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ABSTRACT

The concentration of interleukin-7 (IL-7) in human serum is elevated in various clinical conditions
associated with lymphopenia, including HIV-1 infection. IL-7 is an essential factor for T cell
differentiation and survival, and it was suggested that high serum IL-7 concentration may represent
a homeostatic response to T cell depletion, which may promote T cell regeneration.

In order to increase our understanding on the regulation of IL-7 production, we investigated
specimens from HIV-1 infected patients during chronic infection and in long term non-progressors
(LTNPs). Serum IL-7 levels correlated with T-cell depletion in HIV-1 infected individuals. In some
patients, we observed that serum IL-7 decreased upon progression to AIDS, suggesting a role for IL-7
in T-cell maintenance in sporadic cases. Interestingly, IL-7 levels were significantly lower in stable
LTNPs than in patients who lost the LTNP status in a 3-year follow-up (P<0.001), indicating that
serum IL-7 concentration might be a valuable marker for maintenance of the LTNP status.

The number of CD8+CD28- T cells increases significantly during aging and during HIV-1 infection.
These cells have a reduced expression of the IL-7 receptor alpha (IL-7Ra), as compared to
CD8+CD28+ T cells. As CD8+CD28- T cells have been associated with dendritic and T cell
suppression, we analyzed whether an increase in CD8+CD28- T cell numbers during HIV-1
infection could lead to impaired T cell responses. Peripheral blood CD8+CD28- T cells of both
HIV-infected and non-infected individuals promoted dendritic cell activation. The CD8+CD28- T
cell accumulation during HIV-1 infection may thus contribute to inflammatory reactions and
immune activation.

Stromal cells and intestinal epithelial cells are known to produce IL-7. The mechanisms and cellular
factors regulating IL-7 production are still unclear. We assessed whether IL-1( and IFN-y, cytokines
produced during inflammatory conditions, may impact on IL-7 production. We used human
intestinal epithelial cells (DLD-1 cell line) and bone marrow stromal cells (HS27 cell line) to
evaluate IL-7 production at the mRNA and protein levels. To assess whether treatment of HS27
cells with IL-1B and/or IFN-y leads to changes in the gene expression of cytokines, Toll-like
receptors (TLRs) and chemokines, we analysed gene expression profiles using the whole-genome
microarray Human Gene 1.0 ST. We found that IFN-y enhanced the expression of IL-7 protein and
mRNA (P<0.001) in both cell lines. IL-1p treatment led to a significant down-regulation (P<0.001)
of IL-7 mRNA expression in both cell lines. The gene profiles revealed dramatic changes in
expression of cytokines and their receptors, of IFN regulatory factors (IRF-1 and 2) and of important
chemo-attractants for T cells. The microarray results were verified by additional methods. Our
results were discussed in the setting of inflammation and T-cell survival in the gut compartment
during HIV-1 infection where stromal and epithelial cells may produce factors that contribute to
impaired IL-7 homeostasis and homing of T cells.

It was previously reported that IL-7 might stimulate T cell activation and CD95 mediated T cell
apoptosis. HIV-1 infection leads to B cell abnormalities including increased apoptosis via the CD95
death receptor pathway and loss of memory B cells. Here we present a novel mechanism that can
lead to increased B cell apoptosis in the presence of high IL-7 concentration. T cells cultured with
IL-7 induced high CD95 expression on resting B cells together with an increased sensitivity to
CD95 mediated apoptosis. As the mediator molecule responsible for B cell priming to CD95
mediated apoptosis we identified the cytokine IFN-y that T cells secreted in response to IL-7. In the
serum of HIV-1 infected individuals IL-7 and IFN-y levels were in correlation and the level of both
cytokines correlated with CD95 expression on circulating B lymphocytes in non-viremic
individuals. These results indicate a potential link between IL-7 and the increased B cell apoptosis
observed in HIV-1 infected individuals.

In conclusion the results presented in this PhD thesis highlight mechanisms of regulation of IL-7
production dependent on the number of circulating T cells and on the exposure of IL-7 producing
cells to high levels of inflammatory cytokines. We also present data on the role of IL-7 in regulating
CD95 expression and CD95 mediated apoptosis on B cells through IFN-y produced by T cells; the
impact of this finding on the outcome of IL-7 therapy during HIV-1 infection will be verified by
ongoing clinical studies.
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1 INTRODUCTION
1.1 HIV AND THE PATHOGENESIS OF HIV INFECTION

1.1.1 Human immunodeficiency virus - HIV

In 1981, a new disease syndrome manifested in some previously healthy homosexual
men in the United States characterized by unusual infections and cancers such as
Pneumocystis carinii pneumonia and Kaposi’s sarcoma. A marked reduction in cluster
of differentiation (CD)4+ T cells was the common immunological dysfunction which
characterized this group of patients. This new syndrome was named acquired immune
deficiency syndrome (AIDS) (1). Two years later, the causative agent of AIDS was
identified first by a group of scientists at the Pasteur Institut in Paris (2) and then by
groups in the United States (3, 4). The causative agent of this syndrome was a
retrovirus initially named human T lymphotropic virus type III (HTLV-III) until the
new name human immunodeficiency virus (HIV) was agreed on by a panel of experts

in the field.

HIV is a member of the Lentivirus sub-family in the Retroviridae family. The family is
named Retrovirus since the viral ribonucleic acid (RNA) genome is transcribed into
deoxyribonucleic acid (DNA) within the host cell using the viral enzyme reverse
transcriptase (RT). This viral DNA is then transported to the nucleus and integrates into
the cellular chromosome. The virus genome can be silent in the host cell until it is

transcribed and the viral replication initiated.

HIV quickly spreads around the world. According to a report published in 2010, Joint
United Nations Programme on HIV/AIDS (UNAIDS) estimated that there were 33.3
million adults and children leaving with HIV/AIDS world-wide, 2.6 million people
newly infected with HIV in 2009 and 2.1 million AIDS-related deaths among adults
and children in 2009 (5).

There are two types of HIV named HIV-1 and HIV-2 and the distinction between the
two types is based on virus genetic differences. HIV-2 was identified two years after
the discovery of HIV-1 (6). The genetic difference between HIV-2 and HIV-1 is about
40%. HIV-1 can also be divided into different groups M (main), O (outlier), and N
(new or non M or O) and the genetic difference of virus groups is at least 30% from one

to another, with variations mainly in the envelope genes (7). Recently, a new HIV-1



group was identified, named P, that is closely related to gorilla simian
immunodeficiency virus (SIVgor) (8). The HIV-1 M group is further divided into
subtypes (or clades) A-D, F-H, J, K and the subtypes differ by 15-20% in the genes (7).
The genomic recombination of different HIV-1 subtypes created different HIV-1
recombinant viruses called circulating recombinant forms (CRFs) (9). Up to date more
than 40 CRFs have been identified (www.hiv.lanl.gov). Of note, the original subtype E
and I have been identified as recombinant subtypes. Virus recombination can occur
after co-infection or super-infection of the same cell by two or more different virus

subtypes (10).

HIV-1 caused the majority of HIV infection and distribution world-wide. By contrast,
HIV-2 was primarily isolated from patients in West Africa although this virus type was
also detected in individuals in other parts of the world including Europe, the United
States, South America, and India. However, most of the HIV-2 cases detected in

Europe and in the United States were from African migrations (11).

HIV-2 infection has a less pathogenic nature as compared to HIV-1 infection. There are
several features that could possibly explain for the HIV-2 properties. During HIV-2
infection, lower viral load is generally detected in blood and genital fluids than the
corresponding values found in HIV-1 infected subjects (12-14); the envelope
glycoprotein (gp) 105 has a reduced affinity for the cell surface receptors, as compared
to HIV-1 gp120 (15); patients infected with HIV-2 display a reduced level of immune
activation (16, 17), low level of T cell apoptosis (16, 18) and lower CD8+ T cell

cytotoxic immune response as compared to patients infected with HIV-1 (19).
1.1.2 HIV transmission

There are three main routes of HIV transmission, sexual contact, blood and blood
products, and mother-to-child transmission. The transmission through the blood route
has been proven to be most effective (20-24). However, HIV transmission through
unprotected sexual intercourse is widely propagated. HIV transmission from mother-to-
child can take place in utero, at delivery and during breast feeding. Without
antiretroviral treatment (ART) the transmission from mother to child is believed to
occur in 25-40% of pregnancy and delivery cases. The rate of transmission can be
significantly reduced to < 10% or even to <2% with ART treatment of the mothers and

children by Zidovudine or/and Nevirapine (20-24).



During primary HIV-1 infection, the virus infects a large number of CD4+ T cells. The
HIV-1 virions replicate and spread very efficiently and the CD4+ T cells decrease
sharply. During the acute phase of the HIV-1 infection, patients can experience
influenza-like symptoms including fever, myalgia and skin rash. However, in most of
cases those symptoms are minor and can be confused with other diseases or not at all

recognized by the patient (25-28).

HIV-1 infects the host cell through the binding of the viral envelope gp120 to a high
affinity receptor present at the cell membrane, the CD4 receptor. The CD4 receptor is
expressed on T cells. macrophages, monocytes and dendritic cells (DCs) (29, 30). The
HIV-1 gp120 molecules interacts with the CD4 receptors on the target cell and
mediates the virus entry by fusing together the viral and the cell membranes; the C-C
chemokine receptor (CCR) CCRS or C-X-C chemokine receptor (CXCR) CXCR4
molecules act as co-receptors during this process. The interaction of the complex
composed of CD4 and gpl20 with a specific co-receptor triggers further
conformational changes in the envelope glycoprotein complex. That process leads to
the exposure and insertion of the hydrophobic gp41, the fusion peptide of the virus, into

the membrane of the target cell.

HIV-1 isolates can preferentially infect either macrophages or T cells and accordingly
they are named as macrophage tropic (M-tropic) or T cell tropic (T-tropic) isolates. A
macrophage-tropic HIV-1 virus uses CCRS5 receptor as co-receptor to attach and infect
the cell and is accordingly classified as a RS virus. HIV-1 viruses with the property of
infecting T cell lines are called X4 viruses and infect T cells using CXCR4 as co-
receptor. The X4 viruses are more cytopathic than the R5 viruses (31). Individuals who
lack CCRS expression on immune cells due to mutation in the CCR5 (A32) gene are
resistant to RS virus infection but are still susceptible to infection with X4 viruses.
Some other chemokine coreceptors (e.g., CCR3, CCR2b) are known to act as primary
or secondary attachment sites for both HIV-1 and HIV-2 isolates, but are not

commonly involved in infection (31).

Some studies have shown that RS viruses are generally observed in the blood during
acute or early infection. However, during advanced disease progression and AIDS,
approximately 50% of patients carry cytopathic X4 viruses in blood (32, 33). RS
viruses infect preferentially CCR5+CD4+ T cells in the gastrointestinal (GI) tract and

R5 viruses can easily infect macrophages and DCs (7).



1.1.3 Immune response in HIV-1 infection

HIV-1 infection targets cells of the immunological system and renders them
dysfunctional. The immunopathological manifestations of HIV-1 infection are
generally a gradual reduction of CD4+ T cells in the peripheral blood as well as in the
lymphoid tissues and gut-associated lymphoid tissue (GALT); enhanced B cells
proliferation and hypergammablobulinemia — features which may reflect immune
activation occurring during chronic infection. An overt stage of immune deficiency is
often accompanied by opportunistic infections and malignancies like Kaposi’s sarcoma.
The mechanisms through which HIV-1 induced immune activation is established over

time leading to destruction of the immune system are depicted in Fig. 1.
1.1.3.1 Tcells

CD4+ T cells loss is the main pathogenic feature of HIV-1 infection. At the acute phase
of HIV-1 infection, there is a dramatic depletion of CD4+ T cells which can be detected
in peripheral blood; thereafter the number of CD4+ T cells rebounds to certain levels
after the initial HIV-1 burst decreases to a set point in the host body. Without any
treatment, the CD4+ T cells are gradually lost during the following years of HIV-1

infection.

In SIV infection in macaques within a few days from infection, the virus rapidly
migrates to the GALT where it induces a massive depletion of memory CD4+ T cells in
the intestinal lamina propria (34, 35). The same picture of CD4+ T cells depletion in
the GALT as the one occurring in SIV infected macaques was observed in humans at

the early stage of HIV-1 infection (36-38).

Depletion of CD4+ T cells happens not only in peripheral blood and GALT, but also at
other mucosal sites and in the lymph nodes. Studies in SIV and HIV-1 infection also
demonstrated that the CD4+ T cells depletion is less pronounced in peripheral blood
and lymph nodes as compare to GALT (37, 39).

