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ABSTRACT 

The aortic valve normally consists of three cusps (tricuspid aortic valve, TAV), but in 

0.5-2% of the population it consists of only two cusps (bicuspid aortic valve, BAV), 

which is the most common congenital cardiac malformation. BAV is prone to aortic 

stenosis (AS) and regurgitation (AR), and >25% of BAV patients will require surgery of 

the aortic valve and/or aorta within 20 years of diagnosis. BAV is associated with 

impaired function, dilation and dissection of the ascending aorta, while little is known 

about the abnormalities of the descending aorta in BAV.  

The aims of this thesis were to investigate morphological and functional alterations in 

the aorta of BAV and TAV patients, with a focus on the descending aorta, and to assess 

the feasibility of a new ultrasound-based method for studies of the elastic properties of 

the aorta. This was performed using transesophageal echocardiography (TEE) in 

consecutive patients without significant coronary artery disease having aortic valve 

disease and/or ascending aortic aneurysms requiring surgery (>50 % with BAV). 

In Study I (n = 300), we examined if different phenotypes of BAV (according to surgical 

inspection) were associated with different types of ascending aortic dilation. We did not 

find any such association. Ascending aortic dilation was common in patients with AS 

and BAV but not with TAV.  

In Study II (n = 85), a new modality, Velocity Vector Imaging (VVI), which is based on 

speckle tracking, was evaluated for automated deformation analysis of the descending 

aorta using TEE images. The method was found to be feasible for aortic studies. We 

could compute elasticity indices of the aorta with low variability and a strong correlation 

to indices calculated with a standard method (M-mode). 

In Study III (n = 192), we used VVI to compare aortic elasticity between BAV and TAV 

patients. After correction for age, dimension of the ascending aorta, cholesterol, and 

stroke volume in a multivariable regression model, BAV was associated with lower 

strain and distensibility of the descending aorta in the AR group, and higher 

distensibility in the AS group.  

In Study IV (n = 369), we examined the intima-media thickness (IMT) in the descending 

aorta and found no difference between BAV and TAV. Thus, the functional alterations 

of the aorta found in Study III seem not to depend on structural wall changes. 

Furthermore, we could show that genetic markers (single nucleotide polymorphisms, 

SNPs), which influence IMT in the carotid artery seem to correlate to IMT in the 

descending aorta in patients with TAV.  

In conclusion, we found no association between dilation of the ascending aorta and a 

specific BAV phenotype. We demonstrated that VVI technique is feasible for analysis of 

elastic properties of the aorta. In patients with AR, BAV was associated with lower 

strain and distensibility than TAV, suggesting impairment of the elastic aortic properties 

in the descending aorta.  IMT was not influenced by presence of BAV.   
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Populärvetenskaplig sammanfattning 
Aortaklaffen består normalt av tre klaffblad (TAV), men hos 0,5-2 % av befolkningen är 

klaffen missbildad och har bara två klaffblad, bikuspid aortaklaff (BAV). Detta är den 

vanligaste medfödda hjärtmissbildningen och BAV är ofta associerad med klaffsjukdom 

i form av förträngning (aortastenos, AS) eller läckage (aortaregurgitation, AR), och >25 

% av patienter med BAV kommer att behöva genomgå kirurgi av aortaklaffen och/eller 

uppåtgående delen av aorta (stora kroppspulsådern) inom 20 år från att BAV upptäckts. 

BAV är kopplat till vidgning/aneurysm av uppåtgående delen av aorta, vilket ger en 

ökad risk för kärlväggsbristning, s.k. dissektion. Förändringar i den nedåtgående delen 

av aorta, dvs. mellan aortabågen och diafragma, är studerad i betydligt mindre 

utsträckning i BAV. Syftet med denna avhandling var att kartlägga morfologiska och 

funktionella förändringar i aorta hos BAV och TAV patienter med ny ekokardiografisk 

teknik för bestämning av elastiska egenskaper hos aorta. 

I Studie I (300 patienter) undersökte vi med transesophagealt ultraljud om olika 

konfigurationer av BAV (enligt kirugisk bedömning) är kopplade till grad och 

förekomst av olika former av aortavidgning. Vi fann ingen sådan koppling. Vidgning av 

uppåtstigande delen av aorta var vanligare hos patienter med BAV och AS, än hos 

patienter med TAV och AS. 

I Studie II (85 patienter) utvärderade vi ett nytt mätprogram (Velocity Vector Imaging, 

VVI) för automatisk beräkning av kärlstyvhet hos nedåtstigande aorta. Vi kunde 

konstatera att VVI metoden är användbar, har liten spridning vid upprepade mätningar 

av kärlfunktion och ett starkt samband till kärlstyvhet beräknat med standard metod (M-

mode). 

I Studie III (192 patienter) använde vi VVI metoden för att beräkna kärlstyvheten hos 

patienter med BAV och TAV. Patienter med BAV och AR hade nedsatt elasticitet i 

nedåtgående aorta jämfört de med TAV. Detta talar för att elastiska kärlegenskaper vid 

BAV är påverkade även i den delen av aorta. Ålder var den viktigaste faktor som 

påverkade kärlstyvhet, följd av förekomst av BAV.      

I Studie IV (369 patienter) undersökte vi tjockleken av intima-media komplexet (IMT) i 

kroppspulsådern mellan bågen och diafragma. Vi fann ingen signifikant skillnad i aortas 

IMT mellan BAV och TAV patienter, trots att vi i Studie III har visat skillnader i aortas 

funktion. Vi kunde även visa att genetiska markörer (SNPs) som påverkar 

väggtjockleken i halspulsådern korrelerar till väggtjockleken även i aorta hos patienter 

med TAV.  

Sammanfattning: Vi fann inget samband mellan BAV konfiguration och dilatation av 

uppåtgående aorta. VVI tekniken kan användas för analyser av aortadeformation. Vid 

jämförelse med TAV hade BAV patienter med AR nedsatt funktion i den nedåtgående 

delen av aorta. IMT påverkades inte av förekomsten av BAV. 
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1 INTRODUCTION  

1.1  Valves of the heart 

The heart has four valves, ensuring that blood is flowing in the correct 

direction during the cardiac cycle. The aortic valve is located between the left 

ventricle and the ascending part of the aorta. This semilunar valve normally 

consists of three equally sized leaflets: a tricuspid aortic valve (TAV). In 0.5-

2% of the population, the aortic valve consists of two leaflets, almost always 

unequally sized (92% of cases) [1]. This malformation is called a bicuspid 

aortic valve (BAV) and is the most common congenital cardiac anomaly, with 

a male predominance of 3:1 (Figure 1). 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Bicuspid aortic valve (BAV). Reprinted with permission from Elsevier 

[1]. 

1.2 Bicuspid aortic valve 

There are a number of different classifications of BAV with regard to: the 

orientation of the leaflets [2], which particular cups are fused/not separated [3] 

and the morphology of the ascending aorta, specifically the coronary sinuses [4]. 

In our studies, we have chosen to classify the BAV morphology according to 

which cusps are fused (Figure 2). Throughout the literature most bicuspid aortic 
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valves in humans demonstrate a continuity between the right- and the non-

coronary cusps. The current understanding is that BAV is a congenital cardiac 

malformation and the misnomer „functionally bicuspid‟ is no longer a valid 

description of an aortic valve.  

 

     

Figure 2. Three phenotypes of BAV (True, RN - fusion of the right- and non-

coronary cusps, RL – fusion of the right- and left-coronary cusps) and a TAV, 

are shown schematically* and as images from transesophageal ultrasound. 

*Adapted with permission from Elsevier [Study I]. 

Malformation of the leaflets and excess tissue in a BAV may result in 

asymmetrical closure of the valve or valve prolapse, causing alterations to the 

aortic flow dynamics [5]. 

1.2.1  History 

The first description of BAV can be found in the drawings of Leonardo da Vinci, 

who studied the human anatomy thoughtfully and thoroughly in the late 1490s 

and early 1500s. He made drawings of the aortic valve [6] including a bicuspid 

variant (Figure 3). In 1764,  Hunter wrote “on examining the valves of the aorta, 

I found that there had been two only, instead of three; and that one of them had a 

kind of fraenum or cross-bar, attaching its middle to the sides of the artery” [7, 

8]. However, the first formal and most recognized description of BAV is 
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attributed to Paget  in 1844 [9], who noted “that in the majority of cases in which 

only two valves have been found in the aorta or pulmonary artery, those valves 

have been diseased, and often extremely diseased”. 

 

Figure 3. Leonardo da Vinci‟s drawings of the aortic valve with a BAV in the 

upper right corner. Available from Hathitrust.org [6]. 

In  England in the mid-19th century Peacock also studied BAV [10] (Figure 4) 

and described its liability for valve regurgitation and stenosis. In Canada during 

the 1880s Osler [11] noted that BAV was prone to endocarditis [12, 13]. At the 
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same institution, Abbot [14] reported a BAV patient with dissection of the 

ascending aorta in a case with aortic coarctation, an association verified 50 years 

later in a larger necropsy study [15]. Today, we know that a majority of patients 

undergoing aortic valve replacement have BAV [16]. 

 

Figure 4. “Defect in the Number of Semilunar Valves” Peacock, 1866.  

Available from Openlibrary.org [10]. 

 

1.2.2 Genetics 

The genetic susceptibility of BAV is far from being identified. Mutations present 

in specific families have been identified (Table 1) but the genetic variants 

involved in BAV formation are still unknown for the majority of population. No 

genome-wide association studies to identify genetic modifiers have been 
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published so far. Furthermore, whether the same genetic variants involved in the 

formation of BAV are also associated with increased risk of ascending aortic 

complications is still unknown. An inheritance pattern consistent with autosomal 

dominance with reduced penetrance and prevalence in the first degree relatives 

of BAV patients, has been demonstrated as high as 9% in families studied [17]. 

Different phenotypes of BAV can be seen in different animal models, indicating 

that they depend on different genotypes and processes [18], as described below. 

BAV aortopathy is not a monogenetic disease like Marfan syndrome, but is 

associated with many different mutations [19]. BAV is also associated with other 

genetic syndromes, such as Turner (X0), Shone´s and Williams syndromes. 

Table 1. Genes associated with bicuspid aortic valve. 

      Reprinted with permission from Oxford University Press [19]. 
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1.2.3 Embryology 

The endocardial cushion forms the left and right ventricular outflow tracts and 

the intrapericardial components of the aorta and the pulmonary trunk. The 

semilunar valve leaflets are cavitated from the valve cushions as shown 

schematically and in a histological section in Figure 5a and 5b [20, 21]. The 

exact process that leads to BAV formation is not entirely clear. In Syrian 

hamsters (see photo on the cover), fusion of valve cushions (RN) is a key factor 

[22], but the degree of fusion (phenotype) varies within the same genotype [23]. 

In mice, dysfunction of Rho kinase in neural crest cells located in the valve 

cushions leads to fusion or misplacement of the valve cushions, resulting in a 

variety of BAV phenotypes [24], whereas  nitric oxide knockout mice have RL 

BAV [18] (phenotypes of  BAV, as seen in Figure 2).  

 

 

 Figure 5. Atrioventricular-valve formation gestation week 5-7(a). Human 

embryo at Carneige stage 22 (day 55),     =fused proximal cuhsions,        = walls 

of sinus,         = valvular leaflets (b). Reprinted with permission from Dr. Mark 

Hill [21] and the BMJ Publishing Group [20]. 

A B 
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1.3  Mechanical environment of the aortic valve                                                                                                                                          

In a normally functioning aortic valve, the pressure gradient opening the valve 

during systole is only a few millimeters of mercury causing a laminar shear on 

the ventricular side of the valve. Along the aortic wall, the pressure difference 

causes reverse flow, resulting in vortices in the sinuses of Valsalva behind the 

aortic valve leaflets that help to close the leaflets in diastole and facilitating 

coronary flow (Figure 6a). The pressure difference  between the aortic root and 

the left ventricle in diastole is about 80 mmHg at rest (Figure 6b) [25]. In a 

normally functioning BAV an eccentric jet creates higher shear stresses on both 

the ventricular and the aortic side of the leaflets [26]. In addition folding/ 

unfolding of valve tissue to match the imperfect valve geometry in BAV 

generates high mechanical stress on the leaflets throughout the cardiac cycle  

[27].  

 

 

Figure 6. Mechanical stimuli experienced by the AV endothelial cells (AVEC) 

and interstitial cells (AVIC) during a cardiac cycle: systolic mechanical forces 

(a) and diastolic mechanical forces (b). Reprinted with permission of the 

Biomedical Engineering Society [25].  
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This might contribute to the faster progression of aortic valve disease in BAV, as 

repeated stretching of aortic valve tissue induces apoptosis and calcification 

processes [28]. Aortic stenosis (AS) generates a high pressure gradient in systole 

and thus high shear stresses, whereas aortic regurgitation (AR) means a high 

velocity flow over the valve in both systole and diastole, leading to a vicious 

circle of increased shear stress in both phases. 

1.4 Clinical manifestations of bicuspid aortic valve 
disease 

While the BAV is usually an isolated defect, it may also coexist with other 

congenital cardiovascular malformations [29]. The most common of these is 

aortic coarctation (CoA), a narrowing of the proximal descending aorta, typically 

located near the attachment of ligamentum arteriosum. The localized constriction 

is made up of smooth muscle cells, fibrous and elastic tissue similar to that found 

in ductus arteriosus [30]. Although >50% of patients with CoA have BAV, it is 

much more uncommon with CoA in the BAV population [31]. Other associated 

congenital malformations include ventricular septal defects, patent ductus 

arteriosus, atrial septal defects and displaced coronary ostia. In Turner‟s 

syndrome (X0), BAV is noted in up to 30% of cases, while about 10% of 

patients with Williams syndrome have BAV. 

Although BAV patients constitute only 0.5-2% of  general population, > 50% of 

patients requiring valve replacement for aortic stenosis have BAV and present at 

a younger age compared with TAV [16]. Data show that at least 25% of BAV 

patients will require aortic valve and/or ascending aortic surgery within 20 years 

of diagnosis [32]. Only 30% of BAV cases seen in autopsy studies have no signs 

of aortic valve dysfunction [2]. The risk for endocarditis has been estimated to 

be as high as 30% in older case series [33], but in more recent studies the risk 

has been estimated to be much lower at 0.2-2% [32, 34]. 

 The relative risk for ascending aortic dissection in BAV compared with TAV 

was eight times in a recent large cohort study [31]. Although this represents a 

much lower lifetime risk of dissection than in patients with Marfan syndrome, 

BAV will still be responsible for a greater number of dissections because of a 
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much higher prevalence of BAV in the population [31]. However, it is important 

to note that, despite these associated comorbidities, life expectancy in 

asymptomatic BAV patients is not shortened in comparison with the general 

population [32, 34]. 

1.5 Aortopathy associated with BAV 

The vessel wall in the arteries is composed of three different layers. The inner 

layer, called tunica intima, consists of the endothelium. The intermediate layer is 

called the tunica media and is formed mainly by smooth muscle cells and 

connective tissue (elastic and collagen fibers). In the aorta, elastic fibers are 

predominant, moderating the high flow and high blood pressure the aortic wall is 

subjected to. The outer layer is called the tunica adventitia and is formed by 

connective tissue and fibroblasts.  

In the media, the extracellular matrix (ECM) plays an important role in 

maintaining tissue elasticity and linking vascular smooth muscle cells and 

elastin/collagen fibrils. Vascular smooth muscle cells produce and maintain the 

ECM [35] and have the same embryological origin in the aortic root, ascending 

aorta and the aortic arch,  in addition to the pulmonary trunk constituting the 

classic anatomic boundaries of  BAV disease [35-37]. In BAV patients, the ECM 

structure is altered in the ascending aorta [38], associated with increased activity 

of proteolytic enzymes [39]. In dilated ascending aortas of BAV patients the 

collagen orientation is the same, collagen turnover is increased and collagen 

cross-linking lower compared with TAV [40, 41]. Collagen stiffness is higher 

and the grade of inflammation is lower in dilated ascending aortas of BAV 

compared with TAV [40, 42]. There seems to be two different pathways, that 

differ in genes as well as RNA and protein expression, to ascending aortic 

dilation in BAV and TAV [43]. 

Ascending aortic dilation occurs more frequently and at a younger age in BAV 

than TAV patients. The prevalence of the aortic root and ascending aortic 

dilation in BAV varies from 15-88%, depending on the definition and age of the  
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Figure 7.  Increasing grades of aortic medial disease in BAV (Weigert‟s elastic 

stain–Van Gieson stain). A: normal, B: grade 1, C: grade 2, D: grade 3, E: 

grade 4/4. Reprinted with permission from Oxford University Press [44].  

population studied [37, 45, 46]. The histopathological picture (Figure 7) shows 

media degeneration with the loss of smooth muscle cells, degraded elastic 

laminae, fibrosis and collapse of  the elastic plates [47], leading to decreased 

elasticity.  

Whether the aortopathy in BAV is caused by a genetic predisposition and/or a 

result from altered blood flow is still debated, with proponents of both theories. 

1.5.1 Genetic theory 

There are many reports about the heritability of the BAV itself. First-degree 

relatives of BAV patients have wider ascending aortas [48], and children with 

BAV without significant valve dysfunction have impaired elastic properties of 

the ascending aorta [49]. Furthermore, in patients with BAV, the presence of 

media degeneration in the pulmonary trunk has been described [50], a region that 

can hardly be affected by flow disturbances in the aorta. On the other hand, 

although ascending aorta has the same embryological origin [36] as the aortic 

valve it remains uncertain if the aortopathy is inherited in the same way. 
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1.5.2 Flow/shear stress theory 

MRI studies have described abnormal systolic helical flow patterns in the 

ascending aorta of BAV patients, regardless of valve stenosis or regurgitation, 

with different flow jets for different phenotypes of BAV [51]. It has been shown 

that altered helicity of the flow can be seen in the entire thoracic aorta in BAV 

patients [52]. Wall shear stress in the ascending aorta is dependent on flow 

patterns, secondary to the valve morphology [53].  

One influential report showed that BAV patients with moderate dilation of the 

ascending aorta have a higher risk of aortic complications, even after aortic valve 

replacement [54], compared with TAV patients. This has not been replicated in 

more recent studies [55]. The descending aorta seems spared from aneurysms 

and/or dissection in BAV patients [56]. 

A combination of genetic, flow and environmental factors is probably 

responsible for BAV aortopathy [19]. Hitherto, the majority of reports about 

aortopathy in BAV have only investigated the ascending aorta. Since there is a 

lack of knowledge of the morphology and function of the descending aorta in 

BAV, we have focused on this topic in our studies.  

1.6 Elastic properties of the aorta  

The aorta and its major branches act as an elastic reservoir for cardiac pulsations, 

converting stroke volumes into a steady flow. Indices of local arterial elasticity 

take into account the diameter or area change from diastole to systole (strain), 

the force (pulse pressure) needed for the given diameter or area change 

(stiffness), or the diameter or area change as a result of pulse pressure 

(distensibility). The carotid–femoral pulse wave velocity (PWV) is widely used 

and accepted as the gold standard for assessment of regional and global stiffness 

[57].  

Arterial stiffness may be altered by changes in the composition of the aortic wall 

regarding smooth muscle cells, extracellular matrix and fibrosis, as well as the 

elastin and collagen content [58]. Pathophysiologically, increased stiffness leads 

to a change in pulse reflection, increasing systolic blood pressure and afterload 

on the left ventricle, as well as myocardial oxygen demand. The same 
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mechanisms reduce diastolic blood pressure, therefore, also the coronary 

perfusion pressure. 

Arterial stiffness has been associated with known cardiovascular risk factors, 

such as obesity, smoking, hypercholesterolemia [59-61] and with hypertrophy 

and diastolic dysfunction of the left ventricle [62-64]. A number of studies have 

reported the independent predictive value of arterial stiffness for coronary heart 

disease, cardiovascular events, cardiovascular mortality and all cause mortality 

[57].  

In BAV, abnormalities in the aortic wall, including histopathological changes, 

alterations in the metabolism, biology, and gene expression in smooth muscle 

cells, affect the stiffness as well as other functional measures (section 1.5).  

