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POPULAR SCIENCE SUMMARY OF THE THESIS 

Human cells replicate all the information gathered in the genome when they divide. To ensure 

that this information is faithfully maintained, cells have repair mechanisms known as the DNA 

damage response (DDR) that resolve DNA lesions occurring spontaneously during cells’ 

lifespan. If the DDR machinery is not working properly, high rates of errors and abnormal 

arrangements in the genome occur, which will eventually be transmitted to daughter cells. This 

situation is known as genomic instability and contributes to the onset of cancer.  

The foundation of many cancer therapies consists of agents that cause severe DNA lesions 

that cannot be repaired by malignant cells with already high levels of genomic instability. This 

ultimately results in cell death and reduction of tumor burden. These therapies, although 

initially being effective, cause undesired side effects to healthy organs of the body.  

The research in this thesis has been dedicated to study DNA repair mechanisms specifically 

used by cancer cells in response to DNA damaging therapies, i.e. radio- and chemotherapy. 

The addition of a second treatment that targets this dependency results in failure to cope with 

such exerted levels of DNA damage. This therapeutic strategy offers the possibility to increase 

efficacy and reduce the dosage of DNA damaging agents, limiting toxic side-effects. We 

focused on the therapeutic targeting of two proteins associated with cancer progression: 6-

phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), and the fractalkine cellular 

membrane receptor (CX3CR1).  

In paper I, we describe how PFKFB3 accumulates in the nucleus upon ionizing radiation 

(radiotherapy), together with other DDR factors needed for the repair of DNA double-strand 

breaks caused by ionizing radiation. We identify that PFKFB3 participates in a repair pathway 

called homologous recombination and develop a chemical compound, the drug KAN0438757, 

that targets PFKFB3 and blocks its function. While cancer cells are sensitized to ionizing 

radiation upon combination with this drug, normal cells are not. 

In paper II, we study how PFKFB3 alters the repair of DNA lesions caused by platinum-based 

treatments, namely DNA crosslinks. PFKFB3 enables the recruitment of factors involved in 

the Fanconi anemia DNA repair pathway, and blocking PFKFB3 with KAN0438757 results in 

defective resolution of DNA crosslinking lesions during replication of the genome. Targeting 

PFKFB3 renders cancer cells sensitive to platinum treatments, whereas normal cells are not 

sensitized.  

In paper III, we reveal nuclear accumulation of CX3CR1 upon platinum treatments and under 

conditions that trigger activation of the Fanconi anemia pathway. Targeting CX3CR1 with the 

drug KAND567 results in cancer cells being unable to repair DNA crosslinks and continue to 

replicate their genome, ultimately reducing cancer cell proliferation.  



In paper IV, we investigate how CX3CR1 conveyed signaling alters proliferation of ovarian 

cancer cells. Using the KAND567 inhibitor, we show that CX3CR1 is important for survival of 

cancer cells but not critical for normal cells.  

In conclusion, PFKFB3 and CX3CR1 contribute to the maintenance of genomic stability in 

cancer cells by novel roles in DNA replication, homologous recombination repair of DNA 

double-strand breaks, and Fanconi anemia repair of DNA crosslinks. Consequently, specific 

sensitization of malignant cells to DNA damaging agents occurs upon combination treatment 

with KAN0438757 or KAND567. This potentiation of classical DNA damaging therapies offers 

the possibility to design future combination treatments to fight cancer with improved efficacy 

and reduced harmful effects for the patients.  



 

 

RESUM CIENTÍFIC I DIVULGATIU DE LA TESI 

Les cèl·lules humanes copien tota la informació recollida en el genoma quan es divideixen. 

Per a assegurar-se que tota aquesta informació genètica es transmet de forma fidedigne, les 

cèl·lules disposen de varis mecanismes que esmenen lesions de l’ADN produïdes 

espontàniament. En general, aquests sistemes s’anomenen “mecanismes de reparació de 

l'ADN”. Si aquesta maquinària no funciona correctament, les cèl·lules acaben mostrant 

elevades taxes d’errors o imprecisions en el genoma, que després es transmetran a les 

cèl·lules filles. Aquesta situació s’anomena inestabilitat genòmica i contribueix a l’aparició del 

càncer com a malaltia. 

La majoria de teràpies contra el càncer es basen en subministrar agents que causen efectes 

nocius en l’ADN. Les cèl·lules tumorals que presenten alts nivells d’inestabilitat genòmica són 

incapaces de reparar aquestes lesions i, per tant, acaben morint degut a l’accumulació de 

dany en el genoma. Tot i reduir el tamany del tumor, les teràpies contra el càncer causen 

efectes secundaris no desitjats a la resta d’òrgans del cos. 

L’objectiu d’aquesta tesi és estudiar els mecanismes de reparació que fan servir 

específicament les cèl·lules tumorals quan són exposades a teràpies tradicionals que danyen 

l’ADN (radioteràpia i quimioteràpia). Aquests tractaments fan que les cèl·lules tumorals activin 

determinats mecanismes de reparació de l'ADN, i en siguin dependents per a sobreviure. 

L’addició d’un segon tractament que bloqueja aquesta dependència provoca que les cèl·lules 

no puguin fer front als alts nivells de dany generats a l’ADN i que morin així més fàcilment. 

Aquesta estratègia terapèutica s’anomena letalitat sintètica i ofereix la possibilitat d’augmentar 

l’eficàcia de les teràpies contra el càncer tradicionals, tot reduïnt-ne els efectes tòxics. La 

nostra investigació s’ha centrat en dues dianes terapèutiques que s’han associat amb la 

progressió del càncer: la 6-fosfofructo-2-quinasa/fructosa-2,6-bifosfatasa 3 (PFKFB3) i el 

receptor de membrana fractalquina (CX3CR1).  

A l’article I, descrivim com la PFKFB3 s'acumula a les lesions de l’ADN degut a la radiació 

ionitzant de la radioteràpia (que causa la ruptura d’ ambdues cadenes de la doble hèlix de 

l’ADN). La PFKFB3 es localitza conjuntament amb altres factors que s’encarreguen 

d’esmenar ruptures de doble cadena mitjançant el mecanisme de recombinació homòloga. 

Desenvolupem un compost químic, el fàrmac KAN0438757, que bloqueja l’activitat de la 

PFKFB3. Utilitzant aquest fàrmac, realitzem experiments per identificar com l’absència de la 

PFKFB3 provoca canvis en la reparació de ruptures de doble cadena. És així com 

identifiquem que les cèl·lules cancerígenes esdevenen més sensibles a la radiació ionitzant 

quan aquest tractament es combina amb el fàrmac KAN0438757 i, en canvi, les cèl·lules 

sanes no. 



A l’article II, estudiem com la PFKFB3 altera la reparació de lesions a l’ADN provocades per 

compostos basats en platí, un tipus de fàrmacs freqüentment usats en quimioteràpia. 

Aquestes lesions s’anomenen enllaços covalents entre cadenes d’ADN i es reparen 

mitjançant el mecanisme de l’anèmia de Fanconi. La PFKFB3 regula el reclutament de factors 

implicats en l’anèmia de Fanconi. El seu bloqueig amb el fàrmac KAN0438757 fa que les 

cèl·lules no puguin resoldre els enllaços covalents entre cadenes durant la replicació del 

genoma. Alhora, en potencia l’efecte tòxic del tractament amb compostos de platí i fa que les 

cèl·lules cancerígenes esdevinguin més sensibles a aquest tipus de quimioteràpia mentre que 

les cèl·lules sanes no. 

A l’article III, revelem que l’acumulació nuclear del receptor CX3CR1 succeeix com a resposta 

al tractament amb compostos basats en platí. Quan les cèl·lules cancerígenes són tractades 

amb KAND567 (un fàrmac que bloqueja el receptor CX3CR1), són incapaces de reparar 

enllaços covalents entre cadenes i de replicar l’ADN, fet que acaba aturant la divisió cel·lular. 

Aquest efecte no s’observa en cèl·lules normals. 

A l’article IV, investigem com la senyalització desencadenada per l’activació del CX3CR1 

altera la proliferació cel·lular en cèl·lules de càncer d’ovari. Mitjançant la utilització de 

l’inhibidor KAND567, demostrem que el CX3CR1 és essencial per a la supervivència de les 

cèl·lules cancerígenes i que no és important per la proliferació de les cèl·lules normals. A més, 

el CX3CR1 regula la replicació de l'ADN per evitar-ne danys i la mort cel·lular programada.   

En conclusió, la PFKFB3 i el CX3CR1 són factors que contribueixen al manteniment de 

l’estabilitat genòmica del càncer mitjançant funcions fins ara no descrites i que inclouen: la 

replicació de l’ADN, la reparació homòloga de ruptures de l’ADN de doble cadena, i la 

reparació dels enllaços covalents entre cadenes d’ADN mitjançant el mecanisme de l’anemia 

de Fanconi. Com a conseqüència, la combinació de teràpies que danyen l’ADN amb 

KAN0438757 o KAND567 dóna lloc a una potenciació d’aquestes teràpies clàssiques afectant 

únicament a les cèl.lules cancerígenes i sense effectes tòxics observables a les cèl.lules 

sanes. Alhora, ofereix la possibilitat de dissenyar futurs tractaments basats en combinacions 

de fàrmacs que permetin combatre el càncer amb efectes secondaris reduïts pels pacients.   



 

 

ABSTRACT  

Genomic instability in cancer is exploited therapeutically using DNA damaging therapies that 

cause irreparable lesions above the threshold of tolerable DNA damage levels. Nevertheless, 

toxic side effects on healthy tissues limit the therapeutic potential of such therapies. Through 

the concept of synthetic lethality, therapeutic targeting of factors involved in the DNA damage 

response (DDR) appears as an attractive strategy to increase the efficacy and improve the 

therapeutic window of traditional DNA damaging therapies. The aim of this thesis was to study 

how the metabolic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 

(PFKFB3), and the fractalkine membrane receptor (CX3CR1) contribute to the maintenance 

of genome stability and whether they can constitute therapeutic targets in cancer. 

In paper I, we reveal a hitherto unknown role for PFKFB3 in repair of DNA double-strand 

breaks (DSBs) upon ionizing radiation (IR). PFKFB3 relocates to IR-induced foci (IRIF) in the 

nucleus where it colocalizes with homologous recombination (HR) factors. Assembly of 

PFKFB3 IRIF is dependent on ATM activity and is essential for the recruitment of RAD51 and 

RPA recombinant mediators, HR activity, and survival upon IR. To interrogate PFKFB3 

molecular function, we develop and validate the small molecule inhibitor KAN0438757. 

Pharmaceutical inhibition of PFKFB3 results in defective HR repair of IR-induced DSBs and 

impairment of nucleotide incorporation for DNA synthesis by direct interaction with RRM2 at 

DNA damage sites. Furthermore, targeting PFKFB3 with KAN0438757 sensitizes transformed 

cells to IR while sparing non-transformed cells.  

In paper II, we describe a novel role for PFKFB3 in supporting replication-coupled Fanconi 

anemia (FA) repair of DNA crosslinks, which is essential to resolve stalled replication forks, 

resume replication, and cell survival. PFKFB3 inhibition provides cancer-selective 

sensitization to the DNA crosslinkers cisplatin and carboplatin (platinum drugs). This 

sensitization is not due to a general distortion of glycolysis but appears associated to 

enhanced PFKFB3 chromatin loading in transformed cells, which is further enriched in 

platinum resistant cells. Activation of FA pathway upon replication stress results in PFKFB3 

recruitment into nuclear foci that depends on ATR activity and FANCM assembly at stalled 

forks, where PFKFB3 directly interacts with FANCD2 and BLM to ensure FA-mediated repair. 

Moreover, targeting PFKFB3 increases replication fork stalling and limits fork restart, which 

results in inability to progress through S phase and fork collapse.  

In paper III, we introduce an unknown function of CX3CR1 in promoting FA pathway repair of 

DNA crosslinks that has functional consequences for the resolution of DNA adducts, DNA 

replication and survival upon treatment with platinum drugs. Targeting CX3CR1 by siRNA 

transfections, lentiviral delivery of shRNA, or with the non-competitive inhibitor KAND567, 

renders resistant cells hypersensitive to platinum treatments. FA pathway activation under 



replication stress conditions triggers CX3CR1 nuclear localization, which is vital for the 

assembly of FANCD2 into foci. Suggesting a potential role in fork stabilization, CX3CR1 

inhibition hampers chromatin loading of FANCD2, and its partners FANCI, RAD51 and H2AX. 

Lastly, in paper IV we provide an initial characterization of CX3CR1 molecular function in 

survival and proliferation of ovarian cancer cells. KAND567 treatment is cytotoxic in a panel 

of ovarian cancer cells and in cells derived from an ovarian cancer patient, whereas viability 

of non-transformed cells is not affected at the same range of concentrations. CX3CR1 

pharmacological inhibition slows down G1 to S phase transition and results in defective DNA 

replication, accumulation of DNA damage and apoptotic cell death.  

Altogether, the present thesis provides evidence for emerging roles of PFKFB3 and CX3CR1 

in the DDR that are critical for cancer cells to maintain genomic stability, and approaches the 

feasibility of a rational design for a future therapeutic intervention in cancer. 
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1 INTRODUCTION 

1.1 GENOMIC INSTABILITY IN CANCER 

1.1.1 The DNA damage response 

Through the lifespan of a cell, insults to the DNA occur by endogenous and environmental 

sources. Endogenous sources of damage arise from reactions inherent in the chemical nature 

of DNA and from common byproducts of cellular metabolism. These events are estimated to 

occur as high as 105 times per cell on a daily basis1. Exogenous sources, instead, include 

xenobiotics and environmental agents such as ultraviolet light (UV) that cause DNA damage. 

Altogether, these genotoxic insults entail a great potential to cause deleterious outcomes for 

genomic stability, including the loss of genetic information, mutations, defective chromosome 

segregation, and impairment of biological processes such as DNA replication and gene 

transcription2,3. Contemplating such harmful consequences, how do then cells assure 

transmission of intact genetic information to daughter cells?  

To maintain genomic stability, mammalian cells have developed refined mechanisms that 

detect and resolve DNA lesions, and command cells with deleterious DNA aberrations into 

programmed cell death. Historically, this integrated signaling network has been coined the 

DNA damage response (DDR)2. Depending on the type of DNA lesion and the cell cycle 

phase, different DDR pathways are activated to resolve these lesions (Figure 1).  

 

Figure 1. DNA repair pathways are specialized to resolve wide range of DNA lesions. Errors arising during 

DNA replication such as mismatched base pairs and insertion or deletion loops are repaired by mismatch mediated 

repair (MMR). Base excision repair (BER) corrects throughout the cell cycle chemically modified DNA bases 

originated from oxidation (O), alkylation (A), and deamination (H) reactions that lead to DNA single-strand breaks. 

Nucleotide excision repair (NER) resolves DNA helix-distorting base lesions such as ultraviolet photo-adducts and 

bulky base adducts. The Fanconi anemia (FA) pathway coordinates the repair of interstrand crosslinks exclusively 

during the S cell cycle phase as it requires converging replication forks to the damage site. Non-homologous end 

joining (NHEJ) and homologous recombination (HR) engage in the repair of DNA double-strand breaks. HR 

requires the availability of sister chromatid as a template and is therefore only active during the S, G2 and M cell 

cycle phases.  
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An intricate relationship exists between the DDR network and tumorigenesis. From a genetic 

perspective, cancer transformation is triggered by activation of oncogenes and inactivation of 

tumor suppressor genes, inducing high workload for the DDR machinery to ensure faithful 

DNA replication over the rapid cell proliferation during malignant progression. In contrast to 

non-transformed tissues, tumors exhibit a constitutive activation of the DNA repair machinery, 

which at early stages of tumorigenesis provides a protective mechanism triggering cell death4. 

Nevertheless, this chronic signaling constitutes a strong selection pressure towards 

inactivating mutations of DDR components during tumor development, which enable cells to 

survive in spite of enhanced mutation rates and persistent genome instability5. The fact that 

constitutive activation of genome maintenance machinery occurs in early-staged tumors and 

pre-invasive lesions preceding aberrations in the DDR factors led to the realization that DDR 

acts as an anticancer barrier to prevent tumorigenesis. At the same time, however, it is 

instrumental for tumor progression since it is selectively advantageous for oncogenotypes that 

breach this barrier6. The perturbation of DNA repair mechanisms and subsequent loss of 

control over genome integrity entails tumorigenic potential since it confers cancer hallmark 

capabilities of de-regulated cell proliferation, avoidance of cell cycle controls, and evasion of 

apoptosis7.  

DDR factors are intimately related with the genomic instability phenotype observed in most 

cancer malignancies. By acting as tumor suppressors preventing deleterious DNA 

aberrations, their loss-of-function results in high rate of mutations and a large number of 

abnormal chromosomal rearrangements and copy numbers. Indeed, many DDR genes have 

been clinically documented as cancer-susceptibility genes and thus, designated as risk factors 

to develop certain types of cancers8. This is evident in the case of the hereditary breast–

ovarian cancer syndrome, which is defined by the high incidence of breast and ovarian 

cancers among those families with germline loss-of-function mutations on the homologous 

recombination repair mediators breast cancer type 1 susceptibility gene (BRCA1) and breast 

cancer type 2 susceptibility genes (BRCA2)9. Another illustrative case is the Fanconi anemia 

(FA) disease, which is a recessive genetic disorder characterized by cancer predisposition, 

most commonly early onset of acute myeloid leukemia, and bone marrow failure due to defects 

in hematopoietic differentiation10. The molecular pathogenesis of FA is distinguished by 

mutations in DDR factors responsible to repair DNA crosslinks, and thus alternations in the 

so-called FA genes results in hypersensitivity to crosslinking agents and vast genomic 

instability. Notably, the advent of molecular genetics led to the discovery that many FA genes 

are, in fact, repair factors such as BRCA1 and BRCA2. Somatic mutations in FA genes appear 

in up to 40% of all types of cancers11, highlighting its role in malignant transformation and 

cancer progression.  
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DDR pathways contain three major elements: DNA lesion sensor proteins, kinases that act as 

signal transducers orchestrating the signaling response, and downstream effectors that 

convey DNA repair. Over the cell cycle, the DDR signaling is responsible to coordinate DNA 

repair with replication and DNA metabolism in order to guarantee genomic stability. This timely 

coordination takes place through the rapid activation of phosphorylation events initiated by 

three key signal transducers: ataxia-telangiectasia mutated (ATM), ATM rad3-related (ATR), 

and DNA-dependent protein kinase (DNA-PK)12. Each of these kinases interacts with their 

corresponding DNA binding sensors, which in turn display distinct affinity towards different 

kinds of DNA lesions. While ATR responds to single-stranded DNA (ssDNA) and 

phosphorylates the CHK1 checkpoint kinase; ATM is elicited by DNA double strand breaks 

(DSBs) and, as a response, activates the cell-cycle checkpoint kinase CHK23. Activated 

CHK1/CHK2 triggers signaling cascades that convey the slowdown of cell cycle progression 

and activation of the G1/S, intra-S or G2/M cell-cycle checkpoints in order to prevent cells with 

damaged DNA to progress to replication or premature mitosis.  

Apart from controlling the cell-cycle progression, ATR, ATM and DNA-PK are essential 

signaling transducers for the repair of the most critical types of DNA damage, namely DNA 

single-strand breaks (SSBs) and DSBs. Activation of these kinases stimulates the direct 

recruitment of repair factors to DNA damage sites and thereby activates an extensive network 

of downstream targets13. When repair effector factors do not manage to resolve these breaks, 

chronic ATM/ATR-mediated signaling results in genomic instability and mitotic catastrophe, 

ultimately leading to cell death via P53-mediated apoptosis or senescence12. 

1.1.2 Replication fork stability 

An essential biological process safeguarded by the DDR network is DNA replication, which 

requires unperturbed mobility of the replication fork along the DNA template to accurately 

synthesize a new strand. Despite sophisticated mechanisms to ensure proper genome 

duplication, replication forks may inevitably encounter endogenous DNA lesions or unstable 

chromosomal regions, such as common fragile sites, containing sequences difficult to replicate 

that slow down or even block the replication machinery. Other naturally occurring events, like 

the collision between replication and transcriptomic machineries or misincorporation of 

ribonucleotides, constitute challenges to successful replication14. The delay, stalling or 

termination of DNA replication caused by these obstacles is known as replication stress. 

Replication stress is characterized by long regions of ssDNA due to the uncoupling of DNA 

helicase-polymerase15,16, premature termination of replication forks, and dissociation of 

replisome proteins from the DNA (fork collapse)17,18. Eventually, these events generate DSBs 

lesions and result in genome instability. Transformed cells harbor high levels of replication 

stress not only because as rapidly diving cells they are more likely to encounter endogenous 
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obstacles for DNA replication; but also because DDR factors, whose function is lost during 

tumorigenesis, constitute mechanisms to stabilize, repair and restart replication forks in order 

to protect nascent strands19. Accordingly, comparison of tumor tissues with their normal 

precursor counterparts illustrates that high levels of replication stress originating genomic 

instability are associated with malignant transformation20. 

To avoid chronic fork stalling, the DDR elicits a response to first stabilize and then restart 

replication forks17. The ssDNA generated due to fork stalling is coated by the replication protein 

A (RPA) complex (consisting of three proteins RPA70, RPA32, RPA14) which protects this 

unstable DNA intermediate. RPA acts as a replication stress fine tuning sensor as the extent 

of response elicited by RPA directly depends on the bulk of ssDNA, and thus the amount of 

the RPA coating molecules21. RPA subsequently binds to ATR-interacting protein (ATRIP) to 

recruit and activate ATR kinase and activate intra-S phase checkpoint via CHK1 

phosphorylation22. The intra-S checkpoint activation mediates fork stabilization through 

various means. One of them is the regulation of deoxyribonucleotide (dNTP) intracellular pool 

via the activation of ribonucleotide reductase (RNR). The enzyme RNR is a tetramer protein 

composed by two catalytic subunits (RRM1) and two regulatory subunits (RRM2), and it 

operates the synthesis of dNTPs from ribonucleotides23. Simultaneously, the intra-S 

checkpoint suppresses global origin firing, as well as promotes new origin firing in the proximity 

of stalled forks to facilitate fork convergence17. The latter becomes more critical in a context of 

replication stress, where unscheduled origin firing results in vast levels ssDNA and exhaustion 

of RPA intracellular pool, which ultimately leads to global replication fork collapse24.  

Following RPA fork protection and checkpoint activation, the DNA recombinase RAD51 gets 

recruited to ssDNA. RAD51 mediates fork regression, a process in which replication forks 

reverse newly synthetized complementary strands creating a chicken foot-like DNA structure. 

RAD51-mediated fork reverse provides time for the chromatin loading of DDR factors that 

protect reversed forks from nucleolytic degradation, resolve replication lesions, and enable 

replication restart.  

Alternatively, proliferating cells can circumvent fork stalling by a traverse mechanism termed 

translesion synthesis (TLS). This process facilitates bypass of DNA lesions by switching 

regular high-fidelity DNA polymerases for specialized polymerases, i.e. TLS polymerases, 

which have a large active site that can accommodate nucleotides opposite to DNA lesions. 

The action of TLS polymerases enables cells to progress to the G2 cell cycle phase. Since 

they have lower proofreading capacity than replicative polymerases, the resulting daughter 

cells will often display higher rate of mutations compared to cells where the damage has been 

repaired25.   
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1.2 DNA DAMAGE RESPONSE AND CANCER THERAPIES 

1.2.1 DNA damaging therapies 

On the basis of cancers’ hallmark of genomic instability, cornerstones in cancer treatment 

constitute genotoxic agents that cause extensive DNA damage levels and unbearable 

replication stress in malignant tumor cells. Current DNA damaging therapies include 

radiotherapy and chemotherapy (Figure 2). Radiotherapy generates vast levels of DNA 

damage localized to the tissue where the radiation is directed26. Instead, chemotherapy entails 

systemic delivery of drugs which target DNA itself or target biological processes associated 

with DNA replication and cell division27.  

 

Figure 2. Overview of toxic lesions exerted by DNA damaging therapies used in cancer therapy. Radiation 

therapy causes oxidative damage to DNA bases, SSBs and DSBs. Chemotherapy includes a wide range of agents. 

Mono- and bifunctional crosslinkers chemically react with DNA bases producing DNA crosslinks and perturbing 

DNA helix structure. This bulky adducts cause replication lesions through the S cell cycle phase and eventually 

result in DSBs. Antimetabolites hinder nucleotide metabolism and DNA synthesis culminating in DNA mismatches 

and generation of toxic replication lesions. Replication inhibitors trigger replication fork stalling and collapse causing 

replication lesions and DSBs. Topoisomerase inhibitors provoke topological problems on the DNA double helix 

resulting in replication lesions, SSBs and DSBs. More recently developed, small molecule inhibitors that target key 

DDR factors such as Poly (ADP-ribose) polymerase (PARP) inhibitors have emerged as novel therapeutic 

strategies. PARP inhibitors cause severe impairments on the repair of DNA lesions.  

Extensive research over the last 50 years has shown that defects in the DDR network result 

in large susceptibility to DNA damaging agents such as UV light that may be harmless for 

cancer patients with proficient DNA damage repair systems28. Considering the mechanism of 

action of DNA damaging therapeutics (Figure 2), loss-of-function or deletion mutations in DDR 

genes results in hypersensitivity towards these types of therapies. At the same time, though, 

amplification or gain-of-function mutations in these genes may confer protective mechanisms 

to alleviate replication stress and DNA damage. Hence, the proficiency of checkpoint control 

and DNA damage repair have therapeutic implications because they largely determine the 

efficacy of DNA damaging treatments and contribute to the development of resistance and 

tumor regression27. This, in turn, introduces a clinical challenge for those patients carrying 

defective DDR germline mutations, since the employment of such therapies results in 

unpredictable toxicity to them29,30.  
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The current chapter gives an overview of the mechanism of action and the DNA damage 

responses triggered by two universally used DNA-targeting cancer treatments: ionizing 

irradiation and platinum-based agents, in order to frame how perturbations in DNA repair 

systems and checkpoint signaling have an effect on the therapeutic efficacy to these 

treatments.  

1.2.2 Repair of DNA double-strand breaks 

Radiation therapy is used in approximately 50% of all cancer patients, making it the most 

common therapeutic modality used in the clinic26. It is estimated that radiotherapy contributes 

to cure a rate of 40% of all cancer patients31, highlighting its relevance as a successful 

therapeutic strategy. The most common clinical approach is the external beam radiotherapy, 

in which high-energy ionizing irradiation (IR) is aimed to the location of the tumor.  

The collision of IR high-energy in the tumor tissue generates oxygen free radicals that oxidate 

DNA molecules resulting in a variety of lesions including DSBs, SSBs and oxidation of DNA 

bases. The less frequent but most toxic lesions are DSBs, which are provoked in a genome-

wide fashion causing a collapse in genomic integrity that activates repair by the DDR 

network32,33,34. If left unrepaired, IR-induced DSBs result in chromosomal breakage and 

rearrangements, compromising genomic stability35.  

The two pivotal pathways that dominate the repair of DSBs are non-homologous end joining 

(NHEJ) and homologous recombination (HR) (Figure 3). Whilst NHEJ is a rapid process that 

involves direct ligation of the two DNA broken ends with minimal dependency on DNA 

sequence36, the HR pathway requires the availability of homologous sequence as a reference 

template for repair, and thus is considered to be less error-prone37. As a result, HR is restricted 

to the S and G2 cell cycle phases, while NHEJ principally can occur throughout the cell cycle.  

The NHEJ pathway manages the direct re-ligation of broken DNA ends which can be 

performed by two different processes: the co-called classical NHEJ (c-NHEJ) and alternative 

NHEJ (alt-NHEJ).  

In c-NHEJ, the nuclear heterodimer Ku70–Ku80 binds to DNA broken ends forming a double-

ring structure with high specificity for double strand ends (Figure 3)38. Direct visualization by 

high-resolution imaging shows that although several dimers can bind to DSB sites, usually a 

single molecule is loaded to each of the ends39. This DNA binding complex functions as a DSB 

sensor and orchestrates the recruitment of the DNA-PK kinase, and other DDR-factors such 

as DNA ligase IV (LIG4), XRCC4, and the scaffolding proteins XRCC4-like factor (XLF) and 

paralog of XRCC4 and XLF (PAXX)37,40. Together, these factors form a DNA-protein complex 

that facilitates the close alignment of both DNA ends, known as the synapsis step, and the 

ligation of broken DNA ends. Moreover, activated DNA-PK phosphorylates Artemis, a 
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nuclease that manages the transformation of incompatible DNA ends to DNA intermediates 

suitable for direct ligation41.  

Besides c-NHEJ, alt-NHEJ is a backup mechanism to rejoin DSB ends (Figure 3). Alt-NHEJ 

occurs when c-NHEJ factors are not engaged and requires the presence of microhomology 

sequences between strands at the DSB site. In this case, minimal 5’ resection of DSB ends is 

followed by RPA ssDNA coating42,43. RPA is further displaced by DNA polymerase θ that 

catalyzes the synthesis and ligation of both strands44. 

 

Figure 3. Pathways of DNA double-strand break repair. IR-generated DSBs are repaired via non-homologous 

end joining (NHEJ) or homologous recombination (HR) repair mechanisms depending on the cell cycle phase. 

Classical NHEJ mechanism directly joins broken DNA ends, whereas alternative NHEJ requires slight end 

processing and microhomology sequences in the vicinity of break ends. Homologous recombination is initiated by 

extensive 5’ to 3’ DNA end resection, followed by RPA ssDNA coating, displacement of RPA by RAD51 and RAD51 

filament formation. DNA strand invasion, homology search and second end capture culminate into two different 

mechanisms: synthesis-dependent strand annealing (SDSA) and double-strand break repair (DSBR) which after 

a second end capture can result into two different outcomes cross-over and non-crossover products. Alternatively, 

DSBs that have undergone extensive end resection and contain homology sequences flanking the ends can be 

annealed by a RAD52-dependent mechanism termed single-strand annealing (SSA).  
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Apart from NHEJ repair mechanisms, HR constitutes the other constitutive pathway to resolve 

IR-induced DSBs (Figure 3). HR repair uses homologous DNA sequences as a template for 

repair. These sequences can be found in sister chromatids, homologous chromosomes, and 

non-homologous chromosomes that contain repetitive sequences. The fact that 

recombinational repair of DSBs displays low mutagenicity rates limiting loss of heterozygosity, 

suggests that sister chromatids are the preferred correct repair templates45.  

Following IR-induced DSBs, phosphorylation of the Ser139 residue of the histone variant H2AX 

(H2AX) in regions of the chromatin nearby break sites is triggered by either the ATM or DNA-

PK kinases46. H2AX functions as a coordinator of DDR signaling by recruiting the mediator 

of DNA damage checkpoint protein 1 (MDC1) as a scaffolding protein that physically interacts 

with MRE11–RAD50–NBS1 (MRN)47,48. The MDC1-MRN complex enables the recruitment 

and activation of ATM, which in turn phosphorylates MRN, establishing a positive feedback 

loop to amplify DNA damage signaling initiated by the ATM-H2AX axis. Simultaneously, 

activated ATM phosphorylates the CHK2 transducer conveying G1/S and G2/M cell cycle 

arrest through phosphorylation of Cdc25A and p53, respectively49. These checkpoints remain 

activated until the damage is repaired. Furthermore, the MDC1-MRN complex recruits the 

tumor suppressor p53-binding protein 1 (53BP1), a key regulator of NHEJ that protects broken 

DNA ends from resection50.  

The next step in HR is the 5’ to 3’ DNA end resection, generating a ssDNA tail. The ATM-

dependent phosphorylation of the MRN complex increases MRN nuclease activity51. The 

combined nuclease activities of CtBP-interacting protein (CtIP)52 and MRN catalyze a “short-

range” resection of the DNA strands. MRN exonuclease activity removes Ku70–Ku80, which 

physically blocks resection of the DNA ends, and loads the exonuclease 1 (EXO1) and the 

DNA2–bloom syndrome protein (BLM) to initiate “long-range” resection53. BLM mediates DNA 

unwinding, whereas EXO1 catalyzes nucleolytic digestion to process DSB ends into 3′ single-

stranded DNA tails54. The recombination mediator BRCA1 modulates the end resection step. 

When assembled with BRCA1-associated RING domain protein 1 (BARD1), BRCA1 

colocalizes with CtIP and MRN to DSB damage sites, and mediates the dephosphorylation of 

53BP1 resulting in unprotected DSB ends55.  

Directly after DNA end resection, the RPA complex binds to the ssDNA generated regions. 

This binding limits pairing with surrounding ssDNA stretches and also prevents excessive 

resection, which would be detrimental. The recombination mediator BRCA2 competes with 

RPA for binding to ssDNA and thus facilitates disassembly of coated RPA. BRCA2-mediated 

displacement occurs through its interaction with ssDNA, monomers of the DNA recombinase 

RAD51, and BRCA1-BARD1 complex through the partner and localizer of BRCA2 (PALB2). 
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As a result, BRCA2 enables the DNA recombinase RAD51 to remove RPA and stimulates 

RAD51 nucleation, an event in which a small complex of RAD51 monomers bind to ssDNA56,57. 

After this initial nucleation, RAD51 forms nucleoprotein helical filaments on the ssDNA that 

constitute essential recombination intermediates for strand invasion and exchange.  

The RAD51-ssDNA filaments operate the search for homology sequences for complementary 

pairing, and subsequent DNA strand invasion of the sister chromatid37. DNA polymerases load 

to 3’ ends of invading strands and synthetize nascent strands using as a template the DNA 

sequence of the sister chromatid58. Several RAD51 recruited recombination mediators are 

essential to assist displacement, nascent strand synthesis and annealing of the previously 

resected strand. These factors include, for example, BRCA1–BARD1 proteins which have 

been shown to facilitate RAD51-mediated base pairing with complementary sequences59.  

Once the invading strand is completely synthetized based on the donor template sequence, 

the remaining second end of the DSB must be processed for a complete repair. This can occur 

via the mechanism termed synthesis-dependent strand annealing (SDSA) (Figure 3)60, where 

the resulting recombinational products are non-crossover because the invaded newly 

synthetized strand detaches and serves as its own template for the completion of the second 

DSB end. Alternatively, resolution can occur following the DNA double-strand break repair 

(DSBR) model (Figure 3)60. After the second end capture, DNA synthesis and ligation, the 

duplex DNA strands can be resolved giving two different recombinational products: either non-

crossover product, where the original configuration is kept; or crossover product, where there 

is exchange of flanking sequences between sister chromatids61. 

RAD51 is the main recombination factor and is essential for strand invasion, homology search 

and successful HR repair. Alternatively, DSBs can be resolved by a RAD51-independent 

mechanism known as single-strand annealing (SSA) (Figure 3)62. SSA entails the annealing 

of two DBS ends that are flanked by repeated sequences. Mediated by the action of RAD52, 

repeated homologous ssDNA regions disclosed during end resection step are annealed, and 

flapping overhangs are subsequently eliminated. This nucleolytic degradation entails 

mutagenic potential because it results in the genetic loss of the sequences intervening 

homologous regions63. 

1.2.3 Replication-coupled repair of interstrand crosslinks 

Platinum-based drugs, including cisplatin, carboplatin and oxaliplatin, have been widely used 

in cancer treatment since late 1970s64. Nowadays, it is estimated that half of the patients that 

undergo chemotherapy receive platinum-containing treatment65. These drugs constitute first 

line therapy of testicular and ovarian cancer, malignancies that historically had shown poor 

outcome for advanced disease and in which platinum-based therapy has led to a significant 

clinical impact66,67.  
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The primary cellular target of platinum-based agents is DNA. Once administered, platinum 

drugs become activated by an aquation reaction. This active form covalently binds with purine 

bases in the DNA causing irreversible DNA adducts. First, a monofunctional adduct is formed 

followed by a reaction that result in either: intra-strand crosslinks involving two bases of the 

same DNA strand, interstrand crosslinks (ICLs) between bases on the complementary strands 

of the DNA helix, or less commonly protein-DNA adducts68,69. Most of the DNA adducts of 

cisplatin are intra-strand crosslinks (80-90% of all adducts), whereas ICLs constitute a minority 

(around 2-5% of all adducts)70. Nevertheless, ICLs are thought to be the primary source of 

platinum cytotoxicity71. Structurally, platinum-induced ICLs generate a major distortion on the 

DNA helix with notable unwinding and bending at the site of the crosslink72. 

Besides platinum, ICLs are also yielded by other types of bifunctional agents. Mitomycin C, an 

antibiotic produced by Streptomyces, reacts with guanine residues generating around 5-14% 

of ICLs among other adducts, and provokes mild DNA helix distortion73. Upon activation with 

UV light, psoralen is the bifunctional agent that triggers the highest ICL fraction, up to 40% of 

all adducts, and disturbs the structure of the DNA resulting in mild unwinding72,74.  

ICLs are particularly toxic DNA lesions due to their harmful effect in preventing DNA strand 

separation. ICL-induced fork stalling blocks essential biological processes that require 

progression of the replicative machinery alongside DNA strands. The sustained blockage of 

replication results in DSB formation, mitotic catastrophe and cell death64. ICLs trigger 

clastogenic effects, leading to breakage, loss and rearrangement of chromosomes. Overall, 

DNA crosslinking agents are regarded as distinguished toxic compounds ranking high in 

comparative risk assessment studies assessing in vitro and in vivo genotoxicity75.  

