Karolinska Institutet
Browse

Bacteriophage-derived endolysins restore antibiotic susceptibility in β-lactam- and macrolide-resistant Streptococcus pneumoniae infections

Download (2.96 MB)
journal contribution
posted on 2025-05-08, 08:59 authored by Niels Vander ElstNiels Vander Elst, Kristine Farmen, Lisa Knörr, Lotte Merlijn, Federico Iovino
Abstract Streptococcus pneumoniae, the pneumococcus, is a cause of major illness globally. Invasive pneumococcal disease (IPD) is characterized by pneumococci invading blood (bacteremia), lungs (pneumonia), or brain and cerebrospinal fluid (meningitis). Meningitis remains an important global health concern because half of the survivors experience long-term neurological damage. The antibiotics commonly used to treat pneumococcal infections are β-lactams and macrolides, however, S. pneumoniae is nowadays often resistant to one or several antibiotics, therefore novel antimicrobials are needed. Here, we found that the bacteriophage-derived cpl-1 endolysin showed consistent antibacterial activity against β-lactam- and macrolide-resistant pneumococcal clinical strains grown in human blood and human cerebrospinal fluid. Exploiting synergistic and additive mechanisms, supplementation of cpl-1 to either penicillin or erythromycin, as representatives for β-lactam and macrolide antibiotics, rescued human neuronal cells from the cytotoxicity of antibiotic-resistant pneumococcal infections. Finally, systemic administration of cpl-1 supplemented to penicillin in mice infected with penicillin-resistant pneumococci successfully reduced bacteremia, and, thanks to the efficient penetration across the blood–brain barrier, abolished bacterial load in the brain, resulting in increased (89%) survival accompanied by an asymptomatic course of infection. These findings strongly suggest that cpl-1 can enhance antibiotic susceptibility in β-lactam- and macrolide-resistant S. pneumoniae, serving as a valuable adjunct therapy to standard-of-care antibiotics for multidrug-resistant IPD.

History

File version

  • Published

Publication status

Published online

Sub type

Article

Journal

Molecular Medicine

eISSN

1528-3658

Volume

31

Issue

1

Article number

170

Language

  • eng

Usage metrics

    Articles

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC