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ABSTRACT 

The purpose of this thesis was to develop and/or evaluate assays for HIV viral load 

(VL) monitoring and HIV drug resistance testing of potential importance for research 

studies and clinical care in low- and middle income countries (LMICs). This was 

achieved using reverse transcriptase based (RT) assays and blood samples from 

Vietnamese and Swedish HIV-1 infected patients.  

In Paper I, HIV-1 obtained from 63 treatment-naïve Vietnamese patients was analysed 

by population sequencing and phylogenetic analysis with regard to transmitted drug 

resistance (TDR), subtype and the time of the most recent common ancestor (tMRCA). 

All strains belonged to HIV-1 CRF01_AE and TDR was found in 6.3% of the patients, 

including Y181C, L74I, V75M and L210W mutations. tMRCA was found to be 1989.8 

for a larger clade and 1997.5 for a smaller clade. Sequences from intravenous drug 

addicts were intermingled with sequences from sexually infected patients, indicating 

frequent exchange of virus between the transmission risk groups. Our data suggests that 

TDR and the transmission patterns between risk groups rate should be monitored 

regularly and prospectively. 

In Paper II, we evaluated the feasibility, sensitivity and specificity of an RT-based 

assay for quantification of HIV. A high correlation (r
2 

= 0.97), agreement (log 

difference = 0.34; 95% CI -0.35;1.03), sensitivity (98%) and specificity (100%) were 

found between the RT-based assay and the Roche Cobas TaqMan. Its feasibility was 

further confirmed in a clinical trial including 605 Vietnamese HIV-1 infected patients. 

Our results show that the RT-based assay is an attractive low-cost alternative for 

monitoring of efficacy of antiretroviral therapy programs in resource-limited settings. 

In Paper III, a simple phenotypic RT-based assay was developed for the detection of 

drug resistance to the 2
nd

 generation NNRTI etravirine (ETR) and cross-resistance 

patterns to the 1
st
 generation NNRTIs. For all recombinant HIV-1 RTs, ETR displayed 

expected IC50 values equivalent to previous reports. The test could detect ETR 

resistance in plasma samples (n=28) obtained from treatment-naïve and experienced 

Swedish HIV-1 infected patients associated with Y181C and L100I substitutions as 

well as discriminate between the impact of K103N on the IC50 value of nevirapine but 

the lack of impact on the IC50 value of ETR. In Paper IV, a further comparison was 

performed between our phenotypic ETR resistance assay and the genotype obtained by 

direct sequencing and ultra-deep pyrosequencing (UDPS) in 20 Swedish patients with 

past or ongoing failure on the 1
st
 generation NNRTIs. Most of the strains from the 

patients had various degrees of decreased phenotypic ETR susceptibility despite 

absence of ETR resistance associated mutations (RAMs) according to direct 

sequencing. Additional resistance mutations corresponding to <20% of the viral 

populations were found by UDPS in 9 analysed patients. In four of these, the mutations 

are likely to have contributed to phenotypic resistance. The patient treatment histories 

and the UDPS data supported that our phenotypic assay may be more sensitive than 

direct sequencing in identifying minor quasispecies with resistance mutations. The 

degree and pattern of an increased assay sensitivity as well as the clinical relevance 

remains to be determined. 

In Summary, since the evaluated RT-based assays are simple to perform, use basic 

laboratory equipment, and does not require complex interpretations, they could be a 

low cost alternative for both studying VL and drug resistance to 1
st
 and 2

nd
 generation 

NNRTIs in LMICs. 
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1 THE HUMAN IMMUNODEFICIENCY VIRUS 

In the beginning of 1981, men who have sex with men (MSM) in the US fell ill from 

opportunistic infections and Kaposi´s sarcoma, a rare form of cancer. The symptoms 

demonstrated clear evidence that the patients suffered from immune suppression and these 

clustered symptoms were named acquired immunodeficiency syndrome (AIDS) [1]. Two 

years later in 1983 it was reported by a French research group [2] that the 

immunodeficiency was caused by a retrovirus, and that target groups were not limited to 

MSM, indeed it was a disease that could affect all. Soon after, an American research group 

also published their findings [3, 4]. Both the French and the American groups noted that 

the virus infected T-lymphocytes, why they named it LAV (lymphadenopathy-associated 

virus) and HTLV-III (human lymphotropic virus type III), respectively. In 1986, the virus 

was renamed human immunodeficiency virus (HIV) [5]. 

Today, almost thirty years after the start of the global HIV/AIDS epidemic, we are still 

unable to control the spread of the virus and during 2011 approximately 34.2 million 

people were estimated to be living with HIV (www.unaids.org).   

There are two types of HIV; type 1 (HIV-1) that was first isolated and type 2 (HIV-2) that 

was discovered in 1986 [6]. The more pathogenic HIV-1 is spread worldwide and is 

responsible for the vast majority of cases of AIDS, whereas the less pathogenic HIV-2 is 

mostly found in the western parts of Africa [7]. HIV is thought to originate from the simian 

immunodeficiency virus (SIV) prevalent in African non-human primates and the passage 

to humans is thought to have taken place in the beginning of the 20th century [8, 9]. HIV-1 

(from now on referred to as HIV) is divided into groups; major (M), outlier (O) and non-M 

non-O (N). The M group is further divided into subtypes A-K which have a distinct 

geographic distribution worldwide, although there is a rapid spread of different subtypes to 

new areas of the world. Occasionally, two viruses of different subtypes “meet” in the cell 

of an infected person and the genetic material from these viruses combine to create a 

hybrid virus. If this “new” strain survives long enough to infect at least two separate 

individuals it is referred to as a “circulating recombinant form”, CRF. 

 

1.1 STRUCTURE AND REPLICATION 

HIV is a spherical particle of approximately 100 nm. The outer envelope is composed of a 

phospholipid bilayer derived from the infected host cell. A schematic presentation of HIV 

is shown in Figure 1. HIV is a lentivirus of the retroviridae family and as such contains its 

genetic information in the form of two single stranded RNA molecules. The viral particle 

also contains viral enzymes used during the replication process. The reverse transcriptase 

(RT) converts the viral RNA to DNA, while the integrase enzyme integrates the new viral 

DNA into the host cell DNA. Two cellular transfer RNA (tRNA) strands are also carried 

within the virion and these act as primers for the reverse transcription carried out by the 

RT. The genome encodes three major genes, env, pol and gag as well as several regulatory 

http://www.unaids.org/
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and accessory proteins essential for the viral replication. The envelope (env) gene codes for 

the surface envelope glycoproteins (gp120 and gp41). The group specific antigen (gag) 

gene codes for the matrix (MA), nucleocapsid (NC) and capsid (CA) proteins, while the 

polymerase (pol) gene codes for the viral enzymes, reverse transcriptase, protease and 

integrase [10].  

 

 
 

Figure 1. The HIV virion (published under commons, PD-USGov-HHS-NIH) 

 

 

The viral life cycle (see Figure 2) begins by interactions between the viral gp120 and the 

CD4 receptor on the target cells; T-lymphocytes, macrophages, monocytes, dendritic cells 

and microglial cells [11-13]. In addition to the CD4 molecule on the host cell, the virus 

requires either of the co-receptors CCR5 or CXCR4 for entry [14], which triggers a fusion 

between the membranes of the virus and the cell, releasing the viral nucleocapsid into the 

cell.  
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Figure 2. Schematic overview of the HIV replication cycle (published under commons, GFDL-en). 

 

 

Once inside the cell, the viral nucleocapsid undergoes partial uncoating, releasing its 

contents into the cell cytoplasm. The two copies of viral positive single stranded RNA are 

exposed and reverse transcription of the viral RNA to DNA is performed by the reverse 

transcriptase (RT) enzyme. Through RT ribonuclease activity, the DNA strand is removed 

from the RNA strand and a second DNA strand is synthesised. The dsDNA is then 

transported from the cytoplasm into the nucleus of the cell whereafter it is ligated into the 

host chromosomal DNA by the viral enzyme integrase and becomes the proviral DNA 

[15]. However, the RT lacks proof reading, which consequently introduces mutations in 

the provirus and is the source of the high genetic variability of HIV [16, 17]. This is 

beneficial for the virus as it can quickly adapt to the environment in which it replicates and 
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thereby escape the immune system as well as drug pressure. During the reverse 

transcription, long terminal repeats (LTRs) are added to both ends of the DNA and LTRs 

are crucial for facilitating the subsequent transcription of the viral genome. Frequently, 

transcription of the integrated proviral DNA is initiated immediately but in some cells the 

proviral DNA remains latent for a variable length of time until host cell activation, which 

makes it very difficult to clear the viral infection [18]. The transcription of the provirus is 

initiated by cellular factors. Viral mRNA is produced from the provirus by action of a 

cellular RNA polymerase and the resulting mRNA is spliced, and are then transported out 

of the nucleus into the cytoplasm [19]. The mRNAs are translated in the cytoplasm to 

precursor proteins. The viral proteins assemble at the host cell surface where the Env 

proteins, necessary for budding from the host cell membrane, are inserted. Shortly after 

budding, the gag and gag-pol precursors are cleaved by viral protease and new infectious 

virions are produced, ready for the next round of infection [20-22]. 

 

1.2 COURSE OF INFECTION 

HIV may be transmitted by sexual contact, transfer of infected blood and from mother to 

child during pregnancy, birth or breastfeeding. Although the rate of disease progression is 

highly variable among HIV patients, most infections follow a typical course shown in 

Figure 3 that can be divided into three stages: primary infection, chronic infection, and 

AIDS [23]. The primary or acute infection starts shortly after HIV enters the body and the 

high replication of the virus initiates an immune response by producing HIV antibodies 

and cytotoxic T lymphocytes. This stage  that occurs a few weeks after initial infection [24] 

may be accompanied by a flu-like illness. It is characterised by high viral loads [25], 

referred to as the acute phase viremia. After the acute stage of HIV infection the patient 

progresses to the chronic stage which may last for up to ten or more years in untreated 

patients before AIDS develops [26]. 

 

 
 

Figure 3. Course of HIV infection (published under commons, hiv-timecourse.png) 

 

 

http://allaboutchris.org/w/wp-content/uploads/2012/06/Hiv-timecourse.png
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1.3 HIV SUBTYPES 

HIV is divided into two different types: HIV-1 and HIV-2. HIV-1 is divided into three 

major groups: group M (main), group O (outlier) and group N (non-M, non-O) [27]. Group 

M dominates the world epidemic and has 10 subtypes (A to K). Sub-Saharan Africa is 

predominated by HIV-1 subtype C, which is causing >50% of the global HIV-1 epidemic 

(Figure 4). Subtype C was first described by our research group in 1990 [28]. 

 

 
 

Figure 4. Global distribution of HIV-1 subtypes 

(Source: http://www.pbs.org/wgbh/pages/frontline/aids/atlas/clade.html) 

 

No strong evidence for differences in clinical outcome or transmission rates have been 

described between subtypes, although such differences have been suggested to be present 

in a few studies [29-31]. A major implication in practice of the genetic differences between 

subtypes is that the precision of molecular based assays such as PCR based assays for 

measuring VL and genotypic resistance testing may be influenced by this genetic variation 

[32]. In addition, when it comes to HIV drug resistance development, the pattern of 

resistance associated mutations may to some extent differ between subtypes although this 

occurs only for a limited number of mutations [33-36].  

 

In Vietnam, which will be described further in Papers I and II, the first documented 

Vietnamese case detected was a subtype B virus [37], but since then the epidemic has been 

http://www.pbs.org/wgbh/pages/frontline/aids/atlas/clade.html
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dominated by the recombinant strain CRF01_AE, which is the predominant subtype in 

South-East Asia [38, 39]. 

 

1.4 MOLECULAR EPIDEMIOLOGY 

Vietnam´s HIV epidemic is considered to be one of the fastest growing in Asia and is one 

of the 10 leading causes of mortality in the country [40]. Since the first case was detected 

in 1990, over 50,000 people have died of AIDS and at the end of 2010, there were 254,000 

people living with HIV (PLHIV) [41]. Some provinces have progressed to a generalised 

epidemic with more than 1 % of the adult population infected with HIV, such as Quang 

Ninh, Ho Chi Minh City and Hai Phong (UNAIDS, 2006). 

 

HIV transmission in Vietnam has so far largely been driven by intravenous drug users 

(IDUs) and more recently the spread of HIV in Vietnam increasingly appears to occur 

through sexual transmission [42] which suggests that the epidemic may become more 

difficult to control. In Paper I phylogenetic analyses including molecular clock 

calculations was performed to investigate the HIV transmission patterns in Quang Ninh 

province, Northeastern Vietnam.  

 

A phylogenetic tree is a branching diagram or “tree” showing the inferred evolutionary 

relationships among different species, organisms, or genes from a common ancestor. It can 

be used to study evolutionary relatedness of different organisms or relationship between 

strains of the same organism. Due to the fast evolution of HIV, it is possible to use 

phylogenetic trees for detailed evolutionary and epidemiological studies. The branching-

tree is called the topology and the length of the branches describes their genetic distances, 

which is related their evolutionary time. Calculations of the time of the most recent 

common ancestor (tMRCA) can be done. In Paper I, our study of the Vietnamese samples 

were found to be clustered into two distinct groups; one small clade that had a tMRCA in 

year 1997.5 and a larger group with an estimated tMRCA in 1989.8. 

 

There are different ways of assessing confidence of the branches in the tree. The traditional 

method is called bootstrap analysis, which was used to perform the phylogenetic analysis 

of the strains in Northeastern Vietnam in Paper I. This analysis showed that 100% of 

patients included in the study were infected with HIV-1 subtype CRF01_AE with ≥95% 

bootstrap support.  
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2 DIAGNOSIS AND MONITORING OF HIV INFECTION 

 

2.1 DIAGNOSIS 

The standard way to diagnose a HIV infection is by the detection of antibodies against the 

virus. This test is performed by enzyme linked immunosorbent assay (ELISA), where the 

ability of antibodies present in plasma or serum to bind viral lysate or proteins is 

determined. To confirm that the person is infected, a Western blot or the similar 

recombinant immunoblot assay (RIBA) could be performed. Here, the reactivity of the 

antibodies is determined after separation of the viral proteins by electrophoresis. In the 

positive test the patient serum should react with two or more of p24, gp41, gp120 or gp160. 

In low-middle income countries (LMICs), the diagnosis is made instead by two 

complementary ELISAs, an approach which has a similar precision.  

 

2.2 MONITORING 

In high-income countries, disease progression is monitored by CD4+ T-cell counts, plasma 

HIV RNA levels (“viral load”, VL) and clinical symptoms. In untreated patients, CD4+ T-

cell count is the most important marker indicating level of immunosuppression and hence 

the urgency of initiating ART. In treated patients, measuring HIV RNA levels in plasma is 

the key component for monitoring treatment outcome and/or adherence. A higher VL 

results in a more rapid disease progression in untreated patients [43, 44]. In practice in high 

income countries, both CD4 T-cell count and VL are frequently used for assessing patient 

prognosis [45]. At ART failure and when the virus becomes resistant, this is rapidly 

detected as an increase of the VL. The failure is usually defined as increasing HIV RNA 

levels while being on ART. 

 

Presently (2013) in Sweden and in most high-income countries, Taqman PCR is the assay 

of choice for HIV RNA quantification which has a sensitivity of 20 copies/ml [46]. 

Monitoring is recommended every three to six months in treatment-naïve HIV-infected 

patients, around 4-6 weeks after treatment initiation, and thereafter every three to six 

months, according to the Swedish HIV guidelines [47]. Mostly, the efficacy of ART is 

high with 92% of Swedish patients reaching the aim of undetectable VL with the standard 

techniques in 2012 [48]. In the past a substantial number of patients in high income 

countries failed ART with HIV drug resistance development as a consequence. Presently, 

the number of patients failing ART is limited and hence resistance development is much 

more uncommon than in the past [49].  

 

In LMICs, VL measurement can seldom be done due to high costs, lack of expertise and 

equipment in addition to logistic problems. Instead, the monitoring of ART in most LMICs 

is presently based on clinical parameters and CD4+ T-cell counts, see chapter 4. Therefore, 

there is a need of simpler methods for the assessment of VL in such contexts. In Paper II, 
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it was shown that an ELISA-based method from Cavidi (Uppsala, Sweden), measuring the 

activity of the HIV reverse transcriptase (RT), enzyme is proportional to the VL in the 

plasma [50, 51]. In Paper II, we also compared Roche Cobas TaqMan
® 

with ExaVir Load 

and found a strong correlation (r
2
 = 0.97; p < 0.001) between the two assays.  
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3 HIV THERAPY  
 

3.1 ANTI-HIV DRUGS 

The HIV lifecycle provides several potential opportunities to block viral replication. The 

first antiretroviral drug, zidovudine (ZDV), was introduced in 1987. During the early days 

of the HIV pandemic antiretroviral treatment (ART) was given as a mono-and/or dual 

therapy. This turned out to be a suboptimal strategy that soon resulted in a high degree of 

drug resistance [52-54]. The clinical benefits were not satisfactory and a more potent 

strategy was urgently needed. Today, three or more drugs from at least two different 

classes are used simultaneously to selectively reduce the level of viral replication and 

minimise the risk of developing drug resistance. Combination of ART has dramatically 

decreased mortality and increased the quality of life of HIV-infected individuals [55]. 

 

Today, there are five different classes of drugs used in ART; nucleoside analogue reverse 

transcriptase inhibitors (NRTIs), non-nucleoside analogue reverse transcriptase inhibitors 

(NNRTIs), protease inhibitors (PIs), integrase inhibitors, and entry inhibitors, all with 

different modes of action.  

 

3.1.1 NNRTI 

In this thesis, the focus is on the NNRTI class and in particular etravirine (ETR). These 

drugs are blocking the activity of the RT by binding into a hydrophobic pocket, located 

close to but not in the active site of the enzyme (Figure 5). The steric interaction of the 

NNRTI makes the RT less flexible and thereby prevents it from further action [56, 57]. 

Five current drugs belong to the NNRTI; efavirenz (EFV), nevirapine (NVP), delavirdine 

(DLV, not approved in EU), etravirine (ETR) and rilpivirine (RPV).  

 

The current Swedish guidelines (updated 2011) for first-line ART in treatment naïve 

patients recommend the use of two NRTIs together with one NNRTI, or two NRTIs and 

one ritonavir-boosted protease inhibitor PI/r (www.rav.nu), and are quite similar in the US 

(Department of health and human services (DHHS), International Antiviral Society-USA 

(IAS-USA) and Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults 

and Adolescents: http://aidsinfo.nih.gov, 2011) and in Europe (The European AIDS 

Clinical Society: www.europeanaidsclinicalsociety.org, 2011). A revised version of the 

Swedish guidelines will be launched in autumn 2013 and the combination of two NRTIs 

together with one NNRTI is likely to still be one of the alternatives for the first line 

therapy.  

 

 

http://www.smittskyddsinstitutet.se/rav
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Figure 5. This ribbon representation of the RT active domain illustrates its hand-like structure, showing 

fingers (blue), palm (pink) and thumb (green). The active site (red atoms), where DNA is elongated, is in the 

palm region. Also shown is an NNRTI drug (yellow) in the pocket where it binds (published under commons, 

source http://www.psc.edu/science/madrid2000.html)  

 

3.1.1.1 First generation NNRTI 

NPV and EFV are the first generation NNRTIs that are approved for treatment of HIV 

infection. These drugs are still used frequently in high income countries and are the 

cornerstone in LMICs. In contrast, DLV was not approved in EU and has scarcely been 

used in USA because of side effects. The efficacies of NVP and EFV in combination with 

two NRTIs are good and the major problems are side effects and the low genetic barrier to 

development of HIV drug resistance (see below) [58]. The genetic barrier, defined as the 

number of mutations required to overcome drug-selective pressure, is an important factor 

for the development of HIV drug resistance. Frequently, NNRTIs are used in a fixed dose 

combination, together with NRTIs, as a single tablet regimen in order to enhance the 

convenience and the adherence to the treatment, both in high income countries and LMICs.  

 

3.1.1.2 Etravirine 

ETR is a second generation NNRTI that has been approved for treatment of HIV infection 

in treatment experienced adult patients who are harbouring HIV strains resistant to the first 

generation NNRTIs (EFV and NVP). Thus, in high income countries ETR is frequently 

used together with a boosted protease inhibitor and one or two NRTIs in patients with 

limited treatment options due to HIV drug resistance. ETR shows good activity in vitro 

against most wild-type strains of HIV, as well as against several strains resistant to 

available first generation NNRTIs (EFV and NVP). Furthermore, ETR appears to present a 

higher barrier than first-generation NNRTIs to the development of drug resistance. 

Whereas the presence of a single mutation is sufficient to affect the virological response to 

EFV or NVP, the resistance profile of ETR is more complex. Importantly, the most 

http://upload.wikimedia.org/wikipedia/en/5/5a/RTenzyme-hand.jpg
http://upload.wikimedia.org/wikipedia/en/5/5a/RTenzyme-hand.jpg
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prevalent NNRTI-associated mutation K103N has been claimed not to affect the ETR 

response alone [59]. However, evidence of ETR cross-resistance is present when multiple 

NNRTI mutations are detected during ART failure [60, 61]. In a study from Thailand, 

approximately 60% of patients failing first generation NNRTI-based ART had a high-level 

of ETR resistance. The role of ETR in second-line therapy may thus be limited in late 

NNRTI failure settings [60] and there is a need for resistance testing in order to identify 

possible candidates for ETR therapy.  

 

3.1.1.3 Rilpivirine 

Rilpivirine (RPV) is also a second generation NNRTI that is approved for treatment of 

HIV infection in NNRTI-naïve patients in most high-income countries. In EU, but not in 

the USA, the indication is to use RPV in treatment-naïve patients with VL less than 

100,000 HIV RNA copies per ml. Thus, RPV is not approved for the use of patients failing 

NVP, EFV or ETR. In addition, there is a very high degree of cross-resistance between 

RPV and ETR [62]. RPV is available as a fixed-dose combination of emtricitabine (FTC), 

rilpivirine (RPV) and tenofovir disoproxil fumarate (TDF). Resistance mutations appears at 

a very low frequency, however when they occurs it is often the E138K substitution in 

combination with the M184I substitution during RPV treatment. 
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4 HIV THERAPY IN LOW-MIDDLE INCOME COUNTRIES 

 

At the end of 2011, 8 million people were receiving ART in LMICs. This is a 26-fold 

increase since 2003. Another 7 million people need to be enrolled in treatment to meet the 

target of providing ART to 15 million people in 2015 [63]. By the end of 2011, 54% of the 

people eligible for treatment were receiving ART. Coverage is highest in Latin America 

(70%) and the Caribbean (67%), followed by sub-Saharan Africa (56%), Asia (44%), 

Eastern Europe and Central Asia (23%) and lowest in the Middle-East and North Africa 

(13%) [64]. 

 

The transmission of HIV from an HIV-positive mother to her child is called vertical or 

mother-to-child transmission (MTCT) [65, 66]. In the absence of any interventions HIV 

transmission rates are between 20-45%. MTCT can be nearly fully prevented if both the 

mother and the child are provided with antiretroviral drugs throughout the stages when 

infection could occur. WHO recommends a range of options for prevention of MTCT 

(PMTCT), which includes providing ARVs to mothers and infants during pregnancy, 

labour and the post-natal period, or offering life-long treatment to HIV-positive pregnant 

women regardless of their CD4 count.  

 

The widespread availability of ART increases the risk for transmission and acquisition of 

drug resistant HIV-1 variants that compromise ART. However, drug resistance testing and 

follow up of the patients in order to retain the disease in the chronic phase and with low 

VL is not equally expanded. Indeed, accumulating data suggest that there is a steady 

increase of HIV-1 drug resistant mutations in patients in LMICs, such as in sub-Saharan 

Africa [67]. A systematic literature review and pooled analysis of data from WHO surveys 

[67] indicate that there is an increasing levels of drug resistance, primarily to NNRTIs. 

 

In LMICs, first generation NNRTIs, EFV or NVP are used as a first-line therapy, most 

frequently together with 2 NRTIs (presently tenofovir or zidovudine and lamivudine). In 

order to enhance adherence and convenience as well as save costs the treatment is 

frequently given as fixed dose regimen in single dose tablets. Resistance to first generation 

NNRTIs as well as to NRTIs is an increasing problem in the treatment of HIV-1 infected 

patients in LMICs [68-70]. Access to other drugs varies in different LMICs. Frequently 

alternatives to the first line regimen are limited to a few drugs although there is an 

increasing use of ritonavir-boosted protease inhibitors such as lopinavir/r. Presently, no 

studies on the use of second generation NNRTIs in LMICs have been published. However, 

studies from India and Thailand have shown that there is a risk for cross-resistance to ETR 

if several NNRTI mutations have developed [60, 61, 71]. 