There are some potential factors involved in the loss of CD4+ T cells in HIV-1
infection. The direct cytopathic effects of HIV-1 on CD4+ T cells and progenitor cells
lead to cell death (40). HIV-1 induced apoptosis of the target cells and it was shown
that HIV-1 encoded proteins induced apoptosis of infected and uninfected cells (41-43).
In many cases apoptosis results from direct virus infection whereas bystander effects of

the virus infection causes immune activation (25, 44). Destruction of the lymphoid



tissue reduces the production of new cells (45, 46). CD4+ T cells loss is the primary
reason for occurrence of the opportunistic infections and cancers associated with HIV-1

infection.

CDS8+ T cells so called cytotoxic T cells (CTLs) have been found to be increased in
percentage as well as in absolute number in HIV-1 infection (47) and CD8+ specific T
cells are distributed in different anatomical compartments in both humans and
macaques. CD8+ specific T cells appear to be involved in the control of HIV-1
replication (48) and in vitro CD8+ T cells can control HIV-1 infection by inhibiting
HIV-1 replication (49). Recent evidence also showed that early HIV-1 specific CD8+ T
cell responses contribute to reduce HIV-1 viremia in plasma during the acute phase of
HIV-1 infection (50). CD8+ T cells are also involved in adaptive immune function by
killing the virus infected cells. CD8+ T cells produce some soluble factors such as
RANTES (Regulated upon Activation, Normal T-cell Expressed, and Secreted),
macrophage inflammatory protein (MIP)-1a and MIP-1 (51), and additional important
cytokines like interferon gamma (IFN)-y and tumor necrosis factor alpha (TNF)-
a (52). It is important to underline that CD8+ T cells activities can be detrimental if
they lead to lysis of autologous uninfected CD4+ T cell and antigen presenting cells
(APCs). It was shown that the expression of the programmed death 1 protein (PD-1) on
HIV-1 specific CD8+ T cells can reduce their cytotoxic function (53).

1.1.3.2 B cells

Another important component of HIV-1 pathogenesis is the damage occurring to B
lymphocytes, which can be measured by altered phenotype and composition of
different B cells populations, increased apoptosis of these cells and an abnormal pattern
of activation (54). Phenotypic and functional alterations on B lymphocytes are often
observed in chronically infected patients, but alterations of B cells are already detected
during the acute phase of HIV-1 infection (55). A decline of memory B cells has
previously been reported to occur in both children and adults infected with HIV-1 (56,
57); these cells are responsible for mounting and maintaining an adequate serological
response to antigens previously encountered in life through natural infection or
vaccination. The decline in B cells carrying immunological memory correlated to loss
of antibody titers to measles, tetanus, and pneumococcal antigens, a process which

already began during primary HIV-1 infection. The consequences of loss of memory B



Microbial translocation
in GALT

HIV-1 replication and
release of viral proteins

Immune responses
to HIV-1 infection

| i J
Stimulation of cells of the innate
and adaptive immune system

Release of proinflammatory cytokines
increased cell activation and exhaustion

l

CHRONICIMMUNE

ACTIVATION

Damage to immune system

Figure 1. HIV-1 infection induces immune activation and destruction of the immune
system. Due to HIV-1 infection, innate and adaptive immune cells become activated by
different factors like viral proteins, microbial components translocated from the GALT
and host immune responses. Activated cells release proinflammatory cytokines (IFN,
TNF, IL-1, IL-6), which in turn, together with HIV-1 replication and host immune
responses, contribute to chronic immune activation. Chronic immune activation
increases HIV-1 replication and leads to immune cell exhaustion, finally causing
damage to the immune system.

cells are not fully understood; the loss of memory B cells during HIV-1 infection may
be mediated by up-regulation of CD95 (Fas) receptor and increased susceptibility to
CD95 mediated apoptosis (55).

1.2 APOPTOSIS

Apoptosis, or programmed cell-death, provides a mechanism for removal of senescent
cells without evoking inflammatory responses. Two main pathways have been
identified for execution of apoptosis: 1) the intrinsic apoptotic pathway, also defined as
the mitochondrial pathway is receptor-independent, and requires mitochondrial
participation and 2) the extrinsic or death receptor dependent pathway, involves the

interaction of a death receptor with its natural ligand (58). Apoptosis is regulated by



pro- and anti-apoptotic proteins. Caspase activation and cleavage of specific cellular
substrates occur as result of both the intrinsic and extrinsic pathways, ultimately leading
to chromatin condensation and DNA fragmentation. The process of apoptosis is
completed when the apoptotic cells are removed by phagocytosis. Due to efficient
phagocytosis, few apoptotic cells are found in healthy tissues despite a constant

homeostatic turnover of senescent cells.

Difterent apoptotic pathways have been described to date, many of which overlap each
other at the molecular level. The permeabilization of the mitochondrial outer membrane
(MOMP) is a pivotal point of mitochondrial apoptosis pathway which triggers caspase
activation resulting in irreversible events of cell apoptosis. This intrinsic apoptotic
pathway involves the regulation of different important proteins of the B-cell lymphoma
(Bcl)-2 family, which comprises, among others, the anti-apoptotic proteins Bcl-2, Bel-
xL and Bim and the pro-apoptotic proteins Bax and Bak (58). Extrinsic apoptosis can
be initiated through activation of a number of membrane bound receptors; among them
the CDO95 protein which is expressed as a transmembrane receptor (59) and is
ubiquitously expressed in the majority of cell types. The natural ligand for CD95 is
CD95 ligand (CD95L) mainly expressed by activated T-cells, NK cells and
macrophages. An important molecular component in the structure of death receptors is
a cytoplasmic domain of approximately 80 residues named death domain which plays
an important role for recruitment of molecules which initiate intracellular signalling

leading to apoptosis.

CD95/CD95L interactions have been proposed to be necessary to down-regulate the
number of reactive cells during contracting phase of immune responses (60). Aberrant
apoptosis of T cells during HIV-1 infection leads to immunosupression and
susceptibility to opportunistic infections (61). Studies on the impact of viral infection
on the GALT have demonstrated that apoptosis is a pivotal mechanism for HIV-1
driven destruction of mucosal CD4+ T cells. In addition, high levels of CD95/CD95L

expression and CD95-mediated apoptosis were detected in lamina propria T cells (35).



1.3 INTERLEUKIN-7 AND IL-7 RECEPTOR
1.3.1 Interleukin-7

The Interleukin (IL)-7 belongs to the type 1 cytokines of the hematopoietic family. IL-7
is a non-redundant cytokine with important roles in lymphocytes development and
survival and maintenance of peripheral lymphocytes homeostasis. IL-7 was first
discovered in 1988 as a novel growth factor for precursor murine B cells produced in
vitro from bone marrow derived stromal cells (62). Additional studies conducted later
on showed that IL-7 has an effect on growth and differentiation of immature and
mature T cells and fetal thymocyte clones (63, 64). IL-7 was demonstrated to be

required for the survival and proliferation of mature and naive peripheral T cells (65).

Recently, an in vitro study was conducted by culturing peripheral blood mononuclear
cell (PBMCs) in presence or absence of IL-7, followed by infection with an HIV-1 R5
strain (66). Interestingly, IL-7 increased the density of CXCR4 receptor at the CD4+ T

cell surface and induced the switch of HIV-1 RS virus to X4 virus.

Human IL-7 gene spans 6 exons located on the chromosome 8q12-13 encoding for a
protein of 177 amino acids (aa) with molecular weight of 25 kilo Dalton (kD) in active
form (67). Different IL-7 isoforms, defined as alternative splice variants, have been
described; the different isoforms have been mapped in different human tissues suggesting

an important role for these different isoforms in different disease conditions (68).

IL-7 is produced by non-lymphoid cells, and IL-7 messenger RNA (mRNA) has not been
detected in lymphocytes during physiological conditions. In humans, different cell types
are known to produce IL-7 and among them the IL-7 main source are stromal cells in the
bone marrow (69, 70), intestinal epithelial cells (71, 72) and fibroblastic reticular cells
(73). In addition, keratinocytes (74), peripheral blood DCs (75), follicular DCs, smooth
muscle cells and endothelial cells (76) were also found to produce IL-7. Recently, a study
showed that stimulation through Toll-like receptors (TLRs) of liver hepatocytes can
induce production of IL-7 from hepatocytes (77). This mechanism of regulation via TLRs
triggering appears to be unique for hepatocytes and the production of IL-7 by hepatocytes
stimulated with lipopolysaccharides (LPS) appears to be transient. A study conducted ex-
vivo has shown that IL-7 production by bone marrow stromal cells derived from HIV-1

infected patients during ART treatment was lower as compared to the levels detected



before ART (78). IL-7 was also shown to be produced by a small population of mice
DCs regulating the niche size of CD4+ T cells in vivo (79).

How IL-7 is constitutively produced, and the mechanism for regulation of IL-7
production is yet not understood in detail. IFN-y has been shown to up-regulate the 1L-7
production in human intestinal epithelial cells through IFN regulatory factors 1 and 2
(IRF-1, 2) via an IFN regulatory factor element (IRF-E) acting on the 5’ flanking
region of the human IL-7 gene (80). Other factors like transforming grow factor-3
(TGF-B) (81) and flagellin (82) have been reported to negatively modulate the IL-7
production. On the other hand, IL-1 and TNF-o have been shown to up-regulate 1L-7
production from stromal cells (83). Recently, a study showed that in vivo, commensal
microflora drives IFN-y production by lymphocytes, which in turn promotes IL-7
production from intestinal epithelial cells and the survival of IL-7-dependent
lymphocytes. Interestingly, the combination of IFN-y with the commensal microflora

promotes a steady-state IL-7 production in the intestine (84).

IL-7 is considered as an obligate survival factor for several subsets of progenitor and
mature lymphoid cells. Mutations in the IL-7 gene or its receptor complex in mice
resulted in impaired IL-7 production and IL-7 mediated signaling; upon these
conditions the mice became severely lymphopenic, with T cell depletion at both
primary and peripheral lymphoid sites and with T cell numbers decreased 10—20-folds
(85). The absence of IL-7 triggered apoptotic processes in IL-7 dependent cells, as
shown by increased annexin V binding to the cell membrane and DNA fragmentation
(86). More recently it has been shown that IL-7 is required for homeostatic survival of
peripheral T lymphocytes. Under T cell deficient conditions, naive T cells were able to
expand in mice lacking other cytokines, such as IL-4 or IL-15, but not in mice lacking

IL-7 , and the same was shown for memory CD+8 T cells (87).
1.3.2 IL-7 receptor

The IL-7 receptor (IL-7R) belongs to the cytokine receptor family. The IL-7R consists
of two components: the IL-7 receptor alpha chain (o) also named CDI127 and a
common gamma chain (yc) (CD132) which is shared by the receptors for 1L-2, 1L-4,
IL-7, IL9, IL-15 and IL-21. The cytoplasmic domains of the IL-7Ra and yc are required
for STATS5A/B activation which is followed by signal transduction. Studies conducted

in mice have shown that IL-7Ra and yc-deficient mice presented with similar features



characterized by diminished T cell numbers and impaired lymphocyte development
(88). These data indicate that both IL-7Ra and yc are essential to mediate the biological
effects of IL-7 on the target cells.

The IL-7Ra chain is expressed on different cell types. In human hematopoietic cells,
IL-7Ra is expressed on developing T and B cells, mature T cells (both naive and
memory T cells), natural killer cell (NK) and DCs. Other human cell types such as
intestinal epithelial cells, endothelial cells, bone marrow stromal cells, cancer cells of

colorectal, lung, and breast origin also express the IL-7Ra.

IL-7Ra gene is located in human chromosome 5p13, which contains 8 exons; the IL-
7Ro. gene encodes the IL-7Ra proteins which is comprised of 439 aa and has a
molecular weight of 49.5kD. The IL-7Ra is a glycoprotein trans-membrane receptor

including a single 25 aa transmembrane domain and a cytoplasmic tail of 195 aa.

IL-7Ra expression on cell surface is regulated by different factors. It has been shown
that the IL-7Ra expression is increased by glucocorticoids in T cells and cell lines (89),
by TNF in mice T cells, by IFN-a and IFN-B in mice and human cell lines (90). The
expression of IL-7Ra in T cells is suppressed by different inhibitors. The expression of
the IL-7Ra is suppressed by its ligand IL-7 (91) and also by some of the cytokines
belonging to the common yc receptors IL-2, IL-4, IL- 15 and other pro-inflammatory
and anti-inflammatory cytokines including IL-6 (91, 92). The T cell receptor (TCR)
when activated also inhibits the IL-7Ra expression (89, 93). The expression of IL-7Ra
on T cells is down-regulated during HIV-1 infection (94, 95). It has been shown that
soluble HIV-1 Tat protein removes the IL-7Ra from the surface of resting CD8+ T
cells. HIV-1 Tat protein targets IL-7Ra for degradation via the proteasome leading to
reduced IL-7 signaling and impaired CD8+ T cell proliferation and function (95, 96).
When IL-7Ra is expressed in cells it binds to its specific ligand IL-7 and will induce
cell survival and proliferation. However, over expression of IL-7Ra is also associated
with some negative effects such as induction of inflammatory bowel disease (97) and
induction of lymphoma in transgenic mice (98). On the other hand, studies conducted
in gld mice that lacked the IL-7Ra expression, or where the IL-7Ra expression was

blocked, showed a pattern of inhibition of T cell proliferation and survival (99).
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1.3.3 IL-7/IL-7R signaling pathways

When IL-7 binds to its specific receptor, different signaling pathways linked to the I1L-7

receptor are activated in order to obtain different biological effects in the target cells

(Fig. 2).
1.3.3.1 JAK-STAT pathways

- JAK3: Janus kinase (JAK) 3 is a protein belonging to the family of intracellular
tyrosine kinases. JAK3, which is recognized as the first step in the signal transduction
cascade from the IL-7 receptor, is constitutively associated with the carboxy-terminal
region of the yc chain receptor. In humans, mutations in the JAK3 gene result in a
disease similar to the XSCID (X-linked Severe Combined Immune Deficiency)
caused by mutation in yc chain (100). The main function of the JAK3 signaling
pathway is to protect the cell from apoptotic death.

- JAK1: JAK1 is associated with the IL-7Ra chain and phosphorylated following IL-7
binding to the IL-7Ra. The protein tyrosine kinase Pyk2, which is related to the focal
adhesion kinase, was shown to be associated with JAK1 and to play a role in survival
of a thymocyte cell line (101). JAKI1 activity is required for the IL-7 mediated
inhibition of TGF-B production and signaling by fibroblast (102). It has been shown
that mice deficient in JAK1 exhibited severely impaired thymic development and no

hematopoietic colony formation in response to IL-7 (103).

- STATs: STATs (Signal Transducer and Activator of Transcription factors), are a
family of transcription factors containing SH2 domains that are involved in cytokine
mediated signal transduction through the cytoplasmic region of cell surface receptors.
There are 7 different members (STATI1 to STAT4, STATSA, STATSB and STAT6) in
the STATSs family which are activated through JAK.

It has been shown that IL-7 can activate STAT1 and STAT3 (104), but animals
deficient in STAT]I, 2, or 3 do not show defects in thymocyte development. The SH2
domain of STATS docks at tyrosine 449 of the IL-7Ra to start the signaling pathway.
STATS signaling pathway is known for its anti-apoptotic activity which is exerted
through the regulation of expression of several Bel-2 family members and caspases. It
has been shown that IL-7 is required for the survival and development of T

lymphocytes, IL-7 is also required for the survival of pre and pro B cells by inducing
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the expression of the anti-apoptotic factors Bcl-2, Bel-xL, Mcl-1 and by reducing the
expression of the death proteins Bax, Bad and Bim (65).

1.3.3.2 PI3 kinase pathway

The phosphatidylinositol 3 (PI3) kinase is one of the downstream pathways of IL-7 that
regulates cell survival and proliferation of different cell types. The PI3 kinase pathway

has been demonstrated to be important for B and T cell development.

In human T cells, JAK3 associated with the p85 subunit of PI3 kinase following IL-7
stimulation leads to induction of PI3 kinase activation by phosphorylating p85. The
activation of PI3 kinase is essential for IL-7 mediated survival and proliferation of

human T cell precursors (65).

IL-7 induces activation of AKT, a key downstream target of PI3 kinase, in IL-7
dependent mouse thymocyte cell line (105) and human thymocytes (106). In turn,
activated AKT phosphorylates the dead protein Bad, and p27. In addition, AKT also
regulates an additional dead protein Bim, through the phosphorylation of forkhead
transcription factor FoxO3. By regulating the expression of the dead proteins Bad, p27
and Bim, IL-7 is involved in the regulation of cell survival and cell proliferation

through the PI3kinase/AKT pathway (65).
1.3.3.3  Src kinase pathway

The Src family protein kinases (SFKs) are membrane- associated non-receptor protein
tyrosine kinases that include nine members Src, Lck, Hek, Fyn, Blk, Lyn, Fgr, Yes and
Yrk. It has been shown that IL-7 activates Src kinases. IL-7 stimulation of pre- B cell
lines leads to the activation of p59fyn and p53lyn (107). Binding of IL-7 to the IL-7R
results in the activation of p56lck and p59fyn of Src kinases, but these are unlikely to
be the only pathways responsible for the proliferation of activated T cells in response to
IL-7 (108). In peripheral T cells, IL-7 provides signals in addition to the TCR signaling
pathways mediated by Ick/fyn for the cell survival and proliferation (109). However,
the IL-7/IL-7Ra activation of the Src kinase pathways leads to different degrees of cell

proliferation and homeostasis (65).
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1.3.3.4 IL-7 in metabolism

It has been shown that IL-7 participates in the maintenance of cellular metabolic
activity through the cellular uptake of glucose. In a IL-7 dependent thymocyte line,
glucose uptake was reduced following withdrawal of the cytokine (110). The
expression of glucose transporter type 1 (GLUTI), a protein involved in cellular
glucose transport, is regulated by the down-stream substrate of PI3 kinase, AKT. IL-7
promotes GLUT1 expression and increases glucose uptake in leukemic T cells through

PI3K and ATK(65).
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Figure 2. Outline of IL-7/IL-7R signaling pathways. Activation of different down-
stream components of the IL-7R pathway can lead either to cell survival and/or

proliferation.

1.3.4 IL-7 and IL-7Ra in lymphopenic condition

A study on the serum IL-7 levels in children, before and after 8 weeks from bone
marrow transplantation, showed a strong inverse correlation between the circulating IL-
7 levels and the absolute number of lymphocytes (111). This inverse correlation trend
between the IL-7 levels and number of CD4+ T cells was also observed in children and

adult patients receiving cancer therapy and HIV-1 infected patients (94, 112, 113). In
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cancer patients treated with cytotoxic chemotherapy, the circulating IL-7 levels
increased following CD4+ T cell depletion induced by chemotherapy; IL-7 serum
levels returned to baseline following recovery of CD4+ T cell counts after completion

of therapy.

In HIV-1 infected patients, elevated IL-7 level declines as recovery of the CD4+ T cell
counts take place after effective ART. The inversed correlation of serum IL-7 levels
with the numbers of CD8+ T cells and B cells is weaker as compared to CD4+ T cells
(113). Similar relationships were not observed between the number of lymphocytes and
other cytokines including IL-2, IL-4, IL-6, IL-2 and IL-15. This suggested that the
relationship of IL-7 and lymphocyte number was unique, and reflected the role of IL-7
in regulation of T cell homeostasis, in stimulation of lymphocyte development and

maintenance of peripheral T lymphocytes, especially CD4+ T cells.

As previously described, the binding of IL-7 to the IL-7R receptor leads to intracellular
signaling. It has been shown that the IL-7Ra is down-regulated in some chronic
infections such as Epstein-Barr virus (EBV), cytomegalovirus (CMV), hepatitis C virus
(HCV) and HIV-1 infection (114, 115). During lymphopenic condition associated with
HIV-1 infection, there is a decrease in the IL-7Ra expression on both CD4+ and CD8+
T cells (94, 116, 117). It has been shown that T cells expressing low levels of IL-7Ra
also express lower levels of the anti-apoptotic Bcl-2 molecule as compared with the IL-

7Ra-high T cells in the same donors (94).

The mechanisms leading to high level of circulating of IL-7 and IL-7Ra down-
regulation during HIV-1 infection are not yet clarified. There are however some
possible explanations for these phenomena. An “altruistic” hypothesis has been
proposed implying that a T cell that has been exposed to IL-7, and received a sufficient
survival signal, would cease consuming IL-7 by down-regulating IL-7R expression thus
allowing other cells to receive a survival signal (65). Moreover, since in HIV-1
infection the IL-7Ra is down-regulated on T lymphocytes, the efficiency of IL-7 on T
cells survival decreases due to lower consumption in spite of the high IL-7 levels in
circulation (118). Another possible explanation is that during HIV-1 infection, IL-7
may be accumulated in view of the fact that the number of CD4+ T cells is reduced.
The HIV-1 Tat protein acts by inducing IL-7Ra down-regulation, even in presence of
high IL-7 levels (119).
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In HIV-1 infection the majority of IL-7Ra low T cells are previously activated antigen-
specific T cell clones in late differentiation stages. That suggests the chronic antigenic

stimulation to provide a driving force for IL-7Ra down regulation (119).

1.4 IMMUNE ACTIVATION IN THE GUT MUCOSA DURING HIV-1
INFECTION

The intestinal mucosa plays an important function as an immunological barrier to
pathogens of the outside environment, and also permits a peaceful coexistence with the
commensal flora. It has been shown that the GI tract is the largest lymphoid organ in

the body, with an estimated surface area 200 times larger than that of the skin (120).

The epithelial layer of the GI tract consists of intestinal epithelial cells (IECs)
connected by tight junctions, mucus-secreting goblet cells and antimicrobial-peptide-
producing Paneth cells. Interspersed throughout the intestinal epithelium are the GALT,
including Peyer’s patches in the small intestine and isolated lymphoid follicles in the
colon, which contain immunoglobulin (Ig) A-secreting plasma cells. These different
cell populations create and support a mucus layer, containing IgA and antimicrobial
peptides, which dramatically reduces the number of bacteria at the barrier between the

epithelium and lumen (121).

HIV-1 infection causes damage on the GI tract structure. It has been shown that the
HIV-1 Tat protein inhibited the glucose uptake of enterocytes and that the HIV-1 gp120
induced increase of calcium concentration in enterocytes leading to a decreased ability
of intestinal epithelial cells to maintain the ionic balance. In chronic infection, HIV-1
causes the damage of intestinal epithelial barriers through apoptosis of enterocytes and
decreased luminal defensin. Also in the gut there is a massive depletion of CD4+ T
cells and a high number of infected CD4+ T cells which release virions continuously.
Due to the damage of the epithelial barrier there is an increase in microbial

translocation and an increased permeability of the intestinal epithelial barrier (122).

In acute infection: Studies conducted during the acute phase of SIV infection in rhesus
macaques demonstrated a rapid and almost complete loss of CD4+ T cells from the
intestinal lamina propria (39). The depletion of CD4+ T cells occurs at all mucosal
surfaces examined regardless of the route of infection, and was found to be due to HIV-1

targeting of CCR5+ memory CD4+ T cells which are the largest proportion of mucosal
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CD4+ T cells. It has been shown that 60% of the mucosal memory CD4+ T cells are
infected at the peak of viremia during acute phase of SIV infections, and in the infected
animals 80% of the infected cells are depleted within 4 days from the infection (123).
During HIV-1 infection in human, it was shown that a substantial level of CD4+ T cell
depletion occurs in the GI tract during HIV-1 infection; this pathogenic feature, which
occurs preferentially within the CCR5+T cells, can be found both during the early and
the chronic phases of HIV-1 infection (37, 38). Patients treated with ART during the
early stages of HIV-1 infection showed a more efficient reconstitution of CD4+ T cells

in the GI tract than individuals treated with ART during chronic HIV-1 infection (124).
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Figure 3. Immune responses in gut and HIV-1 pathogenesis. Acute HIV-1 infection
leads to CD4+ T cell death (black) in the gut, which destructs the mucosal barrier and
increases microbial translocation. Bacteria and bacterial components stimulate
immune cells to produce pro-inflammatory cytokines, which contribute to chronic HIV-
1 infection and immune activation. In turn, chronic immune activation leads to CD4+
(blue) and CD8+ (green) T cells expansion, thus creating more targets for direct
infection of CD4+ T cells (red). Chronic immune activation stimulates HIV-1
replication and also results in lymph node fibrosis, which limits lymph node function to
support healthy T cell homeostasis. Due to the fibrosis, CD4+ T cells are retained in
lymph nodes and become targets for direct HIV-1 infection and die. DCs, dendritic
cells; LPS, lipopolysaccharide; LN, lymph node, IL, interleukin; TNF, tumor necrosis
factor, INF, interferon. (Adapted from Brenchley J, Nature Immunology, 2006).
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Different mechanisms are proposed to explain the loss of T cells in the GI during HIV-
1 infection. Depletion of T cells can be a direct or indirect effect of the infection:
accordingly loss of CD4+ T cells may be mediated by direct infection (34), or caused
by an immune-mediated clearance of infected cells, or bystander apoptosis (35) through

CD95-CD95L dependent mechanism (38), or a combination of these mechanisms.

During the acute phase of HIV or SIV infection opposite to the depletion of CD4+ T
cells, there is an expansion and/or an influx of CD8+ T cells in the GI tract. However,
these CD8+ T cells fail to clear the virus or prevent virus replication and dissemination

during primary HIV-1 infection (125).

In chronic phase: Immune activation in HIV-1 chronic infection is an almost
pathognomic feature and one of the strongest predictors of disease progression. Some
of the manifestations of the chronic immune activation occurring during HIV-1
infection are increased T cell turnover, increased frequencies of T cells with activated

phenotype and increased serum levels of pro-inflammatory cytokines and chemokines

(Fig. 3).

In the GI tract, during chronic HIV-1 infection, a depletion of the CD4+ T cells
continues to occur and this process worsens the damage occurring in the immune
system during the acute phase of infection (126). The GI mucosal barrier suffers a
serious immunological and structural insult from the very early phases of the infection
and this process continues during the chronic phase of HIV-1 infection. Damage to the
GI tract during HIV-1 infection may result in microbial translocation. Recently, a study
has shown that chronically HIV-1 infected individuals have significantly increased
levels of plasma LPS as compare to healthy individuals. Microbial products such as
LPS, peptidoglycan and bacterial CpG DNA can directly stimulate the innate immune
system through the TLRs or other receptors. The study suggested that microbial
translocation may be an important mechanism causing systemic immune activation

during chronic HIV-1 infection (28).

In chronic HIV-1 infection, there is a robust and often poly-functional CD8+ T cell
response which continuously attempts to fight the HIV-1 infection in the GI tract and to
control viral replication at certain level. However the CD8+ T cells cannot clear the

chronic HIV-1 infection (127).

17



1.5 ANTIRETROVIRAL THERAPY AND IMMUNOTHERAPY

1.5.1 Antiretroviral therapy

ART is considered as the best option for HIV viral suppression and for reduction of
morbidity and mortality during HIV infection (128, 129). In spite of the fact that
current drugs do not eradicate HIV-1 infection, they help to prolong the relatively
healthy life of treated patients as compared to patients who do not receive ART. To
date, at least 5 ART drug classes have been recommended to be used for the treatment
of HIV infection by the World Health Organization (WHO): Nucleoside reverse
transcriptase inhibitors (NRTIs), Nucleotide reverse transcriptase inhibitors (NtRTIs),
Non-nucleoside reverse transcriptase inhibitors (NNRTIs), Proteases inhibitors (Pls)
and Integrase strand transfer inhibitors (INSTIs) (130). ART is lifelong treatment, and
it is currently recommended to use the combination of at least 3 medicines so called

highly active antiretroviral therapy (HAART).

Since HIV is genetically highly variable and the patients require lifelong treatment with
ART, the major problems with the current therapy are the emergence of drug resistant
HIV strains and side effects. In addition, HIV therapy is very expensive and patients
under ART treatment need to be monitored regularly and frequently with costly
laboratory tests including determination of CD4+ T cells counts and viral load,
rendering ART not easily accessible to all HIV infected patients in developing

countries (131).

Under ART, the viral replications is suppressed to a low level and the peripheral blood
CD4+ T cell number is increased leading to a certain degree of immune reconstitution.
A study in the GI tract showed that ART resulted in the viral load reduction, an
increased number of CD4+ T cells and a modest reduction in the number of apoptotic
cells in the rectal tissue (132). However, CD4+ T cell recovery in the tissue was poor
and occurred at a much slower rate than the increased of CD4+ T cells in peripheral

blood (124, 133).
1.5.2 Immunotherapy

In addition to conventional ART, immunotherapy strategies have been investigated to
improve immunological recovery during HIV infection. Several approaches have been

undertaken which yet have not given a final proof of clinical benefit.
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Adoptive therapy: In a adoptive therapy study, infused antigen-specific CTLs showed
the capacity to home to sites of virus replication, to retained lytic functions in vivo, and

transiently reduce the levels of circulating, productively infected CD4+ T cells (134).

IL-2 therapy: 1L-2, which is produced by activated T cells, induces proliferation and
cytokine production in T cells, B cells, NK cells and T regulatory cells (T reg). IL-2 has
been extensively studied in phases I-II trials, with the administration of IL-2 by
subcutaneous injection twice/per day. IL-2 led to increased CD4+ T cells numbers in
HIV-1 infected patients (135-138) and also to a significant increase of the survival of
CD4+ T memory cells (139). The studies suggest that IL-2 could help in maintaining
the functionality of immune cells important for host defense against new antigens as
well as for long-term memory to opportunistic infections. To investigate the roles of IL-
2 in clinical benefits during HIV-1 infection, two large phase III trials were conducted.
The ESPRIT (Evaluation of Subcutaneous Proleukin in a Randomized International
Trial) study was conducted in patients with CD4+ T cell count> 350 cells/ul and the
SILCAAT (Subcutaneous, Recombinant, Human IL-2 in HIV-Infected Patients with
Low CD4 Counts under Active Antiretroviral Therapy) study in patients with CD4+ T
cells between 50-299 cells/ul. Both studies compared the effect of IL-2 plus ART with
ART alone. The primary end-point of both studies was opportunistic disease or death.
The CD4+ T cell counts were significantly higher in the IL-2 treated group as
compared to patients included in the control group. However, no clinical benefit of I1L-2
was found in either studies since the increase in CD4+ T cells did not reduce the risk of

opportunistic infections and death (140).

IL-7 therapy: This cytokine plays an important role in T cell homeostasis, and
contributes to T cell development and survival. One prospective open-label, phase 1/
ITa trial was conducted to investigate the safety and efficacy of IL-7 administered to
HIV-1-infected patients treated with HAART. The trial included 13 HIV-1 infected
patient under HAART with CD4+ T cell counts between 100 and 400 cells/ul and
plasma HIV-1 RNA levels < 50 copies/ml. Recombinant human (rh) IL-7 was
administered (in presence of HAART) with eight subcutaneous injections of two
different doses three times a week for a period of 16 days. The rhIL-7 was well
tolerated with minor side effects and induced a sustained increase of naive and central

memory CD4+ and CD8+ T cells. The study showed that in lymphopenic HIV-1
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infected patients, rhIL-7 therapy induced a substantial quantitative increase in T cells

for 48 weeks (141).

In the phase I prospective randomized placebo-controlled study, AIDS clinical trials
group (ACTG), a single subcutaneous dose of rhIL-7 was well tolerated with biological
activity leading to increased numbers of circulating CD4+ and CD8+ T cells,
predominantly of the central memory phenotype. The number of T reg cells (CD25high
CD127"°") number was not affected by rhIL-7 therapy (142).

The studies showed that rhIL-7 therapy led to a sustained increase of naive and central
memory CD4+ and CD8+ T cells, and improved T cell function by inducing IFN-y
and/or IL-2 in response to HIV antigen; these results suggest that patients may benefit

from intermittent therapy with IL-7 in combination with ART.

IL-7 therapy was well tolerated in HIV-1 infected patients. However, there are some
points which need to be considered. Experiments conducted in vitro showed that 1L-7
may up-regulate HIV-1 replication(143), and can enhance HIV-1 proviral reactivation
(144). A transient level of elevated HIV mRNA was observed in plasma in 4 of 8
patients receiving 10 pg/kg rhIL-7 dose in (141) and 6 of 11 rhIL-7 treated patients in
(142). In this latter study, at day 56, HIV viral load returned to <50copies/ml in all
except one patient. In addition, in one study (142) the T reg population was studied;
since it was concluded that this population, on the contrary of CD4+ T cells, was not
expanded the risk remains that development of autoimmunity or other immune

dysregulations may accompany IL-7 treatment.

IL-12, IL-10, and IL-15 therapies: 1L-12 stimulates T lymphocytes and NK cells to
generate a Thl-type immune response. A randomized phase I study was conducted to
assess the effect of rhIL-12 therapy in HIV-1 infected patient under HAART. The
result showed that IL-12 was well tolerated but had no effect on T lymphocytes
subpopulations, antigen specific immune response or viral load (145). The studies on

IL-10 and IL-15 therapy also showed no clinical benefit (146, 147).

HIV vaccines: The development of safe prophylactic and therapeutic vaccines with
high efficacy is an important goal for the HIV research field. An ideal HIV vaccine
should induce cross-neutralizing antibodies against wild-type RS virus from different
clades, strong and broad CD4+ T cells and CD8+ T cells responses and create long-

term memory and mucosal immunity (148). Several approaches have been used for
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vaccine development such as using live attenuated, inactivated, virus-like particles,
DNA and recombinant vaccines (149). However, despite intensive research, the
development of a good candidate vaccine remains elusive. The challenge of developing

a HIV vaccine needs new approaches and require new basic research insights (150).
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2 AIMS OF THE THESIS

The overall aim of thesis is focused on the regulation of production and role of IL-7 in

HIV-1 infection. The specific aims of the thesis include:

22

To analyze the relationship between serum IL-7 concentrations and T cell
numbers in HIV-1 infected patients with variable degree of immune

dysfunction.

To evaluate the role of CD28- T lymphocytes in inflammatory conditions and
immune activation through the modulation of DC and T cell responses during

HIV-1 infection.

To investigate the role of IL-1B and IFN-y, cytokines produced during
inflammatory conditions, in regulation of IL-7 production by stromal and

intestinal epithelial cells.

To investigate the mechanism through which high levels of IL-7 lead to up-
regulation of CD95 receptor on B cells and increased B cell apoptosis during

HIV-1 infection.

To analyze the relationship between levels of inflammatory cytokines and IL-7

during HIV-1 infection.



3 MATERIALS AND METHODS

The materials and methods used in the studies enclosed in this thesis are summarized in

the following sections.
3.1 PAPERI

Patients: Serum samples and data on T cells numbers were collected for 19 treatment
naive, chronically HIV-1 infected patients in a study period between 13-56 months
during 1983-1987 at the Karolinska University Hospital. In addition, 45 HIV-1 infected
patients from a previously characterised long-term nonprogressor (LTNP) cohort (151)
together with 16 ART-treated, chronically HIV-1 infected individuals from the San
Raffaele Institute (Milan) were included in the study. The ethical commissions at the

Karolinska Institutet and San Raffaele Institute approved the studies.

Measurement of IL-7 in serum: 1L-7 concentration in serum was determined by the
Enzyme-linked immunosorbent assay (ELISA) Quantikine high sensitivity
immunoassay (R&D Systems, Minneapolis, MN, USA) according to manufacturer’s

recommendations.

Statistical analysis: Statistical analyses were performed with the Sigmastat program
(SPSS Inc., Chicago, IL, USA). Linear regression analysis or Spearman rank order
correlation was used to analyse the association and correlation between the variables.

IL-7 concentrations in different cohorts were compared using t-test.
3.2 PAPERII

Patients and controls: Blood samples were obtained from 12 HIV-1 infected patients,
9 on combination therapy and 3 treatment naive. The viral load ranged between <50
and 139 000 copy/ml, and the mean CD4+ T cell count was 474 cells/ul. Blood was
also collected from 8 healthy donors. The ethical commission at the Karolinska

Institutet approved the studies.

Cellular studies: The CD28- and CD28+ T cell subsets were purified by cell sorter or
magnetic separation from peripheral blood. The monocyte-derived DCs were

produced by culturing purified monocytes with Granulocyte-macrophage colony-
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stimulating factor (GM-CSF) and IL-4 for five days. The cell markers were measured
by flow cytometry.

Cell proliferation was assessed as it follows. Naive T cells isolated from healthy
individuals were stained with carboxyfluorescein (CFSE) and then cultured at the
density of 10%ml in the presence of DCs (10°/ml) pre-treated for 24 hours with
CD28+, CD28+CCR7-, and CD28- T cells. Proliferation of the CFSE-labeled T cells

was analyzed after four days of activation using flow cytometry.

The production of cytokines in cell culture supernatants, including IL-12, IL-10 and

TNF, was measured by ELISA.
3.3 PAPERIIL

Cell lines and culture conditions: The human colon adenocarcinoma epithelial cell
line DLD-1 and the human bone marrow stromal cell line HS27 were cultured in
RPMI-1640 medium and Dulbecco’s modified Eagle’s medium (DMEM; Sigma, St
Louis, MO, USA), respectively, with 2 mM L-glutamine, 1% penicillin—streptomycin
and 10% heat-inactivated foetal bovine serum (Sigma) in polystyrene flasks with 5%
CO2 at 37 °C. Both cell lines were obtained from the American Type Culture
Collection (ATCC).

The cells were seeded in polystyrene 12-well plates (Corning Incorporated, Corning,
NY, USA) with medium at a density of 3 x 10° cells/ml for 36 h prior to each
experiment. For the experiments, the cells were washed with phosphate-buffered
saline (PBS) and fresh medium was added with or without the cytokines: IL-1f
(10 ng/ml), IFN-y (50 ng/ml), TNF-a (20 ng/ml), IL-2 (10 ng/ml) or the combination
of IL-1p and IFN-y, was added for 6 h (for mRNA expression) or for 24 h (for protein

determination).

