Karolinska Institutet
Browse

Role of arginase in vascular function

thesis
posted on 2024-09-02, 15:30 authored by Christian Ljung

Background: Nitric oxide (NO) is central for the integrity of the cardiovascular system, the maintenance of endothelial function and the protection against ischaemic heart disease. The enzyme arginase is up-regulated during ischaemia-reperfusion and by hypoxia in cell culture and animal models which might be of pathophysiological relevance since it competes with NO synthase for their common substrate arginine. The aim of the studies was to clarify the role of arginase in cardiovascular disease related to ischaemia and hypoxia including myocardial ischaemia and reperfusion injury, heart failure and following resuscitation after cardiac arrest by investigating the therapeutic effect of arginase inhibition and its association to increased NO bioavailability.

Studies I-II: To study the relevance of arginase in the context of myocardial ischaemia and reperfusion two different animal models were used. In a rat model, the animals were treated with an arginase inhibitor (Nω-hydroxy-nor-L-arginine, nor-NOHA) alone or together with substances inhibiting NO or its production intravenously before the onset of ischaemia. The infarct size was reduced by 50 % following administration of the arginase inhibitor. The cardioprotective effect was completely dependent on NO synthase activity and NO activity. Ischaemia and reperfusion was associated with increased expression of arginase I in the ischaemic myocardium. Arginase inhibition induced a 10-fold increase in the citrulline/ ornithine ratio as an indirect enzyme activity measure, indicating a shift in arginine utilization from arginase towards NO synthase. In a subsequent study this concept was investigated in a large animal (pig) model of myocardial ischaemia and reperfusion with intracoronary drug administration in connection with reperfusion. Administration of nor-NOHA resulted in a profound cardioprotection comparable to that observed in rats. Parallel groups confirmed that the cardioprotective mechanism was dependent on NO production.

Studies III-IV: Circulating levels of arginase I were determined in patients with heart failure and following cardiopulmonary resuscitation as well as in healthy volunteers after global hypoxia in an normobaric hypoxia chamber. These conditions were all associated with increased levels of arginase I. In addition, the effect of topical application of nor-NOHA on the sublingual mucosa on microvascular perfusion was studied using a sidestream darkfield microcirculation camera. The impaired microcirculation in heart failure and in patients following resuscitation was improved by local nor-NOHA incubation via a NO-dependent mechanism.

Conclusions: Inhibition of arginase protects from myocardial ischaemia and reperfusion injury by a mechanism that is dependent on NO production and increased bioavailability of NO by shifting arginine utilization towards NO production. In addition, we showed that heart failure, global hypoxia and cardiopulmonary resuscitation lead to increased plasma levels of arginase I. Impaired microcirculatory perfusion in these patients is improved following topical arginase inhibition by a NO dependent mechanism. Inhibition of arginase is a promising potential treatment target for protection against myocardial ischaemia and reperfusion injury and to ameliorate microcirculatory dysfunction in critically ill patients.

List of scientific papers

I. Christian Jung, Adrian T. Gonon, Per-Ove Sjöquist, Jon O. Lundberg, John Pernow. Arginase inhibition mediates cardioprotection during ischaemia–reperfusion. Cardiovascular Research. 2010; 85,147–154.
https://doi.org/10.1093/cvr/cvp303

II. Adrian T. Gonon, Christian Jung, Abram Katz, Håkan Westerblad, Alexey Shemyakin, Per-Ove Sjöquist, Jon O. Lundberg, John Pernow. Local arginase inhibition during early reperfusion mediates cardioprotection via increased nitric oxide production. PLoS One. 2012; 7, e42038.
https://doi.org/10.1371/journal.pone.0042038

III. Felix Quitter, Hans-R. Figulla, Markus Ferrari, John Pernow, Christian Jung. Increased arginase levels in heart failure represent a therapeutic target to rescue microvascular perfusion. Clinical Hemorheology and Microcirculation. 2013; 54,75-85.
https://doi.org/10.3233/CH-2012-1617

IV. Christian Jung, Felix Quitter, Michael Lichtenauer, Michael Fritzenwanger, Alexander Pfeil, Alexey Shemyakin, Marcus Franz, Hans-R. Figulla, Rüdiger Pfeifer, John Pernow. Increased arginase levels contribute to impaired perfusion after cardiopulmonary resuscitation. European Journal of Clinical Investigation. 2014; 44, 965-71.
https://doi.org/10.1111/eci.12330

History

Defence date

2015-06-05

Department

  • Department of Medicine, Solna

Publisher/Institution

Karolinska Institutet

Main supervisor

Pernow, John

Publication year

2015

Thesis type

  • Doctoral thesis

ISBN

978-91-7549-909-3

Number of supporting papers

4

Language

  • eng

Original publication date

2015-05-12

Author name in thesis

Jung, Christian

Original department name

Department of Medicine, Solna

Place of publication

Stockholm

Usage metrics

    Theses

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC