Karolinska Institutet
Browse

Effects of excess glucocorticoids on neural cell fate : long lasting consequences of adverse prenatal factors

Download (648.77 kB)
thesis
posted on 2024-09-02, 23:30 authored by Mirko Conti

The developing nervous system is particularly vulnerable to high level of glucocorticoids (GCs). Excess GCs is often associated with decreased birth weight in relation to gestational age, and to increased risk of psychiatric disorders, like depression, later in life. Persistent deregulation of the hypothalamic-pituitary-adrenal axis drive on central and peripheral systems has been suggested to play a central role, however the link between developmental GCs exposure and late-onset depression is poorly understood. The aim of this thesis was to investigate and characterize behavioral alterations induced by developmental exposure to excess GCs in mice.

Twelve month old mice (C57Bl/6) exposed to dexamethasone (DEX) (0.05 mg/Kg/day s.c.) from gestational day 14 until delivery displayed depression-like behavior resistant to treatment with the SSRI antidepressant fluoxetine (FLX), and decreased neurogenesis. These alterations, not detected at younger age, were associated with deregulation of genes promoting progenitor stem cells quiescence and proliferation, such as Cdkn1c. Neuronal stem cells exposed to DEX in vitro exhibited changes in methylation of promoter regions of the same class of genes, suggesting the involvement of epigenetic mechanisms. Depression-like behavior is often associated with altered hippocampal connectivity of granule neurons in the dentate gyrus.

We investigated the morphology of adult-born hippocampal granule neurons and found remodeling in dendritic arborization accompanied by changes in the expression of TrkB, DISC1 and Reelin. In addition, DEX-exposed mice showed blunted circadian oscillations in corticosterone secretion, and down-regulation of glucocorticoid receptor expression in the hippocampus, which may explain the resistance to FLX treatment. We then tested the SNRI antidepressant desipramine (DMI), which reversed the depressed phenotype. Since modifications in corticosterone fluctuations are also associated with circadian rhythm alterations, we tested whether DEX might alter circadian rhythms. Twelve month old DEX-exposed mice showed abnormal circadian entrainment, which appeared to be more rigid and strongly dependent on photic drive. Interestingly, circadian alterations were displayed already at 6 months, long before the onset of depression-like behavior, and were reduced by chronic DMI administration.

We assessed the function of the central clock and its drive on the hippocampus. The expression of arginine-vasopressin, the main output of the suprachiasmatic nucleus (SCN), was downregulated in DEX-exposed mice, suggesting a decoupling of the SCN control on the hippocampus. The core clock gene Bmal1 showed robust circadian fluctuations in the DEX-exposed mice SCN, while the oscillations were abolished in the hippocampus. The marked de-synchronization of Bmal1 across the SCN and hippocampus was restored by chronic treatment with DMI. Neither depression nor morphological and circadian alterations were developed in mice that received chronic treatment with DMI at 6 months, suggesting that the restoration of norepinephrine transmission might prevent the appearance of the phenotype. All together our results indicate that prenatal exposure to DEX triggers early changes in circadian rhythmicity, alterations in adult neurogenesis and neuronal plasticity preceding the onset of depression-like behavior.

List of scientific papers

I. Alterations in circadian entrainment precede the onset of depression-like behavior that does not respond to fluoxetine. Spulber S, Conti M, DuPont C, Raciti M, Bose R, Onishchenko N, Ceccatelli S. Translational Psychiatry. 2015, 5:e603.
https://doi.org/10.1038/tp.2015.94

II. Depressive-like phenotype induced by prenatal dexamethasone in mice is reversed by desipramine. Conti M, Spulber S, Raciti M, Ceccatelli S. Neuropharmacology. 2017, 126:242-249.
https://doi.org/10.1016/j.neuropharm.2017.09.015

III. Tet3 mediates stable glucocorticoid-induced alterations in DNA methylation and Dnmt3a/Dkk1 expression in neural progenitors. Bose R, Spulber S, Kilian P, Heldring N, Lönneberg P, Johnsson A, Conti M, Hermanson O, Ceccatelli S. Cell Death and Disease. 2015, 6:e1793.
https://doi.org/10.1038/cddis.2015.159

IV. Desipramine restores circadian entrainment in mice exposed to dexamethasone in utero. Conti M, Spulber S, Raciti M, Ceccatelli S. [Manuscript]

History

Defence date

2017-10-23

Department

  • Department of Neuroscience

Publisher/Institution

Karolinska Institutet

Main supervisor

Ceccatelli, Sandra

Co-supervisors

Spulber, Stefan; Svenningsson, Per

Publication year

2017

Thesis type

  • Doctoral thesis

ISBN

978-91-7676-836-5

Number of supporting papers

4

Language

  • eng

Original publication date

2017-10-02

Author name in thesis

Conti, Mirko

Original department name

Department of Neuroscience

Place of publication

Stockholm

Usage metrics

    Theses

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC