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ABSTRACT 

 
Glial cell line-derived neurotrophic factor (GDNF) is the prototypical member of 
a family of growth factors that are indispensable in nervous system 
development and maintenance. GDNF signals by binding to a multi-component 
receptor complex comprised of the ligand-binding subunit GFR!1 and the 

signaling subunit RET or NCAM. While initial interest in GDNF was merely 
focused on its potential therapeutic effects in Parkinson’s disease, it has rapidly 
become evident that the mechanisms by which GDNF and its receptors 
regulate diverse physiological events are incomplete. Thus, we have 
demonstrated new insights into the control of neuronal survival, migration, and 
outgrowth by GDNF and its receptors.  
 
To begin clarifing the complexity of GDNF signaling, we examined RET 
intracellular tyrosine residues which become phosphorylated upon receptor 
activation, and serve as docking sites for downstream signaling effectors. The 
functions of most of these phosphorylated tyrosine residues are still unknown. 
In paper I, we identified the protein-tyrosine phosphatase SHP2 as a novel 
direct interactor of RET and as the first effector known to bind to 
phosphorylated Tyr687. Furthermore, we found that activation of protein kinase 
A (PKA) by forskolin reduced the recruitment of SHP2 to RET, negatively 
affecting ligand-mediated neurite outgrowth. Together, these findings establish 
SHP2 as a novel positive regulator of RET function and reveal Tyr687 as a 
critical platform for integration of RET and PKA signals.   
 
To continue to understand GDNF signaling diversity, we examined RET 
signaling in a clinical context. Most patients with medullary thyroid carcinoma 
(MTC) and type 2A multiple endrocrine neoplasia (MEN2A) exhibit cysteine 
residue mutations in the juxtamembrane region of RET which result in 
unexplained oncogenic activation. Thus, in paper II we identified and described 
the self-association determinants of the RET transmembrane (RET-TM) 
domain underlying such oncogenic activation by mutations found in these 
patients. We found that strong propensity for RET-TM self-association 
underlies - and may be required for – dimer formation and oncogenic activation 
by juxtamembrane cysteine mutations localized in close proximity to the 
plasma membrane in MTC and MEN2A syndromes. 
 
To further dissect the many facets of GDNF signaling, we alternatively 
investigated the functions of GDNF and GFR!1 independent of RET. GDNF 

promotes the differentiation and migration of GABAergic neuronal precursors 
from the medial ganglionic eminence (MGE). These functions are dependent 
on GFR!1, but are independent of the two known receptor partners RET and 

NCAM. In paper III, we revealed that soluble GFR!1 is able to promote 

GABAergic differentiation and migration, but requires endogenous GDNF 
production. Furthermore, we showed that MET signaling inhibition promoted 
the same physiological response as GDNF. Finally, we justified the existence 
of a novel transmembrane receptor for the GDNF/GFR!1 complex and 

uncovered an unexpected interplay between GDNF/GFR!1 and HGF/Met 

signaling in the early diversification of GABAergic MGE interneuron subtypes.  
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PROLOGUE 

 

Why did I study GDNF?  

My interest to focus my doctoral research on GDNF transpired after 

reading a report on a phase I clinical trial of Parkinson patients treated 

with GDNF (Gill 2003). This safety open-label trial, in which all five 

patients showed improvements in standard scores of movement and 

motor skills, inspired me to pursue hands-on fundamental research 

dissecting the intracellular pathways mediated by GDNF in neuronal 

survival, outgrowth, and differentiation. As I embarked on this 

research, Amgen, the company holding the patent for the clinical use 

of GDNF, decided to halt all future clinical trials after a review of the 

phase II trial. They reported that there was patient safety concerns as 

few patients clinically improved (even placebo controls) while other 

patients’ conditions severely worsened. Two participants in the study 

even developed neutralizing antibodies against GDNF. This was 

Amgen’s second clinical trial failure, after an initial double-blind safety 

trial showed extensive side effects suffered by patients treated with 

GDNF without any clinical improvement (Nutt 2003). Amgen sadly 

refused all patients, even Gill’s patients still under treatment, the right 

to continue taking GDNF to dampen their symptoms of Parkinson’s 

disease. Regrettably, this halt then lead to a lawsuit between both 

parties. Interestingly, post-mortem data of these clinical trials have 

shown that GDNF did not efficiently reach the target tissues – as 

GDNF cannot cross the blood-brain barrier. From this data emerged an 

important understanding of GDNF and drug delivery methods: GDNF 

must be delivered in a different manner to precisely reach target 

tissues, and deeper insights into the physiological neurotrophic 

activities of GDNF on human dopaminergic neurons were needed. As 

a result, Amgen decided to make their pre-clinical GDNF available to 

scientists to examine GDNF’s mechanisms of action. Our laboratory 

was a recipient of Amgen’s GDNF, which was not only used in my 

studies, but was more importantly the motivating foundation of my 

doctoral research.  

The results of my research endeavors are presented in this thesis.  
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INTRODUCTION  

 

GDNF FAMILY LIGANDS AND THEIR RECEPTORS 

Glial cell line-derived neurotrophic factor (GDNF) was first discovered 

in 1993 by scientists at the company Synergen in a screen to discover 

novel secreted neurotrophic factors enhancing survival of primary 

dopaminergic (DA) neurons isolated from rat embryonic midbrains (Lin 

1993). The protein was initially purified from conditioned media of the 

rat B49 glial cell line and characterized as a disulfide-linked 

homodimeric glycoprotein with neurotrophic activities specific to 

dopaminergic neurons (Lin 1994). Human GDNF cDNA encodes a 211 

amino acid residue prepropeptide precursor that is further processed 

by furin-type endopeptidases to yield a predicted 30 kDa mature 

homodimeric molecule formed by two identical 134 amino acid 

subunits (Lonka-Nevalaita 2010). The two monomers are associated in 

a head-to-tail orientation displaying anti-parallel left-right symmetry 

(Eigenbrot 1997). 

GDNF is the prototypical member of the GDNF family ligands (GFLs) 

that also include Neurturin (NRTN), Artemin (ARTN), and Persephin 

(PSPN) (Fig.1). NRTN was isolated from conditioned media of the 

Chinese hamster ovarian (CHO) cell line, as it displayed the ability to 

promote the survival of cultured sympathetic neurons from the superior 

cervical ganglion (SCG) (Kotzbauer 1996). PSPN was thereafter 

cloned by degenerate PCR (Milbrandt 1998) and ARTN was found by 

multiple database searches based on its homology to mature NRTN 

(Baloh 1998). The GFLs are distant members of the transforming 

growth factor-beta (TGF-") superfamily, which are characterized by a 

common three-dimensional fold containing a cysteine knot (Eketjall 

2004). GDNF shares only a 23% sequence similarity with TGF-" 

superfamily members and differs from them as it distinctly signals 

through a receptor tyrosine kinase instead of a serine/threonine kinase 

(Massague 1998, Saarma 2000).  

Although many growth factors bind directly to their receptor kinase, the 

GFLs are unique in that they must first bind to one of the four GDNF 

family receptor alphas (GFR!1#4) (Fig. 1). GFR!‘s are 

glycosylphosphatidylinositol (GPI)-anchored membrane proteins that 

were originally discovered by expression cloning and screening of 

GDNF binding proteins (Jing 1996, Treanor 1996). GFR! proteins can 

be cleaved by phospholipases and are functional in soluble form 

(Paratcha 2001). While GDNF preferentially binds to GFR!1, there is 

some promiscuity within the family as GDNF can also bind to both 

GFR!2 and GFR!4 (Fig. 1) (Airaksinen 2002, Sidorova 2010).  
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Figure 1: The GDNF family ligands and their respective GFR! 

receptors. Dashed lines represent known interactions while a full line 
represents the preferred binding receptor for each ligand. 

 

In order to signal across the cell membrane, the GDNF/GFR! complex 

must bind to a transmembrane receptor protein - either the receptor 

tyrosine kinase RET or the neural cell adhesion molecule NCAM 

(Durbec 1996, Trupp 1996, Paratcha 2003). These GFR! co-receptors 

are understood to determine both RET ligand binding specificity and to 

facilitate RET activation (Scott 2001). The current model argues for 

GDNF binding first to GFR!1 and subsequently to RET although some 

evidence argues in favor of GDNF binding to a preformed GFR!1/RET 

complex (Fig. 4) (Eketjall 1999, Cik 2000, Simi 2010). All four members 

of the GFLs signal through this multi-receptor complex comprised of 

the respective ligand, the corresponding GFR! co-receptor binding 

subunit, and finally the signaling subunit RET or NCAM.  

Both the GFR! co-receptor and the signaling receptor are linked as 

dimers, resulting in a 2:2:2 stoichiometric signaling receptor; although 

the tridimensional structure of this hetero-hexameric complex still 

awaits confirmation by high-resolution crystallization techniques 

(Leppanen 2004, Sjostrand 2007, Parkash 2009, Simi 2010). 
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GDNF, GFR!1 AND RET IN DEVELOPMENT 

Embryonic development: Findings from the knock-outs 

Studies using knock-out mice for GDNF, GFR!1, and RET have 

demonstrated the important roles that these molecules play in 

embryonic development. Most strikingly, Gdnf -/-, Gfra1 -/- and Ret -/- 

mice die perinatally due to kidney agenesis or severe dysgenesis and 

display a severe phenotype in the peripheral nervous system (PNS) 

(Schuchardt 1994, Moore 1996, Sanchez 1996, Cacalano 1998, 

Enomoto 1998). In the enteric nervous system (ENS), they have 

incomplete innervations or a total lack of enteric neurons in the small 

and large intestine. In the autonomic nervous system, both the 

parasympathetic and sympathetic nervous systems are severely 

affected due to the complete genetic ablation of Gdnf or its receptors. 

RET-deficient mice display impaired sympathetic neuron precursor 

migration and axonal growth (Durbec 1996; Enomoto 2001). GDNF 

knock-out animals have a 35% loss of superior cervical ganglion 

(SCG) neurons (Moore 1996). Interestingly, ablation of GFR!1 

expression does not affect sensory neuron numbers (Cacalano 1998, 

Enomoto 1998). The central nervous system (CNS) was essentially 

unaffected by the deletion of these proteins, with the exception of a 

22% loss of spinal motoneurons in the Gdnf and the Gfra1 null mice 

(Airaksinen 1999). For most researchers the lack of phenotype in the 

ventral midbrain was a major disappointment because it suggested 

that these proteins were not essential for the embryonic development 

of DA neurons in vivo. As a result, a deeper understanding of the 

temporal pattern of expression of GDNF and its receptors was 

required. 

 

Brain development: From primary cultures to conditional knock-

outs 

Since the early discovery of GDNF’s neurotrophic activities on primary 

midbrain dopaminergic neurons, other brain regions were 

subsequently investigated for expression of GDNF and its receptors. 

GDNF and GFR!1 were found to be strongly expressed in the 

olfactory bulb and in the olfactory neuroepithelium (Trupp 1997, 

Maroldt 2005). Within the olfactory bulb, GDNF was suggested to act 

as a diffusible chemoattractant to neuronal progenitors migrating along 

the rostral migratory stream that originated from the subventricular 

zone of the lateral ventricle in an NCAM-dependent manner (Paratcha 

2006). In primary hippocampal and cortical neurons, GDNF has been 

shown to promote axonal growth via binding to NCAM (Paratcha 2003, 

Nielsen 2009). In the hippocampus, a region devoid of RET 
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expression, GDNF in known to promote neuronal synapse formation 

through trans-homophilic binding between GFR!1 proteins expressed 

in both pre- and post-synaptic terminals (Ledda 2007). Due to the 

neonatal lethality of Gdnf, Gfra1, and Ret null mice, very little was 

understood about the physiological role of these proteins in postnatal 

brain development and adult plasticity until the advent of the GFLs 

conditional knock-out mice.  

Recent publications of conditional knock-out mice have expanded the 

current knowledge of the physiological roles that GDNF and its 

receptors play in vivo. This genetic technology relies on the ability of 

the Cre recombinase of bacteriophage P1 to catalyze the excision of 

the DNA flanked by loxP recognition sequences (Sauer 1988). In 

conditional knock-outs, spatially controlled gene deletion is obtained by 

breeding genetically modified mice carrying alleles of the gene of 

interest flanked by loxP sites together with mice expressing the Cre 

recombinase from the locus of specific genes expressed in the target 

tissue. Therefore, embryonic lethality can be rescued in these animals 

through genuine expression of GDNF and its receptors in 

tissues/organs essential for embryonic development (such as kidneys, 

ureter and enteric neurons) while gene expression in targeted tissue is 

ablated. In light of the reported dopaminotrophic activities by GDNF, 

the first tissue targeted by the conditional ablation of RET was the 

ventral mesencephalon, with a focus on the substantia nigra pars 

compacta (SNpc) and the ventral tangmental area (VTA) (Lin 1993, 

Stromberg 1993). Surprisingly, excision of RET in cells expressing the 

dopamine transporter DAT showed that RET was dispensable for the 

maintenance of DA neurons (Jain 2006). In contrast, another study 

found that Ret ablation caused progressive and late loss of DA 

neurons in the SNpc with severe degeneration of the nigrostratial DA 

terminals (Kramer 2007). In one year old mice, a significant 25% loss 

of tyrosine hydroxylase (TH) fibers was observed compared to age-

matched control mice; a result which increased further to 38% in two 

year old animals. Interestingly, both studies used the DAT-Cre mice to 

excise the floxed Ret allele. Although their results lead to different 

conclusions in aged mice, both studies concur that RET is dispensable 

for the development and early maturation of the DA nigrostriatal 

system. 

Scientists had long questioned GDNF’s physiological role in ventral 

mesencephalon development and maintenance; since both Gdnf and 

Gfra1 null mice suffer no DA nigrostriatal system deficits at birth 

(Moore 1996, Enomoto 1998, Baloh 2000). Instead of inactivating the 

gene of interest in the tissue of interest during embryogenesis, as was 

devised for both Ret conditional knock-outs, a different strategy was 

used for the deletion of the Gdnf conditional allele. A tamoxifen-
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inducible CRE recombinase (Esr1-Cre) with ubiquitous expression was 

employed to regulate temporal gene inactivation (Hayashi 2002, Vooijs 

2001). To obtain the conditional Gdnf mouse, heterozygous Gdnf mice 

were first crossed with Esr1-Cre mice, and their progeny was further 

crossed in the Gdnf F/+ floxed allele to obtain the desired Gdnf F/-;Esr1-

Cre genotype (Pascual 2008). The conditional Gdnf allele was excised 

in all cells of the body following tamoxifen injection in two month old 

animals; histological analysis was performed seven months later. 

Surprisingly, 60-70% of the dopaminergic neurons in the SN and the 

VTA were lost in these animals; a phenotype which was accentuated in 

the locus coeruleus with the absence of noradrenergic neurons 

(Pascual 2008). These results re-established GDNF’s critical role in the 

survival and maintenance of adult catecholaminergic neurons. 

Additionally, these results indicated that a loss of GDNF could be an 

important contributor in the pathophysiology of neurodegeneration 

observed in Parkinson disease (Ibanez 2008). 

 

Cortical interneuron development: GFR!1 in GABAergic 

specification? 

While the human cerebral cortex accounts for ~80% of the total volume 

of the brain, interneurons represent about 25% of all neurons in the 

cortex (Hendry 1987, Meinecke 1987, Swanson 1995). For proper 

network activity to be achieved, the cerebral cortex maintains a very 

tightly synchronized regulation by the coordinated actions of two types 

of neurons, excitatory glutamatergic projection neurons and inhibitory 

local-circuit GABAergic interneurons (Wonders 2006). These neurons 

are born in distinct proliferative zones of the cerebral cortex and 

migrate long distances to reach their final position within the network 

(Corbin 2001). Projection neurons are born in the cortical ventricular 

zone and migrate via radial migration into the cortical plate. On the 

other hand, GABAergic interneurons originate in the transient 

neurogenic zone of the subpallial telencephalon and migrate 

tangentially into the neocortex between embryonic day 12.5 (E12.5) 

and E15.5 in the mouse (Fig. 2) (Marin 2003, Levitt 2004). Cortical 

GABAergic interneuron neurogenesis has been shown to occur in both 

the medial (MGE) and the caudal ganglionic eminences (CGE); 

whereas the lateral (LGE) ganglionic eminence gives rise to 

interneurons destined to migrate through the rostral migratory stream 

(RMS) to the olfactory bulb (Anderson 1997, Wichterle 1999, Anderson 

2001, Nery 2002, Metin 2006). Cortical GABAergic interneurons make 

up a highly heteregenous cell population classified by their 

morphologies, electrophysiological properties, ion channels, 

neuropeptides, and calcium binding properties (Markram 2004).  
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Figure 2: Ganglionic eminences of the developing telencephalon in an 
E12.5 mouse embryo (A and B). Schematic delineating the medial, 
lateral, and caudal ganglionic eminence borders (MGE, LGE, CGE) are 
shown in panel C. Tangential migration route of GABAergic interneurons, 
born in the MGE and traveling to the Neocortex (NCx), is depicted in a 
coronal section of the mouse head (D). 

Many growth factors have been shown to be motogens for migrating 

interneurons from the MGE including: semaphorins, hepatocyte growth 

factor (HGF), neurotrophins, and neuregulin-1 (NG-1) (Marin 2001, 

Powell 2001, Polleux 2002, Flames 2004). Although combinatorial 

codes of transcription factors have been found to delineate different 

progenitor domains in the SVZ of the MGE, it remains unclear as to 

exactly how interneuron diversity is achieved (Flames 2007, Fogarty 

2007, Liodis 2007, Miyoshi 2007). 

GDNF was shown to promote differentiation and tangential migration of 

GABAergic cortical neurons isolated from the MGE (Pozas 2005). 

These GDNF functions are understood to be independent of the two 

known transmembrane receptors, RET and NCAM, but are dependent 

upon GFR!1. GFR!1 expression was detected in a subset of 

postmitotic GABAergic precursors located in the ventral MGE, whereas 

Gdnf mRNA was found in the MGE and in the neocortex. Very low 

levels of Ret mRNA were observed in the MGE, signifying that a 

different transmembrane receptor was used by GDNF in these cells 

(Pozas 2005). In a subsequent study, GFR!1 was further shown to be 

required for the correct allocation of parvalbumin (PV) expressing 

interneurons in the cortex, using a mutant mouse line that rescues the 

lethality of the Gfra1 null animals (Canty 2009). In these “cis-only” 

mice, Gfra1 cDNA is expressed under the Ret locus in order to ablate 

Gfra1 solely in cells that do not express RET (Enomoto 2004). Cis-only 

mice displayed a severe PV interneuron loss in discrete regions of the 

cortex, while other cortical regions remained unaffected by the loss of 

GFR!1. These results indicated that GFR!1 may guide the 

development of a subset of PV-expressing interneurons; and therefore 

may contribute to the diversification and later allocation of distinct 

cortical interneuron subtypes. 
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CONSTITUTIVE AND GDNF-MEDIATED RET SIGNALING 

 

RET: Structural features for signaling purposes 

RET (rearranged during transfection) was originally identified as a 

novel oncogene activated by DNA rearrangement using the murine 

NIH 3T3 cell line transfected with human lymphoma DNA (Takahashi 

1985, Tahira 1990). The Ret gene was subsequently cloned, 

containing 21 exons localized to chromosome 10, and was shown to 

encode a receptor tyrosine kinase (RTK) expressed in many tumor cell 

lines (Takahashi 1987). The RET extracellular domain (ECD) is 

comprised of four cadherin-like motifs containing a calcium binding site 

between the second and third cadherin-like domains (CLD, Fig. 3), 

which is followed by a cysteine-rich domain (CRD) of ~120 residues 

containing a highly conserved group of 14 cysteines adjacent to the 

transmembrane (TM) domain (Fig. 3) (Airaksinen 1999, Anders 2001). 

The RET TM domain spans from residue 636-657, however nothing 

was known of its potential role in functional regulation of RET outputs 

until the publication of our investigation presented in paper II. The RET 

intracellular domain (ICD) contains two tyrosine kinase (TK) 

subdomains separated by a kinase insert. Alternative splicing of 3’ 

sequences of exon 19 leads to three RET isoforms: RET9, RET51, and 

a rare RET43 (Myers 1995). RET9 (1072 amino acids) and RET51 

(1114 amino acids) diverge in their tail sequence downstream of 

glycine 1063 (Santoro 2004). The RET9 ICD contains 16 tyrosine (Y) 

residues but lacks Y1090 and Y1096, which are present in RET51. 

 

Figure 3: Schematic representation of RET structural domains. Amino acid 

residue numbers are allocated according to the human RET51 isoform. 

 

RET activation: Tyrosyl phosphorylation as a kick start 

RET activation is achieved by two means: either upon ligand/GFR! 

receptor complex interaction or when carrying a point mutation 

rendering dimeric RET to be constitutively active (Fig. 4) (Takahashi 

2001). Receptor dimerization promotes trans-phosphorylation of 

intracellular tyrosine residues which then serve as docking sites for 

various adaptor proteins containing either Src homology 2 (SH2) 

domains or phosphotyrosine binding domains (PTB) (Pawson 1995).  



 

 9 

 

 

Figure 4: RET activation is 
achieved either by interaction 

with the GDNF/GFR!1 

complex (A) or by constitutive 
activation due to mutations in 
extracellular juxtamembrane 
cysteine residues shown in 
red (B). 

 

 

 

At least 14 of the 18 intracellular tyrosine residues have been found to 

be phosphorylated in human RET51; as identified by phosphopeptide 

mapping or mass spectrometry including: Y687, Y752, Y806, Y809, 

Y826, Y900, Y905, Y928, Y981, Y1015, Y1029, Y1062, Y1090, and 

Y1096 (Liu 1996, Kawamoto 2004, Knowles 2006). The tyrosines Y900 

and Y905 are both found within the kinase domain activation loop. 

Tyr905 has been shown to be required for full RET activation and 

downstream signaling (Coulpier 2002). Site-specific adaptor proteins 

have also been identified for some of these tyrosine residues such as: 

Tyr905, Tyr981, Tyr1015 and Tyr1096. When phophorylated, these become  

binding sites for Grb7/10, Src, PLC!, and Grb2, respectively (Pandey 

1996, Encinas 2004, Borrello 1996, Alberti 1998). While Tyr752 and 

Tyr826 can bind directly to the STAT3 transcription factor (Schuringa 

2001), Tyr1062 has been revealed as a multi-docking site for Shc, 

FRS2, IRS, and Dok (Fig. 5) (Arighi 1997, Kurokawa 2001, Melillo 

2001, Grimm 2001). Subsequently, Shc was found to recruit Grb2 

which further associates with Gab2 and SHP2; thereby arguing for a 

multi-protein scaffolding recruitment of phophorylated Y1062 (Besset 

2000). SHP2 is a protein-tyrosine phosphatase containing two SH2 

domains followed by a C-terminal phosphatase domain, and its most 

N-terminal SH2 domain has been shown to bind distinct phospho-Tyr 

residues in activated RTKs (Chan 2008). Germline mutations in Shp2 

lead to the Noonan and LEOPARD syndromes characterized by 

cardiac abnormalities and dysmorphic facial features (Tartaglia 2001). 

Tyr687 remained uncharacterized until our investigation decribed its 

significance which is presented in paper I. 
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RET intracellular pathways: Beyond neurotrophic survival 

Tyrosine Y1062 has often been conceptualized as the motor of RET 

activation, while the other tyrosine residues act more like signaling 

modulators of RET. Knock-in animals, carrying the silencing mutation 

of Y1062F, display a similar phenotype as RET null mutants 

demonstrating the importance of this residue in RET signaling during 

development (Jijiwa 2004, Jain 2006). In vitro, Tyr1062 activates various 

intracellular signaling pathways including: the PI3K/Akt, Ras/Erk, Jnk, 

and p38MAPK (Fig. 5). Downstream activation of these pathways 

consequentially leads to transcriptional induction by the CREB and NF-

$B transcription factors (Hayashi 2000). Extensive bodies of work have 

been devoted to correlate each signaling pathway to a specific 

biological response such as: proliferation, survival, migration, cell cycle 

progression, and neurite outgrowth (Gustin 2007). However, most 

tyrosines have revealed redundant physiological responses. For 

instance, the recruitment of Grb2 by Tyr1096 activates both the PI3K 

and the MAPK signaling pathways in a similar pattern to Y1062 

(Degl’Innocenti 2004, Jain 2006). Moreover, Serine S696 was shown 

to be phosphorylated by PKA promoting Rac-GEF activity through Jnk 

resulting in lamellipodia formation of neuroblatoma cell lines (Fukuda 

2002). Knock-in animals carrying a mutation of this serine residue into 

an alanine displayed a severe migratory defect in enteric neural crest 

cells thereby lacking enteric neurons in the distal colon (Asai 2006).  

 

 

 

 

 

 

 

 

 

 

Figure 5: Adaptor proteins known to bind to phosphorylated intracellular 
tyrosine residues of RET and their respective downstream signaling 
pathways. Note that that the juxtamembrane tyrosine 687 remains 
uncharacterized. 
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GDNF and RET in disease 

As described in the prologue, GDNF has been extensively studied for 

its neurotrophic function in support of nigrostriatal dopaminergic 

neurons in humans (Grondin 1998, Hurelbrink 2001). Extensive efforts 

on various animal models of amyotrophic lateral sclerosis (ALS), spinal 

cord injury, and cerebral ischemia have demonstrated the regenerative 

potential of GDNF on nerve degeneration (Mohajeri 1999, Wang 2002, 

Suzuki 2007, Cao 2003, Zhang 2009, Kilic 2003). 

Ret mutations however have been more commonly associated with 

human diseases. Receptor tyrosine kinases (RTKs) are key regulators 

of crucial cellular processes such as growth, differentiation, migration, 

proliferation, and apoptosis (Robinson 2000). Subtle changes in the 

regulation of RTK activity often result in aberrant signaling which is 

known to be critically involved in human cancers (Ullrich 1984, Zwick 

2001). RET is no exception in the RTK family. Single point mutations 

lead to the formation of active dimers, inducing constitutive activation 

of the tyrosine kinase and consequently generating oncongenic 

transforming potential (Asai 1995). These mutations are found in the 

RET extracellular domain (ECD) on cysteine residues C609, C611, 

C618, C620, C630 and C634 and result in a free unpaired cysteine 

able to form intermolecular disulphide bonds (Santoro 1995, Lai 2007).  

Gain-of-function dominant Ret mutations have been found in patients 

with types 2A and 2B multiple endocrine neoplasia (MEN) as well as 

and sporadic and inherited medullary thyroid carcinoma (respectively 

MTC, FMTC) (Manie 2001). MEN2A is characterized by MTC and 

pheochromocytomas; the clinical MEN2B phenotype also includes oral 

neuromas, ganglioneuromatosis, skeletal abnormalities, and is 

characterized by a mutation in the residues A883 or M918 (Donis-

Keller 1993, Mulligan 1993, Mulligan 1994). Loss-of-function mutations 

of the Ret allele have been found in Hirschsprung’s disease (HSCR), 

which is a congenital developmental condition characterized by 

incomplete innervations of the distal gut (Edery 1994, Kashuk 2005). 

Although they were not causal of HSCR, two germline Gdnf mutations 

leading to the P21S and the I211M residue substitutions have been 

reported (Salomon 1996, Martucciello 1998, Martucciello 2000). 

Approximately 90% of all HSCR cases are directly linked to a Ret gene 

mutation (Lantieri 2006). 
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AIMS  

 

The principal objective of this thesis was to explore the signaling 

mechanisms activated by GDNF that control critical cellular events 

such as: neuronal survival, growth, migration, and differentiation.  

Specifically: 

1. Evaluate the role of the juxtamembrane tyrosine residue 687 of 

RET in promoting neuronal survival and neurite outgrowth in SCG 

neurons. 

2. Determine the self-association mechanism of the RET 

transmembrane domain underlying oncongenic MEN2A mutations. 

3. Elucidate the role of GDNF and GFR!1 signaling in GABAergic 

differentiation and cell migration of cortical interneuron precursors 

of the medial ganglionic eminence. 
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COMMENTS ON MATERIALS AND METHODS  

 

The materials and methods used in this thesis have been described in 

the papers I-III. Please refer to the corresponding methods section of 

each paper for a detailed account. The following comments briefly 

characterize the experimental methodology for clarification. 

 

NEURONAL SURVIVAL 

 

In paper I, we studied the role of RET-mediated neuronal survival in 

sympathetic neurons isolated from superior cervical ganglia (SCG). 

Dissociated neurons were microporated with the RET plasmid of 

interest together with dsRed for subsequent visualization in an Axiovert 

200M inverted fluorescence microscope (Zeiss). After the first day in 

culture (DIV1), individual neurons were imaged and their precise 

spatial position was recorded in order to follow their daily survival using 

the OpenLab software (Improvision). Axonal fragmentation followed by 

cell soma collapse was evaluated to quantify cell death (Fig. 6). 

Subsequent TUNEL staining confirmed apoptotic cell death. 

 

 

Figure 6: SCG neurons expressing specific RET constructs together 
with dsRed following 2 and 3 days in culture, respectively. Axonal 
fragmentation is observed in panel B’. 
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NEURITE OUTGROWTH 

RET-mediated neurite outgrowth in sympathetic neurons 

In paper I, we examined the role of tyrosine residue Y687 on neurite 

outgrowth of SCG neurons. Dissociated neurons were microporated 

with respective plasmids together with dsRed, plated and imaged 30 

hours later. The longest neurite of each neuron was traced and 

quantified with OpenLab (Fig. 7A). A representative composite image 

of all traced neurites within a single well was also included in the 

paper. 

 

Figure 7: Neurite traces of SCG neurons are shown in panel A. Red 
squares in panel B represent the cell soma of neurons shown in panel A. A 
representative composite image of all traces within a well is shown in panel 
B, note that both panels are different in scale.  

 

 

GABAergic neurite outgrowth of MGE neurons 

In paper III, we quantified GABAergic neurite outgrowth of neurons 

isolated from the medial ganglionic eminence (MGE). Cells were 

dissociated and incubated in their respective treatment conditions for 

48 hours before fixation, staining with anti-GABA antibodies and 

counterstained with DAPI. Pictures were taken with an Axiovert 200M 

inverted microscope using OpenLab. Neurite outgrowth counts were 

performed using the ImageJ software (NIH) on the GABAergic staining 

micrographs, setting cell perimeter threshold above 18000 and cell 

circularity below 0.5. These parameters designate a differentiated 

GABAergic bearing neurites to be longer than thrice the cell body 

diameter and excluding undifferentiated circular cells (Fig. 8). 
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Figure 8: GABAergic neurite outgrowth counts. GABAergic 
immunostainings are depicted in panel A. Cell perimeter threshold 
measurements using ImageJ are shown in panel B. The table illustrates 
the value obtained for cell perimeter and area. Note that cell number 9 (as 
indicated by ! in panel B) has extended neurites meeting neurite 
outgrowth threshold requirements, whereas cell number 14 (as identified 
by ") does not. Not all cells presented in the table are visible in panel A. 

 

NEURONAL MIGRATION 

In paper III, we analyzed the migration of cultured MGE, LGE and CGE 

GABAergic neurons. Freshly dissected tissue was dissociated and 

neurons were subsequently plated on a pre-coated PDL filter of a 

Boyden ChemoTx (Neuroprobe) chamber with a 5 #m pore size in a 

96-well format. Dissociated cells were resuspended and plated in the 

top chamber in a 50 #L drop as shown (Fig. 9, panel A). Cell migration 

was induced by adding growth factors or blocking antibodies in the 

lower compartment of the chamber. Cultures were incubated for 48 

hours, after which the cells remaining on the top of the filter were 

gently scrapped away with a cotton tip. The filters were then fixed in 

4% PFA and stained with DAPI. The lower side of the filters was 

imaged with an Axiovert 200M inverted fluorescence microscope 

(Zeiss) in the DAPI channel and quantified using the ImageJ software 

(NIH) (Fig 9B). 

 

Figure 9: A representative Boyden chamber used in the study is 

shown in panel A. Cell migration counts were performed on 

DAPI counterstainings of the filter depicted in panel B. 
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RESULTS AND DISCUSSION 

 

PAPER I 

 

Upon activation, the RET tyrosine kinase receptor undergoes 

autophosphorylation of intracellular tyrosine residues, which then serve 

as docking sites for downstream signaling effectors carrying Src 

homology (SH2) or phosphotyrosine-binding domains (PTB). Previous 

studies have indicated that at least 14 of the 18 tyrosine residues 

present in the intracellular region of RET can become phosphorylated. 

Of the remaining residues, only four have actually been shown to 

directly bind to a downstream effector in response to GDNF. The 

function of the majority of phosphorylated tyrosine residues in RET, 

including Tyr687, remains unknown. Tyr687 is located in the 

juxtamembrane region of the RET receptor, a domain known to exhibit 

regulatory functions in other catalytic receptors; signifying that Tyr687 

may be important for RET activation or for its downstream effects. 

 

In the first paper of this thesis, we evaluated the role of the 

juxtamembrane tyrosine residue Y687 of RET in GDNF-mediated 

signaling. Primarily, we aimed to identify the novel adaptor protein 

binding this phosphorylated tyrosine residue and subsequently, to 

understand the biological significance of this interaction. To achieve this, 

we prepared a T7 phage display cDNA library using differentiated PC12 

cells. For the screening of the library, we employed as bait a synthetic 

phosphopeptide derived from human RET encompassing phospho-

Y687 and flanked with 10 amino acid residues. The screen retrieved a 

phage clone encoding the N-terminal SH2 domain of the protein tyrosine 

phosphatase SHP2. We further showed that this phage clone was 

bound to the phospho-Y687 bait and was not bound to baits 

encompassing other RET phospho-Tyr residues. This result therefore 

argued for a direct interaction between RET and SHP2. In contrast, 

SHP2 has been shown to bind indirectly to RET at tyrosine residue 

Y1062 with the help of Gab2/Grb2 (Fig. 5) (Besset 2000). Noticeably, 

the SHP2 immunoreceptor tyrosine-based inhibitor motif (ITIM) includes 

a valine residue at the -2 position (I/V/L/S-x-pY-x-x-L/V), which is 

reminiscent of the RET target sequence VSpY687SSS (Songyang 1993, 

Liu 2006). We further showed that in the mammalian COS cell line, full 

length SHP2 requires the phosphorylation of Y687 to be bound to RET 

in a peptide pulldown assay using agarose beads coated with either the 

phosphorylated or the non-phosphorylated peptides used as baits. 
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Next, we analyzed the SHP2 binding determinants in RET using site-

directed mutagenesis of selected residues. Endogenous SHP2 was 

immunoprecipated in COS cells transfected with plasmids expressing 

the constitutively active form of RET, carrying the C634R mutation found 

in MEN2A patients. Both MEN2A-RET 51 and 9 isoforms were pulled 

down to similar levels with SHP2. In this background, we showed that 

the mutation of the tyrosine 687 into a phenylalanine (hereafter termed 

Y687F) failed to recover any RET protein in the SHP2 

immunoprecipitates; thereby validating Y687 as novel site for SHP2 

binding. Unexpectedly, mutation of tyrosine 1062 into a phenylalanine 

also abrogated the RET/SHP2 interaction, even though Y1062 is known 

to be a binding site for the multi-adaptor scaffolding complex 

Gab2/Grb2/SHP2 through Shc (Besset 2000). These results suggested 

that SHP2 might not be recruited to these two sites independently. 

Instead SHP2 may be forming a single signaling complex and binding 

both sites at the same time (Fig. 10); thus acting as a regulatory 

complex for RET signaling output.  

 
 

 

Figure 10: Theoretical schematic of SHP2 recruitment to both tyrosine 687 
and 1062, illustrating SH2-domain interactions with their respective 
phosphorylated tyrosine targets. Note the dimeric SHP2 molecule interacting 
with two phospho-Tyr targets simultaneously. 

 

To further investigate this hypothesis, we analyzed the influence of the 

Y687F mutation on the multi-adaptor assembly site Tyr1062. If SHP2 

were to be part of a multi-adaptor scaffolding complex binding directly to 

Y687 and indirectly to Y1062, then Shc or Gab2 immunoprecipitation 

studies would not only reveal intact levels of either protein binding to 

RET in the Y687F mutant compared to the wild-type, but also lower 

levels of SHP2. Indeed, association of SHP2 with Shc and Gab2 was 

diminished in the mutant, whereas RET levels were unaffected by the 

mutation. This data strongly argues that Tyr687 is necessary for SHP2 

recruitment to Y1062, and regulates multi-adaptor complex assembly. 
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While mapping the SHP2 binding determinants in RET, we found that 

the mutation of the serine residue S696 into an alanine strongly 

potentiated the binding of SHP2 to RET. This serine residue was shown 

to have an epistatic interaction with Y687 in lamellipodia formation of 

SK-N-MC cells (Fakuda 2002). When inserted into the Y687F mutant, 

the S696A mutation displayed a total loss of binding to SHP2 - arguing 

for a direct interaction between these two phosphorylation sites of RET. 

We further showed that forskolin treatment, an activator of adenylate 

cyclase, impaired SHP2 binding to RET upon GDNF stimulation in the 

MN1 cell line where both molecules are endogenously expressed. 

Forskolin has been shown to induce the phosphorylation of S696 of 

RET through PKA (Fakuda 2002). From these experiments, we 

concluded that the phosphorylation of serine 696 negatively regulates 

the binding of SHP2 to tyrosine 687 in RET. Unfortunately, the 

juxtamembrane was not included in the crystallized structure of the RET 

intracellular domain as recently published; however we advocate for a 

close proximity between S696 and Y687 with a possible reciprocal 

interference when phosphorylated (Knowles 2006).  

 

To understand the role of RET Y687 in GDNF-mediated signaling, we 

generated clonal fibroblast cell lines stably expressing either wild-type or 

the RET Y687F mutant. Although we found no major changes in the 

phosphorylation levels of RET, the Akt pathway - a downstream 

pathway of RET and PKA - was however strongly reduced in the mutant 

and never reached the levels of wild-type RET. Other downstream 

pathways such as Erk, Jnk, and Src were unaffected by the mutation, 

suggesting that RET signaling through Y687 may have a role in Akt-

mediated biological events such as cell differentiation and survival. 

Consequently, we examined the role of mutation Y687F in neuronal 

differentiation of PC12 cells. We found a major reduction of RET-

mediated neuronal differentiation in the Y687F mutant using the RET 

MEN2A background, after both 3 and 6 days of differentiation induction. 

We confirmed this result by employing GDNF-mediated differentiation 

instead of the constitutively active receptor. In accordance with our 

earlier data, inferring a negative role of PKA activity in SHP2 binding to 

RET, we observed that pre-treatment of PC12 cells with forskolin 

significantly reduced neuronal differentiation mediated by GDNF in the 

RET wild-type construct but not in either the Y687F mutant or the S696A 

mutant. 
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Finally, we evaluated the physiological role of tyrosine 687 in primary 

cultures of sympathetic neurons. Although SCG neurons endogenously 

express RET and GFR!1, we microporated the constitutively active 

form of RET to bypass the need of a ligand that would activate the 

endogenous receptors. We found that the Y687F mutation in both RET 

isoforms significantly reduced neurite outgrowth at DIV1, in agreement 

with our results obtained in PC12 cells. Since the Akt pathway is a 

mediator of neuronal survival, we expected to observe an increase in 

cell death of neurons expressing the RET mutant. We therefore set up a 

neuronal survival assay, in which SCG neurons were left to survive 

solely on the expression of the microporated constitutively active RET 

construct. SCG neurons were first microporated with the different RET 

constructs, incubated with minimal amounts of NGF for one night for cell 

recovery, and then cultured in !-NGF blocking antibody for a couple of 

days. From DIV3 on, we found that neurons expressing RET9 M2A 

Y687F exhibited axonal degeneration followed by cell soma collapse 

and were unable to sustain neuronal survival. Subsequent analysis with 

TUNEL staining confirmed that these neurons were apoptotic. 

 

Taken together, our results have identified SHP2 to be the first effector 

protein to bind to the phosphorylated tyrosine 687 of RET. Our evidence 

assigns a central role for Tyr687 in GDNF neurotrophic outputs and 

substantiates the evidence that its juxtramembrane location serves as a 

critical spatial integrator for the regulation of both RET and PKA 

signaling. 

 

 

 

PAPER II 

 

Patients with medullary thyroid carcinoma (MTC) and type 2A multiple 

endocrine neoplasia (MEN2A) contain cysteine residue mutations in the 

extracellular juxtamembrane region of RET. These mutations cause the 

formation of covalent receptor dimers linked by intermolecular disulfide 

bonds between unpaired cysteines, followed by oncogenic activation of 

the RET kinase. The close proximity to the plasma membrane of the 

affected cysteine residues prompted us to investigate the possible role 

of the RET transmembrane domain (RET-TM) in receptor-receptor 

interactions underlying dimer formation.  

 

In the second published article, we determined precisely how the RET-

TM engages in homo-dimer formation by unpaired cysteine residues in 

the context of mutations found in MEN2A and MTC patients. Receptor 

tyrosine kinases, such as RET, have a single-pass transmembrane 

domain that is thought to stabilize ligand-induced dimerization and to 
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maintain receptors in close proximity in the plasma membrane. Gain of 

function Ret mutations typically found in human diseases involve 

cysteine residues in close proximity with the extracellular 

transmembrane of RET. MEN2A and MTC patients carry such 

mutations in juxtamembrane cysteine residues. Although the cyteine-

rich domain (CRD) of RET spans over 120 residues, most MEN2A and 

MTC mutations are found within the 25 residues of the plasma 

membrane, prompting us to examine the role of the transmembrane 

domain in self-association and oncogenic activation (Fig. 11).  

 

 

 

Figure 11: Schematic highlighting amino acid 

amino acid residues within the RET 

transmembrane (TM) domain that self-

associate upon oncogenic activation in the 

the MEN2A syndrome. 87% of MEN2A patients 

patients carry a mutation in cysteine 634 

634 (Cuccuru, 2004). 

 

 

 

To study the propensity of the RET-TM to self-associate we used the 

reporter ToxCAT system, which allowed us to quantify the efficiency of 

TM-TM interactions in a biological membrane. This reporter is based on 

the capacity of the ToxR transcriptional activator of the Vibrio Cholerae 

pathogen to bind to the cholera toxin (ctx) gene promoter only in 

dimerized form. Therefore, we fused the RET-TM (amino acids R635 to 

F657) to ToxR and the maltose-binding protein (MBP) for precise 

delivery to the Escherichia coli inner membrane. The fusion construct 

ToxR-RET-TM-MBP will then form dimers in the cytosol proportional to 

the oligomerization ability of the RET-TM domain. Following the binding 

of dimerized ToxR-RET-TM-MBP to the ctx DNA-binding element, the 

chloramphenicol transferase (cat) gene reporter was activated and 

consequent production of the CAT protein was quantified by ELISA. 

Indeed, the RET-TM showed a strong propensity to self-associate as the 

levels were comparable to other reported dimeric transmembrane 

receptors such as the ErbB family of receptors (Mendrola 2002). We 

then used a mutagenesis approach to find the self-association 

determinants of the RET-TM. By focusing our analysis on conserved 

serine and arginine residues in the RET-TM, we found the RET S649A 

and A641R mutants to have respectively a 50% and 80% loss of self-

association measured by CAT-ELISA compared to the wild-type.  
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Interestingly, a rare case of the double mutation A639G/A641R in exon 

11 was found in a tumor from a patient with sporadic MTC (Kalinin 

2002). This double missense mutation involves three nucleotide 

substitutions in the first and last residues of a triad of alanines. Yet the 

mechanism of how these residue substitutions disrupt RET-TM activity 

remained poorly understood. Thus, we included the A639G mutation 

into the wild-type fusion construct and into our A641R mutant. The 

A639G mutation marginally reduced RET-TM self-association. However 

when A639G was inserted together with A641R, the double mutant was 

not different from A641R alone as it displayed the same 80% reduction 

of relative self-association compared to the wild-type. To determine if 

the double mutations impaired RET function, we generated two clonal 

fibroblast cell lines stably expressing either the wild-type or the mutant 

construct. The double mutant did not display any phenotypic change 

when compared to the RET wild-type following GDNF stimulation. Both 

constructs were expressed at similar levels and the mutant did not 

display any impairment in expression of the mature form of RET. 

However, low basal RET activity was found in the double mutant 

through Western blot analysis using a phospho-specific antibody. Even 

though the A639G/A641R mutations showed detrimental effects on 

RET-TM self-association, the lack of spontaneous RET activity did not 

support a causative role for these mutations in MTC tumor formation. 

 

From this, we concluded that the two arginines A639 and A641 are 

crucial for RET dimerizing activity but do not promote an increase in 

RET basal activity. Nevertheless, it remains possible that these two 

arginines can stabilize RET homodimerization in a constitutively active 

setting such as the oncogenic RET C634R mutation found in MEN2A 

and FMTC patients. Hence, we analyzed dimer formation mediated by 

the C634R mutation in fibroblasts transfected with construct carrying or 

not the double arginine mutation. When running RET immuno-

precipitates on a non-reducing SDS-PAGE, we observed RET dimers in 

the C634R mutant when probing the membrane with a RET-specific 

antibody. However, the triple mutant C634R/A639G/A641R showed a 

statistically significant 47% reduction in dimer formation. Besides,  the 

transforming activity of the triple RET mutant was reduced to 

background levels in foci formation of fibroblasts plated in soft agar.  

 

Taken together, our results highlight the importance of TM-TM 

interactions in the self-association of RET by the MEN2A oncogenic 

activation. Both residues that we found to disrupt the self-association of 

RET are aligned on the same surface of a membrane-spanning alpha-

helix. With respect to the Ret gain of function mutation, our results bring 

a novel insight into the crucial role this transmembrane domain plays in 

the conformational stabilization of oncogenic homodimers. 
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PAPER III  

 

In humans, several psychiatric disorders have been correlated with 

cortical inhibitory interneuron malfunction including epilepsy, 

schizophrenia, and autism (Cossart 2005, Levitt, 2005; Rubenstein 

2003). Therefore, current research has focused its attention on 

understanding the signaling mechanisms that control the development 

of cortical GABAergic interneurons. GDNF is known to promote the 

differentiation and migration of MGE-derived GABAergic neuronal 

precursors (Pozas 2005). These functions have been shown to be 

dependent on the GPI-anchored receptor GFR!1, but are independent 

of the two known transmembrane receptor partners RET and NCAM. 

Since neither RET nor NCAM are required for the effects of GDNF on 

GABAergic interneuron migration and differentiation, then GFR!1 must 

somehow be able to either mediate GDNF signaling on its own or 

GFR!1 may partner with other transmembrane effectors expressed on 

these cells. Thus, the aim of the last paper was to elucidate the role of 

GDNF and GFR!1 signaling in GABAergic differentiation and migration 

of cortical interneuron precursors of the medial ganglionic eminence.  
 

First, we evaluated if soluble GFR!1 would be sufficient to promote 

neurite outgrowth of GABAergic positive MGE neurons. To test the 

effect of soluble GFR!1, we used a purified chimeric protein of the 

GFR!1 ectodomain (excluding the GPI-anchoring sequences) fused to 

the Fc domain of a human immunoglobulin (GFR!1-Fc). Indeed, we 

found that soluble GFR!1-Fc promoted the GABAergic neurite 

outgrowth of these cells and that GDNF further potentiated these 

effects. However, when both GDNF and GFR!1-Fc were combined the 

effects were not strictly additive. This result alluded to the likelihood that 

the same cell population was responding to either treatment.  

 

Since GDNF was reported to promote the tangential migration of 

GABAergic interneurons to the cortex, we tested both GDNF and 

GFR!1-Fc in a Boyden chamber assay to assess cell migration. In this 

system, dissociated cells are seeded on the top chamber and left to 

migrate through the pores towards the lower compartment where 

substances to be tested are presented. Both GDNF and GFR!1-Fc 

promoted cell migration measured after 48 hours. However, dissociated 

CGE and LGE neurons failed to migrate into the lower compartment 

when incubated with GDNF. This suggested that GDNF acts specifically 

on interneuron precursors from the MGE, which expresses GFR!1, but 

does not act on interneuron precursors of the LGE and CGE, as no 

GFR!1 expression is observed in these eminences at E12.5 in mice.  
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After showing that both GDNF and soluble GFR!1 induce GABAergic 

neurite outgrowth and migration of MGE neurons, we next verified if the 

biological effects of exogenous GFR!1-Fc were still dependent on 

GDNF or were independent of its known ligand. Since both GDNF and 

GFR!1 are expressed in the MGE at E12.5, we anticipated a loss of 

neurite outgrowth by GFR!1-Fc if endogenous GDNF was required for 

mediating this effect. Although GDNF mediated both neurite outgrowth 

and cell migration at similar levels between both wild-type and Gdnf -/- 

neurons, soluble GFR!1 indeed failed to induce any biological effect in 

knock-out neurons. Interestingly, these detrimental effects could be 

rescued when GDNF and GFR!1-Fc were applied concurrently. These 

results demonstrate that endogenous GDNF production is required for 

soluble GFR!1-Fc to mediate both GABAergic neurite outgrowth and 

migration of MGE neurons.  

 

We further evaluated if soluble GFR!1 could act in a non-cell 

autonomous fashion and treated Gfra1-/- neurons with GFR!1-Fc. 

GDNF did not promote any differentiation or migration in primary MGE 

neurons from Gfra1 knock-out embryos, confirming GFR!1 as a 

receptor of GDNF in these cells. However, soluble GFR!1 was sufficient 

to rescue these knock-out neurons in both GABAergic outgrowth and 

cell migration to similar levels observed in wild-type cells. Additionally, 

when both GDNF and GFR!1-Fc were added together, Gfra1 -/- neurons 

differentiated and migrated to a similar degree as wild-type cells. These 

compelling observations can only be explained by the existence of a 

novel transmembrane signaling partner for the GDNF/GFR!1 complex 

in MGE GABAergic neurons. (Fig. 12). 

 

 

 

Figure 12: Illustration 
depicting the probable 
interaction between the 

GDNF/GR!1 signaling 

complex and the novel 
transmembrane receptor 
which mediates 
GABAergic neurite 
outgrowth and cell 
migration in MGE 
neurons. 
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To investigate potential receptor candidates, we analyzed if ErbB4 could 

mediate GDNF/GFR!1 signaling activities, since this Neuregulin-1 

receptor is known to mediate the tangential migration of GABAergic 

MGE neurons (Flames 2004). To these means, we employed a 

biochemical approach and transiently stimulated wild-type MGE cultures 

with GDNF or Neuregulin-1. Although Neuregulin-1 induced a robust 

increase of the phosphorylation state of ErbB4 observed by Western 

blot, GDNF did not induce any phosphorylation of the receptor above 

background levels. This indicated that GDNF does not signal via ErbB4. 

When incubating MGE neurons with the specific pharmacological ErbB4 

inhibitor AG1478, we did not observe any GABAergic differentiation 

induced by the inhibitor alone. Moreover, when added together with 

GDNF, the inhibitor failed to inhibit the differentiation mediated by 

GDNF. Similar results were obtained with the Boyden chamber 

migration assay, thereby supporting the evidence that ErB4 is not a 

receptor for GDNF in MGE neurons. 

 

We then selected another receptor candidate, the HGF receptor MET, 

also known to mediate the tangential of MGE neurons into the cortex 

(Powell 2001). With the same rationale, we transiently stimulated MGE 

cultures with GDNF or HGF and analyzed the phosphorylation levels of 

the MET receptor. Although HGF induced a rapid increase of MET 

phosphorylation detected by a phospho-MET antibody in a Western blot, 

GDNF did not phosphorylate MET above background levels. 

Interestingly, the downstream pathway Erk was stimulated by both 

ligands, which confirmed previous evidence that GDNF activities are 

mediated through the ERK pathway (Pozas 2005). To test if MET was 

involved in GDNF-induced neurite outgrowth in MGE cells, we 

stimulated MGE cultures with GDNF in the presence or absence of the 

specific pharmacological MET kinase inhibitor SU11274. To our 

surprise, SU11274 induced GABAergic neurite outgrowth on its own and 

at comparable levels to GDNF. Interestingly, at the concentration of 1µM 

SU11274 blocked the activation of the Erk pathway, indicating that 

GABAergic neurite outgrowth is independent of the activation of the Erk 

pathway. When both GDNF and SU11274 were added together, the 

effects on neurite outgrowth were additive. To eliminate any undesired 

off-target effects of this inhibitor, we tested neurite outgrowth with 

another MET inhibitor PHA665752. Our previous evidence was 

confirmed as PHA665752 did induce GABAergic neurite outgrowth by 

itself. Taken together, we concluded that ErB4 and MET are not the 

transmembrane receptors mediating GDNF activities in MGE neurons. 

Instead, the inhibition of MET signaling unexpectedly promoted 

GABAergic neurite outgrowth in these cells. 
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Since the MET inhibitor SU11274 promoted neurite outgrowth by itself, 

we then decided to further investigate the role of MET signaling 

inhibition in MGE neurons using an antibody blocking HGF signaling. 

We chose this approach because it would eliminate the possibility of 

unspecific pharmacological inhibition of other kinases than MET. 

Although HGF did not promote any neurite outgrowth, the !#HGF 

blocking antibody induced robust GABAergic neurite outgrowth to a 

higher level than GDNF. When GDNF and !-HGF were added together, 

the effect on neurite outgrowth was additive; similar to the effect 

observed when GDNF and SU11274 were added together. Interestingly, 

HGF did not reduce the effect of GDNF when both were added together. 

