Detecting prolonged sitting bouts with the ActiGraph GT3X.
The ActiGraph has a high ability to measure physical activity; however, it lacks an accurate posture classification to measure sedentary behavior. The aim of the present study was to develop an ActiGraph (waist-worn, 30 Hz) posture classification to detect prolonged sitting bouts, and to compare the classification to proprietary ActiGraph data. The activPAL, a highly valid posture classification device, served as reference criterion.
Both sensors were worn by 38 office workers over a median duration of 9 days. An automated feature selection extracted the relevant signal information for a minute-based posture classification. The machine learning algorithm with optimal feature number to predict the time in prolonged sitting bouts (≥5 and ≥10 minutes) was searched and compared to the activPAL using Bland-Altman statistics. The comparison included optimized and frequently used cut-points (100 and 150 counts per minute (cpm), with and without low-frequency-extension (LFE) filtering).
The new algorithm predicted the time in prolonged sitting bouts most accurate (bias ≤ 7 minutes/d). Of all proprietary ActiGraph methods, only 150 cpm without LFE predicted the time in prolonged sitting bouts non-significantly different from the activPAL (bias ≤ 18 minutes/d). However, the frequently used 100 cpm with LFE accurately predicted total sitting time (bias ≤ 7 minutes/d).
To study the health effects of ActiGraph measured prolonged sitting, we recommend using the new algorithm. In case a cut-point is used, we recommend 150 cpm without LFE to measure prolonged sitting and 100 cpm with LFE to measure total sitting time. However, both cpm cut-points are not recommended for a detailed bout analysis.
History
File version
- Accepted manuscript
Publication status
PublishedSub type
ArticleJournal
Scand J Med Sci SportsISSN
0905-7188eISSN
1600-0838Volume
30Issue
3Pagination
572-582PubMed link
Language
- eng