Flow cytometric analysis of cytokine and chemokine receptors on DLD-1 and HS27
cells: Cell surface markers of DLD-1 and HS27 cells were investigated by staining
the cells with different antibodies and analysis by Flow cytometry; the data was

analyzed by WinMDI 2.9 software (Joseph Trotter, La Jolla, CA, USA).

Relative quantification of human IL-7 mRNA in cell lines: Cellular RNA was isolated
from DLD-1 and HS27 cell lines using RNeasy Mini Kit (Qiagen, Hiden, Germany).
Complementary DNA (cDNA) was synthesized by the Ready-To-Go You-Prime
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First-Strand Bead Kit (GE Healthcare Bio-Sciences Corp, NJ, USA) and random
primers (Invitrogen, CA, USA).

Relative quantification real-time polymerase chain reaction (PCR) assay was
performed by 7900HT ABI PRISM Sequence Detector System (Applied Biosystems)
with the human IL-7 assay on-demand kit (catalogue number Hs00174202 m1) and
the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) assay (catalogue number:
4333764F) as an endogenous calibrator (Applied Biosystems, Foster City, CA, USA).
The relative expression levels of IL-7 mRNA in the cells, previously stimulated with
different cytokines, were compared to the average of IL-7 mRNA expression levels
on non-stimulated cells and normalized to the GAPDH mRNA expression levels by

the 2[-Delta Delta C(T)] method.

Expression gene profiles using the Affymetrix microarray platform: Total RNA was
harvested from the HS27 cell line at 6 h after stimulation with either IL-1p or IFN-y,
or the combination of both cytokines; non-stimulated cells were used as controls.
RNA was harvested from three independent experiments for each type of stimulation
(IL-1B, IFN-y or both) and controls. HS27 gene expression profiling was performed
by using the whole-genome microarray Human Gene 1.0 ST Affymetrix platform
(Affymetrix, Inc., Santa Clara, CA, USA) according to standard manufacture’s
protocols. Image analysis was performed using Affymetrix Command Console
(AGCC) v 1.1, and downstream processing was performed with Affymetrix

Expression Console (EC) v 1.1.

Measurement of IL-7 and chemokines: 1L-7 concentration in the culture supernatant
was determined by Quantikine HS high-sensitivity ELISA kit (R&D Systems); the
detection range of this cytokine in the supernatant was 0.156—10.0 pg/ml. The levels
of CCLS, CCL20 and CXCLI11 in the HS27 and DLD-1 culture supernatants were
also tested by Quantikine HS high-sensitivity ELISA kits (R&D Systems). All

samples were run in duplicate.

Statistical analysis: Statistical analyses were performed with Sigmastat software
(SPSS Inc., Chicago, IL, USA). Pearson product-moment correlation coefficient test
was used to measure the correlation between IL-7 and other cytokines. Student’s ¢-
test was used to compare the mean values of IL-7 mRNA expression in cells or IL-7

concentration in culture supernatants between different treatments.
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3.4 PAPERIV

Blood collection and cell culture: Blood samples were collected from healthy blood
donors and from 51 HIV-1 infected patients, 49 men and 2 women. 31 patients were on
combination therapy and 20 were not treated. The ethical committee at the Karolinska
Institutet approved the studies. PBMCs were separated by Ficoll gradient centrifugation
(Lymphoprep, Oslo, Norway). For cell cultures monocytes, T and B lymphocytes were
separated using respectively the CD14 human microbeads, the Pan T cell Isolation Kit
and B cells isolation kit IT (Miltenyi Biotech, Bergisch Gladbach, Germany). The purity
of the selected cell populations was 90-97% as measured by flow cytometry. Cells were
cultured at a density of 1 x10° cells/ml in RPMI-1640 containing L-glutamine, 10%
FCS and antibiotics.

Flow cytometric analysis: Flow cytometric analysis of stained cells was performed by
using a FACS LSR II (Becton Dickinson, San Diego, CA) and the data were analysed
with FlowJo v. 8.4.4 software (Tree Star Inc., Ashland, OR).

Apoptosis detection: CD95 mediated apoptosis was triggered by human recombinant
CD95 ligand (CD95L) (1mg/ml), cross-linked with 20 mg/ml anti-His antibody (both
from R&D System, Minneapolis, MN). FITC-conjugated Annexin V reagent (BD
Pharmingen) was used to measure apoptosis according to manufacturer’s instructions.
The fractions of cells stained as Vivid negative-Annexin V positive CD3 positive (T

lymphocytes), or CD19 positive (B lymphocytes) were considered as apoptotic cells.

Protein Array: Sorted B cells were incubated in IL-7 treated or non treated T cell
supernatants for 30 minutes and the phosphorylation patterns was determined using the
Human Phospho-Kinase Array Kit (R&D Systems) according to manufacturer’s

instruction.

Detection of IFN-y mRNA levels: IFN-y mRNA levels in T cells were detected by real-
time PCR with a 7900 CD95T ABI PRISM Sequence Detector System (Applied

Biosystem).

Measurement of cytokine concentrations: IFN-y in culture supernatants was measured
by ELISA (BD Pharmingen). Level of IFN-y, IL-7 and IL-2 in HIV-1 plasma samples
were quantified by Luminex technique with Milliplex® Map kit, High Sensitivity
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Human Cytokine Immunoassay (Millipore Corporation, 290 Concord Road, Billerica,

MA 01821, USA).

Statistical analysis: Statistical analysis was performed using the Prism (version 5.0a for

Mac OS X, GraphPad Software, La Jolla, CA) using t test and Spearman test.

3.5 CORRELATION OF IL-7 WITH INFLAMMATORY CYTOKINES IN HIV-1
INFECTED PATIENTS RECEIVING ART THERAPY IN VIETNAM
(UNPUBLISHED RESULTS)

Sample collection: Blood samples were collected from 18 HIV-1 infected individuals,
classified as AIDS. at the Tayho District Health Center, Hanoi, Vietnam. Among these
patients 11 were males and 7 females; the mean age was 32 years. After obtaining
written informed consent, blood was collected from all patients at six time points
during 1-year period corresponding to start of treatment and 2 weeks, 1, 3, 6 and 12
months after the start of the treatment. Blood samples from 24 healthy HIV negative
individuals, age and sex matched, were also collected. The Hanoi Medical University

Review board in Bio-medical Research Ethic approved the study.

CD4+ T cell count: CD4+ T cells were measured by BD FACScount (Becton
Dickinson, USA) in all fresh blood samples.

HIV-1 viral load: HIV-1 viral load was determined in plasma by the COBAS TagMan
HIV-1 Test (ROCHE Molecular Systems, Inc., Branchburg, NJ, 08876 USA).

Measurement of cytokine concentrations: The concentration of IL-13, IL-2, IL-7 and
IFN-y were simultaneous quantified in plasma samples by Luminex technique with
Milliplex® Map kit, High Sensitivity Human Cytokine Immunoassay (Millipore
Corporation, 290 Concord Road, Billerica, MA 01821, USA).

Statistical analyses: Statistical analysis was performed with Sigmastat software
(SPSS Inc., Chicago, IL, USA) using Pearson product-moment correlation coefficient

test, ANOVA on ranks and t test.
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4 RESULTS AND DISCUSSION

4.1 RELATIONSHIP BETWEEN IL-7 LEVELS AND T CELL COUNTS IN
HIV-1 INFECTED PATIENTS (PAPERI)

It has been shown that during HIV-1 infection a negative correlation exists between
high levels of IL-7 and CD4+ T cell counts in blood (94, 112, 113). In this
lymphopenic condition the high IL-7 levels can be a potent factor to promote the
recovery of T cells through increased survival and proliferation. However it is still not
fully understood what exactly regulates the IL-7 production and the roles of IL-7 in
controlling homeostasis of T lymphocytes during HIV-1 infection. We got the
opportunity to analyze longitudinal samples collected at multiple time points from
HIV-1 infected individuals naive to treatment, and specimens from ART- treated
patients and LTNPs (paper 1). We investigated the IL-7 levels in relation to different
subgroups of T cells in HIV-1 infected patients with different degree of

immunodeficiency.

In the treatment naive HIV-1 infected individuals, we measured the IL-7 levels at 2-4
time points during a period of 13-56 months and observed a correlation of IL-7 with
different groups of T cells. In this study group, we found no correlation between IL-7
levels and CD4+ T cells, but we observed a statistically significant negative correlation
between IL-7 and CD8+ T cells and CD3+ T cells. This indicated a potential role of T
cell lymphopenia in increased serum IL-7 levels in ART naive individuals. However,
we did not observed any correlation between the changes of T cell numbers during the
study period with the IL-7 levels. This finding may indicate that during the late phase
of HIV-1 infection high levels of IL-7 may not be efficient to stimulate the increase of

T cell numbers.

We analysed samples collected at different time points from chronic HIV-1 infected
patients naive to treatment in order to assess the changes of IL-7 levels in relation to the
numbers of CD4+ T and CD8+ T cells over time. We found a wide variation in the
correlation of IL-7 with CD4+ and CD8+ T cells among the patients that may reflex
individual differences. This suggests that IL-7 levels may play a role in certain patients
during chronic HIV-1 infection, perhaps only in those patients whose immune system is

yet not exhausted and is able to respond to IL-7 for T cell homeostasis.
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A recent study showed that HIV-1 infection led to collagen deposition and fibrosis
which restricted T cell access to the survival factor IL-7 on the fibroblast reticular cells
(FRC), a source of IL-7 production, resulting in apoptosis and depletion of T cells (46) .
In turn, depletion of T cells led to a reduced production of lymphotoxin-3, a survival
factor for FRCs. These events thus create a vicious cycle of the depletion T cells and
damage the FRC network. These new findings indicate that IL-7 may still have a
positive role in regulating T cells homeostasis when fibrosis has yet was not occurred in
FRC; thereafter IL-7 producing cells are damaged by collagen deposition. The level of
CD4+ T cell reconstitution may therefore also be dependent on the level of fibrosis of

FRC which in turn affects the level of IL-7 production.

We compared the IL-7 levels in plasma obtained from LTNPs patients, characterized
by CD4+ T cells counts of at least 500cells/pl, viral control for 7-10 years without
ART, asymptomatic HIV-1 infection and good health condition, with the levels found
in chronic HIV-1 patients under ART. There was no difference for the IL-7 levels
between the two groups. We also compared the IL-7 levels of 20 patients who lost their
LTNP status during a 3 year follow-up period and where the CD4+ T cell number
declined under 500cells/pl and the viral load increased with patients with stable LTNP
status. Interestingly, the IL-7 levels were significantly lower in the patients with stable
LTNP status than in patients who lost their LTNPs status during the follow-up period
(Fig. 4). This finding can be a valuable biological marker to predict the disease
progression in HIV-1 infected LTNPs.
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Figure 4. Serum IL-7 level in LTNP patients who lost their LTNP status and stable
LTNP patients. IL-7 concentration was measured and compared between the two
groups of patients.
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As introduced above, IL-7 is an important survival and proliferation factor for T cells;
accordingly, when the IL-7 level is high, the T cells number should likely be
maintained stable. However it is remarkable that in those patients who lost the LTNP
status the CD4+ T cell number declined in spite of the fact that IL-7 levels were high. It
is possible that high levels of IL-7 could act to induce viral replication in the viral
reservoirs in HIV-1 infected individuals (143, 144). Some explanations for clinical
progression from the LTNP status have been previously discussed, including aberrant

activation of the immune system (152).

In conclusion, this study presented in paper I showed that in chronic HIV-1 infection,
increased IL-7 concentration is generally observed in parallel with T cell depletion. An

increase of IL-7 level in LTNPs may be predictive of disease progression.

4.2 POTENTIAL ROLE OF CD8+CD28-T CELLS IN IMMUNE ACTIVATION
DURING HIV-1 INFECTION (PAPER II)

CD28 is a cell membrane receptor which is expressed on most of the CD4+ T cells and
CDS8+ T cells in human peripheral blood. CD28 acts as co-stimulatory molecule, which
is required for T cell activation when binding to its ligand B7.1 (CD80) or B7.2 (CD86)
on activated APCs (153). CD28 is down-regulated upon T cells activation. Loss of
CD28 on T cells is the most consistent factor related to decline of immune responses
during aging in humans. It has been shown that at birth almost all human T cells
express CD28; by the age 80, on the contrary, about 10-15% of peripheral blood CD4+
T and 50-60% of CD8+ T cells lack CD28 expression (154). Beside, the increase of
CD28- T cells population has also been associated with persistent inflammatory
conditions such as rheumatoid arthritis(155), multiple sclerosis (156) and Wegener’s

granulomatosis (157).