In Boyden chambers, !-HGF proved to be more potent than GDNF in 

promoting cell migration, even with a synergistic induction when both 

were added simultaneously.  

 

These results prompted us to further analyze if the biological outputs 

observed in MET signaling inhibition were dependent on GDNF 

signaling. Therefore, we utilized a !-GDNF blocking antibody to inhibit 

all GDNF-mediated signaling in these neurons. As control experiments, 

we first tested the specificity of the antibody in inhibiting GDNF activities 

in neurite outgrowth. We also evaluated this GDNF inhibition in 

conjunction with BDNF, another ligand promoting neurite outgrowth in 

MGE neurons (Pozas 2005), and found that !-GDNF failed to inhibit the 

GABAergic neurite outgrowth mediated by BDNF. Interestingly, when 

added together with !-GDNF, !-HGF also failed to induce any 

GABAergic neurite outgrowth above background levels. These results 

argue that !-HGF is dependent on endogenous GDNF signaling to 

mediate GABAergic neurite outgrowth of MGE neurons. 

 

To verify if !-HGF requires endogenous GDNF signaling to mediate 

neurite outgrowth, we utilized an in vitro approach and cultured knock-

out neurons. Therefore, we assessed GABAergic neurite outgrowth and 

cell migration in cultured MGE neurons derived from Gfra1-/- embryos 

and treated them with !-HGF. Both biological outputs showed an 

impairment of !-HGF to exert its activity in Gfra1-/- neurons, confirming 

that !-HGF is dependent on endogenous GDNF/GFR!1 signaling. 

Moreover, these results imply that HGF signaling through MET may 

restrict GDNF activities in these neurons since MET is broadly 

expressed in the MGE at E12.5. 
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To test this hypothesis, we used MGE cultures derived from MET 

mutant mice carrying a double (D) point mutation of two tyrosine 

residues into phenylalanine in the intracellular domain the MET receptor. 

MET D/D embryos display the same phenotype as MET null mutants and 

are incapable of MET signaling induction both in vitro and in vivo (Maina 

1996). We observed an enhanced response to GDNF in MET D/D 

neurons both in GABAergic neurite outgrowth and migration. 

Conclusively, these neurons exhibited a statistically significant increase 

in GABAergic neurite differentiation and cell migration even in untreated 

conditions.  

 

In order to understand how MET signaling could negatively regulate 

GDNF signaling, we investigated the expression of both MET and 

GFR!1 in the MGE. Both receptors were expressed in the postmitotic 

mantle zone of the MGE. While MET was more broadly expressed than 

GFR!1, some cells did exhibit co-expression of both receptors. Next, we 

performed quantitative real-time PCR of RNA extracted from wild-type 

MGE neurons that were treated for 48 hours and measured Gfra1 

mRNA expression. Surprisingly, we found that dissociated MGE cells 

cultured for two days in control conditions displayed significantly 

reduced levels of Gfra1 mRNA compared to freshly dissected E12.5 

MGE tissue. Incubation of these cells with GDNF restored Gfra1 mRNA 

expression in DIV2 MGE cultures to similar levels displayed by the 

freshly dissected E12.5 MGE tissue. GFR!1-Fc also had an effect on 

Gfra1 mRNA expression but was lower than GDNF. We further showed 

that the !-HGF blocking antibody and the SU11274 Met inhibitor 

increased the level of Gfra1 mRNA in cultured MGE cells to a similar 

extent as GDNF. As the trophic effects of HGF/Met inhibition were 

mediated by endogenous GDNF signaling, we tested if the effects 

observed on Gfra1 mRNA expression were also dependent on GDNF 

and therefore combined !-HGF and !-GDNF treatments to assess the 

levels of Gfra1 mRNA expression. Unlike its effect on neurite outgrowth, 

!-GDNF did not impair the ability of !-HGF to increase Gfra1 mRNA 

levels in our MGE cultures, suggesting that endogenous HGF/MET 

represses Gfra1 mRNA expression in MGE cells. 

 

Together, these results conclude that endogenous HGF signaling 

through MET restricts the effects of GDNF/GFR!1 signaling in both the 

differentiation and migration of GABAergic MGE neurons. This negative 

regulation of GDNF signaling by MET may play a crucial role in early 

developmental diversification of GABAergic interneuron subtypes in the 

MGE. 
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CONCLUSION 

 
When GDNF was discovered seventeen years ago, it was merely 

acknowledged for its capacity to promote the survival of embryonic 

midbrain dopaminergic neurons. Extensive work from recent years has 

now appropriately recognized the diverse biological influence of this 

growth factor in nervous system development and function. This thesis 

has contributed to our understanding of the physiological and cellular 

events mediated by GDNF and its receptors by offering the following 

new insights: 

 

• Discovery of the first adaptor protein to bind phospho-Tyr
687

 of RET. 

• Identification of the first direct binding site for SHP2 in RET. 

• Promotion of sympathetic neuron survival and neurite outgrowth mediated 

by SHP2 binding to RET Y687. 

• Elucidation of the self-association determinants of the RET transmembrane 

domain. 

• Description of how the RET-TM self-associates and stabilizes receptor-

receptor interactions in constitutive dimers formed by the C634R mutation 

found in MEN2A and MTC patients.  

• Localization of crucial residues for RET TM-TM interactions assuming a !-

helix transmembrane conformation. 

• Demonstration of soluble GFR!1’s ability to promote GABAergic neurite 

outgrowth and migration in primary MGE neurons. 

• Justification for the presence of a novel transmembrane receptor expressed 

in the MGE for the GDNF/ GFR!1 signaling complex 

• Validation of MET signaling restriction on GDNF activities in MGE 

neurons.  

 

Our understanding of how neurons precisely integrate and interpret 

GDNF signaling remains unclear. Further investigation is necessary to 

clarify the effects these signals have on cellular function. Specifically, it 

would be significant to identify the function of other phosphorylated 

tyrosine residues in RET and in other RTKs. This information would 

allow for a better application of RET-mediated signaling in a clinical 

context. With respect to GDNF signaling, it will be important to identify 

the novel receptor partner of the GDNF/GFR!1 complex and evaluate 

its interaction with MET signaling. A thorough understanding of the 

molecular mechanisms by which GDNF functions in different neuronal 

population will be essential in elucidating its contribution to nervous 

system development and exploiting its therapeutic potential.   
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EPILOGUE 

 

Seventeen years have passed since scientists initially embarked on 

the hopeful quest to make GDNF a therapeutic agent for Parkinson’s 

disease patients. Since then our knowledge of GDNF’s mechanisms of 

action has staggeringly increased; while the technological 

developments for GDNF delivery into the human brain have 

unfortunately faltered. A recent clinical trial by Ceregene, employing an 

adeno-associated virus encoding the Neurturin gene, failed to show 

any symptomatic improvement in 58 PD patients even one year after 

the virus injection. The first post-mortem brains of this study confirmed 

that only 15% of the putamen was expressing the recombinant protein. 

Once again, the therapeutic agent did not reach the target tissue 

accurately (Vastag 2010). However, GDNF demonstrated clinical 

improvement for PD patients in a singular clinical trial, where 

subsequent post-mortem brain analysis showed massive sprouting in 

neuronal fibers of the putamen - the site where the catheter had been 

surgically inserted (Gill 2003, Love 2005).  

Scientifically much work remains before we will clearly understand the 

dynamic capabilities of GDNF and be able to apply them in a clinical 

setting. Nevertheless, my hopes have not faltered, as I believe there is 

a future for GDNF as therapeutic agent, even beyond Parkinson’s 

disease. GDNF has yielded both neuroprotective and regenerative 

results in animal models of spinal cord injury, nerve trauma, ALS, and 

stroke. These prospective hopes now rely on the design of newly 

engineered technologies for drug delivery, as well as, on the will of 

scientists to bring the findings of their research endeavors from the 

bench to the bedside where they deservingly belong… 
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