 

To ensure the sustainability of ART programs in LMICs, it is of great importance to 

maintain patients on first-line regimens as long as possible. In high income countries VL 
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measurement is a standard for monitoring the effectiveness of ART. However, virological 

monitoring is not widely accessible among LMICs due to high processing cost and 

requirement of advanced equipped laboratory. LMICs have been encouraged by the WHO 

to increase access to VL testing. For clinical decision making related to switching drug 

regimen, virologic failure has been defined as >5,000 copies/ml [72]. In the absence of 

VL, the recommendations are to use clinical symptoms or CD4 cell count [73]. However, 

relying only on CD4 cell count assessment is neither sensitive nor specific for virologic 

failure [74-76], increasing the risk of viremia going unnoticed and the emergence of drug 

resistance. In high-income countries, viremic patients on treatment are assessed routinely 

for the presence of drug resistance mutations (DRMs) by genotypic or phenotypic 

resistance testing [77, 78]. A low-cost tool for assessing drug resistance and sustain use 

of the first-line regimen in LMICs is therefore needed [72, 79, 80]. In Papers III and IV, 

a technically simpler and cheaper cost method (see chapter 6) for monitoring resistance 

to ETR are described compared to the traditional drug resistance test. Other ways of 

maintaining an efficacious treatment could be to switch treatment at a pre-specified point 

based on the predicted pattern of drug resistance development [81].  
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5 HIV DRUG RESISTANCE 
 

5.1 MECHANISM OF HIV DRUG RESISTANCE 

HIV is characterised by its high genetic diversity. First, this high diversity is a result of the 

high levels of virus production and turnover. Second, HIV has a very high rate of 

nucleotide sequence evolution which in turn is due to the high error rate of the viral reverse 

transcriptase. This leads to the generation of many variants of HIV in a single infected 

patient. The swarm of genetic viral variants is called quasispecies, which may allow the 

virus to escape from the immune system as well from ART [82]. Viruses with mutations 

that result in a fitness advantage will outgrow other variants and become the dominant viral 

population among the quasispecies. Under continued drug pressure but with concomitant 

therapy failure, viral quasispecies with reduced drug susceptibility accumulate with time, 

but when the treatment stops, VL will increase and wild-type virus takes over due to its 

greater replicative capacity [83]. The drug resistant variants usually have reduced fitness 

compared to wild-type virus. This is especially true for viruses with single primary 

resistance mutations. In contrast, additional mutations, which may evolve over time during 

continued drug selective drug pressure, may compensate, thus restoring fitness to near 

wild-type levels. The rate of drug resistance depends on patient adherence to treatment, the 

genetic barrier, host genetics, and fitness of the drug resistant variant [84, 85]. 

 

5.2 ACQUIRED HIV DRUG RESISTANCE 

In treated patients, drug resistance associated mutations can be acquired when virus 

suppression is not completely achieved and replication of the virus can continue at low 

levels. The genetic barrier, defined as the number of viral mutations required to escape 

from the selective pressure of the drug, is an important factor for the development of drug 

resistance [86-88]. Boosted PIs for example have a high genetic barrier as they require 

multiple (3-5) mutations to overcome the drug pressure [86, 88]. Conversely, several other 

drugs have a low genetic barrier as a single mutation is sufficient for viral breakthrough, 

including first generation NNRTIs (nevirapine, efavirenz), 3TC/FTC and first generation 

integrase inhibitors (raltegravir, elvitegravir) [86, 88]. Many mutations selected by the use 

of one drug also cause cross-resistance to other drugs of the same drug class, limiting 

further treatment options. Often, viruses with major resistance mutations have reduced 

replication rates. This can be compensated by compensatory mutations that emerge after 

the major mutations. They do not reduce drug susceptibility, but improve the replication of 

the virus. 

 

5.3 TRANSMITTED HIV DRUG RESISTANCE 

Viruses with resistance mutations can be transmitted to other individuals. Because wild-

type virus is rarely co-transmitted together with the drug-resistant HIV, the quasispecies 
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have no “memory” of the wild-type [89]. There are three possible evolutionary pathways 

for this transmitted drug-resistant variants described. First, when there is a profound effect 

on the replication rate of the virus, the resistant variant may revert back to wild-type. 

Second, atypical variants may be observed when it results in higher replication rate than 

the original transmitted resistant variant. Finally, the resistant variant can persist. Mutations 

that induce only a limited decrease in the replication rate tend to persist. Furthermore, in 

patients experiencing treatment failure, multiple compensatory mutations may appear after 

the initial selection of resistance mutations that lower the replicative capacity. After 

transmission to a new host, evolution may be expected to occur in a stepwise manner. 

However, if all possible nucleotide changes would initially decrease the replicative 

capacity, reversion to wild-type will be blocked [90]. 

 

5.3.1 MINOR POPULATIONS 

The non-dominating populations among the quasispecies are called minor populations. A 

possibility is that a minor population which evolves independently of the major population 

can eventually emerge as the dominating population, thereby serving as a reservoir of 

diversity and possibly accelerating the development of drug resistance [91, 92]. This could 

happen under drug pressure either because it had developed higher resistance or because of 

a change in drug pressure that gave the minor population a growth advantage over the 

major population. Possibly, minor populations can represent vestiges of previously 

dominant populations or earlier stages of HIV evolution or alternatively originate from 

tissue compartments with lower drug concentrations and consequently reduced drug 

pressure [92].  

 

5.3.2 HIV DRUG RESISTANCE TESTING 

Antiretroviral drug resistance testing has become an important tool in therapeutic 

management of HIV-1 infection in high-income countries. There are two categories of 

methods available for resistance testing, genotypic and phenotypic.  

 

5.3.2.1 Genotypic assays 

The genotypic way to determine resistance is to search the gene of interest for mutations 

known to be associated with reduced drug susceptibility [93]. Population based sequencing 

of the pol gene including regions encoding RT, protease and/or integrase is generally 

generated by in-house methods or by commercial assay such as ViroSeq from Abbott. The 

sequences can be used for online prediction at Stanford University HIV Drug Resistance 

Database (http://hivdb.stanford.edu). The cost of a genotypic assay is much less than the 

price of a typical phenotypic test but still expensive for LMICs. Furthermore, the genotypic 

assay is performed more rapidly, while for a phenotypic assay a longer time is needed. 

Therefore, the genotypic test is the preferred test in clinical practice and is recommended 

by the European HIV Drug Resistance Guidelines Panel [94] and the International AIDS 

Society-USA Panel [95]. However, genotypic testing is challenging due to the complexity 

http://hivdb.stanford.edu/
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of interpreting the many different drug-resistant mutations and translating these mutations 

into treatment response. All interpretations of genotypic data are based on phenotypic data 

about which mutations give rise to reduced drug susceptibility. Several interpretation 

systems have been developed, providing rules to help physicians interpret genotypic 

results. Another more advanced approach has been developed based on large HIV clinical 

databases and bioinformatics methods. These databases contain information about clinical 

status, demographics, HIV RNA, CD4 T-cells levels in addition to viral sequences. By 

bioinformatics analysis an improved prediction of which drug combinations are best suited 

to use after treatment failure is obtained as compared to established interpretation systems 

based on genotype sequence analysis only [96-99].  

 

Another problem with today´s routine HIV genotyping methods, is that these techniques 

are not sensitive enough to detect viral populations that represent less than 20-25% of the 

total population [100-102], likely underestimating minor populations that may play a role 

in drug resistance development. Several methods to detect and quantify minor populations 

of drug resistant HIV have been described during recent years [103]. One of them is the 

allele-specific real-time PCR (ASPCR) [102-104], which allows detection of minority 

quasispecies with a sensitivity of down to 0.01% for certain mutations, however one or 

only a few mutations at a time can be analysed. Another alternative to be able to detect 

minor populations could be to use the next generation sequencing (NGS) technologies. The 

population based Sanger method [105] used today for routine HIV genotyping is 

considered as a “first generation” technology, and dominated the sequencing field for about 

two decades prior to the development of NGS [106].  

 

5.3.2.1.1 Ultra-deep pyrosequencing (UDPS) 

The high throughput of NGS technologies, generating million of sequence reads in a short 

time, makes them suitable for sequencing of whole genomes, such as human, bacteria and 

plants. In this sequencing, short sequence reads are generated from fragmented DNA. The 

reads are aligned to a known reference sequenced or assembled de novo. Due to the length 

of the reads, 454 sequencing has an advantage for deep sequencing projects, referred to as 

ultra-deep pyrosequencing (UDPS). UDPS allows identification of rare genetic variants, 

which are not detectable by population based Sanger sequencing [107-110]. The depth of 

the UDPS analysis is primarily determined by the number of templates that can be 

successfully extracted and amplified from the starting material and by the error rate of PCR 

and UDPS. In Paper IV, UDPS was used to identify additional NNRTI resistance 

associated mutations (RAMS) in minor populations. 

 

5.3.2.2 Phenotypic assays  

The phenotypic assays are based on determination of the ability of virus representing the 

patient´s phenotype to grow in culture together with the drug at different concentrations 

[111, 112]. The classical approach was to isolate virus from patient cells, and infect a cell 
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culture with these in the presence of various concentrations of a drug and estimate the 

ability of the cultures to produce virus [113]. Except for the very long time required for 

such an assay, this handling is prone to introduce artefacts from the virus propagation, such 

as selection of irrelevant virus due to the artificial conditions in the culture.  

 

Later recombinant methods have been developed [111, 112, 114], of which some are 

commercially available. These are based on PCR amplification of the patient pol gene (RT 

and PR) from virus isolated from a patient, and creation of a recombinant virus including 

the amplified pol gene. This recombination virus is then assayed for drug susceptibility in 

culture. The raw data output is the concentration of drug required to inhibit viral replication 

by 50% or 90% (IC50 or IC90, respectively) relative to the control. Results as usually 

expressed as the IC50 of the drug being tested for the patient-derived virus divided by the 

IC50 for the reference virus. The value of this ratio is commonly referred to as a fold change 

in susceptibility used the drug concentration that inhibits the viral replication by 50%, 

compared to reference recombinant wilt-type virus as demonstrated in Figure 6.  

 

 

Figure 6. Phenotypic drug susceptibility curves. The continuous curve represents a wild-type drug-

susceptibility virus. The shift to the right of the dashed curve, representing a strain isolated from a patient, 

indicates a reduction in drug susceptibility to a higher IC50 value. (Published under public domain, source: 

http://www.ncbi.nlm.nih.gov/books/NBK2254/#A403). 

 

The interpretation of phenotypic data is based on the measurement of the fold change for 

each antiretroviral drug tested against pre-defined cut-offs. The first important issue related 

to phenotype interpretation is determining the appropriated cut-offs for defining a clinical 

isolate as either drug susceptible or drug resistant. Until, recently technical cut-offs were in 

use, based on the reproducibility of the assay on repeat testing. One improvement over 

technical cut-offs was the introduction of biological cut-offs, which are based on the 

distribution of the drug susceptibility of isolate from thousands of treatment-naïve patients 

[115]. 

 

For interpretation of phenotypic data based on biological cut-off, the clinical isolate is 

usually scored as susceptible to a certain drug if the fold change falls within the mean fold 
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change observed with samples from treatment-naïve patients, plus two standard deviations. 

A test result falling above cut-off can be said to be above the normal susceptible range. 

This provides a reference for comparison of the test with viruses circulating in the drug-

naïve population, although it does not provide information about the likelihood that the 

virus tested will respond to treatment with a particular drug. Thus, neither technical cut-

offs nor biological cut-offs provide a link between drug susceptibility measured in vitro 

and the virological response observed in vivo. 

 

From a clinical perspective, the most relevant method of interpretation of phenotypic data 

is based on the use of clinical cut-offs. These are derived from clinical response data from 

treatment-experienced patients by determining the relationship between fold changes 

measured at baseline and the reduction in viral load after a defined period of treatment. 

Reliable determination of a clinical cut-off requires large sets of clinical data. This, in 

addition to the difficulty in extrapolating the activity of individual drugs within the context 

of combination therapies, are important obstacles to the determination of clinical cut-offs. 

Despite these difficulties, a number of clinical cut-offs have been proposed and are 

currently in use in commercially available phenotypic assays [116-118]. 

 

Because these phenotypic assays are time consuming, expensive and require specialised 

laboratory facilities, they are not widely used as clinical assays in Europe or in LMICs. 

Neither are genotypic resistance assays an alternative to use in LMICs because of the high 

cost and needs for expensive equipment and expert clinicians to interpret genotypic results.  

 

Another alternative could therefore be to determine the phenotypic virus drug susceptibility 

at the RT enzyme level by using a phenotypic method [119-121]. Drug susceptibility 

testing on RT offers advantages compared with traditional phenotypic susceptibility tests 

as they are fast, technically simple and the results are not affected by the metabolism of 

cells used for virus culture in traditional phenotypic assays. In contrast with the results 

from genotypic assays, phenotypic methods do not require complex interpretations.   
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6 RT ASSAYS FOR VL QUANTIFICATION AND RESISTANCE 

TESTING 

RT activity is a unique characteristic of all retroviruses since they need to convert their 

RNA genome to DNA in order to be incorporated into the host genome. Therefore, 

measurement of RT activity has the ability to provide an analytic tool to determine the viral 

replication in HIV. The RT uses the viral RNA genome as template to produce viral DNA 

prior to integration in to the host cell genome. This process can be measured in vitro using 

RNA template and a dNTP analogue (such as BrdUTP) together with colorimetric product 

[122-124], see Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

______________________________________________________________________ 
The RT in the lysates Alkaline phosphatase Colorimetric alkaline phosphatase 

will synthesise a DNA- conjugated antibodies substrate will give a yellow colour, 

strand.  will bind to the DNA/RNA- proportional to the amount product, 

  product.  i.e. the viral load. 

 

Figure 7. Schematic representation of the RT reaction and product detection. (Permission to reprint from 

Cavidi). 

 

6.1 RT QUANTIFICATION 

A methodology for quantification of HIV load based on ELISA methodology has been 

developed [125, 126]. It uses the HIV RT enzyme purified from patient plasma samples to 

catalyse the conversion of RNA to cDNA. The procedure consists of two main parts: the 

separation step for viral RT isolation (Figure 8a and 8b) and the reverse transcription step 

for quantification of the RT (Figure 7). First, the plasma is treated to inactivate cellular 

enzymes and the virus particles are then separated from the plasma by using a gel that 
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binds the virions. The immobilised virions are washed to remove inhibitors, including 

ARV drugs or RT-blocking antibodies. Virions are lysed to obtain the RT and the lysates 

are then transferred to a 96-well plate for assay of RT activity. In an overnight incubation, 

RT enzyme in the lysate incorporates BrdUTP into DNA strand complementary to the 

polyA template (bound to the wells) (Figure 7). Subsequently, an anti-BrdU antibody 

conjugated to alkaline phosphatase is added and the amount of incorporated BrdU is 

detected using a colorimetric substrate. The reaction plate is read at three time points by a 

standard plate reader at wavelength 405 nm. The first reading is the zero reading at 10 

minutes, the second at 2 to 3 hours, and the third on the following day (16 to 24 hours) to 

ensure that small amounts of RT enzyme can be detected. Results are compared to a 

standard curve and the ExaVir Load Analyser software version 3.0 automatically converts 

the amount of RT in femtograms per milliliter (fg/ml) plasma to equivalent RNA copies 

per milliliter of plasma (copies/ml). The analytical sensitivity is 1 fg/ml. The measuring 

range is dependent on the duration of the RT assay and the performance of the plate reader 

used, but in these studies (Papers III and IV) it was typically 1 to 3,000 fg/ml, equivalent 

to 200 to 410,000 copies/ml.  

 

Separation of RT 

______________________________________________________________________ 
The plasma treatment Additive is a The Separation Gel is an ion- As vacuum is created the plasma  

reducing agent that will exchange gel that immobilises remainings will pass through the column. 

inactivate any cellular polymerases the HIV particle by binding to The filter will stop the gel, with the virions  

present in the plasma. the lipid membrane of the virion. bound to it, from going through. 

 
     Illustration: Cavidi AB 

Figure 8a. Procedure for viral RT isolation in the ExaVir
®
 Load. (Permission to reprint from Cavidi). 
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Separation of RT (cont.) 

______________________________________________________________________ 
Gel Buffer 1 removes agents that can 

disturb the RT-assay, like antibodies and 

ARVs. 

Gel Buffer 2 creates a suitable 

environment for the RT. 

The Lysis Buffer breaks the virion open 

and the contents (RT) is released. The 

lysate is collected for an analysis in the RT 

assay. 

       
     Illustration: Cavidi AB 

Figure 8b. Separation of reverse transcriptase (continued). (Permission to reprint from Cavidi). 

 

6.2 VIRAL PHENOTYPIC RESISTANCE TESTING 

With available lysate containing purified RT from the patient plasma, the possibility for 

direct characterisation of RT activity arises. This allows for assessment of acquired or 

transmitted HIV drug resistance. Therefore a phenotypic resistance testing assay based on 

the RT enzyme was developed [127]. The principle of drug susceptibility determination is 

very similar to the above mentioned procedure of RT quantification described in chapter 6 

and 6.1. The RT purified by the above described separation step is assayed together with a 

serial dilution of the ARV drug in the RT-assay described above. The enzymes incorporate 

BrdUMP to different extents depending on the susceptibility to the drug. From the 

inhibition obtained from the different drug concentrations, a profile of susceptibility of the 

RT is obtained, and an IC50 value is calculated. By comparison of the profile with those of 

wild-type and resistant standard RT, the level of resistance in the sample can be assessed. 

The methodology has earlier been evaluated for the NNRTIs EFV and NVP [127, 128].  
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7 NNRTI RESISTANCE ASSOCIATED MUTATIONS 

Resistance to the first generation NNRTIs generally results from a single amino acid 

substitution such as the key mutations K103N or Y181C [129, 130]; this is refered to as 

low genetic barrier. These NNRTI resistance mutations frequently cause cross-resistance 

between EFV and NVP. Single nucleotide changes associated with NNRTI resistance can 

result in high-level resistance with only a slight loss of fitness [131, 132]. In practice a full 

cross-resistance is expected between NVP and EFV after failing therapy with concomitant 

resistance development. Table 1 demonstrates mutations associated with NNRTI drug 

resistance. 

 

ETR appears to present a higher genetic barrier than the first-generation NNRTIs against 

the development of drug resistance. Results from selection experiments with wild-type 

HIV performed at high and low multiplicity of infection showed that at least two mutations 

are required for the development of ETR resistance compared with only a single mutation 

for a first-generation NNRTI [133]. The selection experiments identified the known 

NNRTI resistance-associated mutations (RAMs) L100I, Y181C, G190E, M230L and 

Y318F and the novel mutations V179I and V179F to be associated with development of 

ETR resistance [133]. Furthermore, the impact of individual mutations on resistance was 

highly dependent on the presence of specific co-existing mutations.  

 

Importantly, the presence of the mutation K103N, commonly conferring resistance to the 

first-generation NNRTIs, has been claimed not to cause a loss of virological response to 

ETR. Full cross-resistance is however expected between the second generation NNRTIs, 

ETR and RPV.  
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   L K K V V   Y Y G  P   

Efavirenz   100 101 103 106 108   181 188 190  225   

   I P N M I   C L S  H   

     S     I  A     

                 

 V A L K  V  E V Y  G    M 

Etravirine 90 98 100 101  106  138 179 181  190    230 

 I G I* E  I  A D C*  S    L 

    H    G F I*  A     

    P*    K T V*       

        Q         

                 

   L K K V V   Y Y G     

Nevirapine   100 101 103 106 108   181 188 190     

   I P N A I   C C A     

     S M    I L      

           H      

                 

    K    E V Y   H  F M 

Rilpivirine    101    138 179 181   221  227 230 

    E    A L C   Y  C I 

    P    G  I      L 

        K*  V       

        Q         

        R         

 

Table 1.  Mutations associated with NNRTI drug resistance. Amino acid abbreviations: A, alanine; C 

cysteine; D, aspartet; E, glutamate; F, phenylalanine; G, glycine; H, histidine; I, isoleucine; K, lysine; L, 

leucine; M,methionine; N, asparagine; P, Proline; Q, glutamine; R, arginine; S, serine; T, threonine; V, valine; 

W, tryptophan; Y, tyrosine. Gene positions and corresponding amino acid substitutions marked in bold type 

indicate a high impact on susceptibility and mutations with a lesser impact on susceptibility are represented in 

plain (non-bold) type. Figure adapted from [134]. 
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8 AIMS OF THE STUDY 
 

The aims of this thesis were to develop and/or evaluate assays for monitoring HIV 

treatment of relevance for the situation in low-middle income countries. More specifically, 

I studied simple reverse-transcriptase based assays for the determination of the HIV load 

and drug resistance to non-nucleoside RT inhibitors (NNRTI). These aims were achieved 

by:  

 analysing HIV-1 from treatment-naïve Vietnamese patients by direct sequencing and 

phylogenetic analysis (Paper I) 

 evaluating and implementing a simple RT-based assay for quantification of HIV in a 

Vietnamese cohort (Paper II) 

 developing a simple phenotypic assay for detection of resistance to the new NNRTI 

etravirine (ETR) and to describe cross-resistance patterns between ETR and the first 

generation NNRTIs (Paper III) 

 evaluating the phenotypic resistance assay in relation to sequence data obtained by 

direct sequencing and ultra-deep sequencing (Papers III and IV)  
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9 MATERIAL AND METHODS 
 

For detailed information about material and methods as well as statistical analyses used in 

this thesis, see the respective papers. In brief, the following methods were used: 

 

In Paper I, viral RNA was isolated using QIAamp ViralRNA kit (Qiagen). cDNA was 

synthesised using Superscript III First-Strand Synthesis Supermix (Invitrogen). A product 

spanning protease and the first two-thirds of reverse trancriptase gene of HIV-1 pol-gene 

was amplified. PCR-products were purified using QIAquick PCR-purification kit (Qiagen) 

and sent to Eurofins MVG Operon, Ebersberg, Germany for sequencing. Sequences were 

aligned and edited using the BioEdit and ReCall software. Genotypic resistance analyses of 

all sequences were performed using the Stanford HIVdb Sequence Analysis. Subtype 

classification was done using the REGA HIV Subtyping tool. Phylogenetic analyses were 

performed in BEAST v1.6.1 and tMRCA calculations were done. 

 

In Paper II, quantification of HIV was done using ExaVir
®
 Load version 3 and the princip 

behind this assay are described in chapter 6. Quantification of HIV RNA was performed by 

Cobas
®
 AmpliPrep/Cobas

®
 TaqMan

®
. A Spearman´s rank correlation coefficient (r) was 

calculated, along with 95% confidence intervals for the correlation between HIV RT 

activity and HIV RNA. Bland-Altman plot was used to calculate the agreement of these 

two assays. 

 

In Paper III, RT mutants were produced using the QuikChange site directed mutagenesis 

method (Stratagene). Purification of HIV-1 RT from plasma was done by using ExaVir
®
 

Load version 3 followed by determination of drug susceptibility of RTs towards ETR, both 

described in chapter 6. The genotype was determined by standard GRT. 

 

In Paper IV, purification of HIV-1 RT from plasma was done by using ExaVir
®
 Load 

version 3 followed by determination of drug susceptibility of RTs towards ETR, both 

described in chapter 6. The genotype was determined by standard GRT and UDPS was 

performed in nine of the samples. 

 

9.1 ETHICAL CLEARANCE 

The studies included in thesis were performed after approval from the Regional Ethical 

Committees at Karolinska Institutet. For Papers I and II, Dnr: 2006/1367-31/4, Hanoi 

Medical University Review Board (HMURB) in Bio-medical Research (No. 59/HMURB) 

and the Hanoi Medical Institutional Review Board (IRB) in Bio-medical research Ethics 

(No. 26/IRB). For Papers III and IV, Dnr. 2005/1167-31/3 and 2005/772-31/4. All 

subjects included gave their informed consent to prior study. 
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10 RESULTS AND DISCUSSION 
 

The focus of this thesis was to develpe and/or evaluate assays for monitoring HIV 

treatment of relevance for the situation in low-middle income countries.  

 

10.1 PAPER I 

Study background 

In this study, baseline samples from 63 ART-naïve Vietnamese HIV-patients were 

analysed to assess the prevalence of transmitted drug resistance mutations (TDRM). 

Phylogenetic analyses was also performed including molecular clock calculations in order 

to investigate HIV transmission patterns in Northern Vietnam. All patients belonged to the 

cluster randomised controlled trial “Directly Observed Therapy for Antiretrovirals” 

(DOTARV), registration number NCT01433601, including 640 patients from the 

following districts/cities: Ha Long, Uong Bi, Dong Trieu, Yen Hung. This trial was 

conducted between July 2007 and November 2011, with two years of patient recruitment 

and two years of follow up.  

 

The samples used were collected between December 2008 and January 2009 and genotypic 

analyses of 63 pol-gene sequences were performed using Stanford HIVdb Sequence 

Analysis, (http://sierra2.stanford.edu/sierra/servlet/JSierra?action=sequenceInput) [135]. The 

detected resistance mutations were compared against the TDRM surveillance list [136] as 

well as the IAS-USA 2010 update [137]. Subtype classification was performed using 

REGA HIV Subtyping tool [138]. 

 

Results and discussion 

Drug resistance mutations in ART-naïve patients 

All patients were found to be infected with HIV-1 subtype CRF01_AE with ≥95% 

bootstrap support. In the 63 ART-naïve individuals, most viruses were found to be fully 

susceptible to all protease and reverse transcriptase inhibitors: in 39 (61.9%) sequences we 

found no resistance associated mutations at all, while 20 sequences (31.7%) had one or two 

polymorphic mutations that frequently occur in untreated patients. Four patients were, 

however, infected with viruses carrying resistance mutations, giving a TDRM prevalence 

of 6.3%. An overview of all detected resistance associated mutations is shown in Table 2.   

 

 

 

 

 

 

 

http://sierra2.stanford.edu/sierra/servlet/JSierra?action
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Number of patients (%) NRTI mutations NNRTI mutations PI mutations 

1 (1.6) L210W None None 

1 (1.6) L74W None L10I 

1 (1.6) V75M None None 

1 (1.6) None Y181C L10I 

1 (1.6) None A98G None 

2 (3.2) None V179D None 

2 (3.2) None V106I None 

7 (11.1) None V106I L101I/V 

9 (14.3) None None L101I/V 

38 (60.3) None None None 

63 (100)    

 

Table 2. Number of patients with different resistance associated mutations.Mutations on the TDRM list 

(Bennett, 2009) are shown in bold text. Minor resistance mutations present on the IAS-USA list are shown in 

regular format. 

 

Three of the TDRMs present in the analysed samples confer reduced susceptibility to 

NRTIs; L74I (n=1) and V75M (n=1) both confer low-level resistance to ddI (both), d4T 

(V75M) and ABC (L74I), while L210W (n=1) causes a low-level of resistance to all 

NRTIs except 3TC and FTC. The fourth TDRM was Y181C (n=1), which provides 

intermediate to high level of resistance to all NNRTIs. Minor mutations found for reverse 

transcriptase were: A98G (n=1), V179D (n=2), V106I (n=9), while L10I/V was found in 

the protease region of 18 sequences. No clinically significant resistance mutation for 

protease inhibitors were found. 

 

Phylogenetic relationships and tMRCA calculations 

The 63 pol-sequences were aligned with 190 CRF01_AE and four subtype B sequences 

retrieved from public and local databases. The initial analysis in BEAST revealed three 

clearly demarcated clades which all had a posterior probability support = 1. These defined 

three taxons that were used for the subsequent the most recent common ancestor (tMRCA) 

calculations; ‘CRF01_AE’ (which included all the Vietnamese samples plus the 190 

CRF01_AE reference sequences), ‘Vietnam large clade’ (60/63 Vietnamese strains in this 

study), and ‘Vietnam small clade’ (three Vietnamese samples that clustered separately 

from the others) (Figure 9).   
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tMRCA, 
CRF01_AE 

tMRCA, Vietnam 
small clade 

Subtype B 
Thai/Asia 

Origin of sequences: 
Green=Vietnam (this study) 
Orange=Vietnam (other studies) 
Cyan=Thailand 
Light blue= Asia except Thailand and 
Vietnam 
Pink=Africa 
Purple=Europe, USA and Russia 
Blue=Subtype B reference strains 

1974                           1979                          1984                          1989                           1994                          1999                          2004                         2009 

tMRCA, Vietnam large clade 

 

Figure 9. Phylogenetic trees showing the nodes used for tMRCA calculations and the mixture of strains from 

intravenous drug users and sexually infected patients in Northern Vietnam. The small inset tree shows all 257 

strains with the Vietnam large and small clades encircled. In the larger tree some clades have been collapsed 

for clarity. The branch length corresponds to the year of sampling. Node markings: red circles, posterior 

probability > 0.99; blue circle, posterior probability > 0.90. Tip markings: filled circles, intravenous drug 

users; open circles, sexually infected patients. No tip marking, unknown mode of transmission. 

 

Previous studies of the CRF01_AE epidemiology in Vietnam have shown that HIV was 

first introduced in the southern part of the country. By 1993, over 950 infections had been 

diagnosed in Vietnam, of which only three cases were found in the north [139]. The 

introduction of HIV-1 CRF01_AE in Vietnam has been estimated to have occurred at least 

a decade prior to the first detections of clinical cases and by the late 1980´s the disease is 

believed to have spread among IDUs in South Vietnam and thereafter to IDUs in the 

northern part of the country around 1993-1994 [140]. Our results from the clade currently 

spreading through sexual and intravenous transmission in Northern Vietnam date the 

tMRCA a few years prior to this, around 1990. Vietnam large clade includes samples from 

Ha long, Uong Bi, Dong Trieu and Yen Hung from the current study (n=60), as well as 

sequences form Hai Phong [141], Bac Giang and Hai Duong [140] also located in the 

coastal North-Eastern part of Vietnam (n=22), plus a number of intermixed strains from 

China and the Czech Republic (n=13). The tMRCA for the North Vietnam cluster 

calculated by Liao et al (2010) [142] was based on a smaller number of samples (8 

Vietnamese + 2 Chinese samples), which explains discrepancy between these studies. 

Indeed, six of these strains were included in the current study and the tMRCA of these 

strains fell around 1993-1994 (Figure 9, Vietnamese strains sampled 1998). It is therefore 
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likely that larger sampling rather than methodological differences accounts for the different 

time estimates, and that HIV first spread to Northern Vietnam around 1990 or earlier. 

 

The Vietnam small clade has an estimated tMRCA around 1997, but since the number of 

strains is small it is difficult to say whether they represent an emerging cluster in the north 

or if the three infections were unrelated. BLAST searches confirmed that these strains were 

more similar to samples from southern Vietnam (Ho Chi Minh City, An Giang) and 

Thailand than to North Vietnamese and Chinese CRF01_AE strains. One of these samples 

originated from a truck driver, who had travelled widely throughout Vietnam in this job, 

and the other two samples came from women who were/had been married to drivers. It is 

therefore possible that these strains were independently introduced from the southern part 

of the country. None of these genetically divergent strains carried TDRMs. 

 

The Vietnam samples analysed in this study originated from four clinics in the Quang Ninh 

province in Northeastern Vietnam, near the border to China. These clinics are all located 

within a radius of approximately 35 km, and no local clustering was found for the 

respective sites. Twenty-nine samples originated from patients with a history of 

intravenous drug use, 27 individuals were infected through sexual transmission and the 

mode of transmission for the remaining seven patients was unknown. Samples from 

patients with different modes of infection were completely intermixed in the phylogeny 

(Figure 9) indicating that HIV-transmission frequently occurs between intravenous drug 

users and non-drug users in northern Vietnam. 

 

10.2 PAPER II 

 

Study background 

In this study we analysed the feasibility of the RT-based ELISA method for quantification 

of HIV in monitoring virologic outcome and ART efficacy. We also compared the RT-

based method with Cobas TaqMan PCR. 605 ART-naïve patients from the study cohort for 

directly observed therapy with antiretrovirals (DOTARV) were included. The details of the 

Vietnamese cohort and the clinical outcome of the treatment are described in detail in 

Paper I. 

 

From the total number of patients (640) in the cohort, 35 (6%) patients were excluded due 

to being non-naïve. Intention to treat analysis was applied to estimate treatment outcomes 

(mortality, virologic suppression rate, and virologic failure rate). Survival analysis was 

used to study the time from the start of ART to “virologic failure”, defined as VL >1000 

copies/ml, Kaplan-Meier estimations of the survival curve and Log-rank tests are 

presented, stratified by baseline VL. 

 

Also a total of sixty plasma samples were randomly selected for a comparative study and 

quantified with both ExaVir Load version 3.0 (described in chapter 6) and Cobas TaqMan 
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PCR version 2.0 (detection limit <40 copies/ml). ExaVir Load was performed at Uong Bi 

General hospital according to the manufacturer´s instructions and Roche Cobas TaqMan 

PCR was performed at the Bach Mai Hospital in Hanoi according to manufacturer´s 

instructions.  

A Spearman´s rank correlation coefficient (r
2
), along with 95% CIs was calculated for the 

correlation between HIV RT activity and HIV RNA. In addition, we used a Bland-Atman 

plot to calculate the agreement of these two assays. 

 

Results and discussion 

Evaluating the RT assay in the Vietnamese cohort  

A key component in the study was the use of VL quantifications through ExaVir Load. 

Since our study was the largest prospective study in which this methodology was used we 

needed to evaluate the precision in the Vietnamese setting.  

 

Initially, we quantified 60 samples with both ExaVir Load and TaqMan PCR of which 44 

(73%) had detectable virus. A good concordance was found between the methods. The 

median VL was 36,025 (IQR 200-165,770) copies/ml by ExaVir and 74,900 (IQR 41-

208,000) copies/ml by Taqman. There were 15 samples (25%) with undetectable VL by 

both assays, from 16 treated patients. One sample showed a VL of 45 copies/ml by 

TaqMan but an undetectable VL by ExaVir Load. Thus, the sensitivity of the ExaVir Load 

assay relative to the TaqMan PCR was 98%  (44/45) and the specificity was 100% (15 of 

15 patients with TaqMan VL <40 copies/ml had undetectable RT activity). 

 

The Spearman coefficient of correlation was r
2
 = 0.97 [95% CI (0.95 – 0.98); p <0.0001], 

(Figure 10). There was a good agreement between two assays with a mean of difference in 

log VL of 0.34 [95% CI (-0.35; 1.03)] (Figure 11).  
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Figure 10.  Correlation between Roche TaqMan and Cavidi ExaVir Load assays. Undetectable values are 

scored as 40 copies corresponding to the lower limit of RNA quantification. The Spearman correlation 

coefficient was r
2
 = 0.97 (95% CI 0.95–0.98, p <0.0001). The equation for the regression line is log ExaVir 

Load = 0.8931 log TaqMan + 0.1773 

 

Bland-Altman plot: Exavir versus Roche
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Figure 11. Bland – Altman plot analysis to compare between Roche TaqMan and Cavidi ExaVir Load 

assays. The mean of difference in log VL results between two assays was 0.34 [95% CI (-0.35 ; 1.03)].  
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Results of VL testing in the clinical study 

Analysis of the VL using ExaVir Load was carried out in a total of 2408 samples of 605 

patients. A detailed description of the virological treatment results are described in Paper 

I. When analysing the 605 ART-naïve patients, after 24 months, 35 (5.8%) patients 

developed virologic failure, of which 15 (43%) were primary virologic failure (VL did not 

become undetectable after 6 months of ART). The cumulative virologic failure rate among 

samples assessed with VL during 24 months was 6.8% (95% CI 4.9-9.3). In patients with a 

high VL at baseline (>100,000 copies/ml) virologic failure was more likely to be 

developed than in those with baseline VL <100,000 copies/ml (Kaplan-Meier failure 

estimates Log-rank p <0.001 (Figure 12)). Virological suppression rates were analysed at 

months 6, 12, 18, 24 among all patients according to intention-to-treat analysis which were 

76%, 72%, 67%, 64% and among patients on treatment 93%, 93%, 94%, 94%, 

respectively.  

 

 
 

Figure 12. Kaplan-Meier showed VL at baseline as a risk factor for virologic failure (Log-rank p-value 

<0.001). 

