s studies related this 

advantage to the established set-up in their transplantation center, such as conditioning 

regimen, GVHD prophylaxis and genetic allo-reactivity between their studied 

populations. One of the advantages of the cord blood is its availability without the need 

B 

B C A 
DP DQ DR 

Class II 
Class I A 
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for a donor to go through the donation procedure. Moreover, cord blood transplantation 

required less histocompatibility matching. However, transplantation of peripheral blood 

or bone marrow from a living donor encounters the ability to repeatedly harvest stem 

cells in case of booster or re-transplantation are required. On the other hand, the 

availability of cord blood matching the first transplant could also be a limiting factor 

[50] for retransplantation after CBT. 

Although no results have shown the advantage of PBSC transplantation over BMT and 

vice versa with regards to relapse, disease free survival, outcome and GVHD, PB 

donation has the advantage of being a less invasive procedure compared to the BM 

donation [51-52]. However, acute (aGVHD) and chronic GVHD (cGVHD) have been 

reported with high incidence after PBSCT [53-54]. PBSCs are more frequently used in 

autologous transplantations compared BM. One of the advantages of the PBSCT over 

the BMT is the faster engraftment, especially in malignant disorders [55-57].        

New sources of stem cells such as adipose tissues are promising for the future of 

transplantation. Stem cells from adipose tissues have some advantages compared to 

other sources, such as its less complicated procedure and its capacity to produce other 

types of cells (for example, mesodermal and non- mesodermal lineages). The adipose 

tissue is also rich in mesenchymal stem cells [58-60]. 

 

1.1.6 Donor types 

There are different types of transplantation depending on the donor. The cells can be 

obtained from the recipient (autologous transplantation). In this case the recipient’s 

own cells are harvested and stored. The recipient then receives an intensive 

conditioning regimen adjusted to the disease, disease stage and co-morbidities. 

Afterward, the recipient receives his or her own stem cells through infusion. The G-

CSF mobilized peripheral stem cell protocol is a standard procedure for an autologous 

transplantation [61-62]. High intensity conditioning has also been used before 

transplantation in the treatment of autoimmune diseases [63-64]. Syngeneic 

transplantation is the transplantation between genetically identical individuals with the 

same histocompatibility antigens, such as monozygotic twins in humans and members 

of the same inbred strain in animals. Because of the high polymorphism of the MHC, 

syngeneic transplantation in humans is rare. There is a very low incidence of GVHD in 

syngeneic HSCT, but there is an absence of graft versus malignant cells effect which 

compromises the outcome of HSCT in malignant diseases, especially in advance stages 

[65-69].   

Allogeneic transplantation is transplantation between individuals within the same 

species, but with genetic disparities. This is a common type of transplantation in human 

due to limited number of identical twins and the benefit of allogeneic HSCT over 

syngeneic for cancer eradication. With a steady increase of transplantation applications 

to cover more diseases and patient groups, the research aims to minimize the 

complications and improve transplantation outcome [70-72]. One approach is to 

decrease the intensity of conditioning regimen and thereby reduce toxicity [73] without 

compromising the outcome. The success of these approaches increases the number of 

patients accepted for HSCT, including older patients including those who have minor 

organ dysfunction [74-76]. Xenogeneic transplantation is transplantation between two 

different species. This type of transplantation is used in special cases (such as 

transplantation of a heart valve), but its application in stem cell transplantation is very 
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limited [77]. Beside the major mismatches between the immune system of different 

species, infection transfer is a major concern that limits the research in this area.  

 

1.1.7 Patient selection for HSCT 

There are specific criteria to consider when determining if a patient is suitable for 

HSCT. These include: health status, disease stage, type of transplantation (autologous 

or allogeneic) and type and dose of conditioning regimen. Details on clinical criteria as 

well as which diseases are suitable for which type of transplantation at which stage of 

the disease are summarized elsewhere [78-83]. 

 

 

1.1.8 Conditioning regimen 

The host immune system has to be suppressed in advance to permit the establishment 

of the donor immune system. Different conditioning regimens have been used to 

suppress the host immune system involving chemotherapy, radiotherapy or a 

combination of both. Anti-thymocyte globulin is sometimes added to the conditioning 

regimen [84-85]. Antineoplastic agents are classified according to cell cycle phase 

specificity and mechanism of action. Based on the  mechanism of action, cytostatics are 

classified as alkylating agents [86-88], antimetabolites [89-90], anthracyclines [91], 

antitumor antibiotics [92], monoclonal antibodies [93] or platinum compounds [94]. 

Several alkylating agents are used in the conditioning regimens. The term alkylating 

agents arose from their ability to alkylate many nucleophilic functional groups. 

Alkylating agents can be divided into two groups according to their mechanism of 

action. The first group functions by forming covalent bonds with the amino, carboxyl, 

sulfhydryl and phosphate groups. The second group of alkylating agents acts by 

irreversibly binding to DNA and thus affecting the replication of DNA resulting in the 

disturbance of fundamental proliferation pathways. However, both groups of alkylating 

agents are cell cycle non-specific. Cisplatin, carboplatin and oxaliplatin are an example 

of the first group and cyclophosphamide, busulfan, chlorambucil, ifosfamide and 

mechlorethamine are examples of the second group.  

Busulfan (Bu) and cyclophosphamide (Cy) in combination is a standard conditioning 

regimen [95] for stem cell transplantation. The introduction of Bu in the conditioning 

regimen reduced the use of TBI. The combination of TBI and Cy is still a common 

conditioning regimen. The combination of both drugs covers a wide spectrum of effects 

as Bu is myeloablative while Cy is immunosuppressive [96]. Bu is given orally or 

intravenously, and the advances in therapeutic dose monitoring has reduced Bu side 

effect [97]. However, individualizing the dose according to the patient’s genetic 

variations is still not feasible [97]. Conditioning regimen Bu-Cy or Cy-TBI is selected 

based on the type and stage of the disease, since each combination has been shown to 

have its specific advantages. The Cy-TBI combination has been reported to have 

advantages in terms of less relapse, fewer transplant related mortality (TRM) and better 

disease free survival (DFS) in patients with acute lymphoblastic leukemia (ALL), 

whereas it has different effects in chronic myeloid leukemia [98-101]. However, the 

engraftment and GVHD occurrence is similar in both conditioning regimens [102].  

The intensity and type of conditioning regimen is selected with regards to patient, 

disease type and stage as well as co-morbidities. Reduced intensity conditioning 

regimen (RIC) is usually considered for older patients [103-105], however, the use of 
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RIC in children is increasing [106-108]. One of the drawbacks after RIC is the 

increased risk of infections [109]. Although a high intensity conditioning regimen 

(myeloablative conditioning) has a higher risk for side effects, it is still the first choice 

in many situations (especially in advanced leukemia). However, intensive research is 

being done for the possible use of RIC or by a combination of conditioning regimens 

that has less toxicity without compromising the transplantation outcome [110]. 

Retrospective studies in patients with acute myeloid leukemia showed that transplant-

related mortality was decreased and relapse was increased in patients treated with RIC, 

instead of myeloablative conditioning [111-112]. Leukemia-free survival was similar in 

both regimens.  

 

1.2 COMPLICATIONS 

Despite of continuous improvement in HSCT, several major complications still 

compromise its outcome. GVHD, sinusoidal obstruction syndrom (SOS) previously 

named as hepatic veno-occlusive disease (VOD) [113-116] and infections are the most 

common complications following HSCT [117]. Other complications after HSCT have 

also been reported, such as mucositis [118], dental development problems [118-120], 

hemorrhagic cystitis [121] and ocular GVHD [122-124]. 

 

1.2.1 Graft versus host disease 

GVHD is a frequent complication that occurs after allogeneic stem cell transplantation 

when the new immune system derived from the donor recognizes the host tissues as 

foreign [125]. GVHD was first characterized in 1957 [126]. Extensive research and 

development of immunosuppressive drugs resulted in improvement of the prevention 

and the treatment of GVHD [127-130]. Nevertheless, GVHD is still the major obstacle 

in allogeneic HSCT whenever the transplantation is involving a high disparity between 

recipient and donor immune systems. Apart from the few reported cases [131], GVHD 

is not considered a barrier in  syngeneic HSCT.  

Specific conditions are required for GVHD to occur: the donor cells must be 

immunologically competent and the host should be immuno- compromised, and the 

host tissues must have histocompatibility antigens that are lacking in the donor cells 

[132-133]. GVHD is defined as acute or chronic according to its manifestation. The 

classical definition of aGVHD is that it takes place within the first 100 days post HSCT 

while cGVHD occurs beyond 100 days post HSCT. However, this is an arbitrary 

definition; acute and cGVHD onset may overlap if biology and symptoms are taken 

into account [134]. The onset of both types of GVHD is affected by the intensity of the 

conditioning regimen, graft type, graft content and immunosuppressant [135-136]. 

Donor lymphocyte infusion (DLI) used to enhance engraftment of donor cells or to 

induce an antileukemic effect may stimulate GVHD [137].  

Acute GVHD is characterized by dermatitis, hepatitis and damage to the 

gastrointestinal tract resulting in abdominal pain and diarrhea [138]. The mechanism 

behind aGVHD has been extensively studied. The aGVHD takes place in three phases 

involving both the innate and the adaptive immune systems. [139-144]. The first phase 

starts when the conditioning regimen damages the host tissues and produce 

inflammatory signals. The gastrointestinal tract is one of the first targeted tissues. The 

tissue injuries translocate the lipopolysaccharides (LPS) to the circulation. LPS 

stimulate the tissues to secrete inflammatory cytokines such as IL-1, TNF-α and INF-γ. 
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The second phase of aGVHD is the stimulation of mature donor T cells to recognize the 

different antigens. This stimulation is achieved through the secretion of adhesion 

molecules and T cells attracting chemokines, as well as by the elevation of MHC 

expression in the inflamed tissues. The third phase is the effector part, which is 

consequence of the accumulation of the events from the two preceding phases. Both the 

innate and the adaptive immunoresponses in this step cause cytolysis. The activated 

macrophages and cytotoxic T lymphocytes start to attack the targeted tissues [140]. 

Figure 5 illustrates the pathophysiology of aGVHD [145]. However, other mechanisms 

that explain the pathophysiology of GVHD (such as early destruction of the host niche) 

have also been reported [146]. 

 

Chronic GVHD is less explored than aGVHD. cGVHD has features similar to 

immunological disorders and autoimmune diseases such as scleroderma, immune 

cytopenias and chronic immunodeficiency syndrome [147]. cGVHD can manifest in 

one organ or it can spread to several tissues. The patients who develop cGVHD may 

have a history of aGVHD. cGVHD can lead to organ dysfunction and life threatening 

complications. Although the mechanisms behind cGVHD are less clear than those in 

aGVHD, there are four suggested pathways for the development of cGVHD. Damage 

to the thymus and effects on the T cell negative selection, decrease in the regulatory T 

cells, uncontrolled production of antibodies and the formation of profibrotic lesions are 

the most probable pathways leading to cGVHD [148]. 

 

Donor T cells are among the cells responsible for acute GVHD through their 

immunological features and recognition of host antigens as foreign molecules. On the 

other hand, depletion of T cells from the graft either ex vivo or in vivo by treating the 

recipient with T cell antibodies such as anti-thymocyte globulin (ATG) can cause graft 

rejection and/or tumor relapse in cases where malignant disease has been the indication 

for transplantation [149-152]. Since donor T cells recognize malignant cells as foreign, 

the graft versus tumor effect is an important parameter of HSCT [153-155]. T cell 

subsets differ in their functional properties. Some of them have cytotoxic functions and 

some have been shown to play a regulatory role. However, the role of each T cell 

population and its involvement in cytotoxicity and regulatory effect has still not been 

totally identified. Within the T cells subsets,  T cells have been reported to be the 

main inducers of GVHD. CD4+ and CD8+ T cells induce GVHD by different 

mechanisms [156-159].  

 

Regardless of the achievements in understanding GVHD, prediction of GVHD 

occurrence is still a major concern. Accordingly, all recipients undergoing HSCT 

receive immunosuppressive treatment (even in the case of HLA matched siblings) to 

prevent GVHD and host versus graft (HVG). At present, several immunosuppressive 

drugs are used in clinical practice. Cyclosporine A (CyA) is one of the most common 

used drugs for GVHD prevention after transplantation; however, these drugs also have 

side effects [158-159].  The golden standard for immunosuppression after HSCT today 

is cyclosporine combined with methotrexate [128, 160]. 

 

New strategies to prevent GVHD have been investigated either directly in vivo or ex 

vivo [161-162]. Soluble Fas ligand, for example, has been shown to enhance activation 

induced cell death when incubated with alloreactive cells before transplantation. This 
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Figure 5: Pathophysiology of GVHD 

method also results in proliferation reduction of allogeneic stimulator responses in vivo, 

improves the graft versus tumor effect and preserves the engraftment capacity of 

allogeneic cells [163]. NKT cells from recipients have been shown to prevent tissue 

inflammation caused by donor T cells, but retain their anti-tumor effect against B cell 

lymphoma. In the same study, the authors showed reduction in the expansion of donor 

T cells in the lymphoid tissues and the colon in aGVHD model [164]. Programmed 

death-1 (PD-1) protein, which belongs to the B7:CD28 superfamily diminished 

alloreactive T cell response after BM transplantation through its negative regulatory 

effect on CD4+ and CD8+ T cells. Therefore, an increase in the expression of PD-1 has 

been suggested to decrease GVHD [165].   

 

 

 

 

1.2.2 Sinusoidal obstruction syndrome  

SOS remains one of the complications following myeloablative HSCT which manifests 

as hyperbilirubinemia, hepatomegaly and fluid retention. SOS damages the hepatocyte 

and the sinusoidal cells in the centrilobular zone of the liver acinus. High doses of   

alkylating agents are responsible for SOS onset, which in severe cases could lead to 

multi organ failure [114, 116, 166-169].  Busulfan is known as one of the main risk 

factors for SOS [170-172]. Regardless of the long history of the disease, there is still no 

efficient curative therapy. Defibrotide is one of the promising therapies now in clinical 

trials [173]. However, since high dose chemotherapy is the initiative cause of the 

disease, reduced intensity conditioning can reduce the damage to tissues and result in a 

lower rate of SOS [174].   
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1.2.3 Rejection and disease relapse 

Rejection occurs when the new immune system cannot compete with the existing 

immune system. When the conditioning regimen is not strong enough to suppress the 

host immune system, host immune cells start to proliferate.  

 

Since T cells are the main cells involved in graft rejection, a lower number of T cells in 

the graft or a high number of residual T cells in the host might result in graft rejection. 

T cells from the donor are important in further eradicating the host cells. Moreover, 

donor T cells are necessary to kill cancer cells in case of malignancy.  However, the 

type of donor cells or residual host T cells is also important in graft rejection. The 

higher number of Treg cells in the graft may help to develop graft rejection and disease 

relapse. Other host residual cells such as natural killer cells (NK) or DCs also 

contribute to graft rejection. An increased histocompatibility mismatch between 

recipient and donor increases the chance of graft rejection when the donor has MHC 

antigens not found in the recipient. Moreover, the RIC also results in higher residual 

cells and thus increases the chance for host cells to proliferate. The correct dosage and 

continuous administration of immunosuppressant limit T cell expansion and help to 

decrease GVHD and rejection [175-176].  ABO blood group matching is also critical; a 

mismatch increases graft failure after unrelated HSCT [177]. In identical HSCT the 

ABO mismatch causes some complications but do not impair the clinical outcome 

[178-180]. Although disease relapse goes hand in hand with graft rejection, disease 

relapse is more dependent on the type and stage of the disease. Moreover, second or 

third transplants are more likely to result in disease relapse [181] as the cancer cells 

develop resistance to the treatment. A greater understanding of the immune system, 

specific targeting of tumor cells and separating them from normal cells will help to 

decrease the frequency of relapse and to separate GVHD from the graft versus tumor 

(GVT) effect [182].  

 

1.2.4 Infections 

Infections after HSCT contribute to morbidity and mortality [117]. There is a high risk 

for bacterial infections during the neutropenic period when the immune system is still 

not recovered. Infection occurrence depends on several factors such as the aseptic 

procedure, type of graft, type of transplantation, the degree of mismatch between 

recipient and donor and the use of anti-infectious treatments. The incidence of different 

bacterial [183], fungal [184-187] or viral infections varies during the post HSCT 

period. Development of new prophylactic agents, post transplantation monitoring of 

infections and better aseptic techniques have resulted in a decreased incidence of 

several infections [188-192]. 

 

1.3 FATTY ACIDS 

Nutrition is an important factor affecting health. Several food components have been 

shown to decrease the risk of various diseases [193-194]. Polyunsaturated fatty acids 

(PUFAs) have been reported to affect the immune system. PUFAs may also modify the 

effects of different therapeutic agents [195]. The efforts to reduce the complications of 

HSCT are ongoing, and food has been highlighted as a factor that affects 

transplantation outcome [196]. Fatty acids are linear hydrocarbon chains with a 
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Figure 6: Omega-3 and omega-6 synthesis 

terminal methyl group called omega (ω) and another terminal with a carboxyl (-COOH) 

group. The names and classifications of fatty acids are based on the number of carbon 

atoms and the double bonds. Fatty acids are classified according to the number of 

double bonds into saturated (no double bond), monounsaturated (one double bond) and 

polyunsaturated (two or more double bonds). The PUFAs are defined as short, medium 

or long chain PUFAs. Omega-3 and -6 are within the latter group as they consist of 

more than 16 carbon atoms. The omega-3 fatty acid has three main derivatives; α-

linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). 

The major omega-6 derivatives are: linoleic acid (LA), γ-linolenic acid (GLA) and 

arachidonic acid (AA). Although the human body can synthesize saturated and 

monounsaturated fatty acids, it is unable to produce an amount sufficient for its 

requirements. Thus, it is essential to obtain these acids from external sources. 

Moreover, the conversion of these fatty acids to polyunsaturated fatty acids is low, 

which makes it necessary to obtain the polyunsaturated acids from an external source as 

well [197-198]. ALA can be obtained from various types of vegetable oils and from 

some green vegetables, but the body has a limited capacity for converting this acid to 

DHA and EPA. Accordingly, DHA and EPA intake from other sources is rquired [199]. 

Nutritionists recommend that these fatty acids should be acquired through diet rather 

that supplemental products, since natural food also contains other beneficial elements 

such as proteins and vitamins [199]. Fatty fish such as tuna, salmon and halibut as well 

as fish oil are good sources of omega-3 EPA and DHA. The effects of omega-3 may 

also differ according to its source. Fish species, geographical location, water quality 

and other environmental factors may affect the ratio of omega-3 derivatives and thus 

affect their function [200]. Figure 6 demonstrates omega-3 and omega-6 synthesis 

process. 

Omega-3 fatty acids have 

been shown to affect the 

immune system by altering 

the balance of Th1/Th2 

towards Th2 by the 

suppression of Th1 

development and reduction 

of IFN- production [201-

202]. Omega-3 PUFAs have 

been reported to improve  

endothelial function, protect 

against oxidative DNA 

damage [203] and suppress 

CD4+ T cell function and 

proliferation [204-205]. 

Harbige et al 2003 reported 

that a high intake of PUFA   

has an inhibitory effect on 

adhesion molecule expression, 

antigen presentation and 

lymphocyte apoptosis whereas 
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a low intake could enhance some immune functions [206].  Based on these findings we 

hypothesized that omega-3 PUFA as dietary might affect the outcome of stem cell 

transplantation.  

 

1.3.1 Omega-3 and its mechanisms of action 

It is important to understand how omega-3 works inside the body in order to understand 

its function in different diseases and how to use it for therapeutic purposes. Several 

studies have explained the effect as the incorporation of omega-3 into the cell 

membrane, modulation of intracellular pathways and alteration of gene expression 

[207-208] which may result in the alteration of cell function [209-211]. Omega-3 fatty 

acids were reported to decrease triglycerides and very-low-density lipoprotein blood 

levels in hyperlipidemic individuals [212]. Omega-3 modulates cyclooxygenase (COX)  

activity and alters the membrane and cell fluidity, hence affecting the expression of 

different cell receptors [213]. Omega-3 has been reported to have an effect on prostate 

cancer through the COX-2 pathway [214-215]. The COX-2/prostaglandin E-2 (PGE-2) 

pathway has been reported to be involved in cancer promotion and progression [216]. 

The down regulation of COX-2 results in the decrease of its enzymatic product.    

 

1.3.2 Omega-3 and diseases 

Omega-3 plays an important role in health and disease. A shortage of omega-3 may 

lead to fatigue, poor memory, dry skin, heart problems, depression, and poor circulation 

[217].  

 

1.3.2.1 Neurodegenerative diseases 

Omega-3 has been reported to have beneficial effects on neurological complications 

such as Parkinson’s disease [218], Alzheimer disease and other neurodegenerative 

diseases [219-220]. Although a low level of omega-3 may contribute to the 

manifestation and progress of neurological disorders [221], an extra supply of omega-3 

does not eliminate them. However, there are some indications that omega-3 improves 

cognitive decline and dementia. Omega-3 might help to suppress disease development 

at an early stage, but does not seem to reverse the disease at an advanced level [222-

225]. Thus, omega-3 seems to function protectively rather than as a treatment for 

neurodegenerative syndromes [226].  

 

1.3.2.2 Omega-3 and cancer 

The role of nutrition in cancer has become recognized during the recent years because 

of its impact on cell content and its interaction with several drugs, that might affect 

treatment efficacy. Omega-3 is one of the nutritional elements being studied, and it has 

been found to have potential to decrease tumor development and increase treatment 

efficacy [198, 200, 227]. Omega-3 has been reported to have a protective effect as well 

as a suppressive function toward the development of many types of solid tumors such 

as breast [228-230], colorectal [213] and prostate cancer [214, 231]. There is no clear 

evidence of an effect of omega-3 in hematological malignancies. However, some 

reports show that omega-3 have an effect on the growth suppression of leukemia cells 

in vitro [232-234].  
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1.3.3 Omega-3 and cytostatics  

Omega-3 has been reported to enhance drug efficacy and to facilitate drug uptake in 

cancer chemotherapy. Omega-3 supplementation in combination with various 

chemotherapies has been shown to decrease tumor size and prolong patient survival 

with lower side effects [235-239]. Omega-3 may enhance tumor response to cytostatic 

agents in the treatment of breast cancer. The amount of omega-3 found in breast 

adipose tissue was correlated with the response to chemotherapy [240]. 

Cyclophosphamide widely used in the treatment of leukemia, lymphoma and solid 

tumors [241]. Cyclophosphamide is a pro-drug and is converted to active metabolites in 

the liver [242]. Growth inhibition of cancer cells by cyclophosphamide and/or its 

metabolites has been shown to be significantly enhanced by omega-3 [239]. In contrast, 

there is no report on the effect of omega-3 on busulfan function.   

 

1.3.4 Omega-3 and inflammation 

Omega-3 is among the most potent immunomodulatory and anti-inflammatory PUFAs. 

The lower incidence of autoimmune and inflammatory diseases in Greenland Eskimos 

(Upernavik district) and Japanese populations point out the importance of omega-3 and 

implicates that an increased intake of fish may protect against several diseases. In both 

populations, especially Greenland Eskimos, a higher ratio of long chain omega-3 

PUFAs was found compared to other studied (mainly western) populations [243-245]. 

Inflammation is a complex biological process initiated by the innate immune system as 

a response to infection, tissue damage or other stimulus. Inflammation occurs in 

vascular tissues and the process involves various chemokines, cytokines and 

leukocytes. Although the process is a protective mechanism for the body, it may be 

harmful when it is out of control. The process requires the movement of leukocytes 

from the blood stream to the injured tissues through the blood vessels. In this process 

the recruited leukocytes migrate and adhere to the endothelial cells. The inflammation 

itself results in the expression of inflammatory products followed by antagonists in 

order to control the inflammation. Unresolved inflammation may lead to various types 

of diseases. Within a short time after the initiation of the inflammatory response, the 

process to resolve the inflammation begins. The granulocytes themselves promote 

prostaglandins and leukotrienes that have been derived from arachidonic acid to 

lipoxins. Omega-6 provokes the inflammatory process by supporting leukocyte 

adhesion and transmigration across the endothelial cells through the generation of the 

prostaglandin D2 (PGD2). Omega-3 prevents the progression of this process through 

the generation of prostaglandin D3 (PGD3) which antagonizes PGD2. Moreover, 

omega-3 reduces the expression of vascular cell adhesion molecule 1 (VCAM-1), E-

selectin, the intercellular adhesion molecule 1 (ICAM-1) and inflammatory cytokines, 

which all promote the transmigration of the leukocyte [246-249].   

 

1.3.5 Omega-3 and transplantation 

Although omega-3 is extensively studied in many inflammatory disorders and in some 

cancer treatments, only a few studies have reported the effects of omega-3 on the 

outcome of HSCT. Thus, the benefit of omega-3 supplementation to transplanted 

patients is uncertain [250], due to limited data and the fact that HSCT is a complex 

procedure involving many factors. Transplantation involves the immune system, 
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immunosuppressive agents, conditioning regimen, disease type and patient status. 

Moreover, the amount of omega-3 used and the duration of treatment both influence the 

effect, something which is mirrored by the reported contradictory data. Nevertheless, 

some studies report benefits from omega-3 in at least some stages of the transplantation 

procedure inasmuch as omega-3 suppresses the inflammatory situation and may reduce 

drug toxicity. Apart from the two publications by Takatsuka 2001 [251] and 2002 

[252], there are no further detailed studies on the effect of omega-3 on HSCT. The first 

study reported significant benefits from EPA supplementation and showed better 

survival in EPA treated patients, which was explained by reduced inflammation. The 

second study assessed the action of aGVHD indirectly by measuring the level of 

leukotriene (LT) B4 and several inflammatory cytokines. The study reported beneficial 

effects from EPA on aGVHD. However, both studies had a limited number of patients, 

and thus, the results are not fully conclusive.   

 

1.4 REGULATORY CELLS 

Many kinds of regulatory cells are naturally presented in the body or produced upon 

stimulation of the immune system. The conventional regulatory cells of the immune 

system are T cells that have the CD4+CD25+ phenotype and are developed by the 

thymus or in periphery. The intracellular transcription factor forkhead box P3 (FoxP3) 

has been reported as an essential marker for the development and suppressive 

properties of Treg cells [253]. However, natural and induced Treg cell populations have 

an important function in immune regulation [254]. Treg cells are also defined by other 

markers that differentiate them from other T cells in that they have lower or absent 

expression of CD127 surface antigen. However, other cells than CD4+ have also been 

reported to have regulatory functions, such as CD8+ Treg cells [255-258]. The different 

types of Treg cells have different potentials and play a major role in immune tolerance 

and immune homeostasis through different mechanisms. Regulatory cells have 

therapeutic potential, especially in transplantation tolerance [259-260]. Production of 

regulatory T cells in cell culture suppresses CD8+ T cell mediated cytotoxicity through 

the exhibited suppressive properties presented as proliferation suppression, inhibition of 

perforin and granzyme B lyses pathway [261]. 

 

1.4.1 Regulatory cells and diseases 

Regulatory T cells play an important role in the maintenance of tolerance and are key 

factors in different types of diseases [262]. Hence, the impairment of Treg function has 

been reported to be involved in autoimmune [263], infectious and other inflammatory 

diseases. Defective ability of Tregs to suppress T cell proliferation was reported in 

several autoimmune diseases. Treg cells have also been reported to have defective 

suppressive capacity in multiple sclerosis [264-266], diabetes [267] and rheumatoid 

arthritis [268-269].  

 

1.4.2 Regulatory cells and transplantation 

Transplantation processes involve two immune systems and the acceptance of the 

transplant is dependent on the degree of histocompatibility matching. T regulatory cells 

are involved in tissue tolerance. The host considers the alloantigens from the donor as 

foreign and hence initiates an immune response against them. Immunosuppressants as 

external regulators protect the transplanted tissues from rejection and at the same time 



 

  25 

protect the host from the transplanted cells. Immunosuppressive agents that have been 

used to suppress the immune system do not have long life supportive capacity, and they 

have to be continuously administered to the patient. Moreover, these drugs also have 

side effects and might contribute to organ failure. The long term complications of 

HSCT  are still a major challenge; thus, there are several approaches to using Treg for 

therapeutic purposes in HSCT [270]. Consequently, it is necessary to better understand 

the natural regulatory mechanism of tolerance in order to lower side effects and 

improve transplantation outcome [271]. The immune response is controlled by 

regulatory cells in different ways. Treg cells may directly suppress the effector T cells.  

 

The number and function of regulatory T cells affect the severity of GVHD [272]. Treg 

cells have been reported to attenuate GVHD after HSCT without compromising the 

graft versus tumor effect [273]. However, the effect is more pronounced in aGVHD 

compared to cGVHD [274]. Recently, several approaches using Treg cells for 

prevention or treatment of GVHD have been reported. The donor alloreactive T cells 

may cause GVHD, but the uncontrolled depletion of T cells may end in graft rejection. 

So, the new approach is to have selective donor T cells to preserve graft tolerance, to 

reduce the risk of infection and at the same time to prevent the development of GVHD. 

The induction of Treg cells in HSCT reduces GVHD while their depletion from the 

graft intensifies it. Figure 5 illustrates the role of Treg cells in the modulation of 

GVHD.  
    
1.4.3 The effect of omega-3 on regulatory cells  

Treg cells carry a high therapeutic potential in the transplantation field and in other 

immunological processes. It is important to understand factors that may affect the 

effectiveness of their function. Omega-3 has been reported to have an important role in 

different metabolic, inflammatory and autoimmune diseases, so it is of interest to study 

omega-3 impact on the regulation of the immune system. Omega-3 may exert its effect 

through the modification of various mediators or balancing of fatty acids in the cell 

membrane. Omega-3 has been reported to increase the induction of Treg cells through 

the activation of peroxisome proliferator activated receptor γ (PPARγ) [275-276]. The 

results of sveral studies on the effect of omega-3 in solid organ transplantation were not 

consistent, but some of the studies reported a beneficial outcome and prolonged 

survival [277-280]. Other studies reported no influence of omega-3 on acute rejection 

[281] or long term survival [281-282]. Since the majority of these studies used 

immunosuppressants concomitantly with omega-3, it is difficult to draw a conclusion 

on the direct effect of omega-3 on the immune system.  

 

1.5 STEM CELL TRANSPLANTATION AND VASCULAR TOXICITY 

Late lethal complications have been reported after stem cell transplantation [283-284]. 

Vascular toxicity is one of the adverse effects that may be involved in late 

complications such as congestive heart failure (CHF) and other cardiovascular 

complications [285]. It is difficult to correlate the early events to the late vascular 

complications after HSCT due to multiple factors that might be involved in the 

development of these complications. These factors include the patient individual 

disposition to vascular diseases, different conditioning regimens, different grafts, 

immunosuppressive drugs, nutrition, life style, etc. With an increased number of long 
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term survivors, the number of late complication is also increasing and thus better 

understanding of the early events in vascular toxicity is urgently required.  Moreover, 

the numbers of elderly patients undergoing HSCT is increasing, which means that the 

risk of cardiovascular complications is increasing among this population as well [286-

287]. A better understanding of the risk factors may help to reduce the late 

cardiovascular problems, especially in elderly patients and in patients at high risk of 

cardiovascular diseases such as hypertension or atherosclerosis.  

 

1.5.1 Vascular system  

The vascular system is made up of vessels with different functions and properties. It 

consists mainly of two types: the arteries and the veins. The aorta is the main artery and 

leads blood from the heart to the rest of the body. As the vessels branch to body tissues 

their size decrease. Defects in the vascular system cause different types of disease 

which might result in various organ defects including cardiovascular complications. 

Peripheral artery disease [288], pulmonary arterial hypertension [289] and  renal artery 

stenosis [290-291] are examples of circulatory system defects. 

  

1.5.2 Nitric oxide and the vascular system  

Nitric oxide (NO) is involved in several biological processes and has been reported in 

cardiovascular disease [292]. NO was described in 1980 as a potent relaxant of vascular 

smooth muscle [293]. It interacts with different mechanisms in the body. NO is 

synthesized from L-arginine in a process that is catalyzed by nitric oxide synthase 

(NOS).  NO is synthesized in different tissues such as endothelial and neuronal cells. 

There are three types of NOS; neuronal NOS (nNOS = NO I), inducible NOS (iNOS = 

NOS II) and endothelial NOS (eNOS = NOS III) [294].   

 

1.5.3 Effect of conditioning regimen 

Conditioning regimen prior to HSCT facilitates the establishment of the new donor 

cells. Approximately half of the patients undergoing HSCT are conditioned with 

chemotherapy. Chemotherapeutic agents used in cancer treatment have been correlated 

to serious cardiac complications [295-296]. Bu and Cy are commonly used in 

conditioning regimen prior to HSCT [297-298]. Cy is also used in many cancer 

treatment protocols [299] and in low doses in the treatment of several autoimmune 

diseases [300-301]. Treatment with Cy has been correlated to cardiac toxicity and other 

tissue damage. Although the cardiotoxicity was positively correlated with the dose of 

Cy [302], the symptoms usually appear 10 to 20 years after HSCT in long term 

survivals [286]. However, cardiac failure has also been reported within weeks of Cy 

exposure [303].  Bu, in contrast, has not been reported to be associated with vascular 

toxicity, but has been suggested to play a causative role in pericardial fibrosis [304]. 
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2 AIMS 

The present thesis aimed to increase the knowledge of the mechanisms underlying 

graft versus host disease in stem cell transplantation following busulfan - 

cyclophosphamide conditioning regimen.  

  

SPECIFIC AIMS   

 

 To study the early expansion of donor cells after allogeneic 

hematopoietic stem cell transplantation (HSCT). 

 To correlate cell activation and cytokine expression with onset and 

intensity of graft versus host disease (GVHD). 

 To study the dynamic changes of the histopathology of the liver, spleen, 

lung, kidney, heart and pancreas after allogeneic compared to syngeneic 

stem cell transplantation. 

 To investigate the effect of busulfan - cyclophosphamide (Bu-Cy) 

conditioning regimen on the  physiological properties and structure  of 

the mesenteric arteries and  aorta 

 To study the effect of omega-3 on the efficacy and toxicity of Bu-Cy 

conditioning regimen. 

 To study the effect of omega-3 on immunological response and on the 

onset and intensity of GVHD. 
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Table 1: Criteria for GVHD after HSCT 

3 MATERIALS AND METHODS 

3.1 ANIMALS 

The mice were 8 to 12 weeks old and were purchased from Scanbur (Sollentuna, 

Sweden). They were maintained under pathogen-free conditions with controlled 

humidity (55 ± 5%), 12 hours light/dark cycle, balanced temperature (21 ± 2
o
C), and 

HEPA-filtered air. The animals were kept in individually ventilated cages and were 

fed autoclaved chow and tap water ad libitum. They were acclimatized for 1 to 2 

weeks before the start of the experiment.  

All animal experiments were approved by the southern ethical committee and in 

accordance with the Animal Protection Law, the Animal Protection Regulation and the 

regulation of the Swedish National Board for Laboratory Animals.  

 

In the syngeneic setting female BALB/c (H-2K
d
) were used as recipients and male or 

female BALB/c mice were used as donors. While in the allogeneic setting BALB/c 

mice were used as recipients and male C57Bl/6 (H-2K
b
) were used as donors. 

Untreated mice were used as controls whenever appropriate. 

The mice were weighed and their health status was assessed as described in detail in 

each study. In experiments entailing GVHD, the recipient mice were weighed every 

day and GVHD scored every other day. GVHD was scored using the following criteria 

[305] described in table 1: 

 

Criteria Grade 0 Grade I Grade II 

Weight lost < 10% 10 to 25% >25% 

Posture position Normal Hunching but not during 

movement  

Severe hunching 

effecting movement 

Activity Normal Mildly to moderately 

decreased 

Stationary unless 

stimulated 

Fur texture Normal Mild to moderate ruffling Severe ruffling/poor 

grooming 

Skin integrity Normal Scaling of paws/tail Obvious areas of 

denuded skin 

For the last study evaluating the effect of Omega 3, animals in different groups were 

fed one of the following diets: 1) Omega-3 (from menhaden fish oil) 10% supplement, 

2) Corn oil (10%) supplement or 3) Standard food. The animals in all the groups had 

access to their food ad libitum for three or eight weeks respectively. The corn oil diet, 

which is the source of omega-6, was given as a control for the fat effect.  

 

3.2 ANTIBODIES 

Fluorescein isothiocyanate-(FITC) conjugated H-2K
b
(clone: AF6-88.5), H-2K

d
(clone: 

SF1-1.1), CD3 (clone: AF6-88.5), NK (clone: DX5), CD44 (clone: IM7), Ia-IE (clone: 

2G9) and Phycoerythrin-conjugated (PE) conjugated H-2K
d
(clone:SF1-1.1), CD8 

(clone: 53-6.7), H-2K
b
(clone: AF6-88.5) and PerCP-Cy5.5 conjugated CD3 (clone: 
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Figure 7: Schematic diagram for Bu-Cy conditioning regimen and HSCT 

145-2C11), CD25 (clone: PC61), CD11b (clone: M1/70) and APC conjugated CD4 

(clone: RM4-5), CD19 (clone: 1D3), CD62L (clone:MEL-14), CD11c (clone: HL3) 

and FC-receptor blocking monoclonal antibody (clone: 2.4G2) were purchased from 

BD Pharmingen (BD Biosciences, Stockholm, Sweden).  

 

3.3 CONDITIONING REGIMEN 

Busulfan and cyclophosphamide were purchased from Sigma-Aldrich (Sigma-Aldrich 

Stockholm, Sweden). Busulfan was dissolved in dimethyl sulfoxide (DMSO) (Sigma-

Aldrich) at a concentration of 40mg/ml and was stored at room temperature (RT). 

Cyclophosphamide was dissolved in sterile water at a concentration of 10mg/ml and 

stored at RT. Both drugs were further diluted to working sultion using PBS . Each 

mouse received 20mg/kg/day x 4 days of busulfan followed by 100mg/kg/day x 2days 

of cyclophosphamide (Figure 7). Both drugs were administered via intra-peritoneal (IP) 

injection. 

 

 
 

 

 

 

 

3.4 BONE MARROW TRANSPLANTATION PROCEDURE 

3.4.1 Tissue harvesting 

Donor mice were killed by cervical dislocation and then placed on their backs on clean, 

dry and absorbent paper. The mouse skin and fur was cleaned with 70% ethanol to 

disinfect the area and reduce the possibility of contamination. A mid abdominal 

incision was made with scissors and forceps. The skin was detached from the peritoneal 

wall. Using sterilized forceps and scissors, the abdomen and peritoneal area were 

explored carefully. The spleen was removed and placed in a cold 2% FBS/PBS 

(phosphate buffer saline; PBS, and fetal bovine serum; FBS), which were purchased 

from Invitrogen (Invitrogen AB, Stockholm, Sweden). Both femurs and tibias were 

aseptically removed and placed in cold 2% FBS/PBS. 
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3.4.2 Cell preparation 

The spleens from the donor mice were placed one by one in sterile Petri-Dishes and cut. 

The cells were re-suspended in 2% FBS/PBS containing 0.01 mM EDTA, then passed 

through a 70 μm cell strainer into a 50 ml conical tube. The syringe plunger was gently 

used to disintegrate cell clumps. 

 

Femurs and tibias were cleaned from soft tissues by sterile mesh and then placed in a 

clean Petri-Dish containing sterile PBS. The bone marrow was flushed with 5 ml 2% 

FBS/PBS containing 0.01 mM EDTA into 50 ml conical tube. Single cell suspension 

was prepared by gently mixing the cell suspension using a 14G needle attached to a 5 

ml syringe. 

 

The pooled cells from either spleens or BM were counted separately using Türk and 

Trypan Blue solutions to assess the total number of nucleated and viable cells. 

Appropriate numbers of BM and SP cells were passed through a 70 μm cell strainer 

before transplantation. The final volume of the graft was adjusted to 200 μl of cell 

suspension per mouse. 

 

3.4.3 Transplantation  

2 x 10
7
 BM cells and 3 x 10

7
 spleen cells in a volume of 200 μl were injected through 

the lateral tail vein. Transplantation day was assigned as day 0, the days before 

transplantation were numbered with a negative sign (-) and the days after 

transplantation were numbered with a positive sign (+).  

 

3.5 TISSUE ANALYSIS 

PB, spleen, femur and other studied tissues were collected for analysis at appropriate 

time points according to each study design.   

 

3.5.1 Immunophenotyping 

Surface markers: The mouse was placed in the mouse holder and a small cut was made 

in the tail vein using a clean sharp scalpel. Around 50 μl of the peripheral blood was 

sampled either by dropping the blood into an Eppendorf tube (pre-filled with 20 μl 0.5 

mM EDTA or citrate) or by collecting the blood using a needle and syringe. Samples 

were then transferred into FACS tubes. Fc-blocker was added to the cells and then 

incubated for 15 minutes at 4
o
C. The cells were incubated with the appropriate 

antibodies for 30 minutes at 4
o
C. 1 ml of 1X RBC lysing buffer (BD Biosciences, 

Stockholm, Sweden) was added and then the samples were incubated at room 

temperature for 20 minutes in dark place. 2 ml of PBS were added and then the samples 

were centrifuged for 7 minutes at 350 g. The supernatant was discarded and the cells 

were then re-suspended in 200 μl of PBS. The samples were analyzed using FACS 

calibur (BD biosciences) and CellQuest software.   

 

FoxP3 intracellular staining: Single cell suspension was prepared as above. Red blood 

cells (RBC) were lysed with ammonium chloride and then washed twice with PBS. The 

cells were incubated with Fc-blocker at 4
o
C and stained with antibodies against surface 

markers. The cells were then washed and permeabilized in BD Perm/Wash solution 
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(BD Biosciences), after which they were washed with the same solution and stained 

with intracellular staining for PE-FoxP3 antibody (ebiosciences, clone: FJK-16s). 

 

3.5.2 Mixed Lymphocyte Culture (MLC) 

Regulatory T cell function was assessed with MLC. Regulatory T cells were prepared 

from the spleens of female BALB/c mice. Red blood cells in single cell suspension 

were lysed by ammonium chloride. The cells were washed in PBS, after which 

CD4+CD25+ regulatory T cells (Treg) were isolated using Miltenyi Biotec (Fisher 

Scientific, Göteborg, Sweden) mouse isolating kit according to the manufacturer’s 

recommendations. Spleen cell suspension from female BALB/c mice was used as 

responder (Tresp) cells. The Tresp cells were stimulated with anti-mouse CD3e (BD 

biosciences, Stockholm, Sweden) at two different concentrations (3µg/ml and 

10µg/ml). Different ratios of Tresp to Treg were used as follows; 1: 1 (1 x 10
5
 Tresp: 1 

x 10
5
 Treg), 1: 0.5 (1 x 10

5
 Tresp: 5 x 10

4
 Treg) 1: 0.25 (1 x 10

5
 Tresp: 2.5 x 10

4
 Treg). 

One µl of 
3
H thymidine (0.037 MBq/µl) was added to each well in the mixed 

lymphocyte reaction (MLC) plate on day 4. After 18 hours, 100 µl of the supernatant 

was taken carefully from each well for cytokine measurement. The cells were harvested 

on filter with a Cell Harvester (Skatron Instruments Ltd, Suffolk, UK) and allowed to 

dry overnight at RT. The activity was measured in scintillation fluid (OptiScint Hisafe) 

using a liquid scintillation counter (WALLAC, EG&G Comp, Turku, Finland).  

 

3.5.3 Histology and immunohistochemistry 

For the histology staining, tissue samples were fixed in 4% formaldehyde for one day 

and then transferred to 70% ethanol. The tissue was dehydrated and embedded in 

paraffin. The tissue were sectioned and stained in Hematoxylin and Eosin solution 

using the Tissue Tek Prisma (Sakura Finetek Inc, Torrance, CA, USA) automated slide 

stainer. For the immunohistochemistry, the tissue were covered in cryo-embedding 

media (OCT) and frozen on dry ice cooled N-hexan. The tissue was stained with CD4 

(RM4-5) and CD8 (53-6.7) antibodies from BD Pharmingen (San Diego, CA, USA). 

Tissue was cut into 4-5 μm slices, fixed in cold (−20
o
C) acetone for 3 minutes and 

left to dry overnight. The tissue was rinsed with PBS, and treated with 3% H2O2 in 

methanol and blocked by 4% goat serum in PBS. Primary antibodies were diluted in 

the blocking solution and applied at 4
o
C for one hour. After rinsing in PBS, a biotin-

labeled secondary goat anti-rat antibody was applied. Sections were incubated with 

ABC-HRP complex (BD Pharmingen). Binding sites were visualized with 

diaminobenzidine/hydrogen peroxide. The slides were re-stained with hematoxylin. 

 

3.5.4 Colony forming unit assay 

Mice fed with omega-3, corn oil or standard food were killed and single cell 

suspensions were prepared from bone marrow. BM cell were treated in vitro with Bu in 

final concentration of 20, 40 or 60 µg/ml for 4 hr. Twenty thousand nucleated cells 

were plated in 1.1 ml MethoCult M3434 medium in 35 mm Petri dishes in duplicates. 

Dishes were incubated at 37°C with 5% CO2 and 95% humidity. Colony forming unit- 

granulocyte-macrophage (CFU-GM) was scored at day 12 using an inverted 

microscope. CFU-GM was defined as consisting of 50 or more cells.  
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3.6 ASSESSMENT OF VASCULAR SYSTEM 

Mice were conditioned with 80 mg/kg Bu for four days followed by 200 mg/kg Cy for 

two consecutive days. Five days after the last injection mice were sacrificed by cervical 

dislocation and the heart, aorta and mesentery were dissected and placed in ice-cold 

Calcium free physiological salt solution (Ca0PSS, composition in mmol/L:  NaCl, 119; 

KCl, 4.7; MgCl2, 1.2; KH2PO4, 1.2; NaHCO3, 25; glucose, 11; Na2EDTA, 0.03).  The 

small mesenteric arteries (2-3 loops of the intestine with radial arteries up to the stub of 

the superior mesenteric artery intact) and the aorta were stored for a maximum of 3 

hours on ice before the start of the experiment. The weight of the heart was related to 

the body weight as determined at the time of sacrifice. Right ventricular and left 

ventricular weights (including septum) were also determined.   

 

3.6.1 Physiological study 

Radial intestinal arteries (arteries running perpendicular to the surface of the intestine) 

or their first order branches were used in the present experiment. Using 

ophthalmological quality instruments, the arteries were freed by careful dissection of 

adhering fat, connective tissue and the accompanying vein. After making a small 

incision into the free wall of the micro-artery, two stainless steel wires (diameter 40μm) 

were introduced into the lumen of the micro-artery, taking care not to scrape the intima 

or to stretch the preparation longitudinally.  Approximately 1 mm of preparation was 

thus transferred with 2 luminal stainless steel wires to a 5 ml organ bath in a small 

vessel myograph (DMT A/S, Skejby Science Crt, Aarhus N, Denmark).  The two wires 

were then tightened parallel and under tension with screws on two specimen holders, 

one attached to a linear actuator, the other to an isometric transducer, for registration of 

circumferential isometric force. The organ bath was filled with 5 ml Ca0PSS and the 

actuator was moved carefully until a small amount of isometric force was registered. 

The internal circumference of the vessel at which this force was obtained was recorded 

and labeled “slack circumference”. The next step varied according to the experimental 

protocol. An identical procedure was followed for the distal part of the thoracic aorta, 

except that rings (approx. 2 mm width) were mounted on two parallel stainless steel 

pins (0.2mm diameter). Solutions were freshly prepared, pre-oxygenated (95 % O2

2
- 5 

% CO2

2
) solutions and heated to 37 °C before use.  The solutions in the organ baths 

were oxygenated with the same gas mixture and also kept at 37 °C. 

 

3.6.2 Length-Force measurement 

Having obtained slack circumference for both aorta and mesenteric micro vessels in 

Ca0PSS, the preparations were equilibrated in CaPSS (CaCl2, 2.5mmol/L) for 30 

minutes.  Then the vessels were challenged every 5 min for 60 s with KPSS (CaPSS 

with isotonic replacement of Na
+
 with K

+
, final K

+
-concentration 125 mmol/L). For 

mesenteric micro vessels, the peak of the KPSS-induced contraction (coming within 15 

seconds of application of KPSS) was subtracted from the mean value of the baseline as 

obtained during 30 s preceding the KPSS-challenge (Kact). For the aorta, the value of 

the KPSS-induced contraction at 60 s was used for Kact as there was, in most instances, 

no clearly discernable peak early in the contraction.  After the 2
nd

 KPSS-challenge, the 

internal circumference was stepwise increased by 0.2 mm (0.8 mm for aorta) once 

approximately 2 min after the KPSS-challenge. Once Kact was equal to or lower than 
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Figure 8: Myograph record of length-force relation followed by noradrenalin step 

contractions. 

the preceding value, the internal circumference was reduced by 0.1 mm (micro vessels) 

or 0.4 mm (aorta). The internal circumference at this stage was also recorded and 

labeled optimal internal circumference (ICopt). When the complete length-force relation 

was not determined, the vessels were stretched to their ICopt in Ca0PSS immediately 

after determining the slack internal circumference and were then equilibrated for at 

least 30 min in CaPSS before the start of the experimental protocol. 

 

3.6.3 Contractile and relaxant agonists  

U46619 noradrenalin (Sigma-Aldrich) and endothelin-1 (Bachem AG, Bubendorf, 

Switzerland) were applied cumulatively with log-step increases in concentrations.  The 

zenith at every concentration was subtracted from the baseline and expressed as % of 

the Kact at ICopt obtained in the same vessel. Acetylcholine-, sodium nitroprusside- and 

forskolin- (Sigma-Aldrich) induced relaxations were initiated from a stable contraction 

induced by noradrenalin (between 1 and 30 μmol/L).  Concentrations were applied 

cumulatively with log-steps increases.  From the nadir at each concentration, the stable 

contraction obtained by noradrenalin before the applications of the vasodilators was 

subtracted. This value was then normalized to the maximal relaxation (obtained by 

adding 1 mmol/L sodium nitroprusside and 0.2 mmol/L papaverine (Sigma-Aldrich) in 

Ca0PSS at the end of the experiment and expressed as % of this maximal relaxation. 

The following diagram is an example from a Bu-Cy treated mouse. Figure 8 shows 

length-force measurements followed by noradrenalin steps contractions.  
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Figure 9: Myograph record of blood pressure from a control group animal 

(A) and from a Bu-Cy conditioned mouse (B) 

 
3.6.4 Blood pressure 

The mice were anaesthetized with isofluran (2.6 %; Univentor 400, AgnThos, 

Stockholm, Sweden) and placed on a servo-controlled heating pad maintaining body 

temperature at 37.5 ºC. Blood pressure was measured with a fiberoptic transducer 

(Samba 420/360, Samba sensors AB, Västra Frölunda, Sweden) inserted in the left 

carotid artery. After 15 minutes of stabilization, the pressure was continuously sampled 

during 10 minutes for later analysis. Figure 9 represents an example for blood pressure 

from a control animal (A) and an animal from the Bu-Cy treated group (B). 

 

3.6.5 Measurement of the endothelial nitric oxide synthase (eNOS) 

expression  

The mRNA expression was determined with RT-PCR. Total RNA was isolated from 3 

– 5 mg of frozen mesenteric artery and aorta using RNeasy Mini Kit (Qiagen, Valencia, 

CA, USA) according to manufacturer’s protocol. Total RNA (62 ng from mesenteric 

artery and 180 ng from aorta) was reverse-transcribed using iSCRIPT
TM

 cDNA 

synthesis kit (Bio-Rad, Hercules, CA, USA). cDNA samples were amplified using 2x 

SYBR Green PCR Master Mix (Bio-Rad) at optimal concentrations (10 nmol/L) of 

primers in a total reaction volume of 20 µl under the conditions recommended by the 

manufacturer. Expression levels of genes were normalized to that of ribosomal RNA 

S18 to control for input gene. Samples were assayed in duplicate using expression 

profiles generated using the comparative Ct method implemented in the Applied 

Biosystems 7500 Real-Time PCR System. The following primers were used (5’to3’): 

eNOS F: CCTTCCGCTACCAGCCAGA,  

eNOS R: CAGAGATCTTCACTGCATTGGCTA,  

S18 F: CGCGGTTCTATTTTGTTGGT and  

S18 R: AGTCGGCATCGTTTATGGTC. 
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3.6.6 Western Blot 

For Western Blot analysis, 3 – 5 mg of arterial tissues were homogenized in 100 µl ice-

cold buffer containing: 50 mM Tris.HCl (pH 7.5), 150 mM NaCl, 0.5% NP-40, 5 mM 

EDTA, 1 mM Na3VO4, 20 mM NaF and a protease inhibitor cocktail (Roche GmbH, 

Mannheim, Germany), 1 mM dithiothreitol (DTT) and 1 mM Phenyl- methylsulfonyl 

fluoride (PMSF). Homogenates were cleared by centrifugation (13,000 rpm; 15 min, 

4°C) and the protein contents of the supernatant were determined using Bio-Rad 

Protein Assay (Bio-Rad. Laboratories, ON, USA). Samples were prepared in 4x 

NuPAGE LDS sample buffer, 10x NuPAGE reducing agent (Invitrogen) and heated for 

10 min at 80°C before electrophoresis. 5 and 30 µg of proteins from mesenteric artery 

and aorta, respectively, were separated on 10 % SDS-PAGE followed by transfer to a 

PVDF membrane. Membranes were blocked for 1 hour at room temperature in TBST 

containing 5% non-fat dry milk or BSA followed by incubation with eNOS or ß-Actin 

antibodies. Membranes were washed with TBST buffer (0.01% Tween-20) followed by 

incubation with HRP-IgG antibodies. Membrane blots were then exposed to ECL 

detection reagents (SuperSignal West Pico Chemiluminescent Substrate; Pierce) and 

visualized using x-ray films. Band intensities were quantified by using Quantity One 

software (Bio-Rad Laboratories, ON). All antibodies were obtained from Santa Cruz 

Biotechnology (Santa Cruz, CA, USA). 

 

3.6.7 Transmission electron microscopy (TEM) 

Mesenteric vessels were dissected as above and pieces were fixed in 2.5% 

glutaraldehyde + 1% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4 at room 

temperature for 30 min and stored in the fixative at 4 
o
C. Specimens were rinsed in 0.1 

M phosphate buffer, postfixed in 2% osmium tetraoxide in 0.1 M phosphate buffer, pH 

7.4 at 4
o
C for 2 hours, dehydrated in ethanol followed by acetone and embedded in LX-

112 (Ladd, Burlington, Vermont, USA). Semi-thin sections were cut, stained with 

toluidine blue and used for light microscopic analysis. Ultrathin sections 

(approximately 40-50 nm) were cut and contrasted with uranyl acetate followed by lead 

citrate and examined in a Tecnai 12 Spirit Bio TWIN transmission electron microscope 

(Fei Company, Eindhoven, The Netherlands) at 100 kV. Digital images were taken 

using a Veleta camera (Olympus Soft Imaging Solutions, GmbH, Münster, Germany). 

 

3.6.8 Statistical analysis 

Graph prism version 4, SPSS version 16 were both used for graph design and data 

analysis. Student t-test was used for the comparison between two groups. Other 

analysis tests were used as indicated in each study. Results consider significant when 

the P < 0.05. 
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Figure 10: BM and spleen cellularity from syngeneic (connected open signs) and 

allogeneic (connected filled signs) transplantation 

4 RESULTS 

4.1 STUDY I 

4.1.1 BM and spleen cellularity 

Bu-Cy conditioning [306] resulted in a 95% and 63% decrease in bone marrow and 

spleen cellularity, respectively. This conditioning significantly reduced most of the cell 

populations with the exception of some T subpopulations that showed resistance to the 

conditioning regimen. The CD11b+ myeloid cells were the most affected in BM while 

B cells were the most affected in spleen. We assessed the bone marrow cellularity 

within 21 days post HSCT in syngeneic and allogeneic settings. In syngeneic settings, 

the recovery of cellularity in both tissues started earlier and increased until full recovery 

in the BM and over 70% recovery in the spleen within three weeks. In contrast, the 

allogeneic HSCT showed a delayed recovery in both tissues and never reached normal 

levels (Figure 10).  

 

 

4.1.2 Expansion and phenotype of immune cells 

Early expansion of natural killer (NK) cells was observed in syngeneic and allogeneic 

HSCT and reached an expansion peak at day +3. NK cells declined within the next 

days post transpation in syngeneic and allogeneic settings. In the syngeneic HSCT, NK 

cells expanded until full recovery while they continued to decrease in allogeneic HSCT 

(Figure 11A). Dendritic cells followed a pattern similar to that seen in NK cells. 

Interestingly, the expanding DCs were of donor origin while the host DCs decreased 

gradually (Figure 11B, F) . CD8+ T cells increased to reach maximal expansion at day 

+5 after allogeneic HSCT in BM and spleen. CD8+ T cells from BM and spleen were 

decreased in the syngeneic setting, in contrast to the allogeneic setting (Figure 11 D). 

The allogeneic setting showed that the T cells that were expanded at day +5 were 

mainly effector memory T cells. Hence, the number of naïve cells continued to 

decrease in this setting (Figure 11E). In contrast, there was no significant expansion 

observed at day +5 in memory T cells in the syngeneic setting. In summary, donor T 

cells continued their expansion in contrast to the decline in the host T cells (Figure 11). 
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Figure 11: Shows expansion and decline of different cell population:  NK, CD11c, 

CD4 and CD8 cells from allogeneic (connected filled signs) and syngeneic 

(connected open signs) HSCT.  Memory cells from donor (connected filled signs) 

and recipient (connected open sigs).  Donor (filled signs) and recipient (open signs) 

CD11c. 

Figure 12: Serum levels of IL-2, INF-γ and TNF-α at different days after 

allogeneic HSCT. 

Interestingly, the cytokine expression followed the expansion pattern of the cells. 

Interleukin 2 (IL-2), tumor necrosis factor alpha (TNF-α) and interferon gamma (INF-

γ) in serum had all reached their highest level at day +5 in allogeneic HSCT (Figure 

12).  
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Figure 13: Histology of pancreas, liver, spleen, lung, heart and kidney from day +5 

of syngeneic and allogeneic HSCT.  S: syngeneic A: allogeneic 

 

4.2 STUDY II 

In this study, the same established conditioning regimen was used for syngeneic and 

allogeneic HSCT. The mice tissues were harvested before the conditioning, after the 

conditioning (the same transplantation day), and then at five, seven and twenty one 

days post-HSCT for histology evaluation. The mice of both groups lost weight during 

the conditioning regimen and the weight decrement continued until day +3 and day +7 

in syngeneic and in allogeneic groups, respectively. However, the mice that underwent 

syngeneic transplantation started to gain weight and reached normal levels within three 

weeks, while the weight of mice in the allogeneic group remained low.  The weight loss 

corresponded to the intensity of the GVHD in the allogeneic group, which was not the 

case in the syngeneic setting.  

 

This study showed that the effect of the conditioning regimen was more obvious in 

some tissues compared to others. GVHD intensity also differed between different 
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tissues. Moreover, some tissues showed earlier effect compared to other tissues. In the 

pancreas, no effect of the conditioning regimen was observed and no signs of 

transplantation toxicity were seen in the syngeneic group. In the allogeneic group, the 

pancreas had some abnormalities on days 5 and 7 post HSCT, and this defect remained 

to a lesser extent in some mice and disappeared in other ones. The major pancreatic 

toxicities after allogeneic HSCT were smaller size acini, progressive loss of apical 

secretion granules and apoptotic cell morphology in exocrine and endocrine parts. In 

contrast to the pancreas, the liver was affected by the Bu-Cy conditioning. The 

conditioning resulted in smaller hepatocytes and decrease of cytoplasmic vacuolization. 

The livers from mice treated with allogeneic HSCT had an infiltration of inflammatory 

cells close to the central vein at day +5. On day +7, the livers from mice in the 

allogeneic setting had apoptotic cell forms and granulocytes adhering to the 

endothelium. The livers from the syngeneic HSCT mice had no significant changes. 

The spleen was also affected by the conditioning regimen and by allogeneic HSCT.  

Spleen cellularity decreased dramatically after the conditioning regimen and the 

allogeneic transplanted mice showed sign of change in the architecture. Hypocellularity 

was observed on days +5 and +7, and lymphocyte infiltration was observed within the 

hardly identifiable white pulp. The mice had partially recovered from the spleen 

damage when they were approaching three weeks post HSCT. The spleens from the 

syngeneic group were also hypocellular during the first week post transplantation. 

However, the red pulp showed extensive extramedullar hematopoiesis.  

 

The conditioning regimen did not result in remarkable changes in lung, heart and 

kidney. However, lungs from the allogeneically transplanted mice had inflammatory 

features with adherence of granulocytes in small veins at days +5 and +7. Three weeks 

post transplantation granulocyte infiltration, foamy macrophages and sub-pleural 

fibrotic changes were still observed in some spleens from allogeneically transplanted 

mice. Except for alveolar foam type macrophages, there were no other abnormalities 

detected in the syngeneic group within three weeks post transplantation. Starting day 

+7, some abnormalities in the heart were found with a few apoptotic cells, minimal loss 

of cardiomyocytes and subendocardial accumulation of neutrophils. This observation 

was more pronounced by day +21. The syngeneic HSCT group showed no detectable 

effect within the first three weeks post transplantation. In contrast to all other tissues, 

syngeneic and allogeneic transplantations did not result in detectible effects on the 

kidney. Day +5 is very critical in GVHD development according to this established Bu-

Cy model. Figure 13 shows the histopathology of different tissues in syngeneic and 

allogeneic HSCT on day +5. 
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Figure 14: Force tension relationship. Control active tension (empty circle), Bu-Cy 

active tension (filled circle), control passive tension (empty square) and Bu-Cy 

passive tension (filled square). 

4.3 STUDY III 

4.3.1 Effect of Bu-Cy conditioning on arteries 

General toxicity expressed as a weight loss and vascular toxicity were observed after 

Bu-Cy conditioning regimen. Significant weight loss was observed in the Bu-Cy 

treated animals compared to the control group injected with PBS. However, there was 

no effect from the Bu-Cy treatment on heart weight (both dried and wet) compared to 

the control. The Bu-Cy treated group had lower blood pressure compared to control 

group. The internal circumference (IC) of mesenteric arteries from Bu-Cy treated mice 

was larger compared to the IC obtained from the corresponding segment from the 

controls (Figure A). However, there was no difference between the groups in IC of the 

aorta. The micro vessels from the Bu-Cy treated group were larger and slightly stiffer 

than those of the control group as showed by the extrapolation between tension and IC 

to zero positive tension and the determination of the reference slack IC (ICref) (Figure 

14 B). The relationship between passive tension (PT) and IC/ICref was non-linear with a 

higher stiffness (i.e. the steepness of the relationship between IC/ICref and PT) in the 

Bu-Cy group. The IC/ICref at the optimal length for active force was significantly 

(P<0.001) lower in the Bu-Cy group compared to the control group (Bu-Cy: 1.52 ± 

0.03, n=6 and controls: 1.93 ± 0.06, n=4). The extrapolated curve is illustrated in Figure 

14.  

 

4.3.2 Pharmacological effects 

The aorta from Bu-Cy treated mice had a higher sensitivity to noradrenalin (Figure 15 

B). However, there was no significant difference observed in the noradrenalin reactivity 

of the mesenteric arteries. This result showed that there were no major alterations in the 

contractile adrenoceptor signaling in the mesenteric arteries.  

Acetylcholine, sodium nitroprusside and forskolin relaxant agonist effects were also 

investigated in mesenteric arteries and aorta from the Bu-Cy conditioned mice and the 

control group. Acetylcholine induces endothelium dependent relaxation and sodium 

nitroprusside (SNP) directly activates the relaxant nitric oxide dependent pathways 

A B 
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Figure 16: cAMP and cGMP relaxation pathways 

while forskolin directly activates cyclic adenosine-monophosphate (cAMP) dependent 

relaxation. The mesenteric arteries from Bu-Cy treated mice had a higher sensitivity to 

acetylcholine (Figure 15 A) while there were no significant differences between the Bu-

Cy treated group and the control regarding the response to SNP and forskolin. There 

was no significant difference in the three relaxant agonists in the aorta between 

the two treated groups (Figure 16). In summary, the Bu-Cy treatment enhanced 

endothelium mediated relaxation in microarteries but did not change relaxation 

properties of the aorta. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: A; acetylcholine relaxation steps (mesenteric arteries) and B; noradrenalin 

contraction steps (aorta) from Bu-Cy treated mice (filled symbols) and controls (open 

symbols). 

 

 

4.3.3 Bu-Cy Effect on endothelial cells and nitric oxide  

As mentioned above we 

found higher relaxation 

response to acetylcholine in 

the Bu-Cy treated group 

compared to the control. We 

found that the effect was 

due to the increase in eNOS 

levels as assessed by the 

mRNA and the protein 

expression (Figure 17). 

There were no signs that 

cGMP or cAMP pathways 

were involved. Thus, 

endothelial cells, but not 

smooth muscles, were 

involved in Bu-Cy effect on 

arteries. Figure 16 is a schematic diagram showing the acetylcholine, cGMP and cAMP 

relaxation pathways.  
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Figure 18: Electron microscope picture for control (A) and Bu-Cy treated group 

(B). Arrow (gaps), E (endothelial cells), SMC (smooth muscular cell), * (elastic 

fibers and the bars = 2 µm 

Figure 17: eNOS protein expression in microarteries (M.A.) and aorta of Bu-Cy 

treated (filled bars) and control (open bars) animals. Western blot analyses were 

normalized to β-actin.  

 

 

The electron microscope confirmed the endothelial injury. The endothelial cells were 

detached from the extracellular matrix which disrupted the cell to cell contact (Figure 

18).   
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Table 2: Effect of omega-3 food supplement on mouse weight during Bu-Cy 

conditioning (O3= Omega-3; Std=Standard food; Crn= corn oil; x=versus)  

4.4 STUDY IV 

4.4.1 Animal weight 

The mice in the omega-3 group gained more weight before the start of the conditioning 

regimen compared to the other two groups. The mice in the corn oil group also had a 

higher increase in weight compared to the mice in the standard food group. Bu-Cy 

conditioning regimen resulted in significant weight loss in omega-3, corn oil and 

control groups. However, the weight loss during the conditioning regimen was higher 

in the omega-3 group than in the group of mice that were fed standard food. The corn 

oil also presented similar results, but to a lesser extent compared to the omega-3 group. 

The reduction in weight was greater in the omega-3 group during the standard 

conditioning regimen, but there were no significant differences in weight reduction of 

mice treated with the reduced intensity conditioning regimen and short or long term 

feeding. In contrast, the eight week feeding resulted in a higher reduction of weight in 

the corn oil fed mice during the Bu-Cy standard conditioning.   

 

Food supplement  (D -21) (D -21) to (D -7) % (D -7) to (D 0) % 

Omega-3 20.06 ± 0.51 (n = 20) 9.09 ± 1.17 (n = 20) -18.25 ± 1.29 

Corn oil 20.27 ± 0.59 (n = 20) 7.05 ± 1.39 (n = 20) -16.85 ± 1.01 

Standard  20.53 ± 0.49 (n = 20) 4.59 ± 1.12 (n = 20) -12.40 ± 1.18  

Ttest (O3 x Std) P =0.52 P =0.01 P =0.002 

Ttest (Crn x Std) P =0.74 P =0.18 P =0.01 

4.4.2 Cellularity  

4.4.2.1 BM and spleen cellularity 

The cellularity of bone marrow did not differ significantly between the three groups in 

the short or long term feeding when the mice received standard Bu-Cy conditioning. 

 

However, the group fed omega-3 had significantly lower BM cellularity when the mice 

had received reduced intensity conditioning with long term feeding compared to the 

standard food and to corn oil. The spleen cellularity was lower in both PUFA fed 

groups compared to the control in standard Bu-Cy conditioning. However, spleen 

cellularity from the omega-3 and corn oil fed groups was lower in the long term feeding 

and the standard intensity conditioning compared to the standard food group (Figure 

19).  
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Figure 19: BM and spleen cellularity. A, B: short term feeding and RIC regimen; 

C, D: long term feeding and RIC; E, F: short term feeding and standard Bu-Cy 

conditioning and G, H: long term feeding and standard Bu-Cy conditioning 

Figure 20: CD11b+ cells from standard Bu-Cy conditioning. A, B; short  

term feeding; C, D: long term feeding. * represents significant findings 

 

4.4.2.2 Subpopulation cellularity  

CD11b+ myeloid cell population was significantly lower in the group of omega-3 fed 

mice compared to the other groups. The result was significant in short and long term 

feeding. It was also significant in reduced intensity conditioning. However, there was 

no significant difference in CD11b+ cells between the three supplements without Bu-

Cy conditioning regimen (Figure 20). CD11c+CD86+ dendritic cells were also 

significantly reduced in mice fed omega-3 and given Bu-Cy conditioning. The effect of 

omega-3 on CD11c+CD86+ cells was significant in long and short term feeding 

(Figure 21).  

There was no significant difference in memory and naïve T cells between the three 

groups in the short term feeding with the standard conditioning regimen; however, 

omega-3 significantly reduced both memory and naïve CD8+ T cells in long term 

feeding.  
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Figure 21: CD11cCD86+ cells from spleen after RIC (A, B), standard Bu-Cy 

conditioning (C, D). A, C; short term feeding; B, D: long term feeding.  

* represents significant findings 

Figure 22: CD4+CD25+FoxP3+ T cells from spleen after RIC (A, B), standard 

Bu-Cy conditioning (C, D). A, C; short term feeding and B, D: long term feeding. 

* represents significant findings 

 

 

4.4.3 Regulatory T cells and MLC 

CD4+CD25+FoxP3+ regulatory T cells were significantly lower in the group of 

omega-3 fed mice which either received the Bu-Cy conditioning regimen (Figure 22) or 

in the group that was given the food without conditioning. To test if the effect was only 

on cell number or if it also affected function, we assessed this effect using mixed 

lymphocyte culture. The result of this experiment showed a slight effect of omega-3 on 

the Treg function. The ratio of 1:1 responder cells to Treg cells showed no obvious 

difference on Treg suppression between the three groups. However, as the Treg cells 

decreased, the difference between the three groups increased to the lower suppression 

of Treg cells in the omega-3 group. 

 

   

4.4.4 Busulfan effect on CFU-GM 

There was no significant difference in busulfan toxicity on CFU-GM between the 

omega-3, corn oil and standard food groups.  
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Figure 23: Survival analysis for mice fed omega-3, corn oil or standard food for three 

weeks before HSCT. The mice received standard Bu-Cy conditioning. Administration 

of the three food supplements continued after HSCT.  

4.4.5 GVHD and animal survival 

The mice fed omega-3 had a lower survival rate compared to the mice fed corn oil or 

standard food (Figure 23). Moreover, the mice in the omega-3 group had severe 

diarrhea. The mice in this group presented signs of GVHD as described in the method 

section. The corn oil group also had lower survival compared to the standard food. 

However, the mice in corn oil group did not show obvious sign of GVHD. BM and 

spleen chimerism from the omega-3 showed higher engraftment compared to the corn 

oil and the control group. The mice from the corn oil group which died had the lowest 

cell engraftment among the three groups.    
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5 DISCUSSION  

HSCT is the treatment of choice for many diseases. Despite continuous development of 

this procedure, HSCT is still limited by life threatening complications. Conditioning 

regimen is an important part of HSCT. A majority of the experimental studies are based 

on irradiation conditioning regimen, despite the fact that about 50% of the patients 

undergoing HSCT receive chemotherapy as a conditioning regimen. The studies 

discussed in this thesis were based on busulfan and cyclophosphamide conditioning. 

The rationale was the common use of this regimen in HSCT setting. As well as being 

used as a conditioning regimen for HSCT, these two drugs are also used for the 

treatment of some diseases; cyclophosphamide, for example, is also used in cancer 

treatment. Thus, studying their action and toxicity in HSCT will also benefit their use in 

other applications. Our studies focused on conditioning related toxicities and factors 

that may affect HSCT outcome. 

In the first study we investigated the early pathophysiological events in GVHD. The 

Bu-Cy dose used in this study was myeloablative and resulted in over 95% elimination 

of BM cells. The conditioning is considered immunosuppressive with its reduction of 

over 60% of total splenic cells indicating that T cells might be more resistant to the 

chemotherapy. T cells were reduced by 30 %, while B, NK and DC cells decreased by 

more than 70%. Cytokine production was not high at day 0 (day of transplantation) but 

reached maximum levels at day +5 after HSCT. At this point, a high T cell proliferation 

could also be seen. This might to some extent distinguish between radiotherapy and 

chemotherapy conditioning; high levels of cytokines have been reported after 

irradiation conditioning [100, 307]. Since the levels of inflammatory cytokines were 

low on the day of transplantation compared to those reported in irradiation conditioning 

and high on day +5 in Bu-Cy conditioning, we can conclude that the cytokines are less 

involved in the development of GVHD when Bu-Cy conditioning has been used 

compared with irradiation. It might also suggest that Bu-Cy conditioning has delayed 

tissue injury compared to the irradiation conditioning.   

 

As we reported in this study, the increase of NK and DC cells soon after transplantation 

showed the importance of these cells in the early stages of the inflammatory process, 

which could influence the establishment of the GVHD. These two populations reached 

their peak of expansion at day +3, which was also the start of T cell proliferation. The 

expansion of T cells reached its first maximum peak at day +5. Most of these T cells 

were of donor origin and the majority of them were CD8+ cells. This process was seen 

at the same time as two other observations were made. The first of these was the 

highest expression level of IL-2, TNF-α and INF-γ inflammatory cytokines. The second 

observation was the clinical symptoms of GVHD. GVHD is initiated by injury from the 

conditioning regimen. The second signal is from the expansion of the innate immune 

system followed by the adaptive immune system. Thus, the increase of antigen 

presenting cells (APC) soon after HSCT is an important signal for the production and 

proliferation of T cells as well as the increase of inflammatory cytokines. Although 

DCs on day +1 were mainly from the host, the high level at day +3 was of donor origin. 

Interestingly, the ratio of naïve to effector memory T cells was decreased, which means 

that by the time, the effector memory T cells were increasing. This indicated the 
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existence of GVHD. The allogeneic setting induced the inflammatory response that was 

absent in the syngeneic setting.        

   

In the second study we investigated the histopathological changes in the allogeneic 

HSCT process at different time points from the beginning of the conditioning regimen 

to 21 days after stem cell transplantation. This study showed that the damage caused by 

the Bu-Cy conditioning regimen and GVHD are affecting different tissues by different 

severity grade. The study has showed that some tissues are sensitive to the Bu-Cy 

conditioning regimen, whereas others may be less sensitive to the treatment. GVHD 

has also been shown to have selective mediation to different tissues. This indicates that 

unaffected tissues have a protective or a fast repairing mechanism. As reported, the 

liver is one of the target organs [308-309]. We also observed tissue damage starting 

from the conditioning regimen and being enhanced by the allogeneic HSCT. A similar 

pattern was observed in the spleen where some chemotherapy toxicities (later enhanced 

by the allogeneic transplantation) were detected. We did not detect morphological 

changes in the pancreas and the heart after the conditioning regimen, but both organs 

exhibited some degree of damage during GVHD development. However, the damage in 

these organs was lesser than that found in the liver and the spleen. In contrast to the 

above four tissues, there was no morphological change detected in the kidney after Bu-

Cy conditioning regimen and allogeneic HSCT.  

It is possible that the Bu-Cy conditioning has no histopathological toxicity on the heart, 

pancreas and kidney or that the damage was minor and hence could not be detected by 

morphological changes. Moreover, most of the Bu-Cy toxicity reported might be 

caused by cylophosphamide, which might explain the obvious damage to the liver as 

Cy is metabolized mainly there [310-312]. However, this could not explain why the 

kidney was not damaged by this regimen – after all, it filters the excessive metabolites, 

although majority of them are inactive [313]. Although the mice were of inbred strain, 

there were great inter-individual differences after chemotherapy and HSCT. It is 

important to understand the pathophysiology of GVHD, and it is also of importance to 

understand the mechanism of its progression. The highest amount of damage found 

after HSCT developed mainly in the first week as shown previously [314].  

 

Long-term cardiovascular toxicity after HSCT has been reported [286, 315]; however, 

the early effects of conditioning and HSCT on the arterial system [286] have not been 

yet elucidated. Hence, the third study focused specifically on Bu-Cy toxicity on the 

arterial system.  

We selected the mesenteric arteries and the aorta to study the effect of Bu-Cy 

conditioning on the vascular system according to their impact in cardiovascular 

diseases. Micro-vessels (also called resistance vessels) have a small diameter and direct 

the blood to different organs. Defective micro-vessels may lead to organ dysfunction. 

Mesenteric arteries are micro-vessels located in the mesentery which contribute to 

peripheral resistance. The aorta is the large artery which passes the blood to major 

organs. Effects on aorta elasticity also have an impact on heart function [316]. 

Although the initial internal circumference (IC) of aortas from Bu-Cy treated mice was 

not significantly different from the control, the stretched aortas had a smaller IC 

compared to the control. This means that aortas from Bu-Cy conditioned mice had 

lower elasticity, which might have an impact on the other observation in the mesenteric 

arteries: the initial IC was larger in the Bu-Cy group compared to the control. This 
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could be the result of a compensation mechanism. The mesenteric arteries from the Bu-

Cy treated mice were more sensitive to acetylcholine compared to the control. The 

larger IC and the increased relaxation with acetylcholine lowered the blood pressure. 

This result also supported the increased heart rate that was found in the Bu-Cy treated 

group. The increased heart rate was possibly a compensatory mechanism for the lower 

systemic blood pressure.        

The mesenteric arteries from the Bu-Cy group had a higher production of endothelial 

nitric oxide (eNOS), which might explain the mechanism behind the increased 

sensitivity to acetylcholine dependent relaxation. The cAMP and cGMP pathways were 

not affected by the Bu-Cy conditioning, excluding smooth muscle defect as the source.  

Mesenteric arteries from Bu-Cy treated mice showed a higher level of the mRNA and 

the eNOS gene as well as protein expression from both genes respectively. An 

increased level of nitric oxide [317] and a larger internal circumference might also 

decrease the blood pressure, which we found in another set of experiments after Bu-Cy 

conditioning. Although nitric oxide deficiency is associated with some diseases [318-

319], a high level of nitric oxide could also exert toxicity [320]. The electron 

microscope examination showed damaged endothelial layers in the mesenteric arteries 

and a decrease in cell to cell contact. The defects in endothelial cell to cell contact 

affect different features of vascular homeostasis, which in turn affects different 

processes such as the permeability of the vessels and the infiltration of leukocytes to the 

inflamed tissues [321]. The damage to the endothelial cell layers might also affect 

organ perfusion (and thus long term function) to some degree. The Bu-Cy conditioning 

had less effect on the physiological properties of the aorta compared to its effect on the 

mesenteric arteries. However, the higher sensitivity of the aorta to noradrenalin may 

also reflect damages to the endothelium [322]. The results of this study indicate an 

early change in the vascular system that may influence later development of 

cardiovascular disease after HSCT. 

The fourth project investigated the effect of omega-3 on the Bu-Cy conditioning 

regimen and on GVHD development after allogeneic HSCT. Omega-3 effects were 

reported in different types of diseases, especially inflammatory and autoimmune 

diseases [245]. Omega-3 has been reported to modify the effect of several drugs used in 

cancer chemotherapy and the treatment of other diseases. Omega-3 has been reported to 

enhance the treatment of breast cancer [323] and to decrease tissue damage after 

irradiation [324]. From these studies and others, it seems that omega-3 enhances the 

efficacy of chemotherapy and also has beneficial effects on life quality in general [325]. 

Although the beneficial effects of omega-3 on cancer and chemotherapy have not been 

fully elucidated, they are some reported pathways. Omega-3 may increase the efficacy 

of chemotherapy without damaging the normal cells by reducing the oxidative stress 

caused by the therapeutic agents and by changing the fat composition of the cells. DHA 

and EPA, two major omega-3 derivatives, are reported to inhibit eicosanoid synthesis 

from the AA [326] and reduce the COX-2 expression [327]. The competitor properties 

of EPA and DHA to AA reduce the inflammatory condition through a decrease in the 

inflammatory mediators LTB4 and PGE2. The EPA and DHA may work as substitutes 

for cytochrome P450 (CYP) AA dependent metabolites and hence reduce toxicity 

caused by eicosanoids [328].       

Despite extensive studies of omega-3 and its role in disease pathophysiology, 

prevention and treatment, their mechanism of action is still not well understood. The 

HSCT procedure is complex, involving donor and recipient immune systems, 



 

  51 

immunosuppressive drugs to prevent and treat rejection and GVHD, drugs for 

treatment of other complications and frequently limited food intake. This complexity 

makes it hard to evaluate the effect of food supplements on chemotherapy and HSCT in 

clinical settings. Thus, we used the established mouse model which, to a certain extent, 

limits the number of variables compared to human transplantation. The food was 

supplemented for three weeks and two months in order to evaluate the benefits of short 

and long term feeding, respectively. Since the use of reduced intensity conditioning is 

common, we also studied the effects of omega-3 in combination with RIC. This might 

also reveal the effects of omega-3 which had been hidden by myeloablative 

conditioning. However, standard dose Bu-Cy conditioning was used with all 

transplantation experiments.  

CD4+CD25+FoxP3+ regulatory T cells were significantly lower before the 

conditioning regimen in all groups and after the conditioning in the omega-3 fed group. 

It was reported that Cy selectively depletes Treg cells [329-330] and that Cy 

immunosuppressive properties were enhanced by EPA [239]. Hence, omega-3 is seen 

to suppress the Treg cells independent of conditioning regimen. Moreover, in the 

conditioning there was a dual effect resulting from the direct effect of omega-3 and the 

Cy enhancement effect. We then evaluated if omega-3 decreased the number of Treg 

cells and if it also diminished their suppressive function. The results showed that there 

was minor effect when the ratio of Treg to responder cells was even (i.e.1: 1). This 

effect was more obvious in the decreased number of Treg cells in omega-3 fed mice 

compared to those fed corn oil and standard food respectively. We conclude that 

omega-3 significantly deteriorates the number of Treg cells, but has only a slight effect 

on their suppressive properties. Treg cells are known to suppress cytotoxic T cell 

activity [331].  

Omega-3 supplementation for three weeks, including the period of Bu-Cy conditioning, 

augments GVHD. The effect stemmed from the enhancement of the myeloablative 

effects of Bu-Cy conditioning through a decrease in the number of CD11b+ cells. The 

effects of omega-3 also stemmed from the reduction of activated dendritic cells, which 

are reported to play an important role in the initiation of GVHD [314]. Thus, omega-3 

enhanced Bu-Cy conditioning and resulted in a more rapid death of the mice in the 

omega-3 fed group compared to the corn oil and standard food groups. The corn oil 

group also showed a higher death rate after HSCT as compared to the mice in the 

standard food group. However, the mice in the omega-3 group started to have diarrhea 

and display standard signs of GVHD early on, while the mice in the corn oil group 

showed a sign of anemia. The result was also confirmed by the full cell engraftment of 

the bone marrow and spleen in the omega-3 group. In contrast, the spleens from the 

corn oil group had a lower amount of donor cells. We also conducted another 

experiment where the donors were fed omega-3 before transplantation. The overall 

survival increased in the omega-3 recipient group, and was close to that in the standard 

food group. The mice in the corn oil group also had a slight improvement in survival. 

One of the transplanted groups that received HSCT from omega-3 fed donors and 

continued with omega-3 after the transplantation showed survival similar to that of the 

mice in the standard food group. Moreover, the mice in this group were more active 

compared to other groups.  The results from this study showed that omega-3 augments 

GVHD through the enhancement of Bu-Cy conditioning and by suppressing the 

regulatory T cell numbers and functions. Moreover, omega-3 may help to suppress 

inflammatory reactions in recipients that survive the acute phase of GVHD. 
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6 CONCLUSIONS AND FUTURE PERSPECTIVES 

 Our stem cell transplantation mouse model following busulfan-

cyclophosphamide (Bu-Cy) conditioning is a reliable model for studying 

several factors that are involved in the development of graft versus host 

disease after chemotherapy. It is also a useful model for evaluating different 

agents in the treatment of GVHD. All studies in this thesis utilized this model.  

 Naïve T cells undergo early allo-activation by host/donor APCs in the 

secondary lymphoid organs to produce effector/memory T cells that initiate 

tissue damage in GVHD.  

 Decreased spleen cellularity and diminished glycogen content in the liver 

were observed after conditioning regimen. No morphological changes were 

observed in kidney in either HSCT setting.  

 Histopathological changes such as vasculitis, inflammation and apoptotic cell 

forms in liver, spleen, pancreas, lungs and heart were observed in allogeneic 

transplanted mice, however, only hypocellular spleen and extramedullar 

hematopoiesis were detected in syngeneic transplanted animals.  

 Short term consequences of Bu-Cy treatment divergently affect large and 

small arteries of the cardiovascular system.  

 The increased noradrenaline reactivity of large elastic arteries was not 

associated with increased blood pressure. Instead, Bu-Cy treatment lowered 

blood pressure via augmented microvascular endothelial dependent relaxation, 

increased expression of vascular eNOS and remodeling toward a larger lumen.  

 The changes in microarterial properties can be associated with direct effects of 

the compounds on vascular wall or possibly indirectly induced via altered 

translational activity associated with the reduced hematocrit and shear stress. 

 Omega-3 as food supplement enhances graft versus host disease (GVHD) 

through a suppression of the regulatory T cells in mice receiving Bu-Cy 

conditioning regimen. 

 Omega-3 intake caused an enhancement of Bu-Cy conditioning regimen 

myeloablation and toxicity. 

 Corn oil as food supplement decreased the cell engraftment which led to BMT 

rejection or death from anemia. 

 

1. Further evaluation of the vascular system after HSCT is warranted, including 

the effects of aGVHD and cGVHD. Effects of the Bu-Cy conditioning need to 

be studied in vessel segments from different organs. 

2. More studies are needed to evaluate the effect of long term intake of omega-3 

in HSCT setting. This is an important issue for patients undergoing HSCT. 

3. General studies to evaluate the effects of omega-3 on the vascular system in 

combination with different conditioning regimens are warranted.  

4. Moreover, the effects of diets in general in conjunction with HSCT might play 

an important role in the clinical outcome and have to be investigated.  
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9 ABSTRAKT 
Hematopoietisk stamcellstransplantation (HSCT) är en botande behandling för ett 
flertal maligna och icke-maligna sjukdomar. Tyvärr begränsas dess användbarhet av 
transplantationsrelaterade komplikationer och dödlighet. Komplikationerna kan orsakas 
av olika faktorer inklusive förbehandlingsrelaterad toxicitet och allogeneicitet. Trots att 
50 % av transplantationspatienterna förbehandlas med cellgifter, baseras de flesta 
transplantationsmodeller på förbehandling med strålning. I försöken i denna avhandling 
använde vi en musmodell som innebär HSCT efter förbehandling med busulfan-
cyklofosfamid (Bu-Cy) för att undersöka de mekanismer och faktorer som kan påverka 
graft versus host disease (GVHD) och/eller behandlingsrelaterad toxicitet, vilket kan 
påverka transplantationsresultatet.    
Studie I: Denna studie formgavs för att undersöka tidig celldynamik under 
utvecklandet av GVHD efter allogeneisk HSCT. Vi fann en tidig expansion och 
aktivering av dendritiska celler (DCs) som nådde sin höjdpunkt på dag +3 post HSCT. 
T-cellsexpansionen startade senare och nådde sin höjdpunkt på dag +5 post HSCT. 
Majoriteten av dessa celler var CD8+ celler från donatorn. De inflammatoriska 
cytokinerna (IL-2, INF-γ och TNF-α) nådde också maximala nivåer på dag +5 efter 
transplantationen. Resultaten visade på den viktiga roll som donatorns DCs spelar i 
utvecklingen av GVHD.    
Studie II: Vi studerade tidiga histopatologiska förändringar i organen vid olika 
tidpunkter efter förbehandling samt utvecklingen av GVHD fram till dag +21 efter 
transplantation. Studien visade att levern och mjälten var de organ som påverkades 
mest, medan inga morfologiska effekter syntes i pankreas, hjärtat, lungorna eller 
njurarna efter förbehandlingen. Histopatologiska förändringar såsom vaskulit, 
inflammation och apoptotiska cellformer i levern, mjälten, pankreas, lungorna och 
hjärtat observerades under utvecklingen av GVHD; hypocellulär mjälte och 
extramedullär hematopoies syntes däremot bara hos syngeneiskt transplanterade djur. 
Inga morfologiska förändringar kunde observeras i njurarna vid endera sortens HSCT. 
Dessa resultat kan vara till hjälp i våra försök att förstå de mekanismer som ligger till 
grund för utvecklingen av GVHD.     
Studie III: Vi undersökte den toxiska effekt som förbehandling med Bu-Cy kan ha på 
artärerna. Vi fann att förbehandlingen förstärkte acetylkolinavslappning i de 
mesenteriska artärerna genom ett ökat uttryck av kväveoxid i endotheliet. I motsats till 
detta var aortans känslighet för acetylkolin ungefär densamma i den grupp som 
förbehandlats med Bu-Cy och hos kontrollgruppen. Aortor från cytostatikabehandlade 
djur visade däremot en högre känslighet för noradrenalin. De djur som behandlats med 
Bu-Cy hade lägre blodtryck, lägre hematokrit och större skador på endotheliet jämfört 
med kontrollgruppen. Dessa resultat kan vara användbara för att utveckla profylaktisk 
behandling för kardiovaskulära komplikationer. 
Studie IV: Vi studerade effekten av omega-3 på förbehandling med Bu-Cy och på 
resultatet av allogeneisk HSCT med fokus på GVHD. Vi använde majsolja och 
standardfoder till kontrollgrupperna. De möss som fick kost som berikats med omega-3 
hade den lägsta överlevnadsfrekvensen och visade tidiga tecken på GVHD. Omega-3 
förstärkte effekten hos förbehandlingen genom att förhöja dess myeloablativa 
egenskaper, förminska uttrycket av CD4+CD25+FoxP3+ T celler och begränsa dessas 
funktion. En lägre förekomst av GVHD och en högre avstötningsfrekvens kunde ses 
hos kontrollgruppen som åt majsolja. Den högre mortalitetsfrekvensen hos den grupp 
som åt omega-3 kan förklaras av en förhöjd myeloablativ effekt och ökad förekomst av 
grav akut GVHD. 
 
Sammantaget kan dessa studier förbättra vår kunskap om GVHD och 
förbehandlingsrelaterad toxicitet. Behandlingsstrategier kan förbättras, vilket också kan 
leda till bättre resultat av HSCT. 