1.7 Noninvasive imaging of aortic function 

Local aortic stiffness has been evaluated using different techniques, such as 

transthoracic echocardiography (TTE), transesophageal echocardiography 

(TEE), transabdominal ultrasound, magnetic resonance imaging (MRI) and 

computed tomography (CT) [65-71] (Table 2). 

M-mode (TTE and TEE) and echo tracking ultrasound, the prevailing ultrasound 

techniques for elasticity measurement, are based on the assumption that the 

diameter changes measured represent the motion of the whole circumference of 

the vessel. Tissue Doppler, although having the advantage of a very high frame 

rate (> 130–180 Hz), is an angle-dependent technique and only allows the near 

and far wall to be investigated. CT and MRI have limitations in spatial and 

temporal resolution and may require nephrotoxic contrast agents. 

Table 2. Indices of local arterial elasticity. 

 Definition Techniques 

Strain  100 * (ΔAortic Diameter / Diastolic 

Aortic Diameter)  

CT, MRI,TTE,TEE,US 

Stiffness ln(SBP - DBP) / (ΔAortic 

Diameter/Diastolic Aortic Diameter) 

CT, MRI,TTE,TEE,US  

Distensibility ΔAortic Area/ (Diastolic Aortic Area * 

Pulse Pressure) 

CT, MRI,TTE,TEE,US  
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1.8 Two-dimensional strain imaging 

Strain is a dimensionless parameter representing the deformation of an object 

relative to its original shape. In an ultrasound image there are natural acoustic 

markers, referred to as speckles. By identifying these speckles throughout the 

cardiac cycle, the relative displacement between the speckles can be calculated. 

Speckles can be followed (tracked) in any direction within the imaging plane 

(but not in the z-plane) (Figure 8). The temporal resolution is defined by the 

frame rate (images/second), optimally 70-80 frames/s [72]. 

 

Figure 8.  Principle of speckle tracking used in 2-D strain assessment. Reprinted 

with permission from Elsevier [72]. 

Two-dimensional strain is feasible for circumferential deformation parameters in 

contrast to the Doppler-based methods [73]. Two-dimensional strain has been 

validated in animal models using sonomicrometry and MRI [74, 75]. Velocity 

Vector Imaging (VVI) is a commercially available software combining speckle 

tracking and tissue border detection [76] (Figure 15).  

VVI with ultrasonography [77] and MRI [78] has been used recently to assess 

the elastic properties of the carotid artery in different populations. VVI has also 

been used to study the wall motion of both the ascending and descending aorta in 

other patient groups [79, 80]. The proximity of the esophagus to the descending 

aorta makes it feasible to acquire TEE images with high temporal and spatial 

resolution. 
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1.9 Intima-media thickness 

Intimal thickening occurs early in the atherosclerotic process but is also seen as a 

response to non-laminar flow with intimal hyperplasia, migration of smooth 

muscle cells and monocytes [81, 82].  

There is no generally accepted in vivo method to measure only the intima. 

However, the thickness of the intima-media complex (IMT) can be measured 

with ultrasound and correlates well with histology (Figure 9). It is associated 

with cardiovascular risk factors [83-85] and increased IMT has been shown to 

result from flow induced remodeling [86]. Non-laminar flow has been described  

in the descending aorta in BAV [52], but the IMT of BAV patients in this region 

has not been studied.  

 

Figure 9. Schematic drawing of the artery wall and its layers. Reprinted with 

permission from John Wiley and Sons [87]. 

In 1986, Pignoli published the first study on ultrasound measurements of intima 

plus media, where they validated the double-line pattern seen on in vivo vessel 

ultrasound, with pathological specimen of the abdominal aorta [88]. 

Computerized measurement of the carotid IMT (CIMT) along a 10 mm-wide 

segment was introduced in the early 1990s [89, 90], and this is now available in 

most vascular ultrasound equipments using a variety of algorithms [91, 92]. 

CIMT is associated with cardiovascular risk factors and is an established marker 

of subclinical atherosclerosis [93]. It is also used for risk stratification of 

individuals and as an endpoint in intervention studies [94]. There is a covariance 

between CIMT and IMT in different vessels including the abdominal aorta [95]. 

Significant correlations between CIMT and descending aortic plaques, 

descending aortic intima-media thickness (AoIMT), aortic wall volume and 

coronary artery disease have been reported [83, 96, 97]. Statin treatment may 
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decrease not only CIMT but also AoIMT [98]. The examples of ultrasound 

imaging of IMT in different vessels are shown in Figure 10. 

 

 A: Diameter (Ø) = 7mm, 7 MHz; B: Ø = 1.5mm, 55 MHz; C: Ø = 24 mm, 

7MHz.  

Figure 10. A: Intima-media thickness in the carotid artery, B: radial artery and 

C: descending aorta. Reprinted with permission (A and B) from John Wiley and 

Sons and Elsevier [84, 87] and (C) from Study IV. 

 

In the descending aorta IMT has been measured previously using calipers [99], 

while backscatter analysis has been used for tissue characterization of plaques 

[98] from TEE images. Aortic wall volume [96] and wall thickness 

measurements by MRI have been reported [100]. CT is a sensitive method for 

detecting calcifications in the thoracic aorta [101]. Hitherto, there is only one 

report on using a semiautomatic edge-detection program for measuring IMT in 

the abdominal aorta [102]. TEE allows, like ultrasound investigations of the 

carotid artery, measurements along a 10-mm wide segment with excellent 

measurement error (<0.01 mm) using 125 measuring points [87]. 

 

 

 

 

A B C 

http://www.sciencedirect.com.proxy.kib.ki.se/science/article/pii/S0021915011011828
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2 AIMS 

The overall aim of this thesis was to study the factors influencing dilation of 

the ascending aorta and vascular structure and function in the descending aorta 

in patients with BAV, using novel noninvasive ultrasound methods. 

Specific aims: 

1. To explore whether a specific BAV phenotype or valve pathology is 

associated with a specific morphology of the ascending aorta (Study I). 

 

2.  To evaluate the feasibility of a new ultrasound-based speckle tracking 

method for studies of elastic properties of the descending thoracic aorta in 

patients with aortic valve disease (Study II).  

 

3.  To compare the elastic properties of the descending thoracic aorta in BAV 

and TAV, with reference to the type of aortic valve disease and known 

cardiovascular risk factors (Study III). 

 

4.  To study whether the intima-media thickness of the descending thoracic 

aorta is associated with aortic valve morphology (BAV/TAV), type of valve 

disease, known cardiovascular risk and genetic factors (Study IV). 
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3 PATIENTS AND METHODS 

3.1 Patients 

All patients included in the studies of this thesis were recruited from the 

Advanced Study of Aortic Pathology (ASAP). This prospective study recruited 

600 consecutive patients, (provided they were willing to participate and free of 

coronary artery disease according to coronary angiography) undergoing elective 

cardiac surgery because of aortic valve disease and/or pathology of the aortic 

root and/or ascending aorta at the Cardiothoracic Surgery Unit at the 

Karolinska University Hospital during 2007-2013 (Figure 11).  

  

Figure 11. Exclusion criteria were: age < 18 years; inability to give informed 

consent; significant coronary artery disease (i.e., significant stenosis on 

coronary angiogram); other concomitant valve surgery indicated; acute 

intervention indicated; previous cardiac surgery or blood-borne infection.  

*These patients were excluded after inclusion due to logistic reasons (n = 4), 

discovery of existing exclusion criteria (n = 7), other medical reasons (n = 6), 

and patient withdrawal (n = 10). 

Eligible  

 (n = 807) 
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The preoperative screening included medical history, cardiovascular risk factor 

profile, medication, blood work and echocardiography. Patients who needed 

further evaluation of the aorta also underwent a preoperative CT scan.  
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3.2 Study population of the thesis 

As shown in Figure 12 the patient population of studies II and III consisted of 

subpopulations of the patients in Study I, whereas Study IV included the first 

400 operated ASAP patients, in whom AoIMT measurement was feasible. 

 

 

 

 

 

Figure 12. In Study I, the first 300 consecutive patients were included. Study II 

included the first 85 consecutive patients where VVI measurements were 

feasible. Study III included patients with „true‟/isolated valve lesions from the 

first 300 patients and where VVI measurements were feasible. Study IV included 

finally 369* of 400 patients, where measurement of intima-media thickness in the 

descending aorta was feasible. *One valve was unclassified. 

158

210

TAV

BAV

Study IV, n= 369*
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3.3 Methods 

3.3.1 Surgical inspection of BAV/TAV  

All patients were operated on through a midline sternotomy using cardio-

pulmonary bypass with a centrifugal pump. The morphology of the aortic valve 

was evaluated by visual inspection of the valve during surgery. Based on the 

appearance, the valve was classified according to the number of cusps and 

commissures. Three cusps and three commissures denoted a „tricuspid‟ valve. 

Two cusps and two commissures denoted a „bicuspid‟ valve (if a remnant 

commissural raphe was present) or „true bicuspid‟ valve (if no raphe was 

present). A single cusp and a single commissure denote a „unicuspid‟ valve 

(UAV). The BAV was further classified according to which cusps were fused: 

right- and left-coronary cusps (RL), right- and non-coronary cusps (RN) or left- 

and non-coronary cusps (LN) (Figure 2). 

The morphologic phenotype of the BAV was also classified using TEE. Eleven 

patients were classified by the surgeon as having UAV. However, on a close 

transesophageal echocardiographic image they showed two raphes extending 

toward the aortic wall. These valves were all BAV type 2 according to the 

classification of Sievers and Schmidtke [103], and there was no UAV with one 

commissure and no raphe on TEE. Therefore, we included these patients in the 

BAV group in studies II, III and IV. 

3.3.2 Transthoracic echocardiography  

All patients were examined by transthoracic echocardiography before surgery, 

using a Philips iE33 ultrasound scanner (Philips Medical Systems, Bothell, WA). 

Two-dimensional echocardiography [104] and Doppler measurements were 

performed according to the standards set out by the American Society of 

Echocardiography (ASE). In patients with aortic stenosis (AS), systolic 

transvalvular velocity was measured by continuous wave Doppler. The peak 

transvalvular pressure gradient (Pmax) was calculated by applying the Bernoulli 

equation, whereas the mean transvalvular pressure gradient (Pmean) was 

calculated by averaging the instantaneous gradients over the ejection period. The 

stroke volume and aortic valve area (AVA) were calculated according to the 

continuity equation [105].  
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Definitions and echocardiographic criteria of valve pathology used in study I to 

IV are shown in Table 3. 

Aortic regurgitation (AR) was evaluated using the pressure half-time, jet density, 

diastolic flow reversal in the descending aorta, AR color flow jet area, and vena 

contracta. In studies II, III and IV, AR was classified into AR grades 0 to 3 (0, 

none; 1, mild; 2, moderate; 3, severe) according to the ASE guidelines [106]. In 

Study I a grading 0-4 was used, subclassifying severe AR into two groups. 

Table 3. Criteria of valve pathology used in studies I to IV. 

Definitions of valve pathology Study I Study II Study III Study IV 

AS     

Severe AS: Pmax > 50 mmHg and/or
†
 Pmean 

> 40 mmHg and/or AVA < 1.0 cm
2
, 

regardless of AR grade 

x
†
   x 

Main clinical diagnosis AS  x   

Pure/isolated AS: Pmean > 40 mmHg 

and/or AVA < 1.0 cm
2
 and AR grade  1 

 x
#
 x  

AR     

AR grade 1-4 of 4, not fulfilling the AS 

criteria 

x    

Main clinical diagnosis AR   x   

Severe AR: AR grade = 3 of 3, not 

fulfilling the AS criteria 

   x 

Pure/isolated AR: AR grade 3  

and Pmean < 20 mmHg  

 x x  

†
 In Study I only; 

#
AVA not included in definition in Study II. 

 
The included patients who did not fulfill the criteria of severe valve pathology or 

ascending aortic aneurysm based on the results of TTE performed within the 

ASAP study protocol, were allocated to a separate group (MIX) in Study IV.   

3.3.3 Transesophageal echocardiography 

In all patients TEE was performed under general anesthesia before surgery by 

experienced echocardiographers (n=5) in the operating room using a Sequoia 

c512 ultrasound scanner (Siemens Medical Systems, Mountain View, CA) with 

a transducer frequency up to 7 MHz.  
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The descending aorta was scanned in the short-axis view at three predefined 

distances from the teeth (30, 35 and 40 cm), with the 35-cm level representing 

approximately the level of the left atrium in the majority of patients. Segments 

with aortic plaque were excluded from the analysis. The descending aortic 

diameter was measured from leading edge to leading edge on short-axis M-mode 

recordings in diastole. All TEE examinations of the aorta were analyzed offline 

by one experienced echocardiographer (JP). 

Two-dimensional measurements were obtained from the left ventricular outflow 

tract (LVOT) at systole, while dimensions of the aortic annulus, sinus of 

Valsalva (SV), sinotubular junction (STJ), ascending aorta 40 mm above the 

annulus, ascending aorta at the maximal observed diameter, and the aortic root 

height (the distance from the annulus to the STJ level) were measured in diastole 

according to the standards of the ASE in all patients [107] (Figure 13). 

In Study I, an aneurysm of the aorta was defined as SV> STJ and a maximal 

diameter of the aorta > 40 mm (BAV) or > 45 mm (TAV), regardless of the 

location of dilation.  

Ectasia of the aorta was defined as: SV < STJ and always associated with 

dilation of the ascending aorta.  

Normal aorta was defined as: SV > STJ and maximal diameter of the aorta < 40 

mm (BAV) or < 45 mm (TAV).  

 

In Study IV, the aortic aneurysm was defined as a main diagnosis if the 

ascending aortic diameter >45/50 mm (BAV/TAV respectively), without 

fulfilling the AS or AR criteria. 

 

In Studies II, III and IV, the ascending aortic diameter was included as a 

continuous variable in the multivariable analyses. 
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Figure 13. TEE image of the aortic root and the ascending aorta. Measurements 

of the aortic annulus (1), sinus of Valsalva (2), sinotubular junction (3) and the 

ascending aorta (4). The aortic root height is the distance from the annulus to 

the sinotubular junction [Study I]. 

 

3.3.4 Velocity Vector Imaging of the descending aorta 

Recently, velocity vector imaging (VVI), a novel method based on ultrasonic 2-

D images [76], has been developed and shown to be feasible for the assessment 

of cardiac mechanics. VVI involves speckle tracking combined with tissue-blood 

border detection and the periodicity of the cardiac cycle using RR-intervals 

(Figure 14). The tissue velocity is displayed as a vector projected on a 2-D 

echocardiographic image where the vector shows the direction of the movement 

while the length of the vector is related to the velocity of the tissue (Figure 15). 

VVI permits angle-independent measurements of tissue velocity and 

deformation – strain as well as rotational displacement. Because VVI tracks 

moving tissue, the area change can be calculated frame-by-frame automatically 

along the entire circumference of the cavity [76]. 
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Figure 14. A: Principle of VVI border detection and speckle tracking for 

assessment of the left ventricular deformation, courtesy of Siemens Medical 

Systems. B: Schematic picture of speckle tracking and border detection 

algorithms adopted for the descending aorta.  

All analyses in Study II and III were performed offline on a dedicated 

workstation Syngo US WP 30 VVI (Siemens Medical Systems). The best-

quality TEE loops of the descending aorta (by visual assessment), preferably at 

the 35-cm level, were chosen and the blood-intima interface was traced 

manually. If tracking of the blood–intima interface was unsatisfactory, according 

A 

B
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to indication by the software or visual assessment, a new tracing was performed 

or another loop (at the same level) was chosen. Means of 2-4 cardiac cycles from 

the two levels with the best image quality were reported (Figure 15). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. A: VVI tracking of the descending aorta; B: maximal systolic area 

(AaS), minimal diastolic area (AaD), area change over time (dA/dt); C: maximal 

systolic circumferential strain (VVI strain); D: minimal systolic rotational 

displacement (VVI rot). The results were automatically calculated and the 

relevant values of each variable were depicted from the respective curves. E: 

The maximal systolic diameter (Ds) and minimal diastolic diameter (Dd) were 

measured along the M-line, leading edge of the near wall intima-lumen echo to 

the leading edge of the echo from the far wall lumen-intima interface. Reprinted 

with permission from Elsevier [Study II]. 
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3.3.5 Elasticity indices and calculations of arterial and 
valvulo-arterial compliance 

In Study II and III vascular variables were calculated from the ultrasound 

recordings of the descending aorta. The M-mode was recorded in short-axis view 

of the descending aorta, paying particular attention to placement of the cursor in 

the center of the vessel, perpendicular to the aortic wall. The maximal systolic 

diameter (Ds) and minimal diastolic diameter (Dd) were measured along the M-

line, the leading edge of the near wall intima-lumen echo to the leading edge of 

the echo from the far wall lumen-intima interface, at the same levels as the VVI 

analyses [87]. All measurements were averaged over 3-4 cardiac cycles.  

Blood pressure was measured invasively in the radial artery simultaneously with 

the acquisition of the TEE images. 

Using Ds and Dd obtained from M-mode (Figure 15) the following indices of 

aortic elasticity were calculated [108]:   

Distensibility = ((Ds
2
* /4) - (Dd

2
* /4))*10

7
 / (Dd

2
* /4)*PP*1333 kPa

-1
 10

-3
 

Stiffness = ln (SBP/DBP) / ((Ds-Dd)/Dd)  

where SBP and DBP refer to radial systolic and diastolic blood pressures 

(mmHg), respectively and pulse pressure (PP) = SBP-DBP;  

 

VVI distensibility was calculated as = (As-Ad)*10
7 
/Ad*PP*1333 kPa

-1
 10

-3
.  

VVI stiffness was calculated with the same formula as for the M-mode 

measurements, using diameters derived from the aortic area; systolic diameter = 

 (4As/ ) and diastolic diameter =  (4Ad/ ) [108]. 

 

Total systemic arterial compliance (SAC) in Study III was calculated as the 

stroke volume index obtained from echocardiography divided by the pulse 

pressure [109], and valvulo-arterial impedance (Zva) as (Pmean + SBP)/stroke 

volume index [110]. 
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3.3.6 Intima-media thickness 

Measurements of intima-media thickness in the descending aorta (AoIMT) in 

Study IV were performed off-line using the Syngo Arterial Health Package, a 

semi-automated edge detection program (version 3.5, Siemens Medical 

Systems), allowing detection of the echogenic lines of the intima–media 

complex in a 10-mm-wide segment (Figure 16). The best-quality end-diastolic 

image with good perpendicular alignment was selected and a region of interest 

(ROI) was placed manually over the far wall of the descending aorta in a short-

axis view. The tracings of intima-blood and media-adventitia borders were 

adjusted manually when needed. The mean AoIMT was measured from two 

consecutive heartbeats.  

 

Figure 16. Intima-media thickness of the descending aorta in a short-axis view; 

two consecutive heartbeats in diastole [Study IV]. 

 

3.3.7 Genotype analyses 

Genotypes were extracted from genotype data previously obtained using the 

Illumina Human 610W-Quad BeadArrays (Illumina Inc, San Diego, CA) at the 

SNP Technology Platform at Uppsala University [111]. We studied the rs200991 

in the HIST1H2BN locus and the rs4888378 in the BCAR1-CFDP1-

TMEM170A locus, previously identified as determinants of CIMT study, in five 
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independent European cohorts [112]. The Genome Studio software from 

Illumina was used for genotype calling and quality control. 

3.3.8 Blood analyses 

The plasma concentrations of creatinine, hs-CRP, HDL, LDL and serum 

concentrations of cholesterol and triglycerides were estimated by the Karolinska 

University Hospital laboratory using standard methods. 