 

 

10.3 PAPER III 

 

Study background 

The aim of this paper was to adapt a phenotypic drug susceptibility assay, earlier 

developed for measurement of resistance to the first generation NNRTIs, nevirapine, and 

efavirenz, for the detection of resistance to the second generation NNRTI etravirine (ETR).  

 

The method was first optimised through titrations of the concentrations of ETR and other 

reagents in the assay. To evaluate the assay, five NNRTI resistant RT mutants were 
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produced (L100I, K103N, L100I/K103N, V179D, Y181C. As controls, T215Y and 

M41L/T69-SG/L210W/T215Y NRTI mutants were also included in the evaluation of the 

assay. All mutants were also tested for phenotypic susceptibility towards NVP to be able 

to confirm our previously published results on ExaVir Drug and NVP [127, 128, 143]. 

 

In order to correlate phenotype with genotype, 28 plasma samples from HIV-1 infected 

patients at Karolinska University Hospital were also analysed for further clinical 

evaluation of the assay. Plasma from 15 newly diagnosed presumably treatment-naïve 

patients and from 13 patients who had failed NNRTI containing therapy with ≥1400 

HIV-1 RNA copies/ml were selected. The ETR phenotype obtained using the ExaVir 

Drug assays was compared to the predicted ETR phenotype obtained by routine genotypic 

analyses. 

 

Inter- and intra-assay variability of the assay was also tested. The variation of the IC50 

value for ETR was measured by testing two plasma samples (3 and 7) from the Karolinska 

HIV cohort at three different occasions (run 1 to run 3), each time in quadruplicates. Intra-

assay means and SD (standard deviation) were calculated. Inter-assay SDs were calculated 

using the modified SD formula, [(SD of the assay means)
2
-(mean intra-assay SD)

2
/r]

½
 

where r is the number of replicates. The SD achieved was used to calculate the CV 

(coefficient of variation) by using the formula CV = (SD/mean) × 100. The effect of 

variation in the amount of RT on the IC50 value was a also tested by measuring the ETR 

susceptibility on two samples serially diluted in 2.5 fold steps ranging the RT amount of 

40-828 fg RT/ml plasma. 

 

Results and discussion 

Effects of NVP and ETR on recombinant HIV-1 RTs 

We found that the recombinant RTs had in general the expected drug susceptibility 

(Table 3). The RT with Y181C, L100I and L100I + K103N mutations, respectively, 

exhibited pronounced decreased susceptibility to the drugs. The K103N mutation yielded 

increased IC50 towards NVP, but not ETR. The RT with Y179D had a very slightly 

increased IC50, as compared to the controls. The wild-type strain HXB2 and T69S-SG 

mutations showed a similar susceptibility pattern for NVP and ETR. The RT mutant with 

T215Y showed a slight increase in the IC50 for NVP but not for ETR.  

 

In this paper we showed that both NVP and ETR displayed expected IC50 values for all 

recombinant HIV-1 RTs equivalent to previous reports [59, 127] and the test could 

plausibly detect ETR resistance associated with Y181C and L100I substitutions as well 

as discriminate between the impact of K103N on the IC50 value of NVP but the lack of 

impact on the IC50 value of ETR  [59, 144]. 
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______________________________________________________________________ 

             IC50 (µM)      

                                                

RT analysed NVP  ETR  

_______________________________________________________________________ 

 

NNRTI substitution panel 

BH10*  1.1 ± 0.1 0.9 ± 0.2 

BH10 E478Q 3.6 ± 1.6 0.9 ± 0.2 

BH10 V179D, E478Q  8.2 ± 1.1 3.8 ± 1.0 

BH10 Y181C, E478Q >100 35.9 ± 9.8 

BH10 L100I, E478Q** 37.9 ± 11.9 13.4 ± 2.7 

BH10 K103N, E478Q 166.7 ± 11.7 1.4 ± 0.2 

BH10 L100I, K103N, E478Q 237.3 ± 8.3 50.1 ± 20.6 

 

NRTI substitution panel 

HXB2*** 3.3 ± 1.5 2.5 ± 0.4 

HXB2 T215Y 8.4 ± 0.3 1.4 ± 0.1 

HXB2 M41L, T69S-SG, L210W, T215Y 2.9 ± 1.8 1.5 ± 0.7 

________________________________________________________________________ 

Table 3. Effects of nevirapine and etravirine on recombinant HIV-1 RTs. Data are presented as mean IC50 

values and SD; IC50, 50% inhibitory concentration; NNRTI, non-nucleoside RT inhibitors; NRTI, 

nucleoside RT inhibitors; NVP, nevirapine; ETR, etravirine. Data are based on three experiments for ETR 

susceptibility, except 10 experiments for BH10*, L100I** and HXB2***. NVP susceptibility was repeated 

at least three times (BH10, HXB2 and L100I, were repeated seven, four and five times, respectively), 

except for Y181C that was estimated at one occasion. 

 

 

Reproducibility of ETR susceptibility and variation effect  

The reproducibility data for the two samples tested at three different occasions in four 

replicates showed inter assay variation (CVs) of 9.4 and 11.1% (Table 4). Data also 

showed that the IC50 values for ETR (mean ± SD: 1.6 ± 0.03 µM and 3.1 ± 0.04) were 

not influenced by the RT amount within the 40-828 fg/ml RT range (Figure 13).  
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Figure 13. Presents the effects of variations in the amount of RT on the IC50 value for ETR. ETR 

susceptibility was determined on two HIV- RTs isolated from patient sample 9 ■ and 4 ♦ and diluted to the 

indicated concentrations, ranging from 40 to 828 fg RT/ml. 

 

 

Patient 

tested 

Intra-assay variation in IC50 (µM) Inter-assay variation 

Run 1 Run 2 Run 3 Mean SD
 a
 CV (%) 

3 4.6 (±0.5) 5.5 (±0.4) 5.0 (±0.4) 5.2 0.48 9.4 

7 2.1 (±0.2) 2.5(±0.1) 2.1 (±0.2) 2.2 0.25 11.1 

 

Table 4.
  
Reproducibility data of ETR susceptibility. Two samples were tested on three independent 

occasions (run 1 to 3).  
a 

Inter-assay SDs were calculated using the modified SD formula, [(SD of the assay means)
2
-(mean intra-

assay SD)
2
/r]

½
 where r is the number of replicates. The SD achieved was used to calculate the CV by using 

the formula CV = (SD/mean) × 100. 

 

 

Effects of ETR on patients HIV-1 RT  

The potential clinical value of the method was determined by analysis of plasma 

samples. In all of the 15 samples from presumably treatment-naïve patients (Table 4), 

low IC50 values (mean ± SD: 2.5 ± 1.0 µM) were found for RT activity in the presence of 

ETR. In patient 3, however, sequencing revealed the presence of K103N most likely due 

to previous drug exposure or infection with a resistant variant. Also, in 13 NNRTI-

experienced patients who were failing ART we found a concordant result. Seven samples 

(16, 17, 23, 25, 26, 27 and 28) had low IC50 values (Table 4). The sequence analysis was 

consistent with the phenotypic results in three cases which lacked NNRTI mutations (25, 

27 and 28). In four cases (16, 17, 23 and 26), sequence analysis showed mutations which 

are not clearly associated with ETR resistance (16: K103N; 17: A98G+V179I; 23: 
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V179I; 26: K103N+V108I). The A98G has been reported to be associated with decreased 

ETR response in vivo but has little, if any, effect on ETR susceptibility. 

 

The remaining six samples had high (similar or higher than the IC50 value of the mutant 

control) IC50 (Table 4). The result concordantly showed high IC50 values in plasma RT 

with Y181C (samples 20, 21 and 22) and intermediate IC50 values were associated other 

known ETR associated mutations, confirming the reliability of our assay. However, for 

plasma RT which had intermediate IC50 values a few discordant results were found in 

comparison with genotypic outcome. E.g. in a patient whose subtype C virus exhibited a 

K103N mutation, a slightly increased IC50 was obtained at several repeated analyses. 

Since the standard sequencing only validates the major viral population, the possibility 

cannot be excluded that the genotypic assay failed to detect minor quasispecies 

contributing to the slightly increased IC50 values to ETR detected here. However, an in-

house allele-specific PCR could not identify any Y181C minor quasispecies. 
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   Mutations at amino acid  
Patient NNRTI fg RT/ml ETR 98 100 101 103 108 179 181 188 190 Antiviral score according to RNA HIV 

   IC50 (M) A L K K V V Y Y G Stanford Tibotec Monogram copies/ml subtype 

BH10 NA NA 0.9±0.16          ND ND ND NA B 

L100I NA NA 13.0±2.9  I        ND ND ND NA B 

1 None 16 1.8          0 0 0 1800 C 

2 None 159 3.4          0 0 0 66000 C 

3 None 682 5.2±0.54    N      0 0 0 n/a C 

4 None 828 1.6±0.04          0 0 0 n/a C 

5 None 28 1.4          0 0 0 n/a C 

6 None 357 1.8          0 0 0 n/a C 

7 None 32 2.3±0.32          0 0 0 n/a C 

8 None 70 1.4          0 0 0 n/a C 

9 None 628 3.1±0.07          0 0 0 n/a C 

10 None 21 2.8          0 0 0 7900 CRF01 AE 

11 None 91 2.4          0 0 0 14000 A 

12 None 106 2.3          0 0 0 16700 B 

13 None 105 2.5          0 0 0 27700 A 

14 None 437 3.4          0 0 0 56800 B 

15 None 181 2.4          0 0 0 18100 CRF01 AG 

16 EFV 45 1.2    N      0 0 0 12000 B 

17 NVP 276 3.9 G     I    5 1 0 62000 A 

18 EFV 98 14.5 G  E N I     15 2 2 17000 B 

19 EFV 33 8.5 G   N    F  5 1 0 4200 B 

20 NVP 203 >100      E C   35 2.5 7 44000 CRF06 CPX 

21 NVP 201 >100 G      C   35 3.5 4 24000 A 

22 NVP 6 20.0 G     I C   35 3.5 4 6300 A 

23 NVP 329 2.5      I    0 0 0 183000 A 

24 EFV 25 17.6   KE N      15 0 0 11000 B 

25 EFV 731 4.1          0 0 0 261000 B 

26 EFV 3 4.9    N I     5 0 0 1500 C 

27 EFV 574 4.1          0 0 0 29000 C 

28 EFV 434 2.8          0 0 0 54000 C 
Table 4. Effects of etravirine on HIV-1 RT recovered from plasma of HIV-1 infected patients. Genotypic and phenotypic characterisation was performed on HIV-1 (expressed as fg RT/ml) from 

patients without treatment (1-15) or with NNRTI containing treatment (16-28). If no standard deviation is indicated, experiments were run at single occasions. The two reference recombinants RT, 

(BH10)-wild-type (WT) and its mutant form L100I, were tested in 14 experiments. Three genotypic scoring systems (Stanford, Monogram, Tibotec) defining predicted ETR susceptibility are presented. 

HIV-1 subtypes were defined by the pol gene. Abbreviations: NA, not applicable; n/a, not available; IC50, inhibitory effect; NNRTI, non-nucleoside RT inhibitors; ETR etravirine; NVP, nevirapine; 

EFV efavirenz. 
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The correlation between the scoring systems (Tibotec (r=0.60 p <0.001), Monogram 

(r=0.63 p <0.0004), and Stanford (r=0.80; p <0.0001)) and outcome of the method was 

significant for all algorithms despite that known ETR RAMs were detected in only 54% 

of patient isolate (7/13) by direct sequencing. As these scores are mostly directed to 

balance the major ETR mutations the differences between phenotypic and genotypic 

assays are not unexpected [145]. 

 

To summarise this paper, as general finding, the changes in IC50 values for ETR (and 

NVP) correlated well with the predicted results from direct sequencing of the pol region. 

The ExaVir Drug approach has previously been applied for NVP with success [127, 128] 

and its usefulness was confirmed in this paper and extended to ETR. In order to describe 

a more precise laboratory cut-off for decreased susceptibility and a clinically relevant 

cut-off, a more extensive evaluation has to be performed. However, we believe that this 

phenotypic RT drug susceptibility assay could be a low cost alternative for to genotyping 

or conventional phenotyping in limited resource settings in studying resistance to first 

and second generation NNRTIs.  