The CD28- T cells population is expanded during the course of HIV-1 infection,
representing between 50-80% of the peripheral T cell pool, mostly CD8+ T cells (158-
160). It has been shown that the increase of the CD8+CD28- T cells is associated with
the suppressor function of this sub-set of T cells during HIV-1 infection (161, 162). The
suppressor T cells exert their immunosuppressive effects on T cell activation by
modulating the T cell activating potential of DCs or by directly affecting activated T
cells through soluble mediators (161, 163). In this study (paper II) we aimed at
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investigating whether the increased of the CD28- T cell population observed during
HIV-1 infection could influence DC functions and thus contribute to immunodeficiency

occurring during the course of HIV-1 infection.

CD28+ and CD28- isolated from HIV-1 infected and healthy individuals were co-
cultured with monocyte-derived DCs for 24 hours. After that DCs were stimulated with
LPS for another 24 hours and thereafter the DC’s activation markers HLA-DQ, CD86
and CD83 were measured (Fig. 5). Our data showed that, either CD28+ or CD28- T
cells were able to induce a mature DC phenotype by inducing up-regulation of those
three activation molecules. Interestingly, CD28- T cells induced the same level of
activation on DCs as CD28+ T cells. In addition, neither of those T cell populations

was able to inhibit LPS- induced maturation of DCs.
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Figure 5. Outline of the experimental design for the study.

We also measured the production of pro-inflammatory cytokines by DCs and found
that the presence of CD28- T cells, instead of having an inhibitory effect, strongly
increased IL-12 and TNF production by DCs induced by LPS. The production of the
anti-inflammatory cytokine IL-10 was not changed by the presence of any of the T cell

populations.
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We next evaluated whether CD28-T cells purified from HIV-1 infected and healthy
individuals were able to affect the proliferation of naive T cells triggered by DCs and
anti-CD3. Purified CD28- T cells, CD28+ T cells and CD28+CCR7- effector memory
T cells were cultured with DCs for 24 hours (Fig. 5). Thereafter isolated naive T cells
were added to cultures and stimulated by anti-CD3 mAbs. All three T cell subsets pre-
incubated with DCs slightly affected the proliferation of the third party T cells. We
found that there was a slight reduction in the number of proliferating T cells when DCs
were cultured in presence of CD28- T cells and of CD28+CCR7- memory cells as
compared to CD28+ T cells, possibly reflecting negative feedback functions created by
antigen-experienced T cells to limit further T cell activation. Interestingly, the
proliferation of third party T cells was equally observed in both HIV-1 infected and
healthy individuals.

In contrast to the immune suppressive functions of in-vitro generated CD8+CD28- T
cells shown in previous publications (161, 163), our results indicated that naturally
occurring CD28- cells do not show suppressor functions but these cells contribute to
increased DC activation. In conclusion, our study showed that the accumulation of
CD28- T cells during HIV-1 infection may not lead to DC or T cell suppression but that
this population may contribute to accelerated inflammatory reactions and immune
activation through increased production of inflammatory cytokines by DCs. It is of
interest to point out that CD28- T cells are expanded during HIV-1 infection although
they have a low level of expression of the IL-7Ra. (94).

4.3 REGULATION OF IL-7 PRODUCTION BY PROINFLAMMATORY
CYTOKINES (PAPER IlI)

As mentioned above, IL-7 is an essential cytokine in T cell homeostasis and for
survival and proliferation of T cells especially in lymphopenic conditions. IL-1P, a
highly active proinflammatory cytokine, is efficiently produced by macrophages upon
LPS-mediated TLR4 stimulation (164). In HIV-1 infection, IL-1p levels were shown to
increase during primary infection to decline to undetectable levels during the chronic
stage of infection (165). Single strain RNA (ssRNA) HIV genomes, which can be
considered as pathogen-associated molecular patterns (PAMPs), can activate the
inflammasome leading to IL-1f production from macrophages and DCs as part of

innate immune responses (166, 167). A published study has shown that HIV derived
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ssSRNA is recognized from TLR7 and TLRS8 and stimulates macrophages and DCs to
secrete proinflammatory cytokines (168); the production of IL-1B upon these
conditions has not been assessed. In addition, the HIV-1 glycoprotein gp120 has been
shown to induce IL-1f release from macrophages in vitro (169). During the early stage of
HIV-1 infection, HIV-1 causes a strong damage to the GI tract structure and intestinal
epithelial barrier; there is a massive depletion of T lymphocytes and a high number of
infected CD4+ T cells in GI. Recently, a study showed that the intestine, which surface

is the largest in the body, is the major source for IL-7 production in vivo (84).

In addition, IFN-y, which is present in the human mucosa during inflammation (170),
has also been reported to have a regulatory role in IL-7 production (80). Different cell
types are known to produce IL-7 of which bone marrow stromal cells and intestinal
epithelial cells are among the main sources of IL-7 production. However, the
mechanisms and cellular factors regulating IL-7 production are still unclear. Therefore,
we investigated whether IL-1B and IFN-y regulate IL-7 production by intestinal
epithelial and bone marrow stromal cells (paper III). In a setting in which damage of
the epithelial barrier leads to the compromised homeostasis of immune cells, the
modulation of IL-7 levels during HIV-1 infection may impact on survival of T cells in

the gut.

The presence of IFN-y in culture consistently upregulated the production of IL-7 from
stromal and epithelial cells (Fig. 6). To investigate the impact of IL-1B on the
expression of IL-7 mRNA induced by IFN-y, we stimulated the cells with the
combination of both cytokines. We found that IL-1p was able to down-regulate IL-7
mRNA expression in both DLD-1 (P =0.006) and HS27 cells (P <0.001). Moreover,
for the HS27 cells, IL-1B completely abrogated the positive effect of IFN-y on IL-7
mRNA expression (Fig. 6a,b). Of relevance is that IL-1B induced a consistent down-
regulation of IL-7 in the HS27 cells in the range of 1-100 ng/ml, with a maximum

effect reached already at 1 ng/ml (Fig. 7).
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Figure 6. Regulation of IL-7 production at mRNA and protein level by IL-1f and
IFN-y in DLD-1 and HS27 cells. (a) and (b) Relative expression of IL-7 mRNA
measured by real-time PCR in DLD-1 and HS27 cells with and without treatment
with different cytokines for 6 h. (c) and (d) IL-7 protein levels measured by
quantitative ELISA in culture supernatants of DLD-1 and HS27 cells with different
cytokines and in control cultures at 24 h. The results represent the mean values and
standard deviation of four different experiments.
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Figure 7. The effect of different concentrations of IL-1f on the regulation of IL-7
mRNA expression in HS27 cells. Relative expression of IL-7 mRNA was measured
by real-time PCR in HS27cell line exposed to different IL-1 concentrations.
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The IL-7 concentration of supernatants collected at 6 and 24 h from cells treated with
IL-1B, IFN-y, IL-2, TNF-a and the combination of IL-1B and IFN-y, were tested by
quantitative ELISA (Fig. 6c,d). At 6 h, IL-7 was not detectable in any of the
supernatants of the cytokine-treated or control cells (data not shown). However, at 24 h,
both cell lines spontaneously produced a measurable amount of IL-7 protein, with a
higher concentration per cell number in HS27 cells compared to DLD-1 cells (2.2
pg/ml and 1.8 pg/ml per 10° cells, respectively). Of note, the patterns of IL-7 protein
levels in the supernatants from the treated cultures were similar to those of the mRNA
levels. Treatment with IFN-y and IL-1f significantly enhanced (DLD-1, P =0.003;
HS27, P=0.012) or reduced (DLD-1, P=0.01; HS27, P <0.001), respectively, the IL-
7 production in both cell types. In addition, treatment with the combination of IL-13
and IFN-y caused a significant reduction in IL-7 protein production, in cultures of
either cell types, compared to IFN-y-treated cultures. This effect of IL-1 was more
pronounced in HS27 cells than in DLD-1 cells (Fig. 6¢,d). Stimulation with IL-2 and
TNF-a had no effect on IL-7 production.

To investigate whether treatment of HS27 cells with IL-1p and/or IFN-y could lead to
changes in the expression of genes important for regulation of immune responses, we
derived a gene expression profile of the stromal HS27 cell line (treatment with IL-1
and/or IFN-y, or no treatment) by microarray analysis using the whole-genome
microarray Human Gene 1.0 ST available in the Affymetrix platform. For each gene
and treatment group an average value of expression was derived from the 12 samples
analysed, including control cell cultures (» = 3) and cultures treated with IFN-y (n = 3),
IL-1B (n = 3) and the combination of the two cytokines (n = 3) (Fig. 8).

One interesting aspect of the biology of epithelial and stromal cells in primary and
secondary lymphoid organs is their capacity to produce chemokines which regulate the
recruitment of immune cells into the tissue. For that reason, we analysed the gene
profile of chemokines relevant for T cell and neutrophil migration. It is interesting that
of the 18 genes for chemokines presented in Fig. 9 and included in the Affymetrix
platform, 14 were dysregulated by the presence of either IL-1B or IFN-y, or the
combinations of these two cytokines. For the CCL8, CCL20, CXCL9, CXCLI10 and
CXCLI11 genes, the expression was increased more than 500-fold. We confirmed by
ELISA that the treatment of DLD-1 and HS27 cells with IL-1B or IFN-y, or the
combination of IL-1f and IFN-y, induced the production of the chemokines CCLS5,
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Figure 8. Microarray profiles of immune response genes altered upon treatment of
HS27 cell line with IL-108, IFN-y, or the combination of the two cytokines as
compared to control HS27 cells without any stimulation. Heat map of the immune
response genes, which are up- and down-regulated upon different treatments. Only the
genes that display significant changes between any of two groups in t-test with
p=<0.0005 with fold change > 4 or < -4 are shown. The color from red to blue
represents from high to low gene expression level, respectively. Each column
represents data from an independent culture; the control culture and each type of
treatment was run from the mRNA of 3 independent cultures.

CCL20 and CXCLI11 in culture supernatants. These are three important chemokines
that regulate the homing of T cells to lymphoid tissues, and in spite of the different
amount of chemokines produced by the individual cell lines, the cumulative effect of

production of these chemokines may be T cell chemoattraction.

It has been shown that during acute HIV-1 infection there is a consistent increase in the
expression of both IL-1B and TNF in the GALT and peripheral lymphoid tissue. The
expression of IFN-y also increased significantly in these tissues (171). Another study
showed that translocation of microbial components, occurring through the gut
epithelium during HIV-1 infection (28), may lead to production of IL-1p and IFN-y by
macrophages stimulated through the TLRs. In addition, increased levels of HIV-1
ssRNA in viremic patients can also stimulate directly macrophages and DCs to produce
inflammatory cytokines through PAMP receptors (166-168). In this setting, our
findings of the effect of IL-1B and IFN-y on the production of IL-7 by epithelial and
stromal cells may contribute to the understanding of pathological events of CD4+ T cell
depletion in lymphoid tissues during HIV-1 infection. IL-1p, released from activated
macrophages and DCs as result of the inflammatory process in the gut, may lead to
reduced IL-7 production by epithelial cells locally; in turn low level of IL-7 affect the

survival of T cells present in this environment.
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Figure 9. Microarray gene expression profile of chemokines in HS27 cells. The
microarray gene expression profiles of chemokines changed upon treatment of HS27
cells with IL-1 and/or IFN-y, as compared to control cells without stimulation at 6 h.
**P < 0.001; *P < 0.01.

During the early stages of HIV-1 infection, CD8+ T cell counts were found to be
increased in the GALT (171). The CD8" T cells are probably recruited to the GALT in
order to eliminate HIV-1 infection. In our study, we examined whether the pro-
inflammatory cytokines IL-1B and IFN-y could stimulate stromal and epithelial cells to
alter the production of factors important for chemoattraction of T cells, mimicking a
process that may take place in the inflamed intestinal mucosa. We found that there was
an upregulated production of several chemokines important for mobility of T cells and
some other immune cells by HS27 and DLD-1 cells treated with either IL-1 or IFN-y.
This suggests that the production of IL-1 and IFN-yin the gut by macrophages
activated by HIV-1 or microbial components may be directly involved in the homing of

CD8+ T cells to the gut mucosa to control the infection.

One of the important findings in our study is that IL-1p significantly down-regulated
IL-7 production in stromal and intestinal cells. If these findings reflect what happens in
vivo during HIV-1 infection in the gut, the possibility exists that low IL-7 level may
contribute to poor survival of CD4+ T cells in the gut inflammatory environment also

increased by active HIV-1 replication.
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4.4 THE IMPACT OF INFLAMMATORY CYTOKINES ON THE
EXPRESSION OF SURVIVAL FACTORS FOR PLASMA CELLS
(PAPER Ill AND UNPUBLISHED RESULTS)

One aspect on the work conducted on the exposure of stromal cells to inflammatory
cytokines is how the presence of IL-1p and IFN-y may contribute to the change of the

expression of cytokines and factors important for the survival of plasma cells (PCs).

PCs reside in the bone marrow (BM) next to reticular stromal cells, which form a
survival niche for the PCs and ensure long-term survival of PCs (172). In the special
microenvironment provided by reticular stromal cells, PCs produce a large amount of
antibodies. The control of PCs survival in niches in the BM is under the control of
survival factors produced from stromal cells which are not completely defined in

number and in relevance (173).

A population of stromal cells defined as VCAM1+ CXCL12+ -cells have been described
to provide survival signals to long lived PCs within the BM and to represent
approximately 1% of stromal cells (174). Other characterized factors which have been
involved in the survival of plasma cells include IL-4, IL-5, IL-6, IL-10, IL-21, the factors
BAFF and APRIL, and the adhesion molecules Inter-cellular adhesion molecule 1
(ICAM-1) and Vascular cell adhesion protein 1 (VCAM-1) (172, 173).

We analyze the microarray results obtained from the stromal cells cultured in presence
or absence of IL-1f and IFN-y in relation to survival factors for stromal cells (paper
IIT). The results are summarized in table 1. Interestingly, the expression of several of
the factors reported to be important for the survival of plasma cells is altered after
exposure to IL-13 and IFN-y. For some of the factors like IL-6, BAFF, ICAM-1 and
VCAM-1 the gene expression was significantly up-regulated more than 10 times. These
findings suggest that the result of an inflammatory environment in the BM, but also at
other anatomical sites where survival of B cells may be dependent on stromal cells, e.g.
the gut, may lead to a profound deregulation of the expression of survival factors for
PCs. The results presented in the table should be verified with other methods, before
conclusions can be reached. Also of interest is to culture PCs generated in vitro together
with stromal cells exposed to the action of IL-1B and IFN-yto verify how the

conditions created in vitro alter the PCs survival.
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Recent data indicate that memory CD4+ T cells are also maintained in the BM (172). In
the BM the specific T lymphocytes resided in contact with IL-7-expressing, VCAM1+
stromal cells, which also comprise about 1% of BM cells. The IL-7-expressing,
VCAMI1+ stromal cells are a distinct population from VCAM1+ CXCLI12+ stromal

cells.

IL-1B IFN-y IL-1B-+IFN-y
CXCLI12 -1,64* 1,06 -1,21
IL-4 1,11 -1,51% -1,53*
IL-5 1,02 -2,10% -2,35%*
IL-6 23,44%* 2,99%%* 26,29%*
IL-10 1,12 -1,09 -1,09
IL-21 -1,10 1,04 1,11
APRIL 1,18 1,01 -1,05
BAFF 1,16 15,31%* 12,89%*
ICAM-1 11,25%* 10,62%* 43,93%*
VCAM-1 3,18* 1,28 32,15%*

Table 1. Gene expression of factors relevant to plasma cell survivals which are
produced from stromal cells exposed to IL-1B and IFN-y. The gene expression
profiles of factors relevant to plasma cell survivals changed upon treatment of HS27
cells with IL-1p and/or IFN-y, as compared to control cells without stimulation at 6 h.
*p<0.05; **p<0.005.

4.5 ROLE OF IL-7 IN PROMOTING CD95-INDUCED APOPTOSIS OF B
CELLS IN HIV-1 INFECTION (PAPER IV)

During HIV-1 infection, in addition to the impaired function of T lymphocytes, several
severe dysfunctions occur to B cells leading to profound defects in the humoral

immune system. One parameter of B cells dysfunctions is the decreased survival of
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activated B cells in HIV-1 infected individuals which has been previously associated

with the increased expression of CD95- a receptor of TNF super-family (175) .

A study previously conducted from our group showed that the exposure of T cells to
IL-7 in culture lead to up-regulation of CD95 expression and priming of T cells for
CD95 mediated apoptosis in vitro. The potential role of IL-7 in up-regulation of CD95
was verified in vivo in IL-7 treated macaques and in HIV-1 infected patients through
the positive correlation of IL-7 levels and CD95 expression on T cells (176). During
HIV-1 infection the accumulation of immature, circulating transitional B cells has been
associated with high IL-7 levels indicating a potential effect of IL-7 on B cell
homeostasis (177, 178)

The aim of the study presented in paper IV was to investigate the mechanism leading to
increased apoptosis of B cells during HIV-1 infection, a chronic infection often
associated to high circulating IL-7 levels. We cultured PBMCs in presence of IL-7 and
interestingly, upon these conditions, B cells up-regulated CD95 expression at high
level, comparable to the upregulation of CD95 previously reported to occur on T cells
(176). Moreover, we analyzed CD95 expression on different B cell subsets and found
that all subsets of B cells showed comparable levels of CD95 up-regulation when
PBMCs were treated with IL-7 at 25ng and 2.5ng/ml for 5 days.

Since mature B cells do not express the IL-7Ra., IL-7 induced CD95 expression on B
cells is likely to occur through an indirect mechanism. The up-regulation of CD95 did
not occur on B cells which had been directly co-cultured with IL-7 for 3 days. But B
cells up-regulated CD95 expression in the presence of IL-7 treated T cells, either in co-
culture or when they were grown in a trans-well system, or when IL-7 treated T cell
supernatant was added to B cells. All these different conditions lead to a similar level of
CD95 up-regulation on B cell suggesting that IL-7 induces up-regulation of CD95

expression on B cells through a soluble factor released from T cells.

Next we investigated whether the up-regulation of CD95 expression on B cells induced
by IL-7 had an effect on B cell survival when B cells were exposed to recombinant
CD95L. PBMCs were cultured in the presence or absence of IL-7 for five days and
CD95 expression and sensitivity to CD95L induced apoptosis of both T and B
lymphocytes was monitored at different time points. As already shown for T cells, the

increase of IL-7 induced CD95 expression on B cells resulted in the increased
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sensitivity to CD95 mediated apoptosis at day 5 of culture, as compared to control cells.
These results indicated that the increase in CD95 expression on B cells, mediated by
IL-7, lead to a higher sensitivity of B cells to CD95 mediated apoptosis, suggesting a
potential link between lymphopenic conditions and B cell apoptosis during HIV-1

infection.

In order to identify the factor which is released from IL-7 treated T cells and which
leads to CD95 up-regulation on B cells, we next investigated signaling pathways
induced in B cells by IL-7 treated T cell supernatant by protein array. This array allows
the detection of 46 phosphorylation events linked to different signaling components.
Purified B cells were incubated in IL-7 treated or non-treated T cell supernatants for 30
minutes and thereafter B cell phosphorylation patterns compared. The results showed
that STAT1 phosphorylation on residue Y710 signal was increased in response to the
IL-7 treated T cell supernatant. To verify the results illustrated above, Fluodarabine, a
STAT1 inhibitor, was used in culture. The presence of Fluodarabine led to a
considerable reduction in the up-regulation of CD95 on B cells in presence of IL-7
treated T cell supernatant. The results strongly suggested that STAT1 serves as the

signaling mediator of IL-7 induced effects on B cells.

Phosphorylation of STAT1 occurs in response to both type I and I IFNs where type I
IFN induces signaling through the STAT1/STAT-2 heterodimers, and IFN-y mediates
its effects by inducing STAT1 homodimers (179, 180). In our experiments we did not
detect phosphorylation of STAT-2 or other STATs molecules by protein array
suggesting IFN-y as a possible mediator of IL-7 effects on B cells. Moreover, it has
been previously shown that IFN-y can induce CD95 expression on some transformed
cell lines (181, 182). In order to verify the involvement of IFN-y in mediating up-
regulation of CD95 expression on B cells, we measured the IFN-y concentrations in
supernatants from T cells cultured in presence or absence of IL-7. In line with our
hypothesis, IL-7 treatment induced the secretion of high levels of IFN-y by T cells, and
the IFN-y production remained high during 11 days of culture. The IFN-y production
by IL-7 treated T cells was also verified by IFN-y intracellular staining in IL-7 treated T
cells, and by real-time PCR for detection of I[FN-y mRNA. We also cultured B cells
with IL-7 treated T cell supernatants in presence or absence of IFN-y neutralizing
antibodies and the result showed that IFN-y neutralization efficiently blocked the ability
of IL-7 treated T cell supernatants to induce STATT1 activation and CD95 up-regulation
in B cells. These findings showed that IFN-y, induced by IL-7 treatment of T cells led
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to up-regulation of CD95 expression on B cells and also increased their sensitivity to

CD95 mediated apoptosis.

Our data showed that the production of IFN-y by T cell is dependent on IL-7
concentration. It has been shown that stromal cells are able to concentrate this cytokine
on their cell surface and to deliver it to IL-7 sensitive cells; these properties of stromal
cells may also have an impact on the efficiency of IL-7 delivery to target cells (183,
184) since stromal cell may be able to concentrate low IL-7 concentration in order to
assist T cells. We tested whether the IL-7 induced IFN-y production from T cells can be
further augmented by cell types that present IL-7 on their cell surface. The HS27 cell
line or human monocytes were cultured in 96-well plates and pretreated with different
concentrations of IL-7 for 2 hours at room temperature; thereafter, purified T cells were
added to the cultures for 3 days. [FN-y production was measured by ELISA after 3 days
of culture. The results showed that the presence of the HS27 cell line had a strong effect
on the IL-7 induced IFN-y production in T cells. Monocytes, although less efficiently
than HS27, could also increase IFN-y production induced by IL-7. These results
showed that stromal cells surrounding T lymphocytes in the various tissues may also

have a strong impact on IL-7 efficiency.

To verify the potential role of IL-7 in regulation of B cell survival in lymphopenic
conditions, we studied the expression of CD95 in B cells and the IFN-y and IL-7 serum
levels in a Swedish cohort of 51 HIV-1 infected patients. Interestingly, the result
showed a strong positive correlation between IL-7 and IFN-y concentrations in the
serum (p<0.0001, r=0.68) demonstrating the potential effect of IL-7 on IFN-y
production from T cells in HIV-1 infected individuals. In addition, the concentrations
of IL-7 and IFN-y were significantly and positively correlated with CD95 expression
on B cells (p<0.01 and p<0.02 respectively). Taken together, the results suggest a
potential role of IL-7 in priming B cells to apoptosis via up-regulation of CD95

expression induced through the IFN-y cytokine in HIV-1 infected individuals.

High levels of IL-7 are usually observed in HIV-1 induced lymphopenic condition (94,
113). In this study we showed that IL-7 stimulated T cells to produce an increased level
of IFN-y, which in turn upregulated CD95 expression on B cells. CD95-expressing B
cells are sensitive to apoptosis. In addition, we previously showed that [FN-y is an
inducer of IL-7 production in stromal cells (185), one of the main cellular sources for

IL-7 production. Thus high level of IFN-y could stimulate stromal cells to produce an
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elevated level of IL-7. These events can thus create a vicious cycle ultimately leading to
B cell apoptosis; this mechanism may possibly be operating during HIV-1 infection

(Fig. 10).

Stromal cells

Apoptosis

Figure 10. Possible mechanism leading to B cell apoptosis in HIV-1 infection. In
HIV-1 infection, high level of IL-7 stimulates T cells to produce an elevated level of
IFN-y. In turn IFN-y induces B cell apoptosis through increased CD95 expression.
High level of IFN-y also stimulates stromal cells to increase IL-7 production.

4.6 CORRELATION OF IL-7 WITH INFLAMMATORY CYTOKINES IN HIV-1
INFECTED PATIENTS RECEIVING ART THERAPY IN VIETNAM
(UNPUBLISHED RESULTS)

In paper III we have shown that IL-7 expression was regulated by INF-y and IL-18. It
was of interest to investigate the correlation of inflammatory cytokines INF-y and IL-
1B with IL-7 and IL-2 in biological specimens from HIV-1 infected patients. IL-2 is
one of the y-c chain cytokines, mainly produced by activated CD4+ T cells which

functions as a T cell growth factor and participates in T cells homeostasis.

We analysed plasma specimens from 18 HIV-1 infected patients treated with ART.
Plasma specimens were collected at the start of treatment (defined as 0 time point) and
at 2 weeks, 1 month, 3 months, 6 months and 12 months after the start of the treatment.
The CD4+ T cell number was measured in fresh samples at each time point. All
patients included in this study were in an advanced stage of HIV-1 infection and prior

to therapy the HIV viral load in the patients was 4.78+0.8 log and the mean CD4+ T
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cell count was 132493 cell/ul. All patients responded well to ART and at one month
from the start of the therapy, the viral load was significantly reduced in all patients to
less than 5000 copies/ml, which is an acceptable level of viral suppression as indicated
in current WHO guidelines (130). At one year after the start of the therapy the viral
load was further reduced to less than 40 copies/ml or undetectable (Fig. 11a). The
CD4+ T cell number increased gradually after 2 weeks of treatment (192+113 cells/pl),
1 month (224+120 cells/ul) and one year (391+155 cells/ul; p<0.001) (Fig. 11b).
Obviously, the CD4+ T cells numbers in HIV-1 infected patients were much lower

(P<0.001) as compared to CD4+ T cell counts in healthy Vietnamese controls.

