Karolinska Institutet
Browse

RhoD regulates cytoskeletal dynamics via the actin nucleation-promoting factor WASp homologue associated with actin Golgi membranes and microtubules.

Download (3.21 MB)
journal contribution
posted on 2024-10-28, 13:20 authored by Annica GadAnnica Gad, Vishal Nehru, Aino Ruusala, Pontus Aspenström
The Rho GTPases have mainly been studied in association with their roles in the regulation of actin filament organization. These studies have shown that the Rho GTPases are essential for basic cellular processes, such as cell migration, contraction, and division. In this paper, we report that RhoD has a role in the organization of actin dynamics that is distinct from the roles of the better-studied Rho members Cdc42, RhoA, and Rac1. We found that RhoD binds the actin nucleation-promoting factor WASp homologue associated with actin Golgi membranes and microtubules (WHAMM), as well as the related filamin A-binding protein FILIP1. Of these two RhoD-binding proteins, WHAMM was found to bind to the Arp2/3 complex, while FILIP1 bound filamin A. WHAMM was found to act downstream of RhoD in regulating cytoskeletal dynamics. In addition, cells treated with small interfering RNAs for RhoD and WHAMM showed increased cell attachment and decreased cell migration. These major effects on cytoskeletal dynamics indicate that RhoD and its effectors control vital cytoskeleton-driven cellular processes. In agreement with this notion, our data suggest that RhoD coordinates Arp2/3-dependent and FLNa-dependent mechanisms to control the actin filament system, cell adhesion, and cell migration.

History

File version

  • Published

Publication status

Published

Sub type

Article

Journal

Mol Biol Cell

ISSN

1059-1524

eISSN

1939-4586

Volume

23

Issue

24

Pagination

4807-4819

Language

  • eng

Original self archiving date

2013-03-25

Usage metrics

    Articles

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC