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1 INTRODUCTION

1.1 KLOTHO, A MULTIFUNCTIONAL ANTIAGING PROTEIN

1.1.1 Discovery of the Klotho gene
In ancient Greek mythology, Klotho (Clotho, Nona) is the goddess who swirls the

strands of life and presides over birth and death. In biology, the name Klotho was
initially considered as an ‘anti-ageing’ gene that was unintentionally identified by
Kuro-o and colleagues in 1997[1]. Upon studying on transgenic mice with random
mutations in a sodium-proton exchanger, these investigators discovered a mutant
mouse that exhibited characteristic phenotypes similar to human aging (e.g., a shorter
lifespan, atherosclerosis, vascular calcification, osteoporosis, diabetes mellitus type 2
and skin atrophy) [1]. Since all these phenotypes appeared with 100% penetrance
only in mice homozygous for the transgene, they coined “Klotho” as the name for the
involved gene [1]. In contrast to the Klotho-defective mutant mice, Klotho-
overexpressed transgenic mice exhibited an extended lifespan, speculatively through
the suppression of insulin/IGF1signaling [2]. Therefore, the Klotho gene is

considered to be an anti-aging gene [2].

1.1.2 Structure and isoforms of Klotho

The human Klotho gene is located on chromosome 13, whereas in the mouse and rat,
the locus of the Klotho gene is located on chromosome 5 and 12, respectively [3]. In
these three species, the Klotho gene contains five exons and four introns, which
transcribe 3036 (humans), 3042 (mice), and 3042 (rats) nucleotide mRNAs [3]. In the
mouse and human, the third exon of Klotho gene contains an alternative splicing donor
site. which allows the generation of two different transcripts: one that encodes a

transmembrane form consisting of 1014 amino acids (full length transcript) and the



another one that encodes a secreted form of 550 amino acid (truncated transcript)
(Figure 1) [1, 4, 5]. The former form of Klotho is a 130 KDa membrane-bound protein
(mKL) consisting of an N-terminal signal sequence, two large extracellular domains
(KL1 and KL2), a single transmembrane domain and a short intracellular domain
(Figure 1). It is worth noting that the circulating isoform of Klotho (cKL) is cleaved
from the cell membrane isoform by proteolytic cleavage (Figure 1) and released into
extracellular fluids, including blood, urine, and cerebrospinal fluid. This process is
mediated by the alpha-secretases (ADAM10 and ADAM17) as well as the beta-
secretase, BACE [6]. Once shedded, cKL exerts endocrine effects on its own, although

the underlying mechanisms are not fully clarified.

mKL cKL sKL

KL1 KL1
P cut
Afematie spiicing
KL2
o cut
Proeohtic cleavage

Figure 1. Klotho has three isoforms: a membrane-bound form (mKL), a circulating

form (cKL) and a truncated form generated through alternative splicing (SKL).

1.1.3 Organ localization of Klotho expression and source of soluble
Klotho
In the mouse, the membrane-bound Klotho is predominantly expressed in the kidneys,

parathyroid glands and choroid plexus of the brain and at lower levels, in the placenta,
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skeletal muscle, urinary bladder, aorta, pancreas, testes, ovary, colon, and thyroid gland
[1]. The expression of Klotho in human choroid plexus has not been investigated yet.
Based on the degree (intensity) of expression, tissue expression of Klotho is generally
classified into three categories, i.e., the kidneys, parathyroid glands, choroid plexus,
and sinoatrial node are classified as highly Klotho-expressing tissues [5]. On the other
hand, the brain, eye, inner ear, endocrine system, lungs, parts of the gastrointestinal and
genitourinary tracts, and placenta are nominated as intermediate—low Klotho-
expressing tissues; and finally, the bones, skin, adipose tissue, liver, spleen, heart,
blood and immune cells are considered as low-absent Klotho-expressing organs [5].
There are conflicting data regarding Klotho expression in arteries [7, 8].

Since the membrane-bound Klotho is highly expressed in the kidney, it has been
suggested that the same organ is the main source for cKL and sKL as these isoforms of
Klotho appear in the circulation, urine and CSF as a result of either cleavage of
membrane-bound Klotho, or alternative gene splicing [9, 10]. In the kidney, Klotho is
mostly expressed in the distal tubules and to a low extent in the proximal tubules. In
fact, it has been shown that proximal-tubule knockout mice do not exhibit any
significant reduction in the serum Klotho levels [11]. A possible reason for this could
be that the deletion in the proximal tubule might not be sufficient to lower the serum
levels of this protein as other Klotho-expressing tubules in the kidneys or extra renal
tissues might trigger a compensatory up regulation to maintain a constant shedding rate

of Klotho.

1.1.4 Mode of action of Klotho isoforms

The three Klotho isoforms can have distinct functions. mKL is identified as a
permissive co-receptor/co-factor for fibroblast growth factor 23 (FGF23); upon

interaction with this hormone, mKI plays a key role in the regulation vitamin D



biosynthesis and in phosphate and calcium homeostasis [3, 12]. In contrast to mKL’s
role as a co-receptor, cKL functions as an independent endocrine factor [13, 14].
Recent studies have revealed that cKL antagonizes TGFp, Wnt, tumour necrosis factor
alpha (TNF-a) and insulin/IGF1 signaling and thereby protects against renal and
cardiovascular stress, amongst other disorders [13, 15-18]. With respect to sKL, the

biological relevance of this isoform is largely unexplored.

1.1.5 Regulation of Klotho
Klotho regulation remains to be comprehended entirely. However, it has been shown

that the promoter region of the-Klotho gene contains vitamin D-responsive elements
which suggest that Klotho expression can be upregulated by vitamin D. Indeed, in line
with this suggestion, in vivo and in vitro studies have shown that treatment with vitamin
D increases the expression of Klotho while decreasing aortic calcification in mice with
chronic kidney disease [19, 20]. Similarly, mice on a low phosphate diet show
enhanced Klotho expression [21]. From this observation, it can be inferred that a high
amount of phosphate would actually reduce Klotho expression. Similarly, Klotho
expression can be reduced under the effect of several other factors, such as calcium,
inflammation, uremic toxins, FGF23 and oxidative stress [15]. The upstream regulators

of Klotho shedding and alternative splicing is yet to be resolved.

1.2 THE ROLE OF KLOTHO IN FGF23 HORMONE SIGNALLING

1.2.1 Structure and function of FGF23

The fibroblast growth factors (FGFs) are a highly conserved family of proteins that by
their function can be divided into intracellular, canonical, and hormone-like FGFs. The
human/mouse FGF gene family consisting of 22 members, from FGF1 to FGF23.

These 22 genes encode molecules that can bind to one or several of the fibroblast
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growth factor receptors (FGFRs) [22]. The human FGF23 gene is located on
chromosome 12p13 and composed of three exons. It encodes a 32kDa glycoprotein,
which consists of 251 amino acids [23]. In contrast to the location of the human FGF23
gene, the mouse FGF23 gene is located on chromosome 6 and shares 72% amino acid
identity [23]. Due to the lack of a heparin binding sequence in the FGF23 gene, it
functions as an endocrine factor [24]. The FGF23 is a circulating protein mainly
produced in the skeleton, more specifically in the osteocytes and osteoblasts and
expressed in the bone and, to a much lower extent, in the thymus, brain, and heart [23,
25, 26]. In contrast to most other FGFs, it is a secreted factor with endocrinal actions
mainly targeted at the kidneys and parathyroid glands. In the kidneys, FGF23 inhibits
tubular reabsorption of inorganic phosphate (Pi) by reducing the expression level and
increasing the internalization of sodium-dependent Pi co-transporters (Npt2a and c),
thereby leading to increased phosphaturia and a subsequent reduction in systemic Pi
level [25]. Additionally, FGF23 is a potent regulator of key enzymes in vitamin D
metabolism, leading to diminished synthesis and enhanced degradation of vitamin D,
which results in reduced circulatory levels of 1,25-dihydroxy vitamin Ds. In the
parathyroid glands, FGF23 inhibits mRNA synthesis and protein secretion of the
parathyroid hormone (PTH) [27, 28]. Accordingly, FGF23’s net effect is a reduction of

extra-cellular concentrations of Pi, vitamin D, PTH, and, indirectly, calcium.

1.2.2 Animal models and diseases-related to FGF23

When administered intravenously or when transgenically overexpressed in mice,
FGF23 leads to hypophosphatemia due to increased wastage of renal phosphate,
accompanied by a decrease in the levels of circulating 1,25(0OH),D (as well as PTH in

the short term) [29-31]. Patients with enhanced levels of FGF23 demonstrate a similar
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phenotype, either in the form of abnormal processing (for instance, in autosomal
dominant hypophosphatemic rickets, OMIM #193100 and ADHR), regulation (X-
linked hypophosphatemic rickets, OMIM #307800 and XLH) or ectopic production
(tumor-induced osteomalacia, TIO) [25, 32, 33]. Along with this, overexpression of
FGF23 in mice has been observed to lead to a reduction in bone mineral density and to
retardation in growth [34]. Conversely, FGF23 knockout mice or humans with
homozygous missense mutations in FGF23 (for instance, hyperphosphatemic familial
tumoral calcinosis in HFTC OMIM #21900) demonstrate the adverse effects of an
opposing phenotype with hyperphosphatemia, hypercalcemia, high serum 1,25(0OH),D

levels and soft-tissue calcifications [35, 36].

1.2.3 Fibroblast growth factor receptors

In case of the kidneys and parathyroid glands, FGF23 binds with FGFRs and activates
the MAPK/ERK pathway. FGFR binding requires the presence of Klotho, as an FGF23
co-receptor [37]. Klotho enhances FGF23’s affinity to multiple FGFRs— FGFR1, 3
and 4 being most important among them—by forming Klotho—-FGFR binary
complexes. The fact that Klotho knockout mice express a phenotype identical to that of
the FGF23 knockout mice amply illustrates Klotho’s importance as a co-receptor; they
also exhibit hyperphosphatemia, high serum 1,25(0OH),D levels, infertility, growth
retardation, shortened lifespan and ectopic calcifications, a 1000-fold or more increase

in circulating FGF23 levels notwithstanding [1] .

1.2.4 Klotho and FGF23 signaling
In order to understand how as a hormone, FGF23 exerts its biological activities, it is
necessary to elucidate the operative receptors that mediate FGF23 signaling. Although

initial studies failed to determine a specific receptor for FGF23, a significant
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development made by Urakawa et al., who showed that membrane-bound Klotho by
interacting with FGF-receptor 1 functions as an actual FGF23-receptor [38]. Being
more specific, Klotho acts as a permissive cofactor for FGF23 and designates the tissue
specificity of this hormone. In fact, the significance of Klotho in mediating FGF23
signaling is exhibited in Klotho null mice, i.e., these animals despite having high levels
of circulatory FGF23, show biochemical characteristics which are identical to those of
FGF knockout mice [38]. Thus, current data support that FGF23, at least in physiology,

is unlikely to exert biological effects without the presence of Klotho.

1.2.5 The role of FGF23/Klotho axis in mineral metabolism and
homeostasis

1.2.5.1 Mineral metabolism and homeostasis

Calcium and phosphorus are crucial to life, and they are involved in many biological
and physiological processes, including maintenance of bone structure, intracellular
signaling and energy metabolism. Mineral homeostasis is preserved through a balanced
influx and efflux from the intestine, bone and kidney, and orchestrated by several
hormones in a complex set of feedback loops. Abnormalities in mineral metabolism are
usually a consequence of either hereditary or acquired dysfunctions in any of these
mentioned organs. The kidney is a pivotal organ regulating calcium and phosphorus
metabolism and disrupted homeostasis of these elements are therefore almost universal
in patients with chronic kidney disease (CKD) [39]. Overwhelming, epidemiological
evidence links these abnormalities to adverse clinical outcomes, most prominently

cardiovascular morbidity and mortality in patients with CKD [40, 41].
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1.2.5.2 Mineral disturbances in chronic kidney disease

CKD is characterized by the abnormalities of the kidney as this organ is incapable to
adequately maintain mineral homeostasis, which initiates a series of events that
predictably lead to biochemical changes, altered bone metabolism, wvascular
calcification and increased mortality (CKD — MBD). Most importantly, the capacity to
secrete Pi is compromised leading to a positive net Pi balance. With regard to FGF23,
current evidence favors a ‘phosphate-centred’ view, supporting that the increased Pi
load is the initial trigger for FGF23 synthesis. Indeed, FGF23 levels are profoundly
elevated in CKD and strongly correlated to renal function [42]. The rise in FGF23 is
detected already in the earliest stage of CKD when glomerular filtration rate (GFR)
falls below 60 ml/min, even in individuals without any clinically evident renal damage.
In contrast to FGF23, Klotho expression is dramatically reduced in CKD patients, and
it is possible that Klotho deficiency per se could partially explain the exceptionally high
morbidity and mortality in CKD that are accompanied by an accelerated ageing process
and cardiovascular (CV) disease. In line with this statement is the finding that Klotho
null mice display a shortened life span whereas transgenic over-expression of Klotho
prolongs life span both in wild-type and Klotho-deficient mice [1, 2]. Human data also
suggest that functional polymorphisms in the Klotho gene which result in lower
expression of Klotho, are associated with reduced survival both in hemodialysis
patients and in the general population as well as manifest CV disease and
atherosclerotic plaque burden [43-45].

The cause of reduced Klotho expression in CKD is not understood, but several different

factors may contribute including

e High levels of FGF23 that directly reduces Klotho.

e Inflammation.
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1.2.6 The role of FGF23/Klotho axis in Inflammation

A recent study has shown that Klotho is also expressed in the bone marrow (BM),
spleen and fetal liver cells [46]. Moreover, other studies have convincingly
demonstrated that knocking out the Klotho gene in mice results in the suppression of B
lymphopoiesis in the bone marrow and atrophy of the spleen and thymus in mice [1,
47]. Together, these observations strongly suggest that Klotho has a role in
hematopoiesis and can exert regulatory effects on the immune cells and their functions.
This suggestion is further supported by the results from several studies. For instance, it
has been shown that the expression of Klotho in resting human CD4" lymphocytes is
significantly decreased proportionally to advancing aging [48]. Moreover, it has been
demonstrated that the expression of Klotho protein is heavily suppressed in the CD4+
cells of rheumatoid arthritis (RA) patients and similarly in the immune cells of the
patients with inflammatory bowel disease (IBD) [49, 50]. Interestingly, Klotho
hypomorphs phenotypes are consistent with defective Ca2* and P; homoeostasis
leading to developed osteoporosis is frequently associated with human IBD and T-cell
dysfunction [50]. By extension, renal Klotho expression is repressed in mice with
inflammatory bowl diseases implicating that T helper type 1 (Thl-type) cells and their
inflammatory cytokine including TNF-a and interferon gamma (IFN-y) are possibly
involved in the down-regulation of Klotho expression. Accordingly, it was shown that
the inhibitory phenotype was ameliorated by the treatment with antibodies against
TNF-a [50]. Members of the TNF-a superfamily cytokine, TNF-o and TNF-like weak
inducer of apoptosis (TWEAK) have shown to exert adverse effects on the glomerular
and tubular cells and thus, contribute to renal damage [51, 52]. A neutralizing antibody

recuses the down-regulation of Klotho expression in TWEAK-KO mice [53].
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Therefore, it is tempting to speculate that the pathophysiological roles of FGF23/Klotho
axis include but not limited to regulation of mineral homoeostasis i.e., this axis may

play an important role in the development and potentiation of inflammation.

1.3 ALLOGENEIC HEMATOPOIETIC STEM CELL TRANSPLANTATION
AND ITS RELATED INFLAMMATORY COMPLICATIONS; GRAFT
VERSUS HOST DISEASE AND ACUTE KIDNEY INJURY

Allogeneic hematopoietic stem cell transplantation (HSCT) is globally used to treat

many cancer patients as well as patients with congenital metabolic disorders,

immunodeficiencies, severe aplastic anaemia, and autoimmune diseases [54].
However, the application of HSCT has limitations as it induces complications [55].
Among these complications, acute graft-versus-host diseases (aGVHD) and acute
kidney injury (AKI) belong to the life-threatening conditions [56-58]. aGVHD is an
immune-mediated inflammatory disorder that develops 1-14 weeks after HSCT;
affects 40-60% of HSCT patients and involves multiple organs including the skin,
gastrointestinal tract and liver [59, 60]. AKI is also an HSCT-associated inflammatory
condition that develops within 12 weeks after HSCT affecting 27-66% of the
transplanted patients and predominantly targets the kidneys [61]. The exact
mechanisms underlying the development of aGVHD and AKI are not well understood.
However, regarding aGVHD, it has been suggested that the disease is mainly mediated
by donor-derived T cells which are activated by the recipient antigen presenting cells
(APCs) and polarized into type 1 T cells (Th1 cells) [56, 62, 63]. Furthermore, it has
been suggested that donor-derived activated Thl cells produce inflammatory
cytokines, in particular, TNF-o and IFN-y that severely damage multiple organs [57,
63]. Regarding HSCT-associated AKI, it has also been proposed that aGVHD can

directly contribute to the development of AKI through inflammatory cytokines or
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immune cell-mediated tissue injury [61]. In line with this proposal, we have previously
shown that in mice with aGVHD, the kidney is infiltrated with the donor-derived T
cells and that the expression of several inflammatory and immune response genes was
significantly up-regulated in this organ [64, 65]. Furthermore, in a rat model of
aGVHD, it has also been shown that during the progression of severe inflammation,
the donor-derived leukocytes including helper (CD4") T cells, cytotoxic (CD8") T
cells and macrophages (CD68" cells) infiltrated and expanded into different tissue
compartments of the kidney [66]. In line with these animal studies, clinical studies
have revealed that the renal tubules are also the target tissue in patients with aGVHD
[67]. Thus it conceivable that the kidney is also a target organ for aGVHD and that a
common inflammatory or immune mechanism might be responsible for the emergence

of aGVHD and HSCT-associated AKI.

17



2 AIMS

The overall aim of the present thesis is to refine the understanding of renal Klotho

function and its role in regulating mineral metabolism and inflammation.

The specific objectives are to:

18

Elucidate the role of distal tubular Klotho in renal phosphate handling and on

the regulation of FGF23 (Study ).

Characterize the contribution of renal Klotho to the development of aging-like

phenotype (Study II).

Investigate the role of Klotho/FGF23 axis in the development of cardiovascular
disease, a complication that occurs in patients with chronic kidney disease

(Study 11).

Elucidate the role of Klotho/FGF23 axis in the development of acute graft

versus host disease and acute kidney injury (Study 1V).



3 MATERIAL AND METHODS

3.1.1 Ethical approval

All animal studies presented in this thesis were pre-approved by the Stockholm
Southern Ethics Committee for Animal Research and were conducted in accordance
with the animal welfare law, the Animal Protection Regulation and the Regulation of
the Swedish National Board for Laboratory Animals (approval numbers S68-10,

S116-12, S118-12, S67-74 and S56-14)

3.1.2 Cre-Lox recombination

Cre-Lox is a recombination system constitutes a sophisticated site-specific recombinase
technology used to introduce inducible gene deletion in mice. Basically, the system
contains two components: a P1 bacteriophage-derived enzyme, the Cre enzyme that
recognizes and splices specific 34 base-pair DNA sequences called LoxP sites. When
LoxP sites are inserted into the genome of the mice (floxed mice), recombination
occurs between the LoxP sites in cells expressing Cre recombinase, resulting in either

activation or repression or exchange of a specific DNA sequence or gene (Figure 3).

Wild-type allele

Exon 1 Exon 2 Exon 3

Floxed allele

Exon 1 Exon 2 Exon 3 X Tissue-specific promoter Cre recombinase

Floxed allele after cre excision

—EEE -

Figure 2. The target gene is flanked by LoxP sequences either as a whole or a part.
This aims for either tissue-specific or organ-specific deletion and disruption of the gene
function.
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There are a few limitations and pitfalls to using Cre-Lox recombination. First, the lack
of specificity of certain Cre promoters results in recombination in non-specific tissues,
which can increase the chances of a confounding result or, at the very least, unexpected
cellular phenotypes. Using a reporter strain is the most common method to confirm that
the Cre expression is restricted to the intended target tissue. Second, Cre-Lox
recombination is usually less efficient as compared to conventional knockout
techniques. Third, the excessive cellular accumulation of Cre recombinase may lead to
Cre toxicity. It can damage the DNA and cause cell death, which may affect the
phenotype of mouse strains. In light of the observation that Klotho” mice exhibit
extensive morphological abnormalities and altered mineral metabolism, we aimed to
utilize floxed Klotho mice to enable the dissection of tissue-specific effects of Klotho in
a more physiological setting. Therefore, in the study I, we used mice with LoxP
sequences introduced in the flanking regions of exon 2 of the Klotho gene, resulting in
disrupted gene function in tissues expressing Cre recombinase (Figure 5B). In a study |,
mice with a distal tubule-specific deletion of Klotho were produced using mice
expressing Cre recombinase under the Ksp-cadherin promoter (B6.Cg-Tg(Cdhl6-
cre)91lgr/J; Jackson laboratory, ME, US) 102. For comparative studies, we also
generated Klotho null like mice in which the Klotho gene was deleted globally using
mice expressing Cre under the control of a human beta-actin promoter (FVB/N-
Tg(ACTB-cre)2Mrt/J, Jackson laboratory). We used the same technology in study Il as
well to generate nephron specific knockout mice (Six2-KL ™~ mice) using a Cre-LoxP
recombination as described in paper I. In study Ill, we generated knockout mice in
which the Klotho gene was deleted in vascular smooth muscle cells (Sm22-KL—/—)

using a Cre-Lox recombination as previously described in paper | and I1.
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All Cre strains had earlier been crossed to reporter mice to validate tissue specificity of
Cre expressions. The mice with a C57BL/6 background were used for maintenance

breeding.

3.1.3 Allogeneic hematopoietic stem cell transplantation

BALB/c (H-2Kd) and C57BL/6 (H-2Kb) mouse strains (8-12 weeks old) were used
as donors and recipients. Animals were kept under a pathogen-free condition in an
animal facility with controlled temperature, humidity and 12 hours light/dark. They
were fed with autoclaved standard mouse chaw and tap water ad libitum and allowed
to acclimatize to their environment prior to performing the experiments.

For hematopoietic stem cell transplantation (HSCT), female BALB/c recipient mice
were first conditioned with busulfan (Bu, 20 mg/kg/day, intraperitoneally (i.p.) for 4
days and subsequently, cyclophosphamide (Cy, 100 mg/kg/day, i.p.) for 2 days.
Thereafter, the animals were allowed to rest for one day. At the day of transplantation
(day 0), the recipient mice were injected intravenously (i.v.) with 20 x 10° bone
marrow cells combined with 30 x 10° spleen cells from either syngeneic (BALB/c) or
allogeneic (C57BL/6) donor mice. As control groups, a group of female BALB/C mice
received only Bu-Cy, and another group was left untreated and non-transplanted as the

control group.

3.1.4 Assessment of acute graft-versus-host disease

After the transplantation, recipient mice were monitored daily for the development of
aGvHD. The degree of systemic aGVHD was assessed employing a well-established
standard scoring system for five clinical features of aGVHD including weight loss,

hunching, activity, fur texture and skin integrity [68].
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3.1.5 Induction of lipopolysaccharide-induced acute kidney injury

For the induction of acute kidney injury, male C57BL/6 mice (6-8 weeks of age) were
first injected i.p. with lipopolysaccharide (LPS) derived from Escherichia coli O111:
B4 (5mg/Kg). Five hours after LPS injection, the animals were euthanized, and the

kidneys and blood were collected for further analyses.

3.1.6 Immunological, histopathological, biochemical and molecular
methods

3.1.6.1 Enzyme-linked immunosorbent assay (ELISA)

Enzyme-linked immunosorbent assay (ELISA) is a widely used molecular method
designed for detecting and quantifying peptides, proteins and antibodies in the body
fluids. In the studies explained in this thesis, we used commercially available ELISA
Kits to quantify the serum levels of FGF23, PTH and 1,25 (OH),D. Serum levels of
TNF-a and IFN-y, were measured by a Cytometric Bead Array (CBA) Mouse Th1/Th2
Cytokine kit (BD Biosciences, San Diego, CA, US) in accordance with the

manufacture’s instruction.

3.1.6.2 Measurement of donor-recipient chimerism

The levels of donor-recipient chimerism in the spleen and bone marrow cells of
transplanted mice were measured using flow cytometry. Spleen and BM cells were
stained with Alexa Fluor 647-conjugated mouse anti-mouse H-2K® and phycoerythrin
(PE)-conjugated mouse anti-mouse H-2k (both purchased from BD PharMingen,
SanDiego, CA) to identify the donor- or recipient-derived cells, respectively. The cells
were analyzed with a 4-colour BD FACSArray (BD Biosciences, San Jose, CA) flow
cytometer. The percentage of chimerism was calculated from the ratio of Alexa Fluor

647 positive cells of all PE positive cells.
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3.1.6.3 Immunohistochemistry and immunofluorescence

Upon dissection, tissues were fixed in 4% paraformaldehyde (overnight), and thereafter
embedded in paraffin, and four-micrometer sections were prepared. After
deparaffinization, the sections were rehydrated and incubated with low-pH solution to
unmask the antigen. For immunohistochemistry, the sections were then immersed in
3% H,0; in methanol, treated with 4% normal serum, and blocked with avidin and
biotin. All sections were incubated with primary antibodies at 4°C overnight.
Thereafter, the slides were incubated with biotinylated secondary antibodies and
developed with 3,3'-diaminobenzidine substrate.

For immunofluorescence, after employing the primary antibodies, Alexa Fluor
conjugated secondary antibodies were used for visualization the antigen (e.g., Klotho).

For nuclear staining, 4',6-diamidino-2-phenylindole was used.

3.1.6.4 Histopathological analysis

Paraffin-embedded sections were stained with either of the following stainings:
hematoxylin and eosin (H&E), picrosirius red for fibrosis (stains collagen I and 11l
fibers), von Kossa (to detect calcification), periodic acid-Schiff (PAS) (to detect
polysaccharides) and periodic Schiff-methenamine silver (PASM) (to detect
carbohydrates) using related histological staining procedures. In all cases, the stained

sections were examined in a blinded fashion by a skilled pathologist.

3.1.6.5 Serum biochemistry
Serum calcium, phosphate, urea, albumin and creatinine were measured using
quantitative colorimetric assay kits (BioAssay; BioChain Institute, Inc., Newark, CA)

or an autoanalyzer (Konelab 20XTi (Thermo Scientific, Vanta, Finland).
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3.1.6.6 Insitu hybridisation

In situ hybridisation (ISH) is a technique that allows the locating of positions of
specific nucleic acid sequences (MRNA) within structurally intact cells or a
morphologically preserved tissue section through the use of specific nucleic acid-
labelled probes. These probes can then be detected by using a specific antibody to
identify the mRNA expression and the location of the mRNA. Fluorescence in situ
hybridisation (FISH) is a kind of ISH that uses fluorescent probes to detect mRNA or
DNA sequences. In study 1V, we used FISH to see the mRNA expression in the tissue

slide.

3.1.6.7 Immunoblotting

Immunoblotting (also called western blotting) is the golden-standard for specific
protein detection and quantification in a protein mixture (e.g., a cell, tissues lysate and
body fluids). Kidney extracts were prepared, and protein levels were quantified using a
BCA protein assay kit in accordance with manufacture’s instruction. For each sample,
an equal quantity of protein was separated by SDS-PAGE and electrotransferred to
nitrocellulose. After blocking, the membranes were sequentially incubated with
primary antibodies (anti-Klotho, anti-pan-14-3-3 or anti-actin antibody) and secondary
antibodies conjugated with IRDye (LI-COR Bioscience, Lincoln, NE). The proteins
were visualized using ODYSSEY imaging system (LI-COR Bioscience, Lincoln, NE).
The intensity of the protein bands was quantified by densitometry using Image J

software, and the results were expressed as fold decrement of the control.
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3.1.6.8 Real-time gPCR analysis

Real-time quantitative PCR (qPCR) is a universal method used to amplify and quantify
specific gene products. DNA binding dyes are used such as SYBR Green, or sequence-
specific fluorescent reporter probes. In this thesis, total RNA was extracted from the
kidney tissues and reverse-transcribed into cDNA, and real-time gPCR was
subsequently performed using gene-specific primers in an SYBR green-based assay.
The relative gene expression was calculated with the 2"** Cq or Ct method, normalizing
the gene of interest to a reference gene in the same sample. GAPDH was used as the

reference gene in the study I and B-actin in study Il and IlI.

3.1.7 Statistical analysis

The D’Agostino and Pearson omnibus normality test was used to evaluate normal
distribution. Upon verification of normal distribution, variables were compared
employing a two-tailed t-test. Mann-Whitney test used to compare with non-normally
distributed variables. The differences were considered statistically significant when p <
0.05. Regression analysis was performed using linear regression. In a study I, Ksp-KL”"
mice with relative Klotho levels > 70% were excluded during comparisons between
groups. All of the mice were included in correlation tests. For comparing several
groups, one-way ANOVA test was used, and the differences were considered

statistically significant when p < 0.05.
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4 RESULTS AND DISCUSSION
41 MINERAL METABOLISM AND FGF23 LEVELS IN DISTAL TUBULI-

SPECIFIC KLOTHO-KNOCKOUT MICE (STUDY 1)

By the time we started to perform this study, it had been well established that in mice,
the absence of functional Klotho could lead to development of several phenotypic
characteristics which resembled those of human aging (e.g., shortened life span,
arteriosclerosis, growth retardation, hearing loss, infertility, skin atrophy, thymic
atrophy, osteoporosis, pulmonary emphysema and motor neuron degeneration [69]. It
had also been demonstrated that renal Klotho could control the phosphate and calcium
homeostasis by direct interaction with their corresponding contra-transporters and
receptors Npt2a/c (in the proximal tubules) and transient receptor potential vanilloid-5
(TRPV5) (in the distal tubules), respectively [14]. Moreover, it had been shown that
Klotho/FGF23 signaling could also inhibit phosphate re-absorption by internalizing the
NPT?2a/c contra-receptors and stimulating cyp244al, an enzyme required for vitamin D
metabolism [14]. This information and the fact that while phosphate re-absorption was
confined to the proximal tubules, Klotho expression was shown to occur predominantly
in the distal tubules, led to the question as how and to what extent the expression of
Klotho in the renal distal tubules contributes to the regulation of mineral metabolism
and the development aging-related disorders. In order to answer this question, distal
tubule-specific Klotho knockout (Ksp-KL™) and systemic Klotho (,B-KL"') knockout
mice were generated using the Cre-Lox recombination. Thereafter, the phenotypic
characteristics of these two knockout mice were compared to each other as well as to
their wild-type littermates.

As expected, mice bearing a systemic deletion of Klotho gene (B-KL') possessed

phenotypic characteristics very similar to the previously described Klotho null mice [1],

26



I.e., they exhibited a significant reduction in the life span, weaken mobility, kyphosis
and severe growth retardation (Figure 3A). Furthermore, these mice were
hyperphosphatemic, hypercalcemic and had high levels of circulating FGF23. These
findings clearly indicate that floxed-Klotho allele is a function and that systemic
targeting of the Klotho gene leads to the development of premature aging.

In contrast to A-KL” mice, Ksp-KL™ mice were viable, fertile, had normal growth,
body-size (Figure 3A) and life span. Analysis of mMRNA expression and protein
abundance of renal Klotho revealed that knockout efficiency is partial, but not
complete. Furthermore, dual immunofluorescence staining showed that Klotho is
mainly colocalized with TRPVS5, a marker of distal tubuli and that the protein levels of

this marker is reduced in Ksp-KL™ mice (Figure 3B).
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Figure 3. A) Deletion of renal distal tubular Klotho gene in Ksp-KL” mice does not
alter the body size. B) Immunofluorescence staining reinforced partial deletion of
distal tubular Klotho in Ksp-KL"' mice. Klotho co-localized with TRPV5 in wild-type
mice (WT), and partially in Ksp-KL™ mice.
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In addition to the reduction in the protein levels of Klotho and TRPVS5 in the renal
distal tubules, Ksp-KL™ showed hyperphosphatemia accompanied with a substantial
increase in the serum levels of FGF23 and a slight increase in serum calcium levels, but
decreased levels of circulating PTH. Since the efficacy of Klotho expression was
variable in Ksp-KL™, we analyzed the Klotho transcript level as a continuous variable
and found that circulating FGF23 was the only serum parameter that correlated with the
expression of Klotho. Furthermore, we found a marked threshold effect for FGF23, i.e.,
when the relative expression of Klotho was <30%, the serum levels of FGF23 reached
30-250 times higher than normal levels. This finding implies that there might be a
resistance response when the circulatory levels of FGF23 reach certain high levels. A
surprising observation showed that urinary phosphate excretion was unaltered in Ksp-
KL” mice. In contrast, there was a marked increase in brush-border membrane
expression of Npt2a, possibly explaining the observation of hyperphosphatemia.
Moreover, increased renal levels of VDR were also confirmed via immunoblotting.
Ksp-KL™” mice displayed increased transcript levels of renal Cyp27B1, with Klotho

transcript levels correlating to those of Cyp27B1, VDR, Npt2a, and FGFR1.

The theory that factors other than serum Pi contribute to FGF23 regulation was
supported by elevated FGF23 levels observed in a subgroup of Ksp-KL” mice with
normal serum Pi. To this end, it can be hypothesized that end-organ resistance or
soluble Klotho is involved. Histological analysis of Ksp-KL” mice revealed a normal
renal morphology. The direct paracrine effects of Klotho are disproven by lack of renal
fibrosis and vascular calcification, at least during low cellular stress. Future studies
could undertake the testing of these characteristics by inducing renal failure or with

ageing mice (that have compromised renal function).
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Stating that partial deletion of Klotho in the distal tubules significantly impacts how
renal phosphate is handled in the proximal tubules, this study is the first to present
genetic and functional evidence to support its hypothesis. While currently unknown, the
factor(s) responsible for this proposed distal-to-proximal tubule signaling could
speculatively involve soluble Klotho (Figure 4). The results of this study indicate a
limited effect of distal tubular Klotho on vitamin D metabolism, even though it is
apparently essential to renal phosphate handling.

More significantly, future studies could examine how a role for Klotho in the proximal

tubule may not be excluded, as confirmed by our data.
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Figure 4. Renal phosphate handling in the proximal tubules is impacted by Klotho

deletion in the distal tubules, suggesting the presence of a distal-to-proximal
mechanism.

One unexpected finding in this study was that unlike [1-KL-/- mice, Ksp-KL-/- mice
did not show any aberrant gross phenotype or severe renal abnormalities. Two
possibilities can explain these observations. First, the incomplete knockout efficacy of
the Klotho gene in the distal tubules might not be sufficient for the induction of early
pathological conditions that observed in Klotho null mice. In this connection, as Klotho
Is considered as an anti-aging protein, it is of high interest to study the pattern aging as

well as the development of age-related diseases in these animals.
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4.2 THE KIDNEY’S CONTRIBUTION TO SYSTEMIC KLOTHO AND
KLOTHO EFFECTS (STUDY II)

Our findings in study | revealed that specific deletion of the Klotho gene in the renal
distal tubules despite inducing a severe dysregulation in mineral metabolism and
increasing the circulatory levels of FGF23, did not lead to any immediate pathological
symptoms. Thus, the question is, to what extent renal Klotho contributes to the
development of age-related pathological manifestations remained unanswered. In order
to explore the answer to this question, we generated a knockout mouse model in which
the Klotho gene was deleted throughout the nephron (Six2-KL™) employing the Cre-
Lox combination. Immunofluorescence and western blotting showed successful
deletion of renal Klotho (Figure 5A). In comparison to wild-type mice, renal Klotho

transcript levels in the specimen were reduced by approximately 80%.
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Figure 5. A) Efficient deletion of renal Klotho (red) in Six2-KL™ mice, as confirmed by
immunofluorescence. Lotus tetragonolobus lectin (LTL, green) is a marker for
proximal tubule-specific, and DAPI (blue) stains cell nuclei. B) Six2-KL™" mice were

smaller in size compared to WT mice
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Phenotypic characterizations of the Six2-KL™ mice showed that these animals were
infertile and kyphotic, displaying growth retardation (Figure 5B) and a decreased life
span; these phenotypes closely resembled those of our systemic Klotho knockout mice
(B-KL") [70] and Klotho null mice [1]. Moreover, these knockout mice exhibited
severe biochemical alterations including: low serum levels of PTH,
hyperphosphatemia, hypercalcemia, hyperaldosteronism, and elevated serum levels of
1,25-dihydroxy vitamin D. These biochemical alterations were accompanied with a
striking increase of circulating FGF23 indicating that FGF23 signalling is highly
dysregulated in Six2-KL™ mice. Assessment of circulating Klotho revealed that in Six2-
KL mice, serum levels of Klotho reduced up to 80%, an observation that validates the
suggestion that the kidney is the principal contributor to circulating Klotho. To further
supports this suggestion, kidney explants were used to evaluate the shedding of renal
Klotho ex vivo. The results showed that the kidneys of Six2-KL” mice had undetectable
Klotho protein in conditioned media as compared to those of wild-type mice. Preserved
expression of Klotho in extra-renal organs such as the parathyroid glands and choroid
plexus in Six2-KL™ mice was confirmed by immunostaining. All these observations
reinforce the kidney as the principal source of soluble Klotho; they also confirm that

extra-renal tissues can not correct a systemic deficiency of Klotho.

Proceeding to examine the impact of renal Klotho ablation on the kidney histology, we
detected the following abnormalities in the structure of renal tissue of Six2-KL”: a
higher proliferation rate, loss of differentiation between proximal and distal convoluted
tubules, mild interstitial fibrosis, widespread nephrocalcinosis and loss of cuboidal
Bowman’s epithelium of glomeruli in male Six2-KL”". An extensive histological
comparison between Six2-KL” mice and systemic Klotho knockout mice was

conducted to evaluate the impact of local Klotho expression on the phenotype
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resembling ageing. Pulmonary emphysema, reduced subcutaneous fat and skeletal
hypomineralization constituted the histological findings in Six2-KL™ mice. It must be
noted that Six2-KL™ and systemic Klotho knockout mice showed no differences in renal
or extra-renal abnormalities.

To conclude, our findings in this study demonstrate that the kidney is most likely the
primary source of circulating Klotho and mediator of Klotho function and thus,
providing several implications for the field of kidney research. Results of this study
also support the possibility that therapeutic Klotho delivery in patients with chronic
kidney disease (CKD), a state characterized Klotho deficiency, may mitigate uremic

complications, thereby slowing the disease progression.

4.3 ROLE OF FGF23/KLOTHO AXIS IN IN CARDIOVASCULAR SYSTEM
(STUDY 1lI)
Cardiovascular disease (CVD) is a significant burden in patients with CKD. Significant

attempts have been made to understand the cause of the raised prevalence of
cardiovascular morbidity and mortality in CKD. With respect to this, FGF23-Klotho
represents a novel hormonal axis that has recently attracted significant attention
because observational studies unequivocally associate high circulating FGF23 levels to
vascular dysfunction; also, FGF23 is predictive of all-cause and cardiovascular
mortality in longitudinal outcome studies [71-77]. Further, membrane-derived
circulating Klotho itself functions as a true hormone to prevent vascular calcification
and protect endothelial properties. Similar findings with a Klotho-deficient state confer
increased susceptibility to vascular damage [78]. However, despite the fact that most of
the clinical data clearly show a link between the elevation of FGF23 and CVD,
experimental data supporting direct vasculotoxic effects of FGF23 is lacking. Recent
studies mainly support the FGF23-Klotho endocrine axis’ role in cardiovascular

pathology, though the responsible mechanisms remain largely unexplained. This study
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aimed to elucidate the role of the Klotho/FGF23 axis in the development of CVD, a
complication that occurs in patients with CKD. To this end, we generated mice with
tissue-specific deletion of Klotho in vascular smooth muscle cells (Sm22-KL™) to
analyze the expression of the FGF23 co-receptor Klotho in the mouse arteries.
Sm22-KL—/— mice were viable, fertile, had normal body size and weight and exhibited
no significant alterations in the serum levels of phosphate, FGF23, calcium, and
creatinine as compared to those in their corresponding wild-type mice. This indicated
that vasculature is not a major target tissue for FGF23. Very low levels of arterial
Klotho transcripts were detected with quantitative real-time PCR. In contrast,
corresponding Klotho levels were undetectable in Sm22-KL—/— mice. Intravenous
delivery of recombinant FGF23 elicited an increase in the expression of Egr-1 (a
Klotho-dependent FGF23 signaling marker) in the kidney but not in the artery.
Furthermore, FGF23 treatment did not alter the structure, calcification in b\VSMCs or
dilatory and contractile behaviors of the arterial specimen ex vivo.

In summary, our findings show that FGF23-Klotho signaling is abolished in mouse
arteries and that treatment with FGF23 does not affect the vascular response. Further,
vascular calcification and endothelial function were unaffected by FGF23 treatment,
thus casting doubt on the assumption that direct FGF23 vascular toxicity can cause
cardiovascular pathology in CKD, at least not in these mice. Yet, the possibility of
species differences in terms of vascular Klotho expression must be acknowledged,

warranting more extensive evaluations of the human arterial specimen.

4.4 ROLE OF FGF23/KLOTHO AXIS IN AGVHD AND ITS RELATED AKI
(STUDY IV)

Our studies have clearly shown that partial or systemic Klotho gene ablation results in
an intensive increase of circulatory FGF23 [8, 70, 79, 80]. High circulating levels of

FGF23 in combination with low serum or urine levels Klotho have been found in
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patients with CDK [81] AKI [82] as well as in animal models for these diseases [82].
Since in both diseases, renal cell injury and its related products can provoke
inflammatory responses [83, 84], it likely that dysregulation in FGF23/Klotho axis
plays an important role in inflammation. Thus, in study 1V, we aimed to examine this
possibility by investigating the role of FGF23/Klotho in the development of aGVHD
and HSCT-associated AKI, two main inflammatory reactions that emerge after
allogeneic HSCT. Thus, recipient female BALB/c mice were first conditioned with Bu-
Cy and thereafter, transplanted with bone marrow and spleen cells from the allogeneic
(C57BL/6) of syngeneic (BALB/c) donor mice. Subsequently, the transplanted animals
were monitored for the development of aGVHD. At disease onset, the animals were
euthanized and thereafter, aGVHD- and AKI-related parameters were measured. For
comparative studies on the role of FGF23/Klotho in AKI, we also used a LPS-induced
AKI model.

We found that in addition to developing aGVHD symptoms (e.g., body weight loss,
ruffled fur, hunched posture and diarrhoea), mice receiving allogeneic cells also
exhibited full donor cell chimerism with high serum levels of TNF-o, IFN-y and FGF23
(Figure 6A). These characteristics were accompanied with elevated serum levels of
urea and phosphate and decreased serum level of albumin. Along with these phenotypic
biochemical alterations, mice with aGVHD exhibited a marked down-regulation in
MRNA and protein expression levels of renal Klotho (Figure 6B). With respect to the
underlying mechanism for the down-regulation of Klotho expression, it has been shown
that renal Klotho expression is repressed in mice with inflammatory bowl diseases and
implicates the role of Thl-type cells and their inflammatory cytokine including TNF-a
and IFN-y in the mechanism of inhibition in a dose-dependent manner via activation of
NFkB [53].. The inhibitory phenotype was ameliorated by anti-tumour necrosis factor

(TNF) antibody [49]. Member of the TNF-a superfamily of cytokine TNF-a and TNF-
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like weak inducer of apoptosis (TWEAK) has a pleiotropic function on glomerular and
tubular cells that contribute to renal damage [51, 52].A neutralizing antibody recuses
the Klotho expression in TWEAK-KO mice indicating that
these cytokines regulate Klotho at the transcriptional level. Other important findings in
this study also fit with our initial hypothesis that the dysregulation of FGF23/Klotho
axis in mice with aGVHD can simultaneously lead to the development of AKI. Firstly,
our results showed that in addition to the increased serum levels of FGF23 and reduced
expression of renal Klotho, aGVHD mice exhibited elevated serum levels of urea,
phosphate  (Hyperphosphatemia), and decreased serum level of albumin
(hypoalbuminemia) which are common phenotypic characteristic in patients with AKI
[85-87]. In fact, loss of body weight in aGVHD mice may cause by hypoalbuminemia.
Accordingly, in these mice, histopathological analysis of the kidney revealed intense
cytoplasmic vacuolization of the renal proximal tubule epithelial cells, which is
suggestive of lysosomal proliferation. Finally, phenotypic characteristics of mice with
aGVHD were found to be indistinguishable from those of lipopolysaccharide- (LPS)-
induced AKI mice. Thus, dysregulation of FGF23/Klotho appears to play a key role in
the development of aGVVHD and AKI. It can thus be inferred that therapeutic targeting
of this axis might help minimize the development of aGVHD and AKI, thereby

enhancing the treatment efficacy of HSCT.
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Figure 6. A) FGF23 level was measured in the control and allogeneic (aGVHD)-

transplanted groups. B) mRNA expression of Klotho in control and aGVHD mice
correlated with renal Klotho expression in this groups visualized by Fluorescent in situ

hybridization and western blotting.
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