 

10.4 PAPER IV 

 

Study background 

The aim of this paper was to perform a further clinical evaluation of our newly adapted 

RT-based assay for assessment of resistance to ETR in patients with past or ongoing failure 

on the first generation NNRTIs. We compare RT phenotype with the genotype obtained 

with standard direct sequencing. In those cases where there was a discrepancy between the 

major genotype and the RT phenotype, ultra-deep pyrosequencing (UDPS) was also 

performed to identify any minor sequence variants in the HIV-1 RT gene. Two reference 

recombinants RT´s, BH10-wild-type and its mutant form L100I were included in the 

analyses of the RT-based phenotypic assay. 

 

Altogether, 25 plasma EDTA samples of 20 HIV-1 infected patients (Table 5) were 

retrospectively included from the HIV cohort at Department of Infectious Diseases, 

Karolinska University Hospital, Stockholm, Sweden and analysed for ETR resistance by a 

reverse-transcriptase based phenotypic assay.  

 

Of these, 15 treatment-experienced patients were randomly selected among subjects with 

ART failure. For eight samples the failing regimen contained an NNRTI. For 12 samples, 

the NNRTI had been stopped earlier and the failing regimen contained now antiretroviral 

drugs from other categories. Four treatment naïve patients were also included since they 

had been infected with NNRTI-resistant strains.  

 

Genotypic resistance test, GRT, had been performed within the clinical care by direct 

sequencing of the pol gene in all of these individuals and one or more NNRTI mutations 
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had been found in all of them, except in one patient (patient 7). One NNRTI-naïve patient 

(patient 4), who had a K103R mutation, was also chosen as a negative control since this 

mutation is reported not to affect ETR susceptibility.  

 

Pat.* 

 

Sex* Age* Sub- 

type 

Ongoing 

NNRTI 

treatment** 

Earlier 

NNRTI 

treatment*** 

Other ongoing 

drugs**** 

HIV load 

(copies/ml) 

CD4 

count 

(cells/µl) 

1 m 37 D no EFV (-134), 

NVP (-6) 

no 17800 200 

2 m 43 B no no no 292000 100 

3a m 41 B no EFV (-472) no 161000 10 

3b    ETR (111) EFV (-585) DRV/r 117000 10 

4 m 52 B no no no 63000 373 

5a m 61 B EFV (236) - LPV/r, T20 21800 300 

5b    EFV (248) - LPV/r, T20 47000 335 

6 f 48 C no EFV (-250), 

NVP (-60) 

TDF, FTC, T20 6700 155 

7 m 56 C no EFV (-286) ATV,TDF,ABC,3TC 1500000 22 

8a m 46 B NVP (337) EFV (-418) ABC, 3TC, TDF 13100 126 

8b    NVP (339) EFV (-420),  ABC, 3TC, TDF 3920 126 

9a m 61 B no EFV (-422), 

NVP (-192) 

LPV/r, 3TC, RAL 8400 209 

9b    no EFV (-448), 

NVP (-218) 

LPV/r, 3TC, RAL 20000 246 

10 m 49 B NVP (262) EFV (-286) ABC,3TC,TDF,T20 10400 662 

11a f 49 A EFV (180) - ABC, 3TC 2600 260 

11b    no EFV (-308) no 12200 219 

12 m 42 C no NVP (-18) ATV/r, ABC, 3TC 1100 380 

13 f 40 C no no no 151000 9 

14 m 53 B no EFV(-172) no 100001 420 

15 m 51 B no EFV (-308) DRV/r, TDF, FTC 910000 40 

16 f 36 A no no no 4420 303 

17 f 42 D no NVP (-19) ABC, 3TC, ZDV 1900 159 

18 m 49 D NVP (11) EFV (-220) ABC, 3TC, ZDV 12000 345 

19 m 49 B no no no 29000 234 

20 f 49 B no EFV (-8) no 4700 400 

 

Table 5.  Characteristics of 20 HIV-1 infected patients with antiretroviral treatment failure at the time of plasma 

sampling. *Patients were selected due to a failing ART with the exception of patients no 2, 13, 16, 19 who were 

infected with an NNRTI-resistant strain; a and b indicate a first and a second sample;  m: male; f: female; age: 

years;**Figure within brackets indicate the number of weeks from the start of the last ongoing NNRTI-treatment to the 

sampling date. ***Figure within brackets indicates the number of weeks from cessation of the prior NNRTI-containing 

treatment to the sampling date.****ABC: abacavir; 3TC: lamivudine; FTC: emitricitabine; TDF: tenofovir; ZDV: 

zidovudine: LPV/r: lopinavir/ritonavir; ATV/r: atazanavir/ritonavir: DRV/r: darunavir/ritonavir; RAL: raltegravir; 

T20: enfuvirtide. 
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To be able to predict ETR susceptibility, three genotypic scoring systems were used, 

Stanford University, Monogram Weighted Score, Tibotec Weighted Genotype Score. The 

correlation between Monogram/Tibotec/Stanford scorings and IC50 determined by our 

phenotypic RT assay was assessed by Spearman´s rank test using software in GraphPad 

Prism version 5 (San Diego, California, USA). 

 

Results and discussion 

Phenotypic assay results in relation to mutational patterns 

RT was isolated from 20 plasma samples from 15 patients with treatment failure (Table 6).  

In ten samples (3a, 4, 7, 9a, 11b, 12, 15, 16, 17, 18) with the lowest IC50 values (mean ± 

SD: 3.1 ± 1.3; range: 0.7 - 4.5 µM), there was a good concordance with the GRT. Thus, 

sequence analysis showed no mutations or non-ETR RAMs.   

 

Six samples had IC50 values which according to our earlier evaluation [146] can be 

considered as slightly increased (range: 6.4 – 13.6 µM; 1: 11.8 µM, 9b: 9.2 µM, 10: 13.6 

µM, 11a: 7.3 µM, 19: 6.4 µM, 20: 7.2 µM). In all of them only non-ETR RAMs were 

found. Four samples of three patients showed increased IC50 values (5a: 45.8 µM; 5b: 71.4 

µM; 13: 68.8 µM 14: 29.1 µM), while direct sequencing showed mutations which are not 

known to be predictive for decreased sensitivity for ETR (5a and 5b: K101I/R+V106G; 13: 

K103N+G190A; 14: A98S+K103N+E138A). Five samples (2, 3b, 6, 8a, 8b) had strongly 

increased IC50 (>100 uM). The mutational patterns were, to varying degree, predictive of a 

decreased sensitivity to ETR, including Y181C (3b, 8a, 8b), V901+L100I+K103N (6), and 

A98S+E138E/Q+K238T (2). The correlation between the Stanford scoring system and the 

phenotypic assay results (r = 0.70 p <0.0001) was significant. The Monogram and Tibotec 

scoring systems also correlated with the IC50 values (r=0.65 p<0.0005; r=0.64 p<0.0005, 

respectively).  

 

One possible explanation for the discrepancy between the phenotypic and the genotypic 

test results obtained by direct sequencing is resistance in minor viral variants. Therefore, 

UDPS was used in nine samples in which a discrepancy was found. 
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  Mutations at amino acid Antiviral score according to 

Patient/ 

Sample 

ETR 

IC50 (µM) 

90 

V 

98 

A 

100 

L 

101 

K 

103 

K 

106 

V 

108 

V 

138 

E 

179 

V 

181 

Y 

188 

Y 

190 

G 

238 

K 

Stanford Tibotec Monogram 

BH10* 1.0±0.18              NA NA NA 

L100I* 12.0±2.3              15 2.5 4 

1 11.8  S    A        0 0 2 

2 >100     N   Q     T 10 1 2 

3a 4.5  S       D     10 1 1 

3b >100 I S       D C    45 4.5 6 

4 3.9     R         0 0 1 

5a 45.8    I/R  G        0 0 0 

5b 71.4    I/R  G        0 0 0 

6 >100 I  I  N         20 3.5 5 

7 0.7              0 0 0 

8a >100     N     C    30 2.5 4 

8b >100     N     C    30 2.5 4 

9a 4.6  S   N  I      T 0 0 1 

9b 9.2  S   N  I      T 0 0 1 

10 13.6     N  I       0 0 0 

11a 7.3     N    I     0 0 1 

11b 4.1         I     0 0 1 

12 2.0     N         0 0 0 

13 68.8     N       A  10 1 1 

14 29.1  S   N   A      5 1.5 3 

15 2.9     N         0 0 0 

16 1.7     N         0 0 0 

17 2.9     N         0 0 0 

18 4.1 I    N         0 1 1 

19 6.4     N         0 0 0 

20 7.2      N         0 0 0 

Table 6. Effects of etravirine on HIV-1 reverse transcriptase, recovered from plasma of HIV-1 infected patients. * Two recombinant reverse transcriptase, (BH10)-wild-type 

(WT) and its mutant form L100I, were used as references. Abbreviations: NA, not applicable; IC50, inhibitory effect; ETR etravirine.**Genotype  result was obtained six months 

earlier. The results of three genotypic scoring systems (Stanford, Monogram Weighted Score, Tibotec Weighted Genotype Score) predicting ETR susceptibility are presented. A 

Stanford score of 0-<15, ≥15-<60 and ≥60 are defined as susceptible, intermediate and resistant. Tibotec weighted genotypic score of  0-2, 2.5-3.5 and ≥4 are predictive of 

susceptible, intermediate and reduced response. Monogram defines a weighted score of 0-3 as susceptible and ≥4 as resistant. 
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Ultra-deep pyrosequencing (UDPS) results 

UDPS was performed on nine samples (1, 2, 5b, 10, 11a, 13, 14, 19, 20) for which there 

seemed to be a discrepancy between the major genotype and the RT phenotype (Table 7). 

When direct sequencing was compared with UDPS, all mutations corresponding to >20% 

were detected and no mutations corresponding to <20% of the viral population. Altogether 

eleven mutations were detected by UDPS, but not by direct sequencing, ranging from 

0.54% to 19.56%. There was a concordance between the direct sequencing and the UDPS 

for mutations consisting of >20% of the viral population. Also, eleven additional RAMs 

were found by UDPS, in all cases <20% of the viral population, which is well in line with 

earlier results on the detection levels of direct sequencing [107, 108, 110, 147]. 

 

In four of the samples (1, 11a, 13, 14), the UDPS detected minor variants including such 

which are associated with decreased ETR susceptibility and may have contributed to the 

phenotypic resistance explaining the discrepancy with the genotype obtained by direct 

sequencing. 

 

In three samples (2, 5b, 20), identical mutations were found with the two sequencing 

techniques. Thus, the UDPS did not revealed any further minor variants that could explain 

the increased IC50 values of 100 µM, 71.4 µM and 7.2 µM, respectively. 

In the remaining two samples (10, 19), the UDPS showed additional minor mutations not 

known to be associated with decreased ETR susceptibility. 
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   Mutations at amino acid* Antiviral score according 

to 

Patient/ 

Sample 

ETR 

IC50 (µM) 

 90 

V 

98 

A 

100 

L 

101 

K 

103 

K 

106 

V 

108 

V 

138 

E 

179 

V 

181 

Y 

190 

G 

238 

K 

Stan Tibo Mon 

1 11.8 Direct  S    A       0 0 2 

  UDPS  S    T A I  I C   30 2.5 7 

  **2409(1127-3244)  *68.63%   18.8% 66.58% 0.54%  0.57% 6.88%      

2 >100 Direct     N   Q    T 10 1 2 

  UDPS     N   Q    T 10 1 2 

  1958 (1108-2870)     99.2%   32.47%    98.64%    

5b 71.4 Direct    I/R  G       0 0 0 

  UDPS    I/R  G       0 0 0 

  2305(1201-3397)    65.64%/ 

31.09% 

 99.83%          

10 13.6 Direct     N  I      0 0 0 

  UDPS     N  I  I    0 0 1 

  1704(876-2325)     98.85%  100%  3.24%       

11a 7.3 Direct     N    I    0 0 1 

  UDPS     N    I  A  10 1 2 

  1613(873-1887)     97.44%    100%  3.59%     

13 68.8 Direct     N      A  10 1 1 

  UDPS I  I  N      A  25 6 4.5 

  2506(1546-2696) 2.26%  0.61%  99.41%      95.57%     

14 29.1 Direct  S   N   A     5 1.5 3 

  UDPS  S  E N   A    T 15 2.5 6 

  1855(1118-2536)  96.77%  0.81% 22.1%   100%    19.56%    

19 6.4 Direct     N        0 0 0 

  UDPS     N/S I       0 1.5 2 

  1499(832-2325)     95.07%/ 

3.05% 

1.09%          

20 7.2 Direct     N        0 0 0 

  UDPS     N        0 0 0 

  2412(1228-2953)     97.37%           

 
Table 7. NNRTI-resistance results obtained through phenotypic testing, direct sequencing and ultra-deep sequencing (UDPS). ETR = etravirine; Direct = Direct Sanger sequencing; UDPS = Ultra-Deep 

Pyrosequencing; Stan = Stanford; Tibo = Tibotec; Mono = Monogram. *figure beneath amino acid indicate percentage consisting of a mutated population as determined by UDPS. ** Median (IQR) 

nucleotide coverage per patient.
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Clinical interpretation of the resistance results: 

Resistance results in patients who had stopped NNRTI. Twelve samples (1, 3a, 6, 7, 9a, 9b, 

11b, 12, 14, 15, 17, 20) of eleven patients were drawn after that an NNRTI containing 

regimen had been terminated (Tables 5). In patients 1 and 20, NVP and EFV had been 

stopped six and eight weeks earlier, respectively. The IC50 values (Table 6) were slightly 

increased (11.8 µM and 7.2 µM, respectively) but the Stanford scoring predicted full 

sensitivity (A98S+V106A; K103N, respectively). However, in patient 1 UDPS revealed 

additional minor mutations (K103T+V108I+V179I +Y181C) which possibly could explain 

this difference (Table 7). In patients 6 and 14, a clear decreased phenotypic sensitivity 

against ETR (6: >100 µM; 14: 28.8 µM) was found despite that >1 year and > 3 years, 

respectively, had passed since the cessation of an NNRTI. The genotyping further 

supported this finding for patient 6 (direct sequencing: V90I+L100I+K103N) and patient 

14 (UDPS: A98S+K101E+K103N+E138A+K238T).  