To preserve genomic stability, replication-coupled ICL repair must ensure not only repair of 

DNA lesions from both strands, but also replication fork stability and protection. This is 

achieved by the FA pathway, which coordinates the sequential action of different DDR 

pathways including nucleotide excision repair (NER), TLS and HR repair (Figure 4)11. The FA 

pathway is at the heart of ICL replication-coupled repair, as cells from FA patients treated with 

ICL-inducing agents exhibit cell cycle arrest in late S phase and substantial clastogenic 

effects76. These events ultimately lead to high levels of genomic instability.  

The encounter of replication machinery with an ICL triggers fork stalling. This replication fork 

stalling is an essential requirement for ICL recognition and resolution via FA pathway. First, 

disassembly of replicative CMG helicase via BRCA1 activation allows the fork to come nearby 

the ICL site (Figure 4a).  
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Figure 4. Current model mechanism of replication-coupled ICL repair. Stalled replication forks due to ICL 

formation are repaired through the action of different pathways: Fanconi anemia (FA), nucleotide excision repair 

(NER), translesion synthesis (TLS) and homologous recombination (HR). (a) Upon ICL generation, the replication 

fork approaches the crosslink site where it stalls and (b) the resulting branched DNA is identified by FANCM sensor 

protein. ICL recognition triggers (c) ATR/CHK1 mediated signaling to convey S cell cycle phase arrest and (d) 

activation of the FANCI-FANCD2 heterodimer (ID2 complex) by monoubiquitylation. (e) ID2 recruits NER 

nucleases that perform nucleolytic incision of one of the strands in the vicinity of the ICL (f) generating a DSB with 

the unhooked strand and its complementary newly synthetized strand. (g) The lesion is bypassed by low-fidelity 

TLS polymerases and (h) 5’ to 3’ end resection leads to initiation of HR pathway repair. Following (i) RPA ssDNA 

loading and (j) RAD51 displacement and loading of recombinational mediators, (k) homology search takes place 

and further (l) extension, resolution, and ligation of newly synthetized strands. Republished with permission of 

Annual Reviews, from “The Fanconi Anemia Pathway in Cancer” from Niraj, J. et al. 3:457-478 (2018); permission 

conveyed through Copyright Clearance Center, Inc. 
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ICLs are identified by the key sensor protein FANCM, whose activity is cell cycle-dependent77 

(Figure 4b). FANCM displays three main functions. First, it has a structural role enabling the 

assembly of downstream factors and thus, the loss of FANCM results in impairment or even 

absence of chromatin loading of downstream FA proteins. Second, via its translocase 

enzymatic activity FANCM remodels DNA structures at ICL sites essential for subsequent post 

replicative repair. This DNA remodeling function is supported by FANCM interaction with the 

BLM complex, which enables the unwinding of DNA strands at sites of stalled replication forks. 

Last, the fact that FANCM gets hyperphosphorylated upon genotoxic treatments suggests that 

it has a signal transduction role in response to DNA damage.  

Translocation of FANCM to ICL sites requires direct interaction with the BLM complex and 

phosphorylation by the ATR kinase78. Simultaneously, recruited FANCM triggers ATR-

mediated activation of cell cycle checkpoint via CHK1 to suppress new origin firing, block the 

entry into the G2 phase, and avoid subsequent mitotic catastrophe (Figure 4c). The elicitation 

of this checkpoint requires FANCM-dependent RPA chromatin recruitment for fork 

protection21. Cumulatively, ATR and FANCM form a positive feedback loop, reinforcing the 

recruitment and activation of each other. Furthermore, the chromatin association of FANCM 

to ICL sites requires the physical interaction with two proteins: the Fanconi anemia core 

complex-associated protein 24 (FAAP24)79, which recognizes DNA intermediates common in 

replication fork progression and thereby confers FANCM higher specificity towards these 

structures; and the FANCM interacting histone-fold proteins 1 and 2 (MHF complex)80, which 

stimulate DNA binding and replication fork remodeling by FANCM.  

The FANCM-FAAP24-MHF complex works as a recruitment platform for downstream FA 

factors that accumulate and colocalize at ICL sites. This is the case of the FA core complex 

consisting of eight interacting proteins: FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, 

FANCL and the associated protein FAAP10081. The major role of FA core complex is to 

ubiquitinate the FANCD2-FANCI heterodimer (ID2 complex) (Figure 4d). The binding of ID2 

to DNA ICL sites induces a conformational change that exposes buried and inaccessible 

ubiquitin binding sites of both FANCD2 and FANCI proteins82. ATR-mediated phosphorylation 

of FANCI stabilizes FANCD2 to chromatin, stimulating the ubiquitylation of the 

heterodimer83,84. However, only the monoubiquitylation of FANCD2 subunit results in a 

conformational rearrangement of ID2 complex, forming a clamp-like structure promoting the 

formation of filament arrays alongside the DNA. These ubiquitinated ID2 filaments are thought 

to stabilize the heterodimers to DNA strands and mediate fork stability85. From a functional 

perspective, chromatin bound ID2 must be ubiquitylated to support ICL repair86. Changes in 

FANCD2 ubiquitin binding site restrict ID2 chromatin binding and sensitize cells to ICL 

agents87, underlining the relevance of this post-translational modification as a key event for FA 

pathway activation. Ubiquitin carboxy-terminal hydrolase 1 (USP1) together with USP1-
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associated factor (UAF1) catalyze ID2 deubiquitylation terminating the pathway signal, albeit 

the dynamics of this molecular switch are still poorly understood11.  

Following ID2 chromatin loading and activation, nucleolytic incision takes place (Figure 4e). 

Helped by the SLX4 scaffolding protein, the ubiquitinated ID2 complex recruits structure-

specific endonucleases from the NER pathway that catalyze DNA incisions flanking the ICL 

on one strand. After the unhooking (Figure 4f), TLS polymerases execute DNA synthesis of 

strands opposite to the tethered ICL (Figure 4g).  

The unhooking step culminates in the generation of a DSB that can be repaired via HR, 

classical NHEJ, alternative NHEJ or SSA. It is well established that the preferred mechanism 

to process this DSB intermediate is HR (Figure 4i-l) since genetic loss of HR factors such as 

BRCA1 or BRCA2 confer hypersensitivity to crosslinking agents88,89, whereas deficiency in 

NHEJ factors do not90. BRCA deficient cells engage Pol θ-mediated alternative NHEJ for 

successful replication-coupled ICL repair by promoting FANCD2 recruitment in fork 

stability91, thus indicating a key role of FANCD2 in pathway choice.  

With regards to the resolution via HR (Figure 4i-l), DNA 5’ end resection is required for 

activation of the pathway. The DSB generated by unhooking is susceptible of nucleolytic attack 

by the DNA nucleases MRE11, CtIP, EXO1 and DNA2, which mediate DNA end resection54. 

Recent evidence suggests that FA factors such as FANCV protect DNA from deleterious 

strand degradation at this step, yet the exact mechanism is not fully understood11. In summary, 

HR repair of the DSB intermediate is carried out following DNA end resection, RPA loading, 

RAD51-mediated strand invasion, homology search and ligation steps as previously explained 

(see section 1.2.2). 

What happens though with the repair of crosslinks in those cells that are not replicating? In 

this case the absence of replication fork collision poses the question of how ICLs are sensed 

and recognized. One possibility is that the collision of ICL with RNA polymerase evokes a 

signal for DNA incision and processing via NER pathway, often called as transcriptional-

coupled NER89. Upon blockage of transcriptomic machinery, NER resolves ICLs by the action 

of the endonucleases ERCC1 and XPF. These two endonucleases form a dimer to mediate 

the incision of one of the strands and removal of damaged nucleotides. Other nucleases such 

as XPA and XPG are also involved in the incision step; however, it seems that the type of 

crosslinking agent, and thus the extend of DNA helix distortion, determines the accession and 

processing of these factors89,92. Once DNA unhooking is done, TLS polymerases mediate 

DNA lesion bypass thereby contributing in that way to DNA damage tolerance. Sequential 

action of ERCC-XFP and TLS polymerases in the opposite strand allows the complete 

resolution of ICLs64.  
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Because the inactivation of genes involved in non-replicative and FA-mediated repair results 

in synergistic sensitization towards crosslinking agents such as cisplatin and mitomycin C, it 

has been suggested that these two mechanisms can cooperate to resolve ICLs and are not 

mutually exclusive92. Although transcription-coupled NER occurs across the cell cycle, also 

during S phase when FA pathway is activated, it often results in minor and incomplete repair 

of all ICLs. Replication-associated repair is crucial for rapidly dividing cancer cells which harbor 

high levels of DNA replication stress, whereas non-replicative repair is crucial for cells that 

barely divide such as stem cells89.  

Growing body of literature recognizes the critical role of the FA pathway in fork stabilization 

upon replication stress caused not only by ICL agents, but also by other types of genotoxic 

agents. For instance, the FA pathway is activated upon exposure to replication inhibitors such 

as hydroxyurea (HU) and aphidicolin93. HU targets RNR enzyme and severely decreases 

dNTP intracellular pool, and aphidicolin directly inhibits DNA polymerases. Current knowledge 

indicates that upon replication stress FANCM engages in fork remodeling via its intrinsic 

translocase activity94, and in fork traverse via BLM helicase interaction78. Together with 

FANCM, recruitment of proliferating cell nuclear antigen (PCNA) and RPA are required to 

bypass ICLs prior ID2 activation95. In contrast to their common function in ICL repair, FANCD2 

and FANCI have distinct roles in response to replication stress. Whilst FANCI promotes 

dormant origin firing under the control of ATR phosphorylation96, phosphorylated FANCD2 

recruits and cooperates with the BLM helicase to facilitate replication restart of stalled forks 

while suppressing firing of new replication origins97. FANCD2 also restrains DNA synthesis by 

inhibition of minichromosome maintenance protein complex (MCM 2-7), thereby limiting the 

generation of ssDNA stretches98. In high replication stress conditions, FANCD2 is responsible 

for fork protection to prevent nucleolytic degradation by binding to ssDNA-RAD51 filaments, 

likewise BRCA1 and BRCA2 factors11,99–101.  

1.2.4 Synthetic lethality 

Owing to the high selection pressure in malignant tumor cells, dysfunctional DNA repair 

pathways arising from aberrant mutations may result in the reliance on alternative DDR 

pathways for cell survival. Such cancer-specific dependency can be exploited therapeutically 

by the rationale of synthetic lethality102. Synthetic lethality originates when a combination of 

deficiencies of two or more genes leads to cell dismiss, whereas the absence of each single 

gene function is compatible with cell survival. These deficiencies can derive from loss-of-

function mutations, epigenetic alterations, or pharmacological inhibition of the gene product. 

This concept can be applied to the discovery of targeted therapies. Selective killing of 

malignant cells with minimal effect on normal cells can be achieved upon inhibiting 

mechanisms that cancer cells exclusively rely on for functional DNA repair and survival. 

Nowadays, with the advent of CRISPR-Cas9 genetic screens, identification DDR components 
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whose loss results in sensitivity towards DNA damaging agents has uncovered new potential 

synthetic lethal interactions that can be exploited specifically for each type of DNA-damaging 

therapeutic agent103.  

An opportunity to improve traditional DNA damaging treatment lies in a more refined 

understanding of the molecular events in DDR pathways triggered by these agents in cancer 

cells. Besides gene interactions, combination of drugs targeting DDR pathways may be 

synthetic lethal when one DNA-damaging agent exposes a vulnerability that can be targeted 

with a second therapy104. If this liability displays a cancer-specific behaviour, then rational 

combination of DDR inhibitors offers the possibility to modulate sensitivity of DNA damaging 

therapies in a way that treatments are more cytotoxic in tumor tissues compared to non-

transformed tissues. 

1.2.4.1 PARP inhibitors in ovarian cancer 

The most outstanding case of synthetic lethality to date is the discovery of the antitumor activity 

of poly(ADP-ribose) polymerase (PARP) inhibitors in ovarian cancer patients105. Ovarian 

cancer is the most lethal among gynecological cancers with a 5-year overall survival of 46%106. 

Epithelial ovarian cancer (EOC) comprises about 95% of all cases, and is in turn classified 

into different histological subtypes. From these, high-grade serous ovarian cancer (HGSOC) 

is the most commonly presented in EOC patients, approximately in 75% of cases107. HGSOC 

is characterized by extremely aggressive clinical progression, poor prognosis, loss-of-function 

mutations in the TP53 gene108, and frequent low prevalence mutations in genes of the HR 

pathway, including  BRCA1 and BRCA2107. Cells that harbor loss-of-function mutations in 

BRCA genes repair DNA lesions by alternative mechanisms that are error-prone such as 

NHEJ, leading to a remarkably high genomic instability and chromosomal rearrangements, 

contributing to the pathogenesis of HGSOC. Integrated genomic analyses from The Cancer 

Genome Atlas show that HR is defective in 51% HGSOC patients, underlining the key role of 

this DDR pathway in genome maintenance through ovarian tumor progression109. 

Using the synthetic lethality approach, PARP inhibitors have emerged on the basis of the HR-

deficient signature of HGSOC110. The loss of BRCA1 or BRCA2 tumor suppressors renders 

tumor cells deficient in HR-based repair of DSBs and thus, more vulnerable to unresolved 

SSBs that precede to the generation of DSBs. PARP enzymes sensor SSBs and catalyze the 

synthesis of poly(ADP-ribose) chains (PARylation). These polymers act as signaling 

molecules to recruit DDR proteins from different DNA repair mechanisms and factors involved 

in the maintenance of replication fork stability111. PARP inhibitors block PARylation and 

thereby prevent PARP dissociation from the DNA damage sites, trapping PARP on the DNA 

(see Figure 2, section 1.2.1). The resulting accumulation of unrepaired SSBs eventually 

transforms into DSBs, which is extremely toxic for cells with HR deficiency. Resolving PARP 
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trapping and repairing the generated DSBs requires HR-proficient repair for cell survival112. As 

a consequence, delivering PARP inhibitors to BRCA-deficient patients renders tumour cells 

completely unable to resolve induced DNA lesions via HR, hence causing selective cell death 

by accumulation of DNA damage113.  

Olaparib and rucaparib are PARP inhibitors approved for maintenance therapy in patients 

carrying BRCA mutations in HGSOC114–116. This therapeutic option is of interest since it is 

calculated that approximately 20% of ovarian cancer patients harbor BRCA germline 

mutations and exhibit monogenic predisposition in their family lineage to develop ovarian 

cancer. More recently, prescription of PARP inhibitors have been expanded since clinical trials 

have shown the effectiveness of niraparib in treating patients irrespectively of HR status117–119.  
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1.3 PFKFB3: A METABOLIC LIABILITY IN CANCER 

1.3.1 Reprogramming energy metabolism in cancer 

Reprogramming cellular energetics has been defined as an emerging hallmark of cancer, 

meaning that metabolic features in tumors are flexible and adaptative to ensure tumor cell 

fitness7. Because of their high growth rates, cancer cells rely in the availability of fundamental 

building blocks required for the synthesis of macromolecules such as lipids, amino acids and 

nucleotides. Oncogenic activation drives the adjustment of metabolic pathways in order to 

meet this liability, enabling uncontrolled cell proliferation and thereby promoting neoplastic 

transformation120.  

Metabolic alterations in cancer were first noticed by the scientist Otto Warburg in the early 

1920s121,122. Warburg and co-workers observed that tumor cells in culture consumed far more 

glucose than cells originating from non-transformed tissues. Regardless of the presence of 

oxygen, glucose was preferably converted to lactate via anaerobic glycolysis over oxidative 

phosphorylation, in contrast to non-transformed cells (Figure 5). This dependence was later 

termed as “The Warburg Effect”123 and set the path for the study of cancer metabolism124. This 

observation, however, appeared to be counterintuitive at first glance mainly because 

anaerobic glycolysis results in extremely lower efficiency in ATP production compared to 

oxidative phosphorylation125. Assuming that cancer cells at a proliferative state have high 

energy demands, why do they then display such an inefficient energetic metabolism? 

The truth is that nowadays it is still not completely understood why cancer cells prefer 

glycolysis126. Metabolic needs in cancer cells exceed the need for ATP molecules, so the urge 

for building blocks is much higher than the energetic demands127. Therefore, one possible 

reason is that the preference for glycolysis could allow the diversion of metabolic intermediates 

to biosynthetic pathways in order to supply essential building blocks and meet the metabolic 

demands of oncogenic-wired cancer cells (Figure 5). The building blocks generated from 

glycolytic intermediates include hexosamines, glycerol, citrate, nonessential amino acids, 

ribose sugars and NADPH. Notably, ribose sugars and NADPH are generated via the pentose 

phosphate pathway (PPP), a parallel pathway to glycolysis, and are substrates for nucleotide 

and fatty acid synthesis, respectively. Moreover, the yield of NADPH is essential to keep 

favorable redox homeostasis and prevent excessive levels of oxidative stress in cancer 

cells128. Altogether, increased glycolytic flux results in channeling glucose, the most abundant 

extracellular nutrient, into anabolic and redox homeostasis mechanisms that enable 

unrestrained cancer cell growth. 
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Figure 5. The Warburg Effect. Glucose is metabolized into pyruvate, which can be completely oxidized into CO2 

in the mitochondria via oxidative phosphorylation to produce ATP, or it can be metabolized under hypoxic 

conditions to lactate via anaerobic glycolysis. This process results in lower energetic yield in comparison to 

oxidative phosphorylation. The Warburg phenotype provides a supply of anabolic precursors for biosynthetic 

pathways that enable unrestrained growth in transformed cells. Image generated with BioRender.com from 

information in refs126,127. 

Within a modern understanding of cancer biology, DeBerardinis and colleagues coined the 

term “convergent properties” to describe those most common metabolic patterns dictated by 

predominant oncogenotypes129. Among other pathways involved in energy metabolism, the 

Warburg Effect is considered a convergent property that arises from oncogene activation and 

loss-of-function mutations in tumor suppressor genes. Oncogenic mutations in MYC130, 

KRAS131,132 and RAS133 result in a metabolic switch towards anaerobic glycolysis by either 

transcriptional upregulation or direct enzymatic activation of glycolytic enzymes and glucose 

transporters. On the other hand, the tumor suppressor p53 counteracts to the glycolytic 

phenotype and promotes oxidative phosphorylation by, among other mechanisms, regulating 

the expression of the metabolic enzyme TP53-inducible glycolysis and apoptosis regulator 

(TIGAR). TIGAR catalyzes the degradation of fructose-2,6-bisphosphate (F-2,6-BP), a 

glycolysis metabolite that positively controls the glycolytic flux. Therefore, catalytic activity of 

TIGAR directs the glycolytic pathway into the PPP shunt. As a consequence, loss-of-function 

of TP53 gene culminates in losing the inhibitory effect on glycolysis, and thus has been 

proposed as a tumorigenic mechanism behind the Warburg effect134.  