3.3.9 Statistical analysis 

Analyses were performed using the commercially available software Statistica 

8.0/9.0 (StatSoft
®
, Inc., Tulsa, OK) and SPSS Statistics

®
 (version 22, IBM, 

Armonk, NY). Normally distributed data were presented as the arithmetic mean 

and standard deviation and skewed variables as median and 25–75
th

 percentile 

(studies I, II and III). In Study IV, all data were presented as median and 25–75
th

 

percentile. For comparisons between groups, Student‟s t test, ANOVA or Mann–

Whitney U test were used for analyses of independent samples according to the 

distribution (studies I and II). In studies III and IV, skewed variables were log 

transformed before analyses. The chi-squared test was used to analyze variables 

on a nominal scale. In the case of a significant interaction, simple main effects 

tests were examined; that is, the effects of one factor while holding the other 

factor fixed. Otherwise, contrasts between the levels of the main factors were 

performed. Inter- and intraobserver reliabilities were analyzed by the intraclass 

correlation coefficient (ICC), which represents the portion of the total variance 

caused by the variance between subjects. The standard error of measurement 

(SEM) was also calculated, as well as the coefficient of variation (CV, %). To 

compare the VVI and M-mode methods, a one-way repeated measures ANOVA 

was performed. Correlations between the methods were estimated using the 

Pearson product-moment correlation coefficients. Limits of agreement according 

to Bland and Altman were also calculated and presented graphically [113]. 

Univariate and forward stepwise multiple linear regression analyses were used to 

evaluate predictors of different VVI measures and AoIMT. In multiple 

regressions, the variables were selected for inclusion in the model based on 

clinical grounds and significant univariate relations. Co-linearity statistics were 

analyzed to assess the relationships between the variables included in the 
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models. Only two-sided tests were used. Results were regarded as significant 

when P < 0.05.  

3.4 Ethical considerations 

All studies were approved by the Regional Ethics Review Board (in Stockholm) 

and informed consent was obtained from all patients. All patients were scheduled 

for cardiac surgery, based on clinical decision making before inclusion in the 

study. TTE is a noninvasive investigation, with no radiation and no known risks. 

TEE is a semi-invasive investigation that has become a vital part of perioperative 

monitoring and is performed routinely in all patients undergoing cardiac surgery 

at the Karolinska University Hospital. The TEE transducer is placed in the 

esophagus by the anesthesiologist after general anesthesia and is kept there 

throughout the operation. TEE monitoring is considered to be of low risk for the 

patients [114, 115], and the clinical benefits outweigh the risks.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

32 

 

 



 

 33 

4 RESULTS 

The results of the four studies in this thesis are presented in sections according to 

the main topics such as morphology and function of the aortic valve and the 

aorta, AoIMT and reproducibility. Unpublished data is reported when applicable. 

4.1 Morphology of the aortic valve and aorta        

4.1.1 Aortic valve morphology 

In our study I, more than 50% of the patients undergoing surgery of the aortic 

valve and/or ascending aorta had bicuspid aortic valve (BAV n=160, TAV =130, 

UAV=10) as shown in Figure 17A. BAV patients in Study IV were younger than 

TAV patients (P<0.001) at the time of operation (Figure 17B). The majority of 

BAVs were of the RL phenotype; there was no LN malformation in our BAV 

patients (Figure 22).  

       

  
 

Figure 17. A: Distribution of valve morphology in consecutive patients without 

coronary artery disease, requiring aortic valve and/or ascending aortic 

surgery,*UAV were considered BAV type 2 according to Sievers [Study I]. B: 

Patients with BAV (n=210) were approximately 10 years younger than TAV 

(n=158) [Study IV]. 

 

B A 
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4.1.2 Morphology of the ascending aorta 

When the size threshold for an aneurysm in BAV/TAV was set to > 40/45 mm, 

respectively, the prevalence of aneurysms in the ascending aorta was three times 

more common in BAV than in TAV patients (Study I). When the size threshold 

was set to > 45 mm for BAV and TAV aneurysms in the ascending aorta, the 

prevalence was twice as common in BAV patients (Figure 18). BAV patients 

had larger annular and LVOT dimensions compared with TAV patients, 

regardless of aortic root morphology.        

 
 

Figure 18. Distribution of patients according to the diameter of the ascending 

aorta in the entire study population. A: In BAV (excluding Sievers‟ type 2) 36% 

of the patients had a diameter > 40 mm and 24% >45 mm. B: In TAV 12% of the 

patients had a diameter > 45 mm [Study I]. 

All types of ascending aortic dilation (aneurysm  ectasia, > 45 mm) were more 

common in BAV compared with TAV, in a ratio of 1.5:1 (P<0.05). 

4.1.3 Type of valve pathology and dilation of the 
ascending aorta 

In patients with aortic stenosis, there was a highly significant difference in the 

ascending aortic dimension between the BAV and TAV groups. Ascending 

aortic aneurysms were virtually nonexistent in TAV patients with AS (P<0.001) 

(Figure 19), all ascending aortic dilations (aneurysm  ectasia) showed the same 

pattern. 

A B 

Maximal diameter of ascending aorta (mm) Maximal diameter of ascending aorta (mm) 
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The prevalence of ascending aortic aneurysms in AR patients was similar in the 

BAV and TAV groups. 

 

Figure 19. Distribution of patients with aortic stenosis (AS) according to the 

diameter of the ascending aorta. A: In BAV (Seivers‟ type 2 excluded) 29 % had 

a diameter >40 mm and 16 % >45 mm. B: In TAV only 1% had a diameter >45 

mm [Study I].  

4.1.4 Type of valve pathology and dilation of the 
descending aorta 

The descending aortic diameter showed a significant positive correlation with 

age (r = 0.625; P<0.001). TAV patients had a lager descending aorta, related to 

age since patients with TAV were significantly older than those with BAV.  

 

Figure 20. Diameter of the descending aorta in BAV and TAV normalized for 

BSA (A) and its correlation with age (B) [Study IV].  

A B 

Maximal diameter ascending aorta (mm) Maximal diameter ascending aorta (mm) 
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4.1.5 Aortic root morphology in relation to types of 
bicuspid aortic valve 

In study I three distinct aortic morphological patterns were observed [116] as 

defined in the methods (Figure 21). 

 

      

 

 

 

 

 

 

 

 

 

Figure 21. Schematic illustrations (upper panel) and TEE examples (lower 

panel) of normal aorta (N); aneurysm of the ascending aorta (A); ectasia of the 

aorta (E).  Upper panel reprinted with permission from Elsevier [Study I]. 

 

We did not find any association between BAV phenotypes and the specific 

morphology of the aortic root or the ascending aorta, i.e. aneurysm, ectasia or 

normal. Ectatic aortas with true BAV were significantly smaller compared with 

RL and RN phenotypes (P< 0.01). There were no other significant differences in 

aortic dimensions between phenotypes of BAV within the respective aortic 

morphology (Figure 22). 

There were no significant differences in the descending aortic dimension 

between the phenotypes of BAV within the isolated valve pathologies (Table 5). 
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Figure 22. A: BAV phenotype (right-left (RL), right-non-coronary (RN) and 

True) and distribution of morphology of the aortic root/ascending aorta showed 

no significant differences, B: BAV phenotype and the diastolic diameter of the 

ascending aorta (AscDD). P<0.01 indicated by **. BAV phenotypes are shown 

from surgeon‟s view [Study I].        

                               

A 
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4.2 Vascular function 
 

In study II and III we used Velocity Vector Imaging analysis software to assess 

the elastic properties of the descending aorta. To validate VVI for short-axis 

measurements of the aortic mechanics, an experimental dynamic set up 

consisting of an aorta gel phantom connected to a programmable pulsatile flow 

pump (Figure 23) was built in cooperation with  Matilda Larsson, Ph.D.,  

Department of Medical Engineering, School of Technology and Health, the 

Royal Institute of Technology (KTH), Stockholm, Sweden. The strain 

measurements by VVI were compared with sonomicrometry. Strain calculated 

by VVI was lower compared with sonomicrometry (P<0.001); however, there 

was a strong correlation (r = 0.90) between the two methods (unpublished 

data).  

 

Figure 23. Experimental setup with the Sequoia c512 ultrasound scanner, the 

flow pump and the phantom (courtesy of Matilda Larsson). 

 



 

 39 

4.2.1 Feasibility of VVI by TEE for the elastic properties 
of the descending aorta 

We used M-mode, a one-dimensional measurement of vessel diameter (Figure 

15 E) that is a well-established method for stiffness measurements in different 

vessels, for comparison with VVI (Study II). Stiffness and distensibility were 

calculated as described in the methods section. There was a strong and 

significant correlation between the indices of aortic function obtained by M-

mode and VVI (P<0.001). The Bland–Altman plots showed that the differences 

were independent of the mean values, and that there was a systematic bias 

between the methods (Figure 24). 

   

Figure 24. Correlations (A) and Bland-Altman plots (B) comparing distensibility 

and stiffness obtained using VVI and M-mode. Reprinted with permission from 

Elsevier [Study II].  

 

 

A 

B 
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4.2.2 Comparison of the descending aortic elasticity in 
patients with AS and AR 

In study II and III we compared elasticity indices in AS and AR groups. AR 

patients had a significantly higher dA/dt and a higher VVI strain than patients 

with AS. VVI rotational displacement differed significantly between the groups; 

however, a large standard deviation made this variable less useful. The VVI 

distensibility was higher and the stiffness was lower in patients with AR than in 

those with AS (Figure 25).  

Figure 25. Stiffness obtained by using VVI and M-mode in AS and AR [Study II]. 

In patients with isolated/pure AR (n=52) and AS (n=140) in study III, we found 

significantly higher VVI distensibility in AR (31 [22-29] kPa
1
10

3
) compared 

with AS (17 [12-24] kPa
1
10

3
), P<0.001. Stiffness was higher in AS (12 [8.2-

16]) than in AR (7.5 [6.1-9.6]), P<0.001. VVI strain was lower in AS (3.4% 

[2.3-4.9]) than in AR (8.6% [6.3-13]), P<0.001. 
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4.2.3 Comparison of the descending aortic elasticity in 
patients with BAV and TAV 

As there was a significant difference in aortic elasticity between AS and AR 

(Figure 25), we first divided the material according to the type of valve 

pathology to compare BAV and TAV (Study III). To further purify the groups, 

we defined isolated AS and AR (Methods, Table 3). 

BAV patients were younger than TAV patients (AS, 65 vs. 74 years; AR, 49 vs. 

63 years; both P<0.001). Because it is known that age is a major determinant of 

aortic elasticity, we performed a subgroup analysis of age-matched AS and AR 

patients. We found a significantly lower strain in the BAV group regardless of 

aortic valve disease (Table 4). 

Table 4. Variables of aortic function in patients with BAV and TAV, and aortic 

stenosis (AS) or aortic regurgitation (AR), matched for age. 

 Isolated AS Isolated AR 

 BAV TAV P BAV TAV P 

n n=31 n=31  n=12 n=12  

Age  (years) 71±8 71±8 ns 57±9 57±10 ns 

VVI strain (%) 2.7                     

[1.7-4.7] 

3.5                           

[2.7-4.4] 

<0.05 6.9 

[5.5-8.0] 

13                   

[9.2-15] 

<0.01 

VVI stiffness (index) 14 

[9-18] 

12 

[10-15] 

ns 7.6 

[7.0-11] 

6.4                 

[5.5-9.3] 

ns 

VVI distensibilty 

(kPa
–1

10
–3

) 

14 

[10-24] 

16 

[13-19] 

ns 26 

[20-32] 

36 

[26-43] 

ns 

 

Data are expressed as mean ± SD (for normally distributed parameters) and as 

median [interquartile range] (for skewed data) [Study III]. 

Multivariate analysis of the entire patient population of isolated AS and AR 

showed that BAV was associated with lower strain and distensibility in the AR 

group, but higher distensibility in the AS group. Age was the main predictor of 

the descending aorta elasticity indices. 
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4.2.4 Comparison of the descending aortic elasticity in 
patients with phenotypes of BAV  

In study III we also compared aortic elasticity of the descending aorta between 

phenotypes of BAV in the AR and AS cohorts. Patients with Sievers‟ type 2 

BAV were excluded from this analysis. There were no significant differences 

between any of the specific types of BAV for any elasticity index in the AS 

group (P>0.05).  

Table 5. Elasticity indices and aortic diameters in relation to the phenotypes of 

BAV in AS and AR. 

Isolated AS RL (n=64) True (n=8) RN (n=14) 

Strain (%) 4.0 [2.3-5.3] 4.6 [1.1-6.2] 3.2 [2.0-4.8] 

Stiffness (index) 10.3 [7.3-15.3] 7.9 [7.0-13] 11.5 [7.5-16.0] 

Distensibility 

(kPa
–1

10
–3

) 

19.6 [11.8-27.6] 21.1 [16.2-27.2] 16.8 [12.4-25.6] 

AscDD (mm) 37 [32-45] 34 [33-38] 39 [33-49] 

AscDD/BSA (mm/m
2
) 20 [17-24] 18[16-20] 23[17-26] 

DesDD (mm) 24±3.8 24±2.9 24±3.0 

DesDD/BSA (mm/m
2
) 13±1.8 13±1.4 13±2.6 

Isolated AR RL (n=17) True (n=2) RN (n=2) 

Strain (%) 8.3[6.5-14.1] 10.2 8.6 

Stiffness (index) 6.9[5.0-8.0] 6.7 7.5 

Distensibility 

(kPa
–1

10
–3

) 
32[23-47] 35 42 

AscDD (mm) 38[31-40] 38 38 

AscDD/BSA (mm/m
2
) 18 [16-19] 18 20 

DesDD (mm) 23±3.2 27 24 

DesDD/BSA (mm/m
2
) 11±1.6 12 12 

AscDD= Ascending aortic diastolic diameter; AscDD/BSA = Ascending aortic diastolic 

diameter/body surface area; DesDD = Descending aortic diastolic diameter; 

DesDD/BSA = Descending aortic diastolic diameter/BSA. Data are expressed as mean 

± SD and as median [interquartile range] when applicable. [Study III].  
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4.2.5 Arterial compliance and valvulo-arterial impedance 

Total systemic arterial compliance in the AS group did not differ between 

patients with BAV and TAV, and it was preserved in both groups. Patients with 

BAV had similar valvulo-arterial impedance as TAV patients. The median 

values of both groups were in the moderately increased range. 

Table 6. Arterial compliance and valvulo-arterial impedance in age matched 

patients with aortic stenosis, with reference to BAV and TAV [Study III]. 

 AS 

 BAV 

n=31 
TAV 

n=31 
P 

BAV vs. TAV 

Total systemic 

arterial compliance 

(ml·m
-2
·mmHg

-1
) 

0.90 

(0.80-1.1.4) 

0.87 

(0.65-1.11) 

ns 

    

Valvulo-arterial 

impedance 

(mmHg·ml
-1
·m-

2
) 

3.8 

(3.0-4.7) 

3.8 

(3.3-4.3) 

ns 
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4.3  Intima- media thickness of the descending aorta   

In study IV we investigated the intima-media thickness of the descending aorta. 

AoIMT in the entire patient population correlated significantly with age and 

hsCRP. AoIMT was significantly thinner in the BAV group than in the TAV 

group (P<0.001), (Figure 26). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. Intima-media thickness of the descending aorta (AoIMT) in BAV and 

TAV groups and the whole study population (ALL), mean ± SD [Study IV].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. A: Box plot of AoIMT in aortic stenosis (AS), aortic regurgitation 

(AR), ascending aortic aneurysm (AoAA) and MIX pathology. B: and in addition 

valve morphology BAV/TAV, mean ± SD [Study IV]. 

P<0.001 

A 
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In Study IV, the patients were classified according to the TTE protocol as having 

AS (n = 203), AR (n = 77) and ascending aortic aneurysms (AscAA, n = 55).  

Thirty one patients could not be classified into any of the above groups (MIX, n 

= 31). AoIMT was thinner in those with AR than in those with AS (P<0.001) 

and in AscAA (P<0.001). There were no significant differences between the 

MIX group and the other groups. Patients with AS and TAV displayed a thicker 

AoIMT than those with AS and BAV (P < 0.001). The same pattern was seen in 

the AR group (P<0.01) (Figure 27). 

4.3.1 Genetic variability and AoIMT 

The rs4888378 SNP in the BCAR1–CFDP1–TMEM170A locus and the 

rs200991 SNP in the HIST1H2BN locus were studied in 338 patients. These 

SNPs have been identified previously as determinants of CIMT. We only found 

differences between the genotype groups for the rs200991 SNP, although not 

significant for the whole study population. Our study population had very few 

patients with an AA allele configuration (allele frequency 0.15), as expected 

according to Hardy–Weinberg equilibrium and in previous reports.  

Analyzing BAV and TAV separately, only the patients with TAV showed a 

difference between the rs200991 alleles. Patients with a CC allele configuration 

displayed a trend toward a thicker AoIMT vs. the AC allele. There were no 

significant differences in any of the other patient variables between the AA, AC 

and CC groups.  

 

4.3.2 Determinants of intima-media thickness in the 
descending aorta  

In our multivariate model, we chose variables of clinical relevance or variables 

shown to be associated with carotid intima-media thickness or AoIMT in 

previous studies. The multivariate analysis of the whole group showed that 

AoIMT was associated with age and male gender. When the BAV and TAV 

subgroups were analyzed separately, age was still the main predictor of AoIMT 

in both groups. The rs200991 SNP genotype was a significant factor (P<0.05) 

for the TAV group of patients, and the creatinine level was significant for the 

BAV group (P<0.05). 
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4.4 Reproducibilty  

4.4.1 Reproducibility of aortic root measurements 

Intra- and interobserver variability of the 2D variables was assessed in 16 

consecutive study patients, with measurements performed on selected cine loops. 

The intra- and interobserver variability measured as CV for LVOT was 1.8% and 

1.2 %, SV 3.6% and 3.4%, STJ 3.0% and 2.5%, maximal diameter of ascending 

aorta 2.7% and 2.9 % respectively (unpublished data). 

4.4.2 Reproducibility of VVI variables 

The intra- and interobserver variability of measurements was determined for the 

VVI variables (As, Ad, dA/dT, VVI strain and VVI rot, Figure 15) in 32 patients 

(Table 4). The variability of the VVI was low with high ICC, low CV, and strong 

correlations, except for rotational displacement, which showed a high CV. 

Table 7. Intra- and interobserver variability of the VVI variables. 

 Intraobserver variability Interobserver variability 

VVI variables ICC SEM CV (%) ICC SEM CV (%) 

Aortic area, systole 0.985 0.123 2.5 0.973 0.169 3.4 

Aortic area, diastole 0.981 0.127 2.9 0.970 0.166 3.8 

dA/dt 0.979 0.443 10.5 0.955 0.676 15.3 

Strain 0.986 0.441 8.39 0.980 0.533 9.99 

Rotational 

displacement 

0.564 0.459 52.5 0.645 0.358 43.5 

ICC = Intraclass correlation coefficient; SEM= standard error of mean;, CV= 

coefficient of variation. Reprinted with permission from Elsevier [Study II]. 

Interobserver variability of the M-mode variables was assessed in 40 patients; it 

was excellent for the systolic and diastolic diameters, with high ICC (0.97-0.99) 

and low CV (2.5-3.8%) [Study II]. 

4.4.3 Reproducibility AoIMT 

The intra- and interobserver variability of measurements was determined for 

AoIMT in 27 patients; the coefficients of variation were about 10% [Study IV]. 
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5 DISCUSSION 

The association between BAV and dilation of ascending aorta is well 

established. However, whether the aortopathy in BAV is due to a genetic 

predisposition and/or because of altered blood flow is still debated [19]. The 

vascular smooth muscle cells have the same embryological origin in the aortic 

root, ascending aorta and the aortic arch, in addition to the pulmonary trunk 

constituting the classic boundaries of BAV disease [36]. In the ASAP population 

we studied ascending aortic dilation in BAV and TAV patients with  regards to 

valve pathology in terms of AS/AR as well as different phenotypes of BAV. We 

also studied dimensions, intima-media thickness and function of the descending 

aorta. We employed the new VVI technique for studies of aortic function. 

Finally we investigated if SNPs with a known association to CIMT were also 

associated to AoIMT. 

5.1 Morphology 

5.1.1 Aortic valve morphology 

More than 50% of the first 300 consecutive patients undergoing aortic valve or 

aortic surgery within the ASAP study had BAV. This is in strong contrast to a 

reported prevalence of only 0.5-2% in the general population. The discrepancy is 

explained by an earlier development of valve lesions [117, 118], Figure 28, and a 

larger tendency for aortic dilation requiring surgery in BAV than in TAV. 

Therefore, historically BAV has been described as diseased [9]. Long-term 

studies of normally functioning BAVs have shown a markedly increased risk for 

valve replacement and/or aortic surgery [32, 34]; one study reported as high as 

70 times higher risk compared with TAV patients [32]. An explanation for the 

early development of lesions in BAV seems to be abnormal shear stress leading 

to valve calcification and malfunction [26]. However, even in older patients 

undergoing aortic surgery, BAV is seen frequently. Our findings are in line with 

previous reports [16, 119], and confirm that BAV is a common reason for aortic 

valve procedures in all age groups.  
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Figure 28. Incidence of aortic valve calcification with increasing age. Reprinted 

with permission from the BMJ Publishing Group [120]. 

The classification of valve morphology is central to this thesis. The position of 

leaflets (anterior/posterior; right/left), the size of the cusps, the number of sinuses 

and the positions of coronary ostia are included in different classification 

systems [2-4]. We adopted a widely used classification based on the number of 

leaflets and on which cusps were fused [116]. Surgical inspection has the 

advantage of direct evaluation and contact with the valve and it was chosen as 

reference standard. On the other hand, TEE can picture the moving valve during 

a cardiac cycle. Histopathological examinations of valve morphology would 

have been favorable [121], but this was not possible as the explanted valves were 

used for other analyses [122, 123]. Overall, there was good agreement between 

TEE and the surgical classification (sensitivity 92% and specificity 94 % with a 

kappa value of 0.86) [124]. The relative distribution of the morphologically 

distinct patterns in BAV observed in our study was similar to earlier reports.  
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5.1.2 Dilation of the ascending and descending aorta in 
BAV 

Dilation of the ascending aorta is associated with BAV. Two studies published in 

the early 2000s reported a high risk for aortic dissection and aneurysms in BAV 

patients with a moderately dilated ascending aorta [54, 125]. The guidelines 

existing at the time the ASAP study was carried out stated a lower threshold for 

ascending aortic replacement in BAV patients [126]. This was the rationale for 

the different threshold diameters used for the classification of aneurysms in the 

BAV and TAV groups (> 40 and > 45 mm, respectively) in Study I.  

As shown in Figure 18, ascending aortic aneurysms were twice as common in 

BAV patients even when the same classification cutoff was used. Optimal timing 

of aortic replacement has been debated, with authors arguing for replacement of 

the aorta when >40 mm in BAV patients [127], while others have argued that 

BAV and TAV patients should be treated the same way [128]. Two recent cohort 

studies have shown a low incidence of aortic complications in BAV patients, 

although higher than in TAV patients, and the same survival rate in each group 

[31, 34]. One study showed no difference in aortic complications in BAV and 

TAV patients with a moderately dilated aorta [129]. Recently, in new guidelines 

the lower threshold has been maintained for surgery of the ascending aorta in 

BAV patients undergoing aortic valve replacement for severe aortic valve 

disease, but not in patients being considered for a prophylactic procedure [130]. 

There has also been a discussion that risk of ascending aortic dilation varies 

between phenotypes of BAV, especially when valve disease is present [131]. 

The ectatic aortic root phenotype is considered a special subtype of aortopathy 

that is more frequently associated with AR [132], but we did not find such a 

relation. Schaefer et al used the same classification of BAV as us, and found that 

patients with RL BAV had a normal aortic root morphology, whereas RN BAV 

was associated with ascending aortic aneurysms [116]. In BAV, proponents of 

the hemodynamic theory state that the jet from cusps with restricted motion will 

cause shear stress on the aortic wall, causing dilation [5, 51, 133]. There are  

reports showing different histological patterns in the areas of the aorta where the 

flow jet from the restricted cusp hits the wall, compared with other regions of the 

ascending aorta used as control samples [134]. In our studies (I and III), we 

found only minor differences in the distribution of aortic root morphology and 
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ascending aortic dimensions between different phenotypes of BAV (Figure 21 

and Table 5). This does not support the hemodynamic theory of aortopathy in 

BAV being related to a certain pattern of cusp fusion.  

Using a different classification of BAV based on the location and orientation of 

the commissure [2], Kang et al found that aortic dilation was more common in 

BAV phenotype with right-left orientation of the commissural line (RN or LN 

phenotype in our study) and that AR was dominant in the anterior-posterior 

phenotype (RL in our study) [135]. Our grouping of BAV types according to 

cusp fusion was supported by embryology [18]. 

Dilation of the ascending aorta in aortic valve disease has been described as 

poststenotic, caused by turbulence of the bloodstream leading to vibrations and 

structural fatigue of the vessel wall [136]. In contrast, other papers found no 

correlation between aortic gradient and ascending aortic diameter [137], and 

several reports have shown ascending aortic dilation only in BAV patients with 

AS [137-139]. Study I confirmed the absence of more than mildly dilated 

ascending aorta in TAV AS patients. In AR patients, aortic dilation was present 

regardless of valve type. There are reports of AR being a determinant of sinus of 

Valsalva/aortic root dilation [45]; this was not confirmed in our Study I.  

In our study population, TAV patients had significantly larger diameters of the 

descending aorta compared with BAV patients. The size of the descending aorta 

was highly correlated to age and the difference in diameter was age-dependent 

(Figure 20). This has been confirmed in other studies, which showed that 

descending aortic dimensions did not differ between BAV and TAV patients 

[140], and that they were age-dependent [141]. In ASAP patients where the 

ascending aorta was replaced concurrent descending aortic dilation was more 

common in TAV patients [56]. This is in line with the finding that the same 

molecular mechanisms seem to be present in aneurysm formation in the whole 

aorta in TAV [56]. 
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5.2 Aortic function 

5.2.1 Descending aortic function in BAV and TAV 

Age was the main univariate determinant of the elastic indices in our patient 

population. There was a 10-year age difference between our BAV and TAV 

patients, explained by the fact that BAV patients require valve and/aortic surgery 

earlier [16, 119]. This may also lead to difficulty in performing age-matched 

comparisons between BAV and TAV.  

In the multivariate analysis, age was still dominant. BAV was associated with 

lower strain and distensibility in the AR group, but higher distensibility in the 

AS group. Distensibility represents the area change for the pressure increment, 

whereas stiffness is the ratio of the logarithm (systolic/diastolic blood pressure) 

relative to diameter change. Reduced elasticity of arteries with age leads 

primarily to an increase in the systolic blood pressure and, consequently, to 

increased pulse pressure. For example, starting from a baseline level of 130/80 

mmHg (pulse pressure 50 mmHg), a rise in pulse pressure of 10 mmHg 

translates to a 20% increase, but the ratio of SBP/DBP (to 140/80) increases only 

8%. For the SBP/DBP ratio to increase by 20% the pulse pressure must rise by 

30 mmHg. In the calculation of stiffness, the logarithm of the ratio is used, 

further reducing the influence of the pulse pressure change. Furthermore, in the 

distensibility equation the changes in the vessel size influence the result more 

since the radius of the vessel is squared. This might explain why only 

distensibility, but not stiffness, correlated significantly in the multivariate 

analysis of the AR group.         

There was also an interaction between valve morphology and age for stiffness, 

showing that the measured variable was not the same in younger and older 

subjects. No interactions were found for strain or distensibility. 

Regarding the descending aortic function in phenotypes of BAV, we did not find 

any significant differences (Table 5). The subgroups were very small, especially 

for AR, limiting the possibility of performing adequate statistical analyses.  
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5.2.2 Ascending aortic function 

Most reports on BAV aortopathy involve the ascending aorta [19, 31, 131, 142]. 

A comparison between functional parameters in the ascending and descending 

aorta would be of interest, and we initially considered analyzing the ascending 

aortic elasticity using VVI in short-axis 2-D loops. However, in our experience, 

it is somewhat difficult to obtain good quality 2-D short-axis images of the 

ascending aorta with TEE, and we found that the VVI analysis of the proximal 

ascending aorta was not feasible because of the longitudinal movement of the 

vessel synchronous with the heartbeat.  

Dilation of the ascending aorta is an accepted marker of aortopathy in BAV 

[142-144]. Therefore, we incorporated the ascending aortic diameter in our 

analyses as a „proxy‟ parameter of function in Studies III and IV. In Study III, 

the ascending aortic dimension was related negatively to elasticity, suggesting 

that the same process is involved in the ascending and descending media. This 

could also be explained by a larger buffering capacity in a dilated ascending 

aorta leading to a smaller impact of a given stroke volume on the descending 

aorta. 

5.2.3 Is BAV associated with systemic arteriopathy? 

Our data do not permit strong, generalized conclusions because the association 

between descending aortic elasticity and BAV in our patients with severe 

valvular disease was weak. Nevertheless, there are reports of an increased 

frequency of intracranial aneurysms [145] and increased global aortic stiffness in 

asymptomatic BAV patients [67], supporting the hypothesis that the connective 

tissue disorder and a more diffuse arteriopathy might be generalized, involving 

the descending aorta and other vascular territories in the BAV population. 

Furthermore, it is difficult to attribute degeneration of the media [50] and 

dilation in the pulmonary trunk [140] in BAV patients to the aortic valve flow 

jet. 

5.3 Intima- media thickness of the descending aorta   

In the ASAP study population, the descending aortic IMT (AoIMT) was mainly 

determined by age and to some degree by male gender. This is not surprising as 
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age is the main determinant of CIMT in young [146], as well as in middle-aged 

persons [147]. There are also known associations between CIMT and AoIMT 

[83], thoracic aortic calcium [101], plaques [97] and descending aortic wall 

volume [96]. Male gender is also a known determinant for CIMT [147] and 

although the females were older, male gender was still a significant positive 

determinant for AoIMT in Study IV. 

We found no correlation between aortic valve morphology (BAV/TAV) and 

AoIMT, group differences being explained by age. The altered flow from BAV 

did not affect AoIMT. On the other hand a majority of our patients had 

significant aortic valve dysfunction which probably affected the flow pattern in 

the descending aorta also in the TAV group. 

For comparison some other medical conditions are of interest. Similar to our 

findings in BAV, SLE is not associated with thicker AoIMT but with stiffer 

aortas [148]. Patients with familial hypercholesterolemia have thicker thoracic 

aortic walls [96], and statin treatment reduces the AoIMT as well as lipoprotein 

levels [98]. The ASAP patients generally displayed lipoprotein and triglyceride 

levels within normal limits; we found no correlation between AoIMT and these 

factors. The correlation between AoIMT and coronary atherosclerosis [83] could 

not be examined in our studies because of the exclusion criteria. The population 

in Study IV represents a low-risk stratum regarding atherosclerosis burden, 

especially in the elderly AS patients. 

One way to identify the genes involved in human disease is to conduct genome-

wide association studies. This method searches the genome for small variations, 

or SNPs, if functional, could be of higher frequency in people with a specified 

condition than in people without. It is possible to look at hundreds of thousands 

of SNPs at the same time using gene chips. The human genome consists of about 

10 million SNPs [149]. Seven SNPs have been associated with CIMT and/or 

carotid artery remodeling [112, 150, 151]. In Study IV, we evaluated two of 

these SNPs as possible determinants of AoIMT, available on the Illumina 

Human 610W-Quad BeadArrays platform that was used in the ASAP study.  

The ASAP population has about the same age as the populations in the genetic 

studies of CIMT, but with a favorable risk-factor profile regarding 

atherosclerosis. All ASAP patients were free of coronary stenosis. In addition 
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BAV patients displayed a lower prevalence of myocardial infarction and 

hypertension, as well as a lower mean age than TAV patients. Furthermore, 

BAV AS is the result of an altered mechano-biological environment [25] with 

high shear [26] and mechanical[27] stresses implying a different process in BAV 

and TAV leading to the same AS phenotype. These factors might explain why 

the rs200991 SNP genotype was significant only for the TAV group in Study IV; 

however, with low power for a genetic study. Gertow et al [112] reported a 

positive association for the A allele with the CIMT values, whereas we found a 

negative association with AoIMT. This is somewhat puzzling and additional 

larger studies are needed to confirm our findings. 

5.4 Methodology 

5.4.1 Strain imaging 

VVI incorporates speckle tracking and border-detection tracking, following 

tissue from frame to frame using algorithms for spatial coherence [76, 152]. The 

relative displacement of speckles provides an angle-independent measure of 

tissue deformation enabling calculation of area change, strain and other 

parameters.  

As in all 2-D imaging, there are problems with lateral resolution at the border of 

the ultrasound sector and displacement of speckles out of the imaging plane. 

VVI is dependent on good image quality throughout the cardiac cycle. VVI 

analysis incorporates the entire aortic circumference, accounting for local 

variations in wall motion and deformation. This is in contrast to M-mode and 

echo tracking, which have been the prevailing methods for local elasticity 

measurements.  

We do not have a clear explanation of the inhomogeneous pattern of movement 

demonstrated in Figure 29. MRI of the descending aorta showed a similar pattern 

of sector velocities with the smallest displacement nearest the spine [153]. 

Interestingly, the inhomogeneous deformation pattern has also been reported in 

the carotid artery [78], implying that it is not an isolated phenomenon that is 

dependent on the anatomic structures surrounding the descending aorta. 
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Figure 29. Inhomogeneous deformation pattern of the descending aorta 

measured by VVI. A: systole; B: diastole. Reprinted with permission from 

Elsevier [Study III]. 

We also validated VVI in an aortic phantom mimicking TTE measurement 

elasticity in the descending aorta and found a strong correlation between strain 

measured by VVI and sonomicrometry (unpublished data). 

In Study II, we showed low variability for the majority of the VVI variables, 

except for the rotational displacement. VVI-derived strain, distensibility and 

stiffness correlated strongly with the corresponding parameters derived by M-

mode. VVI-derived strain in the descending aorta is correlated with PWV [79] 

and the histological findings of collagen and elastin [154]. VVI seems to be a 

feasible method for the measurement of local aortic elasticity. 

5.4.2 Intima-media thickness of the descending aorta 

Intima-media thickness outside of the carotid territory is not a clinical marker 

with established normal values. Different IMT variables have been reported 

(max or mean IMT), based on M-mode or 2-D images. Looking at the guidelines 

for CIMT, it is recommended that measurements of IMT should be averaged 

over a 1-cm segment and not determined by a „simple point-to-point 
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measurement‟ [93]. There are many reasons for this, including non-uniform 

thickening of the arterial wall, lower spatial resolution and low reproducibility.  

Regarding the resolution, the pixel size in 1-dimensional imaging is about 0.1 

mm [93], whereas the measurement error measuring along a 10-mm-wide 

segment is much lower, at <0.01 mm [87]. This is possible because of the high 

number of independent measuring points. Referring to the CIMT guidelines [93], 

true longitudinal imaging demonstrating double lines on the near and far wall 

simultaneously is the preferred method. This was not possible in the majority of 

our patients so we decided measure AoIMT of the far wall in the transverse 

plane. Until now, there has been only one study of aortic IMT using 

semiautomatic edge-detection methods in a 10-mm-wide vessel segment in long 

axis, but this was performed in the abdominal and not in the thoracic aorta [102]. 

Therefore, our study adds some new insights into the vascular structure in BAV.  

The intra- and interobserver variability for IMT measurement in short axis view 

was in terms of CV 10-11%. The measurements were performed on cine loops 

manually set to end-diastole, defined using the ECG recorded on the pictures. 

Compared with studies of CIMT, this CV may seem rather high. One 

explanation could be that the measurement was not always performed on the 

same frame. Some authors have reported a CV of 5-6% when examining the 

same still frame, but 13% between two separate imaging procedures [84]. For 

semiautomatic edge-detection methods in the long axis of the abdominal aorta 

the CV was 9-12 % [102], and the circumferential approach alone is not a likely 

sole reason for the rather high CV. Image resolution, distance to transducer, 

transducer frequency, transducer construction, and imaging protocol are other 

factors that might differ between TEE investigation of the aorta using a small 

sector probe and carotid investigation using a considerably larger linear probe. 
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5.5 Limitations 

The study population of this thesis consisted of patients with aortic valve disease 

and/or ascending aortic aneurysm, requiring surgery. Our patients had no 

significant coronary artery disease on angiography. There was no age-matched 

control group. This means that the results are not generalizable to patients with 

normally functioning bicuspid aortic valves or patients with BAV and coronary 

artery disease. The studies were cross-sectional so there are no follow-up data at 

this point. 

TTE exams were performed in an outpatient setting, whereas TEE exams were 

performed during general anesthesia prior to the planned surgical procedure. The 

anesthesia and other medications given in connection with the preoperative 

preparation without doubt affected the pre- and afterload.  Even though the 

absolute values for the elasticity indices calculated might have been affected, we 

were able to compare BAV and TAV patients under similar conditions.  

Another limitation concerning the calculations of vascular indices was that we 

used radial blood pressure instead of central aortic pressure. However, in a 

limited number of patients, where the aortic pressure was measured invasively 

and simultaneously, the agreement with radial pressure was within 2 mmHg 

[155]. The patient population in Study IV was small for a genetic study, leading 

to a low statistical power. 
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6 FURTHER PERSPECTIVES 

The cause of ascending aortic dilation in BAV will probably continue to be 

debated. Mahadevia et al showed that 3-D blood flow in the aorta differed 

significantly between phenotypes of BAV and that the eccentric flow pattern 

predicted the morphology of the aortic root and ascending aorta [133]. From the 

ASAP data,  proteomics and RNA expression have shown different biological 

pathways leading to TAA in BAV and TAV patients [43] and a flow-mediated 

impairment of wound healing in BAV patients [156]. On the other hand, the 

aortopathy is prevalent in first-degree relatives of BAV patients [48] and 

degenerative changes have been demonstrated in the pulmonary trunk of BAV 

patients [50]. There is probably no single factor explaining the aortopathy in 

BAV patients, rather a complex interaction between genetic predisposition, 

hemodynamic factors, epigenetics and environmental factors [19].  

In the general population, dilation and aneurysm of the ascending aorta are 

approximately three times more common than in the descending aorta [141, 

157]. The repair of a descending aortic dissection is only called for when organ 

ischemia occurs or in connective tissue disorders [158], and the surgical repair of 

descending aortic aneurysms and dissections is complex. BAV is not associated 

with a higher prevalence of descending aortic dilation [56, 159] or dissection 

[160, 161]. The clinical implications of our findings, that BAV aortopathy 

extends beyond the ascending aorta, remain to be shown. Altered descending 

aortic function may be due to alterations by genetic or hemodynamic [52] 

factors, however, further studies are needed in order to understand the 

mechanisms.  

 As TEE is a semi-invasive method, it is unlikely to be applied for the sole 

purpose of measuring AoIMT. However, AoIMT can provide additional 

information about the atherosclerotic burden in patients undergoing TEE for 

other indications. Regarding SNPs correlated with AoIMT, larger studies are 

needed to draw firm conclusions. 
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7 CONCLUSIONS 

 BAV phenotypes were not associated with any specific morphology 

(aneurysm, ectasia or normal) of the aortic root or the ascending aorta. 

Ectatic aortas with true BAV were significantly smaller compared with 

RL and RN phenotypes. In patients with AS only BAV was associated 

with a dilated ascending aorta (Study I). 

 

 VVI was feasible for studies of aortic strain and function, with acceptable 

measurement variability. VVI provides new insights into aortic wall 

deformation (Study II). 

 

 In BAV patients functional abnormalities were not limited to the 

ascending aorta, but present also in the descending aorta. BAV was 

associated with lower strain and distensibility in the AR group, but 

higher distensibility in the AS group compared to TAV. Age was the 

main predictor of function of the descending aorta (Study III). 

 

 Intima-media thickness of the descending aorta was not affected by aortic 

valve morphology (BAV/TAV), and age was the main determinant of 

AoIMT. Genetic markers (SNPs) known to influence IMT in the carotid 

artery seem to correlate to IMT in the descending aorta in patients with 

TAV (Study IV).  
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