 

In four patients, several years had passed since their NNRTI treatment was terminated (7, 

11b, 15: >5.5 years; 9a: 3.5 years). In patient 12, 18 weeks had passed. No phenotypic 

resistance was found in these patients although non-ETR RAMs persisted (11b: V179I; 12 

and 15: K103N; 9a: A98S+K103N+V108I+K238T). However, a second sample of patient 

9 drawn four months later showed a slightly decreased phenotypic sensitivity (9.2 µM) 

with the same mutational pattern with a concomitant increase in plasma viral load. UDPS 

could not be performed due to lack of plasma.  

 

Resistance results in patients with ongoing NNRTI failure. Eight samples (3b, 5a, 5b, 8a, 

8b, 10, 11a, 18) of six patients were drawn during failure of an NNRTI containing regimen. 

In four samples (3b, 8a, 8b, 18), a concordance was seen between the pheno- and genotype. 

Thus, patient 3b exhibited a high ETR resistance with both methods (IC50: >100 µM; 

genotype: V90I+A98S+V179D+Y181C). In both samples of patient 8, phenotypic 

resistance (>100 µM) and the mutations K103N+Y181C were found. Patient 18 had a 

sensitive phenotype (4.1 µM) and was devoid of mutations other than K103N+V90I after 

10 weeks failure.  

 

In four samples, disconcordance was seen between the RT-based phenotype and the 

genotype. In patient 5, two samples were drawn with three months interval during failure 

with EFV-containing regimen. An increasing IC50 of 45.8 µM and 71.4 µM, respectively, 

was seen despite that direct sequencing as well as UDPS showed only mutations 

(K101I/R+V106G) which are not known to be ETR-associated. Patient 10 exhibited an 

increased IC50 (13.6 µM), but the identified mutations (direct sequencing: K103N+V108I; 

UDPS: K103N+V108I+V179I) predicted an ETR sensitive virus. In patient 11 a sample 

drawn early after failure showed a slightly increased IC50 (7.3 µM), while the direct 
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sequencing showed K103N+V179I. However UDPS identified additionally G190A giving 

support for that resistance was developing.  

 

Effects of ETR on patients with transmitted NNRTI resistance. Four patients (no 2, 13, 16, 

19), who had been infected with an NNRTI resistant strain, were also analysed. Patients 2 

and 13 had a strongly increased IC50 value (>100 µM; 68.8 µM) despite that the sequence 

analysis predicted only a slightly decreased sensitivity (2: K103N+E138Q, K238T; 13: 

K103N+G190A) (Table 2). The remaining two samples had the K103N only, and a low 

1.7 µM (16) and a slightly increased 6.4 µM (19) IC50 value, respectively, was found. 

 

To summarise this paper, our RT-based phenotypic assay showed decreased ETR 

susceptibility in patients where direct sequencing predicted ETR-sensitive virus. The 

clinical treatment history was concordant with that our phenotypic results corresponded to 

a true decreased susceptibility for ETR. Thus, during early ART failure and before the 

NNRTI was stopped, an increase of the IC50 was seen in four of eight samples despite that 

a sensitive virus was predicted by the genotype. Also, in two patients who stopped NNRTI 

some weeks before the sampling, an increased IC50 but not ETR-resistance mutations was 

found. For subjects who had stopped the first generation NNRTI-containing regimen for 

one or more years, a good concordance between the methods was seen. In addition, in two 

subjects (7 and 16) with very poor adherence, no phenotypic resistance was identified and 

only K103N in one of them. These patient histories and the UDPS comparison indicate that 

our phenotypic method may detect resistance to ETR despite that the direct sequencing 

predicts a sensitive phenotype. 

 

The clinical utility of the phenotypic method remains to be established. It is clear that there 

is a strong correlation between the results of our phenotypic method and the predicted 

antiviral scores according to three genotypic scoring systems. A high IC50 was found in all 

samples with key-mutations, Y181C and L100I, which are associated to ETR resistance. 

However, in a substantial number of samples there was a phenotypic decreased 

susceptibility but no known ETR-RAMs. The clinical relevance of these findings and 

clinical cut off of our method can only be studied on larger patient-populations. Even so, 

this study showed that the adaptation of the RT based phenotypic test for detection of ETR 

resistance in plasma is possible. The assay is simple to perform, uses basic laboratory 

equipment, and does not require complex interpretations. This phenotypic RT drug 

susceptibility assay could therefore be a low cost alternative for studying resistance to first 

and second generation NNRTI and useful for studies on the kinetics of NNRTI resistance 

during ART failure.  
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11 CONCLUSIONS AND FUTURE PERSPECTIVES 
 

Although ART has reduced HIV-1 associated morbidity and mortality, development of 

drug resistance has become a major problem. Ideally, when ART is rolled out in 

resource-limited settings, it should be coupled to virological monitoring. However, due 

to a high cost and lack of technical equipment and expertise, this is frequently not 

available. This increases the risk of undetected treatment failure and the development 

of widespread drug resistance. 

The prevalence of transmitted drug resistance (TDR) is of importance for determining 

the choice of 1
st
 line ART, which in Vietnam and other LMICs consists of NNRTI-

based ART. In Paper I the prevalence of TDR was 6.3%, which is slightly higher 

compared to other recent studies from South-East Asia. Nonetheless, apart from one 

patient whose virus had Y181C mutation, the TDR detected are of limited clinical 

importance and do not rule out the use of the standard first-line treatment regimen. 

However, in view of the increasing use of different antiretroviral drugs in Vietnam it is 

important to regularly monitored prospectively in Vietnam. 

In Paper II we showed that the RT VL assay was a useful tool for monitoring VL and 

feasible for monitoring virological outcome and assess ART efficacy in Vietnam. The 

RT VL assay also displayed a strong correlation with Cobas TaqMan PCR and showed 

similar sensitivity to the PCR-based method. This, together with the fact that the RT 

assay requires only basic laboratory equipment, makes the test an alternative technique 

for developing countries. Having access to VL can facilitate early detection of drug 

failure and aid in enhancing early adherence support and the choice of new therapy 

regimes, thereby preventing the emergence of more advanced drug resistance patterns. 

Keeping in mind that most ART programs in LMICs are presently based on a limited 

number of drugs, implementing these programs without simultaneous implementation 

of VL testing is risky, as initial treatment gains will be ultimately lost to future drug 

failures and spread of resistant viral strains. 

Assays using RT purified from the virus particles of a patient sample allow both for VL 

quantification and assessment of phenotypic drug susceptibility, the latter being 

important not only at initiation of ART but also at therapy switch after treatment 

failure. The RT-based methodology has earlier been described for measuring 

phenotypic drug susceptibility to the first generation NNRTIs (EFV and NVP) [127, 

128, 143]. In Paper III we showed that the RT-based phenotypic resistance assay can 

be used for detection of resistance also to the second generation NNRTI ETR, 

including cross-resistance to other NNRTIs, in clinical samples. Low IC50 values were 

shown in treatment-naïve patients. Furthermore, a good reproducibility was 

demonstrated, with the outcome of the test being independent on the amount of plasma 

HIV RNA. Also, in treatment naïve-patients, the result concordantly showed high IC50 

values in plasma RT where Y181C was detected by direct sequencing. Intermediate 

IC50 values were associated with other known ETR associated mutations, confirming 

the reliability of our assay.  
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In Paper IV a further thorough clinical evaluation of the RT-based resistance assay 

was performed in patients with past or ongoing failure with first generation NNRTIs. 

Most of the strains had a various degree of decreased ETR susceptibility as measured 

by the phenotypic test. However, the mutational patterns based on direct sequencing did 

not always predict ETR resistance, potentially indicating that the assay may 

overestimate the presence of decreased drug susceptibility. Nevertheless, in Paper III 

ETR gained expected changes in IC50 values for all recombinant HIV-1 RTs equivalent 

to previous report [59, 127]. Thus, it is clear that the method can discriminate between 

mutants with or without ETR RAMs. One possible explanation for the discrepancy 

between the phenotype and the genotypic test results obtained by direct sequencing can 

be resistance in minor viral variants. In Paper IV we analysed patient samples with 

unexpectedly high IC50 values with UDPS, and found minor viral populations with 

ETR RAMs in four of the nine samples. In at least three of them, the proportion of 

mutated virus was sufficiently high to provide a potential explanation for the 

discrepancy between phenotype and the genotype obtained by direct sequencing. This 

indicates that our phenotypic method may in fact be more sensitive than direct 

sequencing in identifying minor quasispecies with RAMs in the RT gene. Also, the 

clinical treatment history for the patient included in Paper IV was concordant with that 

our phenotypic results corresponded to a true decreased susceptibility for ETR. The 

patient histories and the UDPS comparison indicate that our phenotypic method may 

detect resistance to ETR despite that the direct sequencing predicts sensitive phenotype. 

The cause of the discrepancies between the phenotype and the genotype results is not 

known presently. The mutations predictive for cross-resistance to ETR-resistance have 

been mainly identified in clinical studies using direct sequencing and it cannot be 

excluded that not-yet described mutations exist which may influence the ETR 

sensitivity. The effects of defined mutations may also vary in different genetic 

environments. Our phenotypic method uses lysates originating from intact virions. The 

genotypic and phenotypic method based on recombinant viruses use HIV RNA which 

partly may represent defective virus [148], therefore it can be speculated that our 

phenotypic assay is more representative for the ongoing viral replication. 

 

A less costly and technically simple test such as the RT assay presented in this thesis 

could be considered for VL monitoring and resistance testing as alternatives to 

conventional HIV RNA quantification by Roche Cobas TaqMan PCR and direct 

sequencing, in regions where expensive molecular-based methods are not a viable 

alternative. ExaVir Load was successfully used in a Uong Bi General hospital in 

northern Vietnam, and its implementation in other settings should still be possible 

provided basic laboratory equipment such as a spectrophotometer and an incubator are 

available. Regarding, the phenotypic assay for detection to ETR resistance, to describe 

a more precise laboratory (technical) IC50 cut-off for decreased drug susceptibility an 

extensive evaluation has to be carried out. Although, access to ETR in LMICs still is 

limited, ETR may be of relevance for LMICs since resistance to the first generation 
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NNRTIs as well as to NRTIs is an increasing problem in treatment of HIV-1 infected 

patients in resource-limited settings. 

Although, a further evaluation is needed to define clinical cut-offs we believe that the 

RT-based assay may be an alternative to more costly HIV drug resistance tests, 

especially in LMICs. The possible use for measuring resistance towards NRTIs as well 

as the other second generation NNRTI, RPV, may also be of interest since RT 

inhibitors are widely used both in high- and low-income countries. 
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