Contributing factors of reprogramming cancer cell metabolism are not only aberrant signaling 

networks emerging from oncogenotypes, but also the metabolic status of the original tissue 

from which the tumor arise, and the immediate tumor microenvironment129. External factors 

have been described to contribute by selective pressure to adopt a Warburg phenotype, 

specifically in stressful microenvironments. This is the case of hypoxia, an external factor that 

accentuates the oncogenic-wired reliance on glycolysis135. In tumor hypoxic core, poor-

oxygenated levels trigger a cellular response system via the hypoxia inducible factors (HIFs). 
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HIFs ensue transcriptional upregulation of multiple enzymes of the glycolytic pathway, glucose 

transporters, and metabolic enzymes that oppose to the shunt of pyruvate into oxidative 

phosphorylation136,137. The intimate relationship between oxygen availability and glucose 

metabolism has led to the hypothesis that tumors function as a tissue entity that acts 

symbiotically in terms of energetic metabolism: with an outer well-oxygenated area where 

oxidative phosphorylation is predominant, and an hypoxic core where anaerobic glycolysis is 

preferred138.  

In conclusion, Warburg’s observations made substantial contributions to the early 

understanding of cancer metabolism which, in turn, have become relevant for cancer 

diagnostics. The fact that a majority of tumors display substantial glucose uptake in vivo is the 

basis of the current methodology used for identification and monitoring of tumors, the positron 

emission tomography scanning, which measures the inward flux of the glucose analogue 

[18F]fluoro-2-deoxyglucose139.  

1.3.2 PFKFB3 as an oncogenic regulator of glycolysis 

As a catabolic process, glycolysis is controlled by metabolites that match the metabolic 

demands of the cell to the enzymatic activity of the glycolytic enzymes. One of the enzymes 

subjected to this control is the phosphofructokinase-1 (PFK-1) enzyme, which catalyzes the 

first committed and principal rate-limiting step of glycolysis: conversion of fructose-6-

phosphate (F6P) to fructose-1,6-bisphosphate (F1,6P2) (Figure 6). The enzymatic activity of 

PFK-1 is tightly controlled by ATP, ADP, F6P and F-2,6-BP. From these, the metabolite 

F2,6P2 is the most potent allosteric modulator of PFK-1 activity, increasing PFK-1 affinity 

towards its substrate F6P constituting a crucial control point of the glycolysis140.  

Intracellular levels of F2,6P2 are tightly controlled by a family of homo-dimeric bifunctional 

proteins with 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) activity 

consisting of four different isozymes (PFKFB1-4)141 (Figure 6). These isoenzymes display 

distinct tissue distribution: PFKFB1 is expressed in the liver and skeletal muscle, PFKFB2 in 

heart and kidney, PFKFB3 ubiquitously expressed, and PFKFB4 mainly expressed in 

testes142. Importantly, whilst PFKFB1 and PFKFB2 are found in non-transformed tissues, 

PFKFB3 and PFKFB4 are inducible isoform expressed in tumor tissues143. Thus far, several 

lines of evidence have demonstrated that PFKFB3 displays a tumorigenic expression in many 

malignancies, for instance in high grade astrocytoma144, head and neck squamous cell 

carcinoma145, oral squamous cell carcinoma146, hepatocellular carcinoma147, ovarian 

cancer148, endometrial cancer149, breast and colorectal cancer150,151. In the clinical scenario 

PFKFB3 overexpression predicts worse overall survival and prognosis in hepatocellular 

carcinoma, colon, breast and neuroblastoma patients151–154. In contrast, overexpression of 

PFKFB4, which also displays higher levels in vitro compared to non-transformed cells, seem 
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to be associated to favorable prognosis on neuroblastoma, non-differentiated glioblastoma 

and bladder cancer patients153,155,156. Altogether these evidences suggest opposing 

contributions for PFKFB3 and PFKFB4 isozymes in malignant progression153,157,158. 

 

Figure 6. Outline of glycolysis pathway and its regulation by PFKFB enzymes. Glycolysis is the metabolism 

of glucose into pyruvate by ten sequential steps: five of which constitute the preparatory phase where ATP is spent, 

and the last five constitute the pay-off phase where ATP is generated. The PFKFB family of enzymes control the 

glycolytic flux via the production of fructose-2,6-bisphosphate (F-2,6-BP). Abbreviations of the metabolites: glucose 

6-phosphate (G6P), fructose 6-phosphate (F6P), fructose 1,6-bisphosphate (F1,6BP), glyceraldehyde 3-

phosphate (GADP), dihydroxyacetone phosphate (DHAP), 1,3-bisphosphoglycerate (1,3BPG), 3-

phosphoglycerate (3PG), 2-phosphoglycerate (2PG), phosphoenolpyruvate (PEP). Abbreviations of the glycolytic 

enzymes: hexokinase (HK),  phosphoglucose isomerase (PGI), 6-phosphofructo-1-kinase (PFK1), 6-

phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB), fructose-bisphosphate aldolase (ALDO), 

triosephosphate isomerase (TPI), glyceraldehyde phosphate dehydrogenase (GAPDH), phosphoglycerate 

kinase (PGK), phosphoglycerate mutase (PGM), enolase (ENO), and pyruvate kinase (PK). Image generated with 

BioRender.com 
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Besides tissue specificity, the PFKFB family present different enzyme kinetics in relation to 

the synthesis and degradation of F-2,6-BP. Even though core catalytic domains display a high 

sequence similarity across PFKFB family members (>85%), regulatory sequence domains at 

both kinase and phosphatase domains are different, resulting in distinct affinity for the 

synthesis or degradation of F-2,6-BP159. Due to a unique β-hairpin structure at the N-terminal 

that interacts with the phosphatase catalytic domain, PFKFB3 exhibits a distinct 

conformational rotation that reduces its phosphatase activity160. As a result of this 

conformational self-inhibition, PFKFB3 displays a kinase activity greatly predominant over the 

phosphatase activity (ratio of 700:1), while for the other isozymes the ratio is closer to 1:1. 

Thereby, PFKFB3 activity derives in higher net production of F2,6P2 compared to other 

PFKFB family members161.  

Oncogenic-wired transformation is tightly associated with the PFKFB3 enzyme. Activation of 

oncogenic signaling regulates PFKFB3 at post-translational, transcriptional and protein levels. 

Post-translational modifications by oncogenic signaling directly modulate PFKFB3 enzymatic 

activity. Kinase-activating phosphorylation at Ser461 by AKT, protein kinase A (PKA) or AMP-

dependent protein kinase (AMPK) increase PFKFB3 kinase-to-phosphatase ratio further to 

>3000162–164. This post-translational modification has been reported in several cancers 

including colon, breast and ovarian cancer tissues148,152. Carried out by the oncogene proviral 

insertion in murine lymphomas 2 (PIM2), the activating Ser478 phosphorylation has been 

recently characterized to promote PFKFB3 kinase activity in breast cancer cells165. 

Furthermore, phosphorylation at Tyr194 by c-Src oncogene has been found in colon 

adenocarcinomas resulting in increased PFKFB3-mediated glycolysis in vivo166, yet in which 

extend this post translational modification affects PFKFB3 kinase activity has not been 

addressed. With regards to transcriptional regulation, PFKFB3 is a transcriptional target of 

several oncogenic factors including the Ras signaling pathway167,168, and hormonal factors 

such as progestin169 and estradiol170. Activation of PFKFB3 transcription occurs as a response 

to P53 loss in tumor cells171 and to hypoxic conditions via HIF-1 stabilization163,172. Janus 

kinase 2 (JAK2) oncogenic transformation in leukemia cells induces expression of PFKFB3 at 

both transcriptional and protein levels, suggesting a link between oncogenic tyrosine kinase 

activity and regulation of PFKFB3173. In relation to PFKFB3 protein levels, loss-of-function of 

PTEN compromises the E3 ubiquitin ligase APC/C-Cdh1-mediated protein degradation of 

PFKFB3 protein174.  

Taken together, PFKFB3 characteristics highlight the key metabolic role of this enzyme in 

regulating glycolysis in order to provide anabolic precursors and support cell proliferation of 

transformed cells. Indeed, blocking PFKFB3 in vitro in cancer cells using siRNAs results in cell 

cycle arrest, suppression of cell growth and apoptotic cell death175–178. Aside from experimental 

data indicating that there is a consensus regarding PFKFB3’s supporting role in cancer cell 



 

22 

survival, research carried out in astrocytoma brain cancer cells points in another direction. In 

this case, PFKFB3 splice variant UBI2K4 did not exhibit a cancer-specific pattern of 

expression relative to non-transformed brain tissues and its overexpression impeded cell 

survival179. Therefore, PFKFB3 function in cancer may be dependent of splice variant, tissue 

of origin and oncogenic stimuli.  

1.3.3 The emerging role of PFKFB3 beyond glycolysis 

Unlike the other isoforms which predominantly localize in the cytoplasm where glycolysis takes 

place, PFKFB3 contains a highly conserved nuclear localization sequence (NLS) in its C-

terminal domain. This lysine-rich sequence is required for the import of the protein into the cell 

nucleus via importin α5180. It has been reported that acetylation in Lys472 impairs NLS 

recognition, which hinders PFKFB3 nuclear re-localization and leads to its accumulation in the 

cytoplasm, highlighting the functional significance of this post-translational modification to 

dictate PFKFB3 cellular localization. This unique feature of the member 3 of the PFKFB family 

has been puzzling for many years as glycolysis is a metabolic process that takes place in the 

cytoplasm. Which would then be the nature of PFKFB3 nuclear localization? 

The first study that delved into PFKFB3-mediated role in the nucleus was performed by Atsumi 

et al. in 2009, where it was shown that PFKFB3 has the capacity to drive cancer cell 

proliferation exclusively from its nuclear localization without affecting intracellular glycolysis 

to any perceptible extent, suggesting nuclear functions beyond glycolysis181. Later on, in 

purified nuclear extracts, F2,6P2 was reported to activate cyclin-dependent kinases (CDKs) 

which trigger the degradation of the G1/S cell-cycle checkpoint repressor p27175. In line with a 

potential function in controlling cell cycle progression, PFKFB3 interacts with CDK4 that 

controls the G1/S transition182. 

More recent investigation has revealed the involvement of PFKFB3 in response to cisplatin in 

cervical cancer cells, as well as in the P53-mediated response to UV damage in primary 

mouse embryonic fibroblasts180,183. These studies, however, focused on the cytoplasmic role 

of PFKFB3 in promoting glycolysis as a protective mechanism to these genotoxic agents, yet 

leaving the nuclear DDR mechanisms unexplored. Additionally, PFKFB3 activity has been 

linked to platinum tolerance in endometrial cancer cells, which display enhanced 

phosphorylated PFKFB3(Ser461) levels compared to sensitive cells149.  

1.3.4 Therapeutic potential of PFKFB3 inhibitors in cancer 

Given the tight control over glycolytic flux by F2,6P2, the importance of PFKFB3-mediated 

glycolysis in supporting cancer cell survival, and the overexpression of PFKFB3 in diverse 

cancers; PFKFB3 represents a promising therapeutic target in cancer. This has prompted the 

investigation and development of selective inhibitors targeting PFKFB3 and thus, to date, 

several potent and selective small molecule inhibitors have been disclosed184. This thesis 
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focusses primarily on those small molecule inhibitors with characterized anti-proliferative 

effects at least in vitro. 

The first-in-class PFKFB3 inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3-PO) was 

synthetized to target recombinant PFKFB3 using competitive binding experiments with F6P 

substrate185.  Given its poor pharmacokinetic profile, selectivity and potency, its evaluation for 

in vivo or clinical studies has not been endorsed184. So far, no co-crystal structure showing 3-

PO binding mode have been published. The 3-PO structural analogue PFK15 was further 

designed to improve potency and selectivity of the compound towards the PFKFB3 isozyme. 

Moreover, next analogue PFK158 was developed and molecular docking studies identified its 

binding mode to the ATP binding pocket184. PFK158 displays increased binding potency, 

enhanced proapoptotic activity and better pharmacokinetic properties including reduced 

clearance and longer half-life148. As a consequence, PFK158 has become the first-in-class 

PFKFB3 inhibitor to undergo phase I clinical trials for patients with advanced solid 

malignancies (NCT02044861). 

Although both compounds have been suggested to target PFKFB3, recent reports using 

biochemical assays have revealed that 3-PO and PFK-158 inhibitory effects were similar 

across PFKFB isoforms184. Compelling evidence shows that the glycolytic inhibitory effects of 

3-PO compound and its analogue are not consequence of PFKFB3 enzymatic activity 

inhibition. In biochemical assays using purified human recombinant PFKFB3 protein extracts, 

both compounds have been reported to not inhibit kinase activity at concentrations in which 

lactate production and glucose consumption was affected in cell-based assays from previous 

literature186,187. In line with these findings, a study revealed that neither 3-PO nor PFK-158 

induced changes in the glycolytic flux at concentrations tested that could be ruled out from 

general cytotoxicity188. More recently, isothermal titration calorimetry assays to study PFKFB3-

ligand binding affinity determined that 3-PO does not even bind to PFKFB3189. As a result, 

Veseli et al. (2020)  suggested that in vivo effects mediated by these compounds could not be 

consequence of direct PFKFB3 enzymatic activity, but instead a non-specific inhibition of 

enzymatic reactions of the glycolysis pathway due to intracellular accumulation of lactic 

acid189. Nonetheless, both 3PO and PFK-158 small molecule inhibitors have been used 

extensively in literature in order to evaluate PFKFB3 therapeutic targeting in disease 

models, as well as to interrogate its biological function in mechanistic studies.  

More recently, high throughput screening of the AstraZeneca compound collection led to 

the identification of AZ26, which targets as well the ATP binding pocket in the kinase 

domain187. This small molecule inhibitor has micromolar potency in A549 cells in biochemical 

assay with regards to reduction on F2,6BP levels, inhibition of PFKFB3 kinase activity, and 

decrease lactate secretion. AZ67 treatment in neuron cells has been proven cytoprotective 

against glutamate-mediated excitotoxicity by limiting glycolytic metabolic rewiring, oxidative 
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damage and mitochondrial stress186. In line with these observations, delivery of AZ26 

alleviated neurological impairment and damage in a brain ischemia and reperfusion murine 

model. Nevertheless, no reports so far have investigated target engagement across PFKFB 

isozymes and evaluated its antiproliferative effects in cancer cells.  
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1.4 CX3CR1: A KEY PLAYER IN CANCER TRANSFORMATION  

1.4.1 Chemokine network 

Although being initially characterized as chemoattractants that trigger recruitment of immune 

cells to inflamed tissues, chemokines are nowadays known to be involved in a myriad of 

biological processes ranging from embryogenesis to tissue homeostasis. Furthermore, being 

the inflammatory state of tumors an enabling hallmark of cancer7, this family of intercellular 

signaling proteins and their associated receptors display fundamental roles in promoting tumor 

growth and metastatic dissemination190,191.  

To date, the chemokine network is characterized by 50 different chemokines, small signaling 

peptides, and 19 chemokine receptors, which are integral plasma membrane G protein-

coupled receptors (GPCRs). The chemokine system is promiscuous meaning that is not 

restricted to single chemokine-receptor interactions and thus, a single chemokine receptor can 

be stimulated and activated by several chemokines. Additionally, due to the nature of GPCR 

signal transduction, the chemokine signaling is pleiotropic and triggers multifaceted cellular 

responses including increased cellular motility, invasion and proliferation192.  

1.4.2 The relevance of CX3CL1-CX3CR1 axis in cancer 

Among all known chemokines, the C-X3-C chemokine ligand 1 fractalkine (CX3CL1) differs 

from the rest because it binds to a sole receptor, the CX3CR1. Fractalkine is also characterized 

for being synthesized as a membrane bound chemokine bearing the most external part of the 

polypeptide bound to mucin-containing stalk. This structure enables membrane bound 

CX3CL1 to form aggregates in the cell membrane193 which mediate adhesion with CX3CR1-

expressing cells but do not trigger its signal transduction194,195. On the other hand, the 

transmembrane CX3CL1 protein is cleaved by metalloproteinases generating a soluble ligand 

which harbors the chemotactic function by activating CX3CR1-mediated signal transduction. 

The fractalkine ligand was first detected in the central nervous system more than 20 years 

ago196, albeit nowadays it is known to be ubiquitously expressed in blood vessels, heart, lung, 

kidney, intestines and skeletal muscle197. With regards to the fractalkine receptor, it is found 

expressed in microglia198, osteoclasts199 and malignant epithelial cells200. Proinflammatory 

cytokines transactivate CX3CR1 gene expression201, as well as HIF1 in hypoxic conditions202.  

The physiological function of the fractalkine axis is the modulation of the inflammation 

response. Proinflammatory cytokines trigger CX3CL1 expression in endothelial cells from 

activated endothelium, which is fundamental for the chemotaxis and migration of CX3CR1-

expressing subpopulations of leukocytes and monocytes to damaged tissue during 

inflammatory processes203. Given that inflammation is tightly linked to the etiology of many 

diseases, the fractalkine axis engages in inflammatory-driven pathological processes. For 
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instance, fractalkine axis has been shown to mediate the characteristic microglial activation of 

neurodegenerative conditions such as amyotrophic lateral sclerosis, Alzheimer and Parkinson 

in in vivo murine models204,205.  

Cancer is another example where inflammation is a significant component of the pathogenesis 

of the disease190. Research illustrates that the fractalkine signaling is involved in tumor 

progression through various means, including the stimulation of proliferative signaling of 

cancer cells, as well as the activation of invasion and metastasis203. Upon binding of soluble 

CX3CL1 to the fractalkine receptor, this GPCR undergoes ligand-specific conformational 

change allowing the activation of a Gαi-protein. This event leads to increased extracellular 

influx of calcium and activation of a plethora of downstream effector signaling pathways such 

as the extracellular signal-regulated kinases (ERK)1/2 module of the mitogen-activated protein 

kinases (MAPK) pathway, and the phosphoinositide 3-kinase (PI3K)-Akt signaling axis206–209, 

both eliciting proliferative and survival signaling. Additionally, CX3CL1-mediated 

phosphorylation of Src leads to the activation of FAK kinase in breast cancer cells210 which 

ultimately triggers cell motility and migration response211. Termination of the receptor signaling 

occurs by ligand-induced internalization of CX3CR1 via β-arrestin recruitment and further 

mediated endocytosis212,213. 

Clinical data shows that the role of the fractalkine axis in cancer dissemination is a two-edged 

sword. From one side, overexpression of CX3CR1 or CX3CL1 has been reported in tumor 

tissue samples across different malignancies197, and it has been associated with poor clinical 

prognosis214,215,216,217. Similar to the chemotaxis of CX3CR1-positive leucocytes to inflamed 

endothelium, CX3CR1-expressing tumor cells that have escaped form primary lesions and are 

found circulating in the blood vessels migrate and adhere to CX3CL1-rich epithelium of distant 

organs promoting metastatic dissemination. This was elegantly illustrated by a study 

performed by Barbolina et al. (2012), in which silencing CX3CR1 in ovarian carcinoma cells 

robustly declined the adhesion to peritoneal epithelial cells, the main metastatic target of 

ovarian carcinoma218. Migration occurred in a CX3CL1-dependent manner, as treatment with 

blocking antibodies that compete with the ligand reduced migration and adhesion of ovarian 

cancer cells. This underlying mechanism of metastatic colonization in the perineum was later 

corroborated as downregulation of CX3CR1 in ovarian carcinoma cells resulted in reduction of 

metastasis across the peritoneum in vivo219.  

On the other hand, studies in colorectal and breast cohorts provided evidence for a positive 

correlation between high CX3CL1 levels and better prognosis220,221. Based on the chemotactic 

role of fractalkine axis in the migration of tumor infiltrating lymphocytes, recruitment of immune 

cells to tumor sites would ultimately hamper tumor growth. Recent transcriptomic analysis 

show that the fractalkine axis exhibits a multifaceted role suggested to be different between 

cancer subtypes. CX3CL1 overexpression corresponds with longer survival for lung 
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adenocarcinoma patients, but it results in worse clinical prognosis for lung squamous cell 

carcinoma patients222.  

Besides these differences, CX3CR1-CX3CL1 signaling has been consistently involved in 

pathogenesis and metastatic progression of EOC200,202,207,216,223. Whilst CX3CR1 expression in 

normal ovarian surface epithelial cells is neglectable, the receptor is found overexpressed in 

primary and metastatic EOC tumor samples200 and its expression is correlated with disease 

progression and poor survival, in particular for post-menopausal late-stage diagnosed EOC 

patients216
.  The fractalkine ligand, instead, is expressed in peritoneal mesothelium218, surface 

epithelium of healthy ovaries and fallopian tubes, and in benign, borderline and malignant 

EOC tumors216. CX3CL1 levels are correlated with the proliferation index of malignant EOC 

cells and with the expression factors that stimulate proliferation of ovarian cancer cells207.  

1.4.3 Non-canonical roles of fractalkine signaling 

Recent transcriptomic data reflect the relevance of CX3CR1 expression in predicting survival 

of patients treated with DNA damaging therapies224. The study by Xie et al. (2018) revealed 

that increased CX3CR1 levels tightly correlate with shorter overall and progression-free 

survivals in EOC patients who underwent platinum, gemcitabine, and topotecan therapies224. 

Therefore, pointing towards an emerging role of fractalkine signaling in regulating DDR that is 

significant for tumor burden. In line with this observation, only 10% of CX3CR1-expressing 

leucocytes were reported to migrate to fractalkine soluble ligand, suggesting a CX3CR1 role 

beyond chemotaxis and adhesion194. 

Suppression of CX3CR1 expression sensitizes EOC cells to platinum therapy224. Similarly, 

CX3CR1 knockdown synergizes with IR and results to increased levels of IR-induced DSBs 

and lower clonogenic survival224. In this case, ablation of the fractalkine receptor impairs DNA 

repair of DSBs by inhibition of ATM and DNA-PK phosphorylation, as well as CHK1/2 

phosphorylation. These effects were attributed to diminished protein levels of RAD50, a 

component of the upstream MRN complex. Of note, CX3CR1 gene ablation was performed 

employing small interfering RNA treatment for 72h, leaving room for off-targeted effects due 

to considerable long-time suppression of fractalkine signal transduction225. Although these 

results reveal a potential requirement of CX3CR1 protein in DDR, they leave unexplored the 

functional implications of modulating the fractalkine signaling by pharmacological inhibition.  

1.4.4 Fractalkine as a target for therapeutic intervention 

Given the comprehensive functional repertoire of CX3CR1-CX3CL1 axis, coupled to the 

successful history of targeting GPCRs in drug development, several attempts have been 

performed to therapeutically target the fractalkine signaling. To date there are two therapeutic 

approaches targeting the fractalkine axis that are under clinical development. The first, a 

humanized monoclonal antibody anti-CX3CL1 developed by Eisai Pharmaceuticals226, 
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Quetmolimab, has a neutralizing effect on the receptor-ligand interaction blocking the signal 

transduction. Because fractalkine signaling has been involved in the pathogenesis of various 

chronic inflammatory diseases such as rheumatoid arthritis, this antibody is currently being 

evaluated in phase II clinical trial for the treatment of rheumatoid arthritis patients 

(NCT02960438)227.  

The second therapeutic option consists of a small molecule inhibitor targeting CX3CR1, 

KAND567 (previously AZD8797), issued by Kancera AB. KAND567 is a non-competitive, 

allosteric antagonist that decreases bound CX3CL1 binding affinity to the receptor212. When 

CX3CL1 is bound to the receptor, the addition of KAND567 inhibitor results in two different 

outputs by means of signal transduction: at low concentrations KAND567 interaction 

potentiates -arrestin recruitment suggesting a potential receptor internalization, and at high 

concentrations KAND567 completely abolishes CX3CL1 binding to the receptor and blocks -

arrestin recruitment. KAND567 has become the first-in-class and first-in-human CX3CR1 small 

molecule inhibitor to be evaluated ever in clinical trials228. KAND567 is nowadays under phase 

II for myocardial infarction indication and phase II for SARS-CoV-2 acute respiratory disease 

(both indications under EudraCT: 2020-002322-85 trial)229. Hence, targeting CX3CR1-CX3CL1 

signaling by KAND567 constitutes a promising strategy for treatment of acute inflammatory 

diseases.  
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2 DOCTORAL THESIS 

2.1 AIMS OF THE THESIS  

The overall purpose of this thesis was to investigate the uncanonical functions of two cancer 

targets, PFKFB3 and CX3CR1, in the DNA damage response. The specific aims for each 

project were: 

Paper I: To elucidate the function of PFKFB3 in DSB repair and develop and validate a potent 

inhibitor for therapeutically targeting PFKFB3. 

Paper II: To characterize the molecular mechanism of PFKFB3 in the DNA damage response 

upon treatment with platinum compounds. 

Paper III: To explore CX3CR1 as a putative target for cancer by interrogating its involvement 

in DNA repair upon platinum sensitization.  

Paper IV: To examine the contribution of CX3CR1 in proliferation of epithelial ovarian cancer 

cells. 
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2.2 METHODOLOGICAL CONSIDERATIONS 

2.2.1 Development of KAN0438757 

The contradictory data across literature in relation to the 3-PO small molecule inhibitor and its 

structural analogues186–189,230, together with our own preliminary results indicating that 3-PO 

does not modulate F2,6P2 product formation in cell-based assays; prompted the development 

of PFKFB inhibitors that selectively target the isozyme 3. In collaboration with the 

pharmaceutical company Kancera AB, development of potent small molecule inhibitors for 

PFKFB3 was performed to further interrogate its biological functions in cancer cells.  

Methodologies used for drug development were multidisciplinary and ranged from 

physicochemical assays, in vitro biochemical assays to cell-based assays. The main PFKFB3 

inhibition biochemical assay was a kinase luminescent assay (ADP-GloTM Kinase Assay from 

Promega). The principle of this method is to monitor ADP left at the reaction mix after 

incubation of human recombinant PFKFB3 with its substrates ATP and F6B, and the inhibitor 

probe tested. The kinase reaction is terminated and remaining ATP is depleted. Then, firefly 

luciferase enzyme is added to the system simultaneously with a reagent that converts ADP to 

ATP. Luciferase uses ATP to transform a substrate into a product called luciferin generating 

light, which can be quantified using a luminescent detection system. The amount of remaining 

ADP left after PFKFB3 enzymatic reaction inversely correlates to the kinase activity inhibition 

of tested probes. This simple and fast system is routinely used in drug discovery to measure 

inhibitory effect of small molecules in primary screenings231.  

An orthogonal assay used to assess PFKFB3 biochemical activity was the so-called van 

Schaftingen assay232. This method is based on the pyrophosphate-dependent 

phosphofructokinase-1 (PPi-PFK1) from potato tubers. This enzyme is allosterically activated 

by F-2,6-BP, the PFKFB3’s kinase activity product. There is a linear correlation between levels 

of F-2,6-BP and PPi-PFK1 activity, which can be used to extrapolate the extend of PFKFB3 

inhibition. Adding a series of enzymes to the reaction results in the consumption of NADH to 

generate NAD, which can be quantified spectrophotometrically to indirectly determine levels 

of F-2,6-BP in the reaction mix. After cell lysis and normalization to equal total protein amount, 

the van Schaftingen assay was employed in cell lysates to quantify intracellular F-2,6-BP 

levels. The main advantage of this cell-based assay is that by laying so close to the target, it 

offers the possibility to assess target engagement in relation to biochemical activity.  

The drug discovery approach consisted of a high-throughput screening of 50000 compounds 

using a luminescence-based kinase activity assay with recombinant human PFKFB3. Series 

of compounds with µMolar IC50 were selected to test for competition binding with ATP in a 

ligand binding assay. Since ATP-binding pockets are conserved across kinases, the aim was 

to select those non-ATP competitive molecules that could rule out further cross-reactivity with 
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kinases. The lead compound KAN0438241 (Figure 7a) showed great selectivity towards 

PFKFB3 with minimal inhibitory effect in PFKB1, 2 and 4 in biochemical kinase assay. 

Isothermal titration calorimetry method was performed to ascertain KAN0438241 binding to 

PFKFB3 and co-crystal structure was solved revealing binding to the F6P substrate pocket of 

the kinase protein domain (Figure 7b). However, physicochemical properties like cell 

permeability limited biological evaluation of this compound. In order to improve KAN0438241 

cell permeability, an ester version was designed termed KAN0438757 (Figure 6a). This 

compound is a pro-drug, meaning that it relies on the hydrolysis from physiological esterases 

to cleave the ester group and generate the active compound. Importantly, on-target effect of 

these PFKFB3 inhibitors was validated with the van Schaftingen assay in cell extracts to 

assess F-2,6-BP intracellular levels. The pro-drug showed greater enzymatic inhibition in 

relation to F-2,6-BP levels in cells, whereas the active compound displayed better potency on 

kinase enzymatic assays. Viability assays across a panel of cell lines determined µMolar 

potency of KAN0438757 with cell dismiss as a readout, and cellular thermal shift assay 

(CETSA) was used to confirm KAN0438757 target engagement with respect to drug binding.  

 
Figure 7. PFKFB3 small molecule inhibitors. (a) Chemical structure of KAN0438241 active compound and 
KAN0438757 pro-drug. (b) Co-crystal structure of PFKFB3-KAN04438241 complex resolved (PDB: 6ETJ) 
displaying its binding mode to the substrate pocket located on the kinase domain. Republished with permission 
from Elsevier, from Wang, Y. et al.(2020)184 

Altogether, drug discovery funnel led to the validation of KAN0438757 as a potent and cell-

active small molecule inhibitor of PFKFB3. Unlike previously described PFKFB3 inhibitors 3-

PO, PFK-158 and AZ26 targeting the ATP binding pocket, KAN compounds bind to F6P 

substrate pocket. This binding module reduces the probability of off-targeted effects, as has 

been seen when probing KAN0438757 to a broad panel of 96 kinases. Recent studies 

characterized specific hydrogen-bonding interactions in F6P binding pocket that drive potency 

as well as selectivity of KAN compounds towards PFKFB3 (Figure 7b)184.  

b 
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2.2.2 Immunofluorescence confocal microscopy 

Immunofluorescence confocal microscopy has been the method of choice to examine the 

assembly of DDR factors at DNA damage sites. This subcellular proteomic technique allowed 

us to monitor PFKFB3 subcellular relocation, abundance and distribution in the nucleus 

following DNA damage induction233. 

In confocal microscopy, a pinhole located in front of the detector blocks out-of-focus emitted 

light from fluorescently labeled molecules outside the focal plane, which allows good optical 

resolution in relation to sample depth generating thin optical sections of the sample 

(approximately of 1µm). These features provide the opportunity to detect with great precision 

the distribution and colocalization of fluorescent molecules, as well as to quantify signal 

intensities. Because much of the fluorescent signal is blocked at the pinhole, acquired signal 

intensities in confocal microscopy are normally dim compared to widefield microscopy. 

Parameters like depth penetration of the sample, resolution and contrast are considered 

assets of confocal microscopy technique, yet the amount of time that requires acquisition is a 

shortcoming234.  

Sample preparation was optimized empirically to generate optimal imaging. Because DDR 

proteins are recruited to chromatin structures after induction of DNA damage, we performed 

in situ cell fractionation using cytoskeleton buffer to remove soluble proteins and loosely held 

nuclear proteins. Sample fixation was performed employing the cross-linking agent 

formaldehyde, which generates crosslinks in polypeptides and thus preserves nuclear 

morphology. The incubation time with formaldehyde was optimized to avoid extreme loss of 

target antigenicity. Sometimes, additional fixation step by precipitation was performed using a 

mixture of organic solvents methanol and acetone in order to expose epitopes. Cells were 

permeabilized to promote intranuclear penetration of primary and secondary antibodies. 

For immunostaining, coverslips were first blocked and then incubated with the primary 

antibody overnight at 4°C to improve specificity of the staining. Constituting one of the 

drawbacks of immunofluorescence, antibody specificity was carefully assessed during the 

studies. We performed siRNA-mediated knockdown of target proteins to ensure that primary 

antibodies that were not validated previously in literature recognized proteins of interest. 

Secondary antibodies with conjugated fluorochromes against the primary antibody epitope 

were used. Immunofluorescence provides the opportunity to use combinations of 

fluorochromes to assess more than one protein in each staining which, in turn, allows the 

examination of protein-protein colocalizations. However, staining combinations were 

optimized to limit as much as possible the overlap of excitation-emission spectra between 

fluorochromes because it can be misleading to determine colocalization. Furthermore, cross-

reactivity was assessed to ensure that secondary antibodies did not bind to unintended 

proteins in the fixed samples leading to staining artifacts. Since we were interested in 
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examining nuclear proteins, we used DAPI as a counterstaining. DAPI is a dye which 

intercalates between DNA strands. Mounting was performed in order to retain fluorescent 

signal and avoid fading of intensity. Image acquisition was performed with Zeiss LSM 780 

microscope using 63x or 40x oil immersion lens.  

Upon IR exposure, DSB repair proteins re-distribute to sub-nuclear structures called foci, 

which can be recognized by immunofluorescence microscopy as bright speckles all over the 

nucleus (IR-induced foci, IRIF)235,236. Otherwise, in unperturbed conditions, DDR proteins are 

microscopically visualized as dim nuclear staining. CellProfiler 3.0 software was used for 

image-based analysis. We generated pipelines containing a series of processing modules that 

allowed nuclear segmentation, IRIF identification and quantification from input images237. In 

paper I, this quantitative automated analysis provided information about the recruitment 

kinetics of PFKFB3 and HR proteins to IRIF marked by H2AX foci. Besides being considered 

as a surrogate marker of DNA damage, H2AX is an essential factor for the generation of IRIF 

since it alters the chromatin structure surrounding DSBs and promotes the assembly of DNA 

repair factors colocalizing in the foci238. Indeed, knockout mice lacking H2AX are 

hypersensitized to radiation because their cells are unable to form IRIF and recruit HR 

downstream factors such as 53BP1, Nbs1 and BRCA1239. For this reason, to assess PFKFB3 

assembly to IRIF at DSB sites, we evaluated its colocalization with H2AX. 

In paper II and paper III, immunofluorescence confocal microscopy was employed for the 

analysis of FA pathway activation upon crosslinking agents. In this case, the induction of foci 

indicated recruitment of DDR proteins to stalled forks and FANCD2 foci formation was used 

as a bona fide marker of FA activation82. If ID2 complex is recruited to ICL sites or not, this 

can be microscopically visualized as a diffuse and dim FANCD2 nuclear staining (Figure 8a-

b). Instead, FANCD2 monoubiquitination by FA core complex is strictly required for the 

formation of distinct FANCD2 foci (Figure 8c)240. This post-translational modification results in 

a conformational change of ID2 complex structure making it an anchor point for the recruitment 

of FA downstream factors, and an essential factor for FA pathway activation241. To distinguish 

between soluble and chromatin loaded ID2 complex, subcellular fractionations were 

performed to isolate within the nuclear compartment the chromatin-bound proteins. In turn, 

this enrichment of chromatin-bound factors enabled the evaluation of FANCD2 or FANCI 

ubiquitylation. In conclusion, we combined two subcellular proteomic techniques233, imaged-

based analysis of FANCD2 foci and subcellular fractionations, to examine the status of FA 

pathway activation upon treatment with crosslinking agents (Figure 8a-c).  
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Figure 8. Assessment of FA pathway activation by FANCD2 foci formation and chromatin fractionations. 
DAPI: blue, FANCD2: red. (a) Soluble inactive ID2 complex (PDB: 6VAD) appears as dim FANCD2 nuclear staining 
under the microscope and it is not retained to chromatin upon fractionation experiments. (b) ID2 complex recruited 
to ICL-induced stalled forks (PDB: 6VAA) exhibits diffuse FANCD2 staining under the microscope but enriched 
FANCD2 and FANCI chromatin fractions. (c) Activated ID2 complex requires FANCD2 mono-ubiquitination (PDB: 
6VAE) and can be identified microscopically by bright FANCD2 foci. Chromatin fractions of FANCD2 and FANCI 
proteins show a shift in the bands due to the ubiquitin tag. The ID2 clamp-like structure promotes formation of ID2 
filaments alongside DNA for the stabilization of stalled forks and functions as a recruitment platform for FA factors. 
Protein-DNA assemblies are available at PDB repository and were originally solved by Wang , R. et al. (2020)241. 

2.2.3 DNA fiber assay 

Dynamics of DNA replication in cells can be monitored and quantified with DNA fiber technique 

242. This assay is based on the incorporation of halogenated nucleoside analogues IdU (5-

Iodo-2′-deoxyuridine) and CldU (5-Chloro-2′-deoxyuridine) into nascent DNA strands by the 

replication machinery.  Immunostaining of these analogs enables the visualization of newly 
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synthetized strands and further imaged-based measurement of track lengths allows 

assessment of challenged replication fork progression and its directionality.  

In this thesis we used DNA fiber spreading technique (Figure 9a). Briefly, cells in culture were 

sequentially labeled with pre-warmed media containing CldU and IdU for corresponding 

amount of time (see individual papers). Of note, the concentration of the second analogue was 

at least 10-fold higher than the first one to ensure that resulting fibers exhibit two clear sections 

on the labeled new strands. Thus, the IdU analogue was found in excess to displace remaining 

CldU that was removed through washings steps. After DNA labeling, cells were lysed in 

spreading buffer and carefully loaded into positively coated lanes of Ibidi slides (ibiTreat µ-

slide VI 0.4). Slides were tilted 15° degrees to allow spreading of DNA fibers. Slow spreading 

of the cell suspension ensured that fibers would not cluster making the analysis step more 

difficult. DNA spreads were air dried and fixation was performed overnight at 4 °C with a 

mixture solution of methanol and acetic acid. DNA denaturation was carried out with 

hydrochloric acid and further washes of PBS to restore pH and limit further fiber acidic 

degradation. Once blocking was done, immunofluorescent DNA staining was performed with 

antibodies recognizing CldU (anti-rat) and IdU (anti-mouse). After washing with PBS and 

fixation with paraformaldehyde, secondary staining was done using antibodies raised against 

rat or mouse and conjugated with different fluorochromes. Last, addition of mounting media 

allowed retention of signal from immunostained DNA strands. Images were captured either 

with confocal Zeiss LSM 780 microscope or NikonTi2 fluorescence microscope.  

Approximately 150 forks that did not overlap were measured per condition using the ImageJ 

software. Data analysis was based on the determination of DNA fiber length (µm) of 

unidirectional forks. Track length divided by labeling time was converted to replication fork 

speed using the conversion factor of 2.59 kilo base pairs/µm of nascent DNA, originally 

described by Jackson, et al. (1998)243.  

Different labeling regimes allow for diverse applications of DNA fiber technique to assess 

specific replication parameters244. In paper I we wanted to assess unperturbed replication and 

how PFKFB3 inhibition could modulate global replication dynamics. In paper III, we aimed to 

assess global defects in replication fork progression by CX3CR1 inhibition after induction of 

replication stress. For this reason, in both cases we performed dual-labeling regime with CldU 

and subsequent IdU after corresponding treatments (Figure 9b). Measurement of CldU and 

IdU track lengths post treatment provides an indication of how replication dynamics is 

perturbed by drugs tested, and if there is replication recovery (CldU speed<IdU 

speed).Instead, in paper II, we interrogated whether replication restart was affected upon 

induction of DNA crosslinks. To this end, we carried out a first pulse of CldU combined with a 

potent DNA crosslinker Mitomycin C, followed by washout of drugs, and a second pulse of IdU 

(Figure 9c). With this setup, replication forks that are able to resume DNA synthesis and 
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bypass crosslinks provide strands containing both CldU and IdU tracks. On those strands, 

measurement of CldU length is informative of replication fork stalling, whereas IdU length 

describes dynamics of replication restart of recovered forks. Fraction of tracks only labeled 

with CldU correspond to terminated forks due to stalling, and single-labeled IdU tracks 

correlate with new origins fired after drug washout. 

 

 

Figure 9. DNA fiber assay. (a) Schematic of assay’s methodology. (b) Labeling regime to assess challenged 

replication fork progression after replication stress upon crosslinking agents. (c) Labeling regime to analyze 

recovery of DNA replication after replicative stress. This protocol enables the differentiation of strands derived 
from restarted forks, newly fired origins, stalled replication forks. Image generated with BioRender.com 

2.2.4 Ethical considerations 

In this thesis we include ex vivo experiments with tumor material derived from HGSOC 

patients. Written informed consent was obtained from all participants before being included in 

the study. Obtained tumor-derived cells were used to validate the mechanistic findings in 

relation to FA pathway activation in paper II and provided insights for the proof of concept. In 

paper III, patient cells were employed for translational evaluation of the therapeutic potential 

of targeting CX3CR1 with KAND567 in epithelial ovarian cancer patients. The studies were 

conducted in compliance with the ethical requirements from Helsinki II Declaration and 

approved by the Swedish Ethical Review Authority as described in the materials and methods 

of corresponding papers. 
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2.3 RESULTS AND DISCUSSION 

2.3.1 Paper I 

Targeting PFKFB3 radiosensitizes cancer cells and suppresses homologous 

recombination 

High PFKFB3 mRNA levels have been correlated with clinical radiotherapy resistance 

inaAcute lymphoblastic leukemia patients245 and IR sensitization has been linked to enhanced 

HR repair capacity in this type of malignancy246. These observations, together with the 

identification of PFKFB3 as a putative DDR factor in genome-wide siRNA screens247,248, 

prompted the initial investigation of PFKFB3 role in repair of DSBs.  

IR exposure triggered a relocation of PFKFB3 to discernible nuclear foci that colocalized with 

H2AX in IR-induced foci (IRIF) in an ATM-dependent manner. PFKFB3 IRIF appeared with 

fast kinetics, already at 30min, and in an IR dose-dependent manner suggesting a correlation 

with the magnitude of DNA damage generated249. Similar recruitment was observed in Ras-

transformed fibroblasts, and corroborated that this was not a mere cell line dependent effect. 

Ablation of PFKFB3 by siRNA impaired IRIF of the HR factors RPA, RAD51 and BRCA1, but 

not 53BP1 and H2AX. This, together with that both H2AX and MDC1 transient knockdown 

abolished PFKFB3 recruitment at DSBs sites, led us to the hypothesis that PFKFB3 operates 

at the end 3’ resection step after DSB sensing. Altogether, the data pointed towards an 

upstream role of PFKFB3 in the DDR response upon IR.  

We next interrogated whether the defective recruitment of HR downstream factors by PFKFB3 

siRNA transfections resulted in functional effects for repair and survival. Employing Direct 

Repeat Green Fluorescent (DR-GFP) assay250 we showed that HR activity was significatively 

reduced by PFKFB3 knockdown in similar extend as knockdown of the essential 

recombination mediator RAD51. The decrease in HR capacity was not due to skewed S/G2M 

cell cycle population, and ultimately resulted in increased residual H2AX levels and 

decreased clonogenic survival.  

We further developed the PFKFB3 inhibitor KAN0438757 (see section 2.2.1). Using the 

KAN0438757 inhibitor in combination with IR, we ascertained that PFKFB3 catalytic activity 

was required for RPA and RAD51 foci formation, proficient HR activity, recovery from IR-

induced cell cycle arrest and long-term cell survival. The impaired recruitment upon PFKFB3 

inhibition of recombinational factors that operate post 5’ end resection step, RPA and RAD51; 

together with no change of foci formation in MRN complex proteins, Nbs1 and MRE11; 

provided evidence that PFKFB3 operates downstream of MDC1. Notably, no differences in 

total protein levels could explain such differences in chromatin recruitment. In accordance with 

PFKFB3 being induced by oncogenic transformation168, sensitivity to IR occurred in cancer 
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cells and Ras-transformed fibroblasts, while sparing non-transformed cells. Whilst 

combination of KAN0438757 and IR displayed a great therapeutic window, combination 

between IR and DDR inhibitors KU55933 (ATM inhibition) and VE-821 (ATR inhibitor) turned 

out equally cytotoxic to non-transformed as transformed cells. These results, although 

preliminary, suggest a successful combination therapy that could improve the effectiveness of 

radiotherapy for patients.  

HR-mediated repair requires RAD51-mediated strand invasion and DNA synthesis of 

complementary strands. Since PFKFB3 kinase activity is a control point for glycolysis and thus 

modulates the PPP shunt for synthesis of dNTPs, we further investigated the functional 

consequences of targeting PFKFB3 in HR-dependent repair synthesis. KAN0438757 

treatment significatively decreased incorporation of the thymidine analogue 5-ethynyl-2′-

deoxyuridine (EdU) in cells in the G2/M phase post IR. PFKFB3 interacted with and 

colocalized into IRIF with the RRM2 subunit of the RNR enzyme. RRM2 is known to relocate 

to the nucleus in response to IR-induced DNA damage to promote local synthesis of dNTPs 

for DNA repair251 and thus, we showed that this role has functional consequences for proficient 

HR repair. Altogether, we concluded that PFKFB3 supports dNTP incorporation for DSB repair 

via nuclear recruitment of RRM2, as well as recruitment of HR repair factors RPA and RAD51 

operating after end resection step.  

In line with the phenotype observed upon DNA repair synthesis, inhibition of PFKFB3 

decreased EdU incorporation into the DNA, resulted in shorter DNA fibers, and reduced dNTP 

intracellular pools. De Oliveira el al. (2021) recently observed that among all glycolytic 

intermediates, KAN0438757 treatment reduces glucose 6-phosphate, which is the metabolite 

that diverges to PPP to generate precursor molecules of nucleotides151. It is possible, 

therefore, that decrease of the dNTP pool upon PFKFB3 inhibition is explained by a reduced 

PPP flux and thus, this effect is due to PFKFB3 cytoplasmic mediated process. Accordingly, 

the block on DNA replication and proliferation due to PFKFB3 inhibition could be rescued with 

metabolic supplementation of nucleosides. 

Given the role of PFKFB3 nucleoside supply upon replication and DNA repair synthesis, we 

next delved into a potential function for PFKFB3 in replication stress induced by inhibition of 

RNR by hydroxyurea (HU). Similar to the IR scenario, PFKFB3 inhibition blocked RPA 

induction upon HU treatment, suggesting potential lack of ssDNA formation or helicase-

polymerase uncoupling at replication forks. PFKFB3 inhibition abolished HU-induced 

phosphorylation of ATM, ATR, Chk1, H2AX and p53 indicating a situation where replication 

forks are stalled but no fork collapse or checkpoint activation is triggered. 
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In conclusion, the major findings of Paper I are: 

• PFKFB3 is relocated into nuclear IRIF and ATM-H2AX-MDC1 pathway stimulates its 

recruitment to DSBs to establish HR repair. 

• Successful development of a novel PFKFB3 small molecule inhibitor KAN0438757. 

• PFKFB3 activity coordinates foci recrutiment of HR factors downstream the end 

resection step, as well as the recruitment of RRM2 to suport dNTP incorporation at 

DNA break sites. 

• KAN0438757 is a radiosensitizer that renders cancer cells defective in HR repair and 

DNA repair synthesis upon IR. 

2.3.2 Paper II 

PFKFB3 regulates repair of DNA interstrand crosslinks via modulation of the Fanconi 

anemia repair pathway 

Statistics show that major reductions in EOC mortality have not been yet achieved252. Still 

nowadays the main prognostic factor for survival is the lack of residual tumor tissue after 

hysterectomy, highlighting the poor efficacy of adjuvant chemotherapy253. As a result, platinum 

resistance is considered incurable in about 75% advanced staged patients. We aimed to apply 

knowledge from paper I to the translational research of gynecologic malignancies with a high 

unmet medical need. Preliminary findings demonstrated that ovarian cancer cells, including 

platinum resistant cell lines, are dependent on PFKFB3 enzymatic activity for proliferation 

(data not shown). The distinct nuclear role of PFKFB3 in HR, together with reported synthetic 

lethal interactions between platinum compounds and HR deficiency103,254, encouraged us to 

study PFKFB3 role in the context of platinum treatment. 

To this aim, we performed drug combination screenings in viability assays that allowed us to 

evaluate the synergistic effect of combining KAN0438757 and the platinum-based drugs 

cisplatin and carboplatin. Using computational aided calculations from the obtained dose–

response matrixes255, we identified strong synergies across a panel of EOC cell lines that was 

cancer-specific, as the combination treatment resulted in additive effect in non-transformed 

cell lines. Altogether, indicating a promising efficacy to toxicity ratio specific for cancer cells. 

This could not be achieved with a general glycolysis inhibitor, we tested 2-Deoxy-D-glucose 

(2DG) in combination with carboplatin which resulted in high synergy scores independently of 

transformation status. Platinum sensitization in resistant cells was achieved in clonogenic 

assays upon KAN0438757, and shPFKFB3 knockdown viability experiments validated the 

observed synergies employing the inhibitor. Altogether, these results corroborate the findings 

of previous work showing chemosensitization to platinum drugs upon PFKFB3 gene 

knockdown149,256. 
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Intrigued by the explicit cancer specific synergies between KAN0438757 and platinum, and 

by recent research showing that cisplatin promotes glycolysis and thereby proliferation in 

cervical cancer cells in vitro257, we investigated energy metabolism in EOC cells upon platinum 

exposure to answer whether synergistic effects in cell viability could be due to a general 

distortion of the glycolysis. Real time analysis of cellular energy metabolism via the 

measurement of glycolysis (extracellular acidification rate, ECAR) and oxidative 

phosphorylation (by means of oxygen consumption rates, OCR) displayed no differences upon 

platinum treatment across a transformation series of immortalized fibroblasts (BJh TERT, 

SV40 and RAS), yet all showed block of ECAR rates when adding KAN0438757. In line with 

this data, alterations of glucose levels in the cell media did not affect the sensitivity towards 

carboplatin in single-agent viability experiments. 

Upon assessing PFKFB3 levels in relation to other glycolytic enzymes upstream and 

downstream of PFKFB3, we surprisingly discovered PFKFB3 to be present in the chromatin 

fraction. Whereas other glycolytic enzymes were either unchanged or increased on soluble 

fractions, PFKFB3 chromatin association upon platinum treatment correlated with cancer 

transformation. Likewise, the extent of chromatin loading of DDR proteins of the FA pathway 

correlated to transformation status. Altogether, these results suggested that KAN0438757 

selective sensitization on cancer cell viability may not be consequence of glycolytic rewiring 

upon platinum treatments, but to a nuclear-associated mechanism upon ICL-induced DNA 

damage.  

PFKFB3 nuclear relocation and foci formation preceded induction of H2AX and RPA foci 

upon cisplatin and mitomycin C (MMC) exposure. PFKFB3 knockdown cells were sensitized 

to low dose MMC and HU treatments, known to activate FA repair but not cause massive 

replication fork collapse93, suggesting a potential role for PFKFB3 in FA repair essential for 

cancer cell survival. In accordance with FA pathway activation being associated to ICL 

tolerance and platinum resistance258–262; PFKFB3 chromatin translocation was enriched in 

platinum-resistant cells compared to sensitive counterparts concomitantly with ICL repair 

proteins including phosphorylated ATR, the FA factors FANCD2 and FANCI, the fork protector 

RPA32, the PCNA and its ubiquitinated form PCNAub-164, both required for TLS, and the 

DNA damage marker H2AX. Notably, recruitment of these downstream DDR factors is 

essential for a successful coordinated repair of ICLs11 and therefore, the enriched recruitment 

in resistant cells suggests an enhanced DNA damage repair capacity contributing to increased 

IC50 towards platinum. This, in turn, strengthens the clinical relevance of the used in vitro 

systems to address platinum-resistance in cancer cells107,246. Accordingly, enhanced PFKFB3 

chromatin recruitment and faster kinetics into foci were associated with platinum-resistance 

phenotype and, in turn, suggested a potential role for PFKFB3 in replication associated FA 

repair.  
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Since the FA pathway is only active during the S cell cycle phase11, we performed cell 

synchronization at the G1/S phase border with aphidicolin treatment and release upon 

crosslinking agents to study the molecular role of PFKFB3 in replicative repair of ICLs. Cells 

released into cisplatin and MMC displayed increased PFKFB3 foci formation at mid S phase, 

which correlated with H2AX induction. PFKFB3 recruitment was dependent on ATR, FANCM 

and its own kinase activity. Nevertheless, this recruitment was not dependent on RPA, which 

apart from its downstream role in HR, engages in ssDNA protection at stalled forks upon 

FANCM-mediated recruitment to elicit ATR checkpoint signaling21. These results indicate that 

PFKFB3 putative role on replication stress is exclusively dependent on FANCM.  

To place PFKFB3 in the replication-coupled repair signaling we investigated recruitment 

dynamics of FA repair factors upon KAN0438757 cotreatment with ICL inducing agents. To 

this aim we used chromatin fractionations in cell extracts and in-situ cell fractionation to assess 

foci formation by confocal microscope. Defective chromatin loading of BLM helicase, its 

complex partner Topoisomerase III, RPA and FANCM, FANCD2 and FANCI, PCNA and 

H2AX strongly suggests that PFKFB3 activity is required at the very upstream of the FA 

pathway. The ID2 complex is required for the unhooking step, DSB generation and its 

recombinational repair. Thus, the loss of ID2 chromatin association locates PFKFB3 upstream 

of this nucleolytic incision step indicating an independent role from the HR function described 

in paper I245. Likewise, besides their roles in DNA repair, BRCA1/2 stabilize stalled DNA 

replication forks and RAD51 mediates fork reversal upon cisplatin treatment99,100,263,264.  

Confocal microscopy showed impaired FANCD2 foci formation and H2AX foci upon 

KAN0438757 cotreatment, indicating defective FA activity and impaired DNA damage 

signaling upon ICLs. Interestingly, co-immunoprecipitation experiments in chromatin fractions 

revealed interaction between PFKFB3 and BLM, FANCD2 and H2AX. Overall, these results 

point towards a mechanism which nuclear PFKFB3 directly interacts with FANCD2 and BLM 

at DNA damage sites to trigger assembly into foci and mediate FA repair.  

We hypothesized that PFKFB3 might contribute to resolve stalled replication forks by recruiting 

BLM and FANCD2 to DNA ICL lesions. Hence, we next sought to evaluate the functional 

consequences of KAN0438757 treatment in relation to fork progression and fork recovery from 

replication stress induced by ICLs. PFKFB3 inhibition resulted in substantial impairment in 

DNA replication upon carboplatin treatment that couldn’t be rescued upon release. 

Furthermore, PFKFB3 inhibition upon ICL treatment resulted in increased fork stalling and 

slowed replication fork restart as assessed in DNA fiber assays, overall indicating a decreased 

tolerance and compromised fork recovery upon ICL induction. Inhibition of PFKFB3 rendered 

replicating cells unable to progress through S phase and this cell population accumulated high 

levels of DNA damage assessed by H2AX, probably due to collapsed forks and unresolved 
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ICLs. Notably, FA patient cells are characterized by a similar phenotype: defective ICL 

replicative-coupled repair triggers accumulation at late S phase76. 

Lastly, the formation of FANCD2 foci was used as a surrogate marker of FA repair activity240,241 

to validate PFKFB3 involvement in FA repair in ovarian cancer patient-derived material. 

Decreased FANCD2 foci upon KAN0438757 and cisplatin cotreatment was present in those 

patient cells that were sensitive to ICLs, marked by FANCD2 induction. On the other hand, 

patient cells irresponsive to cisplatin characterized by no damage induction of FANCD2 foci, 

showed no impairment of FANCD2 foci formation upon PFKFB3 inhibition, emphasizing the 

relevance of using experimental systems that reflect tumor characteristics and heterogeneity 

in clinical response. 

From Paper II we conclude that: 

• Cancer-specific synergy between platinum compounds and PFKFB3 inhibition is not 

due to rewiring of the glycolysis but due to PFKFB3 chromatin loading upon DNA 

damage induction through cancer transformation. 

• Nuclear recruitment of PFKFB3 is triggered by FA pathway activation and requires 

FANCM assembly to stalled forks and ATR activity. 

• At ICL damage sites, PFKFB3 directly interacts with FANCD2 and BLM to promote 

replication fork recovery, recruitment of FA factors and ICL repair by the FA pathway.  

2.3.3 PFKFB3: General discussion and concluding remarks 

2.3.3.1 PFKFB3 inhibition as a targeted therapy in cancer 

The findings presented herein position PFKFB3 at the crossroads of oncogenic metabolic 

reprogramming and DNA repair. Many metabolic enzymes are moonlighting proteins, 

meaning that they operate in additional mechanisms beyond their canonical catalytical 

roles265. We provide evidence that PFKFB3 is a moonlighting glycolytic enzyme with regulatory 

functions in the DDR specifically in cancer cells but not in non-transformed cells. This 

noncanonical function beyond glycolysis appears associated with PFKFB3 nuclear localization 

and is significant in the therapeutic context where proficiency of DNA repair mechanisms 

largely determines efficacy of DNA damaging cancer therapeutics27. Indeed, we have shown 

that both PFKFB3 inhibition and PFKFB3 knockdown compromise survival to IR and platinum 

compounds by modulating the DNA damage response of these classical therapeutics, 

consistent with PFKFB3 being able to drive proliferation without affecting intracellular 

glycolysis181.  

These evidences suggest that employing KAN0438757 small molecule inhibitor may be 

feasible for therapeutic intervention in oncology, where organ-associated toxicity is the limiting 

factor for dosage of therapeutics. Notwithstanding, an aspect that remains to be addressed is 
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the efficacy of KAN0438757 in reducing tumor burden using in vivo disease models. In vivo 

studies will provide insights for further KAN0438757 translational developments, not only to 

assess improved efficacy of combination therapies, but also to ascertain whether a greater 

therapeutic window can be achieved. So far, a recent study demonstrates that KAN0438757 

is well tolerated in mice and does not trigger systemic toxicity, suggesting a favorable safety 

profile151. In accordance to our results consistently showing a cancer-specific cytotoxic effect 

when targeting PFKFB3 in vitro, KAN0438757 treatment is detrimental for viability and 

morphology of colorectal carcinoma patient‐derived organoids, while preserving normal colon-

derived organoids151. In paper II we have employed ovarian cancer tumor-derived material to 

address our mechanistic findings. In this regard, further ex vivo viability screening could be 

done to corroborate the feasibility of PFKFB3 therapeutic targeting in cancer. Additionally, 

expanding the patient cohort for ex vivo studies could, in turn, provide the opportunity for 

biomarker identification for future patient stratification.  

2.3.3.2 Dissecting PFKFB3 glycolytic and moonlighting roles 

While genomic instability and reprogramming cellular energetics are both hallmarks of 

cancer7, the interplay between metabolic alterations and DNA repair mechanisms remains 

poorly characterized266. For example, it has been reported that following a ketogenic diet, 

characterized by low carbohydrate intake, can promote clinical efficacy of DNA damaging 

therapies in certain tumor types by tumor starvation267,268. In addition, it has been shown that 

radiation-induced response entails a transient enhancement of glycolysis in cancer cells, 

which was reported to directly promote DSB repair by supporting HR and NHEJ pathways269. 

With the present body of work, we have dedicated our efforts to dissect PFKFB3 glycolytic 

role and its noncanonical role in DDR. These two functions are not mutually exclusive per se, 

and it is plausible that upon cancer transformation they become somehow synergistic to 

support unrestrained cancer growth. Moreover, each of these roles is not confined to a 

subcellular compartment, as glycolytic-mediated PFKFB3 control of intracellular dNTP pools 

in the cytoplasm could have impact on the DNA damage and replication stress response, and 

it is still unknown whether the formation of F-2,6-BP in the nucleus has functional 

consequences for DNA repair. Both options could be contemplated as they have been 

reported for other metabolic enzymes. For instance, enzymatic inhibition of the glycolytic 

enzyme phosphoglycerate mutase 1 (PGAM1) renders cancer cells defective in HR repair by 

decreasing intracellular dNTP pools and subsequently triggering p53-mediated CtIP 

degradation270. Alternatively, the nuclear production of the metabolite fumarate by fumarate 

hydratase (FH) supports DSB repair via inhibition of histone H3 demethylation, and thus, FH 

loss has been reported to confer resistance to IR-induced DNA damage271,272.  
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Two common factors appear to be fundamental for PFKFB3-mediated role in DDR: its catalytic 

activity and its relocation into clear and distinct nuclear foci colocalizing with DNA damage 

repair factors. In relation to the first, PFKFB3 is a kinase so it is not unreasonable to 

hypothesize that it engages in DDR signaling events. The requirement of FANCM 

phosphorylation by ATR to elicit FA pathway and ATR/CHK1 feedback loop upon DNA 

damaging conditions11,273 is a good illustration of how phosphorylation events are essential to 

trigger DNA damage response to genotoxic stress. Therefore, a possible participation of 

PFKFB3 in targeting this factor could explain why KAN0438757 treatment compromises 

replication fork recovery and impairs ICL repair. 

Alternatively, foci colocalization and direct protein interactions seem to be important for the 

role of PFKFB3 in the DDR as well. So far, we have identified direct binding with RRM2 in the 

context of IR-induced repair synthesis (paper I), and FANCD2, H2AX and BLM in chromatin 

fractions in relation to ICL replicative repair (paper II). This is not a unique feature of PFKFB3, 

as pyruvate kinase 2 (PKM2) is another glycolytic enzyme recently proven to directly interact 

with the DDR factor CtIP, and by this co-localization support HR repair274. The authors 

reported that PKM2 ablation leads to defective HR via the loss of CtIP phosphorylation, and 

allocate this glycolytic enzyme at the 5’ end resection step of the HR cascade. With tregards 

to FANCD2, its chromatin loading and assembly at stalled forks requires of H2AX-mediated 

phosphorylation275. It is therefore likely that PFKFB3 interaction with H2AX (paper II) is 

required for functional H2AX signaling, and thus, PFKFB3 inhibition abolishes such 

interaction resulting in lack of FANCD2 foci formation. Further studies could shed light to the 

nature of H2AX-PFKFB3 interaction, whether PFKFB3 interacts with H2AX via its substrate 

pocket and consequently, inhibition by KAN0438757 impairs this physical interaction. In 

relation to BLM, considering that this helicase engages in 5’ resection step during HR to initiate 

long-range incision of DSB ends53, the herein identified BLM-PFKFB3 direct interaction (paper 

II) argues for PFKFB3 intervention at the end resection step via BLM interaction, which could 

explain loss of downstream RPA and RAD51 recruitment (paper I). In this regard, further work 

should be directed towards the validation of endogenous PFKFB3-BLM protein interaction and 

its consequences for replication fork recovery upon replication stress and recombinational 

repair of DSBs upon IR. Orthogonal methods such as proximity ligation assay offer the 

possibility to confirm protein interactions identified in co-immunoprecipitation experiments276. 

In paper I, we show that PFKFB3 nuclear localization at IRIF and its role in HR is regulated 

by ATM kinase activity. Similarly, nuclear relocation of the glycolytic enzyme PKM2 was shown 

to be ATM-dependent274. PKM2 localization was assessed by means of cell fractionations and 

fluorescence microscopy, peaking at 30 min post IR like PFKFB3 recruitment kinetics, but no 

distinct recruitment to IRIF was observed. Based on this and our data, we can infer that ATM 

controls nuclear relocation of metabolic enzymes with DDR functions. This could then 
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constitute an additional ATM mechanism to orchestrate DNA damage repair, including the 

modulation of metabolic routes to provide nucleotides for DNA synthesis repair. Accordingly, 

Cosentino et al. (2011) showed that ATM activates the PPP pathway through direct 

phosphorylation of the first enzyme of this pathway, glucose-6-phosphate dehydrogenase 

(G6PD), to promote nucleotide generation for DNA repair synthesis277. Whether PFKFB3 is a 

target for ATM phosphorylation, like its glycolytic partners PKM2 and G6PD, and whether this 

putative interaction is required for PFKFB3 role in HR repair, are questions that remain to be 

addressed. 

In conclusion, paper I and paper II provide new insights on the molecular mechanisms of 

PFKFB3 in the DNA damage response upon induction of DSBs and DNA crosslinks. 

Importantly, many questions remain to be answered. For instance, whether the PFKFB3-

mediated modulation of DDR is due to alterations of F-2,6-BP product formation in the nucleus, 

due to phosphorylation events via PFKFB3 kinase activity, or due to PFKFB3 scaffolding 

functions at DNA damage sites. Future studies employing PFKFB3 constructs with truncated 

NLS motif, mutations in post-translational modifications residues or enzymatic activity sites, 

are suitable approaches to further dissect how PFKFB3 subcellular localization and activities 

contribute to the phenotypes described herein. This, together with metabolic profiling of 

subcellular fractions, will contribute to a clearer picture of PFKFB3 nuclear versus cytoplasmic 

functionalities.  

2.3.3.3 Understanding the functions of PFKFB3 at the replication fork 

Recent studies have challenged the view of that ICL blocks replication forks, instead slowing 

of replication fork progression by the FA pathway and global fork slowing by ATR has emerged 

as important events upon replication stress278,279. The fact that PFKFB3 inhibition triggers fork 

slowdown of both stalled and restarted forks, but not specific for ICL fork stalling during CldU 

pulse (paper II), suggests a possible involvement in global fork slowing; however, an active 

checkpoint signaling would be expected in this case. The lack of ATR, CHK1 and P53 

phosphorylation in PFKFB3 inhibited cells upon HU from paper I, together with loss of RPA 

foci formation and phosphorylated ATR chromatin recruitment in S phase synchronized cells 

from paper II, indicate no elicitation of checkpoint signaling when PFKFB3 is inhibited under 

high levels of replication stress. 

On the other side, the fork stalling phenotype in ICL treated cells upon PFKFB3 inhibition seen 

in paper II could result from abolished interaction with RRM2 reported in paper I. RRM2 has 

been associated not only with DNA synthesis repair upon IR, but also with preventing 

oncogene-evoked replication stress by fork stabilization. Transgenic mouse carrying extra 

alleles of RRM2 gene are protected towards replication stress induced by HU and ATR 

inhibition treatments280. Notably, inhibition of RRM2 with triapine renders glioblastoma cells 
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sensitive to PARP inhibiton281, which could explain the strong sensitization obtained from the 

combination between KAN0438757 and PARP inhibitors, but the overall additive effect of 

KAN0438757 and triapine (data unpublished).  

Recruitment of factors that support fork stabilization and protection is essential to maintain 

genome stability17. Looking at paper II, kinetics of PFKFB3 foci formation precedes 

recruitment of H2AX and RPA, reflecting a specific function of PFKFB3 in replication fork 

stabilization prior ICL induced DNA damage. Interestingly, a recent study using nascent 

chromatin capture technique, a method that purifies biotin–labeled DNA from replicating cells 

and analyzes by quantitative proteomics the replication fork proteome, identified PFKFB3 as 

an uncharacterized protein with a predicted function in nascent chromatin replication282. 

Altogether, this combination of findings points towards a function of PFKFB3 in DNA lesion 

sensing at replication fork sites during DNA synthesis that may be essential to resolve DNA 

crosslinks that demand replication-coupled repair.  

Understanding PFKFB3 molecular function at replication forks would contribute to the 

assessment of its therapeutic targeting in different contexts of platinum tolerance. Resistance 

to platinum compounds has been associated with an increased DNA damage repair capacity 

and resolution of DNA crosslinks283 as well as glycolytic rewiring of energy metabolism284. Of 

note, platinum-resistant endometrial cancer cells not only exhibit higher PFKFB3 total 

levels, but also enhanced phosphorylated PFKFB3(Ser461)149, which suggests that 

PFKFB3 enzymatic activity could contribute to this enhanced DDR phenotype eliciting an 

effect that ultimately determines sensitivity to ICL inducing agents. In line with this 

reasoning, PFKFB3 knockdown sensitizes ovarian cancer cells to platinum drugs149,256.  

2.3.3.4 Validation of selective inhibitors to assess molecular roles of PFKFB3 

The previous lack of specific PFKFB3 small molecule inhibitors prior KAN0438757 

development has constituted a problem in the field. Non-selective 3-PO and PKF-158 

inhibitors have been widely employed as molecular tools to study uncanonical roles of 

PFKFB3 in the nucleus, and therefore, results from these studies must be interpreted with 

caution. For example, although in accordance with our findings, a recent study shows block of 

RAD51 foci results in defective HR repair in endometrial cancer cells upon PFK-158 

inhibition149. Several studies demonstrate that targeting PFKFB3 with 3-PO or its derivative 

PFK-158 chemosensitizes cancer cells to DNA damaging agents148,149,256,285. Discrepancies 

continue to appear in functional studies using these inhibitors. Whilst 3-PO treatment 

induced G2/M phase arrest in Jurkat cells185, it resulted in G0/1 phase cell cycle arrest in A375 

human melanoma cells286. 

Given the fact that isozyme selectivity is an important factor, the employment of unselective 

inhibitors may be misleading to characterize PFKFB3 role in DDR. An aspect that was not 
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addressed in this study was the contribution from other members of the PFKFB family to the 

observed phenotype. Based on the kinase enzymatic activity assays performed in paper I, the 

isozyme PFKFB4 exhibited closest IC50 compared to PFKFB3 (more than 10-fold difference). 

This result indicates that at the range of concentrations used in our in vitro experiments we 

could expect that a fraction of PFKFB4 isozyme is blocked, perhaps contributing to the 

phenotype observed upon KAN0438757 treatment. This would ultimately depend on the 

protein levels of PFKFB4 enzyme in relation to PFKFB3, which has not been addressed in this 

body of work.  

Another source of uncertainty is the employment of stable knockdown cell lines to address 

mechanistic questions. In hepatocellular carcinoma cells, PFKFB3 stable knockdown leads to 

more DNA breaks and increases ATM, p21 and Chk1 protein levels resulting in G2/M phase 

arrest287. This phenotype was attributed to a lack of Akt phosphorylation resulting from 

PFKFB3 ablation, and a consequent downregulation of ERCC1 expression, a transcriptional 

target of AKT288. Nevertheless, a note of caution is due here since knockdown experiments 

were performed in conditions that can lead to G0/G1 cell cycle arrest289. Considering that 

PFKFB3 expression varies during the cell cycle290, the effects on proliferation and cell cycle 

distribution derived from prolonged knockdown may result in in phenotypes due to secondary 

effects. 

In this body of work, we validated KAN0438757 small molecule inhibitor with proven protein-

ligand binding in co-crystal structures, selectivity towards PFKFB3 isozyme across the other 

members of PFKFB family and in a broad panel of 96 kinases, biochemical inhibitory effects 

in kinase assays, and intracellular target engagement by inhibition of enzyme’s product 

formation as well as drug’s protein binding. We have demonstrated that KAN0438757 blocks 

glycolysis within minutes in ECAR measurements and it displays a cytotoxic effect on cancer 

cell viability across multiple cell lines. Additionally, others provided proof of concept of 

KAN0438757 effectiveness using advanced patient-derived three dimensional ex vivo 

models151. In conclusion, with the development and validation of KAN0438757 small molecule 

inhibitor, we hope to provide to the scientific community the opportunity to accurately 

interrogate PFKFB3 molecular functions. 
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2.3.4 Paper III 

Targeting CX3CR1 Suppresses the Fanconi Anemia DNA Repair Pathway and 

Synergizes with Platinum 

The unmet medical need for EOC patients due to the clinical challenge of platinum 

resistance253, together with previous research reporting sensitization to DNA damaging agents 

in CX3CR1 knockdown EOC cells via DDR modulation219, prompted our interest to assess in 

a pre-clinical setting whether targeting CX3CR1 by the small molecule inhibitor KAND567 

could be beneficial to improve efficacy of platinum-based treatments. 

We performed viability assays to quantify and compare sensitization potential of KAND567 

combination with platinum drugs, cisplatin and carboplatin, utilizing a panel of EOC cell lines 

containing sensitive and resistant cell lines. Transformed EOC cells displayed higher delta 

scores in synergy viability matrixes compared to the non-transformed cells, and resistant cells 

were further sensitized to platinum drugs reflected by the further increase in synergy delta 

scores. Notably, these synergies observed in cell viability assays were validated in long term 

clonogenic assays, in which KAND567 resulted in dose-dependent reduction of survival. 

Sensitization to platinum drugs was also observed in gene dosing experiments, as lentiviral 

delivery of shRNA resulted in decreased growth rates, cell proliferation and long-term survival 

as assessed by colony formation assays. Importantly, shRNA CX3CR1 knockdown in platinum 

resistant cells was not possible because the cells did not survive upon clonal selection, 

highlighting the essentiality of CX3CR1 for cell survival upon DDR rewiring to tolerate 

crosslinks. 

Given the synthetic lethality between CX3CR1 inhibition and platinum treatments, coupled with 

the replication-associated toxicity of ICLs lesions, we next aimed to evaluate replication 

impairments upon combination treatment in platinum sensitive-resistant isogenic cell lines. 

Synchronized cells at the G1/S boundary, pulsed with EdU, and further released into platinum 

with or without KAND567 revealed an in enrichment of cells in S phase that could not proceed 

to G2/M upon CX3CR1 inhibition. This phenotype was aggravated in platinum resistant cells 

which could not resume replication up to 16h post release from the G1/S phase, whereas 

sensitive cells were able to proceed to next generation G1 at this timepoint. In line with this 

data, combination of cisplatin and KAND567 significatively decreased fork speed and track 

length in both sensitive and resistant cells as assessed in DNA fiber analyses. Whilst ICL-

induced replication fork stalling was significatively enhanced in platinum sensitive cells, the 

resistant counterparts showed mild effects probably due to their slower overall cell cycle 

progression. This observation suggests a fork protection mechanism for tolerance of ICLs 

associated to the resistant phenotype of our in vitro models291. Quantification of DNA-cisplatin-

induced adducts by flow cytometry revealed that CX3CR1 inhibition upon platinum treatment 

resulted in higher residual amount of crosslinks, indicative of defective ICL repair. 
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Since FA pathway operates in replication-dependent DNA crosslink repair11, our results 

prompted our interest to assess a potential role of CX3CR1 in FA repair by assessing its 

intracellular localization under treatments that activate FA pathway. Alongside FA pathway 

activation assessed by FANCD2 foci formation we surprisingly observed CX3CR1 nuclear 

staining which correlated with FANCD2 induction. Of note, CX3CR1 did not appear into clear 

distinct nuclear foci but displayed a pan nuclear patter, whose specificity was further confirmed 

by siRNA CX3CR1 transfections which significantly decreased the nuclear CX3CR1 staining. 

Recognition of the strong correlation between CX3CR1 and FANCD2 nuclear staining, 

together with the impairment of cisplatin- and mitomycin-induced FANCD2 foci formation upon 

CX3CR1 gene ablation and CX3CR1 pharmacological inhibition with KAND567; suggested 

that CX3CR1 operates in the FA pathway activation to assist in the resolution of stalled 

replication forks. Hence, we next hypothesized that CX3CR1 might modulate chromatin 

association of FA factors required for fork stabilization. Indeed, inhibition of CX3CR1 resulted 

not only in reduced chromatin association of ID2 complex, but also reduction of chromatin 

loading of RAD51, reported as FANCD2 interacting partner at DNA break sites to stabilize 

replication forks264. Importantly, CX3CR1 appeared in both soluble and chromatin fractions; 

however, upon MMC treatments the soluble CX3CR1 fraction decreased while CX3CR1 

chromatin fraction was enriched. This event was reversed when adding KAND567, leading to 

enriched soluble CX3CR1 fraction. Notably, the effects herein described were not due to 

reduction of total protein levels, as western blots from whole cell extracts confirmed that 

KAND567 treatment did not modify FANCD2 or FANCI intracellular protein levels. Altogether, 

these findings present a mechanism in which upon CX3CR1 inhibition, this receptor remains 

in the soluble fraction and cannot relocate to chromatin to trigger FANCD2-mediated fork 

stabilization and ICL resolution. 

The main conclusions from Paper III are: 

• Cancer-specific synthetic lethality between Cx3CR1 inhibition and platinum 

compounds 

• Targeting CX3CR1 with KAND567 chemosensitizes platinum resistant EOC cells by 

interference of the FA DNA repair pathway, resulting in slower replication fork 

progression and incapacity to progress through the S cell cycle phase due to 

unresolved DNA adducts. 

• Activation of FA pathway conveys CX3CR1 nuclear localization which supports 

FANCD2 foci formation and recruitment of FA factors. 
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2.3.5 Paper IV 

Blocking the fractalkine receptor disrupts replication and ovarian cancer cell 

proliferation 

Growing body of literature indicates that the fractalkine axis is fundamental for proliferation 

and survival of tumor cells. Furthermore, CX3CR1 expression levels have been associated to 

worse prognosis in EOC patients200,227. Prior to research efforts from paper III, we initially 

sought to explore whether CX3CR1 was determinant for cancer cell survival in unperturbed 

conditions by means of cell cycle checkpoint control and apoptosis, DNA replication and 

repair.  

In cell viability assays, KAND567 treatment consistently reduced survival in the micromolar 

range across a panel of EOC cell lines including cisplatin and carboplatin resistant ones, 

whereas at same concentrations the viability of non-cancerous cell lines was not affected 

indicating a potential therapeutic window. Accordingly, KAND567 is well tolerated and exhibits 

a safe toxicity profile in humans as it has passed clinical phase I with healthy volunteers229. 

We employed two systems of silencing CX3CR1 expression, siRNA transfections and lentiviral 

delivery of shRNA, which both resulted in decreased growth rates, cell proliferation and long-

term survival as assessed by colony formation assays. Additionally, we used tumor-derived 

cells from one HGSOC patient to further validate therapeutic targeting of CX3CR1 with 

KAND567. While the patient-derived cells were slightly responsive to carboplatin, the current 

ovarian cancer standard of care, cell survival was severely affected by KAND567 treatment. 

Extending the cohort of patient samples and performing ex vivo screening studies will reinforce 

these preliminary findings and further strengthen the hypothesis that EOC tumors are 

dependent on fractalkine signaling for proliferation.  

Next, assessment of cell cycle profile and replication was performed to initially characterize 

CX3CR1 molecular function in EOC survival. Upon KAND567 exposure, dose-dependent 

reduction of S cell cycle phase subpopulation was observed, which hampered G2/M transition. 

Of note, the halt of S phase progression preceded accumulation in G0/G1 phase. Evaluation 

of EdU incorporation using confocal microscopy revealed reduced EdU signal intensity by 

CX3CR1 inhibition indicating slowdown of replication, which upon 24h exposure was 

comparable to DNA replication stress inducers HU or H2O2. In addition, percentage of cells 

actively replicating that managed to incorporate EdU decreased, suggesting replication 

impairments. Consistent with the decrease in S phase cells upon CX3CR1 inhibition, 

phosphorylation of the retinoblastoma protein pRB, which engages in G1/S transition, 

decreased in western blot analysis of cell lysates together with phosphorylated ATR and RPA. 

Moreover, reduced phosphorylation of ERK1/2 was shown, in line with being a downstream 

effector signaling pathway of fractalkine axis. Notably, inhibition of ERK by U0126 inhibitor 

displayed same phenotype as KAND567 inhibition: reduced activation of ATR, RPA and pRB. 
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ERK has been shown to modulate ATR activity upon replication stress induced by HU and 

thus to support S phase damage checkpoint292. These findings point towards that the 

phenotype observed upon KAND567 inhibition, including diminished ATR activation, delayed 

G1 to S transition and replication defects, potentially could arise as a consequence of 

CX3CR1-mediated ERK action. Furthermore, CX3CR1 inhibition resulted in dose-dependent 

DNA damage and apoptosis induction as measured by western blot markers cleaved-PARP 

and cleaved caspase 3 markers, as well as AnnexinV/PI staining in flow cytometry.  

Because of the strong phenotype on impaired DNA replication, we next evaluated effects of 

CX3CR1 inhibition with DNA damaging agents that target DNA replication. We first pre-treated 

cells with carboplatin to induce replicative damage, and then added KAN567 to assess how 

CX3CR1 modulates proliferation in EOC cells. Cells treated solely with carboplatin 

accumulated at S phase due to fork stalling at DNA crosslinks. In line with the findings from 

paper III, the addition of KAND567 resulted in cells unable to undergo G2/M transition. This, 

together with the reduction of phosphorylated ATR, ATM and CHK2 upon cotreatment, 

indicates a different CX3CR1 molecular mechanism from unperturbed conditions. 

The major findings of Paper VI are: 

• Ovarian cancer cells are dependent on fractalkine signaling for proliferation and 

survival which can be exploited therapeutically with KAND567 treatment. 

• In unpertubed conditions, CX3CR1 inhibition conveys defective DNA replication, 

impairs RPA-ATR signaling, prevents G1 to S cell cycle progression, induces DNA 

damage and ultimately leads to apoptotic cell dead. 

2.3.6 CX3CR1: General discussion and concluding remarks 

2.3.6.1 Molecular tools to characterize the role of CX3CR1 in the DDR 

Transmembrane GPCRs have recently emerged as promising targets to control DDR by 

acting as DNA damage sensors and evoking effector signaling processes to mitigate this 

damage293. In paper III and paper IV, we provide comprehensive investigation of the 

implication in DNA damage and repair mechanisms of the chemokine receptor CX3CR1. As a 

GPCR, successful pharmacological intervention can be achieved using the KAND567 

compound to assess inhibition of a subset of signaling pathways212,294. Until now, however, 

observations made to ascertain the non-canonical function of fractalkine signaling in DDR 

were based on comparative studies between knockdown CX3CR1 cells and normal 

endogenously expressing cells. Barbolina et al. (2018) provided first evidence that reduction 

of CX3CR1 expression resulted in sensitization to DNA damaging agents, including IR and 

cisplatin, by regulating total protein levels of RAD50 by a MYC-dependent mechanism224. 

Nevertheless, we could not confirm the RAD50-mediated intervention to resolve DSBs by 
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CX3CR1 pharmacological inhibition (data unpublished). Taking into account that CX3CR1 

appears essential for survival of EOC cells, as several of our stable lentiviral shRNA 

transfections resulted in cell dismiss, a possible explanation for this difference is that 

prolonged knockdown of CX3CR1 gene may result into adaptation mechanisms to ensure 

survival. These rewired mechanisms may make the study of functional phenotypes difficult. It 

is well established that GPCRs display functional selectivity, as ligand-receptor interactions 

provoke specific receptor conformational changes that convey different subset of effector 

signaling pathways, ultimately leading to unique cellular responses depending on ligand 

interaction294. Therefore, long-term ablation of CX3CR1 loses this complexity and may result 

in distinct cellular responses in comparison to pharmacological inhibition.  

2.3.6.2 Exploring the molecular mechanism behind CX3CR1 modulation of the DDR 

In paper III, we have disclosed that the fractalkine receptor exhibits a nuclear localization 

using immunofluorescence and chromatin fractionations, thus suggesting transmembrane to 

nuclear relocation upon damage. The mechanism of this subcellular distribution pattern 

remains to be elucidated. Nevertheless, it has been demonstrated that it entails functional 

implications for DNA repair kinetics of FA pathway. Paper III raises the possibility that 

FANCD2 acts as a signal transducer of CX3CR1 activity as a transmembrane receptor, which 

is plausible since FA pathway has been linked to GPCR signaling for more than a decade. 

Larder et al. (2006) identified FANCA factor, member of the FA core complex, as a 

downstream signal transducer of the gonadotropin-releasing hormone receptor (GnRHR)295, 

whose signaling is required for gonadal function. GnRHR signaling controls FANCA nuclear 

and cytoplasmic distribution assessed by microscopy and cell fractionations like in our work. 

As a signal transducer, FANCA was required for transactivation of gonadotropin hormones 

and GnRHR expression in gonadotropic cells, offering a mechanistic explanation of the 

characteristic clinical infertility in FA patients. Another illustrative case of nuclear relocation of 

a transmembrane receptor as a response to DNA damage is the EGFR. Under exposure to 

IR or cisplatin treatment, EGFR modulates DNA damage repair from its nuclear localization 

by direct interaction with DNA-PK in mouse fibroblasts296. In this study, co-immunoprecipitation 

experiments and proximity ligation assay revealed that direct protein interaction was required 

for DNA-PK kinase activity.  

The diffuse nuclear pattern of CX3CR1 staining after in-situ fractionations in paper III, but not 

clear characteristic foci, suggests a modulation of DDR response by CX3CR1 via signal 

transduction. Instead of being a scaffolding factor at DNA damage sites or an interacting 

partner of DDR factors, fractalkine receptor may convey to signaling pathways that contribute 

to the maintenance of genomic stability. For instance, ERK1/2 constitutes a signal transducer 

of fractalkine axis197 and ERK has a reported regulatory role on ATR activity upon replication 

stress292. These findings, together with our preliminary observations showing reduced 
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phosphorylated ERK1/2, ATR and RPA upon CX3CR1 inhibition, reflect a signaling 

mechanism that contributes to the crosstalk between survival signaling and genomic stability 

via CX3CR1-ERK1/2 signal transduction. Further studies could address how CX3CR1 

pharmacological inhibition modulates MAPK signaling as a stress response pathway to 

genotoxic agents, and how this signaling events may control cell cycle transitions. On this 

matter, another effector pathway elicited by fractalkine activation is the Akt signaling axis207, 

which has been reported essential for G1 cell cycle progression297. Hence, impaired replication 

phenotype and G1 cell cycle delay by KAND567 treatment in paper IV could be explained by 

reduced Akt signaling events.  

Furthermore, it is interesting to note that treatment of KAND567 at concentrations used in our 

body of work abolishes CX3CL1 binding to the receptor and blocks β-arrestin212. Beta-arrestins 

are scaffolding proteins that act as intracellular signal transducers per se triggering multiple 

signaling networks213. Recent reports associate β-arrestin signaling to the modulation of DDR 

in DNA damaging conditions298,299. In which extend the block of intracellular trafficking of 

CX3CR1 by β-arrestin and the lack of signaling conveyed upon receptor internalization has 

functional consequences for DNA replication and repair, is a matter that could be addressed 

in the future.  

Overall, the precise mechanism of CX3CR1 modulation of the DDR remains to be elucidated. 

We have shown for the first time that this transmembrane chemokine receptor appears in the 

nucleus as a response to DNA damage and validated CX3CR1 antibody nuclear staining with 

knockdown experiments. However, current available antibodies that recognize CX3CR1 are 

not optimal as they show unspecific bands in western blotting. Hence, further studies could 

employ methodologies to track receptor localization such as expression of fluorescent tagged-

CX3CR1 or bioluminescent resonance energy transfer-based assays, which are widely used 

to interrogate GPCR pharmacology, membrane localization and internalization via -

arrestin300. This, together with phosphoproteomic analysis, could prove useful to explore the 

mechanistic aspect of whether CX3CR1 modulation of DNA damage repair and replication is 

a consequence of signaling through MAPK pathways. 

2.3.6.3 Tackling platinum resistance by targeting CX3CR1 

The KAND567 small molecule shows good safety and pharmacokinetic profiles since it is has 

passed phase I clinical trials with 100 healthy volunteers. Thereby, it is well qualified for clinical 

efficacy trials in patients. For this reason, further studies should address the proof of concept 

of platinum sensitization utilizing in vivo models in order to determine the effective dose and 

select preferred treatment modality for clinical trials.  

Inflammatory processes occurring naturally in the ovaries, such as ovulation, have been 

identified as mechanisms contributing to the pathogenesis and aggressiveness of ovarian 
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cancer301. Furthermore, compelling evidences demonstrate that the fractalkine axis is involved 

in metastatic progression of EOC200,202,207,216,223. This, together with the herein shown defects 

on EOC cell survival upon CX3CR1 targeting, strongly indicates that EOC patients could 

benefit the most from a putative therapeutic intervention using KAND567. Delivery of 

KAND567 to EOC patients could not only improve efficacy of platinum-based therapy by 

reducing tumor burden, but also by mitigating metastatic spreading to the omentum and 

ultimately improving clinical outcome. 

A major clinical challenge nowadays is the development of resistance to platinum neoadjuvant 

chemotherapy, ultimately contributing to poor survival to EOC302. Owing to the mechanism of 

action of platinum, the efficacy of this type of DNA damaging agent is influenced by the cancer 

cells’ capacity to resolve DNA crosslinks and alleviate replication fork stress283. Indeed, 

enhanced FA pathway activation has been identified as a mechanism of platinum resistance 

in vitro261,262 and targeting the FA pathway has been proven to sensitize cancer cells to 

platinum258–260. Accordingly, elevated expression of genes participating in replication-coupled 

ICL repair such as BRCA1, FANCA, FANG, FANCI and BLM have been correlated to clinical 

platinum resistance in EOC patient cohorts303,304. Based on the findings from paper III, in which 

we show sensitization to platinum compounds upon KAND567 by suppressing FA pathway 

activation305, therapeutic targeting of CX3CR1 offers the possibility to tackle the clinical 

challenge of platinum resistance in ovarian cancer. 
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2.4 FUTURE PERSPECTIVES 

With this body of work, we establish a novel foundation for therapeutic strategies with small 

molecule inhibitors that target the DDR. State-of-art therapies to cure cancer are formulated 

from mechanism-guided combinations, resulting in better outcomes to DNA damaging 

treatments306,307. In this regard, therapeutic targeting of PFKFB3 or CX3CR1 offers the 

opportunity for a therapeutic intervention based on combination treatments with DNA 

damaging therapies. Future studies should be undertaken to explore the potential of 

combining KAND567 or KAN0438757 with other DNA damaging treatments than herein 

reported. Such combinations could result in improved efficacy and also reduction of dose-

related toxic side effects. Recently developed ATM inhibitors illustrate this point clearly. 

Because the loss of FA genes such as FANCD2 is synthetic lethal with ATM pharmacological 

inhibition308, therapeutic targeting of CX3CR1 or PFKFB3 offers the possibility to render cancer 

cells FA-deficient and thus theoretically hypersensitive to ATM inhibition.  

Tailoring PARP inhibitor treatment to HR deficient patients has been a major improvement for 

ovarian and breast cancer patients with BRCA1/2 mutations110. Given its roles in HR repair, 

PFKFB3 represents a promising target to obtain a BRCAness phenotype that could be 

relevant to expand the use of PARP inhibitors beyond BRCA mutated tumors. Future work 

directed to know whether PFKFB3 inhibition influences other types of DSB repair mechanisms 

such as NHEJ will be key for the rationale of KAN0438757 in this context.  

Malignancies that typically exhibit high degree of genomic instability may benefit the most from 

inhibitors targeting the DDR27. This is the case for HGSOC, in which the therapeutic targeting 

of PFKFB3 or CX3CR1 could potentiate DDR deficiencies and render ovarian cancer cells 

more sensitive to platinum, the standard of care of the disease. Expanding the battery of 

clinically applicable biomarkers to detect tumors with high degree of genomic instability will 

contribute to identify those patients who would likely respond to such therapies309,310.  

The discovery of synthetic lethal interactions provides the opportunity to target rewired DDR 

mechanisms to restore sensitization and overcome treatment resistance311. Employment of 

different resistant in vitro models could provide insight on mechanistic questions to explain 

KAND567- and KAN0438757-induced sensitization of traditional anti-cancer therapies. For 

example, besides replication-coupled repair proficiency, backup DNA repair mechanisms 

involved in the resolution and sensing of platinum adducts have been associated to platinum 

resistance312. In this regard, increased expression of factors from NER and MMR pathways 

correlate with poor clinical response to platinum-based therapies313,314. Future studies could 

be directed to evaluate the modulation of these DNA repair mechanisms by CX3CR1 and 

PFKFB3 molecular functions and how they contribute to the platinum sensitization phenotype.  
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The DDR network entails great deal of redundancy as multiplicity of mechanisms engage to 

ensure protection of the genomic integrity315. Another aspect that could be addressed in future 

studies is the redundancy between CX3CR1 and PFKFB3 inhibition. Whether KAN0438757 

and KAND567 combination is synergistic, or how the monotherapy with one of these 

compounds renders a DDR liability that can be targeted with the other compound, are both 

aspects worth to consider. Additionally, CRISPR-Cas9 genetic screens could be employed to 

identify genetic vulnerabilities among DDR genes predisposing to CX3CR1 or PFKFB3 

inhibitor responses103. 

In conclusion, the present thesis provides biological insights into CX3CR1 and PFKFB3 roles 

in the DDR and in the maintenance of genomic stability under DNA damaging conditions. 

Furthermore, our work lays the groundwork for future research into combination therapies in 

cancer targeting these two proteins.  
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