In general, all cytokines which we measured in the plasma of HIV-1 infected patients
were at a level higher than the level found in healthy controls (p<0.03 for IL-7; p<0.01
for IFN-y; statistically not significant for IL-2 and IL-1B), possibly reflecting the
dramatic immune activation taking place during in HIV-1 infection. Interestingly, the
level of all cytokines increased at 2 weeks after initiation of treatment, with IFN-y
showing the highest concentration (Fig. 11b). This increase in IFN- vy seen at 2 weeks
after initiation of ART may reflect an immediate response of the immune system to
therapy; the levels of IFN-y however started to decline again at 1 month after initiation
of therapy and the levels stabilized at 3 months at a level lower (p=0.03) than what
found prior to therapy. The levels of IL-1B remained unchanged during 1 year of ART
treatment. The levels of IL-7 and IL-2 increased progressively during therapy (Fig 11b)

without reaching a statistically significant difference between 0 and 12 months.

The IL-7 levels showed a positive and significant correlation with IL-1f, IFN-y and IL-
2 (Fig. 12a, b, c¢). The correlation of IFN-y and IL-7 may reflect the role of INF-y in up-
regulation of IL-7 production. The level of IL-1 also had a positive correlation with
IL-7; however, since the patients were in an advance stage of HIV-1 infection only low

levels of IL-1f were detected.

Opposite to previous publications (94, 112, 113), the levels of IL-7 were positively
correlated with CD4+ T cells although this correlation was not statistically significant
(Fig. 12d). This finding can be explained by the observation that after 12 months of
ART the CD4+ T cells number is low (mean 391) but probably still increasing and IL-
7 needs to be maintained at high level in order to continue stimulating T cell

reconstitution. In addition, the increase in CD4+ T cells during ART may have
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beneficial effect on the IL-7 producing cells as indicated in recently published work

(46).
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Figure 11. Viral load, CD4+ T cells and level of cytokines in the serum of HIV-1
infected patients receiving ART treatment. (a) HIV-1 viral load (RNA copy/ml) was
measured before initiation of ART, then after 1 month and 12 months from the start of
therapy, p-value calculated by ANOVA on ranks test. (b) Trends of CD4+ T cell
number and cytokines, measured in plasma from 18 HIV-1 infected patients at different
time points of treatment, compared to the CD4+ T cell number and level of cytokines
measured in 24 HIV negative samples at one time point. The concentration of all
cytokine is shown in scales on the left axis whereas the number of CD4+ T cells is
shown related to the scale on the right axis, w=week, m=month.

The increased level of cytokines observed in patients at 2 weeks after starting of
treatment may be indicating some degree of immune reconstitution inflammation
syndrome in the patients (186). The immune system, which was suppressed by HIV-1

infection, is slightly activated when receiving ART and respond to other pathogens.
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Figure 12. Correlation of IL-7 with IL-14, IL-2, IFN-y and CD4+ T cells in HIV-1
infected patients. For the measurements, 108 plasma specimens obtained at 6 different
time points from 18 HIV-1 infected patients were analysed by Luminex assay. The
CD4+ T cell number was also determined in the same samples. Correlation of IL-7
with IL-10, IFN-y, IL-2 and CD4+ T cells is shown in (a), (b), (c) and (d) respectively,
p-value was generated by Pearson Product-moment Correlation Coefficient test.

The levels of serum IL-1pB have been found to be increased during acute HIV-1
infection; this cytokine is present at very low levels in the sera of HIV-1 patients with
chronic HIV-1 infection (165). In addition, high levels of the IL-1R antagonist (IL-
IRA), an inhibitor of IL-1 function, were found in plasma during chronic HIV-1
infection and in patients receiving ART (187). It has been shown that the increased
IFN-y levels in plasma are also an indicator for successful ART treatment (187). It is
difficult to relate the levels of IL-1P and IL-7 found in blood with the levels of these
cytokines produced in the bone marrow and the gut tissue. The concentration found in
the blood may, or may not, be representative of processes taking place in the tissue.
Further studies need to be performed to verify if there is any difference in the
concentration of IL-7 and IL-1P in blood, bone marrow and gut tissues of HIV-1

infected patients.
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5 GENERAL CONCLUSIONS AND FUTURE
PROSPECTIVES

The focus of the present thesis has been on the cytokine IL-7, an important factor for T
cell homeostasis. My studies have analyzed 1) the levels of IL-7 in relation to the
numbers of different T and B cell populations in specimens from HIV-1 infected
patients, 2) the mechanism regulating the production of this cytokine from stromal and
intestinal epithelial cells which are important sources to supply IL-7 to T cells and 3)
the molecular mechanism leading to up-regulation of CD95 on B cells trough factors
secreted from IL-7 treated T cells and 4) the relation of IL-7 with the up-regulation of
CD95 on B cells.

It was originally described that the levels of serum IL-7 in HIV-1 infected patients
changed in relation with the levels of CD4+ T cells and that patients presenting with
severe lymphopenia had the highest levels of IL-7 in serum (113). Also the results
presented in this thesis and results previously presented from our group (94) support the
possibility that the IL-7 levels during HIV-1 infection may be related to the number of
available CD4+ T cells measured in blood. Recent results have however challenged this
view indicating that as the results of protracted HIV-1 infection, cells devoted to the
production of IL-7 may be damaged and IL-7 production thus impaired (46); if these
results will be confirmed by additional studies this may indicate that production of IL-7
may be placed in relation to lymphopenia until the time point when the cells devoted to
production of IL-7 are damaged by complex interaction between different cells of the
immune system. It would obviously be very important to conduct retrospective
longitudinal studies in some HIV-1 infected patients from primary infection to the
phase of AIDS to verify whether and in which way the levels of IL-7 in serum fluctuate
during HIV-1 infection.

In my work I have found that inflammatory cytokines, including IL-1(, may suppress
the production of IL-7. To understand the connection between inflammatory cytokines
and regulation of IL-7 production we have used cell lines in vitro. Elevated levels of
IL-1B, have however been reported together with other inflammatory cytokines (TNF-a.,
IL-12) in the gut and lymph nodes of HIV-1 patients presenting with acute HIV-1
infection(171) and it is therefore possible that the mechanisms which I studied in vitro

may be occurring in vivo already at the initial stage of HIV-1 infection.
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I also participated in a study indicating that IL-7, through induction of IFN-y from T
cells, may induce up-regulation of CD95 on B cells and increase the sensibility of B
cells for CD95 mediated apoptosis. This is of course a matter of concern in relation to
the possibility of using IL-7 as an immunotherapy to promote CD4+ T cell recovery
and to prevent CD4+ T cell depletion during HIV-1 infection. Obviously in vivo the
dynamics of apoptosis and proliferation of immune cells may be very complex and not
always corresponding to the limited experimental settings which can be established in
vitro. The ongoing trials with IL-7 in HIV-1 infected patients will reveal to which
extent CD95 upregulation and an increase in CD95 mediated apoptosis occurs on T and

B cells as the result of a cascade of events triggered by IL-7 administration.
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Figure 13. Summary of study findings on the regulation of IL-7 production and role
of IL-7 in immune dysfunction during HIV-1 infection.

The results of my studies on the regulation of IL-7 production and the role of IL-7 in
immune regulation during HIV-1 infection are depicted in Fig. 13. The content of the
figure shows that HIV-1 infection leads to an increase in the CD8+CD28- T cells
population. This T cell subgroup which accumulates during HIV-1 infection may
contribute to inflammatory reactions and immune activation (paper II). Immune

activation and HIV-1 infection lead to a possible increase in bacterial translocation in
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the gut which stimulates macrophage in gut tissue to produce high level of IL-1f. In
addition, HIV-1 ssRNA in viremic patients may also stimulate macrophages and DCs
to produce IL-1B. In turn, IL-1f may down-regulate IL-7 production in the gut
compartment thus leading to increased apoptosis of CD4+ T cells (paper III). The
inflammatory conditions and CD4+ T cell depletion in the gut compartment can also
lead to increased immune activation. On the other hand, during HIV-1 associated
lymphopenia, high level of IL-7 (paper I) and immune activation may induce
production of increased level of IFN-y from T cells, which, in turn, leads to CD95-
mediated apoptosis of B cells (paper IV). Also high levels of IFN-y can stimulate
stromal cells to produce increased IL-7 levels (as show in paper III), thus starting a new

cycle of B cell apoptosis and also increased immune activation.

I hope to develop some of the concepts which are part of my PhD thesis in my future
research work and here I present some initial ideas on my future projects. The majority
of observations on the relation between depletion of CD4+ T cells and IL-7 cytokine
have been obtained studying patients infected with the HIV-1 subtype B, present in the
USA and in Europe. It would be interesting to study whether the infection with
subtypes other than the B follows the same trends and results obtained for patients
infected with subtype B. From this angle I will have the possibility to assess in Vietnam
specimens from patients who are infected with the recombinant form of the HIV-1
virus AE (188, 189). To assess the IL-7 levels in the blood of patients infected with the
AE recombinant form in Vietnam in relation to CD4+ T cells and other subpopulations
of T cells may become important in view of the fact that IL-7 is suggested as a possible
immune therapy during HIV-1 infection. Thus the follow up of patients identified early
(or late) during HIV-1 infection may provide valuable information to decide whether

IL-7 therapy may be introduced in combination with ART in Vietnam.

Also I would like to conduct studies on the expression of the IL-7R in HIV-1 infected
patients in Vietnam since several publications have shown that the expression of this
receptor which is important for T cells to respond to the beneficial effect of IL-7, either
physiologically produced or provided by treatment, is reduced during HIV-1 infection.
Nothing is known on this particular aspect of immunopathology of HIV-1 infection in
patients carrying different HIV-1 genotypes than B. Limited knowledge is available on
whether HIV-1 infection alters the IL-7R intracellular pathway and the effect of ART
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on these mechanisms; these studies could be conducted in Vietnam through

collaboration with the Institute of Biotechnology.

Another aspect which would be interesting to study in Vietnam is the impact of drug
use on immunology and immunopathology during HIV-1 infection; the cohorts of
patients studied in Sweden are mostly homosexual men and also individuals who
acquired their infection through heterosexual contact. It is possible that the route of
HIV-1 transmission may impact on the dramatic disruption of gut tissue and

dysregulation of production of cytokines pivotal for T cell homeostasis, including IL-7.

The correlation between IL-7 and IL-1 was investigated in my studies in serum
specimens. This may not be reflecting processes ongoing in the affected sites for HIV-1
replication and damage during HIV-1 infection which are the lymph nodes and the gut.
I would like to investigate the production of IL-7 and IL-1p in the gut tissue and I will
assess the possibility of obtaining biopsies, in parallel to blood specimens, from the gut
of HIV-1 infected patients in Vietnam. This will give information on whether a relation
exists on the concentration of IL-7 and IL-1[ in the affected tissue. Important new data
have been recently published on the disruption of the network of supporting fibroblasts
within the lymph nodes which indicate that IL-7 production from fibroblasts (and
possibly stromal cells) may be impaired in advanced phases of HIV-1 infection as a
result of immune activation (46). It is obviously impossible to follow the
immunological damage occurring in the gut and lymph nodes during HIV-1 infection in
man in a time dependent manner because this would request multiple biopsies to be
taken from the patients. It is thus very important to utilize biomarkers to follow the
immunopathogenesis of HIV-1 infection taking place in gut. A plan should be
developed to identify the biological fluid in which to measure biomarkers of events
taking place in the gut. This would allow time dependent measurements of cytokines

important for the cell homeostasis in the gut.

Specific projects which I would like to continue in collaboration with Sweden are to
study how the inflammatory cytokines which I used to modulate the expression of IL-7
in stromal cells affect the survival of plasma cells mediated by stromal cells. Also I am
interested in pursuing more measurements of blood cytokines with special focus on IL-
1B and IL-1R antagonists to further understand whether IL-1[ antagonist regulate the

impact of IL-1 in immunopathogenesis of HIV-1 infection.
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My goal after returning to Vietnam is to contribute to the integration of knowledge
within the field of HIV viral diagnostic with the new knowledge in immunology which
I acquired during my PhD training in Sweden; among the realistic goals for my near
working future in Vietnam is to contribute to improved determination of CD4+ T cells
and other sub-populations of immune cells. Also I can contribute with teaching in the
field of immunology for physician working in the clinical management of HIV

infection.
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